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I. INTRODUCTION

General relativity [1, 2] and quantum mechanics [3, 4] are the two cornerstones of modern theoretical physics and
have made possible the comprehension of an extremely wide spectrum of physical phenomena in the past century.
Their partial merger in the form of quantum field theory in curved spacetime [5, 6] has served, among others, to
formulate a theory of cosmological perturbations [7–10] that has proven to be largely successful in the description of
the primordial seeds of the large scale structure (LSS) in the present Universe. Indeed, the study of perturbations
around a Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmology, together with the inflationary paradigm [11–
16], have led to a surprisingly accurate description of the observations, for instance regarding the cosmic microwave
background (CMB) [17–19]. However, even though the predictions of the standard cosmological model have been
mostly successful, there might exist certain tensions in the region of moderately large scales [18]. Although these
tensions may be a statistical realization of cosmic variance, there is a belief that the accumulated significance of
anomalies in the confrontation between theory and observation might be due to the fact that, in the standard
cosmological model, the spacetime geometry on which the perturbations propagate is treated purely at the classical
level, as described by general relativity [20, 21]. Nevertheless, this classical theory is known to be fundamentally
incomplete, in the sense that it predicts its own breakdown in the form of singularities [2]. For this reason, there is an
interest in constructing a theory of cosmological perturbations where the quantum nature of gravity is appropriately
taken into account and in analyzing how this affects the predictions for the CMB and the LSS, that provide a promising
probe of the physics of the very early Universe and, thus, a testbed for quantum geometry effects.

Among the candidates for a quantum theory of gravity, loop quantum gravity (LQG) stands out as a solid approach
that has undergone a major development in the past decades [22, 23]. It is a background independent, nonperturbative
canonical quantization of general relativity in 3+1 spacetime dimensions, based on an adaption of strategies employed
in Yang-Mills theories to the gravitational degrees of freedom. Although the quantization program remains incomplete
as of yet, it has successfully been applied to cosmological scenarios, where the high number of symmetries makes it
possible to overcome some of the difficulties that arise in the full theory. This led to the birth of the field of loop
quantum cosmology (LQC) [24, 25]. Although the formalism of LQC is affected by some mathematical ambiguities,
a number of results have been found to be robust. The most outstanding one is the resolution of the big bang
singularity. In FLRW spacetimes [26–28], the standard cosmological singularity is replaced with a quantum bounce,
that joins deterministically two classical branches, one in contraction and the other in expansion. Despite the success
of the homogeneous and isotropic description, it is known that such a model is insufficient to describe the Universe
we inhabit. Indeed, inhomogeneities are to be considered in order for any structure to be formed by gravitational
instability. This naturally drove the community to the introduction of inhomogeneities in the FLRW models in the
form of perturbations. In this regard, mainly two different paths have been developed in extent leading to predictions
compatible with observations: the so-called hybrid [29–34] and dressed metric [35–38] formalisms.

Both approaches to inhomogeneous LQC are based on the assumption that there exists a physical regime between
the fully quantum one and the domain of validity of semiclassical descriptions where the quantum gravity effects mainly
affect the homogeneous sector of the cosmological system [29]. With this motivation in mind, both approaches seek
to implement a quantization program based on the choice of two different representations: one of a quantum gravity
nature, to describe the homogeneous sector of the model, and a more standard one, fit to describe the perturbative
inhomogeneities. Nonetheless, both formalisms differ in the formal construction of the proposal itself. On the one
hand, the hybrid approach regards the entire cosmological system as a constrained symplectic manifold, obtained
from the truncation of the action at the lowest nontrivial order in the perturbations (around FLRW spacetimes with
compact sections) [32]. As such, the background homogeneous cosmology and the perturbations are treated on a
similar footing. On the other hand, the dressed metric approach deals with the quantization of the system in two
steps: it treats the homogeneous sector first, obtaining the corresponding dynamical trajectories of the background
in a kind of mean field approximation that dresses the FLRW metric with quantum effects, and then lifts these
trajectories to the truncated phase space that incorporates the inhomogeneities. From the theoretical point of view,
these two procedures are in contrast with each other. Hence, even though the two approaches share a number of
common features, such as the ultraviolet behavior of the perturbations [29, 30, 36], differences are to be expected.
For instance, such differences arise in the time-dependent masses appearing in the dynamical equations of scalar and
tensor perturbations. A comparison between the masses resulting from the hybrid and dressed metric approaches in
the context of effective LQC has already been carried out in Ref. [39]. In particular, the corresponding time-dependent
masses at the instant of the bounce were discussed in that work. It was shown that, whereas the hybrid masses turn
out to be positive for a certain class of potentials in the scenarios of kinetic dominance at the bounce (these scenarios
are the most interesting ones from the point of view that they allow a good fit of the observed CMB spectra while
retaining quantum effects at large scales), the dressed metric masses are negative in those cases. These differences
regarding the effective masses at the bounce are quite important. Indeed, the instant of the bounce, at which the
physical volume of the Universe attains its minimum, is often viewed as providing a preferred choice of time to set
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initial conditions for the perturbations (typically understood as defining an initial vacuum state). Whether or not
these initial conditions are well defined often depends on the properties of the effective masses at the initial time and,
more specifically, on their positivity. This is the case, for instance, if one wishes to define adiabatic states for all
wavelengths [36–38, 40–42].
Recently, an increasing attention has been devoted to one of the mathematical ambiguities of the formalism of

LQC: the regularization and subsequent definition of the Hamiltonian constraint [43]. Dapor and Liegener have
put forward a regularization procedure that follows the ideas of LQG more faithfully than the standard procedure
that had been used in the community since its inception [44–46]. Traditionally, the Hamiltonian constraint has been
defined in LQC by exploiting the symmetries of homogeneity and spatial flatness. When these properties are exhibited
by the system under consideration, the two parts that compose the Hamiltonian in general relativity (namely, the
Euclidean and Lorentzian parts, the former containing all the contributions if the spacetime signature were positive)
turn out to be proportional to each other. Therefore, a symmetry reduction can be performed on the Hamiltonian
before the regularization procedure is implemented, in such a way that it can be written in terms of the Euclidean
contribution alone. As a result, regularizing this contribution suffices to define the entire Hamiltonian in a way such
that it can be readily quantized. This is conceptually very different from the procedure followed in the full theory,
where the absence of these symmetries requires that the Euclidean and Lorentzian parts be treated individually.
It is in this sense that the Dapor–Liegener proposal resembles LQG more closely: it regularizes the Euclidean and
Lorentzian contributions separately without relying on the symmetries of the system under consideration. Not only
does it seem theoretically more satisfactory, but also it may help understanding whether the results obtained within
the standard approach to LQC are robust. This objective has inspired a number of studies (see, for instance, Refs.
[47–54]), the aim of which was to explore the features of the model, how they compare to the standard ones, and the
implementability of the procedure in more complicated scenarios, among others. It has been found that, although the
big bang singularity is still resolved by a bouncing mechanism, the resulting bounce is quantitatively and qualitatively
different from the standard one. Indeed, instead of joining two classical universes in a symmetric fashion, the new
big bounce is asymmetric, inasmuch as it joins an FLRW branch with an asymptotically de Sitter one, where an
emergent cosmological constant of Planck order appears. With this caveat, the big bang resolution in homogeneous
and isotropic LQC is found to be robust and not an artifact of a specific regularization of the scalar constraint.
The Dapor–Liegener regularization scheme has been implemented in isotropic and anisotropic scenarios [53]. The

introduction of perturbations within the dressed metric approach has already been considered in Ref. [50]. In a
recent work [54], the particularization of the formalism of hybrid LQC to the Dapor–Liegener regularization of the
FLRW cosmological background has been studied in detail, and two different admissible prescriptions have been put
forward for the quantum definition of certain geometrical operators. At this point, it seems natural to wonder how
the predictions of the hybrid and dressed metric formalisms compare to each other when the homogeneous geometry
is regularized following the proposal of Ref. [45]. Furthermore, a new regime of interest arises in this setting: not only
is it interesting to study the properties of the time-dependent masses at the instant of the bounce, but also in the new
de Sitter epoch that emerges with this regularization scheme. Indeed, the asymptotic past seems a good candidate to
try and set initial conditions for the perturbations, given that a de Sitter regime is very rapidly approached before
the bounce and the Bunch–Davies vacuum may be a natural choice of vacuum in this scenario [50]. This paper aims
to address these questions, by computing and analyzing the time-dependent masses seen by the perturbations in the
hybrid and dressed metric formalisms when the homogeneous geometry is regularized according to the Dapor–Liegener
proposal. Concretely, we will study and compare the masses in full detail in the two commented regions of physical
interest to set initial conditions: the big bounce and the asymptotic de Sitter regime.
This paper is structured as follows. In Sec. II, we overview the most important elements of effective hybrid

LQC and provide the expression of the time-dependent masses that govern the propagation of scalar and tensor
perturbations, distinguishing between the two possible prescriptions discussed in Ref. [54] for the definition of the
geometric operators that are necessary to determine these masses. Then, in Sec. III, we obtain the corresponding
expression of those masses in the dressed metric approach, so as to be in a position to compare the results of both
formalisms. As commented above, this comparison is especially enlightening in what regards the positivity in some
interesting physical regimes. In Sec. IV, the considered masses are evaluated at the instant of the bounce and their
positivity is studied. A similar analysis is carried out in the asymptotic de Sitter regime in Sec. V. Finally, we
summarize and discuss the main results in Sec. VI. Throughout this work, we set the speed of light and the reduced
Planck constant equal to one.

II. THE HYBRID APPROACH

Let us briefly review the aspects of the hybrid approach to inhomogeneous LQC that are relevant for the derivation
of the time-dependent masses of the gauge invariant perturbations. We will focus our attention on quantum states of
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the FLRW cosmological background for which the effective description of homogeneous and isotropic LQC is valid.
This effective description can be attained in practice by replacing the dependence on the Hubble parameter of the
relevant geometric operators with sinusoidal functions of that parameter, as a consequence of the regularization of
the quantum expressions by means of holonomy elements [25, 55, 56]. Therefore, we omit any details about the fully
quantum formalism for the sake of brevity and refer directly to the effective counterpart of all quantities. For a more
thorough discussion, we refer the reader to Refs. [29–34, 54].
The hybrid formalism for cosmological perturbations is based on a gauge invariant description of an inhomogeneous

system, regarded as a perturbation around a (spatially compact) homogeneous and isotropic cosmology, and derived
from the truncation of the Hilbert-Einstein action at quadratic order in the perturbations. The resulting truncated
system is subject to a number of constraints, that ensure the covariance at the considered order of truncation [32].
This constrained system can be cast in a canonical form and then be quantized following the ideas of Dirac [57] by
adopting an LQC representation for the homogeneous sector and a standard Fock quantization for the gauge invariant
perturbations. In the remainder of this paper, we deal with perturbations around a flat FLRW cosmology, with spatial
sections that have the topology of a three-torus. We consider a matter content given by a minimally coupled scalar
field subject to a certain field potential, so as to induce nontrivial cosmological dynamics.
The canonical variables employed to coordinatize the phase space of our perturbed system are the following. The

homogeneous sector that describes the FLRW background, that is treated exactly in the perturbation hierarchy, can
be described by a variable α̃ corresponding to the logarithmic scale factor and by its canonical momentum πα̃, together
with another canonical pair, ϕ̃ and πϕ̃, associated with the zero mode of the scalar field and its momentum [32, 54].
As far as the inhomogeneous sector is concerned, in absence of vector matter fields, vector perturbations are pure
gauge and thus we will ignore them. As regards the scalar perturbations, the relevant gauge invariant variables are
the so-called Mukhanov–Sasaki modes [58–60], v~n,ǫ and πv~n,ǫ

, where ~n ∈ Z
3 − {0} is the wavevector, with its first

nonvanishing component being positive, and ǫ = ± is the parity (the passage to a continuum of Fourier modes is
attained in a suitable limit, as explained in Ref. [61]). The rest of the degrees of freedom in the scalar perturbations
are gauge and can be assigned to perturbative constraints, conveniently Abelianized at our order of perturbative
truncation, or to variables canonically conjugated to those constraints [32]. The tensor perturbations, on the other

hand, can be described by a series of mode coefficients d̃~n,ǫ,ǫ̃ and πd̃~n,ǫ,ǫ̃
, analogous to the Mukhanov–Sasaki ones

(they are also gauge invariant, in the sense of the Bardeen potentials [62]), but with an additional label ǫ̃ = +,× that
refers to the polarization of the mode. These variables satisfy a global Hamiltonian constraint that is composed by
a homogeneous contribution and a number of terms which are quadratic in the gauge invariant perturbations. This
global Hamiltonian can be written as

H =
e−3α̃

2

(

2e3α̃H|0 −ΘS
o πϕ̃ −ΘS

e −ΘT
)

, (2.1)

where

H|0 =
e−3α̃

2

(

π2
ϕ̃ −H(2)

0

)

, H(2)
0 = π2

α̃ − 2e6α̃W̄ , (2.2)

ΘS
o = −ϑo

∑

~n,ǫ

(v~n,ǫ)
2, (2.3)

ΘS
e = −

∑

~n,ǫ

[(ϑeω
2
n + ϑq

e)(v~n,ǫ)
2 + ϑe(πv~n,ǫ

)2], (2.4)

ΘT = −
∑

~n,ǫ,ǫ̃

[(ϑeω
2
n + ϑq

T )(d̃~n,ǫ,ǫ̃)
2 + ϑe(πd̃~n,ǫ,ǫ̃

)2]. (2.5)

Here, ω2
n = −4π2|~n|2/l20, l0 is the coordinate length of the fundamental cycles of the three-toroidal sections (that can

be fixed freely), and W̄ is related to the scalar field potential W via W̄ (ϕ̃) = σ4W (ϕ̃/σ), where σ2 = 4πG/3l30 and G
is the Newtonian gravitational constant. Finally, the ϑ-functions are

ϑe = e2α̃, ϑo = −12e4α̃W̄,ϕ̃
1

πα̃
, (2.6)

ϑq
e = e−2α̃H(2)

0

(

19− 18
H(2)

0

π2
α̃

)

+ e4α̃(W̄,ϕ̃ϕ̃ − 4W̄ ), (2.7)

ϑq
T = e−2α̃H(2)

0 − 4e4α̃W̄ , (2.8)

where W̄,ϕ̃ and W̄,ϕ̃ϕ̃ denote the first and second derivatives of the function W̄ with respect to ϕ̃, respectively.
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Inspecting the Hamiltonian (2.1), one can realize that the relevant functions of the FLRW background for the scalar
and tensor contributions are (ϑq

e+ϑoπϕ̃)/ϑe and ϑq
T /ϑe, that differ in a quantity that vanishes with the field potential:

ϑq
e + ϑoπϕ̃

ϑe
=

ϑq
T

ϑe
+ e2α̃

(

W̄,ϕ̃ϕ̃ + 36W̄
H(2)

0

π2
α̃

− 12W̄,ϕ̃
πϕ̃

πα̃

)

. (2.9)

Following the program of the hybrid approach, we select the polymeric representation of LQC for the FLRW
geometry, so that the homogeneous gravitational degrees of freedom are encoded in a triad-like variable V , that
corresponds to the physical volume of the Universe, and a canonically conjugate connection-like variable b that,
classically, is proportional to the Hubble parameter. Indeed, {b, V } = 4πGγ

√
∆, where γ is the Immirzi parameter

(that is usually assumed to take the value γstand ≈ 0.2375, derived from calculations of black-hole entropy) and

∆ = 4
√
3πGγ is called the area gap. The relation of V and b with the logarithmic scale factor and its momentum is

eα̃ =

(

3

4πGσ

)1/3

V 1/3, πα̃ = − 3

4πGγ
√
∆
bV. (2.10)

The regularization scheme adopted for the contribution of the homogeneous geometry in the Hamiltonian constraint
leaves an imprint that is transmitted to the effective dynamics. In the present study, we consider the regularization
resulting from the Dapor–Liegener prescription [45], which is based on an individual treatment of the Euclidean and

Lorentzian parts of the Hamiltonian. The component H(2)
0 of the densitized homogeneous Hamiltonian obtained with

this prescription adopts the effective value [54]

H(2)
0 = −

(

3

4πG

)2

V 2

[

1

∆

(

sin2 b − 1 + γ2

4γ2
sin2 2b

)

+ 2
W̄

σ2

]

. (2.11)

Apart from powers of the volume, only two other geometrical quantities of the FLRW background remain to be defined
in the densitized Hamiltonian constraint: the inverse of πα̃ and the square inverse, both in the scalar contribution [see
Eqs. (2.6) and (2.7)]. Actually, the way in which these objects are represented is intimately related to the structure
of the quantum theory: we require that their action as quantum operators preserve the superselection sectors of the
homogeneous Hamiltonian [32, 54], so that the perturbative contributions do not alter them. In the first place,

1

πα̃
=

1

π2
α̃

Ξ, (2.12)

where Ξ is the effective analog of the operator π̂α̃. According to the proposal of Ref. [32],

Ξ = − 3

8πGγ
√
∆
V sin 2b. (2.13)

In this way, we are only left with the definition of 1/π2
α̃. There exists an ambiguity in the quantum representation

of this factor, that obviously affects its effective counterpart. In Ref. [54], two different prescriptions were argued to

be admissible for this representation, depending on whether or not one employs H(2)
0 in the construction. We will

consider in detail these two prescriptions in Secs. II A and II B.
In the effective regime of homogeneous LQC, the mode equations that one can derive from the Hamiltonian con-

straint for the gauge invariant perturbations, can be cast in the form (see Refs. [32, 34])

v′′~n,ǫ +
(

ω̃2
n +MS

)

v~n,ǫ = 0, (2.14)

d̃′′~n,ǫ,ǫ̃ +
(

ω̃2
n +MT

)

d̃~n,ǫ,ǫ̃ = 0, (2.15)

where the prime denotes the derivative with respect to conformal time, ω̃2
n = l20ω

2
n and

MS = l20
ϑq
e + ϑoπϕ̃

ϑe
, MT = l20

ϑq
T

ϑe
, (2.16)

that we will respectively call the scalar and tensor effective masses. By virtue of the relation (2.9), we immediately
see that these two objects differ by a quantity that vanishes when the scalar field potential is identically zero,
MS = MT + U , where U is the so-called Mukhanov–Sasaki potential. Following the conventions of Ref. [39], we now
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reexpress these masses in terms of the matter energy density and pressure, defined in the standard way in terms of
the matter Hamiltonian:

ρ =
Hmatt

V
=

2πG

3V 2

[

π2
ϕ̃ + 2

(

3

4πG

)2

V 2 W̄

σ2

]

=
2πG

3V 2
π2
α̃ =

3

8πGγ2∆
sin2 b[1− (1 + γ2) sin2 b], (2.17)

P = −∂Hmatt

∂V
= ρ− 3

2πG

W̄

σ2
. (2.18)

In the two last equalities of Eq. (2.17), we have used that, at our perturbative truncation order, we can ignore the
backreaction of the perturbations in the computation of the masses, and then we have employed the vanishing of the
Hamiltonian constraint of effective homogeneous LQC.
On the one hand, the tensor effective mass can be rewritten in terms of ρ and P as

MT = V −4/3

[

(

4πG

3

)2

π2
α̃ − 6V 2 W̄

σ2

]

= −4πG

3
V 2/3(ρ− 3P ). (2.19)

On the other hand, the Mukhanov–Sasaki potential U is [see Eqs. (2.9) and (2.16)]

U =
V 2/3

σ2

[

W̄,ϕ̃ϕ̃ + 72
3

4πG
W̄

V 2ρ

π2
α̃

− 12W̄,ϕ̃
Ξπϕ̃

π2
α̃

− 72

(

3

4πGσ

)2

W̄ 2V
2

π2
α̃

]

, (2.20)

where only Ξ [see Eq. (2.13)] and 1/π2
α̃ remain to be determined in terms of ρ and P . This task can only be done

after having selected a concrete representation for 1/π2
α̃. The computation is performed individually for each of the

two considered prescriptions in Secs. II A and II B. Notice that, since the tensor effective mass does not depend on
inverse powers of the momentum of the logarithmic scale factor, its effective value is the same for both prescriptions.
Only the scalar effective mass or, equivalently, the Mukhanov–Sasaki potential, needs to be studied separately.

A. Prescription A

The first option to regularize the square inverse of the momentum of the logarithmic scale factor is naturally

provided by the term H(2)
0 that contains the geometrical part of the densitized homogeneous Hamiltonian. Indeed,

from Eq. (2.2), we can define 1/π2
α̃ as

1

π2
α̃

=

[

H(2)
0 + 2

(

3

4πG

)2

V 2 W̄

σ2

]−1

= −
(

4πG
√
∆

3

)2
1

V 2

(

sin2 b− 1 + γ2

4γ2
sin2 2b

)−1

=
2πG

3

1

V 2ρ
, (2.21)

where in the second equality we have substituted the effective expression of the considered quantity in the Dapor–
Liegener proposal, and in the last equality we have used the vanishing of the effective homogeneous constraint, since
we can ignore the backreaction at the order of our approximations in the mass. Throughout this paper, we refer to
this way of representing 1/π2

α̃ and the subsequent effective value as “prescription A”. Together with Eqs. (2.12) and
(2.13), this implies that

Ξ

π2
α̃

=
2πG

√
∆

3γ

sin 2b

V

(

sin2 b− 1 + γ2

4γ2
sin2 2b

)−1

= − 1

4γ
√
∆

sin 2b

V ρ
. (2.22)

We can then write the Mukhanov–Sasaki potential in the form

(A)U =
V 2/3

σ2

(

W̄,ϕ̃ϕ̃ + 36W̄ +
3

γ
√
∆

sin 2b
W̄,ϕ̃πϕ̃

V ρ
− 36

3

4πGσ2

W̄ 2

ρ

)

, (2.23)

where sin 2b would need to be rewritten in terms of ρ. This cannot be done globally. Indeed, Eq. (2.17) can be used
to relate the energy density with sin2 b. The resulting equation admits two solutions,

sin2 b± =
1±

√

1− ρ/ρB
2(1 + γ2)

, (2.24)
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where ρB is the maximum of the energy density, attained at the bounce:

ρB =
3

32πGγ2(1 + γ2)∆
. (2.25)

The existence of two solutions leads to two different branches in the evolution, that cannot be joined arbitrarily.
There are only two possible evolution histories: an asymmetric bounce may join an asymptotically de Sitter universe
with a flat FLRW cosmology or the other way around [45, 47]. In this instance, we work with the solution that is
not immediately ruled out by cosmological observations: a contracting asymptotically de Sitter branch followed by
an expanding flat FLRW universe. Then, in Eq. (2.24), the plus sign corresponds to the contracting branch, while
the minus sign is assigned to the postbounce evolution. By substituting relation (2.24) in Eq. (2.23), we get two
expressions for the Mukhanov–Sasaki potential that differ in this sign, each of them valid before or after the bounce.

B. Prescription B

Let us consider now the second prescription for the representation of 1/π2
α̃. Although admissible, this possibility,

that we call “prescription B”, lacks the motivation that is the theoretical strength of prescription A. Following the
proposal of Ref. [32], we can use the same representation of 1/π2

α̃ as in the standard regularization of LQC, therefore
mixing regularizations in a certain sense. This leads to the effective value

1

π2
α̃

=

(

4πGγ
√
∆

3

)2
1

V 2 sin2 b
. (2.26)

Details about the quantum features of this prescription can be found in Ref. [54]. In this manner, we obtain

Ξ

π2
α̃

= −4πGγ
√
∆

3V

cos b

sin b
, (2.27)

and, hence, the following effective expression of the Mukhanov–Sasaki potential is found:

(B)U =
V 2/3

σ2

(

W̄,ϕ̃ϕ̃ + 96πGγ2∆
W̄ρ

sin2 b
+ 16πGγ

√
∆

cos b

sin b

W̄,ϕ̃πϕ̃

V
− 72γ2∆

σ2

W̄ 2

sin2 b

)

. (2.28)

Employing Eq. (2.24), we can finally rewrite the trigonometric functions of b in terms of the matter energy density,
although, as for prescription A, this cannot be done globally, but separately in the prebounce and postbounce branches.
One of our objectives is to compare prescriptions A and B so as to verify whether the theoretical preference for

prescription A also translates into more appealing physical features for the corresponding masses. This analysis is
carried out in Secs. IV and V, where we also consider the effective value of the masses in the dressed metric approach.

III. THE DRESSED METRIC APPROACH

In this section, we discuss the other predominant approach to inhomogeneous LQC that is also based on a combina-
tion of different quantum representations for the homogeneous and inhomogeneous sectors of a perturbed cosmology:
the dressed metric approach. We will obtain explicitly the effective value of the time-dependent masses that govern
the dynamics of the scalar and tensor perturbations. For specific details and in-depth discussions about the dressed
metric approach, we refer the reader to Refs. [35–38].
This approach to inhomogeneous LQC adopts a separate treatment of the background homogeneous cosmology and

the perturbations, neglecting the effects of the backreaction from the very beginning. One deals with the homogeneous
sector first, obtaining an FLRW cosmology that is “dressed” with the main quantum corrections in a sort of mean
field approximation. The homogeneous dynamics of this dressed cosmology is lifted to the truncated phase space that
aims to describe the perturbed cosmology at the desired level of approximation [36]. In this way, the perturbations
can be seen as test fields propagating on a dressed homogeneous background. It is important to note that, as a result
of this program, one is devoid of a global Hamiltonian. In fact, the dressed metric formalism is provided with two
different Hamiltonians, one of them generating the homogeneous dynamics and the other one leading to the field
equations for the gauge invariant perturbations once the dressed background is viewed as a given entity [36, 37].
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Employing the notation of Refs. [36, 37] and the transformations of variables considered in Ref. [39] (that facilitate
a direct comparison with the hybrid approach), the dynamical equations for the perturbations in the effective regime
of LQC can be cast in the form

q′′~n,ǫ + [ω̃2
n + (D)MS ] q~n,ǫ = 0, (3.1)

t′′~n,ǫ,ǫ̃ + [ω̃2
n + (D)MT ] t~n,ǫ,ǫ̃ = 0, (3.2)

where q~n,ǫ and t~n,ǫ,ǫ̃ are the corresponding Mukhanov–Sasaki and tensor modes, respectively. We have introduced a
notation slightly different to that used in the discussion of the hybrid approach in order to distinguish between the
variables of the two formalisms, since they do not obey exactly the same equations. The scalar and tensor effective
masses in the dressed metric formalism are given by

(D)MT = − (eα̃)′′

eα̃
= −V ′′

3V
+ 2

(

V ′

3V

)2

, (3.3)

(D)MS = (D)MT + (D)U , (3.4)

where (D)U is the Mukhanov–Sasaki potential in the dressed metric approach.
Let us begin by obtaining the expression of the tensor effective mass in terms of the energy density and pressure

of the scalar field. In order to compute the derivative of any function of the homogeneous phase space with respect
to the conformal time, in the dressed metric approach we simply have to take Poisson brackets with the effective
homogeneous Hamiltonian that generates the evolution on the trajectories described by the dressed background
solution. For instance, in the case under consideration,

V ′ = −2πG

3
V −2/3{V,H(2)

0 } = − 3γ

2
√
∆
V 4/3 sin 2b

(

1− 1 + γ2

γ2
cos 2b

)

. (3.5)

Similarly,

V ′′ = −3γ2

∆
V 5/3 sin2 b

{

3

[

cos 2b− 1 + γ2

γ2
(cos2 2b− sin2 2b)

](

1− 1 + γ2

γ2
cos2 b

)

− 4 cos2 b

(

1− 1 + γ2

γ2
cos 2b

)2
}

− 18γ2V 5/3 W̄

σ2

[

cos 2b− 1 + γ2

γ2
(cos2 2b− sin2 2b)

]

. (3.6)

In conclusion, the effective mass for the tensor modes in the dressed metric approach is

(D)MT =
γ2

∆
V 2/3 sin2 b

{

3

[

cos 2b− 1 + γ2

γ2
(cos2 2b− sin2 2b)

](

1− 1 + γ2

γ2
cos2 b

)

− 2 cos2 b

(

1− 1 + γ2

γ2
cos 2b

)2
}

+ 6γ2V 2/3 W̄

σ2

[

cos 2b− 1 + γ2

γ2
(cos2 2b− sin2 2b)

]

. (3.7)

This is a complicated expression of the holonomy elements of the connection-like variable b, which could in principle
be reexpressed in terms of ρ and P . In this process, we need to use Eq. (2.24), resulting in two different analytical
expressions of the tensor effective mass if one wants to cover the entire evolution of the Universe. It is straightforward
to find that

cos 2b± − 1 + γ2

γ2
(cos2 2b± − sin2 2b±) = − 1

γ2
+

3

1 + γ2

(

1±
√

1− ρ

ρB

)

+
2

γ2(1 + γ2)

ρ

ρB
, (3.8)

1− 1 + γ2

γ2
cos2 b± = − 1

2γ2

(

1∓
√

1− ρ

ρB

)

, (3.9)

1− 1 + γ2

γ2
cos 2b± = ± 1

γ2

√

1− ρ

ρB
, (3.10)

W̄

σ2
=

2πG

3
(ρ− P ), (3.11)

where we recall that the plus and minus signs correspond to the asymptotically de Sitter branch and the expanding
FLRW cosmology, respectively. With these equations, it is trivial to rewrite (D)MT in the desired form.



9

At this point of our analysis, only the scalar effective mass remains to be discussed. As in the hybrid approach,
this mass is the sum of the tensor effective mass and the Mukhanov–Sasaki potential. Therefore, it is sufficient to
discuss the expression of (D)U . In practice, the Mukhanov–Sasaki potential can be found from Eq. (2.20) by simply
substituting in it the effective value of the momentum of the logarithmic scale factor, expressed in terms of the matter
energy density and the scalar field potential. Imposing the effective homogeneous Hamiltonian as a constraint, because
the backreaction is ignored, the expression that results from this procedure is

(D)U =
V 2/3

σ2

(

W̄,ϕ̃ϕ̃ + 36W̄ − s 4
√
6πG

|πϕ̃|
V

W̄,ϕ̃√
ρ

− 36
3

4πGσ2

W̄ 2

ρ

)

, (3.12)

where s is the sign of πϕ̃/πα̃. It is interesting to note that this formula for the Mukhanov–Sasaki potential
coincides with that found for prescription A in the hybrid approach [see Eq. (2.23)] when s is replaced with
−3 sgn(πϕ̃) sin 2b/(4γ

√
6πG∆ρ).

Once we have specified the effective masses of the perturbations in the hybrid and dressed metric approaches,
we are in an adequate position to analyze their properties in regimes of physical interest and compare the results
corresponding to each approach. This is the objective of the next two sections.

IV. EFFECTIVE MASSES AT THE BOUNCE

We now want to analyze the properties at the bounce of the effective masses introduced above for prescriptions A
and B within the hybrid approach, and for the dressed metric approach. We are interested in elucidating the positivity
of these masses and, with this aim, we will carry out a study similar to the one presented in Ref. [39] in the context
of the standard regularization scheme for homogeneous LQC.
Given that the bounce is characterized by the fact that the physical volume V reaches a minimum, it is straight-

forward to realize that Eq. (3.5) [with Eq. (3.6)] implies that, at the bounce,

sin2 bB =
1

2(1 + γ2)
, (4.1)

where the subindex (or superindex) B stands for evaluation at the instant of the bounce. In the Dapor–Liegener
model, the solution of cosmological interest is the one where the asymptotically de Sitter branch appears in the
prebounce era, for which one only has to consider positive values of b [47, 51]. Thus, we set

bB = sin−1

(

1
√

2(1 + γ2)

)

, (4.2)

so that we select the smallest positive value allowed for bB. In the discussed solution, it is found that b is a monoton-
ically decreasing function of the proper time, that attains its maximum in the infinite past and decreases to zero in
the infinite future [47, 51]. Let us now evaluate at the bounce the effective masses that we have defined.

A. Prescription A

According to Eq. (2.19), the tensor effective mass in the hybrid approach, that it is independent of the prescription
A or B chosen to represent the square inverse of the momentum of the logarithmic scale factor, adopts the following
value at the bounce:

MT
B = −4πG

3
V

2/3
B (ρB − 3PB) =

8πG

3
V

2/3
B

(

ρB − 9

4πGσ2
W̄B

)

. (4.3)

As a result, this mass is positive at the bounce as long as

3

4πGσ2
W̄B <

ρB
3
. (4.4)

Notice that this upper bound (and, thus, the positivity of the effective mass seen by the tensor perturbations) is
satisfied in a scenario of kinetic dominance at the bounce. Indeed, the bound is equivalent to the condition that the
kinetic contribution to the energy density be greater than 2ρB/3 and, therefore, at least twice as large as the potential
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contribution. So, in conclusion, when the energy density of the scalar field is kinetically dominated at the bounce,
the tensor effective mass is strictly positive in the hybrid approach. This conclusion is identical to the one that was
reached with the standard regularization scheme in LQC and, hence, it is thereby provided of robustness.
Let us now analyze the scalar effective mass. Using Eq. (2.23), we obtain

(A)MS
B =

8πG

3
V

2/3
B

[

ρB +
3

8πGσ2

(

W̄B
,ϕ̃ϕ̃ + 30W̄B +

3

γ
√
∆

sin 2bB
W̄B

,ϕ̃π
B
ϕ̃

VBρB
− 36

3

4πGσ2

W̄ 2
B

ρB

)]

, (4.5)

where

sin 2bB =

√

1 + 2γ2

1 + γ2
. (4.6)

In order to be able to study the properties of this mass analytically, we need to introduce some restrictions on
the scalar field potential, that we will motivate so as to cover the case of a mass term, in which we are particularly
interested. In the following, we particularize to scalar field potentials that verify at the bounce that

W̄B ≥ 0, W̄B
,ϕ̃ϕ̃ ≥ 0. (4.7)

Because of the presence of a term proportional to the first derivative of the potential with respect to the field in Eq.
(4.5), we still restrict our attention to potentials such that, at the bounce,

|W̄B
,ϕ̃| ≤ C

√

2W̄BW̄B
,ϕ̃ϕ̃, (4.8)

with C = C(W̄B
,ϕ̃ϕ̃) being a positive function of order one. It is noteworthy that the relevant case of a mass term

that we have mentioned belongs to the family of potentials that satisfy conditions (4.7) and (4.8). Indeed, the mass
potential displays the properties (4.7) at all times and satisfies the identity |W̄,ϕ̃| = (2W̄W̄,ϕ̃ϕ̃)

1/2. Hence, in this
case, the function C can be made equal to the unit. We also notice that the introduced conditions on the scalar
field potential are the same that were considered at the bounce in the study of the effective masses for the standard
regularization scheme in Ref. [39].
Employing the definition of the matter energy density (2.17) at the bounce, one can show that [39]

|πB
ϕ̃ |
√

2W̄B

VB
=

√

3

πG
W̄B

(

ρB − 3

4πGσ2
W̄B

)

. (4.9)

The right-hand side of this equation, understood as a function of W̄B, has a local maximum and its value at that point

provides the bound |πB
ϕ̃ |
√

2W̄B/VB ≤ σρB. Combining this upper bound with condition (4.8) on the first derivative

of the scalar field potential, we find that the absolute value of the term proportional to W̄B
,ϕ̃ in Eq. (4.5) satisfies

|W̄B
,ϕ̃π

B
ϕ̃ |

VBρB
≤ σC

√

W̄B
,ϕ̃ϕ̃. (4.10)

This upper bound, together with the fact that the derivative of the potential can adopt any sign, then allows us to
bound the scalar effective mass at the bounce both from above and below. Indeed, we have P− ≤ (A)MS

B ≤ P+ where

P± =
8πG

3
V

2/3
B

[

ρB +
3

8πGσ2

(

W̄B
,ϕ̃ϕ̃ + 30W̄B ± 3σC

γ
√
∆

√

1 + 2γ2

1 + γ2

√

W̄B
,ϕ̃ϕ̃ − 36

3

4πGσ2

W̄ 2
B

ρB

)]

, (4.11)

are regarded as quadratic polynomials in W̄B . The roots of these polynomials, denoted by x±(P+) and x±(P−), are

3

4πGσ2
x±(P±) =

5±

√

√

√

√

33 +
3

πGσ2

W̄B
,ϕ̃ϕ̃

ρB
± 9C

πGσγ
√
∆

√

1 + 2γ2

1 + γ2

√

W̄B
,ϕ̃ϕ̃

ρB

12
ρB, (4.12)

where the ± sign inside the square root corresponds to P±, respectively.
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For a scalar field potential of the class we are considering, with a nonnegative second derivative at the bounce, both
of the roots of P+ are real. Therefore, the upper bound (A)MS

B ≤ P+ entails that the scalar effective mass at the
bounce is ensured to be negative when the same happens to P+ or, equivalently, if

W̄B ∈
[

0,
4πGσ2

3
ρB

]

\
(

[x−(P+), x+(P+)] ∩
[

0,
4πGσ2

3
ρB

])

, (4.13)

where we have used that, since the kinetic contribution to the energy density is always nonnegative, the maximum
value allowed for W̄ at the bounce is 4πGσ2ρB/3. Given that x−(P+) is trivially negative, we conclude that the scalar
effective mass is negative in the region defined by

W̄B ∈
(

x+(P+),
4πGσ2

3
ρB

]

, (4.14)

provided that x+(P+) < 4πGσ2ρB/3. Otherwise, the upper bound of the scalar effective mass would not provide any
information about the region of physical potentials where (A)MS

B is ensured to be negative.
It is straightforward so see that x+(P+) < 4πGσ2ρB/3 if and only if

w2 + 4
√
6C

√

1 + 2γ2

1 + γ2
w − 16

3
< 0, (4.15)

where we have introduced the notation w = (W̄B
,ϕ̃ϕ̃)

1/2/(πGσ2ρB)
1/2 ∈ [0,∞+). This inequality is satisfied when

w ∈ (w
(A)
− , w

(A)
+ ) ∩ [0,∞+), where w

(A)
± are the roots of the polynomial on the left-hand side of the inequality:

w
(A)
± = −2

√
6C

√

1 + 2γ2

1 + γ2
±
√

24C2
1 + 2γ2

1 + γ2
+

16

3
. (4.16)

Since w
(A)
+ and w

(A)
− are obviously positive and negative, respectively, there exists a region of the space of field

potentials where the scalar effective mass at the bounce is ensured to be negative if and only if the second derivative
of the field potential at that instant (that we have restricted already to be nonnegative) is small enough:

W̄B
,ϕ̃ϕ̃

πGσ2ρB
∈
[

0,
(

w
(A)
+

)2
)

. (4.17)

Taking C = 1 and the standard value of the Immirzi parameter, we obtain w
(A)
+ ≈ 0.505.

Restriction (4.17) allows for values of W̄B
,ϕ̃ϕ̃ in a neighborhood of zero, which is an especially interesting case. The

region where we can ensure that (A)MS
B is negative gets larger as W̄B

,ϕ̃ϕ̃ goes to zero, so that its maximum extension
is reached when the second derivative of the scalar field potential at the bounce vanishes. In this case, the scalar
effective mass at the bounce is negative when

3

4πGσ2ρB
W̄B ∈

(

5 +
√
33

12
, 1

]

, (4.18)

which roughly represents a 10.5% of the space of physical potentials.
On the other hand, if the roots of P− are real as well, something that certainly happens for values of W̄B

,ϕ̃ϕ̃ in

a neighborhood of zero, the lower bound (A)MS
B ≥ P− guarantees that the scalar effective mass at the bounce is

nonnegative when W̄B ∈ [x−(P−), x+(P−)] ∩ [0, 4πGσ2ρB/3]. Let R− be the argument of the square root in Eq.
(4.12) corresponding to P−. Then, the roots x±(P−) are complex if R− < D for D = 0. The smaller root x−(P−) is
positive provided that R− < D for D = 25. The larger one x+(P−) is smaller than 4πGσ2ρB/3 as long as R− < D
for D = 49. As a result, depending on the value of D with respect to these transitional ones, four distinct situations
are possible: (i) if D < 0, both roots are complex and no new information comes to light; (ii) if 0 ≤ D < 25, (A)MS

B is

nonnegative when W̄B ∈ [x−(P−), x+(P−)]; (iii) if 25 ≤ D < 49, (A)MS
B is nonnegative when W̄B ∈ [0, x+(P−)]; and

(iv) if D ≥ 49, (A)MS
B is nonnegative for all W̄B ∈ [0, 4πGσ2ρB/3].

Recasting the equality R− = D as a polynomial equation, quadratic in the variable w = (W̄B
,ϕ̃ϕ̃)

1/2/(πGσ2ρB)
1/2,

that by construction is restricted to nonnegative values, it is straightforward to see for which values of the second
derivative of the field potential each of the situations (i)-(iv) arises. Let w±(D) be the zeros of that polynomial, with
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the restriction to the positive semiaxis yet to be imposed. In the first place, using the definition (2.17) of the matter
energy density, one can verify that the polynomial does not have any real roots for D < [33− 72C2(1+2γ2)/(1+γ2)].
The quantity on the right-hand side is approximately−42.8 for C = 1 and the standard value of the Immirzi parameter.
Then, if the real values of C and γ lie on a certain neighborhood of the more natural ones, the quadratic polynomial
in w has two real roots for any D ≥ 0. It is immediate to realize that the smaller root is not negative if and only if
D ≤ 33. Furthermore, for large w the polynomial is always positive. Hence, we conclude that, for the standard values
of C and γ or values close enough, the cases (i)-(iv) mentioned above take place when: (i) w ∈ (w−(0), w+(0)), (ii)
w ∈ (w−(25), w−(0)] ∪ [w+(0), w+(25)), (iii) w ∈ [0, w−(25)] ∪ [w+(25), w+(49)), and (iv) w ≥ w+(49).
In the particular case where the scalar field potential is simply given by a mass term, its second derivative is constant

and the value of w is fixed by the mass of the scalar field alone. In the situations of interest for the phenomenology of
the CMB, this mass is considerably small (see Refs. [40, 41] for discussions within the context of both the hybrid and
dressed metric formalisms) and, as a result, so is w. Therefore, these scenarios belong to the situation (iii). Then,
there exists a region of the space of physical potentials at the bounce that contains W̄B = 0 where the scalar effective
mass is nonnegative at the bounce. For the aforementioned small values of the mass of the scalar field, this region
extends up to field potentials close to (5 +

√
33)πGσ2ρB/9 [namely, the value of x+(P−) for W̄B

,ϕ̃ϕ̃ = 0], that covers
the sector of solutions where the matter energy density at the bounce is kinetically dominated.
In conclusion, using prescription A, the resulting scalar and tensor effective masses at the bounce are inevitably

positive in the case of interest where the scalar field potential and its second derivative are small, found in the
kinetically dominated scenarios at the bounce that lead to good fits of the observed CMB spectra, while still allowing
for the presence of quantum effects at low multipoles.

B. Prescription B

Let us explore now the consequences of adopting a representation of the square inverse of the momentum of the
logarithmic scale factor as in Ref. [32], instead of employing the natural representation provided by the geometrical
part of the (densitized) homogeneous scalar constraint in the Dapor–Liegener regularization scheme. The analysis is
very similar to the one presented for prescription A. For this reason, we only point out the differences with respect to
the previous case and write down the results for comparison.
In the first place, since the tensor effective mass is independent of the chosen representation for 1/π2

α̃, its value at
the bounce is also given by Eq. (4.3) and the comments on its positivity still hold. On the other hand, as far as the
scalar effective mass is concerned, it is immediate to derive from Eqs. (4.3) and (2.28) that, at the bounce,

(B)MS
B =

8πG

3
V

2/3
B

[

ρB +
3

8πGσ2

(

W̄B
,ϕ̃ϕ̃ + 12W̄B + 16πGγ

√

1 + 2γ2
√
∆
W̄B

,ϕ̃π
B
ϕ̃

VB
− 144γ2(1 + γ2)∆

σ2
W̄ 2

B

)]

. (4.19)

Restricting our discussion to the scalar field potentials that satisfy Eqs. (4.7) and (4.8), as in the previous subsection,
we conclude that the scalar effective mass at the bounce is bounded above and below, as was the case in prescription
A, by two polynomials quadratic in W̄B , namely Q− ≤ (B)MS

B ≤ Q+, where

Q± =
8πG

3
V

2/3
B

[

ρB +
3

8πGσ2

(

W̄B
,ϕ̃ϕ̃ + 12W̄B ± 3σC

2γ
√
∆

√

1 + 2γ2

1 + γ2

√

W̄B
,ϕ̃ϕ̃ − 144γ2(1 + γ2)∆

σ2
W̄ 2

B

)]

. (4.20)

The roots of these polynomials, x±(Q+) and x±(Q−), are given by

3

4πGσ2
x±(Q±) =

1±

√

√

√

√

2 +
3

8πGσ2

W̄B
,ϕ̃ϕ̃

ρB
± 9C

16πGσγ
√
∆

√

1 + 2γ2

1 + γ2

√

W̄B
,ϕ̃ϕ̃

ρB

3
ρB, (4.21)

with the plus sign inside the square root corresponding to Q+. Given our restriction to W̄B
,ϕ̃ϕ̃ ≥ 0, both roots of Q+

are real. As a result, and since x−(Q+) is negative, the upper bound on (B)MS
B implies that the scalar effective mass

at the bounce is necessarily negative when the field potential takes values in the interval

(

x+(Q+),
4πGσ2

3
ρB

]

, (4.22)
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provided that x+(Q+) < 4πGσ2ρB/3. This condition is clearly satisfied for a sufficiently small W̄B
,ϕ̃ϕ̃. This requirement

for the existence of a nonempty set of values of W̄B for which the scalar effective mass at the bounce can be ensured
to be negative is satisfied if and only if the second derivative of the scalar field potential is such that

W̄B
,ϕ̃ϕ̃

πGσ2ρB
∈
[

0,
(

w
(B)
+

)2
)

, (4.23)

with

w
(B)
+ = −

√
6C

√

1 + 2γ2

1 + γ2
+

√

6C2
1 + 2γ2

1 + γ2
+

16

3
. (4.24)

Taking C = 1 and the standard value of γ, we get w
(B)
+ ≈ 0.900, that is greater than its analog w

(A)
+ in prescription

A.
Notice that the interval (4.23) contains the relevant case where the second derivative of the potential is very close

to zero and, hence, a region where (B)MS
B is for sure negative does exist in this situation. Furthermore, this region

reaches its largest possible extension when W̄B
,ϕ̃ϕ̃ = 0, case in which Eq. (4.22) becomes

3

4πGσ2ρB
W̄B ∈

(

1 +
√
2

3
, 1

]

, (4.25)

that approximately represents a 19.5% of the space of the physical scalar field potentials.
On the other hand, the lower bound (B)MS

B ≥ Q− ensures that the scalar effective mass at the bounce is positive
when Q− is positive. As in prescription A, the values of W̄B for which this occurs depend on the value of the argument
of the square root in Eq. (4.21) corresponding to Q−, that we call T−, in comparison with a number of transitional
values. It is convenient to rewrite the equality T− = D as a quadratic equation in the variable w ∈ [0,∞+), with roots
w±(D). It can be shown that there are no real roots for D < {2− 9C2(1 + 2γ2)/[4(1 + γ2)]}, that is roughly −0.370
for C = 1 and the standard value of γ. Therefore, if C and γ are close to their standard values, the equation T− = D
has two real roots for any D ≥ 0. We distinguish among four different situations: (i) if w ∈ (w−(0), w+(0)), both
roots x±(Q−) are complex and no new information is brought to light; (ii) if w ∈ (w−(1), w−(0)] ∪ [w+(0), w+(1)),
(B)MS

B is nonnegative when W̄B ∈ [x−(Q−), x+(Q−)]; (iii) if w ∈ [0, w−(1)] ∪ [w+(1), w+(4)),
(B)MS

B is nonnegative

when W̄B ∈ [0, x+(Q−)]; and (iv) if w ≥ w+(4),
(B)MS

B is nonnegative for all W̄B ∈ [0, 4πGσ2ρB/3].
As commented in the previous subsection, in the case where the field potential is given by a mass term, w is uniquely

fixed by the mass of the scalar field. This mass (and therefore w) turns out to be extremely small in the cases of
interest in LQC as regards the CMB [40]. As a result, the physically interesting scenarios belong to case (iii), a fact
that guarantees that the scalar effective mass at the bounce is positive in the sector of kinetic dominance. Indeed,
when W̄B

,ϕ̃ϕ̃ is negligibly small, the effective mass at the bounce is positive for any 0 ≤ W̄B < 4(1 +
√
2)πGσ2ρB/9.

To conclude this subsection, we compare the physical predictions of prescription A and B. In particular, it would be
enlightening to see which region where MS

B is known to be negative is larger. In the limiting case of a vanishing W̄B
,ϕ̃ϕ̃,

we have already verified that prescription B leads to a larger interval of field potentials for which the scalar effective
mass at the bounce is necessarily negative [see Eqs. (4.18) and (4.25)]. However, this comparison can be extended to
a more general scenario. In fact, one can wonder if x+(P+) is greater than x+(Q+) for any relevant second derivative
of the potential [i.e., such that both x+(P+) and x+(Q+) are smaller that 4πGσ2ρB/3] and not only for a vanishing
one. If the answer is in the affirmative, then x+(P+) − x+(Q+) must be greater than zero, requirement which is
equivalent to

1 +

√

√

√

√

33 + 3w2 + 12
√
6C

√

1 + 2γ2

1 + γ2
w −

√

√

√

√

32 + 6w2 + 12
√
6C

√

1 + 2γ2

1 + γ2
w > 0. (4.26)

This inequality is satisfied when w2 = 0. Additionally, it can be shown that the left-hand side decreases as w increases,

reaching zero for a certain value w̄ of w. If w̄ were greater than the smallest of w
(A)
+ and w

(B)
+ , then we would conclude

that x+(P+) > x+(Q+) for all relevant values of the second derivative of the field potential [actually, we know that

w
(A)
+ < w

(B)
+ for C = 1 and the standard value of the Immirzi parameter, and hence the same will happen for

values of C and γ that do not differ much from those]. From our above inequality (4.26), we realize that w̄ verifies

−9w̄4 + 24w̄2 + 48
√
6C
√

(1 + 2γ2)/(1 + γ2)w̄ + 128 = 0. This means that w̄ is greater than one: indeed, the first
and last terms already require that w̄ > 1 and the remaining terms only increase the value of w̄. Therefore, one can
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check that w̄ is certainly greater than w
(A)
+ and w

(B)
+ . As a result, we conclude that x+(P+) > x+(Q+), not only in

the limit of vanishing W̄B
,ϕ̃ϕ̃, but also for any relevant finite value.

In summary, although the scalar and tensor effective masses at the bounce are positive in the physically interesting
cases (where W̄B and W̄B

,ϕ̃ϕ̃ are small), prescription B leads to a scalar effective mass at the bounce that we can
assure is negative in a region larger than its analog region for prescription A. Hence, prescription A is found to lead
to effective masses at the bounce which are more appealing, in the sense that they are positive in a less restricted
sector of scalar field potentials at the bounce.

C. Dressed metric formalism

We will evaluate now at the bounce the tensor and scalar effective masses in the dressed metric approach and discuss
their positivity, in an analysis similar to that of the previous subsections. For this reason, we will focus mainly on the
differences that arise in the process and provide the results for comparison with the ones of the hybrid approach.
On the one hand, the tensor effective mass at the bounce can be obtained from Eq. (3.7) by using Eqs. (3.8)-(3.11):

(D)MT
B = −4πG

1 + 2γ2

1 + γ2
V

2/3
B (ρB + PB) = −16π2G2

3

1 + 2γ2

1 + γ2

(πB
ϕ̃ )2

V
4/3
B

. (4.27)

In the last equality, we have employed the definitions (2.17) and (2.18) of the matter energy density and the pressure
in terms of their kinetic and potential contributions. It is manifest that the above expression is negative. This is in
sharp contrast with the result obtained within the hybrid approach, where the tensor effective mass at the bounce
(4.3) is positive in kinetically dominated regimes. This negativity of the tensor effective mass was also found in
Ref. [39] for the standard regularization of LQC. The result is hence robust against the ambiguity that affects the
regularization adopted in the homogeneous Hamiltonian constraint.
On the other hand, using Eq. (3.12), the scalar effective mass at the bounce can be written as

(D)MS
B =

8πG

3
V

2/3
B

{

−3
1 + 2γ2

1 + γ2
ρB +

3

8πGσ2

[

W̄B
,ϕ̃ϕ̃ +

(

36 + 6
1 + 2γ2

1 + γ2

)

W̄B

− s4
√
6πG

W̄B
,ϕ̃|πB

ϕ̃ |
VB

√
ρB

− 36
3

4πGσ2

W̄ 2
B

ρB

]}

. (4.28)

Once again, we restrict our study to scalar field potentials that satisfy conditions (4.7) and (4.8). For these potentials,
the scalar effective mass at the bounce is bounded above and below by two quadratic polynomials in W̄B :

K± =
8πG

3
V

2/3
B

{

−3
1 + 2γ2

1 + γ2
ρB +

3

8πGσ2

[

W̄B
,ϕ̃ϕ̃ +

(

36 + 6
1 + 2γ2

1 + γ2

)

W̄B

± 3σC

γ
√

1 + γ2
√
∆

√

W̄B
,ϕ̃ϕ̃ − 36

3

4πGσ2

W̄ 2
B

ρB

]}

. (4.29)

Their roots, denoted by x±(K+) and x±(K−), are

3

4πGσ2
x±(K±) =

6 +
1 + 2γ2

1 + γ2
±

√

√

√

√

(

6− 1 + 2γ2

1 + γ2

)2

+
3

πGσ2

W̄B
,ϕ̃ϕ̃

ρB
± 9C

πGσγ
√

1 + γ2
√
∆

√

W̄B
,ϕ̃ϕ̃

ρB

12
ρB, (4.30)

with the plus sign inside the square root corresponding to K+. Since W̄
B
,ϕ̃ϕ̃ > 0 with our restrictions, the roots x±(K+)

are real. Then, the upper bound on (D)MS
B implies a negative scalar effective mass at the bounce when

W̄B ∈
[

0,
4πGσ2

3
ρB

]

\
(

[x−(K+), x+(K+)] ∩
[

0,
4πGσ2

3
ρB

])

. (4.31)

If the second derivative of the scalar field potential at the bounce is small enough, as in the most interesting cases
for the CMB in LQC, it is straightforward to see that both roots are positive and x−(K+) < 4πGσ2ρB/3 < x+(K+).
Therefore, when W̄B

,ϕ̃ϕ̃ is close to zero, the mass is negative for all W̄B ∈ [0, x−(K+)). This interval is large when
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the second derivative of the scalar field potential is negligibly small, and includes then the regimes where the matter
energy density is dominated by its kinetic contribution.
The only way of avoiding a negative effective mass when the potential at the bounce is negligible compared with

4πGσ2ρB/3 is to have a large enough W̄B
,ϕ̃ϕ̃, so that x−(K+) < 0. From Eq. (4.30), it is easy to show that this

condition is met if and only if

W̄B
,ϕ̃ϕ̃ > πGσ2ρB





√

24C2 + 8
1 + 2γ2

1 + γ2
− 2

√
6C





2

. (4.32)

Taking C = 1 and the standard value of the Immirzi parameter, we obtain that the second derivative of the field
potential at the bounce must be greater than approximately 0.633πGσ2ρB for the scalar effective mass not to be
negative at the bounce in scenarios of full kinetic dominance.
If the roots of K− are real as well (something that certainly does happen for sufficiently small values of W̄B

,ϕ̃ϕ̃), the

lower bound on (D)MS
B implies that the scalar effective mass is positive at the bounce when K− is positive. As in the

hybrid approach, the interval of values of the scalar field potential for which we can ensure that (D)MS
B is positive

depends on the value of the argument of the square root in Eq. (4.30) corresponding to K−, that we denote by J−. We
write J− −D as a quadratic polynomial in the variable w ∈ [0,∞+), with real roots w±(D). This assumption about
the reality of the roots is justified, as in previous cases, by focusing on values of C and γ that are close to the standard
ones. The fact that w−(D) happens to be always negative and w+(D) only lies on the positive semiaxis for D above
a certain threshold implies that, unlike in the hybrid approach, only two possible situations can occur. Indeed, the
analogs of cases (i) and (ii) [see Subsecs. IVA and IVB] are found to be impossible. The remaining ones are: (iii) if
w ∈ [0, w+(D+)), where D+ = [6+ (1+ 2γ2)/(1+ γ2)]2, then (D)MS

B is nonnegative for W̄B ∈ [x−(K−), 4πGσ2ρB/3];

and (iv) if w ≥ w+(D+),
(D)MS

B is nonnegative for all W̄B ∈ [0, 4πGσ2ρB/3].
As we have already discussed, in the case where the scalar field potential is simply a mass term, the second

derivative of the potential is constant and w is fixed by the mass of the scalar field. The physical scenarios of
interest are characterized by an extremely small value of w [41] and, therefore, they belong to case (iii): the mass is
ensured to be positive only when the matter energy density at the bounce is dominated by its potential contribution.
Consequently, we realize that MS

B can never be positive in the dressed metric formalism when both W̄B and W̄B
,ϕ̃ϕ̃ are

(negligibly) small.

V. EFFECTIVE MASSES IN THE ASYMPTOTIC DE SITTER REGIME

In this section we will analyze the scalar and tensor effective masses corresponding to the hybrid and dressed metric
approaches to LQC in the asymptotic de Sitter region of the prebounce branch. Once the masses are appropriately
evaluated asymptotically, we will perform a separate study of their behavior and positivity, so as to compare the
physical predictions corresponding to each approach in this regime that emerges as a result of the Dapor–Liegener
regularization.
According to expression (2.17), there exist two situations in which a vanishing matter energy density is reached.

One of them corresponds to a vanishing Hubble parameter, situation that occurs at large volumes in the FLRW
branch, whereas the other involves a limit with constant Planckian Hubble parameter, that is clearly the case we are
interested in. This limit is defined by b → b0 > 0 with

sin2 b0 =
1

1 + γ2
. (5.1)

Thus, recalling our comment preceding Eq. (4.2),

b0 = sin−1

(

1
√

1 + γ2

)

. (5.2)

On the one hand, a power expansion around b = b0 confirms that the matter energy density does vanish asymptot-
ically,

ρ =
3

8πGγ2(1 + γ2)∆

[

−2γ + (1− 5γ2)(b − b0)
]

(b− b0) +O
[

(b− b0)
3
]

, (5.3)
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where the symbol O[·] stands for terms of the order of the argument. On the other hand, taking the limit b → b0 in
the square of the Hubble parameter [essentially given by the square of Eq. (3.5)], it is immediate to verify that

lim
b→b0

(

V ′

3V 4/3

)2

=
1

4γ2∆
sin2 2b0

[

1− 2(1 + γ2) sin2 b0
]2

=
Λ

3
, (5.4)

where we have defined the emergent cosmological constant of Planck order

Λ =
3

(1 + γ2)2∆
. (5.5)

A. Prescription A

In order to be able to characterize the properties of the effective masses by analytical means in the de Sitter regime,
we are going to restrict our attention to a class of scalar field potentials with a certain behavior in the asymptotic
region, similarly to what we did in the discussion at the bounce. In the first place, we will focus our analysis on
potentials that are asymptotically nonnegative. In that case, it is immediate to see that, in the asymptotic limit,
both the potential and kinetic contributions to the matter energy density must vanish. Indeed, since ρ is zero in this
limit, the fact that the sum of the two nonnegative quantities π2

ϕ̃/(2V
2) and 9W̄/(16π2G2σ2) vanishes implies that

both quantities must be zero. As a particular consequence, the scalar field must go to a zero of the potential, ϕ̃0.
Additionally, we consider potentials with a first derivative that, in the asymptotic region, becomes much smaller

than
√
Λπϕ̃/V . Then, we can use the dynamical equations of effective LQC for the homogeneous background (recall

that, at our order of perturbative truncation, the backreaction can be ignored in the calculation of the masses) in
order to prove that, in the asymptotic regime, πϕ̃/V and the scalar field grow exponentially in the proper time t. In
more detail, once the backreaction is neglected, the effective equations of motion read

dV

dt
= − 3γ

2
√
∆
V sin 2b

(

1− 1 + γ2

γ2
cos 2b

)

, (5.6)

db

dt
= −3γ

√
∆

(

4πG

3

)2
(πϕ̃

V

)2

, (5.7)

dϕ̃

dt
=

4πG

3

πϕ̃

V
, (5.8)

dπϕ̃

dt
= − 3

4πGσ2
V W̄,ϕ̃. (5.9)

From these, it is straightforward to see that

d

dt

(πϕ̃

V

)

= − 3

4πGσ2
W̄,ϕ̃ +

3γ

2
√
∆

sin 2b

(

1− 1 + γ2

γ2
cos 2b

)

πϕ̃

V
, (5.10)

that asymptotically goes to

[

d

dt

(πϕ̃

V

)

]

0

= − 3

4πGσ2
(W̄,ϕ̃)0 +

√
3Λ
(πϕ̃

V

)

0
, (5.11)

where the subindex 0 denotes the limit in the asymptotic de Sitter regime. Therefore, if according to our restrictions
we have

3

4πGσ2

∣

∣(W̄,ϕ̃)0
∣

∣≪
√
3Λ
∣

∣

∣

(πϕ̃

V

)

0

∣

∣

∣ , (5.12)

then the momentum of the scalar field over the physical volume grows exponentially with the proper time in the de
Sitter regime, as we have stated:

πϕ̃

V
≈ CdSe

√
3Λt, (5.13)

where CdS is an integration constant. Notice that, since this is precisely the behavior of 1/V in this region [see Eq.
(5.6)], the momentum of the zero mode of the scalar field has to be asymptotically constant. Furthermore, given
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that the derivative of the scalar field with respect to the proper time is equal to πϕ̃/V up to a positive multiplicative
constant, we conclude that the field grows exponentially as well in the asymptotic past. In fact, in this asymptotic
regime,

ϕ̃− ϕ̃0 ≈ 4πG

3
√
3Λ

CdSe
√
3Λt. (5.14)

As a result, the ratio of the field and πϕ̃/V is asymptotically constant:

lim
b→b0

(ϕ̃− ϕ̃0)V

πϕ̃
=

4πG

3
√
3Λ

. (5.15)

The validity of this result is subject to the verification of the approximation (5.12). Such an approximation can be
justified e.g. in the case that the scalar field potential is simply given by a mass term, namely W̄ = σ2m2(ϕ̃− ϕ̃0)

2/2,
where m is the mass of the scalar field. For this potential, Eq. (5.12) adopts the form

lim
b→b0

3m2

4πG

∣

∣

∣

∣

(ϕ̃− ϕ̃0)V

πϕ̃

∣

∣

∣

∣

≪
√
3Λ ⇔ m2 ≪ 3Λ. (5.16)

Hence, we realize that the condition that the first derivative of the potential be much smaller than
√
Λπϕ̃/V in the

de Sitter regime is valid for the case of a mass term in the phenomenologically favored scenarios, where the mass m
is very small [40, 41] (in particular, compared with the square root of the Planckian cosmological constant).
Moreover, since in the studied asymptotic de Sitter region the scalar field behaves like the square root of the kinetic

contribution to the matter energy density (πϕ̃/V , up to a factor), with a proportionality constant that is of the order
of the inverse of the square root of the emergent cosmological constant, it is now immediate to see that the scalar field
potential turns out to be negligible with respect to the matter energy density provided that it varies with the scalar
field faster than its square, or that it varies with the square but multiplied by a factor that is much smaller than the
cosmological constant. The latter condition is met in the case of the mass term under consideration, where the field
potential is quadratic in the scalar field but the square of the mass is much smaller than Λ. Thus, in the following
discussion, we neglect the asymptotic contribution of the field potential to the matter energy density.
It is also worth noticing that, if the upper bound on |W̄,ϕ̃| that we employed at the bounce (4.8) is satisfied

asymptotically as well, the restriction that this derivative be much smaller than the square root of the kinetic energy
turns out to hold, provided that (a) the scalar field potential itself be much smaller than the kinetic energy, something
that can be granted for the family of potentials described in the above paragraph, and (b) the second derivative of
the potential be asymptotically finite, restriction that seems very reasonable to impose. Then, for potentials in the
mentioned family and for which W̄,ϕ̃ϕ̃ is finite in the de Sitter limit, given our dynamical equations it is enough to
impose just one of the two conditions: the analog of the upper bound (4.8) on |W̄,ϕ̃| in the asymptotic region, or the
alternative upper bound (5.12).
To support the conclusions of our analysis, we have integrated numerically the effective dynamical equations for

the background in the case of a scalar field of mass m = 1.2 · 10−6 in geometrical natural units (i.e., with G = 1),
that is a typical value leading to power spectra of interest for the CMB in LQC [63]. In order to perform the
numerical integration, we first need to provide a set of initial conditions. Usually, these are given at the bounce, that
yields a privileged spatial section (of minimum volume) and a natural choice of initial time. In particular, employing
again natural units, we have taken the initial condition ϕ̃B = 0.97 at the bounce [63], setting the global volume
scale of the flat FLRW cosmology so that VB = (2π)3. In addition, we recall that the variable b adopts the value

bB = sin−1[1/
√

2(1 + γ2)] at the bounce, and that the momentum of the scale factor is then determined by the

vanishing of the effective homogeneous Hamiltonian constraint, that gives πB
ϕ̃ = VB [24πρB −9m2(ϕ̃B − ϕ̃0)

2]1/2/(4π).

The result of the numerical integration of Eqs. (5.6)-(5.9) with these initial conditions is shown in Figs. 1-5. In the
numerics, performed in natural units, we have set the coordinate length l0 of the fundamental cycles of the spatial
sections equal to 2π. The bounce has been located at vanishing proper time t. Fig. 1 shows that the prebounce
branch approaches a de Sitter phase very rapidly. In fact, the Hubble parameter attains its predicted asymptotic
value only a few Planck times away from the bounce, a fact which implies that we can safely study the asymptotic
de Sitter region by considering the behavior of the dynamical variables all along the evolution from the far past to a
few Planck times before the big bounce. Figs. 2 and 3 confirm that the physical volume and the zero mode of the
scalar field behave in the asymptotic past as expected: the field grows exponentially forward in the proper time, while
the physical volume contracts at the same rate. This leads to a momentum of the scalar field that is approximately
constant, not only asymptotically, but also across the bounce, as revealed by Fig. 4. This can be understood by
realizing that the momentum of the scalar field is a constant of motion in the case of a massless scalar field. Hence,
the smallness of the phenomenologically preferred mass only breaks this symmetry slightly, producing a very slow



18

variation of πϕ̃ in the case under consideration. Finally, Fig. 5 corroborates that, in the scenarios of phenomenological
interest, the ratio (ϕ̃− ϕ̃0)V/πϕ̃ goes asymptotically to the predicted constant value and, therefore, ignoring the first

derivative of the field potential with respect to
√
∆πϕ̃/V is a good approximation.

t

FIG. 1. Hubble parameter as a function of the proper time.

t

FIG. 2. Volume in logarithmic scale as a function of the proper time.

On the light of the conclusions of our analytical and numerical study, in the following we will asymptotically ignore
the scalar field potential in comparison to the kinetic energy and, thus, to the matter energy density itself. The same
holds true as regards the first derivative of the potential with respect to the square root of the matter energy density.
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FIG. 3. Scalar field as a function of the proper time.

FIG. 4. Momentum of the scalar field as a function of the proper time.

Then, we obtain that the tensor effective mass in the de Sitter region is [see Eqs. (2.19) and (5.3)]

MT
dS =

8πG

3
V 2/3ρ+O

[

W̄
]

=
V 2/3

γ2(1 + γ2)∆

[

−2γ + (1 − 5γ2)(b − b0)
]

(b − b0) +O
[

W̄ , (b− b0)
3
]

. (5.17)

Notice that this mass is proportional to V 2/3. This is exactly the same power of the volume that appears in the
Mukhanov–Sasaki potential (2.23). So, the relative smallness or dominance of that potential in the asymptotic region
is independent of this factor. In addition, the asymptotic growth of V 2/3 backwards in time cannot compensate the
vanishing of the matter energy density in the tensor effective mass, because the energy density can be approximated
by its kinetic part that vanishes asymptotically as the square inverse of the volume, since the momentum of the scale
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FIG. 5. Ratio (ϕ̃− ϕ̃0)V/πϕ̃ as a function of the proper time.

factor remains approximately constant, as we have seen.
The fact that the tensor effective mass in this approximation is given by the matter energy density multiplied by a

strictly positive factor guarantees the nonnegativity of the mass. Equivalently, we see that the dominant linear term
in b − b0 of the tensor effective mass is always positive, since γ > 0 and we recall that b − b0 ≤ 0 (by virtue of the
monotonically decreasing nature of the connection-like variable in the solution under consideration). Additionally,
for the standard value of the Immirzi parameter, we find that the quadratic term does not destroy the positivity of
the linear one either, not only for small values of b− b0, but in general (at least, as long as the scalar field potential
can still be neglected at this level). Indeed, the quadratic term is positive provided that γ2 < 1/5, inequality that
γ2
stand ≈ 0.0564 clearly satisfies.
Let us analyze now the Mukhanov–Sasaki potential (2.23) in the asymptotic region. We recall that it receives

contributions from the field potential, its square, its first derivative, and its second derivative. From our previous
considerations, it is clear that the contributions of the field potential and its square vanish in the asymptotic past.
Moreover, they are asymptotically much smaller than any term of the order of the matter energy density. As a result,
only the contributions of the derivatives of the field potential remain. If we allow for an asymptotically nonvanishing
second derivative of the field potential, the first term in Eq. (2.23) will certainly contribute to the scalar effective
mass in the de Sitter regime. As for the contribution of W̄,ϕ̃, two different situations must be told apart within the
family of scalar field potentials that we are considering. If the potential varies asymptotically with the scalar field
faster than its square, its first derivative should vary at least faster than the field itself, and therefore should vanish
in the asymptotic limit faster than ρ1/2. It is then immediate to realize that the third term in Eq. (2.23) would
vanish in the asymptotic region, so that one can neglect it compared to the contribution of the second derivative of
the potential: (A)UdS = V 2/3(W̄,ϕ̃ϕ̃)0/σ

2. On the other hand, if the potential varied asymptotically precisely with the

square of the field (as in the case of a mass term), its first derivative would go as ρ1/2, a behavior which leads to a
third term in Eq. (2.23) that no longer vanishes, but becomes constant asymptotically. Indeed, in the case of a mass
term as the one considered above,

lim
b→b0

W̄,ϕ̃πϕ̃

V ρ
=

2σ2m2

√
3Λ

=
2

3
σ2m2(1 + γ2)

√
∆, (5.18)

where we have used the definition of the matter energy density (2.17), ignored the scalar field potential in it, and
employed Eqs. (5.13) and (5.14). Thus, in the case of a mass term, the contributions of W̄,ϕ̃ and W̄,ϕ̃ϕ̃ are of the
same order and the Mukhanov–Sasaki potential (2.23) is asymptotically given by

(A)UdS ≈ m2V 2/3

[

1 +
2(1 + γ2)

γ
sin 2b0

]

= 5m2V 2/3. (5.19)
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The same behavior is found for any scalar field potential that varies quadratically with the field asymptotically,
replacing m2 with (W̄,ϕ̃ϕ̃)0/σ

2.
In conclusion, since the tensor effective mass vanishes asymptotically, the introduction of the Mukhanov–Sasaki

potential entails the positivity of the scalar effective mass, as long as the second derivative of the scalar field potential
is asymptotically greater than zero. We remark that, in the special case of potentials that are asymptotically quadratic
in the scalar field, like e.g. a mass term, the contribution of the first derivative of the field potential must also be
taken into consideration and strengthens the positivity of the scalar effective mass in the asymptotic de Sitter regime,
given our assumption that (W̄,ϕ̃ϕ̃)0 > 0.

B. Prescription B

Since the tensor effective mass does not depend on the prescription adopted for the representation of 1/π2
α̃, our

conclusions about its behavior and positivity presented in Subsec. VA remain valid [see Eq. (5.17) and the discussion
in the paragraph below it]. And, furthermore, if the restrictions on the scalar field potential introduced in the previous
subsection are verified, all the terms in (B)U that differ from (A)U are easily seen to be negligible in the asymptotic
region. In fact, all but the first term in Eq. (2.28) can be proven much smaller than the matter energy density in the
de Sitter region, up to factors of the order of V 2/3. Hence, only the contribution of the second derivative of the scalar
field potential survives. As a consequence of this fact, we can assure that the scalar effective mass in prescription B
is also asymptotically strictly positive provided that (W̄,ϕ̃ϕ̃)0 > 0 (a condition that we know that holds in the case of
a mass term).

C. Dressed metric formalism

It is also possible to express the tensor effective effective mass of the dressed metric approach, given by Eq. (3.7),
in terms of the energy density and the field potential in the de Sitter branch. This can be done by means of Eq.
(2.24) and Eqs. (3.8)-(3.11), identified with the subindex +. Since we are interested in the vicinity of the de Sitter
regime, we can expand the result in a power series of the ratio ρ/ρB, which is very small when the de Sitter region is
approached. The result of this computation is

(D)MT
dS = −2V 2/3

[

Λ

3

(

1− 1− 5γ2

8γ2

ρ

ρB

)

+
3W̄

σ2(1 + γ2)

(

1− 5γ2 − 4− 3γ2

2

ρ

ρB

)]{

1 +O
[

ρ2

ρ2B

]}

. (5.20)

We consider again the same restrictions on the class of scalar field potentials under study that were employed in
the hybrid case for the analysis of the de Sitter region, namely: the potential is asymptotically nonnegative (so that
both its contribution to the matter energy density and the kinetic one vanish in the de Sitter limit), the potential is
asymptotically much smaller than the kinetic contribution (and, thus, than the energy density itself), and the first

derivative of the potential is asymptotically much smaller than
√
Λπϕ̃/V (and, therefore, than the square root of the

energy density). It is also important to bear in mind the considerations about when these restrictions are fulfilled,
discussed in Subsec. VA. In principle, we allow for the possibility of an asymptotically nonnegligible second derivative
of the scalar field potential. In this situation, we may ignore the terms proportional to W̄ in Eq. (5.20), since those
that are linear in ρ dominate:

(D)MT
dS = −2Λ

3
V 2/3

(

1− 1− 5γ2

8γ2

ρ

ρB

)

+O
[

W̄ ,
ρ2

ρ2B

]

. (5.21)

We clearly see that, in the vicinity of de Sitter regime, where ρ is much smaller than ρB, the tensor effective mass
in the dressed metric formalism is negative. The first correction to the limit value, linear in ρ/ρB, is positive for
γ2 < 1/5, and thus in the case of the standard value of the Immirzi parameter. Hence, the negativity of the tensor
effective mass diminishes away from the asymptotic de Sitter regime.
On the other hand, similar arguments to those commented in the previous subsections show that every term in

the Mukhanov–Sasaki potential (3.12) is asymptotically negligible compared to the first one. Then, we find the same
type of asymptotic behavior that we found within the hybrid approach:

(D)UdS ≈ V 2/3

(

W̄,ϕ̃ϕ̃

)

0

σ2
. (5.22)

As a result, the positivity may be restored at the level of the scalar effective mass thanks to the contribution of the
Mukhanov–Sasaki potential, provided that

(

W̄,ϕ̃ϕ̃

)

0
is positive and large enough. However, this cannot be achieved
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in the physically interesting scenarios where the scalar field is only subject to a mass term, with a mass much smaller
than the square root of the emergent cosmological constant. Indeed, in that case W̄,ϕ̃ϕ̃/σ

2 is constant and equal to
m2, giving a negligible contribution compared with the limit value of the tensor effective mass and, thus, proving
insufficient to attain a strictly positive scalar effective mass in the asymptotic de Sitter region.

VI. DISCUSSION AND CONCLUSIONS

In the past years, a special effort has been devoted to the investigation of the mathematical ambiguities that affect
the formalism of LQC, as a theory that attempts to apply the techniques of LQG in cosmology. More specifically,
a particular attention has been paid to the definition of the Hamiltonian in cosmological spacetimes. Indeed, the
publication of a work by Dapor and Liegener, where a new regularization procedure for the Hamiltonian was put
forward [45], sparked a considerable number of studies analyzing its consequences and comparing its physical pre-
dictions with those of the so-far standard regularization in LQC, in the search for robust results that may point at
genuine features of the cosmological dynamics within the full theory of LQG. Although the resolution of the initial
cosmological singularity was still present, qualitative differences with respect to the standard case were pointed out:
instead of a symmetric bounce that joins two universes that behave classically at large volumes, one of them is now
replaced by an asymptotically de Sitter branch with a curvature of the Planck order. Hence, even though some details
of the bouncing mechanism may be regularization dependent, there are solid reasons to trust the singularity resolution
itself.
In the same spirit, the new regularization procedure has been thoroughly studied in a variety of contexts, so as to

discern how a different regularization of the geometry alters the traditional results in the field [47–52]. Additionally,
the Dapor–Liegener model has been implemented in more general scenarios [53], in order to achieve a better under-
standing of how this proposal differs from the standard one in systems possessing less symmetries. From this point of
view, the most interesting symmetry to dispose of is homogeneity, since inhomogeneities should play a fundamental
role in the formation of the LSS and the anisotropies of the CMB. Therefore, it is from models that somehow include
inhomogeneities that there is hope to extract falsifiable physical predictions that may put the theory to test. Conse-
quently, an analysis of the effects of the selection of a different regularization scheme in inhomogeneous spacetimes
seems to be in order.
In the framework of LQC two main paths have been followed for the inclusion of inhomogeneities in otherwise ho-

mogeneous cosmological models: the so-called hybrid [29–34] and dressed metric [35–38] approaches. Both proposals
introduce the inhomogeneities perturbatively on a homogeneous and isotropic background and select different repre-
sentations for the homogeneous and inhomogeneous sectors, arguing that there must exist a physical regime where
the main quantum geometry effects are those that affect directly the homogeneous part of the system, whereas the
perturbations can be treated by means of standard field theoretical techniques on the resulting background of quantum
nature. Nonetheless, the two formalisms are constructed in different ways: while in the hybrid approach one regards
the entire cosmological system as a whole and quantizes it accordingly (treating the homogeneous background and the
perturbations on the same footing), the dressed metric formalism proposes a program consisting of two steps, dealing
with the homogeneous sector first and then studying the propagation of the perturbations on a “dressed” background
(with no backreaction of the perturbations). Hence, one should expect differences in the physical predictions of both
formalisms when the quantum geometry effects are important. In this regard, the time-dependent masses that govern
the dynamics of the perturbations seem especially appropriate to discuss potential discrepancies. In particular, the
positivity of these time-dependent masses is important to pose well-defined initial conditions for the perturbations,
since the oscillatory behavior of the perturbations for all wavelengths depends on this positive character at the end
of the day. The analysis of this positivity is decidedly interesting in regimes where there exist physical motivations
to set those initial conditions. A study and comparison of the time-dependent masses derived from the hybrid and
dressed metric approaches, for backgrounds that follow the effective dynamics of LQC, were already performed at
the bounce in Ref. [39] employing the standard regularization scheme. The objective of this paper is to establish
an analogous comparison when the Dapor–Liegener regularization is used to construct the Hamiltonian of the homo-
geneous cosmology. Besides, it seems appropriate to include in this comparison an analysis of the time-dependent
masses, evaluated within effective LQC, in the vicinity of the asymptotic de Sitter regime. This positivity is important
for the construction of adiabatic states for all wavelengths. If there exist obstructions to this construction, a naive
characterization of the Bunch–Davies state as a state of infinite adiabatic order with the isometries of the de Sitter
cosmology certainly will be compromised. Furthermore, one may wonder whether a non-Einsteinian behavior of the
effective mass indicates that one should revisit the role of this state for asymptotic regimes out of general relativity
like those emerging in LQC.
With these aims in mind, we have first introduced the main elements of the hybrid and dressed metric formalisms

that are relevant to our discussion and written down the time-dependent masses that enter the equations of scalar
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and tensor perturbations, evaluating them on quantum background states that are peaked on trajectories of the
effective dynamics of LQC. In the hybrid case, we have analyzed separately two prescriptions (called A and B), that
are intimately related to the regularized quantum structure of the theory and that were introduced in Ref. [54]. We
have evaluated the resulting effective masses in the regimes that seem more appealing, as far as the setting of initial
conditions for the perturbations is concerned: the big bounce and the asymptotic de Sitter era.

In the hybrid case, we have shown that the tensor effective mass is strictly positive in a region that encompasses
the scenarios of kinetic dominance at the bounce. In addition, we have seen that the Mukhanov–Sasaki potential at
the bounce in this hybrid case exhibits a difference with respect to the one presented in Ref. [39] which is worth
mentioning: it contains a term that is proportional to the first derivative of the field potential that does not vanish
at the bounce (in contrast with the situation found with the standard regularization of the homogeneous geometry).
This complicates the subsequent analysis and requires the assumption of an upper bound on the absolute value of this
term, in order to be able to proceed analytically. With this and other mild conditions on the scalar field potential,
we have obtained some convenient upper and lower bounds on the scalar effective mass. Moreover, provided that
the second derivative of the field potential is small enough, we have shown that there exists a region of the space
of physical potentials where the scalar effective mass is ensured to be negative. This region, however, only contains
scenarios where the matter energy density at the bounce is dominated by the potential contribution. Indeed, when
the second derivative of the potential is sufficiently small, the scalar effective mass within the hybrid approach is also
found to be positive on solutions with kinetic dominance at the bounce. This conclusion applies to both prescriptions
A and B. The difference between them is that the application of prescription B results in a larger region of negative
scalar effective masses, a fact which can be used to argue that prescription A is not only theoretically better motivated
[54], but it also leads to more appealing physical features. In the dressed metric case, on the other hand, we arrive at a
strictly negative tensor effective mass at the bounce. This result is actually explained by the fact that the considered
mass is the ratio of the second derivative of the scale factor and the scale factor itself, except for a sign. Thus, given
that the scale factor as a function of time is concave at the bounce, it is unavoidable to get a negative value in effective
LQC. Additionally, the scalar effective mass at the bounce is ensured to be negative in a considerably large sector of
solutions that includes the kinetically dominated scenarios, at least for a small second derivative of the potential at
the bounce. If this second derivative were large enough, however, the scalar effective mass could become positive at
the bounce. This does not avoid the strict negativity of both masses in the physically interesting case where the scalar
field potential and its second derivative are small. As a result, in the dressed metric approach one would encounter
certain obstructions in the attempt to construct adiabatic states at the bounce by conventional procedures, something
that generically can only be achieved for a restricted range of wavelengths if the effective masses are not positive.

Remarkably, the conclusions reached in this work about the positivity or negativity of the effective masses at the
bounce in the sector of kinetic dominance coincide qualitatively in general terms with the results of Ref. [39] for the
case of the standard regularization of the homogeneous Hamiltonian constraint in LQC, and in this sense we can say
that these conclusions are robust against changes in the regularization scheme adopted for the Hamiltonian in LQC.

On the other hand, we have also carried out a similar analysis of the positivity of the masses in the asymptotic de
Sitter branch. In order to evaluate the effective masses in this regime, we have introduced some reasonable restrictions
on the scalar field potential that allow us to ignore its contributions and those of its first derivative as compared with
the matter energy density and its square root, respectively. To motivate these conditions, we have discussed the
asymptotic behavior of the effective equations of motion for the background and shown that, in particular, the mass
potential satisfies all considered requirements. We have also integrated numerically the dynamical equations of the
effective description of the homogeneous cosmology and verified that the introduced restrictions on the scalar field
potential hold in the cases of interest, as regards the computation of the power spectrum of the CMB in LQC. In the
hybrid case, prescriptions A and B lead to the same value of the tensor effective mass, that vanishes identically in
the asymptotic past and is positive in its vicinity, given that it is proportional to the matter energy density. As far
as the positivity of the asymptotic scalar effective mass is concerned, the asymptotic vanishing of the tensor effective
mass entails that the limit behavior of the Mukhanov–Sasaki potential is of crucial importance. Our analysis shows
that the positivity of the scalar effective mass is granted owing to the contribution of the Mukhanov–Sasaki potential
if the second derivative is strictly positive in the de Sitter limit. On the other hand, for the dressed metric formalism
we have shown that the tensor effective mass is negative asymptotically but becomes less negative away from the de
Sitter regime. The contribution of the Mukhanov–Sasaki potential can make the scalar effective mass positive, but
only provided that the second derivative of the scalar field potential is positive and large enough. This possibility is
ruled out in the case of a massive scalar field for phenomenologically favored values of the field mass.

On the light of these results, we conclude that the formalism of hybrid LQC leads to effective masses for the
perturbations that overall display more attractive features, inasmuch as they are ensured to be positive both at the
bounce and in the de Sitter limit, for the scenarios of physical interest and a large class of scalar field potentials with
direct application, to which a mass term belongs. The effective masses derived from the dressed metric approach,
in contrast, cannot be made positive in the phenomenologically favored scenarios, at least at the bounce and in the
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asymptotic de Sitter regime. As far as the tensor effective mass is concerned, it is strictly negative at the bounce and
in the infinite past. The scalar effective mass, however, could become positive in presence of a large second derivative
of the field potential, condition which clashes with the fact that the physically interesting field masses are typically
very small.
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[54] L. Castelló Gomar, A. Garćıa-Quismondo, and G. A. Mena Marugán, Primordial perturbations in the Dapor–Liegener

model of hybrid loop quantum cosmology, arXiv:2002.01262 (2020).
[55] V. Taveras, LQC corrections to the Friedmann equations for a universe with a free scalar field, Phys. Rev. D 78, 064072

(2008).
[56] A. Ashtekar, M. Campiglia, and A Henderson, Path integrals and the WKB approximation in loop quantum cosmology,

Phys. Rev. D 82, 124043 (2010).
[57] P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School Monograph Series, New York, 1964), Vol. 2.
[58] M. Sasaki, Gauge invariant scalar perturbations in the new inflationary universe, Prog. Theor. Phys. 70, 394 (1983).
[59] H. Kodama and M. Sasaki, Cosmological perturbation theory, Prog. Theor. Phys. Suppl. 78, 1 (1984).
[60] V. Mukhanov, Quantum theory of gauge invariant cosmological perturbations, Zh. Eksp. Teor. Fiz. 94, 1 (1988) [Sov.

Phys. JETP 67, 1297 (1988)].
[61] B. Elizaga Navascués and G. A. Mena Marugán, Perturbations in quantum cosmology: The continuum limit in Fourier

space, Phys. Rev. D 98, 103522 (2018).
[62] J. M. Bardeen, Gauge invariant cosmological perturbations, Phys. Rev. D 22, 1882 (1980).
[63] B. Elizaga Navascués, D. Mart́ın-de Blas, and G. A. Mena Marugán, The vacuum state of primordial fluctuations in hybrid

loop quantum cosmology, Universe 4, 98 (2018).

http://arxiv.org/abs/2002.01262

	The time-dependent mass of cosmological perturbations in loop quantum cosmology: Dapor–Liegener regularization
	Abstract
	I Introduction
	II The hybrid approach
	A Prescription A
	B Prescription B

	III The dressed metric approach
	IV Effective masses at the bounce
	A Prescription A
	B Prescription B
	C Dressed metric formalism

	V Effective masses in the asymptotic de Sitter regime
	A Prescription A
	B Prescription B
	C Dressed metric formalism

	VI Discussion and conclusions
	 Acknowledgments
	 References


