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Abstract
Least-squares methods enable us to price Bermudan-style

options by Monte Carlo simulation. They are based on esti-

mating the option continuation value by least-squares. We

show that the Bermudan price is maximized when this

continuation value is estimated near the exercise bound-

ary, which is equivalent to implicitly estimating the optimal

exercise boundary by using the value-matching condition.

Localization is the key difference with respect to global

regression methods, but is fundamental for optimal exer-

cise decisions and requires estimation of the continuation

value by iterating local least-squares (because we estimate

and localize the exercise boundary at the same time). In the

numerical example, in agreement with this optimality, the

new prices or lower bounds (i) improve upon the prices

reported by other methods and (ii) are very close to the

associated dual upper bounds. We also study the method’s

convergence.

K E Y W O R D S
American and Bermudan options, local least-squares, optimal stopping-

times, optimization, simulation

1 INTRODUCTION

Pricing Bermudan options by simulation has drawn the interest of practitioners and academics alike,
because many securities contain early-exercise features and depend on several stochastic factors. A
Bermudan option is a classical example of an optimal stopping-time problem. Simulation is a flexible
method that does not suffer from the curse of dimensionality. Carriére (1996), Tsitsiklis and Van Roy
(1999), and Longstaff and Schwartz (2001) develop a least-squares Monte Carlo (LSM) approach,
which is widely used in practice.

Mathematical Finance. 2017;1–38. wileyonlinelibrary.com/journal/mafi © 2017 Wiley Periodicals, Inc. 1



2 IBÁÑEZ AND VELASCO

Pricing Bermudan options by simulation requires providing an exercise policy (and evaluating this
policy by a standard simulation). We derive the right optimization function for this problem, the price
of a Bermudan option for a given parametric set of exercise boundaries, and the associated first-order
conditions (FOCs), from which we obtain the optimal exercise policy (for this family). Our approach
is similar to Merton’s (1973) pricing of perpetual American options. In a multifactor setting, however,
the optimal exercise boundary functional form is unknown and, hence, is approximated by a family
(whereas it is constant in Merton’s perpetual case). In both problems, the optimal exercise rule is
obtained from the FOCs.1

We maximize the Bermudan price at each exercise period with regard to a given family of exercise
boundaries, which depend on a set of basis functions (the regressors) of the state variables. The FOCs
imply value-matching errors, the difference between continuation and intrinsic values, are orthogonal
to the regressors precisely when they are localized at the exercise boundary. These FOCs characterize
the optimal boundary (for a given family) because value-matching errors are zero at the optimal exer-
cise boundary by definition. The FOCs, however, depend on the initial state; therefore, not all points of
the optimal boundary are (statistically) equally important, implying a simple basis is sufficient to pro-
vide a good local approximation. This paper focuses on the FOCs corresponding to a linear approx-
imation (with polynomial basis); the regressors become more complex for nonlinear functions (e.g.,
neural networks).

Further, the FOCs are given in two different ways: by parameterizing, in the intrinsic value, either
the continuation value or the exercise boundary. In the former case, the parametric continuation value
replaces the intrinsic value, whereas, in the latter case, the intrinsic value depends explicitly on the
parametric exercise boundary. The former case estimates the continuation value along the exercise
boundary; that is, it characterizes the exercise boundary in an implicit way (by using the value-
matching condition). The latter case explicitly estimates this boundary. That is, in the value-matching
error, which is given by the difference between continuation and intrinsic values, the continuation
value is the dependent variable and the intrinsic value contains one of the two parametric regression
functions.

The FOCs of the Bermudan price-maximizing problem lead to an iterative procedure, because we
estimate and localize the exercise boundary at the same time, like a root-finding problem. That is,
we run local least-squares regressions by using the discounted realized payoffs of the simulated paths
that are close to the exercise boundary identified in the previous iteration. When parameterizing the
continuation value (the exercise boundary), a kernel down-weights large value-matching errors (the
distance to the boundary), focusing the estimation on points around the implicit (explicit) exercise
boundary. Once solved, the FOCs do provide an exercise rule, which also allows us to update all
sample-path realized payoffs and proceed to the previous exercise period in a recursive way (like the
Longstaff–Schwartz method).

We call this algorithm the “local LSM” method. Localizing the continuation value at the exercise
boundary is the key difference with respect to the LSM method, but is fundamental to produce optimal
exercise decisions. By taking the recursive solution of the previous period in every initial iterative step,
a couple of iterations are sufficient for this localization if we use the continuation value. In computation
terms, the extra time effort over the LSM method depends on the number of iterations (if >1), because
local and global regressions are alike.

We simulate paths starting before time 0 from the same in-the-money point. The latter feature implies
a richer price dispersion (generating points near the exercise boundary at the first exercise dates), which
is important for a local regression. In this way, the local LSM method saves time for pricing portfolios
of Bermudans with different strike prices, because the initial simulation point and the derived exercise
rules focusing on the boundary do not depend on the option moneyness.
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In the numerical example, we price Bermudan options on the maximum of five stocks. This max-
call option is a challenging security, having separated exercise regions and multiple (five) boundaries,
and is a benchmark problem, for which lower and upper bounds are present (Broadie & Cao, 2008).
We use a second-order polynomial basis of functions for the regressors.2 The local LSM prices are
always above the best available lower bounds, up to 20 to 30 basis points/bps in some cases with just
one or two iterations (see Tables 6.1 to 6.3). Both algorithms, using either the explicit or the implicit
boundary, produce similar good prices. We compute the associated dual upper bound (Andersen &
Broadie, 2004), and the gap between lower and upper bounds is reduced to a few bps. This simultaneous
near optimality of both bounds, which are based on the local exercise strategy derived in this paper, is
addressed in a second paper, which provides additional numerical results (Ibáñez & Velasco, 2016).

We stress that improving upon the prices provided here by the local LSM method by enlarging
the dimension of the basis from a quadratic fit (and just using the LSM method) is not easy. The
variance of the local LSM prices is less than or equal to the variance in the LSM method case (which
can be theoretically justified). Although we optimize the kernel’s bandwidth in these simulations, a
simple kernel, which is held constant across iterations and exercise periods, produces similar good
results. These two features are relevant in practice.

We also study the convergence of the local LSM method. We assume an infinite-dimension linear
approximation, a kernel that localizes the exercise boundary, one set of simulated paths, and standard
technical assumptions on function smoothness and stopping-time identification. First, we provide rates
of convergence of the exercise-boundary estimates, which depend on the number of paths, basis dimen-
sion, and kernel bandwidth.3 Second, we adapt Stentoft’s (2004b) results for the LSM method4 to prove
the convergence of the local LSM Bermudan prices.

In recent work, Belomestny (2011a, 2011b) and Belomestny, Dickmann, and Nagapetyan (2015) also
use local regression and study the error and complexity of simulation-based algorithms. Zanger (2016)
analyzes the speed of convergence of the LSM method using both linear and nonlinear approximations.
Although we provide some estimates of the convergence rate for the exercise boundary, a thorough
analysis of the error and complexity of our local LSM algorithm, along the lines of these papers, is left
for future research.

The organization of the rest of the paper is as follows. Section 2 studies the cost of suboptimal exer-
cise for Bermudan options. For the sake of simplicity, we consider a two-factor exchange or Margrabe
option. Section 3 derives and analyzes the optimal FOCs. Section 4 studies the implementation and
convergence of the local LSM method. Section 5 considers a multifactor setting and general payoffs.
Section 6 provides numerical results of a Bermudan max-call option on five securities. Section 7 con-
cludes. Proofs are left to the Appendix.

2 THE COST OF SUBOPTIMAL EXERCISE

We address the maximization of Bermudan option prices by first deriving the cost of suboptimal exer-
cise. For simplicity, we consider a two-factor problem, which contains all ingredients of a multifactor
setting. We consider multiple state variables and general payoffs in Section 5. Let (Ω, , , {𝑡}0≤𝑡≤𝑇 )
be an augmented filtered probability space (Duffie, 2001), where 𝑆(𝑡) is the vector of state variables
adapted to the filtration 𝑡, and 𝑄 denotes the unique risk-neutral measure that is taken as given.

A Bermudan-style option can be exercised a finite number of periods 𝑡𝑗 > 𝑡0, where 𝑡𝑗 ∈
{𝑡1, 𝑡2,… , 𝑡𝐽}, 𝑡0 is the initial time, and 𝑡𝐽 = 𝑇 is maturity. Consider a spread or Margrabe option,
with intrinsic value

𝐼(𝑆1, 𝑆2) = {𝑆2 − 𝑆1 −𝐾}+,
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where 𝑆(𝑡) = (𝑆1(𝑡), 𝑆2(𝑡)) are two random prices and 𝐾 is the strike price. We denote by 𝐶(𝑡, 𝑆1, 𝑆2)
the true Bermudan spread option price (i.e., the true continuation value) at time 𝑡, and 𝑓𝑗(𝑆1) denotes
the true exercise boundary at time 𝑡𝑗 > 𝑡0. That is, 𝑓𝑗(𝑆1) verifies the value-matching condition
𝐶(𝑡𝑗 , 𝑆1, 𝑓𝑗(𝑆1)) = 𝐼(𝑆1, 𝑓𝑗(𝑆1)), and it is optimal to exercise if 𝑆2(𝑡𝑗) ≥ 𝑓𝑗(𝑆1(𝑡𝑗)). In particular,
if 𝑆1 (𝑆2) is constant, the spread option is a standard call (put) option.

Denote by 𝑓𝑗(𝑆1) a given exercise boundary. That is, we exercise if 𝑆2(𝑡𝑗) ≥ 𝑓𝑗(𝑆1(𝑡𝑗)). Therefore,

𝑓𝑗(𝑆1) < 𝑓𝑗(𝑆1) (𝑓𝑗(𝑆1) > 𝑓𝑗(𝑆1)) implies “suboptimally” accelerating (delaying) exercise compared

to the optimal stopping time of the Bermudan spread option. We assume that 𝑓 implies the same
number of exercise boundaries as 𝑓 , which is one for the spread option. Let us denote by 𝑓𝑗∶𝐽 =
{𝑓𝑗, 𝑓𝑗+1,… , 𝑓𝐽} (similar for 𝑓𝑗∶𝐽 ) the exercise boundaries for 𝑡𝑗 , 𝑡𝑗+1,… , 𝑡𝐽 . Let 𝑃 (𝑡1, 𝑆, 𝑓2∶𝐽 )
denote the price (i.e., the continuation value) of the Bermudan option at time 𝑡1 for a given policy
𝑓2∶𝐽 , and 𝑃 (𝑡0, 𝑆, 𝑓1∶𝐽 ) the initial price for a policy 𝑓1∶𝐽 = (𝑓1, 𝑓2∶𝐽 ). Consistent with the previous
definitions, it holds that

𝑃
(
𝑡0, 𝑆(𝑡0),

(
𝑓1, 𝑓2∶𝐽

))
= 𝐸𝑄

0

[
𝐷1

(
(𝑆2(𝑡1) − 𝑆1(𝑡1) −𝐾) × 1{𝑆2(𝑡1)≥𝑓1(𝑆1(𝑡1))}

+ 𝑃 (𝑡1, 𝑆(𝑡1), 𝑓2∶𝐽 ) × 1{𝑆2(𝑡1)<𝑓1(𝑆1(𝑡1))}

)]
,

where 𝐷1 is the inverse of a bank account between 𝑡0 and 𝑡1 (1-adapted), 𝐸𝑄
0 denotes the 𝑄 expectation

conditional on 0, and 𝑄 is given by 𝑄(𝑆2(𝑡1), 𝑆1(𝑡1)|𝑆(𝑡0)). To further simplify notation, prices are
written in discounted terms (or zero interest rates, 𝐷1 = 1).

The cost of suboptimal exercise
The cost of suboptimal exercise is nonnegative and given by

𝐶(𝑡0, 𝑆) − 𝑃
(
𝑡0, 𝑆, 𝑓1∶𝐽

) ≥ 0.

We denote by Δ𝑓1(𝑆1(𝑡1)) = 𝑓1(𝑆1(𝑡1)) − 𝑓1(𝑆1(𝑡1)) the exercise boundary error. First, assume
Δ𝑓 (𝑆1) ≤ 0, which implies suboptimally accelerating exercise at 𝑡1. The associated cost is given by

𝐸𝑄
0

⎡⎢⎢⎢⎣
𝑓1(𝑆1(𝑡1))

∫
𝑓1(𝑆1(𝑡1))

(𝐶(𝑡1, 𝑆1(𝑡1), 𝑆2(𝑡1)) − (𝑆2(𝑡1) − 𝑆1(𝑡1) −𝐾)) ×𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) × 𝑑𝑆2(𝑡1)

+

𝑓 (𝑆1(𝑡1))

∫
0

(
𝐶(𝑡1, 𝑆1(𝑡1), 𝑆2(𝑡1)) − 𝑃

(
𝑡1, (𝑆1(𝑡1), 𝑆2(𝑡1)), 𝑓2∶𝐽

))

× 𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) × 𝑑𝑆2(𝑡1)
⎤⎥⎥⎥⎦ , (2.1)

where, by the definition of conditional probability,

𝑄(𝑆1(𝑡1), 𝑆2(𝑡1)|𝑆(𝑡0)) = 𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) ×𝑄(𝑆1(𝑡1)|𝑆(𝑡0)),
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and the expectation 𝐸𝑄
0 [.] depends only on 𝑄(𝑆1(𝑡1)|𝑆(𝑡0)).5 Equation (2.1) includes two costs. For

any value of 𝑆1, the first integral is the cost associated with exercise at 𝑡1, when 𝑆2 is in the suboptimal
exercise region (i.e., 𝑆2 ∈ [𝑓 (𝑆1), 𝑓 (𝑆1)]). The second integral is the continuation cost associated
with suboptimal exercise in the future (𝑡2,… , 𝑡𝐽 ), when 𝑆2 is outside of the exercise region (𝑆2 ∈
[0, 𝑓 (𝑆1))).

Second, for policies that suboptimally delay exercise at 𝑡1 (Δ𝑓1(𝑆1) ≥ 0), the cost is given by

𝐸𝑄
0

⎡⎢⎢⎢⎣
𝑓1(𝑆1(𝑡1))

∫
𝑓1(𝑆1(𝑡1))

((𝑆2(𝑡1) − 𝑆1(𝑡1) −𝐾) − 𝐶(𝑡1, 𝑆1(𝑡1), 𝑆2(𝑡1))) ×𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) × 𝑑𝑆2(𝑡1)

+

𝑓 (𝑆1(𝑡1))

∫
0

(𝐶(𝑡1, 𝑆1(𝑡1), 𝑆2(𝑡1)) − 𝑃 (𝑡1, (𝑆1(𝑡1), 𝑆2(𝑡1)), 𝑓2∶𝐽 ))

×𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) × 𝑑𝑆2(𝑡1)
⎤⎥⎥⎥⎦ , (2.2)

which also includes two costs associated with the rights to exercise at and after 𝑡1, respectively.
The first integral in equations (2.1) and (2.2) is the same, irrespective of the sign of Δ𝑓1(𝑆1), and is

nonnegative. Hence, equations (2.1) and (2.2) are the same. Let us define by 𝐺(𝑓1∶𝐽 ) = 𝐺(𝑆1(𝑡1), 𝑓1∶𝐽 )
the argument within the two expectations in (2.1) and (2.2 ), that is,

𝐺
(
𝑓1∶𝐽

)
=

𝑓1(𝑆1(𝑡1))

∫
𝑓1(𝑆1(𝑡1))

((𝑆2(𝑡1) − 𝑆1(𝑡1) −𝐾) − 𝐶(𝑡1, 𝑆1(𝑡1), 𝑆2(𝑡1)))

×𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) × 𝑑𝑆2(𝑡1)

+

𝑓 (𝑆1(𝑡1))

∫
0

(
𝐶(𝑡1, 𝑆1(𝑡1), 𝑆2(𝑡1)) − 𝑃

(
𝑡1, (𝑆1(𝑡1), 𝑆2(𝑡1)), 𝑓2∶𝐽

))
×𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) × 𝑑𝑆2(𝑡1).

The following proposition gives the cost of suboptimal exercise for Bermudan options.6

Proposition 2.1. Consider a Bermudan spread option that can be exercised at times 𝑡1,𝑡2,… , 𝑡𝐽 .
Let 𝑓1(𝑆1) (𝑓1(𝑆1)) be the true (a given) exercise boundary at 𝑡1, respectively. And let 𝐶(𝑡1, 𝑆1, 𝑆2)
(𝑃 (𝑡1, (𝑆1, 𝑆2), 𝑓2∶𝐽 )) be the Bermudan’s price or continuation value for the true (a given 𝑓2∶𝐽 ) policy
from 𝑡2 to 𝑡𝐽 . Then the cost of suboptimal exercise is given by

𝐶(𝑡0, 𝑆) − 𝑃
(
𝑡0, 𝑆, 𝑓1∶𝐽

)
= 𝐸𝑄

0

[
𝐺
(
𝑓1∶𝐽

)]
. (2.3)
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If 𝑆1(𝑡1) is constant, for a call option, 𝐸𝑄
0 [𝐺(𝑓1∶𝐽 )] = 𝐺(𝑓1∶𝐽 ). And if 𝑆2(𝑡1) is constant, for a put

option, we rewrite 𝑓1 and 𝑓1 as functions of 𝑆2(𝑡1) (instead of 𝑆1(𝑡1)).

Proof. It follows from equations (2.1) and (2.2), which, as discussed above, are the same. □

This result is valid for a general exercise boundary function 𝑓 . For instance, 𝑓 can depend on a
linear basis (polynomials) as well as a nonlinear basis (exponential or neural networks).

3 MAXIMIZING THE BERMUDAN OPTION PRICE

The function 𝐸𝑄
0 [𝐺(𝑓1∶𝐽 )] gives the cost of suboptimal exercise for a policy 𝑓1∶𝐽 . Because minimizing

the cost of suboptimal exercise is equivalent to maximizing the Bermudan price, this cost is the right
objective function to determine the optimal exercise policy.

Equation (2.3) can be rewritten as follows:

𝑃
(
𝑡0, 𝑆, 𝑓1∶𝐽

)
= 𝐶(𝑡0, 𝑆) − 𝐸𝑄

0

[
𝐺
(
𝑓1∶𝐽

)]
.

Then, for any given family of exercise boundaries 𝐹 , it holds that

max
𝑓1∶𝐽∈𝐹

𝑃
(
𝑡0, 𝑆, 𝑓1∶𝐽

)
= 𝐶(𝑡0, 𝑆) − min

𝑓1∶𝐽∈𝐹
𝐸𝑄
0

[
𝐺
(
𝑓1∶𝐽

)]
.

Hence, we minimize 𝐸𝑄
0 [𝐺(𝑓1∶𝐽 )] subject to 𝑓1∶𝐽 ∈ 𝐹 .

Optimizing among exercise boundaries is Merton’s (1973) approach for pricing perpetual American
options (where this price is given in closed-form solution). For a given risk-neutral measure 𝑄, the
result does not depend on the objective probability measure. The richer 𝐹 is, the lower the cost. That
is, consider two families 𝐹𝑎 and 𝐹𝑏, where 𝐹𝑎 ⊆ 𝐹𝑏,

min
𝑓1∶𝐽∈𝐹𝑎

𝐸𝑄
0

[
𝐺
(
𝑓1∶𝐽

)] ≥ min
𝑓1∶𝐽∈𝐹𝑏

𝐸𝑄
0

[
𝐺
(
𝑓1∶𝐽

)] ≥ 0.

And 𝐹 can be chosen according to the dimensionality of the problem in practice.
For tractability, this minimization can be solved in a recursive way, where 𝑓1∶𝐽 = (𝑓1, 𝑓2∶𝐽 ).

First solve the exercise boundaries in 𝑓2∶𝐽 = {𝑓2, 𝑓3,… , 𝑓𝐽}, upon which the price function
𝑃 (𝑡1, (𝑆1, 𝑆2), 𝑓2∶𝐽 ) depends; then solve 𝑓1(𝑆1) at 𝑡1. This way we do not include the variable 𝑓2∶𝐽 in
the function 𝐺 below. We discuss this recursive approach and consider stochastic interest rates at the
end of this section.

Our exposition depends only on two consecutive exercise periods, which we fix at 𝑡0 and 𝑡1.
Accordingly, we eliminate the dependence on time 𝑡1 below. That is, 𝑓 (𝑆1), 𝑓 (𝑆1), 𝐶(𝑆1, 𝑆2) , and
𝑃 ((𝑆1, 𝑆2), 𝑓2∶𝐽 ) denote 𝑓1(𝑆1), 𝑓1(𝑆1), 𝐶(𝑡1, 𝑆1, 𝑆2), and 𝑃 (𝑡1, (𝑆1, 𝑆2), 𝑓2∶𝐽 ), respectively. This
notation shortens all the expressions.

3.1 The first-order conditions: Small (and highly probable) value-matching
errors are orthogonal to the regressors
Let us denote by 𝑓 = 𝑓 (𝑆1, 𝑏) a parameterized exercise boundary (at 𝑡1), where 𝑏 is a vector of param-
eters. For example, 𝑓 (𝑆1, 𝑏) can be an 𝑛-order polynomial in 𝑆1, and 𝑏 ∈ 𝑛+1 are the polynomial
coefficients.7 Assume the exercise boundary 𝑓 ∗

2∶𝐽 is taken as given.
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Then consider

min
𝑏

𝐸𝑄
0

[
𝐺(𝑓 (𝑆1, 𝑏))

]
, (3.1)

with FOCs given by the product of two terms,

𝐸𝑄
0

[
𝐺𝑏

(
𝑓 (𝑆1, 𝑏

∗)
)]

= 𝐸𝑄
0

⎡⎢⎢⎢⎣
𝑑𝐺

(
𝑓 ∗
)

d𝑓
×

𝜕𝑓 (𝑆1, 𝑏
∗)

𝜕𝑏

⎤⎥⎥⎥⎦ = 0, (3.2)

where we assume 𝑓 ∗ = 𝑓 (𝑆1, 𝑏
∗) is the optimal solution of equation (3.1).

Equation (3.2) is given by

𝐸𝑄
0

[(
𝐶
(
𝑆1, 𝑓

∗(𝑆1)
)
−
(
𝑓 ∗(𝑆1) − 𝑆1 −𝐾

))
×

𝜕𝑓 (𝑆1, 𝑏
∗)

𝜕𝑏
×𝑄

(
𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0)

)]
= Σ,

(3.3)

where the expectation depends only on 𝑄(𝑆1(𝑡1)|𝑆(𝑡0)), and

Σ = 𝐸𝑄

0

[(
𝐶
(
𝑆1, 𝑓

∗(𝑆1)
)
− 𝑃

((
𝑆1, 𝑓

∗(𝑆1)
)
, 𝑓 ∗

2∶𝐽

))
×

𝜕𝑓 (𝑆1, 𝑏
∗)

𝜕𝑏
×𝑄

(
𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0)

)]
.

The vector Σ is the (recursive) error in the FOCs, given by the difference between the true and
estimated continuation values at 𝑡1, 𝐶 , and 𝑃 , respectively, where 𝐶 ≥ 𝑃 implies Σ ≥ 0. The value of
Σ depends on the error in the policy 𝑓 ∗

2∶𝐽 (if 𝑓 ∗
2∶𝐽 = 𝑓 ∗

2∶𝐽 , 𝐶 = 𝑃 , and Σ = 0), which is taken as given,

but not on the error in 𝑓 ∗(𝑆1), which we want to determine.
From equation (3.3), the optimal (though not the “first best” if 𝑓 ∗ ≠ 𝑓 ) exercise boundary is obtained

when the value-matching errors, localized in the most significant part of the exercise boundary, are
orthogonal to the regressors (up to an error Σ). That is, the value-matching errors are weighted by
𝑄(𝑆2(𝑡1) = 𝑓 ∗(𝑆1(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)), which has two implications. First, these errors are precisely zero
at the optimal boundary, 𝑆2(𝑡1) = 𝑓 (𝑆1(𝑡1)). Second, because 𝑄 depends on 𝑆(𝑡0), not all states of
the exercise boundary (𝑆1(𝑡1), 𝑆2 = 𝑓 ∗(𝑆1(𝑡1))) are equally likely conditional on 𝑆(𝑡0). Hence, at time
𝑡1, equation (3.3) ensures that small and highly probable value-matching errors are orthogonal to the
regressors.8

Proposition 3.1. Consider the minimization of the cost of suboptimal exercise in equation (3.1). The
FOCs are given by equation (3.3). In addition, if 𝑓 (𝑆1, 𝑏) is linear in 𝑏, we have a “beta” type (implicitly
defined) solution. Let us denote by 𝑝(𝑆1) =

𝜕𝑓 (𝑆1,𝑏
∗)

𝜕𝑏
the vector of regressors associated with 𝑏, and

𝑞(𝑆1) = 𝑄(𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0)). Then,

𝑏∗ = 𝐸𝑄
0
[
𝑝(𝑆1) × 𝑝(𝑆1)′ × 𝑞(𝑆1)

]−1 × 𝐸𝑄
0

[(
𝐶(𝑆1, 𝑓

∗(𝑆1)) + 𝑆1 +𝐾
)

× 𝑝(𝑆1) × 𝑞(𝑆1) − Σ
]
. (3.4)

Proof. It follows from equation (3.3) and because 𝑓 (𝑆1, 𝑏) is linear in 𝑏. □

Remark 3.2. 𝑏∗ appears in both sides of equation (3.4) (as 𝑓 ∗(𝑆1) = 𝑓 (𝑆1, 𝑏
∗)), and hence this equa-

tion is solved iteratively. Propositions 2.1 and 3.1 (the cost of suboptimal exercise and the associated
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FOCs, respectively) are quite general; they depend only on knowing the number of exercise bound-
aries, which is one for the spread option. This assumption is easy to check and simplifies the exposi-
tion, but is not necessary, as shown in Section 5 (for a max-call option). We do not need to assume
the exercise boundary 𝑓 ∗(𝑆1) is explicitly defined. We can use a continuation value function, and
then 𝑓 ∗(𝑆1) is implicitly defined from the value-matching condition. This result is explained below
in Section 3.3 (in this case, some extrapolation errors can happen, but they are easily controlled
for).

Because the regression function 𝑓 (𝑆1, 𝑏
∗) solves the orthogonality conditions only for 𝑆2 = 𝑓 ∗(𝑆1),

in the space 𝑆1 × 𝑆2, we call this method a local least-squares method in Section 4. For other
payoffs, {𝑆2 − 𝑆1 −𝐾}+ is replaced by the corresponding intrinsic value, 𝐼(𝑆1, 𝑆2), distinguish-
ing between put and call payoffs, which have complementary exercise regions. We summarize these
results.

Corollary 3.3. Consider a parametric family of exercise boundaries, 𝐹 . For example, 𝐹 can depend
on a linear basis (e.g., polynomials) or a nonlinear basis (neural networks). Assume (i) the exer-
cise boundary 𝑓 ∗

2∶𝐽 is taken as given and (ii) the FOCs are sufficient for optimality. Then the policy
𝑓 ∗(𝑆1) = 𝑓 (𝑆1, 𝑏

∗), which solves equation (3.3), is the optimal exercise policy (for the family 𝐹 ).

Proof. 𝑓 (𝑆1, 𝑏
∗) minimizes the cost of suboptimal exercise, and equivalently (from equation (2.3))

maximizes the Bermudan price. □

Corollary 3.3 points to a recursive algorithm, as the boundary 𝑓 ∗
2∶𝐽 is taken as given. An algorithm

that is based on equation (3.3) will be optimal in the sense that it maximizes Bermudan prices for a
given family 𝐹 . Yet the exercise boundary 𝑓 ∗

1∶𝐽 yields a price that is a lower bound of the true price,
when a second independent simulation evaluates this policy (as we do in our numerical exercise). In
Section 4, we show that an algorithm based on the sample equivalent of equation (3.3) converges (i.e.,
yields the true price in the limit) under appropriate conditions.

3.2 The exercise boundary errors (adjusted by convexity) are orthogonal
to the regressors
Let us provide more intuition on the FOCs, which say that “small” or “local” value-matching errors
are orthogonal to the regressors. Assuming the continuation value 𝐶 is smooth, a second-order Taylor
approximation (at 𝑆2 = 𝑓 (𝑆1)) implies, with error O(Δ𝑓 (𝑆1)3),

𝐶
(
𝑆1, 𝑓 (𝑆1)

)
≈ 𝐶(𝑆1, 𝑓 (𝑆1)) + 𝐶2Δ𝑓 (𝑆1) +

1
2
𝐶22Δ𝑓 (𝑆1)2,

where 𝐶2 and 𝐶22 denote the partial derivatives with regard to 𝑆2.9

Therefore, from 𝐶(𝑆1, 𝑓 (𝑆1)) = 𝑓 (𝑆1) − 𝑆1 −𝐾 and 𝑓 (𝑆1) = 𝑓 (𝑆1) + Δ𝑓 (𝑆1),

𝐶(𝑆1, 𝑓 (𝑆1)) − (𝑓 (𝑆1) − 𝑆1 −𝐾) ≈ −(1 − 𝐶2)Δ𝑓 (𝑆1) +
1
2
𝐶22Δ𝑓 (𝑆1)2.

Equation (3.3) simplifies to

𝐸𝑄
0

[(
(1 − 𝐶2)Δ𝑓 ∗(𝑆1) −

1
2
𝐶22Δ𝑓 ∗(𝑆1)2

)
×

𝜕𝑓 (𝑆1, 𝑏
∗)

𝜕𝑏
×𝑄(𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0))

]
≈ Σ,
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and, equivalently (if 𝐶2 < 1),10

𝐸𝑄
0

[(
Δ𝑓 ∗(𝑆1) −

1
2

𝐶22
1 − 𝐶2

Δ𝑓 ∗(𝑆1)2
)(

1 − 𝐶2
)
×

𝜕𝑓 (𝑆1, 𝑏
∗)

𝜕𝑏

×𝑄(𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0))

]
≈ Σ. (3.5)

Redefine the regressors as (1 − 𝐶2) ×
𝜕𝑓 (𝑆1,𝑏

∗)
𝜕𝑏

. A second result follows. The errors of the optimal

exercise boundary, Δ𝑓 ∗, are orthogonal to the regressors (adjusted by convexity, 𝐶22 > 0). In brief,
the FOCs estimate the most significant part of the optimal exercise boundary (adjusted by convexity),
which, intuitively, should provide the best solution/stopping time.

For a constant regressor (i.e., 𝜕𝑓 (𝑆1,𝑏
∗)

𝜕𝑏1∶1
= 1), we further have

𝐸𝑄
0

[(
Δ𝑓 ∗(𝑆1) −

1
2

𝐶22
1 − 𝐶2

Δ𝑓 ∗(𝑆1)2
)
×
(
1 − 𝐶2

)
×𝑄(𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0))

]
≈ Σ1∶1.

The minus convexity adjustment implies that the optimal boundary 𝑓 ∗ will be upper biased (because
Σ1∶1 ≥ 0); that is, the average of Δ𝑓 ∗(𝑆1) is nonnegative. The strategy associated with 𝑓 ∗ is slightly
biased toward delaying exercise (compared to the first-best 𝑓 ), which, from convexity, is less costly
than advancing exercise.

3.3 Two models for the exercise boundary
We can explicitly or implicitly parameterize the exercise boundary, 𝑓 (𝑆1, 𝑏). That is, in the value-
matching error (i.e., 𝐶 − 𝐼), the intrinsic value 𝐼 depends on the exercise boundary, and 𝐶 is approxi-
mated by an estimator.

To explicitly use the exercise boundary
Consider, for example, a second-order polynomial function in 𝑆1,

𝑓 (𝑆1, 𝑏) =
2∑

𝑗=0
𝑏𝑗𝑆

𝑗

1 , (3.6)

where 𝑏 = (𝑏0, 𝑏1, 𝑏2)′, implying

𝜕𝑓 (𝑆1, 𝑏)
𝜕𝑏

=

(
𝜕𝑓 (𝑆1, 𝑏)

𝜕𝑏0
,
𝜕𝑓 (𝑆1, 𝑏)

𝜕𝑏1
,
𝜕𝑓 (𝑆1, 𝑏)

𝜕𝑏2

)′

=
(
1, 𝑆1, 𝑆

2
1
)′

,

and we substitute these regressors in equation (3.3).

To use a continuation value function
Similar to the LSM method, we can use a new continuation value function 𝐶(𝑆1, 𝑆2, 𝑏), which is used
to make exercise decisions. Note that 𝐶(𝑆1, 𝑆2, 𝑏) and the above 𝑃 ((𝑆1, 𝑆2), 𝑓2∶𝐽 ) are two different



10 IBÁÑEZ AND VELASCO

functions (e.g., 𝐶(𝑏) > 𝐶 implies suboptimally delaying exercise at 𝑡1). Then the exercise boundary is
implicitly defined from the value-matching condition,

𝐶(𝑆1, 𝑓 (𝑆1, 𝑏), 𝑏) = 𝑓 (𝑆1, 𝑏) − 𝑆1 −𝐾. (3.7)

The regressors (i.e., the term “𝜕𝑓∕𝜕𝑏” ) are defined from the implicit function theorem; that is,

𝜕𝐶

𝜕𝑓
× 𝜕𝑓

𝜕𝑏
+ 𝜕𝐶

𝜕𝑏
= 𝜕𝑓

𝜕𝑏
⇐⇒

𝜕𝑓

𝜕𝑏
=

(
1 − 𝜕𝐶

𝜕𝑓

)−1

× 𝜕𝐶

𝜕𝑏
.

The FOCs change as follows,11 where 𝐶2 =
𝜕𝐶

𝜕𝑓
:

𝐸𝑄
0

[
𝐶(𝑆1, 𝑓

∗(𝑆1)) − 𝐶(𝑆1, 𝑓
∗(𝑆1), 𝑏∗)

𝐶2(𝑆1, 𝑓
∗(𝑆1), 𝑏∗) − 1

×
𝜕𝐶(𝑆1, 𝑓

∗(𝑆1), 𝑏∗)
𝜕𝑏

×𝑄(𝐶(𝑆1, 𝑆2, 𝑏
∗) = 𝑆2 − 𝑆1 −𝐾|𝑆1, 𝑆(𝑡0))

]
= 0. (3.8)

Note that 𝑓 ∗(𝑆1) = 𝑓 (𝑆1, 𝑏
∗) is never explicitly computed in this case, but is implicitly defined from

equation (3.7).
For example, assume 𝐶(𝑆1, 𝑆2, 𝑏) is also a second-order polynomial in 𝑆; that is,

𝐶(𝑆1, 𝑆2, 𝑏) = 𝑏00 +
2∑

𝑗=1
𝑏0𝑗𝑆𝑗 +

2∑
𝑗=1

2∑
𝑛=𝑗

𝑏𝑗𝑛𝑆𝑗𝑆𝑛, (3.9)

where 𝑏 = {𝑏00, 𝑏01, 𝑏02, 𝑏11, 𝑏12, 𝑏22}′. The partial derivatives are given by

𝐶2 = 𝜕𝐶

𝜕𝑓
= 𝑏02 + 𝑏12𝑆1 + 2𝑏02𝑆2 and

𝜕𝐶

𝜕𝑏
=
(

𝜕𝐶

𝜕𝑏00
,
𝜕𝐶

𝜕𝑏01
,
𝜕𝐶

𝜕𝑏02
,
𝜕𝐶

𝜕𝑏11
,
𝜕𝐶

𝜕𝑏12
,
𝜕𝐶

𝜕𝑏22

)′
=
(
1, 𝑆1, 𝑆2, 𝑆

2
1 , 𝑆1𝑆2, 𝑆

2
2
)′

.

We make two remarks. (i) Equation (3.5) simplifies to

𝐸𝑄
0

[(
Δ𝑓 ∗(𝑆1) −

1
2

𝐶22
1 − 𝐶2

Δ𝑓 ∗(𝑆1)2
)

𝜕𝐶(𝑆1, 𝑓
∗(𝑆1), 𝑏∗)

𝜕𝑏
𝑄(𝑆1, 𝐶(𝑆1, 𝑆2, 𝑏

∗)

= 𝐼(𝑆)|𝑆1, 𝑆(𝑡0))
]
≈ Σ,

where 𝐼(𝑆) = 𝑆2 − 𝑆1 −𝐾 , and provides the same intuition. (ii) From equation (3.7), if 𝐶(𝑆1, 𝑆2, 𝑏)
is quadratic in 𝑆, the pair “𝑆1 and 𝑆2 = 𝑓 (𝑆1, 𝑏)” is a hyperbole. Equations (3.7) and (3.9) contain the
quadratic equation (3.6), and they should provide a better fit and, hence, a lower cost.

A continuation value function that implies the same exercise boundary
For a given exercise boundary, 𝑓 (𝑆1), a continuation value function that implies the same exercise
policy always exists. That is, for any given 0 < 𝛿 < 1, if we define

𝐶(𝑆1, 𝑆2, 𝑏) = (𝑆2 − 𝑆1 −𝐾) − 𝛿
(
𝑆2 − 𝑓 (𝑆1, 𝑏)

)
,
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then

if 𝑆2 = 𝑓 (𝑆1, 𝑏), 𝐶(𝑆1, 𝑆2, 𝑏) = 𝑆2 − 𝑆1 −𝐾,

and if 𝑆2 ≶ 𝑓 (𝑆1, 𝑏), 𝐶(𝑆1, 𝑆2, 𝑏) ≷ 𝑆2 − 𝑆1 −𝐾.

Therefore, “𝑆2 = 𝑓 (𝑆1, 𝑏)” is also the implicit exercise boundary in 𝐶 . Now the partial derivatives are
given by

𝐶2 = 1 − 𝛿 and
𝜕𝐶

𝜕𝑏
=

𝜕𝑓 (𝑆1, 𝑏)
𝜕𝑏

𝛿,

which implies the FOCs in equations (3.3) and (3.8) are the same.

3.4 The dependent variable 𝑪

We denote by 𝐶 an estimator of the Bermudan price 𝐶 . As in any least-squares problem, it is convenient
that the dependent variable, 𝐶 = 𝐶(𝑡1, 𝑆1, 𝑆2), is an efficient and unbiased estimator (e.g., if feasible,
one can include control variate techniques to estimate 𝐶).

Discounting realized payoffs
Like the LSM method, we define the following, where 𝐷𝑗 is the discount factor between 𝑡0 and 𝑡𝑗 :

𝐶(𝑡1, 𝑆1, 𝑆2) =
𝐷𝑗

𝐷1
{𝑆2(𝜏𝑗) − 𝑆1(𝜏𝑗) −𝐾}+, where 𝑆(𝑡𝑖) ∼ 𝑄(𝑆(𝑡𝑖)|𝑆(𝑡𝑖−1)), (3.10)

and the stopping time 𝜏𝑗 ∈ {𝑡2, 𝑡3,… , 𝑡𝐽} is defined recursively as follows. If we estimate the exercise

boundary, 𝑓 ∗,

𝜏𝑗 = 𝑡𝑗 , if 𝑆2(𝑡𝑗) ≥ 𝑓 ∗(𝑡𝑗 , 𝑆1(𝑡𝑗)); and 𝜏𝑗 = 𝜏𝑗+1, otherwise. (3.11)

And if we estimate the continuation value, 𝐶∗, 𝜏𝑗 is reciprocally defined as

𝜏𝑗 = 𝑡𝑗 , if {𝑆2(𝑡𝑗) − 𝑆1(𝑡𝑗) −𝐾}+ ≥ 𝐶∗(𝑡𝑗 , 𝑆1(𝑡𝑗), 𝑆2(𝑡𝑗)); and 𝜏𝑗 = 𝜏𝑗+1, otherwise. (3.12)

Discounting a continuation value versus discounting realized payoffs
An alternative to the previous definition of 𝐶 , which uses the discounted realized payoff and the
stopping time 𝜏𝑗 ∈ {𝑡2, 𝑡3,… , 𝑡𝐽}, would be to discount an estimated continuation value at time 𝑡2,

𝐶(𝑡2, 𝑆(𝑡2), 𝑏). Then

𝐶(𝑡1, 𝑆1, 𝑆2) =
𝐷2
𝐷1

max
{
𝐶(𝑡2, 𝑆1(𝑡2), 𝑆2(𝑡2), 𝑏), {𝑆2(𝑡2) − 𝑆1(𝑡2) −𝐾}+

}
, (3.13)

where 𝑆(𝑡2) ∼ 𝑄(𝑆(𝑡2)|𝑆(𝑡1)).
The literature stresses that this recursion yields (upper) biased estimators. Note that in our local

approach, we focus on the boundary 𝑓 (𝑡2, 𝑆1, 𝑏
∗) or a localized continuation value 𝐶(𝑡2, 𝑆1, 𝑆2 ≈

𝑓 (𝑆1, 𝑏
∗), 𝑏∗). Therefore, the recursion based on (3.13) is less intuitive in our setting.
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3.5 A recursive approach and stochastic interest rates
We discuss the conditions under which the boundary 𝑓 (𝑡𝑗 , 𝑆1), 𝑡𝑗 ∈ {𝑡1, 𝑡2,… , 𝑡𝐽−1}, can be derived
in a recursive way. We also extend Proposition 3.1 to the case of stochastic interest rates, which is
important for pricing Bermudan swaptions and hybrid securities. We need to introduce more notation
and write out the corresponding FOCs.

Let 𝑟𝑡 be the instantaneous short interest rate, and let 𝐷𝑗 = 𝑒
− ∫ 𝑡𝑗

𝑡0
𝑟𝑢𝑑𝑢 denote the inverse of a bank

account associated with the 𝑄 risk-neutral measure (Duffie, 2001). Assume 𝑟 follows a one-factor
Markovian model. In this case, the exercise boundary depends on the short rate too, which is denoted by
𝑓𝑗 = 𝑓𝑗(𝑆1(𝑡𝑗), 𝑟𝑗). Now the term of the cost of suboptimal exercise that depends on 𝑓𝑗 = 𝑓𝑗(𝑆1(𝑡𝑗), 𝑟𝑗)
is given by the following (see Appendix B):

𝐸𝑄
0

[(
𝑗−1∏
𝑖=1

1{0≤𝑆2≤𝑓𝑖(𝑆1,𝑟)}

)
×𝐷𝑗−1

×𝐸𝑄
𝑗−1

⎡⎢⎢⎢⎣
𝑓𝑗

∫̃
𝑓𝑗

𝐷𝑗

𝐷𝑗−1
(𝐶(𝑡𝑗 , 𝑆, 𝑟𝑗) − (𝑆2 − 𝑆1 −𝐾)) ×𝑄(𝑆2(𝑡𝑗)|(𝑆1(𝑡𝑗), 𝑟𝑗), (𝑆(𝑡𝑗−1), 𝑟𝑗−1))𝑑𝑆2(𝑡𝑗)

+

𝑓𝑗

∫
0

𝐷𝑗

𝐷𝑗−1

(
𝐶(𝑡𝑗 , 𝑆, 𝑟𝑗) − 𝑃 (𝑡𝑗 , 𝑆, 𝑟, 𝑓𝑗+1∶𝐽 )

)
×𝑄(𝑆2(𝑡𝑗)|(𝑆1(𝑡𝑗), 𝑟𝑗), (𝑆(𝑡𝑗−1), 𝑟𝑗−1))𝑑𝑆2(𝑡𝑗)

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ .

For 𝑗 = 1, we obtain equation (2.1) in Section 2.1 (where 𝐷0 = 1, Π0
𝑖=1 = 1). The associated FOCs are

given by

𝐸𝑄
0

[
𝑗−1∏
𝑖=1

1{0≤𝑆2≤𝑓𝑖(𝑆1,𝑟)}
×𝐷𝑗

(
𝐶
(
𝑡𝑗 , 𝑆1, 𝑓

∗
𝑗 (𝑆1, 𝑟), 𝑟

)
−
(
𝑓 ∗
𝑗 (𝑆1, 𝑟) − 𝑆1 −𝐾

))

×
𝜕𝑓𝑗(𝑆1, 𝑟, 𝑏

∗)
𝜕𝑏

×𝑄
(
𝑆2 = 𝑓 ∗

𝑗 (𝑆1, 𝑟)| (𝑆1, 𝑟
)
,
(
𝑆(𝑡0), 𝑟(𝑡0)

))]
= Σ,

where this expectation and 𝑓 ∗
𝑗

depend on the previous boundaries 𝑓𝑖(𝑆1), 1 ≤ 𝑖 ≤ 𝑗 − 1.
This condition holds only for those paths such that the option is not exercised before 𝑡𝑗 (i.e.,

Π𝑗−1
𝑖=1 1{0≤𝑆2≤𝑓𝑖(𝑆1,𝑟)}

= 1). If we omit this term, the FOCs associated with 𝑓 ∗
𝑗

are equivalent to a Bermu-
dan option that can be exercised only from 𝑡𝑗 to 𝑡𝐽 . In practice, we consider this recursive approach
(similar to equation (3.3)) because it is intuitive and tractable:

𝐸𝑄
0

[
𝐷𝑗

(
𝐶
(
𝑡𝑗 , 𝑆1, 𝑓

∗
𝑗 (𝑆1, 𝑟), 𝑟

)
−
(
𝑓 ∗
𝑗 (𝑆1, 𝑟) − 𝑆1 −𝐾

))
×

𝜕𝑓𝑗(𝑆1, 𝑟, 𝑏
∗)

𝜕𝑏
×𝑄

(
𝑆2 = 𝑓 ∗

𝑗 (𝑆1, 𝑟)| (𝑆1, 𝑟
)
,
(
𝑆(𝑡0), 𝑟(𝑡0)

))]
= Σ.

The discount factor 𝐷𝑗 weights the value-matching errors. If 𝑟 is constant, the discount factor cancels.
In the case of fixed-income securities, using a different numeraire and pricing measure can be more
convenient. In the rest of the paper, we consider the initial FOCs in equation (3.3).
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3.6 The initial simulation of paths
The orthogonality conditions in equation (3.3) hold only for(

𝑆1(𝑡1), 𝑓 ∗(𝑆1(𝑡1))
)
∈ 𝑆1 × 𝑆2,

conditional on 𝑆(𝑡0), which defines the exercise boundary. For simplicity, assume 𝑆1 is constant; that
is, the spread option is a call option. Optimally, all samples of 𝑆2(𝑡1) are just 𝑓 (𝑆1), which is the
optimal exercise price and independent of 𝑆2(𝑡0). For example, because 𝑓 (𝑆1) is unknown, but 𝑓 (𝑆1) >
𝑆1 +𝐾 , for estimating 𝑓 we sample better from 𝑄(𝑆2(𝑡1)|𝑆1 +𝐾) than from 𝑄(𝑆2(𝑡1)|𝑆2(𝑡0)), where
the price 𝑆2(𝑡0) could be deep away-from-the-money. This condition is relevant and necessary for
American-style options, which are approximated by a Bermudan option, because little price dispersion
exists in the first exercise dates (and few paths go through the exercise boundary).12

Hence, in all numerical examples, we start (and recommend) simulating from an in-the-money point.
Once we have computed the exercise boundaries, we use a second simulation to price the Bermudan
option, now sampling from 𝑄(𝑆(𝑡1)|𝑆(𝑡0)).
4 THE LOCAL LSM ALGORITHM

The results derived in Section 3 are novel optimality properties of Bermudan options. In this section,
we implement these results by using least-squares and simulation, where the recursive updating of the
path’s realized payoffs is similar to the LSM method.

To solve equation (3.3) (or, equivalently, (3.4)), the exercise boundary 𝑓 ∗ is unknown and must be
determined at the same time. Therefore, we proceed iteratively. Our algorithm solves, in every iteration,
for the optimal 𝑓𝑖(𝑆1) = 𝑓 (𝑡1, 𝑆1, 𝑏𝑖) with the previous 𝑓𝑖−1(𝑆1) fixed, where 𝑖 is the iteration number.
The conditional density 𝑄(𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0)) is replaced by a kernel evaluating the distance 𝑆2 −
𝑓 ∗(𝑆1) with a bandwidth converging to zero with the number of paths, so the exercise boundary is
identified asymptotically (implicitly or explicitly). Below, the objective function is written as a least-
squares problem, because it yields the same FOCs. We call this method the local least-squares MC
(i.e., local LSM) method.

4.1 The explicit exercise boundary
Consider the local least-squares problem:

min
𝑓𝑖

𝐸𝑄
0

[(
𝐶
(
𝑆1, 𝑆2

)
+ 𝑆1 +𝐾 − 𝑓𝑖(𝑆1)

)2
× ker𝑄

(
𝑆2 ≈ 𝑓𝑖−1(𝑆1)|𝑆1, 𝑆(𝑡0)

)]
, (4.1)

where 𝐶 (see equations (3.10) and (3.11)) is an estimator of 𝐶 and ker𝑄 is a kernel that localizes
𝑆2 in the previous estimator of 𝑓𝑖−1. This problem implies a local least-squares regression, where
𝐶 + 𝑆1 +𝐾 is the dependent variable and 𝑓𝑖(𝑆1) is the regression function. In this iterative process,
the stop criterion for 𝑓 ∗ is given by 𝑓𝑖 − 𝑓𝑖−1 ≈ 0 (whereas in practice, we use a small fixed number
of iterations).

The FOCs are given by

𝐸𝑄
0

[(
𝐶(𝑆1, 𝑆2) − (𝑓𝑖(𝑆1) − 𝑆1 −𝐾)

)
×

𝜕𝑓𝑖(𝑆1)
𝜕𝑏

× ker𝑄(𝑆2 ≈ 𝑓𝑖−1(𝑆1)|𝑆1, 𝑆(𝑡0))

]
= 0, (4.2)
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where we take 𝑓𝑖−1 as fixed. An initial (zero) iteration of the period 𝑡𝐽−1 is a global regression,
ker𝑄 = 1, where we estimate a continuation value (which is used in the kernel of the next iteration,
or, alternatively, we take 𝑓0(𝑆1) = 𝑆1 +𝐾). The rest of the iterations are local regressions (to estimate
𝑓𝑖(𝑆1), 𝑖 ≥ 1). For any other time 𝑡𝑗 < 𝑡𝐽−1, the initial boundary is better taken from the solution of the
previous step 𝑡𝑗+1. Note how the expectation in equation (4.2) depends on 𝑆2, in contrast to equation
(3.3), because we use a smoothing kernel.

Given a sample of 𝑀 prices (𝑆(𝑚)
1 , 𝑆

(𝑚)
2 ) distributed according to 𝑄(𝑆1, 𝑆2|𝑆(𝑡0)), the sample equiv-

alent of equation (4.2) is given by

1
𝑀

𝑀∑
𝑚=1

(
𝐶
(
𝑆
(𝑚)
1 , 𝑆

(𝑚)
2

)
−
(
𝑓𝑖

(
𝑆
(𝑚)
1

)
− 𝑆

(𝑚)
1 −𝐾

))
×

𝜕𝑓𝑖(𝑆
(𝑚)
1 )

𝜕𝑏
×ℎ

(
𝑆
(𝑚)
2 − 𝑓𝑖−1

(
𝑆
(𝑚)
1

))
= 0,

where ℎ(𝑥) = (𝑥∕ℎ)∕ℎ focuses on paths for which 𝑥 ≈ 0 (that is, 𝑆2 ≈ 𝑓𝑖−1(𝑆1)).  is a kernel
function integrating to 1 and ℎ is a bandwidth that converges to zero with 𝑀 . We explain the kernel
and its bandwidth in Section 6.

• The local LSM algorithm Let 𝑛𝑖 ≥ 1 be a fixed number of iterations. Because it is a recursive
approach, we specify the final period 𝑡 = 𝑇 , and recursively solve the exercise boundary for 𝑇 − 1,
𝑇 − 2, until 𝑡 = 1. The intrinsic value is denoted by 𝐼𝑡 = {𝑆2,𝑡 − 𝑆1,𝑡 −𝐾}+, 𝑡 = {1, 2,… , 𝑇 }. And
𝑓𝑛
𝑡 is the exercise boundary at time 𝑡 and iteration 𝑛.

Consider a set of simulated paths, 𝜛 ∈ Ω.

0. Set 𝑡 = 𝑇 . Define 𝑦𝑇+1 = 0 and 𝑓 ∗
𝑇
= 𝑆1,𝑇 +𝐾 .

1. UPDATING PATHS, 𝜛 ∈ Ω

𝑦𝑡 =
{

𝐼𝑡, if 𝑆2,𝑡 ≥ 𝑓 ∗
𝑡

𝑒−𝑟Δ𝑡 × 𝑦𝑡+1, otherwise.

Set 𝑡 = 𝑡 − 1.

2. The new EXERCISE BOUNDARY

Set 𝑛 = 1 and 𝑓 0
𝑡 = 𝑓 ∗

𝑡+1.

2.1. LOCALIZING THE EXERCISE BOUNDARY

Provide a kernel ℎ. Then,

𝑓𝑛
𝑡 = arg min

𝑓𝑡∈𝐹

∑
𝜛∈Ω

(
𝑓𝑡(𝑥𝑡) − (𝑆1,𝑡 +𝐾) −

𝑦𝑡+1
𝑒𝑟Δ𝑡

)2
×ℎ

(
𝑓𝑛−1
𝑡 (𝑥𝑡) − 𝑆2,𝑡

)
.

Set 𝑛 = 𝑛 + 1. Go back to step 2.1 until 𝑛 = 𝑛𝑖.
Set 𝑓 ∗

𝑡 = 𝑓𝑛𝑖
𝑡 . Go back to step 1 until 𝑡 = 1.

End of the local LSM algorithm
Note that at 𝑡 = 1, we have already estimated all exercise boundaries; 𝑓 ∗

𝑇−1, 𝑓
∗
𝑇−2,… , 𝑓 ∗

1 .
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Remark 4.1.

(1) 𝑦𝑡+1
𝑒𝑟Δ𝑡 + (𝑆1,𝑡 +𝐾) is the dependent variable in the regression, where, in our case, the boundary
𝑓 (𝑥) ∈ 𝐹 is a simple polynomial and 𝑥 are the regressors. 𝑦𝑡 is the realized payoff between 𝑡 and
𝑇 (following the 𝑓 ∗

𝑡∶𝑇 stopping-time rule) for any path, 𝜛 ∈ Ω.
(2) With the function

𝑊𝑡 = ℎ

(
𝑓𝑛−1
𝑡 (𝑥𝑡) − 𝑆2,𝑡

)
,

the local least-squares estimator is easily computed by ordinary least squares, by redefining 𝑥𝑡

and 𝑦𝑡+1
𝑒𝑟Δ𝑡 + (𝑆1,𝑡 +𝐾) as 𝑥𝑡 ×

√
𝑊𝑡 and ( 𝑦𝑡+1

𝑒𝑟Δ𝑡 + (𝑆1,𝑡 +𝐾)) ×
√

𝑊𝑡, respectively.

(3) We use a Gaussian kernel, ℎ(𝑓𝑛−1
𝑡 (𝑥𝑡) − 𝑆2,𝑡), where ℎ is the bandwidth. Because we explicitly

estimate the exercise boundary, no equivalent LSM method exists.

4.2 The continuation value
If we use a continuation value (where 𝐶 is given by equations (3.10) and (3.12)), instead of equations
(4.1) and (4.2), we have, respectively,

min
𝐶𝑖

𝐸𝑄
0

⎡⎢⎢⎢⎣
(
𝐶(𝑆1, 𝑆2) − 𝐶𝑖(𝑆1, 𝑆2)

)2
𝜕𝐶𝑖−1∕𝜕𝑆∗

2 − 1
× ker𝑄

(
𝐼(𝑆1, 𝑆2) ≈ 𝐶𝑖−1(𝑆1, 𝑆2)|𝑆1, 𝑆(𝑡0)

)⎤⎥⎥⎥⎦ ,
where 𝐼(𝑆1, 𝑆2) = {𝑆2 − 𝑆1 −𝐾}+ is the intrinsic value, and

𝐸𝑄
0

[
𝐶(𝑆1, 𝑆2) − 𝐶𝑖(𝑆1, 𝑆2)

𝜕𝐶𝑖−1(𝑆1, 𝑆2, 𝑏𝑖−1)∕𝜕𝑆2 − 1
×

𝜕𝐶𝑖(𝑆1, 𝑆2, 𝑏𝑖)
𝜕𝑏

× ker𝑄(𝐼 ≈ 𝐶𝑖−1|𝑆1, 𝑆(𝑡0))

]
= 0. (4.3)

This equation implies is a generalized local regression, but in practice, the regression is not sensitive
to the term 𝜕𝐶𝑖−1∕𝜕𝑆2 in the denominator (e.g., if close to constant).

• The local LSM algorithm Let 𝑛𝑖 ≥ 1 be a fixed number of iterations. Because it is a recursive
approach, we specify the final period 𝑡 = 𝑇 and recursively solve the continuation value for 𝑇 − 1,
𝑇 − 2, until 𝑡 = 1. The intrinsic value is denoted by 𝐼𝑡 = {𝑆2,𝑡 − 𝑆1,𝑡 −𝐾}+, 𝑡 = {1, 2,… , 𝑇 }. And
𝑉 𝑛
𝑡 is the continuation value at time 𝑡 and iteration 𝑛.

Consider a set of simulated paths, 𝜛 ∈ Ω.

0. Set 𝑡 = 𝑇 . Define 𝑦𝑇+1 = 0 and 𝑉 ∗
𝑇
= 0.

1. UPDATING PATHS, 𝜛 ∈ Ω

𝑦𝑡 =
{

𝐼𝑡, if 𝐼𝑡 ≥ 𝑉 ∗
𝑡

𝑒−𝑟Δ𝑡 × 𝑦𝑡+1, otherwise.

Set 𝑡 = 𝑡 − 1.

2. The new CONTINUATION VALUE

Set 𝑛 = 1 and 𝑉 0
𝑡 = 𝑉 ∗

𝑡+1. If 𝑡 = 𝑇 − 1, set 𝑉 0
𝑇−1 = 𝑉 𝐿𝑆𝑀

𝑇−1 from the LSM method.
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2.1. LOCALIZING THE CONTINUATION VALUE

Provide a kernel ℎ. Then,

𝑉 𝑛
𝑡 = arg min

𝑣𝑡∈𝐹

∑
𝜛∈Ω

(
𝑣𝑡(𝑥𝑡) −

𝑦𝑡+1
𝑒𝑟Δ𝑡

)2
×ℎ

(
𝑉 𝑛−1
𝑡 (𝑥𝑡) − 𝐼𝑡

)
.

Set 𝑛 = 𝑛 + 1. Go back to step 2.1 until 𝑛 = 𝑛𝑖.
Set 𝑉 ∗

𝑡 = 𝑉 𝑛𝑖
𝑡 . Go back to step 1 until 𝑡 = 1.

End of the local LSM algorithm
Note that at 𝑡 = 1, we have already estimated all continuation values; 𝑉 ∗

𝑇−1, 𝑉
∗
𝑇−2,… , 𝑉 ∗

1 .

Remark 4.2.

(1) 𝑦𝑡+1
𝑒𝑟Δ𝑡 is the dependent variable in the regression, where the continuation value 𝑣(𝑥) ∈ 𝐹 is a simple
polynomial and 𝑥 are the regressors.

(2) With the function

𝑊𝑡 = ℎ

(
𝑉 𝑛−1
𝑡 (𝑥𝑡) − 𝐼𝑡

)
,

the local least squares estimator is easily computed by ordinary least squares by redefining 𝑥𝑡 and
𝑦𝑡+1 as 𝑥𝑡 ×

√
𝑊𝑡 and 𝑦𝑡+1 ×

√
𝑊𝑡, respectively.

(3) We also use a Gaussian kernel, ℎ(𝑉 𝑛−1
𝑡 (𝑥𝑡) − 𝐼𝑡), where ℎ is the bandwidth. In the standard LSM

method, 𝑛𝑖 = 1 and  = 1 (or, in practice,  = 1{𝑆2≥𝑆1+𝐾} for in-the-money paths).

4.3 Convergence
We now analyze the convergence properties of the local LSM algorithm in a general setup, which
includes the spread option, considering the case of the exercise boundary function estimation 𝑓 and
then the continuation value estimation 𝐶 (which only defines the boundary implicitly). In the former
case, we assume the intrinsic value is linear in one price and the boundary function is smooth in the
other prices, so we can explicitly solve for this frontier. For the latter case, we assume standard smooth-
ness conditions on the value function (see Appendix C for details). In this section, we concentrate on
the former case of the exercise boundary.

First, we provide new results on the rate of convergence of local series estimates of the exer-
cise boundary or continuation value function at the exercise boundary (i.e., Theorem 4.3) or iter-
ated versions of it (Corollary 4.4).13 This result extends Newey (1997) and previous global results
on the approximation of the continuation value function. Second, using these exercise bound-
aries, we give sufficient conditions for the convergence of the corresponding option price esti-
mates to the true price as the number of paths 𝑀 increases (i.e., Theorem 4.5) following Stentoft’s
(2004b) approach, which depends on an identification condition of the corresponding stopping
time.

Theorem 4.3 shows the first (𝑖 = 1) iteration (or regression) parameter estimates �̂�1 of the boundary
approximation are consistent at any period 𝑡𝑗 , 𝑗 = 1,… , 𝐽 (as well as the corresponding exercise-
boundary-series estimate). These estimates are based on an initial (𝑖 = 0) global-consistent estimate
�̂�(𝑆) of the continuation value at each period (provided by, e.g., the LSM method), with a conver-
gence rate 𝜉𝑀 depending on the number of paths 𝑀 . This rate has to be sufficiently fast relative to the
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increasing order of the polynomial 𝐻 used in the series approximation and to the shrinking bandwidth
ℎ localizing the boundary region.

Theorem 4.3. Under Assumptions C.1–C.4 in Appendix C, and assuming that for some estimate �̂�(𝑆)
independent of our sample and some sequence 𝜉𝑀 → 0 as 𝑀 → ∞, it holds that

∫
[
�̂�(𝑆) − 𝐶(𝑆)

]2
𝑄(𝑆)𝑑𝑆 = 𝑂𝑝(𝜉𝑀 ), 𝐻4ℎ−3𝜉𝑀 → 0. (4.4)

As 𝑀 → ∞, we have that

∫
[
𝑓
(
𝑆1, �̂�1

)
− 𝑓 (𝑆1)

]2
𝑄1(𝑆1)𝑑𝑆1 = 𝑂𝑝

(
𝐻(𝑀ℎ2)−1 + ℎ−1𝐻−2𝛼 + ℎ4𝐻2 +𝐻4ℎ−3𝜉𝑀

)
= 𝑜𝑝(1).

Proof. See Appendix C. □

The assumptions in Appendix C establish smoothness of the functions 𝐶 , 𝑓 , and 𝑄; the avail-
ability of 𝑀 independent paths; and restrictions on the asymptotic rates of ℎ and 𝐻 with respect
to 𝑀 . The conditions on the joint distribution of 𝑆 strengthen those in Stentoft (2004a) to guaran-
tee that conditioning on the boundary function is well defined and this function is smooth enough.
Theorem 4.3 proves the convergence of �̂�1 and 𝑓 (𝑆1, �̂�1) under the additional restrictions (4.4) on a
preliminary global estimate �̂�(𝑆) of the continuation value 𝐶(𝑆) (which can be obtained from the
standard LSM algorithm). Both choices of 𝐻 and ℎ show a bias and variability trade-off, because a
larger 𝐻 implies a better sieve approximation to 𝑓 at the cost of estimating more parameters, whereas
a smaller ℎ imposes a stronger local conditioning to implicitly identify 𝑓 at the cost of reducing the
effective number of paths used in the regression.

Iterating the previous local estimate of 𝑓 is also possible, though 𝑓 (𝑆1, �̂�1) might converge more
slowly than an initial series estimates of 𝐶 calculated without further smoothing as in LSM. Never-
theless, as described in the next corollary, proving the convergence holds for the second local iteration
(𝑖 = 2) is possible if the initial estimates converge fast enough and the target functions are smooth.

Corollary 4.4. Under the conditions of Theorem 4.3 and

𝐻4ℎ−3 {𝐻(𝑀ℎ2)−1 + ℎ−1𝐻−2𝛼 + ℎ4𝐻2 +𝐻4ℎ−3𝜉𝑀
}
→ 0

as 𝑀 → ∞ for some 𝛼 > 1, we have that ∫ [𝑓 (𝑆1, �̂�2) − 𝑓 (𝑆1)]2𝑄1(𝑆1)𝑑𝑆1 = 𝑜𝑝(1).

Proof. See Appendix C. □

Now, using Theorem 4.3 and the methods of proposition 1 in Stentoft (2004b), it is immediate to
show that the option price estimate given by the local LSM using these exercise boundary approxima-
tions converges to the true price under Assumption C.1(ii) in Appendix C.

Theorem 4.5. Under the conditions of Theorem 4.3, �̂�(𝑡0, 𝑆) is a consistent estimate of 𝐶(𝑡0, 𝑆).

Proof. Immediate from Theorem 4.3 and proposition 1 of Stentoft (2004b). □

4.4 The continuation value versus the explicit exercise boundary
Using the continuation value offers two advantages. Consider the option on the maximum of 𝑁 secu-
rities. First, the max-option depends on 𝑁 exercise boundaries, but the continuation value is a single
function. Second, this method easily converges (in practice), because an initial value is not necessary
and the LSM provides consistent estimates of the continuation value. On the other hand, the exercise
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boundary depends on one dimension less than the continuation value (e.g., for a Black–Scholes call/put,
the boundary is a single point) and extrapolation is never done, which avoids extrapolation errors. For
more complex payoffs, such as the max-option, the 𝑁 exercise boundaries are obtained by regression
too. Therefore, to explicitly estimate the boundary, we need to know more properties of the particular
Bermudan option, but then it is a standard local least-squares problem.

In a horse race, the best approach is the one that yields a larger Bermudan price for a similar com-
putational cost. This race can be translated to a richer family of exercise boundaries. The two methods,
however, produce two different families of boundary functions that are not directly comparable. For the
spread option, a quadratic continuation value function implies a hyperbolic exercise boundary, which is
richer than a quadratic boundary, but the continuation value uses six parameters and the explicit bound-
ary just three. In practice, we prefer the continuation value because it converges in only a few iterations
(yet one can combine both methods, because a new iteration is independent of the previous one).14

4.5 Complexity analysis
We briefly outline the computational cost of our algorithm. One advantage of the local LSM algo-
rithm is that it is directly comparable to the LSM method, which has been exhaustively analyzed (e.g.,
Belomestny et al., 2015). The basic difference is that the local LSM method uses a kernel regression
(localized in the exercise boundary). The cost of a local regression is similar to a standard regression;
it requires computation of an extra weight for every path and exercise period (besides a small fixed cost
of tuning the kernel). To localize the exercise boundary, we follow an iterative procedure. The num-
ber of iterations (per exercise opportunity) equals the number of regressions. By using the solution
of the previous period 𝑡 as the initial step at 𝑡 − 1, a couple of iterations already yield the best prices.
Additional iterations provide marginal gains, which can go either way because of the random error.

For 𝑁 state variables, 𝐽 exercise opportunities, 𝑀 paths, and 𝑛𝑖 iterations, the LSM method requires
O(𝑁𝐽𝑀) sample points and 𝐽 regressions. The local LSM also requires O(𝑁𝐽𝑀) sample points,
O(𝐽𝑀 × 𝑛𝑖) kernel evaluations, and 𝑛𝑖 × 𝐽 regressions. In practice, 𝑛𝑖 = 1 to 3 local regressions are
sufficient.

Further, because the local LSM focus on the exercise boundary, the local exercise rules (i.e., stopping
times) do not depend on the option moneyness, which saves computational time in the case of portfolios
of derivatives. Most LSM implementations start to simulate paths from the initial value of the state
variables, which depends on moneyness. In brief, the local LSM is not more complex than the standard
LSM method in practice, and is based on the FOCs.

5 MULTIPLE STATE VARIABLES AND GENERAL PAYOFFS

The results derived for a two-factor spread option extend to a general setting, such as a multifactor
model with separate exercise regions, that is, multiple exercise boundaries. We show this extension with
a rather difficult payoff, the option on the maximum of 𝑁 securities. Although modeling and estimating
the continuation value looks easier than modeling and estimating multiple exercise boundaries, the
latter case is straightforward too.

5.1 The continuation value
Consider 𝑁 securities, 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑁}. Denote 𝑆1 = {𝑠1, 𝑠2,… , 𝑠𝑁−1}, 𝑆2 = 𝑠𝑁 , 𝑘(𝑆1) ≥ 0 as
the number of optimal exercise boundaries, and 𝑓𝑘(𝑆1) and 𝑓𝑘(𝑆1) for 𝑘 = {1, 2,… , 𝑘(𝑆1)} as the
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implicit exercise boundaries. The intrinsic value is 𝐼(𝑆) = {max{𝑆} −𝐾}+. Then the cost of subop-
timal exercise (see the first term of equation (2.1)) is now given by

min
𝑏

∞

∫
0

…
∞

∫
0

𝑘(𝑆1)∑
𝑘=1

⎛⎜⎜⎜⎝
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∫
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(𝐶(𝑆1, 𝑆2) − 𝐼(𝑆1, 𝑆2)) ×𝑄(𝑆2|𝑆1, 𝑆(𝑡0)) × 𝑑𝑆2

⎞⎟⎟⎟⎠ ×𝑄(𝑆1|𝑆(𝑡0)) × 𝑑𝑆1,

where, for the 𝑁 − 1 most exterior integrals, 𝑑𝑆1 = 𝑑𝑠1 × 𝑑𝑠2 ×… × 𝑑𝑠𝑁−1. The FOC are given by

𝐸𝑄
0
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) ×
𝜕𝐶

(
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∗
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)
𝜕𝑏

×𝑄(𝑆2 = 𝑓 ∗
𝑘
(𝑆1)|𝑆1, 𝑆(𝑡0))

]
= 0,

which are implemented as equation (4.3) above. The multiple integral is rewritten as an expectation,
and to save notation, we write 𝑆2 = 𝑓 ∗

𝑘
(𝑆1) if 𝐼(𝑆1, 𝑓

∗
𝑘
(𝑆1)) = 𝐶(𝑆1, 𝑓

∗
𝑘
(𝑆1), 𝑏∗). Let us stress that

specifying or even knowing the number of exercises boundaries 𝑘(𝑆1) is not necessary, because the
local regression of continuation values directly weights the value-matching errors.15

5.2 The explicit exercise boundary
If we directly model the exercise boundary, it is convenient to rewrite the exercise boundaries as a func-
tion of the whole vector of prices 𝑆 (instead of 𝑆1 = {𝑠1, 𝑠2,… , 𝑠𝑁−1}). Define the integer “𝑛𝑜(𝑆) = 𝑛”
if 𝑠𝑛 = max{𝑠1, 𝑠2,… , 𝑠𝑁}. We write 𝑛𝑜 = 𝑛𝑜(𝑆), and 𝑆∕𝑛 ∈ 𝑁−1 denotes the vector 𝑆 without 𝑠𝑛.
We assume the option is exercised at the largest price, 𝑠𝑛𝑜 . Now 𝑁 exercise boundaries exist, one for
every security, which are denoted by 𝐹𝑛(𝑆∕𝑛, 𝑏𝑛) and 𝐹𝑛(𝑆∕𝑛, 𝑏𝑛), 𝑛 = 1, 2,… , 𝑁 (cap letters are used
to avoid confusion with 𝑓 ). Then the cost is given by

min
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where the expression within the parentheses is given by
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Implementing these FOCs is easy. We have to estimate 𝑁 different local least-squares regressions.
Consider 𝑀 simulation points, 𝑆(𝑚), 𝑚 = {1, 2,… ,𝑀}. Separate these 𝑀 points into 𝑁 subsets,
where 𝑆

(𝑚)
∕𝑛𝑜 denotes a point (𝑆(𝑚) without the 𝑠

(𝑚)
𝑛𝑜

component) of the subset 𝑛𝑜 = {1, 2,… , 𝑁}. That
is, for 𝑛 = 1, 2,… , 𝑁 ,
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where 𝐼(𝑆∕𝑛, 𝐹
∗
𝑛 (𝑆∕𝑛)) = {𝐹 ∗

𝑛 (𝑆∕𝑛) −𝐾}+.

6 NUMERICAL EXERCISE: MAX-OPTIONS ON FIVE
STOCKS

We study a call option on the maximum of five securities in a lognormal setting. We distinguish
between symmetric (same dividends, correlations, and volatilities) and asymmetric securities. If the
five securities are symmetric, better explanatory variables are given by the ordered prices. From the
prices 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑁}, we obtain a new vector 𝑋 = {𝑠(1), 𝑠(2),… , 𝑠(𝑁)}, where 𝑠(𝑛) ≥ 𝑠(𝑛−1) and
𝑠(𝑛), 𝑠(𝑛−1) ∈ 𝑆. We consider three examples: symmetric securities with regressors 𝑋 or 𝑆, and asym-
metric securities with regressors {𝑆, 𝑠(𝑁)}. The maximum price, 𝑠(𝑁), turns out to be a good regressor.
In the three cases, we consider a second-order polynomial as the regression function and a Gaussian
kernel.

To avoid any upper bias, we use a second (or out-of-sample) independent simulation to compute
Bermudan prices in all tables. In the first (in-sample) estimation of the boundaries, we use a large
number of paths (4 million, including antithetic variables). In Table 6.4, we show how these results
depend on a lower number of in-sample paths. In Tables 6.1 to 6.4, the kernel is defined such that 𝑝 indi-
cates the proportion of in-the-money paths effectively used in the local LSM estimation. In Table 7.1A,
we show the results of a simpler kernel choice.

Symmetric securities and ordered prices, 𝑿
The literature has reported similar prices in most LSM implementations, and these prices, or
lower-bound estimators, are close to the upper bound estimators (e.g., Andersen & Broadie, 2004;
Haugh & Kogan, 2004). Consider the at-the-money option, the five stock prices, and strike price
as equal to 100. Broadie and Cao (2008) report a tight confidence interval, lower- and upper-
bounds, [26.125, 26.152] for a Bermudan option with 3 years to maturity and nine exercise
dates.

In Table 6.1, for the LSM, we get a price of 26.092 (0.0036). For the local LSM, we get a price
very close to 26.15 (0.0036) from the first iteration and for all 𝑝, which is just 1 bps below our upper-
bound estimator. If we explicitly estimate the boundary, we obtain a close price of 26.14. Because
the symmetry implies the five boundaries are the same, estimating the five boundaries subject to this
constraint, as is done in our implementation, is more efficient.
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T A B L E 6 . 1 Local LSM prices for 5-asset symmetric Bermudan max-call options: Ordered basis

S𝟎 𝒑 �̂�𝟎 (𝒔.𝒆.) �̂�𝟏 �̂�𝟐 �̂�𝟑 �̂�𝟓 �̂�𝑩,𝟏𝟎 �̂�𝟓 �̂�𝟎 (𝒔.𝒆.)
80 0.01 8.991 9.009 9.012 9.012 9.012 9.012 9.018 9.025

BC[9.014] 0.03 (.0016) 9.011 9.013 9.013 9.013 9.013 9.019 (.0117)

BC[9.008] 0.05 9.012 9.013 9.013 9.014 9.013 9.018

0.10 9.012 9.013 9.013 9.014 9.012 9.018

90 0.01 16.599 16.621 16.637 16.637 16.638 16.635 16.642 16.659

BC[16.644] 0.03 (0026) 16.636 16.637 16.637 16.639 16.634 16.642 (.0116)

BC[16.627] 0.05 16.637 16.637 16.637 16.638 16.632 16.645

IZ3[16.6307] 0.10 16.636 16.635 16.636 16.637 16.627 16.649

100 0.01 26.092 26.146 26.150 26.152 26.152 26.146 26.159 26.180

BC[26.152] 0.03 (.0036) 26.149 26.150 26.151 26.153 26.144 26.164 (.0099)

BC[26.125] 0.05 26.149 26.149 26.150 26.152 26.140 26.164

IZ3[26.1470] 0.10 26.147 26.146 26.148 26.148 26.131 26.168

110 0.01 36.704 36.773 36.776 36.777 36.778 36.764 36.782 36.804

BC[36.781] 0.03 (.0046) 36.776 36.776 36.778 36.777 36.762 36.791 (.0095)

BC[36.722] 0.05 36.775 36.774 36.776 36.776 36.757 36.791

IZ3[36.7669] 0.10 36.774 36.771 36.773 36.773 36.746 36.793

120 0.01 47.860 47.931 47.939 47.939 47.940 47.933 47.950 47.974

BC[47.988] 0.03 (.0056) 47.935 47.939 47.941 47.942 47.916 47.956 (.0090)

BC[47.862] 0.05 47.937 47.939 47.940 47.940 47.924 47.962

0.10 47.936 47.936 47.938 47.937 47.910 47.962

Notes: The local LSM price, �̂�𝑖, with 𝑖 iterations using the continuation value (𝑖 = 0 is LSM). �̂�𝐵 is based on fitting the exercise
boundary starting from �̂�5. Option parameters (lognormal setting) are volatility 𝜎 = 20%, dividend-yield 𝑞 = 10%, interest rate 𝑟 = 5%,
strike price 𝐾 = 100, maturity 𝑇 = 3, correlation 𝜌 = 0, exercise dates 𝑛 = 9, and paths 𝑀 = 4, 000, 000. Quadratic-ordered basis. We
start to simulate prices 6 months in advance. BC (𝐵𝐶) are lower- (upper-) bound Bermudan prices from Broadie and Cao (2008). IZ 3 is
a lower bound based on a cubic frontier from Ibáñez and Zapatero (2004). Standard errors are in parentheses. 𝑝 is the proportion of the
effective number of local points to 𝑀 used by the Gaussian kernel. �̂�5 and �̂�0 are the upper bounds associated with the exercise strategy
implicit in the lower bounds �̂�5 and �̂�0, respectively (where these upper bounds are equal to the lower bound plus a gap computed with
3,000 paths and 10,000 sub simulation paths).

Symmetric securities and non-ordered prices, 𝑺
This choice is an example of a poor basis of state variables. In Table 6.2, the local LSM yields a price
approximately 0.60% larger than the LSM. For instance, for the at-the-money option, the LSM and
the local LSM yield a price of 25.93 and 26.11, respectively. The results are robust and converge after
three iterations.

Asymmetric securities
Using the ordered vector 𝑋 is suboptimal now, because loss of information occurs. For a deep in-the-
money security, the optimal exercise decision depends also on whether it is a high-volatility/dividend
security. Broadie and Cao (2008) report a less tight confidence interval of [37.75, 37.99] for the same
at-the-money option. Our local LSM price is near 37.96 (0.005) by estimating the continuation value,
which is a notable improvement and a few bps below than our upper-bound estimator of 38.00 (0.005).
The prices are maximized for a small kernel with 𝑝 = 0.01 (a large kernel with 𝑝 = 0.10 for the exercise
boundary). Similar results hold for the other in- and out-of-the-money cases.

In brief, the results produced by the local LSM improve over the LSM method are a few (one-digit)
bps below the associated upper bound, and require one or two iterations (i.e., number of regressions).
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T A B L E 6 . 2 Local LSM prices for 5-asset symmetric Bermudan max-call option: Nonordered basis

S𝟎 𝒑 �̂�𝟎 (𝒔.𝒆.) �̂�𝟏 �̂�𝟐 �̂�𝟑 �̂�𝟓 �̂�𝑩,𝟏𝟎 �̂�𝟓 �̂�𝟎 (𝒔.𝒆.)
80 0.01 8.890 8.967 8.982 8.989 8.991 8.983 9.017 9.042

BC[9.014] 0.03 (.0016) 8.970 8.987 8.992 8.995 8.989 9.018 (.0119)
BC[9.008] 0.05 8.969 8.988 8.994 8.997 8.990 9.018

0.10 8.967 8.987 8.994 8.998 8.990 9.016

90 0.01 16.461 16.564 16.594 16.602 16.603 16.592 16.649 16.676

BC[16.644] 0.03 (.0026) 16.570 16.599 16.606 16.610 16.602 16.647 (.0130)
BC[16.627] 0.05 16.570 16.598 16.606 16.609 16.601 16.648

IZ3[16.6307] 0.10 16.568 16.595 16.605 16.608 16.597 16.647

100 0.01 25.933 26.059 26.090 26.097 26.108 26.098 26.169 26.208

BC[26.152] 0.03 (.0036) 26.063 26.097 26.105 26.110 26.107 26.167 (.0135)
BC[26.125] 0.05 26.063 26.098 26.107 26.112 26.107 26.168

IZ3[26.1470] 0.10 26.061 26.094 26.104 26.112 26.100 26.169

110 0.01 36.527 36.667 36.696 36.705 36.712 36.710 36.802 36.851

BC[36.781] 0.03 (.0046) 36.673 36.706 36.714 36.717 36.722 36.804 (.0142)
BC[36.722] 0.05 36.674 36.706 36.715 36.718 36.723 36.803

IZ3[36.7669] 0.10 36.671 36.703 36.713 36.718 36.713 36.803

120 0.01 47.672 47.827 47.856 47.865 47.867 47.866 47.965 48.028

BC[47.988] 0.03 (.0056) 47.826 47.859 47.870 47.871 47.870 47.968 (.0200)
BC[47.862] 0.05 47.826 47.861 47.871 47.872 47.878 47.967

0.10 47.823 47.857 47.868 47.872 47.872 47.966

Notes: The local LSM price, �̂�𝑖, with 𝑖 iterations using the continuation value (𝑖 = 0 is LSM). �̂�𝐵 is based on fitting the exercise boundary
starting from �̂�5. Option parameters are 𝜎 = 20%, 𝑞 = 10%, 𝑟 = 5%, 𝐾 = 100, 𝑇 = 3, 𝜌 = 0, 𝑛 = 9, and 𝑀 = 4, 000, 000. Quadratic
nonordered basis. We start to simulate prices 6 months in advance. BC (𝐵𝐶) are lower- (upper-) bound Bermudan prices from Broadie
and Cao (2008). IZ3 is a lower bound based on a cubic frontier from Ibáñez and Zapatero (2004). Standard errors are in parentheses. 𝑝
is the proportion of the effective number of local points to 𝑀 used by the Gaussian kernel. �̂�5 and �̂�0 are the upper bounds associated
with the exercise strategy implicit in the lower bounds �̂�5 and �̂�0, respectively (where these upper bounds are equal to the lower bound
plus a gap computed with 3,000 paths and 10,000 sub simulation paths).

These results are robust to the kernel 𝑝 and moneyness. The largest improvement happens in the first
two iterations, where additional iterations provide smaller gains, which may go either way because of
the associated random error.

Number of paths
In Table 6.4, we show how the results depend on the number of paths used in the in-sample regression.
Tables 6.1 to 6.3 use 4 million paths. The first block of Table 6.4 shows that when we have a good basis
(as in Table 6.1), the loss is less than 2 cents for all cases, from 100,000 paths on. From the second
block of Table 6.4, for the hardest asymmetric case, a small trade-off occurs between better prices and
the number of paths for the local LSM method, which is intuitive in any regression model.

6.1 The kernel and the bandwidth
Our local regressions are estimated by weighted least squares, where a Gaussian kernel function, ker𝑄,
gives more weight to the data points close to the exercise boundary. The kernel depends on a bandwidth
parameter ℎ, which normalizes the boundary errors. The smaller the bandwidth ℎ, the narrower the
localization around the boundary.
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T A B L E 6 . 3 Local LSM prices for 5-asset asymmetric Bermudan max-call option: Nonordered basis and the
maximum price

S𝟎 𝒑 �̂�𝟎(𝒔.𝒆.) �̂�𝟏 �̂�𝟐 �̂�𝟑 �̂�𝟓 �̂�𝑩,𝟏𝟎 �̂�𝟓 𝑼𝑩,𝟏𝟎 �̂�𝟎 (𝒔.𝒆.)
80 0.01 18.626 18.828 18.832 18.836 18.836 18.800 18.860 18.865 18.894

BC[18.866] 0.03 (.0045) 18.835 18.813 18.814 18.820 18.820 18.862 18.866 (.003)
BC[18.744] 0.05 18.829 18.798 18.805 18.807 18.825 18.863 18.861

0.10 18.814 18.778 18.784 18.786 18.825 18.865 18.861

90 0.01 27.318 27.616 27.619 27.622 27.624 27.578 27.655 27.677 27.702

BC[27.659] 0.03 (.0053) 27.619 27.593 27.598 27.602 27.605 27.656 27.674 (.005)
BC[27.480] 0.05 27.612 27.574 27.582 27.586 27.610 27.657 27.660

0.10 27.593 27.545 27.554 27.557 27.609 27.660 27.665

100 0.01 37.554 37.925 37.941 37.961 37.958 37.920 38.004 38.008 38.051

BC[37.988] 0.03 (.0051) 37.929 37.908 37.933 37.932 37.944 38.006 38.003 (.005)
BC[37.746] 0.05 37.923 37.887 37.914 37.913 37.945 38.006 38.004

0.10 37.901 37.854 37.881 37.878 37.940 38.001 38.003

110 0.01 49.020 49.409 49.436 49.443 49.444 49.367 49.510 49.513 49.587

BC[49.492] 0.03 (.0065) 49.421 49.403 49.417 49.421 49.436 49.513 49.510 (.008)
BC[49.175] 0.05 49.421 49.382 49.398 49.405 49.439 49.516 49.512

0.10 49.401 49.348 49.363 49.369 49.434 49.517 49.510

120 0.01 61.180 61.541 61.592 61.596 61.600 61.537 61.701 61.696 61.772

BC[61.686] 0.03 (.0071) 61.567 61.570 61.579 61.586 61.610 61.704 61.697 (.014)
BC[61.294] 0.05 61.578 61.551 61.564 61.570 61.613 61.702 61.696

0.10 61.561 61.520 61.533 61.541 61.607 61.704 61.694

Notes: The local LSM price, �̂�𝑖, with 𝑖 iterations using the continuation value (𝑖 = 0 is LSM). �̂�𝐵 is based on fitting the exercise
boundary starting from �̂�5. Option parameters are as in Table 6.1, except for volatilities, 𝜎𝑖 = 8%, 16%, 24%, 32% and 40% for 𝑖 = 1,… , 5,
respectively. Quadratic nonordered basis and the maximum price. We start to simulate prices 6 months in advance. BC (𝐵𝐶) are lower-
(upper-) bound Bermudan prices from Broadie and Cao (2008). Standard errors are in parentheses. 𝑝 is the proportion of the effective
number of local points to 𝑀 used by the Gaussian kernel. �̂�5, �̂�𝐵,10, and �̂�0 are the upper bounds associated with the exercise strategy
implicit in the lower bounds �̂�5, �̂�𝐵,10, and �̂�0, respectively (where these upper bounds are equal to the lower bound plus a gap computed
with 3,000 paths and 10,000 sub simulation paths).

The two kernels, ker𝑄(�̂�(𝑆(𝑚)) ≈ 𝐼(𝑆(𝑚))) and ker𝑄(𝑆
(𝑚)
2 ≈ 𝑓 (𝑆(𝑚)

1 ))), are implemented by

1
ℎ
𝜙

(
�̂�(𝑆(𝑚)) − 𝐼(𝑆(𝑚))

ℎ

)
and

1
ℎ
𝜙

⎛⎜⎜⎜⎝
𝑆
(𝑚)
2 − 𝑓

(
𝑆
(𝑚)
1

)
ℎ

⎞⎟⎟⎟⎠ ,
respectively, where

𝜙(𝑧) = (2𝜋)−1∕2 exp
(
−1
2
𝑧2
)
.

The bandwidth, ℎ, is chosen to maximize price estimates. Optimal values typically represent between
1% to a 10% (i.e., 𝑝 = {0.01, 0.03, 0.05, 0.10}) of the overall sample information as computed in local
polynomial nonparametric estimation (Fan & Gijbels, 1995, p. 364).16 𝑝 is equivalent (for a given ℎ) to
the ratio of the effective number of local points to the number of simulated paths available to estimate
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T A B L E 6 . 4 Number of paths and convergence: Symmetric and asymmetric options (p = 0.05)

10 10 10 10 10
IN 100,000 200,000 400,000 1,000,000 2,000,000

OUT 4,000,000 4,000,000 4,000,000 4,000,000 4,000,000

Symmetric Option and Ordered Basis

0 26.015 26.005 26.008 26.007 26.092

1 26.012 26.078 26.129 26.144 26.149

2 26.118 26.122 26.126 26.125 26.149

3 26.128 26.132 26.134 26.135 26.150

4 26.128 26.127 26.131 26.130 26.151

5 26.126 26.129 26.129 26.135 26.152

s.e. (0.0028) (0.0028) (0.0019) (0.0027) (0.0031)

Asymmetric Option and Nonordered Basis

0 37.556 37.547 37.564 37.547 37.554

1 37.740 37.863 37.866 37.929 37.923

2 37.861 37.881 37.888 37.882 37.908

3 37.876 37.893 37.902 37.903 37.933

4 37.877 37.891 37.906 37.904 37.934

5 37.883 37.898 37.898 37.913 37.932

s.e. (0.0061) (0.0069) (0.0056) (0.0040) (0.0051)

Notes: Convergence of the local LSM Bermudan price as a function of the number of paths to estimate the continuation value, for
both symmetric and asymmetric securities, with a quadratic ordered and nonordered basis (parameters are those of Tables 6.1 and 6.3,
respectively). The first row is the number of simulation experiments, the second is the number of paths to estimate the continuation value,
the third is the number of paths to price the option, and the rest are the Bermudan prices associated with each iteration of the local LSM
(zero is LSM), where s.e. is the standard error.

the unconditional expectation of the dependent variable. A smaller 𝑝 indicates a narrower bandwidth
and a more localized regression.

Kernel robustness
Tables 6.1 to 6.3 already indicate the optimal kernel is robust (to different values of 𝑝), though ℎ can
change from period to period. In Table 7.1A and 7.1B, we use a simple kernel, where ℎ depends on
the standard deviation of the errors, the number of in-the-money paths, 𝑀∗, and a control parameter,
𝛿; that is,

ℎ = 𝛿 × Var[�̂�(𝑆𝑚) − 𝐼(𝑆𝑚)]1∕2 ×𝑀−0.2
∗ .

𝛿 is constant and, once tuned, is the same for all iterations and periods. This simple kernel is very robust;
the losses are a few cents compared to the optimal kernel. We show only the results for the asymmetric
case, for both the continuation value and the explicit boundary. For low 𝛿, both methods are less
robust because very few (in-the-money) sample paths are used in the estimation. Otherwise, explicitly
estimating the five exercise boundaries yields the best prices, namely, 37.95 (for 0.75 ≤ 𝛿 ≤ 2).

7 CONCLUDING REMARKS

LSM methods enable us to price Bermudan options by simulation, and are based on estimating
the option continuation value by least squares (and proceeding in a recursive way). We show the
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T A B L E 7 . 1 A Alternative ℎ choice (continuation value): Asymmetric case (S0 = 100)

Iter ∖ 𝜹 0.15 0.2 0.3 0.6 0.8 1 1.2 1.5 2 2.5
0 37.520 37.520 37.520 37.520 37.520 37.520 37.520 37.520 37.520 37.520

1 37.799 37.802 37.803 37.804 37.804 37.802 37.799 37.792 37.779 37.761

2 37.844 37.861 37.867 37.870 37.867 37.864 37.862 37.854 37.836 37.812

3 37.581 37.879 37.871 37.887 37.888 37.887 37.882 37.873 37.853 37.827

4 37.881 37.779 37.826 37.895 37.896 37.891 37.890 37.882 37.859 37.830

5 37.875 37.873 37.884 37.890 37.898 37.894 37.893 37.884 37.862 37.831

T A B L E 7 . 1 B Alternative ℎ choice (exercise boundary): Asymmetric case (𝑆0 = 100)

Iter ∖ 𝜹 0.3 0.4 0.5 0.6 0.75 1 1.25 1.5 2 3
1 37.257 37.301 37.461 37.542 37.742 37.887 37.919 37.936 37.928 37.869

2 37.670 37.850 37.933 37.945 37.948 37.951 37.951 37.948 37.936 37.872

3 37.935 37.941 37.946 37.947 37.949 37.954 37.953 37.939 37.937 37.870

4 37.899 37.191 37.925 37.740 37.906 37.959 37.956 37.951 37.935 37.861

5 37.501 37.943 37.952 37.953 37.952 37.819 37.953 37.951 37.933 37.851

6 37.693 37.917 37.251 37.956 37.957 37.959 37.951 37.949 37.930 37.844

7 37.696 37.932 37.929 37.953 37.957 37.906 37.954 37.949 37.927 37.839

8 37.900 37.928 37.155 37.946 37.950 37.958 37.951 37.948 37.926 37.835

9 37.828 37.865 37.304 36.578 37.955 37.935 37.952 37.946 37.924 37.831

10 37.931 37.080 37.944 36.913 37.954 37.954 37.950 37.946 37.923 37.830

Notes: Price of the at-the-money asymmetric Bermudan max-option for different iterations and control parameter 𝛿 using a quadratic
nonordered basis (parameters are those of Table 6.3). The bandwidth ℎ depends on the standard deviation of the errors, the number
of in-the-money paths, 𝑀∗, and a control parameter, 𝛿; that is, ℎ = 𝛿 ×Var[�̂�(𝑆𝑚) − 𝐼(𝑆𝑚)]1∕2 ×𝑀−0.2

∗ . The parameter 𝛿 is constant
through all the iterations and all the exercise opportunities. We show both cases: lower bounds based on parametrizing the continuation
value and the exercise boundary, respectively.

Bermudan option price is maximized when this continuation value is estimated near the exercise
boundary, which is equivalent to implicitly estimating the optimal exercise boundary by using the
value-matching condition. Localizing is the main difference with respect to (global) regression meth-
ods, but is the key for optimal exercise decisions, and requires iteration of a few local least-squares
regressions per exercise date.

We call this new algorithm the local LSM method (which can be implemented in a second way, by
explicitly estimating the exercise boundary) and also study its convergence. The new prices, or lower
bounds, improve over the LSM method and are close to the associated dual upper bounds (e.g., for max-
call options). The small gap between the lower and the dual upper bounds implies the near optimality
of the local LSM strategy, a property that is further addressed in a second paper (Ibáñez & Velasco,
2016).

A direct by-product of the local LSM is the (optimal) exercise boundary. In real options, this bound-
ary or “trigger” function is necessary to determine the option value. Grenadier and Malenko (2010) use
a variation of the standard LSM method to approximate this trigger function (for an American option).
The local LSM method focuses precisely on this boundary.

Finally, let us point out that an American option (under diffusion processes) is characterized by
the value-matching and smooth-pasting conditions (Merton, 1973). The equivalent Bermudan option,
for a given family of exercise boundaries, depends only on value-matching errors being orthogonal to
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the regressors at the exercise boundary, which also holds for processes with jumps (whereas smooth-
pasting does not hold, because exercise is discrete).
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ENDNOTES
1 This type of idea has appeared in the previous literature, most notably in the construction of lower-bound estimators

(Broadie & Detemple, 1996), where optimization is over constant exercise thresholds. We, however, optimize over
more general classes of functions (e.g., polynomials) and combine optimization and simulation.

2 For 𝑁 state variables and an 𝐻-degree polynomial, the number of coefficients to estimate by least-squares is of the
order O(𝑁𝐻 ). Hence, most LSM applications use a quadratic function, 𝐻 = 2, as we do here.

3 This result extends Newey (1997) to local conditional expectation series estimates given a restriction, which is imposed
iteratively starting from unrestricted estimates.

4 Tsitsiklis and Van Roy (2001), Clément, Lamberton, and Protter (2002), Stentoft (2004b), Egloff (2005), and Glasser-
man and Yu (2004) study convergence properties. Moreno and Navas (2003), Stentoft (2004a), and Areal, Rodrigues,
and Armada (2004) study numerical issues. Dutt and Welke (2008), Rasmussen (2005), and Wang and Caflisch (2010)
study further refinements. For other MC methods, see Glasserman (2004), Ibáñez (2003), Ibáñez and Zapatero (2004),
and references therein. The LSM is used from pricing Bermudan swaptions (Trolle & Schwartz, 2009) to optimal
portfolios (Brandt, Goyal, Santa-Clara, & Stroud, 2005; Longstaff, 2001), credit risk (Jarrow, Li, Liu, & Wu, 2010),
energy derivatives (Cartea & Williams, 2008), real estate (Longstaff, 2005), real options (Gamba, 2003), executive
stock options (León & Vaello-Sebastià, 2009), control problems (Belomestny, Kolodko, & Schoenmakers, 2010), or
nonlinear PDEs (Bouchard & Touzi, 2004), among other applications.

5 For clarity, equation (2.1) can also be written as a double integral, namely,

∞

∫
0

⎛⎜⎜⎜⎝
𝑓1(𝑆1(𝑡1))

∫
𝑓1(𝑆1(𝑡1))

(𝐶(𝑡1, 𝑆1(𝑡1), 𝑆2(𝑡1)) − (𝑆2(𝑡1) − 𝑆1(𝑡1) −𝐾)) ×𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) × 𝑑𝑆2(𝑡1)

+

𝑓1(𝑆1(𝑡1))

∫
0

(𝐶(𝑡1, 𝑆1(𝑡1), 𝑆2(𝑡1)) − 𝑃 (𝑡1, (𝑆1(𝑡1), 𝑆2(𝑡1)), 𝑓2∶𝐽 )) ×𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) × 𝑑𝑆2(𝑡1)
⎞⎟⎟⎟⎠

×𝑄(𝑆1(𝑡1)|𝑆(𝑡0)) × 𝑑𝑆1(𝑡1).

6 See Ibáñez and Paraskevopoulos (2010) for a second-order Taylor approximation of the cost of suboptimal exercise,
for the case of continuously exercisable American put/call options in a diffusion setting.

7 Because 𝑆1 ∈ , we can divide the real line in several intervals, and then define a different polynomial exercise
boundary, 𝑓 , for each interval. For large dimensions, this simple idea suffers from the curse of dimensionality.
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8 For a call option (i.e., 𝑆1 and 𝑓 are constants and 𝑆1 +𝐾 is the strike price), equation (3.3) simplifies to

𝐶(𝑆1, 𝑓
∗(𝑆1)) − (𝑓 ∗(𝑆1) − (𝑆1 +𝐾)) = Σ∕𝑄(𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0)).

The value-matching error equals Σ∕𝑄(𝑆2 = 𝑓 ∗(𝑆1)) at 𝑓 ∗(𝑆1), the estimated boundary. If Σ = 0, 𝑓 ∗ = 𝑓 . 𝑄(𝑆2 =
𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0)) = 𝑄(𝑆2|𝑆1, 𝑆(𝑡0))|𝑆2=𝑓 ∗(𝑆1)

is a conditional probability evaluated at 𝑆2 = 𝑓 ∗(𝑆1).
9 Intuitively, 𝐶 is smooth because it is given by an expectation, which smooths nonlinear payoffs, and O(Δ𝑓 (𝑆1)3) is

small because otherwise the value-matching errors in the FOCs are large.
10 Because 𝐶2 = 1 for the continuously exercisable American option, 𝐶2 < 1 for the equivalent Bermudan case.
11 We assume 𝐶2(𝑆1, 𝑓 (𝑆1), 𝑏) < 1, which is consistent with our previous definition of the suboptimal exercise region.

That is, for accelerating (delaying) exercise, 𝑆2 ∈ [𝑓 (𝑆1), 𝑓 (𝑆1)] (𝑆2 ∈ [𝑓 (𝑆1), 𝑓 (𝑆1)]).
12 Broadie and Cao (2008), Rasmussen (2005), and Wang and Caflisch (2010) start to simulate paths before the initial time

𝑡0 to improve the efficiency of regression methods, for example, if 𝑆(𝑡0) is deep out-of-the-money or to simultaneously
obtain the price and the Greeks of the Bermudan option.

13 A series estimates is a least-squares estimation where the regressors are 𝐻 approximation functions (e.g., a series of
𝐻 polynomials); see Newey (1997).

14 Some extrapolation errors appear when we use a continuation value function. Although the whole function 𝐶(𝑆1, 𝑆2)
is used to make exercise decisions, a local LSM focuses on the exercise boundary, namely, 𝐶(𝑆1, 𝑓

∗(𝑆1)). Therefore,
we are extrapolating the value 𝐶(𝑆1, 𝑆2) from 𝐶(𝑆1, 𝑓

∗(𝑆1)), which implies some raw exercise errors can appear
for 𝑆2 far away from 𝑓 ∗(𝑆1). For example, for deep in-the-money paths, and convex payoffs, a quadratic function will
overshoot the linear intrinsic value. This overshooting can be controlled by checking if the partial derivatives are larger
than (lower than minus) one for call- (put-) type payoffs. Indeed proving the convergence of a model that estimates the
boundary is easier because we do not have to control for extrapolation errors. These errors may occur with any basis
of functions and regression method.

15 Consider the option on the maximum of two assets, 𝑁 = 2. From Ibáñez and Zapatero (2004), 𝑘(𝑆1) = {0, 1, 2}.
𝑘(𝑆1) = 0 if 𝑆1 is very deep in-the-money, being optimal to exercise to the largest of the two prices; 𝑘(𝑆1) = 1 if 𝑆1
is deep out-of-the-money, being optimal to exercise for 𝑆2 large enough; 𝑘(𝑆1) = 2 if 𝑆1 is at or in-the-money, being
optimal to exercise to the largest of 𝑆1 and 𝑆2 if (approximately) 𝑆1 ≠ 𝑆2.

16 In standard nonparametric estimation by local polynomials, the regressions use local information in a neighborhood
of a particular value of the regressors, which, unlike in our case, is explicitly known.

17 If we model the continuation value, 𝑓𝑏𝑏 ≠ 0, then,

𝐺𝑏𝑏

(
𝑓 (𝑆1, 𝑏

∗)
)
=

𝑑[𝑔(𝑓 ∗(𝑆1))]
𝑑𝑓

×
𝐶𝑏𝐶

′

𝑏(
𝐶2 − 1

)2 + 𝑔(𝑓 ∗(𝑆1)) ×
𝐶𝑏

(
𝐶2𝑏 + 𝐶22𝑏

)
(
𝐶2 − 1

)2 ,

where 𝐶𝑏𝑏 = 0. But a similar interpretation follows if 𝑓 ∗ is close to 𝑓 , because 𝑔(𝑓 (𝑆1)) = 0.
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APPENDIX A: SECOND-ORDER CONDITIONS
We show the conditions under which the local LSM is a local minimum (i.e., the convexity of the cost
function). From equations (3.1) and (3.2), the matrix of second derivatives is given by

𝐸𝑄
0

[
𝐺𝑏𝑏

(
𝑓 (𝑆1, 𝑏

∗)
)]

= 𝐸𝑄
0

[
𝐺𝑓𝑓

(
𝑓 ∗
)
× 𝑓𝑏(𝑏∗) × 𝑓𝑏(𝑏∗)′ + 𝐺𝑓

(
𝑓 ∗
)
× 𝑓

𝑏𝑏
(𝑏∗)

]
.

Let us assume 𝑓 (𝑆1, 𝑏) is linear in 𝑏; that is, 𝑓𝑏𝑏 = 0. It follows that

𝐺𝑏𝑏

(
𝑓 (𝑆1, 𝑏

∗)
)
=

𝑑
[((

𝑓 ∗(𝑆1) − 𝑆1 −𝐾
)
− 𝐶(𝑆1, 𝑓

∗(𝑆1))
)
×𝑄(𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0))

]
𝑑𝑓

https://doi.org/10.1111/mafi.12125
https://doi.org/10.1111/mafi.12158
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×

(
𝜕𝑓 (𝑆1, 𝑏

∗)
𝜕𝑏

)
×

(
𝜕𝑓 (𝑆1, 𝑏

∗)
𝜕𝑏

)′

,

where 𝑓𝑏(𝑏∗) × 𝑓𝑏(𝑏∗)′ = ( 𝜕𝑓 (𝑆1,𝑏
∗)

𝜕𝑏
) × ( 𝜕𝑓 (𝑆1,𝑏

∗)
𝜕𝑏

)′ denotes the regressors cross-product matrix. Similar
to a nonlinear least-squares problem, the matrix 𝐺𝑏𝑏 depends on an additional term, which is denoted

by 𝑑[𝑔(𝑓∗(𝑆1))]
𝑑𝑓

. If 𝑑[𝑔(𝑓∗(𝑆1))]
𝑑𝑓

≥ 0 for all 𝑆1, 𝐸𝑄
0 [𝐺𝑏𝑏] is a standard second-order cross-moment. In this

case, 𝐸𝑄
0 [𝐺𝑏𝑏] is a variance–covariance matrix, which is semidefinitive positive.

That is,

𝑑[𝑔(𝑓 ∗(𝑆1))]
𝑑𝑓

=
(
1 − 𝐶2(𝑆1, 𝑓

∗(𝑆1))
)
×𝑄(𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0))

+
((

𝑓 ∗(𝑆1) − 𝑆1 −𝐾
)
− 𝐶(𝑆1, 𝑓

∗(𝑆1))
)
×

𝑑
[
𝑄(𝑆2 = 𝑓 ∗(𝑆1)|𝑆1, 𝑆(𝑡0))

]
𝑑𝑓

.

The first term is positive (as 𝐶2 < 1). The second term is close to zero on average (which follows from
the FOCs), and is small if the local LSM exercise boundary is close to the true optimal boundary (𝑓 ∗

and 𝑓 , respectively).
In particular, if a first-order approximation of 𝑔(𝑓 ∗(𝑆1)) at the point 𝑓 (𝑆1) is accurate (e.g., 𝑓 ∗ = 𝑓

or (𝑓 ∗ − 𝑓 )2 is negligible),

𝑔(𝑓 ∗(𝑆1)) ≈ 𝑔(𝑓 (𝑆1)) +
𝑑[𝑔(𝑓 (𝑆1))]

𝑑𝑓
×
(
𝑓 ∗(𝑆1) − 𝑓 (𝑆1)

)
=
(
1 − 𝐶2(𝑆1, 𝑓 (𝑆1))

)
×𝑄(𝑆2 = 𝑓 (𝑆1)|𝑆1, 𝑆(𝑡0)) ×

(
𝑓 ∗(𝑆1) − 𝑓 (𝑆1)

)
,

and then 𝑔(𝑓 ∗(𝑆1)) is increasing in 𝑓 and 𝐸𝑄
0 [𝐺𝑏𝑏] is semidefinitive positive.17

APPENDIX B: A RECURSIVE APPROACH AND STOCHASTIC INTEREST
RATES

Let 𝑟𝑡 be the short interest rate, where 𝐷𝑗 = 𝑒
− ∫ 𝑡𝑗

𝑡0
𝑟𝑢𝑑𝑢 is the inverse of a bank account associated with

𝑄. The cost of suboptimal exercise is given by

min
𝑓1∶𝐽

𝐸𝑄
0

[
𝐺
(
𝑓1∶𝐽

)]
= min

𝑓1,𝑓2∶𝐽

𝐶(𝑡0, 𝑆) − 𝑃 (𝑡0, 𝑆, (𝑓1, 𝑓2∶𝐽 ))

= min
𝑓1,𝑓2∶𝐽

𝐸𝑄
0

⎡⎢⎢⎢⎣
𝑓1(𝑆1)

∫
𝑓1(𝑆1)

𝐷1
(
𝐶(𝑡1, 𝑆) −

(
𝑆2 − 𝑆1 −𝐾

))
×𝑄(𝑆2|𝑆1, 𝑆(𝑡0)) × 𝑑𝑆2

⎤⎥⎥⎥⎦
+𝐸𝑄

0

⎡⎢⎢⎢⎣
𝑓1(𝑆1)

∫
0

𝐷1

(
𝐶(𝑡1, 𝑆) − 𝑃

(
𝑡1, 𝑆, 𝑓2∶𝐽

))
×𝑄(𝑆2|𝑆1, 𝑆(𝑡0)) × 𝑑𝑆2

⎤⎥⎥⎥⎦ .
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Note that only the second term depends on 𝑓2; that is,

𝐸𝑄
0

⎡⎢⎢⎢⎣
𝑓1(𝑆1)

∫
0

𝐷1

(
𝐶(𝑡1, 𝑆) − 𝑃

(
𝑡1, 𝑆, 𝑓2∶𝐽

))
×𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) × 𝑑𝑆2(𝑡1)

⎤⎥⎥⎥⎦
= 𝐸𝑄

0

⎡⎢⎢⎣
∞

∫
0

1{0≤𝑆2≤𝑓1(𝑆1)}
𝐷1

(
𝐶(𝑡1, 𝑆) − 𝑃

(
𝑡1, 𝑆, 𝑓2∶𝐽

))
×𝑄(𝑆2(𝑡1)|𝑆1(𝑡1), 𝑆(𝑡0)) × 𝑑𝑆2(𝑡1)

⎤⎥⎥⎦
= 𝐸𝑄

0

[
1{0≤𝑆2≤𝑓1(𝑆1)}

×𝐷1 ×
(
𝐶(𝑡1, 𝑆1, 𝑆2)) − 𝑃

(
𝑡1,

(
𝑆1, 𝑆2

)
, 𝑓2∶𝐽

))]
= 𝐸𝑄

0

[
1{0≤𝑆2≤𝑓1(𝑆1)}

×𝐷1

×𝐸𝑄
1

⎡⎢⎢⎢⎣
𝑓2

∫̃
𝑓2

𝐷2
𝐷1

(
𝐶(𝑡2, 𝑆) −

(
𝑆2 − 𝑆1 −𝐾

))
×𝑄(𝑆2(𝑡2)|𝑆1(𝑡2), 𝑆(𝑡1)) × 𝑑𝑆2(𝑡2)

+

𝑓2

∫
0

𝐷2
𝐷1

(
𝐶(𝑡2, 𝑆) − 𝑃 (𝑡2, 𝑆, 𝑓3∶𝐽 )

)
×𝑄(𝑆2(𝑡2)|𝑆1(𝑡2), 𝑆(𝑡1)) × 𝑑𝑆2(𝑡2)

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ .

It follows that for any period 𝑡𝑗 , the cost that depends on 𝑓𝑗(𝑆1(𝑡𝑗)) is given by

𝐸𝑄
0

[(
𝑗−1∏
𝑖=1

1{0≤𝑆2≤𝑓𝑖(𝑆1)}

)
×𝐷𝑗−1

×𝐸𝑄
𝑗−1

⎡⎢⎢⎢⎣
𝐷𝑗

𝐷𝑗−1

𝑓𝑗

∫̃
𝑓𝑗

(
𝐶(𝑡𝑗 , 𝑆) −

(
𝑆2 − 𝑆1 −𝐾

))
×𝑄(𝑆2(𝑡𝑗)|𝑆1(𝑡𝑗), 𝑆(𝑡𝑗−1)) × 𝑑𝑆2(𝑡𝑗)

+
𝐷𝑗

𝐷𝑗−1

𝑓𝑗

∫
0

(
𝐶(𝑡𝑗 , 𝑆) − 𝑃 (𝑡𝑗 , 𝑆, 𝑓𝑗+1∶𝐽 )

)
×𝑄(𝑆2(𝑡𝑗)|𝑆1(𝑡𝑗), 𝑆(𝑡𝑗−1)) × 𝑑𝑆2(𝑡𝑗)

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ .

By minimizing with regard to 𝑓𝑗(𝑆1(𝑡𝑗)), the FOCs are given by

𝐸𝑄
0

[
𝑗−1∏
𝑖=1

1{0≤𝑆2≤𝑓𝑖(𝑆1)}
×𝐷𝑗−1

×𝐸𝑄
𝑗−1

[
𝐷𝑗

𝐷𝑗−1

(
𝑃
(
𝑡𝑗 ,
(
𝑆1, 𝑓

∗
𝑗 (𝑆1)

)
, 𝑓𝑗+1∶𝐽

)
−
(
𝑓 ∗
𝑗 (𝑆1) − 𝑆1 −𝐾

)) 𝜕𝑓𝑗(𝑆1, 𝑏
∗)

𝜕𝑏

𝑄(𝑆2(𝑡𝑗) = 𝑓 ∗
𝑗 (𝑆1)|𝑆1(𝑡𝑗), 𝑆(𝑡𝑗−1))

]]
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= 𝐸𝑄
0

[
𝑗−1∏
𝑖=1

1{0≤𝑆2≤𝑓𝑖(𝑆1)}
×𝐷𝑗 ×

(
𝑃
(
𝑡𝑗 ,
(
𝑆1, 𝑓

∗
𝑗 (𝑆1)

)
, 𝑓𝑗+1∶𝐽

)
−
(
𝑓 ∗
𝑗 (𝑆1) − 𝑆1 −𝐾

))

×
𝜕𝑓𝑗(𝑆1, 𝑏

∗)
𝜕𝑏

×𝑄
(
𝑆2(𝑡𝑗) = 𝑓 ∗

𝑗 (𝑆1)|𝑆1(𝑡𝑗), 𝑆(𝑡0)
)]

= 0.

If we enforce 1{0≤𝑆2≤𝑓𝑖(𝑆1)}
= 1 for 𝑖 = {1, 2,… , 𝑗 − 1}, the FOCs associated with 𝑓 ∗

𝑗
are equivalent

to the case of a Bermudan option that can be exercised only from 𝑡𝑗 to 𝑡𝐽 . And if interest rates are
stochastic (assume 𝑟 follows a one-factor Markovian model), the exercise boundary depends also on 𝑟;
that is, 𝑓𝑗(𝑆1(𝑡𝑗), 𝑟𝑗). The FOCs are given by

𝐸𝑄
0

[
𝐷𝑗

(
𝑃
(
𝑡𝑗 ,
(
𝑆1, 𝑓

∗
𝑗 (𝑆1, 𝑟)

)
, 𝑟, 𝑓𝑗+1∶𝐽

)
−
(
𝑓 ∗
𝑗 (𝑆1, 𝑟) − 𝑆1 −𝐾

))
×

𝜕𝑓𝑗(𝑆1, 𝑟, 𝑏
∗)

𝜕𝑏
×𝑄

(
𝑆2 = 𝑓 ∗

𝑗 (𝑆1, 𝑟)|(𝑆1, 𝑟), (𝑆(𝑡0), 𝑟(𝑡0))
)]

= 0.

APPENDIX C: CONVERGENCE OF LOCAL LSM ESTIMATION
In this appendix, we analyze the convergence properties of our new local LSM. Convergence of LSM
algorithms has received much attention in the literature. Glasserman and Yu (2004) considered the
case in which the basis functions are polynomials and the underlying process is either Brownian or
geometric Brownian motion. Stentoft (2004b), however, assumes that the factors are bounded, possi-
bly after rescaling. Both find upper bounds on the rate of increment of the number of approximating
functions with the number of paths. Egloff (2005) evaluates the convergence within a generalized sta-
tistical learning problem, whereas Tsitsiklis and Van Roy (2001) and Clément, Lamberton, and Protter
(2002) consider a similar approach but holding the number of basis fixed, and Belomestny (2011a)
and Belomestny et al. (2015) consider local polynomial kernel regression instead of global series
approximation.

Belomestny (2011b) obtains optimal convergence rates for the estimate of the continuation-value
function, and studies the optimal relation between the number of paths in the first and second simu-
lations to estimate the optimal policy and the option price, respectively. Zanger (2016) provides error
estimates when a single set of simulated sample paths is used for the estimation of the continuation-
value function, including linear and nonlinear nonconvex approximations.

Our case differs from all previous analyses in that we add to the nonparametric series estimation
of the boundary or continuation value a further kernel smoothing that locates the exercise boundary
by using information on previous estimates. The bandwidth controlling this additional smoothing is
simultaneously converging to zero with the increasing number of basis and paths, allowing consistent
estimation of the exercise boundary either directly or by inverting the value-matching condition. We
also study in detail the effect of starting from preliminary continuation value estimates obtained by
LSM, which are consistent for any combination of factors.

First, we adapt the results of Newey (1997) on consistency of series estimators, to analyze the con-
vergence rate of the exercise boundary estimate, which is based on the same localization principle as
the local continuation value (see Theorem 4.3). Second, we use Stentoft’s (2004b) arguments, which
depend on a regularity condition to identify the corresponding stopping time—cf. Assumption C.1(ii)
below—to justify the convergence of option price estimates using our exercise-boundary estimates (see
Theorem 4.5).
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Exercise Boundary. We first analyze a local series regression to estimate the parameters 𝑏 in
a parameterization 𝑓 (𝑆1; 𝑏) = 𝑝𝐻 (𝑆1)′𝑏 of the exercise boundary 𝑓 (𝑆1), cf. (3.6), with 𝑝𝐻 (𝑆1) =
(𝑝𝐻

1 (𝑆1),… , 𝑝𝐻
𝐻
(𝑆1))′ being a vector of 𝐻 approximating functions (given, e.g., by a set of orthonor-

mal polynomials), so that 𝜕𝑓 (𝑆1, 𝑏)∕𝜕𝑏 = 𝑝𝐻 (𝑆1). For each path we construct an estimate of 𝑓 (𝑆1)
based on �̂� = �̂�(𝑆1, 𝑆2), an unbiased estimate of 𝐶(𝑆1, 𝑆2), and on the value-matching condition,
𝐶(𝑆1, 𝑆2) = 𝐼(𝑆1, 𝑓 (𝑆1)). We assume the domain of 𝑆 can be divided into a finite number of regions
such that in each one, the intrinsic value is linear in the component 𝑆2,

𝐼(𝑆1, 𝑆2) = 𝑐1(𝑆1) + 𝑐2𝑆2, (C.1)

where the function 𝑐1 and the scalar 𝑐2 are known and might differ from region to region with 𝑆1 ∈
ℝ𝑁−1. Because 𝐼(𝑆1, 𝑓 (𝑆1)) is linear in 𝑓 , (C.1) implies 𝑌 = (�̂� − 𝑐1(𝑆1))∕𝑐2 is an unbiased estimate
of 𝑓 (𝑆1) when 𝑆2 = 𝑓 (𝑆1), and motivates the local regression of

𝑌 (𝑚) =
(
�̂� (𝑚) − 𝑐1

(
𝑆
(𝑚)
1

))
∕𝑐2 on 𝑝𝐻

(
𝑆
(𝑚)
1

)
, 𝑚 = 1,… ,𝑀,

when 𝑆2 ≈ 𝑓 (𝑆1) to approximate 𝑓 (𝑆1). Note 𝐸[𝑌 |𝑆1, 𝑆2 = 𝑓 (𝑆1)] = 𝑓 (𝑆1) as 𝐸[�̂�|𝑆1, 𝑆2] =
𝐶(𝑆1, 𝑆2).

We focus on estimation of a particular exercise boundary, and we omit in the notation reference to
it and to the specific time period in the backward induction of LSM. If 𝑆 is redefined in an appropriate
way, reducing the number of regions to just one for particular problems would be possible, for example,
by replacing 𝑆 in 𝐶 and 𝐼 by 𝑆∗ = (𝑆(1), 𝑆(2)) = (𝑆min, 𝑆max) in a two-asset max-option. In case of
symmetric regions and exercise boundaries, these restrictions could be incorporated in the least-squares
fit, increasing efficiency of estimates.

Consider the local-series estimate at iteration 𝑖 = 0, 1, 2,…,

�̂�𝑖 =
(
𝐏′̂(𝑖−1)

ℎ
𝐏
)−1

𝐏′̂(𝑖−1)
ℎ

𝐘 =

(
𝑀∑
𝑚=1

ℎ

(
𝑆
(𝑚)
2 − 𝑓

(
𝑆
(𝑚)
1 , �̂�𝑖−1

))
𝑝𝐻

(
𝑆
(𝑚)
1

)
𝑝𝐻

(
𝑆
(𝑚)
1

)′)−1

×
𝑀∑
𝑚=1

ℎ

(
𝑆
(𝑚)
2 − 𝑓

(
𝑆
(𝑚)
1 , �̂�𝑖−1

))
𝑝𝐻

(
𝑆
(𝑚)
1

)
𝑌 (𝑚),

where ℎ(⋅) = ℎ−1(ℎ−1⋅) and  is a positive, symmetric, continuously differentiable with square
integrable derivative ̇, kernel function with inf𝑆1

(𝑆1) ≥ 𝜀 > 0 and ∫1
(𝑆1)𝑑𝑆1 = 1, where

𝑆 ∈  = 1 ×⋯ × 𝑁 , all compact intervals and ̂(𝑖−1)
ℎ

= 𝑑𝑖𝑎𝑔{ℎ(𝑆
(𝑚)
2 − 𝑓 (𝑆(𝑚)

1 , �̂�𝑖−1))}𝑀𝑚=1, with

𝐘 =(𝑌 (1),… , 𝑌 (𝑀))′ and𝐏 =(𝑝𝐻 (𝑆(1)
1 ),… , 𝑝𝐻 (𝑆(𝑀)

1 ))′ stacking all paths information. The bandwidth
parameter ℎ tends toward zero with 𝑀 , simultaneously with an increasing 𝐻 , to approximate 𝑓 as sam-
ple information gets larger.

For the initial iteration, 𝑖 = 0, we can use any previous estimate of the boundary function 𝑓 based on
estimates �̂�0, or, starting from the LSM algorithm, we can use the value-matching condition to define

�̂�1 =

(
𝑀∑
𝑚=1

ℎ

(
�̂�
(
𝑆(𝑚)) − 𝐼

(
𝑆(𝑚))) 𝑝𝐻

(
𝑆
(𝑚)
1

)
𝑝𝐻

(
𝑆
(𝑚)
1

)′)−1

×
𝑀∑
𝑚=1

ℎ

(
�̂�
(
𝑆(𝑚)) − 𝐼

(
𝑆(𝑚))) 𝑝𝐻

(
𝑆
(𝑚)
1

)
𝑌 (𝑚),



34 IBÁÑEZ AND VELASCO

where 𝐶(𝑆(𝑚)) ≈ 𝐼(𝑆(𝑚)) defines an equivalent neighborhood to 𝑆
(𝑚)
2 ≈ 𝑓 (𝑆(𝑚)

1 ). Typically, �̂�(𝑆(𝑚)) =
𝐶(𝑆(𝑚), 𝛿𝑛) = 𝑝𝑛(𝑆(𝑚))′𝛿𝑛 is an (order 𝑛 series) estimate as in the LSM algorithm.

For concreteness, we work with shifted orthonormal Legendre polynomials, with support in
(0, 1), resulting after normalization of factors, as in Stentoft (2004b). Then sup𝑆1∈1

‖𝑝𝐻 (𝑆1)‖ ≤ 𝜁0
(𝐻) ∼ 𝐻 . The following conditions follow assumptions C.1 to C.3 in Stentoft (2004b), who shows they
are sufficient for Newey’s (1997) original assumptions when using a series estimate based on shifted
Legendre polynomials. We add smoothness conditions on both 𝐶 and 𝑓 , as we obtain 𝑓 as a restriction
of 𝐶 around a neighborhood defined by 𝑓 itself.

Assumption C.1.

(i) The simulated paths, 𝑆(𝑚), 𝑚 = 1,… ,𝑀 , are independent.
(ii) Pr(𝐼(𝑡𝑗 , 𝑆) = 𝐶(𝑡𝑗 , 𝑆)) = 0, 𝑗 = 1,… , 𝐽 .

Assumption C.2. The support  of 𝑆 is a Cartesian product of compact connected intervals on
which 𝑆 has a probability density 𝑄 that is bounded away from zero, 𝑄(𝑆) ≥ 𝜀 > 0, and is twice
continuously differentiable, and the conditional density of 𝑆2 given 𝑆1 is also bounded away from
zero, 𝑄(𝑆2|𝑆1) ≥ 𝜀 > 0.

Assumption C.3. 𝐶(𝑆1, 𝑆2) and 𝑓 (𝑆1) are continuously differentiable of order 𝑠 ≥ 2𝑁 on the support
of 𝑆.

Assumption C.4. As 𝑀 → ∞, for 𝛼 = 𝑠∕𝑁 and assuming 𝜁0(𝐻) ∼ 𝐻 ,

𝐻3

𝑀ℎ
+ 1

ℎ𝐻2𝛼 + ℎ2𝐻 + 𝐻

𝑀ℎ2 → 0.

If 𝜆min denotes the smallest eigenvalue of a matrix, Assumption C.2 implies the following regularity
condition:

𝜆min
(
𝐸
[ℎ

(
𝑆2 − 𝑓

(
𝑆1
))

𝑝𝐻 (𝑆1)𝑝𝐻 (𝑆1)′
]) ≥ 𝜀2 > 0 (C.2)

uniformly in 𝐻 and ℎ, using that ∫ ℎ(𝑆2 − 𝑓 (𝑆1))𝑑𝑆2 = 1, which is needed to control the behavior
of the series least-squares estimates. Note also that Assumption C.2 implies the left-hand side of (C.2)
converges for ℎ → 0 to

𝜆min

(
∫ 𝑝𝐻 (𝑆1)𝑝𝐻

(
𝑆1
)′

𝑄
(
𝑆1, 𝑓 (𝑆1)

)
𝑑𝑆1

)
= 𝜆min

(
�̃�1𝐸

[
𝑝𝐻

(
𝑆1
)
𝑝𝐻 (𝑆1)′|𝑆2 = 𝑓

(
𝑆1
)])

,

where �̃�1 = ∫ 𝑄(𝑆1, 𝑓 (𝑆1))𝑑𝑆1, so (C.2) is a conditional version of the original condition stated
by Newey (1997) without ℎ(𝑆2 − 𝑓 (𝑆1)). Assumption C.3 guarantees a fast-converging series
representation of the exercise boundary; that is, for 𝑓 (𝑆1) = 𝐸[𝑌 |𝑆1, 𝑆2 = 𝑓 (𝑆1)], a 𝑏(𝐻) exists
such that |𝑓 − 𝑝𝐻′𝑏(𝐻)|0 = 𝑂(𝐻−𝛼) as 𝐻 → ∞, for 𝛼 = 𝑠∕𝑁 > 1, where |𝑔|0 = sup𝑆1∈1

|𝑔(𝑆1)|.
Assumption C.4 imposes some important restrictions on the order 𝐻 of the polynomial basis and the
bandwidth ℎ of the kernel ℎ. These conditions result basically from reducing the effective number of
paths from 𝑀 to 𝑀ℎ in Newey’s conditions.

Continuation Value. In this case, the regressions are local versions of the LSM algorithm, fitting
directly the continuation value. The exercise boundary is now only defined implicitly by the value-
matching condition. We need to generalize our setup and assumptions to include in 𝑝𝐻 all elements
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in 𝑆, not just 𝑆1, which are used to approximate the continuation value 𝐶(𝑆1, 𝑆2), which is the new
target in the estimation. Then the identification condition (C.2) has to be replaced by

𝜆min
(
𝐸
[ℎ

(
𝑆2 − 𝑓

(
𝑆1
))

𝑝𝐻 (𝑆)𝑝𝐻 (𝑆)′
]) ≥ 𝜀 > 0 ∀𝐻,ℎ. (C.3)

Note that (C.3) requires that 𝜆min(∫ 𝑝𝐻 (𝑆1, 𝑓 (𝑆1))𝑝𝐻 (𝑆1, 𝑓 (𝑆1))′𝑄(𝑆1, 𝑓 (𝑆1))𝑑𝑆1) ≥ 𝜀 > 0, ∀𝐻 ,
implying 𝑓 (𝑆1) is not in the span of functions given by 𝑝𝐻 (𝑆1), for example. polynomials of finite
order. If continuation values are estimated to make exercise decisions, the consistency of price esti-
mates requires some control on the extrapolation to other regions, because the approximation of the
continuation value is not uniform in 𝑆, but only consistent around the exercise boundary. This result
can be achieved by using a fixed smoothing in the asymptotics, the local estimation giving more weight
to paths closer to the exercise boundary, but maintaining uniform convergence for all possible paths.
An alternative route is to ensure that the derivatives of the continuation-value function estimates are
in the (0, 1) interval in case of simple parameterizations such as a quadratic fitting, which has at most
one critical point in the relevant range. Then similar results to those in Theorem 4.3 and Corollary 4.4
would be obtained.

Proof of Theorem 4.3. Consider first the unfeasible estimate with the true 𝑓 inside ℎ,

�̃�1 = (𝐏′ℎ𝐏)−1𝐏′ℎ𝐘,

where ℎ = 𝑑𝑖𝑎𝑔{(𝑚)
ℎ

}𝑀
𝑚=1 and (𝑚)

ℎ
= ℎ(𝑆

(𝑚)
2 − 𝑓 (𝑆(𝑚)

1 )). We assume without loss of generality
that 𝐸[ℎ(𝑆2 − 𝑓 (𝑆1))𝑝𝐻 (𝑆1)𝑝𝐻 (𝑆1)′] = 𝐈𝐻 , with 𝐈𝐻 as the 𝐻-th order identity matrix, because its
smallest eigenvalue is bounded away from zero uniformly in 𝐻 and ℎ. Define �̃� = 𝐏′ℎ𝐏∕𝑀 ; then

𝐸

[‖‖‖�̃� − 𝐈𝐻
‖‖‖2
]
=

𝐻∑
𝑘=1

𝐻∑
𝑗=1

𝐸
⎡⎢⎢⎣
{

1
𝑀

𝑀∑
𝑚=1

𝑝𝐻
𝑘

(
𝑆
(𝑚)
1

)
𝑝𝐻
𝑗

(
𝑆
(𝑚)
1

)(𝑚)
ℎ

− 𝐼𝑗𝑘

}2⎤⎥⎥⎦
≤ 1

𝑀

𝐻∑
𝑘=1

𝐻∑
𝑗=1

𝐸
[
𝑝𝐻
𝑘

(
𝑆1
)2

𝑝𝐻
𝑗 (𝑆1)22

ℎ

]

≤ 1
𝑀ℎ

𝐸

[
𝐻∑
𝑘=1

𝑝𝐻
𝑘
(𝑆1)2

𝐻∑
𝑗=1

𝑝𝐻
𝑗 (𝑆1)2ℎ

]

≤ 1
𝑀ℎ

𝜁0 (𝐻)2 𝐸

[
𝐻∑
𝑗=1

𝑝𝐻
𝑗 (𝑆1)2ℎ

]

≤ 1
𝑀ℎ

𝜁0 (𝐻)2 𝐻 ∼ 𝐻3

𝑀ℎ

so that ‖�̃� − 𝐈𝐻‖ = 𝑂𝑝(𝐻1∕2(𝑀ℎ)−1∕2𝜁0(𝐻)) = 𝑂𝑝(𝐻3∕2(𝑀ℎ)−1∕2) = 𝑜𝑝(1), by Assumption C.4, so
the smallest eigenvalue of �̃� converges to 1.

Define 1𝑀 = 𝐼(𝜆(�̃�) > 1
2 ) = 1 + 𝑜𝑝(1). Then, given that the elements of 𝐸[𝜀𝜀′|𝑆] are bounded for

𝜀 = 𝐘 −𝐆, 𝐆 = (𝑔(𝑆(1)),… , 𝑔(𝑆(𝑀)))′, 𝑔(𝑆) = 𝐸[𝑌 |𝑆],
𝐸

[
1𝑀

‖‖‖�̃�−1∕2𝐏′ℎ𝜀∕𝑀
‖‖‖2 |𝑆

]
= 1𝑀𝐸

[
𝜀′ℎ𝐏

(
𝐏′ℎ𝐏

)−1 𝐏′ℎ𝜀|𝑆] ∕𝑀
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= 1𝑀𝑡𝑟
{ℎ𝐏

(
𝐏′ℎ𝐏

)−1 𝐏′ℎ𝐸
[
𝜀𝜀′|𝑆]} ∕𝑀

≤ 𝐶0ℎ
−11𝑀𝑡𝑟

{(
𝐏′ℎ𝐏

)−1 𝐏′ℎ𝐏
}
∕𝑀

≤ 𝐶0𝐻(𝑀ℎ)−1,

so that ‖�̃�−1∕2𝐏′ℎ𝜀∕𝑀‖ = 𝑂𝑝(𝐻1∕2(𝑀ℎ)−1∕2), and it follows that

1𝑀
‖‖‖�̃�−1𝐏′ℎ𝜀∕𝑀

‖‖‖ ≤ 1𝑀
{[(

𝜀′ℎ𝐏∕𝑀
)
�̃�−1∕2�̃�−1∕2 (𝐏′ℎ𝜀∕𝑀

)]}1∕2
= 𝑂𝑝(1)1𝑀

‖‖‖�̃�−1∕2𝐏′ℎ𝜀∕𝑀
‖‖‖ = 𝑂𝑝

(
𝐻1∕2 (𝑀ℎ)−1∕2

)
.

Now, writing �̃� = (𝑓 (𝑆(1)
1 ),… , 𝑓 (𝑆(𝑀)

1 ))′, with the matrix 1𝑀𝐏(𝐏′ℎ𝐏)−1𝐏′ℎ idempotent,

1𝑀‖�̃�−1𝐏′ℎ(�̃� − 𝐏𝑏(𝐻))∕𝑀‖ is bounded by

𝑂𝑝(1)1𝑀
((

�̃� − 𝐏𝑏(𝐻))′ℎ𝐏
(
𝐏′ℎ𝐏

)−1 𝐏′ℎ

(
�̃� − 𝐏𝑏(𝐻)) ∕𝑀)1∕2

= 𝑂𝑝

(
ℎ−1∕2) 1𝑀 ((

�̃� − 𝐏𝑏(𝐻))′ (�̃� − 𝐏𝑏(𝐻)) ∕𝑀)1∕2
= 𝑂𝑝(ℎ−1∕2𝐻−𝛼).

Then 1𝑀‖�̃�−1𝐏′ℎ(�̃� −𝐆)∕𝑀‖ = 𝑂𝑝(1)1𝑀‖𝐏′ℎ(�̃� −𝐆)∕𝑀‖, and

‖‖‖𝐏′ℎ

(
�̃� −𝐆

)
∕𝑀‖‖‖ ≤ ‖‖‖𝐏′ℎ

(
�̃� −𝐆

)
∕𝑀 − 𝐸

{
𝐏′ℎ

(
�̃� −𝐆

)
∕𝑀

}‖‖‖ + ‖‖‖𝐸 {
𝐏′ℎ

(
�̃� −𝐆

)
∕𝑀

}‖‖‖ ,

where

‖‖‖𝐸 [
𝐏′ℎ

(
�̃� −𝐆

)
∕𝑀

]‖‖‖ = 𝑂
(
ℎ2𝜁0 (𝐻)

)
= 𝑂

(
ℎ2𝐻

)
. (C.4)

Bound (C.4) follows because 𝑓 (𝑆1) = 𝐸[𝑔(𝑆)|𝑆2 = 𝑓 (𝑆1)] and 𝑔(𝑆) = 𝐸[𝑌 |𝑆], so that 𝐸[𝐏′ℎ(�̃� −
𝐆)∕𝑀] is

∫ ℎ

(
𝑆2 − 𝑓 (𝑆1)

) {
𝑔
(
𝑆1, 𝑓 (𝑆1)

)
− 𝑔

(
𝑆1, 𝑆2

)}
𝑝𝐻 (𝑆1)𝑄

(
𝑆2|𝑆1

)
𝑄(𝑆1)𝑑𝑆,

and we use that ||||∫ ℎ

(
𝑆2 − 𝑓 (𝑆1)

) {
𝑔
(
𝑆1, 𝑓 (𝑆1)

)
− 𝑔

(
𝑆1, 𝑆2

)}
𝑄
(
𝑆2|𝑆1

)
𝑑𝑆2

||||
≤ 𝐶0 ∫

(
𝑆2 − 𝑓 (𝑆1)

)2 ℎ

(
𝑆2 − 𝑓 (𝑆1)

)
𝑑𝑆2 = 𝑂

(
ℎ2) ,

uniformly in 𝑆1, by a second-order Taylor expansion of 𝑔(𝑆1, 𝑆2)𝑄(𝑆2|𝑆1) around 𝑆2 = 𝑓 (𝑆1), and
∫ ‖𝑝𝐻 (𝑆1)‖𝑄(𝑆1)𝑑𝑆1 = 𝑂(𝐻).

On the other hand,

𝐸
‖‖‖𝐏′ℎ

(
�̃� −𝐆

)
∕𝑀 − 𝐸

{
𝐏′ℎ

(
�̃� −𝐆

)
∕𝑀

}‖‖‖2
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≤ 1
𝑀

𝐸
[
𝑝𝐻 (𝑆1)′𝑝𝐻

(
𝑆1
)ℎ

(
𝑆2 − 𝑓 (𝑆1)

)2 {
𝑓 (𝑆1) − 𝑔(𝑆)

}2]
≤ 𝜁0 (𝐻)2

𝑀
𝐸
[ℎ

(
𝑆2 − 𝑓 (𝑆1)

)2 {
𝑓
(
𝑆1
)
− 𝑔(𝑆)

}2]
≤ 𝜁0 (𝐻)2 ℎ

𝑀
= 𝑂

(
𝐻2ℎ

𝑀

)
,

so that ‖𝐏′ℎ(�̃� −𝐆)∕𝑀 − 𝐸{𝐏′ℎ(�̃� −𝐆)∕𝑀}‖ = 𝑂𝑝(𝐻(ℎ∕𝑀)1∕2), and together with (C.4), they
imply ‖‖‖𝐏′ℎ

(
�̃� −𝐆

)
∕𝑀‖‖‖ = 𝑂𝑝

(
ℎ2𝐻 +𝐻 (ℎ∕𝑀)1∕2

)
.

Then, collecting terms, it follows that

1𝑀
‖‖‖�̃�1 − 𝑏(𝐻)‖‖‖ ≤ 1𝑀

‖‖‖�̃�−1𝐏′ℎ𝜀∕𝑀
‖‖‖ + 1𝑀

‖‖‖�̃�−1𝐏′ℎ

(
�̃� − 𝐏𝑏(𝐻)) ∕𝑀‖‖‖

+1𝑀
‖‖‖�̃�−1𝐏′ℎ

(
�̃� −𝐆

)
∕𝑀‖‖‖

= 𝑂𝑝

(
𝐻1∕2 (𝑀ℎ)−1∕2 + ℎ−1∕2𝐻−𝛼 + ℎ2𝐻 + 𝜁0 (𝐻) (ℎ∕𝑀)1∕2

)
= 𝑂𝑝

(
𝐻1∕2 (𝑀ℎ)−1∕2 + ℎ−1∕2𝐻−𝛼 + ℎ2𝐻

)
= 𝑜𝑝(1)

by Assumption C.4.
Now we wish to bound ‖�̃�1 − �̂�1‖. We first study ‖�̃� − �̂�‖. Then for points 𝐶

(𝑚)
∗ between 𝐶(𝑆(𝑚))

and �̂�(𝑆(𝑚)), we apply the mean value theorem and Cauchy–Schwarz inequality,

‖‖‖�̃� − �̂�‖‖‖ ≤ 𝜁0 (𝐻)2 1
𝑀

𝑀∑
𝑚=1

|||ℎ

(
𝐶
(
𝑆(𝑚)) − 𝐼

(
𝑆(𝑚))) −ℎ

(
�̂�
(
𝑆(𝑚)) − 𝐼

(
𝑆(𝑚)))|||

= 𝑂𝑝

(
ℎ−3∕2𝜁0 (𝐻)2

)( 1
𝑀ℎ

𝑀∑
𝑚=1

||||̇(
𝐶

(𝑚)
∗ ℎ−1

)||||2 1
𝑀

𝑀∑
𝑚=1

|||𝐶 (
𝑆(𝑚)) − �̂�

(
𝑆(𝑚))|||2

)1∕2

= 𝑂𝑝

(
ℎ−3∕2𝐻2𝜉

1∕2
𝑀

)
= 𝑜𝑝(1), (C.5)

by (4.4), noting that 1
𝑀

∑𝑀
𝑚=1 |𝐶(𝑆(𝑚)) − �̂�(𝑆(𝑚))|2 = ∫ |𝐶(𝑆(𝑚)) − �̂�(𝑆(𝑚))|2𝑑𝑄𝑀 (𝑆) =

𝑂𝑝(1) ∫ |𝐶(𝑆(𝑚)) − �̂�(𝑆(𝑚))|2𝑄(𝑆)𝑑𝑆 = 𝑂𝑝(𝜉𝑀 ), where 𝑑𝑄𝑀 is the empirical cdf of the paths 𝑆(𝑚)

and ̇ is the first derivative of , so that 1∗
𝑀

= 𝐼(𝜆(�̃�) > 1
2 )𝐼(𝜆(�̂�) >

1
2 ) = 1 + 𝑜𝑝(1).

Next, 𝐸[1∗
𝑀
‖�̂�−1∕2𝐏′(ℎ − ̂ℎ)𝜀∕𝑀‖2|𝑆] is

1∗
𝑀

𝐸
[
𝜀′
(ℎ − ̂ℎ

)
𝐏
(
𝐏′̂ℎ𝐏

)−1 𝐏′ (ℎ − ̂ℎ

)
𝜀|𝑆] ∕𝑀

= 1∗
𝑀

𝑡𝑟
{(ℎ − ̂ℎ

)
𝐏
(
𝐏′̂ℎ𝐏

)−1 𝐏′ (ℎ − ̂ℎ

)
𝐸
[
𝜀𝜀′|𝑆]} ∕𝑀

≤ 𝐶0ℎ
−21∗

𝑀
𝑡𝑟
{(

𝐏′̂ℎ𝐏
)−1 𝐏′𝐏

}
∕𝑀

≤ 𝐶0ℎ
−2𝐻∕𝑀,
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so that 1∗
𝑀
‖�̂�−1∕2𝐏′(ℎ − ̂ℎ)𝜀∕𝑀‖ = 𝑂𝑝(ℎ−1(𝐻∕𝑀)1∕2).

Finally

‖‖‖𝐏′ (ℎ − ̂ℎ

)
𝐆∕𝑀‖‖‖ ≤ 𝜁0 (𝐻) 1

𝑀

𝑀∑
𝑚=1

|||(ℎ

(
𝑆(𝑚)) − ̂ℎ

(
𝑆(𝑚)))|||

= 𝑂𝑝

(
𝐻ℎ−3∕2𝜉

1∕2
𝑀

)
,

reasoning as in the proof of (C.5). Then ‖�̂�1 − �̃�1‖ = 𝑂𝑝(𝐻2ℎ−3∕2𝜉
1∕2
𝑀

+ ℎ−1(𝐻∕𝑀)1∕2) = 𝑜𝑝(1) by
condition (4.4) and Assumption C.4.

Therefore,

1∗
𝑀 ∫

[
𝑝𝐻 (𝑆1)

(
�̃�1 − 𝑏(𝐻)) + 𝑝𝐻 (𝑆1)

(
�̂�1 − �̃�1

)
+ 𝑝𝐻 (𝑆1)′𝑏(𝐻) − 𝑓 (𝑆1)

]2
𝑄(𝑆1)𝑑𝑆1

≤ 1∗
𝑀
‖‖‖�̃�1 − 𝑏(𝐻)‖‖‖2 + 1∗

𝑀
‖‖‖�̂�1 − �̃�1

‖‖‖2 + 1∗
𝑀 ∫

[
𝑝𝐻 (𝑆1)′𝑏(𝐻) − 𝑓 (𝑆1)

]2
𝑄(𝑆1)𝑑𝑆1

= 𝑂𝑝(𝐻 (𝑀ℎ)−1 + ℎ−1𝐻−2𝛼 +
(
ℎ2𝐻

)2) + 𝑂𝑝

(
𝐻4ℎ−3𝜉𝑀 +𝐻(𝑀ℎ2)−1

)
= 𝑜𝑝(1), (C.6)

under Assumption C.4, and we conclude ∫ [𝑓 (𝑆1, �̂�1) − 𝑓 (𝑆1)]2𝑄(𝑆1)𝑑𝑆1 = 𝑜𝑝(1) as 1∗
𝑀

→ 1 with
probability approaching one, and the proof is completed. □

Proof of Corollary 4.4. The proof would proceed similarly, but to compare the feasible and unfeasible
estimates, �̃�1 and �̂�1, respectively, evaluate (C.6) with 𝜉𝑀 replaced by the bound given in Theorem 4.3
for the 𝐿2 error of 𝑓 , which itself depends on 𝜉𝑀 of the original global estimate of 𝐶 . □


