

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura			
Nombre	Ingeniería de Materiales		
Código	AIM15		
Titulación	Grado en Ingeniería Electromecánica		
Curso	3º		
Cuatrimestre	2º		
Créditos ECTS	7,5		
Carácter	Optativa		
Departamento	Ingeniería Mecánica		
Área	Materiales		
Universidad	Pontificia Comillas		
Horario	3 horas/semana de teoría. 2h/semana de prácticas de laboratorio		
Profesores	Juan Carlos del Real Romero, Yolanda Ballesteros Iglesias		
Horario	Tarde		
Descriptor	Metalurgia física, Tratamientos térmicos. Comportamientos en servicio de materiales. Selección de materiales.		

Datos del profesorado			
Profesor	Profesor		
Nombre	Juan Carlos del Real Romero		
Departamento	Ingeniería Mecánica		
Área	Materiales		
Despacho	Dirección		
e-mail	delreal@comillas.edu		
Teléfono	2394		
Horario de	A fijar con el delegado de curso		
Tutorías			

Datos del profesorado			
Profesor	Profesor		
Nombre	Julián Rodriguez Montes		
Departamento	Ingeniería Mecánica		
Área	Materiales		
Despacho	Laboratorio		
e-mail	Solicitar al profesor		
Teléfono			
Horario de	A fijar con el delegado de curso		
Tutorías			

Datos del profesorado			
Profesor	Profesor		
Nombre	Javier Munilla		
Departamento	Ingeniería Mecánica		
Área	Materiales		
Despacho	Laboratorio		
e-mail	Solicitar al profesor		
Teléfono			
Horario de	A fijar con el delegado de curso		
Tutorías			

Datos del profesorado		
Profesor		
Nombre	Raquel Chamochín Escribano	
Departamento	Ingeniería Mecánica	
Área	Materiales	
Despacho	Laboratorio	
e-mail	Solicitar al profesor	
Teléfono		
Horario de	A fijar con el delegado de curso	
Tutorías		

Datos del profesorado		
Profesor		
Nombre	José Miguel García Iglesias	
Departamento	Ingeniería Mecánica	
Área	Materiales	
Despacho	Laboratorio	
e-mail	josemiguel.giglesias@coitim.es	
Teléfono	2348	
Horario de	A fijar con el delegado de curso	
Tutorías		

Datos del profesorado			
Profesor	Profesor		
Nombre	Eva Paz Jiménez		
Departamento	Ingeniería Mecánica		
Área	Materiales		
Despacho	IIT-Ricci		
e-mail	epaz@icai.comillas.edu		
Teléfono			
Horario de	A fijar con el delegado de curso		
Tutorías			

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

La asignatura de Ingeniería de Materiales es una asignatura optativa de carácter semestral que se imparte en el tercer curso del grado en Ingeniería Electromecánica. En el plan de estudios en vigor, consta de un total de 7.5 créditos. Con esta asignatura se pretende que el alumno profundice en aquellos conocimientos de materiales adquiridos en los cursos de Ciencia de Materiales y que les permita tener una visión más aplicada. Estos conocimientos y aptitudes establecerán los cimientos imprescindibles para que el estudiante pueda abordar posteriormente el estudio de las asignaturas como las Tecnologías de Fabricación o el Cálculo de Estructuras, en las que interviene el conocimiento de los materiales. La asignatura tiene un carácter mixto teórico-experimental, por lo que a los componentes teóricos se le añaden los de carácter práctico, tanto de resolución de cuestiones numéricas como la realización de trabajos prácticos de laboratorio en los que se ejercitarán los conceptos y técnicas estudiadas, familiarizando al alumno con el entorno material y humano de trabajo en el laboratorio.

Prerrequisitos

Los alumnos que vayan a cursar Ingeniería de Materiales, habrán cursado previamente Química y Ciencia de Materiales, lo que les confiere los conocimientos básicos de la Ciencia e Ingeniería de Materiales.

Competencias – Resultados de Aprendizaje

Competencias

Competencias Generales

- CG3. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- CG4. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.
- CG5. Conocimientos para la realización de mediciones, cálculos, valoraciones, tasaciones, peritaciones, estudios, informes, planes de labores y otros trabajos análogos.
- CG6. Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.
- CG7. Capacidad de analizar y valorar el impacto social y medioambiental de las soluciones

técnicas.

CG10. Capacidad de trabajar en un entorno multilingüe y multidisciplinar.

Competencias Especificas

- CEM4. Conocimientos y capacidades para aplicar los fundamentos de la elasticidad y resistencia de materiales al comportamiento de sólidos reales.
- CEM7. Conocimientos y capacidades para la aplicación de la ingeniería de materiales.

Resultados de Aprendizaje

Al final de curso los alumnos deben ser capaces de:

- RA1. Utiliza adecuadamente la terminología.
- **RA2.** Conoce las técnicas necesarias de modificación estructural para obtener las características deseadas.
- **RA3.** Conocer los fundamentos básicos del tratamiento térmico de las aleaciones metálicas
- **RA4.** Capacidad para diseñar el tratamiento térmico necesario en aleaciones metálicas.
- **RA5.** Comprende cómo afecta el tratamiento térmico a las propiedades del material, la fabricación y a capacidad de soportar las condiciones exigidas por la aplicación
- **RA6.** Conoce los principales tipos de aleaciones metálicas, características y sus aplicaciones principales de estos materiales en los distintos sectores industriales.
- **RA7.** Capacidad para aplicar conceptos básicos de la mecánica de fractura en el diseño de componentes.
- **RA8.** Entiende el comportamiento mecánico de polímeros y compuestos.
- **RA9.** Conoce y aplica las principales técnicas de caracterización de materiales para la obtención de sus propiedades.
- **RA10.** Conoce y aplicar las distintas metodologías y herramientas para la selección de materiales.

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

BLOQUE 1: Teoría

Tema 1: Mecanismos de endurecimiento

- 1.1 Endurecimiento por solución sólida.
- 1.2 Efecto de los elementos de aleación.
- 1.3 Endurecimiento por tamaño de grano. Determinación del tamaño de grano. Ley de Hall-Petch.
- 1.4 Endurecimiento por deformación plástica. Ecuaciones de Hollomon.
- 1.5 Endurecimiento por precipitación. Precipitados coherentes e incoherentes. Zonas de Guinier-Preston. Tensión de Orowan.

Tema 2: Transformaciones fuera del equilibrio

- 2.1 Transformaciones de la austenita.
- 2.2 Transformaciones eutectoide.
- 2.3 Efecto de la temperatura en la transformación austenítica.
- 2.4 Efecto del tamaño de grano austenítico.
- 2.5 Transformación martensítica. Transformación bainítica.
- 2.6 Diagramas TTT: Diagramas isotérmicos y de enfriamiento continuo.
- 2.7 Influencia de los elementos de aleación.

Tema 3: Recristalización

- 3.1 Recristalización estática y dinámica.
- 3.2 Recristalización de un metal forjado en frío. Influencia del tiempo y la temperatura..
- 3.3 Recristalización en el curso de una deformación en caliente. Restauración. Crecimiento de tamaño de grano.
- 3.4 Recocido.

Tema 4: Aleaciones metálicas

- 4.1 Aceros y Fundiciones.
- 4.2 Fundiciones blancas, grises, maleables, dúctiles.
- 4.3 Aceros al carbono. Aceros de baja aleación. Aceros alto límite elástico. Aceros fuertemente aleados. Aceros Maraging, Hadfield. Aceros Inoxidables. Aceros rápidos.
- 4.4 Aleaciones de aluminio, titanio y magnesio.
- 4.5 Aleaciones base cobre.
- 4.6 Superaleaciones.

Tema 5: Tratamientos térmicos I

5.1 Templabilidad. Curvas de penetración de temple. Severidad de temple. Diámetro crítico ideal y

real.

- 5.2 Factores que influyen sobre la templabilidad.
- 5.3 Ensayo Jominy. Bandas de templabilidad.
- 5.4 Tratamientos de temple.
- 5.5 Revenido. Influencia en las propiedades mecánicas

Tema 6: Tratamientos térmicos II

- 6.1 Recocidos. Normalizado. Austempering. Martempering.
- 6.2 Tratamientos superficiales. Tratamientos termoquímicos. Cementación y nitruración. Temple por inducción.
- 6.3 Defectos inducidos por el tratamiento térmico

Tema 7: Mecánica de la fractura

- 7.1 Mecánica de la fractura elástica lineal. Criterio energético y tensional. Tenacidad a la fractura.
- 7.2 Determinación de la tasa de liberación de energía (G_c). Determinación del factor de intensidad de tensiones (K_c). Ensayos CT y SENB.

Tema 8: Fatiga y fluencia

- 8.1 Fatiga. Curvas S-N, ε-N y da/dN.
- 8.2 Crecimiento de grietas por fatiga. Ley de Paris.
- 8.3 Fractografía de fractura por fatiga.
- 8.4 Termofluencia. Parámetro de Larson-Miller.

Tema 9: Comportamiento mecánico de polímeros y compuestos

- 9.1 Diagramas esfuerzo deformación. Comportamiento viscoelástico de polímeros.
- 9.2 Esfuerzos y deformaciones en sólidos poliméricos. Modelos de Maxwell. Modelo de Kelvin-Voight.
- 9.3 Micromecánica de los materiales compuestos. Resistencia mecánica.
- 9.3 Macromecánica de materiales compuestos. Comportamiento mecánico de laminados

Tema 10: Selección de materiales

- 11.1 Criterios de selección de materiales.
- 11.2 Diagramas Ashby.

Prácticas

Bloque 1

- 1) Determinación del tamaño de grano. Influencia propiedades mecánicas.
- 2) Caracterización no destructiva de materiales

3) Selección de materiales II

Bloque 2

- 4) Influencia tratamientos térmicos propiedades mecánicas I
- 5) Metalografía
- 6) Selección de materiales III

Bloque 3

- 7) Influencia tratamientos térmicos propiedades mecánicas II
- 8) Materiales compuestos
- 9) Endurecimiento por precipitación

Bloque 4

- 10) Fractura laboratorio
- 11) Fractura software
- 12) Jominy

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

- Clase magistral y presentaciones generales: Exposición de los principales conceptos y procedimientos mediante la explicación por parte del profesor. Resolución de problemas.
- Estudio individual del material a discutir en clases posteriores: Actividad realizada individualmente por el estudiante cuando analiza, busca e interioriza la información que aporta la materia y que será discutida con sus compañeros y el profesor en clases posteriores.
- Resolución grupal de casos prácticos y problemas. El profesor planteará pequeños casos prácticos y problemas que los alumnos resolverán en pequeños grupos en clase y cuya solución discutirán con el resto de grupos.
- Prácticas de laboratorio. Se formarán grupos de trabajo (3 o 4 personas) que tendrán que realizar prácticas de laboratorio regladas.

Metodología No presencial: Actividades

- Realización de ejercicios prácticos y de aplicación fuera del aula disponibles en Moodle.
- Lecturas de textos científico-técnicos sobre caracterización, selección y aplicación de materiales disponibles en Moodle.
- Preparación de las prácticas de laboratorio
- Búsqueda de información sobre los temas a tratar en el aula o para los trabajos de investigación por grupo.
- Estudio por parte del alumno de los temas tratados

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN GENERALES

Actividad	Criterios	Peso
Realización de exámenes: Examen Intersemestral Examen Final	Cuestiones teóricas y/o teórico práctica. Estas cuestiones se orientan a conceptos, definiciones, etc). Se evalúan principalmente los conocimientos teóricos. Problemas de media o larga extensión. Se evalúa principalmente la capacidad de aplicar conocimientos a la práctica y la capacidad de análisis Preguntas tipo test	50%
Evaluación continua del rendimiento	Pruebas tipo test y problemas similares a los resueltos en clase. Dos pruebas repartidas a lo largo del cuatrimestre	25%
Prácticas de laboratorio	Se evalúan las ejecuciones y el trabajo en equipo, así como las destrezas y habilidades para el Manejo de instalaciones, equipos y programas informáticos. Se deberá redactar un informe técnico y presentar los aspectos más relevantes del trabajo	25%

CALIFICACIONES

CALIFICACIÓN

La calificación en la convocatoria ordinaria de la asignatura se obtendrá como:

- La calificación del examen final supondrá un 50% de la calificación final en la asignatura
- Un 25 % será la calificación de las pruebas de seguimiento. Pruebas tipo test y problemas similares a los resueltos en clase. Dos pruebas realizadas en horario de clase repartidas a lo largo del semestre.
- Un 25 % será la calificación del laboratorio.

Para poder realizar esta suma ponderada es necesario obtener una nota mínima de **4,0 puntos en el examen final**; en caso contrario la nota de la convocatoria ordinaria será la nota del examen final. Además, es necesario haber superado tanto la **parte teórica** (media examen final y pruebas de seguimiento) como la de laboratorio con al menos un 5,0.

En la **convocatoria extraordinaria** el alumno se examinará sólo de la parte suspensa (teoría y/o prácticas).

La calificación en la convocatoria extraordinaria de la asignatura se obtendrá como:

- La calificación del examen final supondrá un 70% de la calificación final en la asignatura
- Un 10 % será la calificación de las pruebas de seguimiento.
- Un 20 % será la calificación del laboratorio.

Para poder realizar esta suma ponderada es necesario obtener una nota mínima de 4,0 puntos en el **examen de la convocatoria extraordinaria**; en caso contrario será la nota del examen. En caso de haber suspendido solo la parte de laboratorio se hará un examen sobre los contenidos de las 12 prácticas realizadas. La inasistencia al 15% de las horas presenciales en la parte teórica de esta asignatura puede tener como consecuencia la imposibilidad de presentarse a las convocatorias ordinaria y extraordinaria de esta asignatura. La inasistencia al 15% de las horas presenciales en los laboratorios de esta asignatura puede tener como consecuencia la imposibilidad de presentarse a las convocatorias ordinaria y extraordinaria de esta asignatura. La falta a alguna de las sesiones de laboratorio se calificará con cero, al igual que la falta de entrega del informe de prácticas correspondiente. Así mismo la impuntualidad en la asistencia al laboratorio como en la entrega de los informes de prácticas tendrá influencia en la nota de laboratorio.

Si la asignatura queda suspensa en la convocatoria extraordinaria se ha de repetir en su totalidad.

RESUMEN PLAN DE LOS TRABAJOS Y CRONOGRAMA

Actividades Presenciales y No presenciales	Fecha de realización	Fecha de entrega
Pruebas de evaluación del rendimiento	Semanas 5 y 11	
Examen Final	Periodo de exámenes ordinarios	
Prácticas de laboratorio	Semanas 2 a 13	
Lectura y estudio de los contendidos teóricos en el libro de texto	Después de cada clase	
Resolución de los problemas propuestos	Semanalmente	
Entrega de los problemas propuestos		Se indicará en las clases
Preparación de las pruebas que se realizarán durante las horas de clase	Semanas 4 y 10	
Preparación de Examen final	Diciembre	
Elaboración de los informes de laboratorio	Semanalmente	A la semana siguiente

RESUMEN HORAS DE TRABAJO DEL ALUMNO				
HORAS PRESENCIALES				
Clases teóricas	Clases prácticas	Actividades académicamente dirigidas	Evaluación	
45	24	4	2	
	HORAS NO PRESENCIALES			
Trabajo autónomo sobre contenidos teóricos	Trabajo autónomo sobre contenidos prácticos	Realización de trabajos colaborativos	Estudio	
55	35	20	40	
	CRÉDITOS ECTS: 7,5 (225 horas)			

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

Libros de texto

- 1) William D. Callister: Introducción a la Ciencia e Ingeniería de los Materiales. Ed. Reverté S.A.
- 2) Ciencia de materiales. Selección y diseño. Pat L. Mangonon, Primera edición, 2001. Ed.: Prentice Hall

Páginas web

Steelmatter: http://www.matter.org.uk/steelmatter/default.htm

Alumatter: http://aluminium.matter.org.uk/content/html/eng/default.asp?catid=&pageid=1

Matweb: http://www.matweb.com/

Apuntes

- Transparencias de cada tema en MOODLE
- Apuntes sobre algunos de los temas elaborados por el profesor en MOODLE

Otros materiales

- Normativa UNE EN, ISO y ASTM.
- Guiones de las prácticas de laboratorio

Bibliografía Complementaria

Libros de texto

- 3) Sidney H. Avner. Metalurgia Física. McGraw Hill, (1985)
- 4) R. E. Smallman, R J Bishop. Modern Physical Metallurgy and Materials Engineering. Butterworth-Heinemann. (1999)
- 5) Michael F. Ashby, Materiales para Ingeniería Vol. 1 y 2. Reverte, (2008).
- 6) ASM Handbook. Volúmenes 1 al 21. ASM International (Varios años).
- 7) G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, (1988).
- 8) N. E. Dowling. Mechanical Behavior of Materials, Prentice Hall (2006)
- 9) D. Broek. Elementary Engineering Fracture Mechanics. Kluwer Academic Publisher (1991).
- 10) I.M. Ward, D.W. Hadley, An introduction to the mechanical properties of solid polymers. Wiley (2000).
- 11) A. Miravete, Materiales compuestos. Vol. 1 y 2. Reverte (2007)
- 12) D. Hull, T. W. Clyne. An Introduction to Composite Materials. Cambridge University Press. (1996)
- 13) Michael F. Ashby, Materials Selection in Mechanical Design. Butterworth-Heinemann, Burlington, (2011).