
1 INTRODUCTION 
Hydropower is the leading renewable global source 
for electricity generation supplying 71% of all renew-
able electricity and reaching 1,064 GW of installed 
capacity in 2016 (WEC, 2017). It generated 16.4% of 
the electricity produced in the world from all sources. 
Hydropower is the most flexible and consistent of all 
the renewable energy resources, capable of meeting 
base load electricity requirements, as well as with 
pumped storage technology, meeting peak and unex-
pected demand due to shortages or the use of inter-
mittent power sources. Also, hydroelectricity is a 
source of electrical energy coming from water that is 
clean and safe. 

A large number of data is logged in the SCADA 
system (Supervisory Control And Data Acquisition) 
in hydropower plants, but the current status in Nor-
way and Sweden is that SCADA data – apart for their 
use to control the plant – is not much used for other 
purposes, such as condition monitoring and mainte-
nance planning. Thus, there is a large potential for us-
ing SCADA data for these new purposes. This may 
contribute to increased availability and energy pro-
duction due to prevention of failures and shut downs.  

The identification of possible failure modes in a 
hydropower plant (Topliceanu, 2016) is one of the 
key points in order to identify how failures could be 
detected in an early state. The analysis of the causes 
and effects of these failure modes can suggest the var-
iables that can be useful for the detection of abnormal 
behaviors or anomalies (Chandola, 2009). Several 

references can be found in scientific literature propos-
ing different methods for anomaly detection, and, in 
general, fault detection in industrial processes (Garcia 
Matyos, 2013) based on values of some variables 
measured in real time. One area in hydropower plants 
with an important research activity is related with the 
vibrational analysis focused on some key components 
(Mohanta, 2017), also the health condition of the 
components observed through  several types of meas-
urements is the goal of other studies such as those re-
ferred to in (Jamil, 2013) and (Selak, 2014). 

In this paper, the hydraulic system of a Kaplan tur-
bine was identified as a target of analysis and in par-
ticular the detection of a possible oil leakage in the 
system. This analysis is part of the results obtained in 
the research project MonitorX – "Optimal utilization 
of hydropower asset lifetime by monitoring of tech-
nical condition and risk". MonitorX is a joint industry 
project initiated and led by Energi Norge (Energy 
Norway – the Norwegian electricity industry associa-
tion) in cooperation with Energiforsk (the Swedish 
Energy Research Centre), more than 20 Norwegian 
and Swedish power companies, a number of equip-
ment manufacturers and service providers, and the re-
search institutions Comillas Pontifical University, 
SINTEF Energy Research and the Norwegian Uni-
versity of Science and Technology as R&D partners. 
The project is financially supported by the Research 
Council of Norway. 

The aim of the MonitorX project is to develop 
models and algorithms for condition monitoring and 
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ABSTRACT: This paper describes and proposes some indicators for continuous monitoring of anomalous con-
ditions in the hydraulic system of a Kaplan turbine using SCADA data. The indicators are based on significant 
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has to be predicted. The criteria to select the variables to use in the models are based on the physical working 
principles of the component. The paper is focused on models of normal behavior applied to a real case of 
condition monitoring of a Kaplan turbine regulating mechanism.  



the detection of faults in hydropower equipment. The 
main focus in the project is on models based on ma-
chine learning and artificial intelligence. The project 
is case-driven, and several relevant cases have been 
identified in the beginning of the project, whereof the 
case related to monitoring of the Kaplan turbine reg-
ulating mechanism and corresponding hydraulic sys-
tem was considered as relevant for further work. 
Since several components and parts of the system are 
difficult to inspect, models that can be used to moni-
tor the system condition and detect failures are valu-
able. Furthermore, oil leakage from the hydraulic sys-
tem may cause environmental damage, especially 
when oil leaks into the river. 

Usually, no separate condition monitoring systems 
are installed in power stations to surveil the condition 
of the regulating mechanism. The data that normally 
is available is from the SCADA system of the plant 
that usually presents one hour average values. Thus, 
one of the aims of the presented case is to study if 
such type of data is useful for modelling the normal 
behavior of hydropower components and detecting 
with these models anomalies that are related to faults. 

The paper is organized in the following sections. 
Section 2 describes the method and objectives used 
for the creation of normal behavior models and detec-
tion of anomalies. Section 3 presents a description of 
the hydraulic system of the hydraulic power plant an-
alyzed. Section 4 includes the description and devel-
opment of normal behavior models used as references 
for detection of anomalies. Section 5 presents several 
cases about how the normal behavior models can be 
used as reference patterns for the detection of anom-
alies. Finally, section 6 summarizes some conclusions 
of the analysis developed throughout the paper. 

 
2 METHOD AND OBJECTIVES  
This section describes the main steps of the process 
to build anomaly indicators for detection of abnormal 
behavior in some functional characteristics of compo-
nents in a hydropower plant. These indicators are 
based on patterns previously obtained from observing 
the typical normal behavior of the monitored compo-
nents. The following sequential steps are required in 
order to detect anomalies based on an estimation for 
these indicators: 
a. Selection of a data training set for learning the typ-

ical normal behavior of the component. This in-
cludes data selection and filtering, removing of 
outliers and treatment of missing measurements. 

b. Identification of failure modes that could be de-
tected with the variables available in the SCADA 
system, and selection of variables. Information 
available in a Failure Modes and Effects Analysis 
(FMEA) may help to select relevant failure modes 
and variables. The variables will be used for the 
characterization of normal behavior patterns de-
veloped in the next step.  

c. Building of normal behavior patterns of a compo-
nent described through variables collected in real-
time from the hydropower plant. The cases studied 
in this paper are based on data samples collected 
every hour. The patterns were built using multi-
layer perceptrons (Bishop, 1995), (Bishop, 2006). 
This technique is supervised requiring previous 
knowledge of behavior considered as normal and 
covering all the typical working conditions of the 
plant. A good selection of this behavior, consid-
ered as normal, is crucial in this method because 
the normal behavior will be learnt by the models 
as a reference to watch when new information is 
coming from the power plant. 

d. Estimation of anomaly indicators. Once the previ-
ous steps are completed, the indicators of anoma-
lies can be estimated. Its objective is to warn about 
data collected from the hydropower plant that do 
not correspond to the expected behavior by the ref-
erence patterns. The evolution of the values of the 
anomaly indicators over time will suggest whether 
or not it is necessary to pay attention to the com-
ponents monitored from the point of view of 
scheduled maintenance and operation. 
 
Sections 4 and 5 will describe details about each of 

the previous steps with examples demonstrating their 
use. 
 
3 SYSTEM ANALYSED 

Figure 1. Illustration of the Kaplan turbine (Curtesy of Wikipe-
dia) 
 
The cases analyzed in the paper are from Embretsfoss 
4, which is a hydropower plant using a Kaplan turbine 
for the production of electric energy. The Kaplan tur-
bine is a propeller type turbine controlled by the op-
eration of the turbine runner blades (turbine blades) 
and the wicket gates (guide vanes). See illustration in 



Figure 1. A Kaplan turbine is a typical run-of-river 
turbine, which can be operated at different flows and 
at varying head. For each head and flow, there is a 
given ideal combination of the wicket gate and runner 
blade position to ensure the best efficiency of the tur-
bine.  

A turbine regulator controls and operates the tur-
bine. Based on information about head and flow it 
uses predefined combination curves for the runner 
and wicket gate. The regulator controls the turbine by 
adjusting the blade and wicket gate positions with a 
correlated movement between the two. The acting 
mechanism for the wicket gates and runner blades are 
based on high-pressure hydraulics where an HPU 
(high-pressure unit) and an accumulator bank provide 
high-pressure oil for actuation of hydraulics servomo-
tors.   

3.1 The high-pressure hydraulic system 

The turbine regulator controls the wicket gates and 
the runner blades by the use of a high-pressure hy-
draulic system which consist of the following main 
components: 
- Turbine governor oil sump tank with oil pumps 

(HPU – High Pressure Unit) 

- Pressure accumulator banks. One bank for runner 
blades and one bank for the wicket gates 

- Hydraulic oil cooling/heating system 
- Wicket gate control system 
- Runner blade control system 
- Quick stop / Emergency stop system 
- Oil system for runner hub. The runner hub is the 

lowermost part of the runner. The cone part just 
below the runner blades. See Figure 1. 

For a simplified view of the high-pressure hydrau-
lics system, see Figure 2. The HPU is located at the 
turbine floor and it supplies the wicket gate and run-
ner blade control system with high-pressure oil. The 
main components of the HPU are the oil reservoir, the 
oil pumps, valves, filters and coolers. In addition to 
supply oil to the control system, the HPU is “charg-
ing” in total five accumulator banks. The accumulator 
system is a safety system designed to handle a prede-

fined number of safe shutdown cycles, in case of mal-
function of the HPU system or a blackout of the sta-
tion. The HPU have systems for monitoring the oil 
level, temperature and water-in-oil content. To pre-
vent the pollution of the oil, each of the HPU pumps 
are equipped with a filter system.  

For maintenance reasons, the oil reservoir is de-
signed to be big enough for storage of all the oil in the 
system. However, during operation, the oil is in the 
different components of the hydraulic system hence 

Figure 2 Simplified view of the hydraulic system  



only a limited amount of oil is contained in the reser-
voir. A minimum level is however required in the res-
ervoir for avoiding dry running of the HPU pumps. 

The hydraulics system has an oil cooling (and 
heating) system. The cooling system cools the oil dur-
ing operation and the heating system heats the oil dur-
ing standstill. 

The wicket control system controls the wicket 
gates by the use of two hydraulic servos (cylinders). 
The servos actuate the control ring, which again pro-
vides the open/close movement on the wicket gates. 
When the control ring, seen from the top, turns clock-
wise, the wicket gates close. 

The runner blade control system controls the posi-
tion of the runner blades by the use of a servo actuator 
located in the runner hub. The actuator high-pressure 
oil supply/return is routed through the center of the 
turbine shaft via the oil supply head located at the top 
of the shaft. 

The system is equipped with a system for safe 
emergency stopping of the turbine. This can be acti-
vated by a manual activation of the emergency stop 
or if the turbine is speeding and the overspeed trip 
valve is activated.  

The turbine hub is filled with oil and has an oil 
pressure that is slightly higher than the surrounding 
water pressure. In the case of runner blade sealing 
degradation, this pressure prevents water from enter-
ing the hub. The oil pressure in the hub is a static pres-
sure created by the elevated location of the hub oil 
tank (see figure 2). The oil in the hub oil tank is 
pumped up from the HPU oil reservoir. The hub oil 
tank and the hub oil are not a part of the high-pressure 
circuit, but a leakage in the runner blade servo will 
influence the oil level in the hub oil tank and will 
eventually sound an alarm or stop signal.  

 
4 MODELS OF NORMAL BEHAVIOUR 
An industrial component or system can be stressed 
due to normal operation, extraordinary operation and 
extreme environmental conditions or to a combina-
tion of all. Over time, these facts along with ageing 
factors can produce different ranges of typical values 
observed in measured variables even when the func-
tional objectives of the component or system as ex-
pected have been reached (Sanz-Bobi, 2011). How-
ever, when a component has been stressed or 
overloaded over time, an increasing risk of occur-
rence of a failure is probable. For this reason, it is im-
portant to characterize the normal behavior expected 
for an industrial component or system when it is per-
forming its function under several typical working 
conditions, because any deviation with respect to this 
behavior could alert about the presence of an incipient 
failure. The sooner this is detected, the sooner it is 
possible to mitigate the effect of a failure. 

This section describes real examples of normal be-
havior models. These models are able to characterize 
the typical dynamical evolution of variables when the 

component is working under different operating con-
ditions without symptoms of failure or stress.   

In particular, the models developed and presented 
as an example in this paper, are based on information 
collected in real-time from a hydraulic power plant 
located in Norway. The models developed use neural 
networks based on multi-layer perceptrons (Bishop, 
1995; Kruse, 2013) because this is a method able to 
approximate non-linear relationships among varia-
bles. 

An basic model to characterize the normal behav-
ior of the hydraulic power plant can be expressed by 
function f in Equation 1 

),,( TWHWWFGVPfP   (1) 

Where:  
P:  Power generated by the power plant in MW 
GVP: Guide Vane Position in percentage 
WF: Water flow through the turbine in m3/s 
HW-TW: Difference between headwater and 
tailwater levels in m. 
 
Equation 1 tries to predict the power generated as 

function of the values of the main variables contrib-
uting to the power generation. 

In order to build a normal behavior model charac-
terizing the function f in Equation 1, a training set was 
selected covering different seasonal conditions from 
January 1 to August 20, 2015. The data set is based 
on hourly values for the variables considered. The 
model was developed with a multi-layer perceptron 
based on one hidden layer containing 20 neurons and 
using the Levenberg–Marquardt algorithm for learn-
ing.  The model obtained is very good, as it can be 
observed in Figure 3, where the estimated values for 
the power generated and the real values observed are 
almost identical. The mean value of their difference 
(error of the trained model) is 0.0012 MW and the 
standard deviation is 0.067 MW. This error is distrib-
uted according to a normal distribution with narrow 
shape.  

An interesting family of models will be presented 
in the following for the characterization of the normal 
relationships that exist between the tank oil level of 
the turbine regulator and variables observed in differ-
ent components of the turbine regulator that uses this 
oil. It is important to monitor that the oil in the tank is 
at the expected level, because if this is not the case, a 
possible leakage could be present.  

The first normal behavior model of the family that 
was tested is described in Equation 2 using the func-
tion f1 . 

)1,,(1 TRAOTTPfOTL   (2) 

Where:  
OTL: Oil tank level in the HPU in percentage 
P:  Power generated by the power plant in MW 
OTT: Oil tank temperature in ºC  



A1TR: Oil level in accumulator 1 of the turbine 
runner. 
 

 
Figure 3. Estimated value for power generated predicted by the 
normal behavior model and the real value observed for the train-
ing set using the guide vane position, the flow through the tur-
bine and the difference between headwater and tailwater level. 

 
Equation 2 tries to predict the oil tank level in the 

HPU of the turbine regulator knowing the working 
conditions of the plant, the level of one oil accumula-
tor of the turbine runner and the temperature of the 
tank oil. 

The model for f1 was obtained with a similar archi-
tecture as for f in Equation 1. Also, the same dates as 
in the previous case were used to obtain the samples 
of the training set. The model obtained is good, which 
can be observed in Figure 4 where the estimated val-
ues for the oil tank level and the real observed are 
very close. The oil tank level is measured in percent-
age (%). The mean value of their difference (error of 
the trained model) is 0.0007 % and the standard devi-
ation 0.0644 %. This error is distributed according to 
a normal distribution shape.  

The hydraulic power plant studied has another 
similar accumulator given the number 2 in the turbine 
runner. A normal behavior model was fitted and the 
results obtained were very similar to those obtained 
for accumulator 1 of the turbine runner. 

Other important components in the turbine regula-
tor of the hydraulic power are three oil accumulators 
for the guide vanes. These are very important for the 
correct regulation of the hydraulic turbine. Three 
models, one considering each of the oil accumulators, 
were developed such as in Equation 2. For simplicity, 
only one of them will be presented. Equation 3 de-
scribes it using function f2. 

)3,,(2 GVAOTTPfOTL   (3) 

Where:  
OTL: Oil tank level in percentage 
P:  Power generated by the power plant in MW 

OTT: Oil tank temperature in ºC  
A3GV: Oil level in the accumulator 3 for the guide 

vanes. 
 

 
Figure 4. Estimated value for oil tank level in percentage pre-
dicted by the normal behavior model and the real value observed 
for the training set using as inputs the power generated, the oil 
tank temperature and the oil level in accumulator 1 of the turbine 
runner. 

 
Equation 3 tries to predict the oil tank level in the 

turbine regulator knowing the working conditions of 
the plant, the level of the oil accumulator 3 for the 
guide vanes and the temperature of the tank oil. 

The model for f2 was obtained following the same 
method as in the previous cases described. However, 
the main difference was that the data used in the train-
ing set covered the period from April 9, 2016 to Oc-
tober 13, 2016, because before that period some 
measurements of the oil accumulators of the guide 
vanes were not collected correctly. In any case, more 
than half of this period overlaps with the one used for 
obtaining f and f1. The model resulting for f3 obtained 
is good, as it can be observed in figure 5 where the 
estimated values for the oil tank level (in percentage 
%) and the real observed values (in percentage too) 
are very close. The mean value of their difference (er-
ror of the trained model) is 0.0022 % and the standard 
deviation 0.09 %. This error is distributed according 
to a normal distribution shape.  

Good results were also obtained for the two models 
that are similar to the one in Equation 3, where the 
variable oil level in accumulator 3 has been changed 
to the oil levels in the corresponding accumulators 
with numbers 1 and 2, respectively. 
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Figure 5. Estimated value for oil tank level in percentage pre-
dicted by the normal behavior model and the real value observed 
for the training set using the power generated, the oil tank tem-
perature and the oil level in accumulator 3 for the guide vanes  

 
 

5 ANOMALY DETECTION BASED ON 
PATTERNS OF NORMAL BEHAVIOUR 
Once a normal behavior model has been elabo-

rated, it can be used in real time with real-time values 
from the required inputs. The output from the model 
can then be compared with the corresponding real 
measured output variable. The prediction will corre-
spond to the expected value for normal behavior un-
der the current working condition. Any incipient fail-
ure will produce a deviation between the expected 
value and the real value measured of the monitored 
variable. This section presents how the normal behav-
ior models obtained in the previous section respond 
to new inputs of data collected after the training set 
dates. This will allow for the discovery of abnormal 
behavior different to the one expected. 

Model f was used with data not contained in the 
training set, covering the period from November 25, 
2015 to May 31, 2017. Figure 6 shows the results ob-
tained by the model. The real behavior observed is 
very near to the predicted one and this confirms that 
the behavior observed in this new period of time is 
similar to the previous one in the training set. No ab-
normal behavior was detected in the power generation 
according to model f. The mean value of their differ-
ence (error) is -0.017 MW and the standard deviation 
is 0.7 MW. Both are higher than what was obtained 
for the training data set, but the prediction is still rea-
sonable. Also, this error is distributed according to a 
normal distribution shape. 

 
Figure 6. Estimated value for power generated predicted by the 
normal behavior model and the real  value observed for the test-
ing data set using the guide vane position, the flow through the 
turbine and the difference between the headwater and tailwater 
levels. 

 
 
Furthermore, model f1 was used with data not con-

tained in the training set, covering the period from 
November 25, 2015 to May 31, 2017. Figure 7 shows 
the results obtained from the model. The real behavior 
observed is near to the predicted one in some cases in 
the central part of the figure and different in the rest 
of the period studied. This means that the behavior 
observed in the training data set is different from the 
one observed in the new test data set at some periods. 
An abnormal behavior was detected in the relation-
ships between the output and input variables of this 
model for the test period. Once this was detected, it 
became necessary to investigate the cause. 

 
Figure 7. Estimated value for oil tank level in percentage pre-
dicted by the normal behavior model and the real value observed 
for the testing data set using as inputs the power generated, the 
oil tank temperature and the oil level in accumulator 1 of the 
turbine runner. 
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The cause of abnormal behavior detected that is 

breaking the relationship modelled by f1 can be any 
of the variables used in this model. The variable 
power generated cannot be the cause due to the test 
carried out in model f and presented in Figure 6 which 
confirms that no abnormal generation of power exists. 
The rest of the variables could be candidates to be 
anomalous and they are related with the oil tank (level 
and temperature) and the accumulator 1 level of the 
turbine runner. 

 A model similar to the one presented in Equation 
2 was developed replacing the variable A1TR (Oil 
level in accumulator 1 of the turbine runner) by an-
other equivalent model, but measuring the oil level in 
accumulator 2 of the turbine runner. The model ob-
tained was very good and similar to that presented in 
Figure 4. This model was checked with data not con-
tained in the training set, covering the period from 
November 25, 2015 to May 31, 2017 as for accumu-
lator 1 of the turbine runner. 

The result is presented in Figure 8. The profile be-
tween predicted and real oil tank levels are almost the 
same in Figures 7 and 8. The same broken relation-
ship is shown between the oil tank level and the oil 
level in accumulators 1 and 2 of the turbine runner.  
This induces the thought that it is not probable that 
the problem of the abnormal behavior observed is due 
to some anomaly in both turbine runner accumulators 
at the same time and it is therefore convenient to 
closely monitor the oil tank level. 

 
Figure 8. Estimated value for oil tank level in percentage pre-
dicted by the normal behavior model and the real value observed 
for the testing data set using as inputs the power generated, the 
oil tank temperature and the oil level in accumulator 2 of the 
turbine runner. 

 
In this way, model f2 was also tested with data cov-

ering the period from October 14, 2016 to May 31, 
2017. This period includes data from sample 8000 till 
the end of the graphics in both Figures 7 and 8. Figure 
9 presents the results of the application of model f2 to 

the data set mentioned. The discrepancy between pre-
dicted and real values for the oil tank level is clear. 
This is lower than expected for the working condi-
tions of accumulator 3 of the guide vanes. In fact, it 
seems that the difference between the real and ex-
pected values for the oil tank level is increasing over 
time, except in the last part of the graphic in Figure 9 
where the real and expected values are approaching. 

Two similar models to f2 were built and tested dur-
ing the same periods of time replacing the variable 
A3GV (Oil level in accumulator 3 for the guide 
vanes) by other equivalent elated respectively to ac-
cumulators 1 and 2 for the guide vanes. The results 
were similar. 

According to the results obtained, all five models 
applied for anomaly detection in the oil tank level 
(three of them presented in Figures 7, 8 and 9) coin-
cide in that they indicate a lower level of oil over time. 
This is an indicator of a possible leakage of oil in the 
oil tank level or surrounding locations. The accumu-
lators are working as expected, but the total oil level 
in the tank of the HPU is decreasing. This was veri-
fied and a leakage was discovered from the oil side to 
the nitrogen side of the accumulators. 

 

 
Figure 9. Estimated value for oil tank level in percentage pre-
dicted by the normal behavior model and the real value observed 
for the training set using the power generated, the oil tank tem-
perature and the oil level in accumulator 3 for the guide vanes. 

 
These examples demonstrate that the deviation val-

ues obtained from the comparison of the real value 
and predicted one by the patterns of normal behavior 
can be good indicators for alerting when a typical re-
lationship among variables could be broken. 

In this case, the unexpected decreasing level in the 
oil tank must be monitored. 
 
6 CONCLUSIONS 

This paper describes a methodology for the early 
detection of anomalous behavior conditions of se-
lected Kaplan turbine components. The method is 
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based on discovering behavior patterns, also called 
normal behavior models, from the observation of the 
typical relationships existing between a set of varia-
bles used as inputs to the models and the correspond-
ing output of a target variable whose expected value 
has to be predicted. The criteria to select the variables 
to use in the models are based on the physical work-
ing principles of the component in order to detect 
symptoms of abnormal behavior that can cause a pos-
sible failure mode.  

The data set used for pattern discovering of normal 
behavior comes from the SCADA system of the plant. 
Abnormal behavior is any significant deviation or dif-
ference between the predicted output of the models 
and its corresponding real observation. 

The paper presented some examples of normal be-
havior models for the cases of characterization of 
power generated by the hydropower plant and the oil 
tank level considered from different perspectives 
such as the oil level in the bank of accumulators of 
the turbine runner and the bank of accumulators of the 
guide vanes. Once the models were created, they were 
applied to new examples of operation. The predicted 
amount of generated power was always as expected, 
but the oil tank level was not. The analysis of devia-
tions of normal behavior described in the paper shows 
that the oil levels in the accumulator banks were ac-
cording to their working conditions, but the oil tank 
level was continuously decreasing during the time an-
alyzed. This suggests a need for close monitoring of 
this level in order to search for the cause of this po-
tential detected leakage. 

In future works, an approach based on different al-
gorithms working in parallel for anomaly discovering  
will be tested. This will improve even more the ro-
bustness of the anomaly detection method proposed.  
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