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Abstract

Computer viruses are evolving by developing spreading mechanisms based on
the use of multiple vectors of propagation. The use of the social network as an
extra vector of attack to penetrate the security measures in IP networks is im-
proving the effectiveness of malware, and have therefore been used by the most
aggressive viruses, like Conficker and Stuxnet. In this work we use interdepen-
dent networks to model the propagation of these kind of viruses. In particular,
we study the propagation of a SIS model on interdependent networks where
the state of each node is layer-independent and the dynamics in each network
follows either a contact process or a reactive process, with different propagation
rates. We apply this study to the case of existing multilayer networks, namely a
Spanish scientific community of Statistical Physics, formed by a social network
of scientific collaborations and a physical network of connected computers in
each institution. We show that the interplay between layers increases dramat-
ically the infectivity of viruses in the long term and their robustness against
immunization.
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1. Introduction

In response to a request from the UK Ministry of Defense, Anderson and
coworkers estimated the global cost of malware at US$370 millions in the 2010
year [1]. In this report, they explain that some of the reasons of the inefficiency
of war against cybercrime is that malware is global and have strong externalities.
In this sense, during the last years computer viruses have developed complex
spreading mechanisms that allow them to propagate using several mechanisms.
There are noted examples, like Conficker [2] or Stuxnet [3], which had an enor-
mous impact in the Internet network and use these new methods of spreading.
For these kind of viruses the propagation is easy and quick within a Local Area
Network (LAN). However, effective security measures [4] limit the propagation
of these viruses to other LANs. To overcome this limit, these viruses also make
use of other secondary vector of propagation such as the social relations be-
tween humans. Due to the complexity of the virus propagation and infection,
re-infection is quite common after virus removal, so it is technically complicated
to clean a whole LAN quickly enough to stop the re-infection.

Contagion and epidemic spreading have been widely studied in the scientific
literature, usually considering only one network [5, 6, 7, 8, 9, 10, 11, 12] and,
more recently, using several interconnected layers of networks and multiplexes
[13, 14, 15, 16, 17, 18] and several infectious agents [19, 20]. However, none
of these formalisms suits the case we are dealing with, namely a single disease
which spreads over a set of agents which are interconnected through several
networks, each with a different propagation regime, but in which the state of
each agent in every network must be the same. This scenario is quite common in
disease propagation. Opinions may circulate around society, but each network of
social ties (family, close friends, work-mates, followees,. . . ) affects differently our
opinion depending on the contact rate and our trust. Similarly, human diseases
such as flu or venereal diseases propagate with rates of infection that clearly
depend on social relationships. In the case of malware spreading computers are
usually connected within a local network and also through a social network of
contacts that involve receiving corporate, private and spam e-mails or plugging
foreign pen drives in the computers.

In this paper we develop a new formalism that applies to the study of the
epidemic spreading in these kind of systems. These can be understood as a
special subset of interdependent networks [21] with no explicit links joining the
networks but where the state of any node must be the same in every layer. 1 We
will hereafter call them state-interdependent networks (SINs). Our case study
is the propagation of a SIS epidemic model in SINs. We show that the disease
dynamics can be described in terms of a single contagion matrix that subsumes
the contagion processes of all layers. This matrix can be used to calculate
any node or link-dependent magnitude concerning the epidemic spreading such

1Other references to previous work and nomenclature can be found in [22].
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as the centrality of nodes or links, the community structure of the disease,
etc. Finally, based on our formalism, we show the effect of some immunization
strategies to slow down or control the epidemic dynamics. An important part of
our analysis includes the study of an actual SIN, a Spanish scientific community
of Statistical Physics which is connected through the social network of scientific
collaborations and the physical network of the university LANs, and simulate
the spreading process of a SIS disease.

2. The model

Let us consider M layers of networks formed each one by N nodes. The

usual adjacency matrix is replaced by a set of matrices, A(α) =
(
A

(α)
ij

)
with

α = 1, . . . ,M , that specifies the links between nodes in each layer α. Note that,
in these SINs, the state of nodes with the same label must be the same, and the
change in the state of one node in one layer changes automatically his state in
all other layers (see figure 1).

In these SINs we will study a SIS epidemic spreading in which the contagion
in every layer α may propagate differently. We will assume that the epidemic
spreading in each layer may follow a contact process, a reactive process or
something in between [9]. To this end we define the contagion matrix C(α) =

(C
(α)
ij ) in layer α as

C
(α)
ij = β

(α)
i

1−

(
1−

w
(α)
ij

w
(α)
i

)λ(α)
i

 , (1)

where w
(α)
ij stands for the weight of the link between node i and j, w

(α)
i =∑

j w
(α)
ij is the total strength [27] of node i, β

(α)
i is a constant between 0 and 1,

and λ
(α)
i is the parameter that defines the contagion process for node i, which

varies from a reactive process for the limit λ
(α)
i → ∞ to a contact process for

λ
(α)
i = 1.

The system state is described by the vector state x = {x1, . . . , xN}, with
xi = 0 when node i is susceptible and xi = 1 when is infected. The transition
rate for node i from infected to susceptible is

q−i (x) = µxi (2)

where µ is the recovery rate, which we assume layer-independent since the same
healing mechanisms are available to all nodes (this assumption can, however,
be easily relaxed). On the other hand, the transition rate from susceptible to
infected is

q+i (x) = σ(1− xi)

1−
M∏
α=1

N∏
j=1

(1− C(α)
ji xj)

 , (3)
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Figure 1: State interdependent networks (SINs), where the state of each node in every layer
is the same but the interactions within each layer may differ. Infected nodes are represented
in black and susceptible nodes in white.

where σ has units of [time]−1. In expression (3), all the possible contagions
from the infected neighbors of node i in all layers have been considered. With
these transition rates we can express the epidemic model as a Markov process
in continuous time following the master equation

∂P (x, t)

∂t
=

N∑
i=1

{[
q+i (fi(x)) + q−i (fi(x))

]
P (fi(x), t)

−
[
q+i (x) + q−i (x)

]
P (x, t)

}
,

(4)

where fi(x1, . . . , xi, . . . , xN ) = (x1, . . . , 1−xi, . . . , xN ) is the flip operator of the
i-th component, that changes the state of node i from susceptible to infected
and vice versa.

Expressions (1) and (3) account for independent contagion processes that
take place in every layer concurrently. This assumption is valid in the context of
modern malware spreading, where no competition between layers exists. Each
layer contributes equally to the contagious process and no dilution between
layers is accounted for explicitly.

Notice that the definition of expression (3) is such that C
(α)
ji must be a

probability, ranged between 0 and 1, and not a probability rate, in order for
q+i (x) to be well defined. From now on, we simply assume that σ = 1, which
amounts to choosing an appropriate time scale in the master euqation (4). As
a result, µ represents the ratio between the transtion rates from infected to
susceptible and viceversa, without loss of generality.

2.1. Effective contagion matrix

Since the variables xj are binary with xj ∈ {0, 1}, it holds that 1−C(α)
ji xj =

(1−C(α)
ji )xj , which yields

∏
α

∏
j(1−C

(α)
ji xj) =

∏
j

∏
α(1−C(α)

ji )xj . This allows
the definition of the effective contagion matrix,

C̄ij ≡ 1−
M∏
α=1

(1− C(α)
ij ), (5)
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and therefore the transition rate q+i (x) is expressed as

q+i (x) = (1− xi)

1−
N∏
j=1

(1− C̄jixj)

 . (6)

Notice that expression (6) has no explicit layer dependence, and thus C̄ can be
interpreted as the contagion matrix that would render the same node dynamics
in a single network as the one defined in the SINs.

Since the dynamics on SINs is ruled by the effective contagion matrix (5),
all the system properties must be obtained from C̄. For instance, its maximum
eigenvalue Λ̄max is related to the onset of the disease [11, 9]. The left eigenvector
associated to Λ̄max, p = (p1, . . . , pN ), approximates the expected probabilities
for node i to be infected in the limit of (independent) small probability [9] and
is also related to the dynamical influence of each node to the rest of the network
in the contagion process [12]. The maximum eigenvalue is bounded in every
layer α by the expression

Λ(α) ≤ p(α)C̄q(α)

p(α)q(α)
≤ Λ̄max ≤

p
(∑

α C
(α)
)
q

pq
≤
∑
α

Λ(α) (7)

where q is the dual right eigenvector of p and Λ(α) is the maximum eigenvalue
of C(α) with left eigenvector p(α) and dual right eigenvector q(α).

Expression (7) renders maxα(Λ(α)) ≤ Λ̄max ≤
∑
α Λ(α). These bounds im-

pose faster dynamics, more infectious results and lower epidemic onsets for a
virus propagating in the SINs than in any isolated layer. The bounds on Λ̄max

are a consequence of the model we are using, which assumes that the spread-
ing processes are independent within each layer, and that there is no dilution
between layers when coupling the networks by the nodes. Under different as-
sumptions these bounds may not hold.

Expression (5) applied to the case of two layers renders

C̄ij = C
(1)
ij + C

(2)
ij − C

(1)
ij C

(2)
ij . (8)

Since 0 ≤ C(α)
ij ≤ 1, it follows that max

(
C

(1)
ij , C

(2)
ij

)
≤ C̄ij ≤ min

(
1, C

(1)
ij + C

(2)
ij

)
,

which can be easily extended to the general SIN case by induction,

max
α

(
C

(α)
ij

)
≤ C̄ij ≤ min

(
1,
∑
α

C
(α)
ij

)

There are two special cases that we would like to discuss in order to give
some insight on the interplay of just two layers. In the case that both layers
have exactly the same network topology (i.e., the same adjacency matrix A)
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Figure 2: (Color online) Social network of the Spanish Statistical Physics scientific community
(FISES). Links represent collaborations between authors, the size of each node the number of
links and the color indicates the affiliation. Therefore, links joining nodes of different colors
show collaborations between research institutions.

and layer 1 follows a reactive process with C(1) = A, then for any C(2) = (C
(2)
ij )

satisfying C
(2)
ij = bijAij we find from equation (8) that

C̄ij = Aij + bijAij − bijA2
ij = Aij(1 + bij − bij) = Aij ,

where we have used that A2
ij = Aij . Therefore, since C̄ = C(1) in this particular

case, the effect of the second layer in the contagion matrix (and, therefore, in the
epidemics dynamics) vanishes. This example, in which layer 2 has no influence
whatsoever in the dynamics of the SINs, shows that the effects on the dynamics
of this system are not as simple as the addition of each layer effects. The second
case is the only one in which the contagion matrix of the system is the sum
of the contagion matrices of each separated network: two layers in which the
intersection of the sets of edges of each layer is the empty set (i.e., there are

no common links in both layers), and therefore C
(1)
ij C

(2)
ij = 0 for every pair of

nodes of the system.

3. University LANs and networks of scientific collaborations

Firms are very cautious in sharing information that would make them seem
vulnerable to rivals or potential shareholders and hackers. Thus public data are
rara avis in this field of research. Instead of comparing model simulations to
real data we can use the model to predict the hypothetical spreading of modern
malware over real SINs that resemble the main features exploited by these kind
of virus. Simulations of epidemic spreading in real networks have been developed
in, for example, [23, 24, 25, 26].
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In this spirit, we consider the tandem formed by institutions’ LANs and
scientific collaborations as a paradigmatic example of SINs. Usually, universities
have one or more LANs, and each university connects its own LANs using IP
switches or routers. The internal IP-nodes of each university are considered
trusted, whereas the external IPs are considered possibly dangerous. Therefore,
the connections with other universities or external LANs use secured links with
firewalls as a way to implement the perimetral security controls, as well as IDS
(intrusion detection system) or IPS (intrusion prevention system) to control the
traffic coming to the internal LANs. With these techniques research institutions
avoid most of the external attempts of malware infection.

This strategy of prevention by isolating small networks breaks down when
we consider the social interactions of scholars and researchers. In particular,
scientific collaborations involve a wide scope of social interactions, such as e-
mails, virtual or face-to-face meetings, research visits, invited talks, or confer-
ence attendances, among others. Some of these interactions include connecting
a foreign laptop to a local network (by wire or Wi-fi connections) or connecting
a third party’s pen drive to a computer. For instance, some authors relate the
origin of the infection of Stuxnet with one SCADA (supervisory control and
data acquisition) conference, as this SCADA systems were the primary target
of the infection. It was attached to pen drives that also contained software that
was distributed in the conference [29].

3.1. The FisEs community

For these reasons, and since the information about collaborations and affilia-
tions is publicly available, we have chosen the Spanish Statistical Physics (FisEs)
research community. Eighteen periodic meetings since 1987 in a widespread of
host universities have consolidated this community over the years 2. In this
investigation we have used the contributions specified in the programs of the
last two meetings to build up the network of scientific collaborations. In this
network (the social network, in the following) two authors are linked if they have
at least one common contribution to any of the two meetings. In the network
of LANs (the physical network, from now on) two authors are linked if they are
affiliated to the same university and department or to the same research center.
Notice that the physical network is formed by disconnected cliques.

We obtained 345 contributions from 687 authors distributed in 105 affili-
ations, yielding 105 disconnected cliques in the physical network, the largest
containing 39 nodes. With respect to the social network, there are 73 con-
nected components, the largest formed by 188 nodes. One of the most striking
features of the coupled network is that the number of connected components
reduces drastically to 8, and the largest component has 657 nodes, almost the

2http://www.fises.es
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Figure 3: (Color online) Density of infected nodes for large t of the coupled network (ρ) in
terms of the contagion rates of the social (β1) and the physical (β2) network, with µ = 0.5.
See text for details.

total number of the considered nodes 3. Notice that, by coupling two sparsely
connected networks we have obtained a network that reduces in one order of
magnitude the number of connected components and with a largest component
which is of the order of the total number of nodes. Figure 2 shows the intercon-
nections that the social network adds to the physical network (see caption for
details). A remarkable result is that the combination of two highly disconnected
networks renders an almost fully connected, highly clustered network.

3.2. Numerical results

Since each layer may follow a different contagion process, the time scales of
q+i and q−i defined in (2) and (3) may vary considerably. To account for this
issue we numerically simulated trajectories x(t) associated to the embedded
Markov chain of the continuous-time Markov process defined in (4) (see [28]),
and averaged over 200 realizations for large t. All simulations start from the
fully infected state to try to avoid more frequently the absorbing state of the
system where all nodes are susceptible to the infection.

Figure 3 shows the density of infected nodes for large t in terms of the conta-
gion rates of the social and the physical network. We have considered that the
social meeting spreading mechanism can be modeled by a contact process since
the infectivity of each infected node is divided among its neighbors. In the phys-
ical layer, however, the virus is constantly attacking all node’s neighbors with
the same intensity, regardless its connectivity, and therefore we have modeled
this layer as a reactive process. The vulnerability of the whole system under
this kind of malware becomes apparent in figure 4, where the density of infected
nodes, ρ, vs. the density of immunized nodes, φ, is shown for different values

3Data is available at http://www.uam.es/sara.cuenda/research/fises_data.tgz.
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Figure 4: Density of infected nodes ρ, vs. density of immunized nodes φ. Triangles (4)
stand for an immunization strategy based on the strength of nodes in the contagion matrix C̄,
whereas circles (◦) use the left eigenvector centrality of C̄. The contagion rates are β1 = 1.0,
β2 = 0.0 (blue); β1 = 0.0, β2 = 0.027 (green) and β1 = 0.18, β2 = 0.02 (red). Inset: The
same, with contagion rates β2 = 0.2 and β1 = 0.0 (magenta); β1 = 0.1 (blue); β1 = 0.2
(green) and β1 = 0.5 (red).

of the contagion rates β1 and β2 (see caption for parameter details). We have
studied the effect on ρ of the immunization of a fraction of nodes φ using two
different strategies: by immunizing the “strongest” node (the one with higher
strength si =

∑
j C̄ij) and by protecting the one with largest left eigenvector

centrality in the largest connected component [12]. The procedure is as follows:
in each step, if ` is the node with the greatest value of strength or eigenvector
centrality (depending on the strategy that we are using) 4, we immunize it by
making C̄ij = 0 for all i = ` or j = `; finally, we calculate ρ for large t and
proceed with the next node.

The results for the two strategies are very similar, as can be seen in figure
4. In its main panel we compare the effect of immunization in the coupled
and the uncoupled networks, choosing contagion rates such that all systems
have the same density of infected nodes ρ for φ = 0. Notice the differences in
the choice of rates β1 and β2 in order to achieve this condition. The inset of
figure 4, where several immunization processes have been simulated for a fixed
value of β2, shows that the physical layer, with high connectivity clusters and
a reactive process, confers on the virus great spreading capacity, and the social
layer enhances this robustness by adding links that let the virus spread to small
institutions where otherwise the infection would have died out faster.

4. Conclusions

We have shown that the dynamics of a SIS contagion process in SINs where
the state of nodes must be layer-independent is equivalent to the spreading in a

4If several nodes have the greatest value, we choose one of them randomly.
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mono-layer which is governed by the effective contagion matrix C̄, which allows
to treat the epidemic spreading as in a single network without introducing any
approximation. We can therefore apply any of the previous works regarding SIS
epidemics spreading on networks available in the literature [5, 6, 7, 8, 9, 10, 11,
12].

We chose the pair formed by the universities LANs and the scientific collab-
orations as a paradigmatic example of the interplay between these two layers in
the propagation of recent computer viruses. The construction of these networks
must be understood as a way to obtain existing SINs which partially resemble
the spreading mechanism of modern malware. This mechanism focuses on the
multilayer feature of the system in order to connect small networks that other-
wise would be isolated (both in the social and the physical network). In fact,
we have not included other layers that would increase the connectivity among
the researchers and add more nodes to interact with, increasing the infectivity
of the disease. However, as we show in the numerical results, the two layers
considered in our study are enough to dramatically increase the vulnerability of
the system to infections. This result is in agreement with previous works that
study percolation in multilayer networks [13] and multiplexes [30].

The interdependent networks formalism developed in this investigation in
which the state of each node is the same in every layer can be extended to
the study of the spreading of human and animal diseases, the propagation of
memes, opinions, rumors, bankruptcies and other situations where agents inter-
act with other agents in several manners but the state of each agent is uniquely
determined at every moment.

The present work was originated in the study of malware spreading, where
independent contagion processes take place in every layer concurrently. Despite
of this, the methodology of the effective contagion matrix developed in this
work can be applied to other approaches in which such co-ocurrence is limited
or absent. The results of such studies will be addressed elsewhere.

We appreciate the useful comments from Jose A. Capitán. We also want
to thank the financial support of MINECO through grants MTM2012-39101
for J.G. and FIS2011-22449 (PRODIEVO) for S.C., and of CM through grant
S2009/ESP-1691 (MODELICO) for J.G. and S.C.
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