

Grado en Fisioterapia

Trabajo Fin de Máster

Efectos de la edad y el género en la rotación axial lumbar completa de personas sanas

Alumno: Ángel Manuel Troncoso Rodríguez

Tutor: Dr. Néstor Pérez Mallada

Madrid, julio de 2019

<u>ÍNDICE</u>

1.	Resumen	4
2.	Abstract	5
3.	Tabla de abreviaturas	6
4.	Antecedentes y estado actual del tema	7
5.	Estrategia de búsqueda y selección de estudios	16
6.	Objetivos del estudio	18
7.	Hipótesis	19
8.	Metodología	20
	8.1. Diseño	20
	8.2. Sujetos de estudio	21
	8.3. Variables	23
	8.4. Fases del estudio y procedimiento de recogida de datos	24
	8.5. Análisis de los datos	28
	8.6. Consideraciones éticas	30
9.	Resultados	31
10.	Discusión	90
11.	Conclusiones	95
12.	Bibliografía	96
13	Δηργος	100

1. Resumen

Antecedentes: la biomecánica lumbar se ha estudiado en numerosas ocasiones

debido a la alta prevalencia y recurrencia de la patología lumbar tanto en las AVDs como

a nivel laboral, donde la repercusión económica por incapacidad es muy alta. La rotación

axial lumbar es, probablemente, el movimiento más lesivo sobre todo a nivel discal, y más

aún si se combina con flexión de tronco, convirtiéndose en un factor predisponente en la

etiología y aparición del dolor lumbar.

Objetivos: determinar la cinemática de la rotación axial lumbar (ROM, Velocidad y

COV) y su relación según edad y género en personas asintomáticas.

Metodología: se utilizó una muestra de 20 sujetos sanos (50% hombres, 50%

menores de 40 años) para determinar en sedestación (bloqueo de la pelvis en neutro) los

valores de la rotación axial lumbar completa en relación al ROM derecho e izquierdo, a la

velocidad de ejecución derecha e izquierda y a sus COV de ROM Y Velocidad respectivos.

Se utilizó un dispositivo de medición inercial colocado a nivel de L1, Hawk, el cual ya ha

sido validado en otros estudios.

Resultados y conclusiones: los valores obtenidos de las variables cinemáticas

estudiadas indicaron que no existen diferencias estadísticamente significativas ni en

función de la edad ni del género. Sin embargo, se obtuvieron mínimas diferencias: los

hombres alcanzaron mayores valores medios que las mujeres en el ROM, Velocidad, y

COV de Velocidad derecha, mientras que fue menor en el COV del ROM y de la Velocidad

izquierda. Por otro lado, el envejecimiento provoca una disminución del ROM, Velocidad,

COV ROM derecha y COV Velocidad izquierda, a la vez que un aumento del COV ROM

izquierdo y COV Velocidad derecha.

Palabras Clave: edad, sexo, lumbalgia, ROM, Velocidad.

4

2. Summary

Background: Lumbar biomechanics has been studied on numerous occasions due to

the high prevalence and recurrence of lumbar pathology in both ADLs and work, where the

economic impact due to disability is very high. Axial lumbar rotation is probably the most

damaging movement especially at the disc level, and even more so if it is combined with

trunk flexion, becoming a predisposing factor in the etiology and occurrence of low back

pain.

Objectives: to determine the kinematics of lumbar axial rotation (ROM, Speed and

VOC) and its relation according to age and gender in asymptomatic persons.

Methodology: a sample of 20 healthy subjects (50% men, 50% under 40 years of age)

was used to determine in sitting position (pelvic block in neutral) the values of the complete

lumbar axial rotation in relation to the right and left ROM, at the right and left execution

speed and their respective ROM and Speed VOCs. An inertial measurement device placed

at the level of L1, Hawk, was used which has already been validated in other studies.

Results and conclusions: the values obtained from the kinematic variables studied

indicated that there are no statistically significant differences neither in terms of age nor

gender. However, minimal differences were obtained: men achieved higher mean values

than women in the ROM, Speed, and VOC of right speed, while it was lower in the VOC of

the ROM and the left speed. On the other hand, aging causes a decrease in ROM, Speed,

COV ROM right and COV Speed left, at the same time as an increase in left VOC ROM

and VOC Speed right.

Keywords: age, sex, low back pain, ROM, Speed.

5

3. Tabla de abreviaturas

- AVDs: actividades de la vida diaria.

- COV: coeficiente de variación.

- COV ROM: coeficiente de variación del rango de movimiento.

- IMU: unidad (sistema) de medición inercial.

- MMSS: miembro superior.

- **ROM:** rango de movimiento.

- >: mayor.

- >: menor.

4. Antecedentes y estado actual del tema

El raquis lumbar se engrana dentro de una estructura formada por una unidad funcional lumbo-sacro-coxígea-pélvica (1), ya que su desarrollo embriológico es común, su funcionamiento biomecánico similar y presenta una estructura neuromioesquelética y ligamentosa relacionadas entre sí, de tal manera que una alteración a nivel de cualquier elemento de este engranaje funcional podrá repercutir directamente en la zona lumbar. De esta forma, álgias crónicas e inespecíficas en este segmento raquídeo pueden tener su explicación comprendiendo mejor el funcionamiento de éste concepto de unidad funcional. De igual forma, la fascia toracolumbar también puede repercutir en este tipo de patologías, donde gracias a sus inserciones se van a conectar espinosas sacras con MMSS (dorsal ancho) y con zona abdominal (aponeurosis), por lo que una debilidad muscular aquí provocará un desequilibrio estructural y biomecánico posterior (aumento de la lordosis lumbar, ...) (2). Las estructuras antes mencionadas se van a encargar de dar soporte y elasticidad al segmento lumbar para adaptarse a los cambios por exigencias funcionales (posturales, compensatorios de cargas y reducción del ROM como acción preventiva por lesión estructural) (3).

La inervación de la columna lumbar (2) corre a cargo del ramo posterior del nervio raquídeo (rama posterior del tronco común) y del nervio sinovertebral de Luschka (ramo recurrente del nervio raquídeo).

Durante la sedestación (posición de nuestro estudio), el trabajo por parte del psoas, musculatura abdominal, torácica y de la capa profunda lumbar, junto con la tensión ligamentaria suficiente, va a provocar el mantenimiento de la postura correctamente y el centro de gravedad adecuadamente (1,5).

La apófisis articular inferior lumbar tipo se caracteriza porque su carilla articular presenta una orientación hacia fuera y un poco hacia delante. En cada segmento lumbar, ambas articulaciones tienen que tener la misma inclinación, provocándose cuando una orientación es más frontal que la otra, que en dicho nivel y en el superior se produzca una mayor rotación en cada movimiento de flexión, así como una mayor incidencia de procesos artrósicos y herniaciones discales. Estas articulaciones absorben parte de las presiones que recibe la columna y pueden llegar a reducir la movilidad del disco intervertebral hasta

un 25%, por lo que pueden convertirse en un importante elemento protector del mismo, así como reductor de la rotación axial objeto de este estudio.

El disco intervertebral presenta un alto contenido acuoso en su núcleo (60%-90%) gracias a la masa de proteoglicanos que tiene en su núcleo, dando lugar a una sustancia gelatinosa central capaz de absorber presiones. Por otro lado, las fuerzas de compresión y de tracción son bien resistidas por el anillo fibroso del disco, mientras que las de cizallamiento son mal toleradas (rotaciones axiales), por lo que los esfuerzos y el envejecimiento tienden a degenerar tanto al anillo fibroso (se reduce la cohesión entre sus laminas) como al núcleo (disminución de la macroproteína del núcleo y sus enlaces). El mecanismo que más lesión va a producir es el de torsión o rotación axial y en los discos más bajos, especialmente a partir de los 16º de rotación axial lumbar. (2).

Durante la posición sedente, la presión intradiscal es 4,5 veces superior a la de decúbito (2). Así, Kapandji (7), en su cuaderno de fisiología articular indica que para aislar la rotación axial completa dorsolumbar hay que hacerla partiendo desde un extremo al otro, en posición sedente, intentando tener estable la línea de los hombros sobre el tórax, y con carga simétrica en las tuberosidades isquiáticas, ya que la pelvis se estabiliza mucho más cuando las caderas están flexionadas, mientras que las posibilidades dinámicas del raquis lumbar quedarán muy reducidas en función de la tensión del suelo pélvico y de la musculatura abdominal.

A nivel biomecánico, la rotación axial del raquis lumbar se dará en plano transversal y eje vertical, de tal manera que (6):

- El cuerpo de la vértebra superior gira sobre la inferior en el sentido de la rotación.
- La apófisis transversa del lado de la rotación se posterioriza.
- La apófisis espinosa se desplaza hacia el lado opuesto a la rotación.
- Se produce cizallamiento en el anillo fibroso (7) y aumenta la presión intradiscal sobre el núcleo.
- Los límites de la rotación axial vendrán condicionados principalmente por las apófisis articulares, las fibras del disco intervertebral y por el ligamento intertransverso.

De manera activa, la rotación sobre el eje raquídeo (7) vendrá dada por los músculos de las correderas vertebrales y los músculos anchos del abdomen, de tal forma que la contracción unilateral de los músculos de estas correderas ejerce un ligero efecto rotador, siendo el transverso espinoso el que toma mayor protagonismo rotacional. Por otro lado, durante la rotación del tronco actuarán de forma sinérgica tanto el oblicuo menor homolateral como el oblicuo mayor contralateral a la dirección de la rotación.

El raquis lumbar presenta mayor movilidad en el plano sagital (flexión y extensión), mientras que en los planos coronales y transversales (lateroflexión y rotaciones axiales) aparecen mayores limitaciones. Su estabilidad vendrá dada por la horizontalidad de la base del sacro y la pelvis (7), el grado de lordosis lumbar y el ángulo lumbosacro. Además de esto, se ha visto que la musculatura isquiosural puede afectar a la pelvis (8), de tal manera que una insuficiente extensibilidad de aquella está relacionada, según otros estudios, con limitaciones de la cinemática de la marcha, algias lumbares, desalineaciones raquídeas y cambios en el ritmo lumbopélvico.

Corkey et al. (9) indican que el control motor del tronco puede verse alterado por alguna patología asociada en las extremidades, como el síndrome fémoropatelar. Por tanto, el complejo lumbo-pélvico-femoral se puede considerar como una única entidad funcional, que afecta directamente al equilibrio del raquis y la postura en general (10), por lo que la posición pélvica y la lordosis funcional que se obtenga en sedestación (posición de nuestro estudio) influirá en el ROM de la rotación axial lumbar (objeto de nuestro estudio).

Para Gómez-Conesa (11), la postura adoptada para realizar un trabajo puede relacionarse con un aumento en el riesgo de lesiones. Así, el movimiento repetitivo de rotación axial se convierte en el mayor factor de riesgo de lesión lumbar (12). Si además, se acompañara de flexión, se incrementa por seis el riesgo de padecer lesión lumbar (13). Esta repetitividad en la torsión de tronco, cuando se asocia con otras patologías vertebrales (osteoporosis, procesos reumáticos, ...) también aumentará el riesgo de cronicidad (12).

Los estudios sobre los perfiles sagitales lumbares indicaron que cuando aparecen sobrecargas en columnas desequilibradas se puede provocar dolor y patología funcional (14), por lo que los patrones cinemáticos pueden quedarse alterados. Para Lee et al. (14), el envejecimiento en relación a la degeneración vertebral y discal es un factor importante para los perfiles sagitales lumbares, concluyendo que la lordosis lumbar disminuye al pasar de bipedestación a sedestación y que la flexibilidad de la columna lumbar superior es mayor en individuos jóvenes, mientras que los cambios lordóticos en sedestación se concentran en la región inferior respecto al grupo de mayor edad.

Para Lazennec et al. (15), las personas con edad avanzada o con postura sagital anormal pueden tener un rango de movimiento funcional altamente deteriorado como consecuencia de este complejo espino-pélvico-femoral.

Peydro et al. (16) consideran que para obtener información más exacta de la alteración del movimiento funcional hay que analizar el estudio de un gesto por fases (16). Sin embargo, existen otros elementos factoriales que también pueden alterar el valor normal de una medición, como el dolor, que son difícilmente controlables. El dolor lumbar en pacientes sintomatológicos provoca una disminución del ROM lumbar, de la velocidad angular del tronco y de su aceleración como consecuencia de la lentitud con que se realiza el gesto para evitar la aparición de la sensación dolorosa. Así mismo, indica que en pacientes patológicos estará aumentado significativamente el tiempo empleado en la realización de su gesto. También se encuentra que la menor repetitividad del gesto solicitado en los pacientes con lumbalgia puede ser debida a la continua búsqueda de nuevas estrategias para reducir el dolor desencadenado por el movimiento.

Por otro lado, el miedo relacionado con el dolor recientemente ha sido relacionado (2019) con la patología lumbar crónica por Matheve et al. (17), el cual indica una serie de consideraciones interesantes. Recoge que este miedo al dolor puede dar como resultado un comportamiento de movimiento protector evitativo, realizado de forma lenta e imprecisa (16) por temor a reproducir o empeorar el dolor ya existente y asociado a un ROM activo reducido aunque no se aprecie daño tisular claro. Si los pacientes no recuperan su movimiento normal después de una lumbalgia aguda, pero mantienen esa actitud de movimiento protector, se puede provocar una sobrecarga subóptima del raquis que a su vez puede contribuir a la cronicidad de la lumbalgia. El miedo relacionado con el dolor puede extenderse a movimientos propioceptivamente similares al movimiento inicial doloroso, ya que un estímulo que es similar al original que provoca el miedo, también

provocará una repuesta de miedo. Esto puede provocar que una experiencia previa de dolor lumbar a causa de una maniobra de elevación con giro pueda originar que la rotación en sí misma se asocie con dolor y, consecuentemente, crear un comportamiento defensivo que haga que la rotación axial lumbar sea deficiente. También es condicionante para el sujeto con episodios antiguos de lumbalgia el tipo de información que por nuestra parte se le de para realizar la acción a valorar, ya que quedarán influenciados y podrían provocar un movimiento protector con un ROM para la rotación axial restringido en el caso de que, por nuestra mala información para realizar la tarea específica, se provoque miedo al dolor. En consecuencia, tanto la similitud propioceptiva como la nocividad percibida influirán directamente en el ROM lumbar.

Por otro lado, la alta prevalencia del dolor lumbar ha provocado que se llegue a considerar que tiene características de epidemia en las sociedades más desarrolladas, indicando además, la relación directa existente entre episodio previo de dolor lumbar y la cronicidad y recurrencia de la lumbalgia, por lo que establecer un marco comparativo de normalidad podría ser muy interesante para poder seguir estudiando esta patología de manera consensuada desde un punto de vista metodológico. El dolor lumbar (lumbalgia) se define como un dolor en dicha región localizado entre el borde inferior de las últimas costillas y el pliegue inferior de la zona glútea, incluyendo componentes osteomusculares y ligamentarios (19). Se ha establecido para el adulto como causa significativa de discapacidad que puede provocar limitaciones sustanciales en cuanto a dolor y funcionalidad (20) en las AVDs (21), pudiendo tener un origen multifactorial (18) con intervención tanto de factores biomecánicos (22) como de factores psicosociales (relacionados con el trabajo) (23).

En España, la prevalencia del dolor lumbar se ha estudiado bastante, ya que es la causa más importante de compensación económica por parte de la Seguridad Social o por las entidades aseguradoras laborales (mutuas) (22). Así, según el estudio EPISER presentado por la SER en 2001(24), se determinó la prevalencia de determinadas enfermedades reumáticas en la población adulta española (mayor de 20 años), resultando la de la lumbalgia puntual de 14.8% y a 6 meses de 44.8%. Según la Encuesta Europea de Salud en España (EESE) DE 2014 (25), el dolor de espalda crónico (aquel que dura más de 3 meses) tiene una prevalencia del 17.34%. Por último, la Encuesta Nacional de Salud de España (ENSE) de 2017 (26) indica que la prevalencia del dolor de espalda

lumbar crónico para adultos a partir de 15 años fue del 14.7%. Además, se sabe que alrededor del 80% de la población sufrirá una lumbalgia a lo largo de su vida y que entre el 15%-20% experimentará periodos prolongados de dolor e incapacidad funcional, según se indica en el Estudio Columbus por L.M. Torres et al. (27).

El ámbito de aplicación de nuestro estudio también podría incluir niños y adolescentes. Inmaculada Calvo-Muñoz et al. (29) comenta en su artículo que la prevalencia de lumbalgias en estas edades es relativamente alta, mayor en las chicas y con alta tendencia a la recidiva. Las primeras crisis empiezan sobre los 10 años y va aumentando con la edad, llegando a producir limitaciones de sus actividades e, incluso, absentismo escolar. Además, indica que se considera un mecanismo predictor de lumbalgia en la edad adulta cuando se padece en la adolescencia.

A nivel laboral, alrededor del 80% de las lumbalgias son inespecíficas, es decir, que no se encuentran causas posibles a través de pruebas radiológicas o analíticas, siendo necesario que el dolor no sea producto de fracturas, traumatismos o de enfermedades sistémicas (28). Su alta prevalencia se ha estudiado mucho como consecuencia de los altos costes económicos producidos (principalmente indirectos) por incapacidades temporales (23,30). En este ámbito aparece la figura del sujeto simulador o magnificador de síntomas, donde por un incentivo externo es capaz de producir síntomas exagerados o falsos para conseguirlo (30). En la práctica resulta difícil de detectar, puesto que el dolor (subjetivo) o las pruebas radiológicas y de laboratorio, no son suficientes ante las lumbalgias inespecíficas. Además, el desconocer la causa del dolor con exactitud, junto con la influencia de factores psicosociales, reducen las posibilidades de seguir la evolución de la dolencia, por lo que suelen dilatarse en el tiempo y llegar incluso a cronificarse (31). En este sentido, existen numerosas escalas y test de valoración, pero tienen un importante componente subjetivo (22). Ante esta situación, se precisa de algún sistema de valoración y/o prueba que detecte diferencias entre lo que debería obtenerse en situación normal y lo que se deduce del paciente (30). Aquí, la valoración funcional a través de pruebas biomecánicas se está aplicando cada vez más, teniendo como "gold standard" al laboratorio de análisis de movimiento (cinético, con plataformas dinamométricas, y cinemático, con sistemas de cámaras y fotogrametría), ya que va a determinar de forma objetiva la funcionalidad de personas con dolor lumbar (22). La complejidad del sistema, difícilmente manipulable por el paciente simulador o magnificador, y el uso de protocolos determinados ayudan en la detección de estos sujetos, de tal manera que los pacientes con tendencia somatizadora, hipocondríaca e histriónica, mostrarán mayores inconsistencias (menor fiabilidad) de manera significativa, tanto en las pruebas de valoración psiquiátrica como biomecánica (23). Sin embargo, su alto coste y su limitación de movilidad predispone al uso de los sistemas de medición inercial (IMU) (32), los cuales van a estar formados por un acelerómetro, un giroscopio y un magnetómetro dentro de un dispositivo pequeño, portátil y de bajo coste, teniendo la posibilidad de la medición 3D en análisis de movimientos ambulatorios (21). Por ejemplo, el GE Hawk HCT ha sido validado (2018) con una precisión de excelente por el Laboratorio de Metrología Dimensional de FREMAP, certificado por ENAC, tras más de 1.000 mediciones sobre el sistema Goniometro-Hawk y la versión gratuita para Android disponible en Play Store. Ha certificado una incertidumbre de 3 grados del dispositivo en los 3 planos (1º por plano y medición) (33).

Para comprender mejor los factores biomecánicos de la lumbalgia, Papi et al. (21) recogen en su revisión sistemática que el monitoreo continuo del movimiento de la columna vertebral permite objetivar y cuantificar la cinemática (en nuestro caso) y/o la cinética, proporcionando una idea en relación al estudio de la lumbalgia crónica. Además, gracias a la portabilidad, economía, sencillez de registro, fiabilidad y precisión de los aparatos IMU se podrá ampliar sustancialmente el conocimiento de la postura y el movimiento en entornos fuera del laboratorio (34), ya que sería similar a los "gold standard" de laboratorio (35).

Para Williams et al. (36) los pacientes con lumbalgia van a mostrar alteraciones en la cinemática lumbar a nivel de ROM y, más pronunciada, a nivel de velocidad y aceleración angulares, ya que dicha patología está relacionada con una irregularidad en el control del movimiento. Destaca también la importancia de obtener estos valores de cinemática a nivel clínico, ya que se pueden detectar discrepancias entre la exploración física, la anamnesis y los resultados de estas pruebas (30).

Existen diferentes artículos y publicaciones que ofrecen datos normativos para el movimiento de la columna vertebral lumbar, pero utilizan distintos tipos de equipos, metodologías y sistemas de análisis, lo que dificulta mucho la comparación de los estudios, por lo que no hay un conjunto de datos estándar que pudiera usarse como una

guía precisa de referencia con la que comparar (37,38). Así encontramos muchos estudios en el plano sagital, pocos en el coronal y muy pocos en el plano horizontal.

En nuestra revisión literaria sólo hemos encontrado estudios que determinan valores de rotación axial lumbar desde la posición de bipedestación y, sobre todo, sin tener en cuenta el posible error añadido al realizarla desde esta posición. Existen también discrepancias entre los artículos respecto de si existe o no disminución del ROM de rotación axial en sujetos con lumbalgia crónica en comparación con los controles. Así, A. Haj et al (39), en un estudio muy reciente (2019) evalúa la cinemática de la rotación lumbar pero en posición neutra de bipedestación y en flexión de tronco, para hombres con dolor lumbar crónico inespecífico, obteniendo para una muestra de 50 hombres (25 con dolor lumbar y 25 controles sin patología) una disminución significativa de todos los parámetros cinemáticos en los hombres con patología en comparación con los controles. La mayoría de los parámetros cinemáticos disminuyeron significativamente al pasar desde la posición neutral a la de flexión, para los dos tipos de rotación. También, para la posición neutra se encuentran valores más pequeños en rotación izquierda que derecha, excepto velocidad y aceleración máximas. Por último, los resultados que se obtienen en el grupo control son los mismos al pasar de bipedestación neutra a la de flexión.

Para R. Arshad et al (40), como base para la valoración del dolor lumbar, en cuanto a su examen físico, indica la evaluación de la lordosis lumbar y el rango de movimiento, considerando estos parámetros como predictores fundamentales de patologías lumbares, de mecánica anormal vertebral y, posiblemente, de dolor lumbar. El tratamiento para recuperar la funcionalidad en las AVDs y eliminar el dolor puede pasar por la corrección de la lordosis lumbar y la recuperación del ROM normal. Para ello se hace necesario tener unos valores normativos de referencia con los que comparar y así analizar correctamente en cuanto pronóstico y tratamiento. Sin embargo, Marras (41) indica que la velocidad angular y la aceleración pueden ser indicadores más sensibles que el ROM para predecir una rehabilitación exitosa en lumbalgia crónica.

Intolo et al.(42) recogen en una revisión sistemática que con la edad se va reduciendo el ROM lumbar, en particular de 40 a 50 años y después de los 60. Sin embargo, encontraron que hubo muy poco efecto de la edad en la rotación lumbar, es decir, que la rotación lumbar no está fuertemente influenciada por la edad, y que había mayor reducción

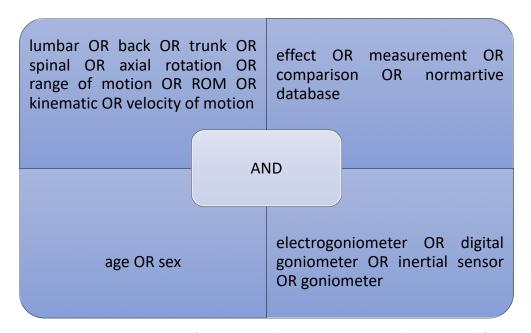
en la rotación izquierda que en la derecha entre los 20 y los 70 años de edad. También indicaron que para medir la ROM hubo una diversidad considerable en cuanto a herramientas utilizadas, posiciones de prueba, categorías de edad, protocolos diferentes y sin control de la pelvis.

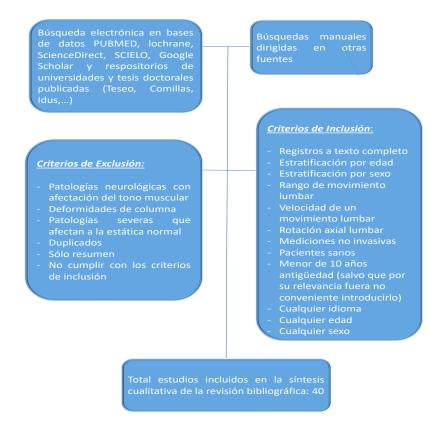
En la revisión sistemática de R. Anshad et al. (40) se indica que, en cuanto a la diferencia de sexo en el ROM medio izquierdo y derecho de la rotación axial, había una mayor rotación axial en las mujeres jóvenes, haciéndose mínima a partir de los 50 años de edad. También comentaba que las diferencias de sexo, en general, fueron significativas.

En cuanto al ROM izquierdo y derecho de la rotación axial en relación a los grupos de edad, las mujeres tuvieron una disminución general entre los 20 y los 60 años, siendo sólo significativa entre los 40 y los 50 años en el lado izquierdo; por el contrario, en los hombres sólo hubo una disminución significativa entre los 20 y 30 años y luego un aumento no significativo de 30 a 60 años. El análisis estadístico cuantitativo demostró diferencias significativas por edad y sexo. Mientras que la población joven en ambos sexos tenía una lordosis lumbar y un ROM mayores, el envejecimiento redujo significativamente el ángulo lordótico y el ROM en las personas mayores. También indican que embarazos previos pueden provocar confusiones en mujeres asintomáticas cuando se mida el ROM o la lordosis lumbar, consecuencia posiblemente de la laxitud articular y/o musculatura abdominal débil postparto. Concluyen que existe evidencia convincente de diferencias de sexo en la lordosis lumbar y ROM de flexión, extensión y rotación axial. Además, indican que con la edad progresiva se observa una disminución significativa de la lordosis, el ROM de flexión, extensión y lateroflexión. Sin embargo, argumentan que para la toma de las mediciones hubo muchas que no fueron precisas al no utilizarse instrumentos radiológicos y que numerosos artículos carecieron de consistencia en las definiciones de los parámetros informados.

5. Estrategia de búsqueda y selección de estudios

Una vez ha sido formulada la pregunta PICO se elabora una estrategia de búsqueda en distintas bases de datos con el fin de adquirir una selección de artículos científicos que, tras su lectura crítica, consideramos referentes para la redacción de los antecedentes y el estado actual de nuestro tema.




Fig. 1. Diagrama flow para búsqueda y selección bibliográfica

En cuanto a la selección de estudios, para los criterios de inclusión tienen que cumplir lo siguiente:

- Metodologías de terapia física o médica de tratamiento del dolor lumbar.
- Metodologías de terapia física o médica para valoración del rango de movimiento y su velocidad de ejecución en cualquier articulación.
- Estudios de uno o varios grupos de tratamiento o valoración con o sin grupo control, pero con medidas pretest y postest.
- Publicados o no a texto completo.
- Cualquier edad, género e idioma.
- Máximo 10 años de antigüedad, salvo que por su relevancia fuera conveniente introducirlo.

Por otro lado, se excluirán aquellos estudios donde la muestra presente alteración del movimiento a valorar como consecuencia de:

- Patologías neurológicas con afectación del tono muscular.
- Deformidades de la columna y patologías severas que alteren de base la estática normal del segmento corporal que vamos a valorar.

6. Objetivos del estudio

El **objetivo general** será el determinar los valores normativos de ROM y Velocidad para la rotación axial lumbar en función del género y edad.

Los objetivos específicos:

- Describir las diferencias entre sexos de las variables velocidad y ROM en la rotación axial lumbar completa.
- Describir las diferencias entre menores de 40 años (20-30 años) y mayores de 40 años (40-50 años) de las variables Velocidad y ROM en la rotación completa lumbar.
- Determinar los COV Velocidad y COV ROM en la rotación completa lumbar.

7. Hipótesis

• Hipótesis conceptual:

Los jóvenes menores de 40 años tienen más rango de movimiento y velocidad de ejecución que los mayores de 40 años en la rotación axial completa lumbar.

• Hipótesis operacionales:

En relación a las dos variables independientes que tenemos, Edad y Género, y con respecto a cada variable dependiente con las que se van a relacionar, ROM de rotación axial completa, Velocidad de rotación axial completa, COV de ROM y COV de Velocidad, las hipótesis nulas (H°) indicarán que no hay diferencias significativas y las hipótesis (H1) indicarán que sí hay diferencias significativas.

8. Metodología

8.1. Diseño

Se trata de un proyecto de investigación con diseño cuantitativo, del tipo observacional descriptivo y transversal, ya que sólo se van a medir las variables objeto de estudio con nuestra herramienta biomecánica y, posteriormente, se valorarán los resultados conseguidos, obteniéndose las mediciones de cada sujeto en un único momento y lugar.

El estudio se realiza de acuerdo con la Declaración de Helsinki (46), tuvo su proyecto de investigación y fue sometido y aprobado por el Comité de Investigación de la Escuela de Enfermería y Fisioterapia San Juan de Dios, Universidad Pontificia Comillas. Así mismo, el trabajo se enmarca dentro del proyecto "Variación de los datos biomecánicos del movimiento del cuerpo humano, por rangos de edad, sexo, actividad deportiva y características antropométricas, tras la aplicación de técnicas de fisioterapia deportiva", que cuenta con el Informe Dictamen Protocolo Favorable C.P. – C. I. 15/416-E. 11 de septiembre de 2015. CEIC Clínico San Carlos.

A cada participante de nuestro estudio se le hace entrega de un documento consentimiento informado por escrito, donde se le informa de los objetivos del trabajo, la metodología a seguir para su ejecución y los posibles riesgos que se puedan dar. Deberá estar firmado por la persona libremente antes de poder pasar a realizar su medición biomecánica. Este documento irá acompañado de otro de revocación, por si desea retirarse del estudio y quede así registrado, indicándose que todos los datos personales suyos sólo quedarán para nuestro estudio y no se podrán utilizar para otros fines sin su consentimiento expreso.

8.2. Sujetos de estudio

Se trata de una técnica de muestreo no probabilística, por conveniencia. Los datos se recogerán directamente de los sujetos de estudio, existiendo dos lugares de recogida de datos merced a la portabilidad de nuestro instrumento de medición:

- Aula del laboratorio de biomecánica de la Escuela de Enfermería y Fisioterapia de San Juan de Dios, Universidad Pontificia Comillas (Ciempozuelos, Madrid).
- Clínica de Fisioterapia Ángel Troncoso (Mairena del Alcor, Sevilla).

Criterios de Inclusión:

- Hombres y mujeres con edades comprendidas entre 18 y 65 años, ambos límites incluidos.
- Sujetos sanos
- Firma del consentimiento informado y hoja de información al paciente.

Criterios de Exclusión:

- Intervención quirúrgica en raquis lumbar.
- Alteraciones del tronco (escoliosis y asimetrías diagnosticadas por el médico,...)
 y/o miembro superior que puedan dificultar el movimiento libre de rotación axial completa lumbar desde la posición de estudio.
- Alteraciones de origen reumatológico y genéticas que cursen con modificación de la elasticidad miotendinosa local o sistémica, y que pueda afectar al ROM y Velocidad de ejecución.
- Molestias-dolor local en el momento de la realización de la prueba.
- Realizar ejercicio intenso (>45 min./sesión) de manera habitual (>3 veces/semana).

Cálculo Muestral

Para el cálculo del tamaño muestral es necesario fijar de antemano unos parámetros que dependen del tipo de estudio, escogiendo en nuestro caso el consistente en la comparación de la media entre dos grupos de tratamiento (pruebas de independencia). Realizamos un estudio piloto con el fin de obtener el cálculo de la muestra mínima que se necesitaría para que fuera representativa de la población, partiendo como mínimo de 10 mediciones para poder calcular la SD (desviación típica). Para determinar el número "n" de pacientes necesario en cada grupo, se considera la situación en la que se dispone de exactamente el mismo número de casos en ambos grupos: $n_A = n_B = n$

El tamaño muestral en cada grupo para la comparación de 2 medias es:

$$n = 2 \cdot \sigma^2 \cdot (z_{\alpha/2} + z_{\beta})^2 / \Delta^2$$

Si suponemos que σ =4 como valor medio de todas las variables y los riesgos habituales de adoptar decisiones erróneas sean α = 0.05, β =0.20, y que el error del aparato de medición fuera Δ = 3°, el tamaño muestral necesario sería:

$$n = 2 \cdot 4^2 \cdot (1.96 + 0.84)^2 / 3^2 = 27,88$$
 sujetos por grupo

Además, se le añade habitualmente entre un 10% y un 20% extra del tamaño de la muestra, por si se diera el caso de pérdida de datos o de sujetos. En nuestro caso le añadimos un 15% (4,182 sujetos), resultando 32,062 sujetos, que redondeando finalmente se necesitaría un tamaño muestral mínimo por grupo de 33 sujetos.

En nuestro caso, sólo hemos podido reclutar a 10 sujetos por grupo, debido a la falta de disponibilidad de los mismos con las características exigidas y a la falta de tiempo por nuestra parte para poder localizarlos.

8.3. Variables

VARIABLE	TIPO	CLASE
EDAD (años)	INDEPENDIENTE	Cuantitativa continua
INTERVALO EDAD (años)	INDEPENDIENTE	Cualitativa nominal dicotómica
GÉNERO	INDEPENDIENTE	Cualitativa nominal dicotómica
VELOCIDAD (°/seg)	DEPENDIENTE	Cuantitativa continua
ROM (°)	DEPENDIENTE	Cuantitativa continua
COV Velocidad (%)	DEPENDIENTE	Cuantitativa continua
COV ROM (%)	DEPENDIENTE	Cuantitativa continua

Cálculo de las variables. Cuantificación:

- Para el intervalo de edad, en ambos casos los límites de edad quedan incluidos para cada intervalo, de tal manera que para el de menores de 40 años se han cogido edades comprendidas desde los 20 años hasta los 30 años, quedando excluidos los que tienen 19 y 31 años. De igual forma, para los de mayores de 40 años se han utilizado sujetos con edades comprendidas entre los 40 y los 50 años, quedando excluidos los que tiene 39 y 51 años.
- Para el cálculo del ROM completo y la Velocidad, la forma de realizarlo será la misma, pero utilizando de cada variable su propia gráfica para cada sujeto. Cada una de estas gráficas tendrá cinco curvas por encima del eje horizontal (valor=0) con sus correspondientes cinco curvas por debajo de este eje (se pide realizar cinco rotaciones a derecha y cinco rotaciones a izquierda sin pausa intermedia), de las cuales se van a despreciar la primera y la última. Con las tres centrales realizaremos los cálculos para obtener tres valores de rotación derecha y tres de rotación izquierda, tanto para ROM como para Velocidad, con los que se van a realizar su media aritmética, para obtener el valor que se va a coger en cada sujeto para cada sentido de giro. Dependiendo de la posición de colocación del Hawk, por encima del eje horizontal se corresponderá con el sentido de giro hacia la derecha o hacia la izquierda, siendo por debajo, lo contrario. Para el cálculo de la media,

cada valor que se va a utilizar vendrá dado por la suma del valor del pico más alto de cada curva con el valor del pico inmediatamente más bajo de esa misma curva.

 Para el cálculo del COV, tanto para ROM como para Velocidad, se aplicará la siguiente fórmula matemática con los tres valores que se cogen de cada medición y que se incluyen en el cálculo de la media: COV=Desviación Estándar/Media

8.4 Fases del estudio y procedimiento de recogida de datos

Cronograma de trabajo:

- Febrero Mayo: antecedentes, evaluación y redacción del documento.
- Abril Mayo: mediciones y obtención de los datos.
- Junio: Conclusiones y redacción final del documento.

Procedimiento experimental. Sistemática de la recogida de datos

Antes de proceder a realizar la valoración funcional instrumentada de la rotación axial lumbar se solicita y obtiene el consentimiento informado (Anexo 1) de cada sujeto libre, confirmándose la no existencia de cuadro doloroso lumbar agudo que pudiera interferir en los resultados de la valoración.

Previo a la sesión práctica, los participantes recibieron información básica sobre el ejercicio a realizar (hoja de información al paciente, Anexo 2), abordando nociones mínimas sobre la estructura, función y biomecánica de la columna vertebral, objetivo del estudio, forma correcta de colocarse y de realizar el movimiento, desde la posición de partida, sentido del giro, número de rotaciones lumbares completas y posición final en la que se termina.

Para el registro de los movimientos de rotación axial lumbar se utilizó el goniómetro digital Hawk, que realizará una medición de velocidad y de rango de movimiento. Se colocará según la forma de localizar de S. Tixa (47) sobre el proceso espinoso de L1, lugar ya utilizado en estudios anteriores (35). Una vez instrumentado el sujeto y colocado en sedestación sobre una silla se le proporcionan las instrucciones estandarizadas para la realización del gesto solicitado: debe sentarse con el tronco erguido, el cuello orientado hacia el frente, apoyado sobre las tuberosidades isquiáticas de forma simétrica (para fijar la pelvis

en posición de flexo-extensión neutra), con triple flexión de 90° de tobillo, rodilla y cadera respectivamente, y pies con apoyo completo y separados a la altura de las caderas. Su espalda debe quedar libre de apoyos, roces, etc, con cualquier parte de la silla para poder hacer libremente el movimiento de rotación lumbar completo. Las manos quedarán entrelazadas a nivel de cuello-nuca, para dar más estabilidad a la posición de flexo-extensión neutra del tronco.

El fisioterapeuta se colocará de frente y un poco lateral al sujeto, separado del mismo y sin interrumpir el libre movimiento de rotación lumbar, para con sus manos darle estabilidad tanto a nivel abdominal como detrás, en su espalda, sujetando el Hawk, previamente colocado a nivel del proceso espinoso de L1 por palpación guiada. Este modo de acoplamiento proporciona seguridad de fijación y minimiza los artefactos debido al movimiento de la piel, la contracción de los músculos y la desalineación que podrían manifestarse como parte del movimiento acoplado.

Antes de iniciar la toma de datos se le explicará al sujeto cómo ha de realizar el movimiento de rotación lumbar completa máxima (39), entendiéndose ésta como el límite máximo de rotación que el sujeto puede alcanzar tanto a derecha como a izquierda, yendo de un extremo a otro y sin parar en el centro del recorrido. Para la velocidad máxima de ejecución (39) se consideró aquella que permitiera llegar al máximo de su movimiento rotacional en el menor tiempo posible pero de manera cómoda para el sujeto. En ambos casos, las tuberosidades isquiáticas deben mantenerse siempre en contacto con el asiento, sin elevarse, y los pies tampoco pueden perder el contacto completo con el suelo durante la realización de la actividad.

La actividad a realizar por parte del sujeto se estandarizó como sigue:

- Práctica, a modo de calentamiento y toma de conciencia postural, de 2 series de 5 rotaciones completas de tronco, empezando hacia la derecha y terminando en la misma posición que se inició. La primera serie se hará de forma lenta para poder localizar y sentir en el espacio el límite rotacional de cada lado, mientras que la segunda será igual que la primera pero a velocidad rápida (parecida a la real de la toma de valores). Todo esto se hará con la ayuda de pautas verbales y guía física cuando fuera necesario, hasta que el método y los movimientos se entendieran completamente.
- Seguidamente se pasará a la realización definitiva del movimiento axial para la toma de datos: desde sedestación erguida y orientado al frente, con las manos en la nuca y pies apoyados en el suelo completamente, debe realizar un movimiento de rotación de tronco que vaya de un extremo al otro durante 5 veces seguidas, sin pausas durante el recorrido, y finalizar en la posición de partida. La secuencia de movimientos será la siguiente: desde centro (posición neutra) → derecha → izquierda → derecha → izquierda → derecha → centro (posición de inicio). Debe realizarse a la mayor velocidad posible pero llegando bien a los límites del movimiento.

8.5. Análisis de datos

Se recopilaron todos los datos cinemáticos de la rotación axial lumbar completa para cada participante libre utilizando el goniómetro digital Hawk, a través del software advance, versión 7.0 de recolección del dispositivo que se encuentra a disposición libre en play store. Se desecharon los valores obtenidos para la 1ª y 5ª rotación completa, por ser éstos más fácilmente alterables por parte del sujeto, obteniéndose los valores promedio tanto del ROM completo (derecha e izquierda), sus velocidades máximas y los COV correspondientes con los tres valores centrales de los datos obtenidos. Los datos se transfirieron al software de análisis estadístico IBM SPSS Statistics, versión 22 de 64 bits y se procede a realizar:

- Análisis estadístico descriptivo (media, mediana y moda) de las variables dependientes.
- Frecuencia de las variables independientes.
- Análisis inferencial:
 - Diferencias entre hombres y mujeres en relación a velocidad y ROM.
 - Diferencias entere jóvenes y viejos en relación a velocidad y ROM.
 - Diferencias en el COV en relación a velocidad y ROM.
- Se aplicará la T de Student para muestras independientes en el caso de que la distribución de la muestra sea normal o la U de Mann-Whitney si es no normal.
- Todos los procedimientos estadísticos se realizarán con un nivel de significación del 5% y un intervalo de confianza del 95%.

Hipótesis operativas:

- No existen diferencias estadísticamente significativas entre hombres y mujeres en el ROM = H0
 Existen diferencias estadísticamente significativas entre hombres y
 - Existen diferencias estadisticamente significativas entre hombres y mujeres en el ROM = H1
- II. No existen diferencias estadísticamente significativas entre hombres y mujeres en la velocidad de movimiento = H0

Existen diferencias estadísticamente significativas entre hombres y mujeres en la velocidad de movimiento = H1

III. No existen diferencias estadísticamente significativas entre los grupos de edad en el ROM = H0

Existen diferencias estadísticamente significativas entre los grupos de edad en el ROM = H1

IV. No existen diferencias estadísticamente significativas entre los grupos de edad en la velocidad = H0

No existen diferencias estadísticamente significativas entre los grupos de edad en la velocidad = H1

V. No existen diferencias estadísticamente significativas en el COV del ROM= H0

Existen diferencias estadísticamente significativas en el COV del ROM = H1

VI. No existen diferencias estadísticamente significativas en el COV de la velocidad = H0

Existen diferencias estadísticamente significativas en el COV de la velocidad = H1

VII. No existen diferencias estadísticamente significativas entre hombres y mujeres en el COV ROM = H0

Existen diferencias estadísticamente significativas entre hombres y mujeres en el COV ROM = H1

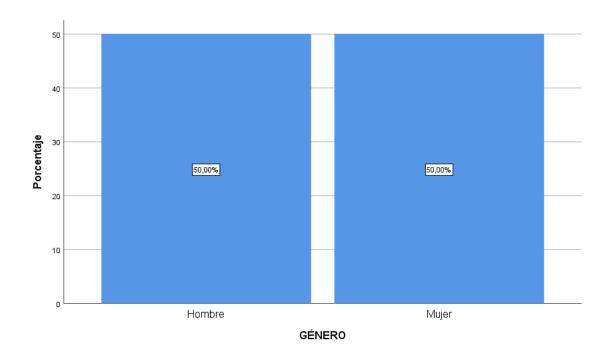
VIII. No existen diferencias estadísticamente significativas entre hombres y mujeres en el COV Velocidad = H0

Existen diferencias estadísticamente significativas entre hombres y mujeres en el COV Velocidad = H1

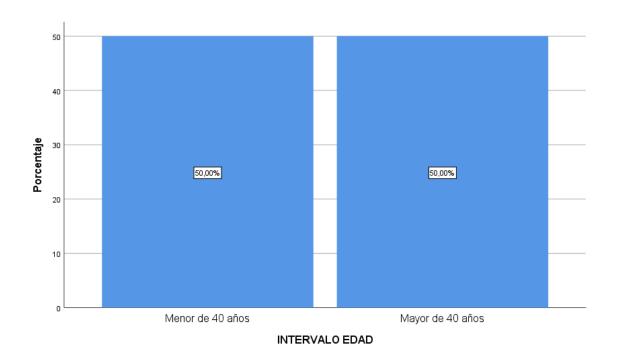
8.6. Consideraciones éticas

Los sujetos firmaron libremente un consentimiento informado (anexo 1) de acuerdo a la Declaración de Helsinki (46) previo a la toma de mediciones, condición necesaria para la misma. Nuestro trabajo aprobado por el Comité de Investigación de la Escuela de Enfermería y Fisioterapia San Juan de Dios, Universidad Pontificia Comillas.

9. Resultados


A través de los datos obtenidos por las mediciones prácticas se procede a realizar una hoja de cálculo Excel (Anexos: Excel 1 y 2) para realizar el análisis estadístico con el software SPSS.

ANÁLISIS DESCRIPTIVOS


En este apartado veremos un análisis descriptivo y grafico de las principales variables objeto de estudio de nuestro trabajo. Incluiremos también la prueba de normalidad de las variables cuantitativas, para en futuros contrastes de hipótesis saber si debemos aplicar test paramétricos o no paramétricos. Si el número de datos es mayor de 30 debemos considerar para la prueba de normalidad el estadístico de Kolmogorov-Smirnov y si es menor de 30 el de Shapiro-Wilk.

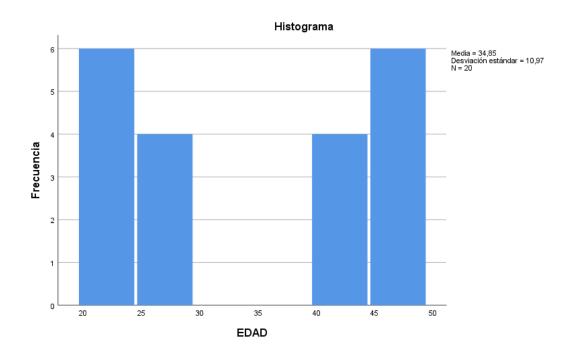
VARIABLES CUALITATIVAS

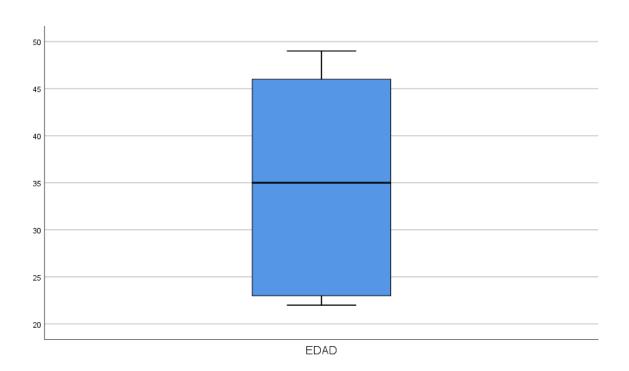
	GÉNERO									
				Porcentaje	Porcentaje					
		Frecuencia	Porcentaje	válido	acumulado					
Válido	Hombre	10	50,0	50,0	50,0					
	Mujer	10	50,0	50,0	100,0					
	Total	20	100,0	100,0						

	INTERVALO EDAD								
	Porcentaje Porcentaje								
		Frecuencia	Porcentaje	válido	acumulado				
Válido	Menor de 40 años	10	50,0	50,0	50,0				
	Mayor de 40 años	10	50,0	50,0	100,0				
	Total	20	100,0	100,0					

VARIABLES CUANTITATIVAS

Descriptivos


Descriptivos							
			Estadístico	Desv. Error			
EDA	Media		34,85	2,453			
D	95% de intervalo de	Límite inferior	29,72				
	confianza para la media	Límite superior	39,98				
	Media recortada al 5%		34,78				
	Mediana		35,00				
	Varianza		120,345				
	Desv. Desviación		10,970				
	Mínimo		22				
	Máximo		49				
	Rango		27				
	Rango intercuartil		23				
	Asimetría		0,042	0,512			
	Curtosis		-1,963	0,992			


Pruebas de normalidad

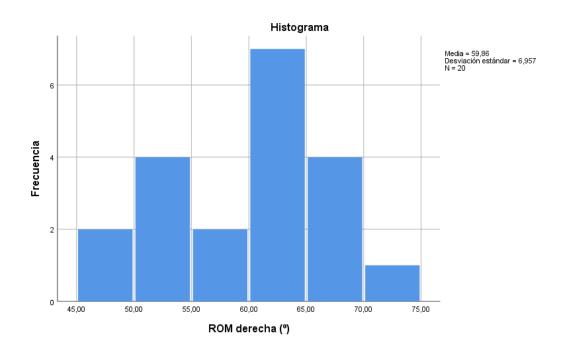
	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
EDA	0,215	20	0,016	0,812	20	0,001
D						

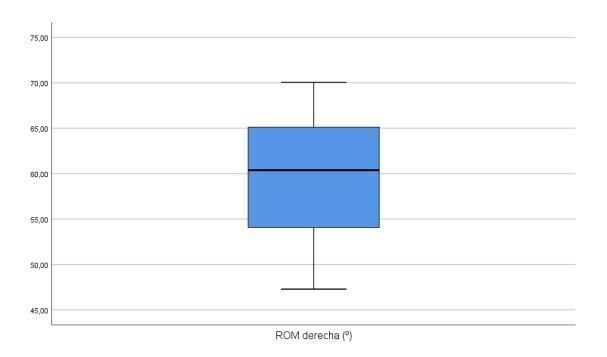
a. Corrección de significación de Lilliefors

En nuestro caso al tener menos de 30 datos debemos elegir la prueba de normalidad de Shapiro, la cual nos da un p-valor significativo (p<0,05), por tanto, aceptamos la hipótesis de que la variable no tiene distribución normal, también podemos apreciar que no hay normalidad en el siguiente histograma.

Descriptivos

			Estadístico	Desv. Error
ROM derecha (°)	na (°) Media			1,55565
	95% de intervalo de	Límite inferior	56,6055	
	confianza para la media	Límite superior	63,1175	
	Media recortada al 5%		59,9939	
	Mediana		60,3850	
	Varianza		48,401	
	Desv. Desviación		6,95708	
	Mínimo		47,29	
	Máximo		70,05	
	Rango		22,76	
	Rango intercuartil		11,20	
	Asimetría		-0,469	0,512
	Curtosis		-0,941	0,992


Pruebas de normalidad

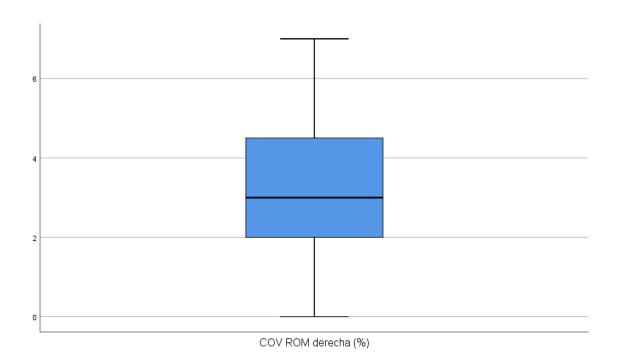

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
ROM derecha (°)	0,143	20	0,200*	0,932	20	<mark>0,168</mark>

^{*.} Esto es un límite inferior de la significación verdadera.

En nuestro caso al tener menos de 30 datos debemos elegir la prueba de normalidad de Shapiro, la cual nos da un p-valor no significativo (p>0,05), por tanto, aceptamos la hipótesis de que la variable si tiene distribución normal, también podemos apreciar que si hay normalidad en el siguiente histograma.

a. Corrección de significación de Lilliefors

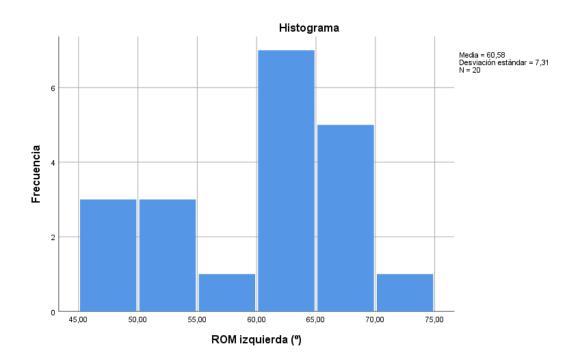

	•		Estadístico	Desv. Error
COV ROM derecha (%)	Media		3,25	0,422
	95% de intervalo de	Límite inferior	2,37	
	confianza para la media	Límite superior	4,13	
	Media recortada al 5%		3,22	
	Mediana		3,00	
	Varianza		3,566	
	Desv. Desviación		1,888	
	Mínimo		0	
	Máximo		7	
	Rango		7	
	Rango intercuartil		3	
	Asimetría		0,329	0,512
	Curtosis		-0,644	0,992

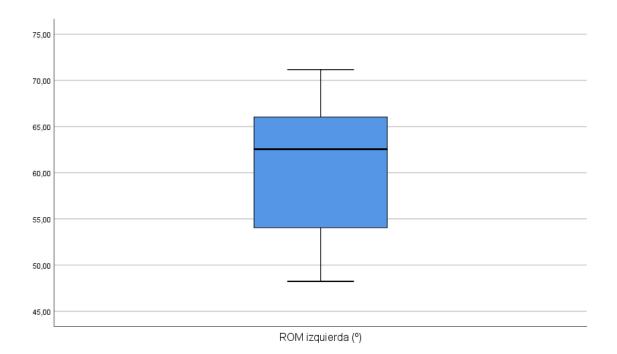

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Sh	napiro-Wilk	
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
COV ROM derecha (%)	0,196	20	0,043	0,951	20	<mark>0,390</mark>

a. Corrección de significación de Lilliefors

En nuestro caso al tener menos de 30 datos debemos elegir la prueba de normalidad de Shapiro, la cual nos da un p-valor no significativo (p>0,05), por tanto, aceptamos la hipótesis de que la variable si tiene distribución normal, también podemos apreciar que si hay normalidad en el siguiente histograma.

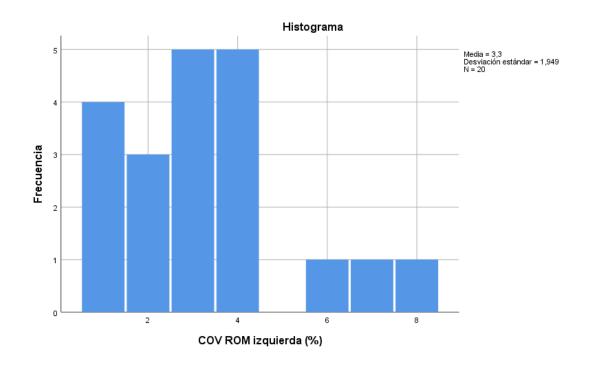


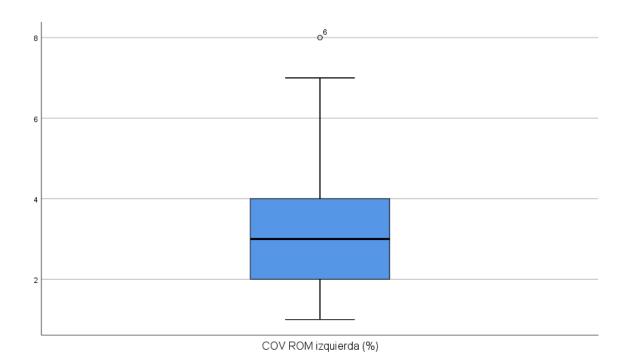

			Estadístico	Desv. Error
ROM izquierda (°)	Media		60,5845	1,63467
	95% de intervalo de	Límite inferior	57,1631	
	confianza para la media	Límite superior	64,0059	
	Media recortada al 5%		60,6822	
	Mediana		62,5500	
	Varianza		53,443	
	Desv. Desviación		7,31048	
	Mínimo		48,24	
	Máximo		71,17	
	Rango		22,93	
	Rango intercuartil		12,24	
	Asimetría		-0,538	0,512
	Curtosis		-0,993	0,992

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
ROM izquierda (°)	0,166	20	0,150	0,911	20	<mark>0,066</mark>

a. Corrección de significación de Lilliefors

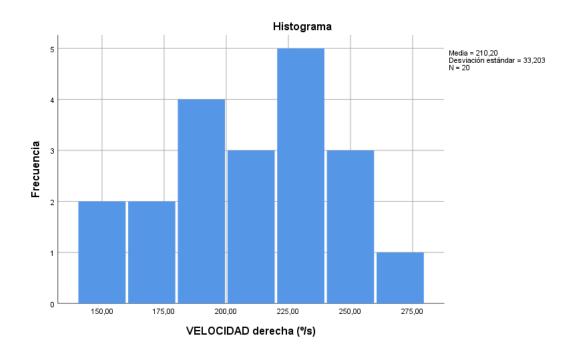


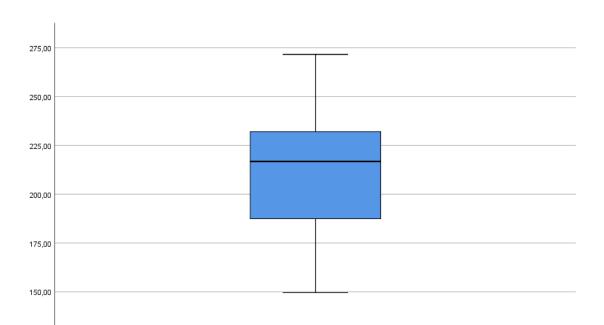

			Estadístico	Desv. Error
COV ROM izquierda (%)	Media		3,30	0,436
	95% de intervalo de	Límite inferior	2,39	
	confianza para la media	Límite superior	4,21	
	Media recortada al 5%		3,17	
	Mediana		3,00	
	Varianza		3,800	
	Desv. Desviación		1,949	
	Mínimo		1	
	Máximo		8	
	Rango		7	
	Rango intercuartil		2	
	Asimetría		0,951	0,512
	Curtosis		0,714	0,992

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
COV ROM izquierda (%)	0,210	20	0,021	0,892	20	0,030

a. Corrección de significación de Lilliefors

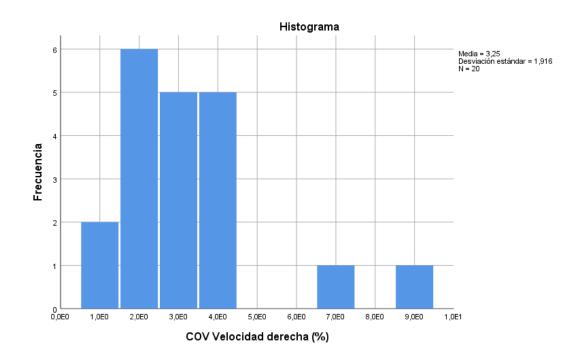


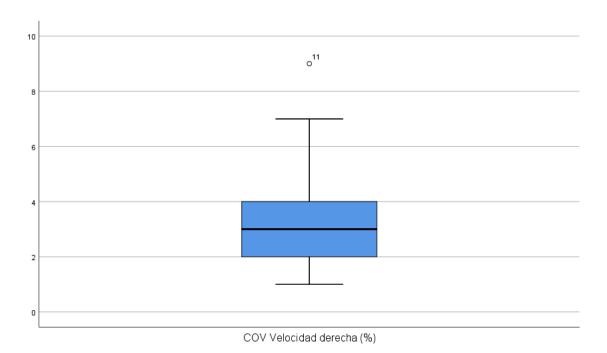

	Descriptiv		1	
			Estadístico	Desv. Error
VELOCIDAD derecha (°/s)	Media		210,1970	7,42437
	95% de intervalo de	Límite inferior	194,6576	
	confianza para la media	Límite superior	225,7364	
	Media recortada al 5%		210,1561	
	Mediana		216,7650	
	Varianza		1102,425	
	Desv. Desviación		33,20278	
	Mínimo		149,53	
	Máximo		271,60	
	Rango		122,07	
	Rango intercuartil		46,13	
	Asimetría		-0,263	0,512
	Curtosis		-0,636	0,992

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Sh	apiro-Wilk	
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
VELOCIDAD derecha (°/s)	0,161	20	0,183	0,963	20	<mark>0,599</mark>

a. Corrección de significación de Lilliefors

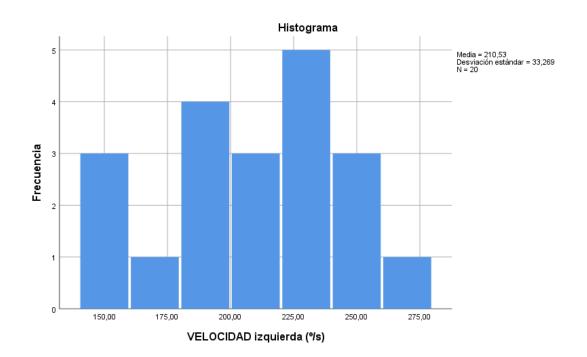

VELOCIDAD derecha (%s)

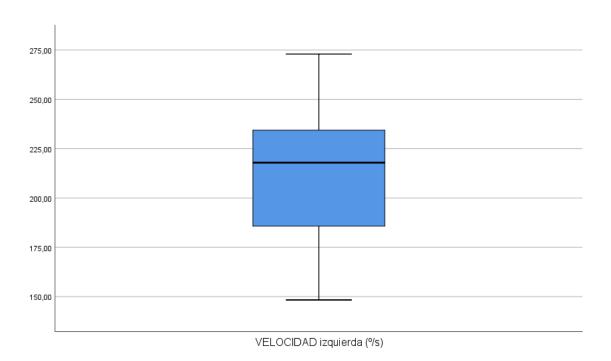

			Estadístico	Desv. Error
COV Velocidad derecha	Media		3,25	0,428
(%)	95% de intervalo de Límite inferior		2,35	
	confianza para la media Límite superio	or	4,15	
	Media recortada al 5%		3,06	
	Mediana		3,00	
	Varianza		3,671	
	Desv. Desviación		1,916	
	Mínimo		1	
	Máximo		9	
	Rango		8	
	Rango intercuartil		2	
	Asimetría		1,749	0,512
	Curtosis		3,742	0,992

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
COV Velocidad derecha	0,248	20	0,002	0,812	20	0,001
(%)						

a. Corrección de significación de Lilliefors

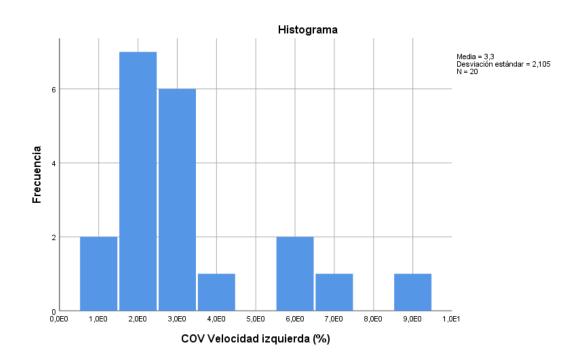

			Estadístico	Desv. Error
VELOCIDAD izquierda (%s)	Media		210,5325	7,43924
	95% de intervalo de	Límite inferior	194,9620	
	confianza para la media	Límite superior	226,1030	
	Media recortada al 5%		210,5211	
	Mediana		217,9400	
	Varianza		1106,846	
	Desv. Desviación		33,26929	
	Mínimo		148,32	
	Máximo		272,95	
	Rango		124,63	
	Rango intercuartil		49,15	
	Asimetría		-0,300	0,512
	Curtosis		-0,579	0,992

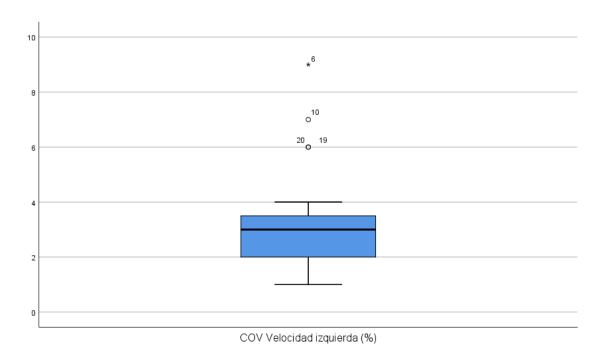

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Sh	napiro-Wilk	
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
VELOCIDAD izquierda (%s)	0,151	20	0,200*	0,960	20	<mark>0,544</mark>

^{*.} Esto es un límite inferior de la significación verdadera.

a. Corrección de significación de Lilliefors

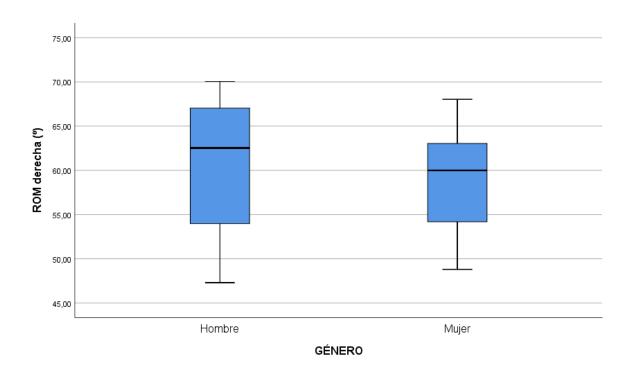



			Estadístico	Desv. Error
COV Velocidad izquierda	Media		3,30	0,471
(%)	95% de intervalo de Límite inferio	or	2,31	
	confianza para la media Límite super	ior	4,29	
	Media recortada al 5%		3,11	
	Mediana		3,00	
	Varianza		4,432	
	Desv. Desviación		2,105	
	Mínimo		1	
	Máximo		9	
	Rango		8	
	Rango intercuartil		2	
	Asimetría		1,477	0,512
	Curtosis		1,705	0,992

Pruebas de normalidad

	Kolmo	gorov-Smirnov	√ ^a	Shapiro-Wilk			
	Estadístico gl Sig. Estadístico gl					Sig.	
COV Velocidad izquierda	0,307	20	0,000	0,810	20	0,001	
(%)							

a. Corrección de significación de Lilliefors

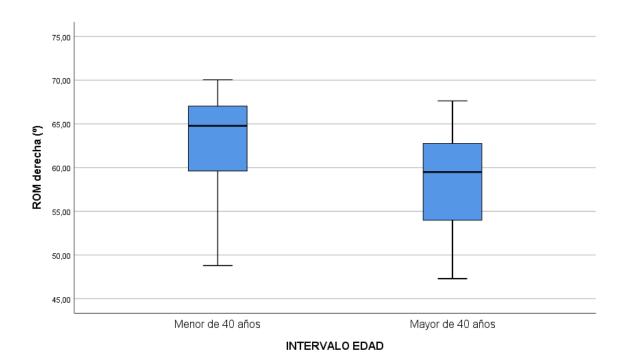

ANÁLISIS EXPLORATORIOS

En este apartado repetiremos los análisis descriptivos, pero teniendo en cuenta una variable como factor, en nuestro caso la variable género e intervalo edad. Incluiremos también las pruebas de normalidad de las variables cuantitativas en los diferentes grupos de las variables género e intervalo edad, para en futuros contrastes de independencia entre grupos saber si debemos aplicar test paramétricos o no paramétricos.

GÉNERO		Descrip		Estadístico	Desv. Error
ROM	Hombre	Media		60,6100	2,46711
derecha		95% de intervalo de	Límite inferior	55,0290	
(°)		confianza para la media	Límite superior	66,1910	
		Media recortada al 5%		60,8256	
		Mediana		62,5300	
		Varianza		60,866	
		Desv. Desviación		7,80168	
		Mínimo		47,29	
		Máximo		70,05	
		Rango		22,76	
		Rango intercuartil		14,19	
		Asimetría		-0,655	0,687
		Curtosis		-0,889	1,334
	Mujer	Media		59,1130	2,00172
		95% de intervalo de	Límite inferior	54,5848	
		confianza para la media	Límite superior	63,6412	
		Media recortada al 5%		59,1906	
		Mediana		59,9950	
		Varianza		40,069	
		Desv. Desviación		6,32998	
		Mínimo		48,80	
		Máximo		68,03	
		Rango		19,23	
		Rango intercuartil		10,45	
		Asimetría		-0,483	0,687
		Curtosis		-0,710	1,334

GÉNERO		Kolmo	gorov-Smirnov	v a	Shapiro-Wilk			
		Estadístico	gl	Sig.	Estadístico	gl	Sig.	
ROM	Hombre	0,199	10	0,200*	0,916	10	<mark>0,323</mark>	
derecha	Mujer	0,184	10	0,200*	0,944	10	<mark>0,600</mark>	
(°)								

^{*.} Esto es un límite inferior de la significación verdadera.

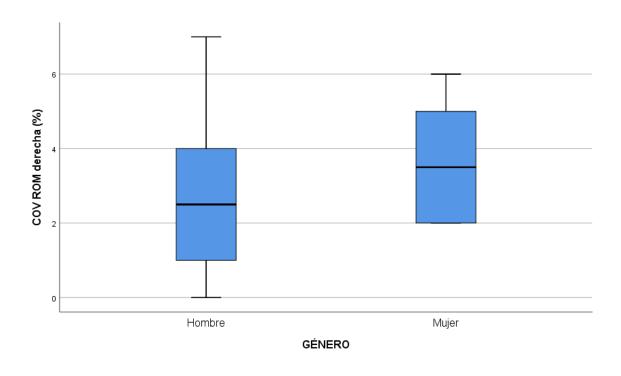


a. Corrección de significación de Lilliefors

		Descrip	DLIVOS	1-	
INTERVALO	EDAD			Estadístico	Desv. Error
ROM	Menor	Media		61,8850	2,30616
derecha	de 40	95% de intervalo de	Límite inferior	56,6681	
(°)	años	confianza para la media	Límite superior	67,1019	
		Media recortada al 5%		62,1583	
		Mediana		64,7800	
		Varianza		53,184	
		Desv. Desviación		7,29272	
		Mínimo		48,80	
		Máximo		70,05	
		Rango		21,25	
		Rango intercuartil		10,06	
		Asimetría		-1,044	0,687
		Curtosis		-0,027	1,334
	Mayor	Media		57,8380	1,99742
	de 40	95% de intervalo de	Límite inferior	53,3195	
	años	confianza para la media	Límite superior	62,3565	
		Media recortada al 5%		57,8800	
		Mediana		59,4950	
		Varianza		39,897	
		Desv. Desviación		6,31641	
		Mínimo		47,29	
		Máximo		67,63	
		Rango		20,34	
		Rango intercuartil		9,81	
		Asimetría		-0,282	0,687
		Curtosis		-0,649	1,334

INTERVALO EDAD		Kolmogoro	v-Smir	nov ^a	Shapiro-Wilk		
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
ROM derecha (°)	Menor de 40 años	0,249	10	0,080	0,863	10	0,082
	Mayor de 40 años	0,164	10	0,200 [*]	0,965	10	0,841

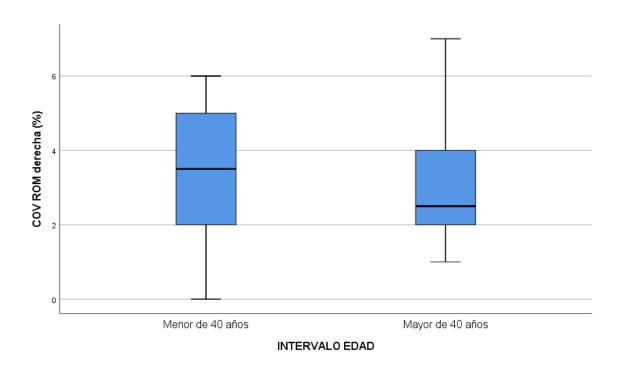
^{*.} Esto es un límite inferior de la significación verdadera.


54

a. Corrección de significación de Lilliefors

o <u> </u>		Descriptivos			
GÉNERO				_ ,	Desv.
				Estadístico	Error
COV ROM	Hombre	Media		2,90	0,674
derecha (%)		95% de intervalo de	Límite	1,38	
		confianza para la media	inferior		
			Límite	4,42	
		-	superior	_	
		Media recortada al 5%		2,83	
		Mediana		2,50	
		Varianza		4,544	
		Desv. Desviación		2,132	
		Mínimo		0	
		Máximo		7	
		Rango		7	
		Rango intercuartil		3	
		Asimetría		0,592	0,687
		Curtosis	-0,080	1,334	
	Mujer	Media		3,60	0,521
		95% de intervalo de	Límite	2,42	
		confianza para la media	inferior		
			Límite	4,78	
		-	superior		
		Media recortada al 5%		3,56	
		Mediana		3,50	
		Varianza		2,711	
		Desv. Desviación		1,647	
		Mínimo		2	
		Máximo		6	
		Rango		4	
		Rango intercuartil		3	
		Asimetría		0,433	0,687
		Curtosis		-1,471	1,334

GÉNERO		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
COV ROM derecha (%)	Hombre	0,164	10	0,200*	0,958	10	0,767
 Mujer		0,234	10	0,127	0,845	10	0,050

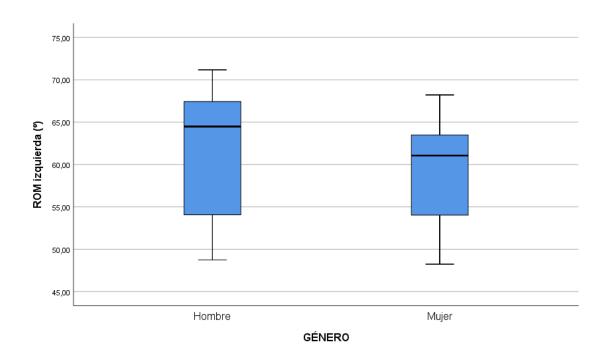

- *. Esto es un límite inferior de la significación verdadera.
- a. Corrección de significación de Lilliefors

		Descriptivos			
INTERVALO ED	DAD				Desv.
				Estadístico	Error
COV ROM	Menor de	Media		3,40	0,670
derecha (%)	40 años	95% de intervalo de confianza para la media	Límite inferior	1,88	
			Límite superior	4,92	
		Media recortada al 5%	•	3,44	
		Mediana		3,50	
		Varianza		4,489	
		Desv. Desviación		2,119	
		Mínimo		0	
		Máximo		6	
		Rango		6	
		Rango intercuartil		4	
		Asimetría		-0,221	0,687
		Curtosis		-1,316	1,334
	Mayor de	Media		3,10	0,547
	40 años	95% de intervalo de confianza para la media	Límite inferior	1,86	
			Límite superior	4,34	
		Media recortada al 5%	•	3,00	
		Mediana		2,50	
		Varianza		2,989	
		Desv. Desviación		1,729	
		Mínimo		1	
		Máximo		7	
		Rango		6	
		Rango intercuartil		2	
		Asimetría		1,261	0,687
		Curtosis		1,979	1,334

INTERVALO EDAD		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
COV ROM derecha (%)	Menor de 40 años	0,175	10	0,200*	0,933	10	<mark>0,475</mark>
	Mayor de 40 años	0,238	10	0,115	0,862	10	0,080

^{*.} Esto es un límite inferior de la significación verdadera.

a. Corrección de significación de Lilliefors

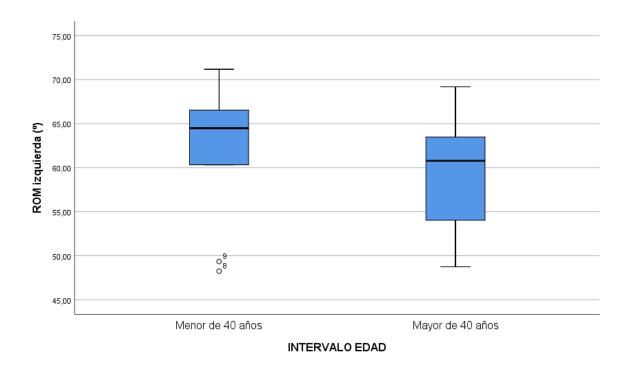

		Descriptivo			
GÉNERO					Desv.
				Estadístico	Error
ROM	Hombre	Media		61,7600	2,57494
Izquierda		95% de intervalo de confianza	Límite inferior	55,9351	
(°)		para la media	Límite superior	67,5849	
		Media recortada al 5%		61,9606	
		Mediana		64,4850	
		Varianza		66,303	
		Desv. Desviación		8,14267	
		Mínimo		48,74	
		Máximo		71,17	
		Rango		22,43	
		Rango intercuartil		14,98	
		Asimetría		-0,772	0,687
		Curtosis		-0,934	1,334
	Mujer	Media		59,4090	2,08448
		95% de intervalo de confianza	Límite inferior	54,6936	
		para la media	Límite superior	64,1244	
		Media recortada al 5%		59,5400	
		Mediana		61,0600	
		Varianza		43,451	
		Desv. Desviación		6,59171	
		Mínimo	-	48,24	
		Máximo	-	68,22	
		Rango		19,98	
		Rango intercuartil		10,95	
		Asimetría		-0,638	0,687
		Curtosis		-0,663	1,334

Pruebas de normalidad

	Fidebas de Hormandad								
GÉNERO		Kolmogoro	v-Smirr	nov ^a	Shapiro-Wilk				
		Estadístico	gl	Sig.	Estadístico	gl	Sig.		
ROM izquierda (°)	Hombre	0,223	10	0,173	0,872	10	0,106		
	Mujer	0,201	10	0,200*	0,929	10	0,434		

^{*.} Esto es un límite inferior de la significación verdadera.

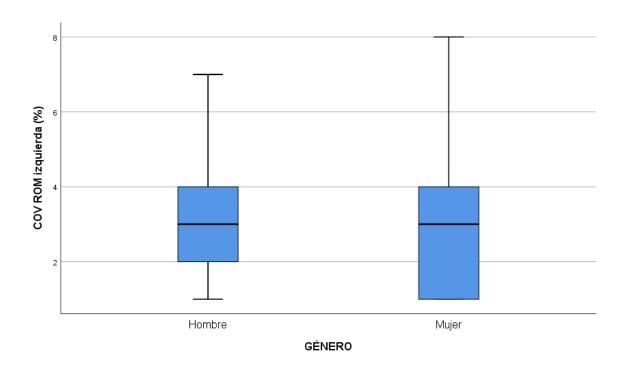
a. Corrección de significación de Lilliefors


		Descriptivos	5		1	
INTERVALO	EDAD				Desv.	
				Estadístico	Error	
ROM	Menor de	Media		62,0120	2,40524	
izquierda	40 años	95% de intervalo de	Límite inferior	56,5710		
(°)		confianza para la media	Límite	67,4530		
			superior			
		Media recortada al 5%		62,2683		
		Mediana		64,4850		
		Varianza		57,852		
		Desv. Desviación		7,60603		
		Mínimo		48,24		
		Máximo		71,17		
		Rango		22,93		
		Rango intercuartil		9,39		
		Asimetría		-1,098	0,687	
		Curtosis		0,287	1,334	
	Mayor de	Media	Media			
	40 años	95% de intervalo de	Límite inferior	54,0762		
		confianza para la media	Límite	64,2378		
			superior			
		Media recortada al 5%		59,1783		
		Mediana		60,7850		
		Varianza		50,444		
		Desv. Desviación		7,10242		
		Mínimo		48,74		
		Máximo		69,19		
		Rango		20,45		
		Rango intercuartil		11,43		
		Asimetría		-0,155	0,687	
		Curtosis		-1,310	1,334	

Pruebas de normalidad

INTERVALO EDAD		Kolmogorov-Smirnov ^a			Shapiro-Wilk				
		Estadístico	gl	Sig.	Estadístico	gl	Sig.		
ROM izquierda (°)	Menor de 40 años	0,219	10	0,192	0,861	10	0,078		
	Mayor de 40 años	0,163	10	0,200*	0,940	10	0,556		

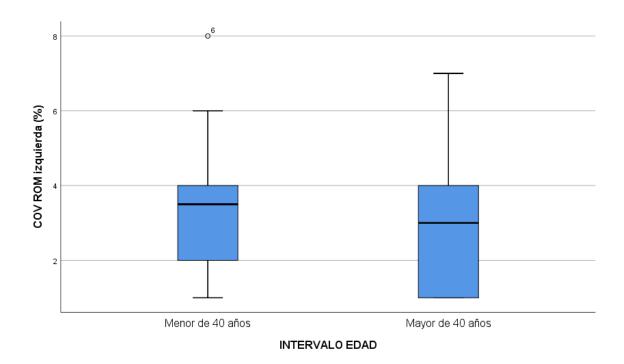
^{*.} Esto es un límite inferior de la significación verdadera.


a. Corrección de significación de Lilliefors

		Descriptivos			1
GÉNERO					Desv.
				Estadístico	Error
COV ROM	Hombre	Media		3,20	0,533
izquierda (%)		95% de intervalo de	Límite	1,99	
		confianza para la media	inferior		
			Límite	4,41	
			superior		
		Media recortada al 5%		3,11	
		Mediana		3,00	
		Varianza		2,844	
		Desv. Desviación		1,687	
		Mínimo		1	
		Máximo		7	
		Rango		6	
		Rango intercuartil		2	
		Asimetría		1,174	0,687
		Curtosis		2,118	1,334
	Mujer	Media		3,40	0,718
		95% de intervalo de	Límite	1,78	
		confianza para la media	inferior		
			Límite	5,02	
			superior		
		Media recortada al 5%		3,28	
		Mediana		3,00	
		Varianza		5,156	
		Desv. Desviación		2,271	
		Mínimo		1	
		Máximo		8	
		Rango		7	
		Rango intercuartil		4	
		Asimetría		0,874	0,687
		Curtosis		0,533	1,334

GÉNERO		Kolmogoro	v-Smiri	nov ^a	Shapiro-Wilk		
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
COV ROM izquierda (%)	Hombre	0,218	10	0,197	0,890	10	0,172
	Mujer	0,196	10	0,200 [*]	0,890	10	0,170

^{*.} Esto es un límite inferior de la significación verdadera.

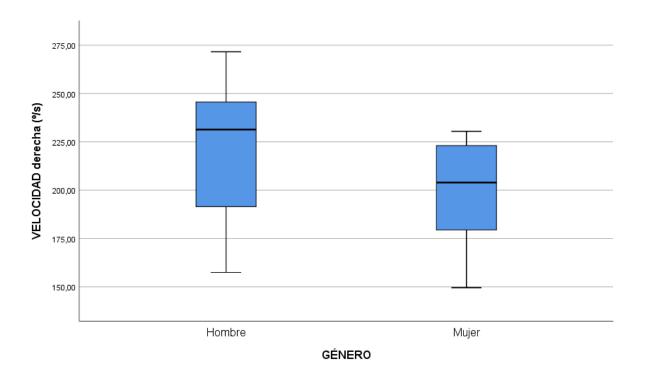


a. Corrección de significación de Lilliefors

		Descriptivos			
INTERVALO ED	AD				Desv.
				Estadístico	Error
COV ROM	Menor de	Media		3,60	0,670
izquierda (%)	40 años	95% de intervalo de	Límite inferior	2,08	
		confianza para la media	Límite	5,12	
			superior	<u> </u>	
		Media recortada al 5%		3,50	
		Mediana		3,50	
		Varianza		4,489	
		Desv. Desviación		2,119	
		Mínimo		1	
		Máximo		8	
		Rango		7	
		Rango intercuartil		3	
		Asimetría		1,009	0,687
		Curtosis		0,790	1,334
	Mayor de	Media		3,00	0,577
	40 años	95% de intervalo de	Límite inferior	1,69	
		confianza para la media	Límite	4,31	
			superior		
		Media recortada al 5%		2,89	
		Mediana		3,00	
		Varianza		3,333	
		Desv. Desviación		1,826	
		Mínimo		1	
		Máximo		7	
		Rango		6	
		Rango intercuartil		3	
		Asimetría		0,959	0,687
		Curtosis		1,671	1,334

INTERVALO EDAD		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
COV ROM izquierda (%)	Menor de 40 años	0,225	10	0,163	0,905	10	0,248
	Mayor de 40 años	0,200	10	0,200 [*]	0,858	10	<mark>0,071</mark>

^{*.} Esto es un límite inferior de la significación verdadera.

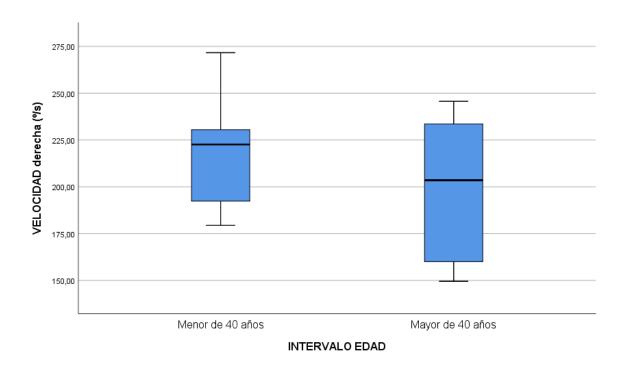


a. Corrección de significación de Lilliefors

Descriptivos									
GÉNERO					Desv.				
				Estadístico	Error				
VELOCIDAD	Hombre	Media		222,2300	10,79783				
derecha (°/s)		95% de intervalo de	Límite	197,8036					
		confianza para la	inferior						
		media	Límite	246,6564					
		-	superior						
		Media recortada al 5%		223,0861					
		Mediana		231,4000					
		Varianza		1165,931					
		Desv. Desviación		34,14574					
		Mínimo		157,45					
		Máximo		271,60					
		Rango		114,15					
		Rango intercuartil		55,64					
		Asimetría		-0,622	0,687				
		Curtosis		-0,068	1,334				
	Mujer	Media		198,1640	9,16322				
		95% de intervalo de	Límite	177,4353					
		confianza para la	inferior						
		media	Límite	218,8927					
			superior						
		Media recortada al 5%		199,0700					
		Mediana		203,9700					
		Varianza		839,647					
		Desv. Desviación		28,97666					
		Mínimo		149,53					
		Máximo		230,49					
		Rango		80,96					
		Rango intercuartil		49,51					
		Asimetría		-0,526	0,687				
		Curtosis		-1,155	1,334				

GÉNERO		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
VELOCIDAD derecha (º/s)	Hombre	0,181	10	0,200*	0,954	10	<mark>0,717</mark>
	Mujer	0,226	10	0,159	0,906	10	0,258

^{*.} Esto es un límite inferior de la significación verdadera.



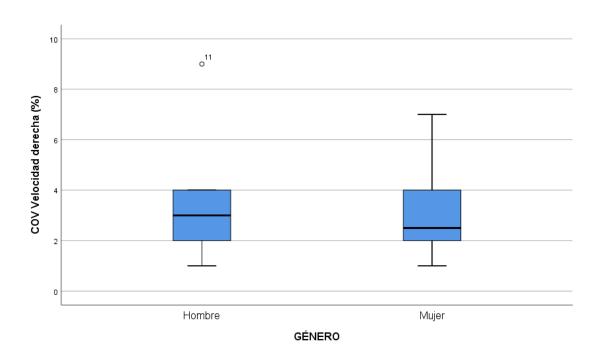
a. Corrección de significación de Lilliefors

		Descriptivos	S		
INTERVALO EDA	AD				Desv.
				Estadístico	Error
VELOCIDAD	Menor de	Media		220,1600	8,91198
derecha (°/s)	40 años	95% de intervalo de confianza para la	Límite inferior	199,9997	
		media	Límite superior	240,3203	
		Media recortada al 5%	ı	219,5639	
		Mediana		222,6000	
		Varianza		794,233	
		Desv. Desviación		28,18215	
		Mínimo		179,45	
		Máximo		271,60	
		Rango		92,15	
		Rango intercuartil		43,60	
		Asimetría		0,266	0,687
		Curtosis		-0,186	1,334
	Mayor de	Media		200,2340	11,45655
	40 años	95% de intervalo de confianza para la	Límite inferior	174,3175	
		media	Límite superior	226,1505	
		Media recortada al 5%	ı	200,5278	
		Mediana		203,5300	
		Varianza		1312,526	
		Desv. Desviación		36,22881	
		Mínimo		149,53	
		Máximo		245,65	
		Rango		96,12	
		Rango intercuartil		75,79	
		Asimetría		-0,198	0,687
		Curtosis		-1,686	1,334

INTERVALO EDAD		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
VELOCIDAD derecha (º/s)	Menor de 40 años	0,157	10	0,200*	0,961	10	0,794
	Mayor de 40 años	0,166	10	0,200*	0,909	10	0,272

^{*.} Esto es un límite inferior de la significación verdadera.

a. Corrección de significación de Lilliefors


GÉNERO		Descriptivos			Desv.
CLIVEINO				Estadístico	Error
COV Velocidad	Hombre	Media		3,50	0,687
derecha (%)	Tiombro	95% de intervalo de	Límite	1,95	0,001
,		confianza para la media	inferior	1,00	
		р	Límite	5,05	
			superior	,,,,,	
		Media recortada al 5%	•	3,33	
		Mediana		3,00	
		Varianza		4,722	
		Desv. Desviación		2,173	
		Mínimo		1	
		Máximo		9	
		Rango		8	
		Rango intercuartil		2	
		Asimetría		1,949	0,687
		Curtosis		5,102	1,334
	Mujer	Media		3,00	0,537
	.,.	95% de intervalo de	Límite	1,78	, , , , ,
		confianza para la media	inferior	, -	
			Límite	4,22	
			superior		
		Media recortada al 5%		2,89	
		Mediana		2,50	
		Varianza		2,889	
		Desv. Desviación		1,700	
		Mínimo		1	
		Máximo		7	
		Rango		6	
		Rango intercuartil		2	
		Asimetría		1,527	0,687
		Curtosis		2,931	1,334

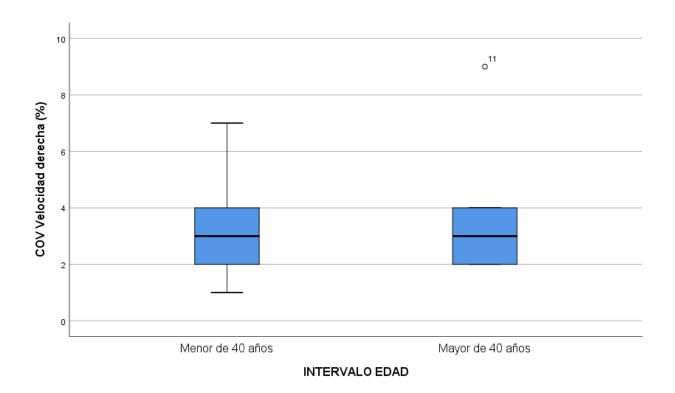
Pruebas de normalidad

GÉNERO		Kolmogoro	v-Smirr	10V ^a	Shapiro-Wilk		
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
COV Velocidad derecha (%)	Hombre	0,309	10	0,007	0,791	10	0,011
	Mujer	0,222	10	0,178	0,847	10	0,053

a. Corrección de significación de Lilliefors

En nuestro caso al tener menos de 30 datos debemos elegir la prueba de normalidad de Shapiro, la cual nos da p-valores con distinta significancia, por tanto, aplicaríamos la prueba no paramétrica al no haber normalidad en ambos grupos.

Descriptivos


INTERVALO EDAI)				Desv.
				Estadístico	Error
COV Velocidad	Menor de	Media		3,10	0,567
derecha (%)	40 años	95% de intervalo de	Límite inferior	1,82	
		confianza para la	Límite	4,38	
		media	superior	<u> </u>	
		Media recortada al 5%		3,00	
		Mediana		3,00	
		Varianza		3,211	
		Desv. Desviación	1,792		
		Mínimo		1	
		Máximo		7	
		Rango		6	
		Rango intercuartil		2	
		Asimetría		0,973	0,687
		Curtosis		1,484	1,334
	Mayor de	Media		3,40	0,670
	40 años	95% de intervalo de	Límite inferior	1,88	
		confianza para la	Límite	4,92	
		media	superior		
		Media recortada al 5%		3,17	
		Mediana		3,00	
		Varianza		4,489	
		Desv. Desviación		2,119	
		Mínimo		2	
		Máximo		9	
		Rango		7	
		Rango intercuartil		2	
		Asimetría		2,408	0,687
		Curtosis		6,483	1,334

Pruebas de normalidad

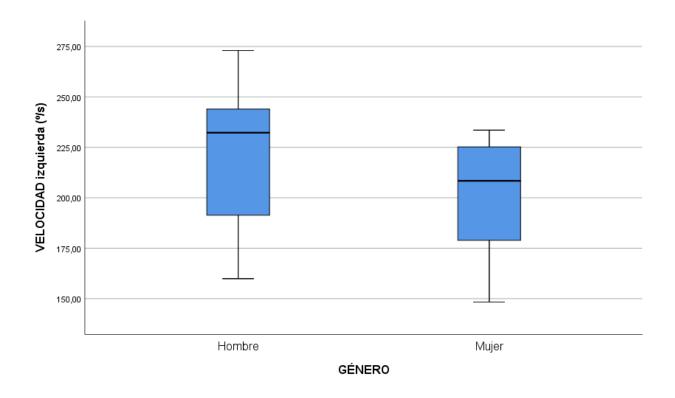
INTERVALO EDAD	Kolmogoro	v-Smirr	nov ^a	Shapiro-Wilk			
	Estadístico	gl	Sig.	Estadístico	gl	Sig.	
COV Velocidad derecha (%)	Menor de 40 años	0,208	10	0,200*	0,901	10	0,226
	Mayor de 40 años	0,289	10	0,018	0,676	10	0,000

^{*.} Esto es un límite inferior de la significación verdadera.

En nuestro caso al tener menos de 30 datos debemos elegir la prueba de normalidad de Shapiro, la cual nos da p-valores con distinta significancia, por tanto, aplicaríamos la prueba no paramétrica al no haber normalidad en ambos grupos.

a. Corrección de significación de Lilliefors

Descriptivos


r		Descriptivos	<u> </u>		
GÉNERO					Desv.
				Estadístico	Error
VELOCIDAD	Hombre	Media		221,9000	10,71182
izquierda (º/s)		95% de intervalo de	Límite inferior	197,6682	
		confianza para la	Límite	246,1318	
		media	superior		
		Media recortada al 5%		222,5067	
		Mediana		232,2350	
		Varianza	1147,431		
		Desv. Desviación	33,87375		
		Mínimo	159,93		
		Máximo		272,95	
		Rango		113,02	
		Rango intercuartil		54,30	
		Asimetría		-0,528	0,687
		Curtosis		-0,233	1,334
	Mujer	Media		199,1650	9,49783
		95% de intervalo de	Límite inferior	177,6794	
		confianza para la	Límite	220,6506	
		media	superior		
		Media recortada al 5%		200,0794	
		Mediana		208,4050	
		Varianza		902,088	
		Desv. Desviación		30,03479	
		Mínimo		148,32	
		Máximo		233,55	
		Rango		85,23	
		Rango intercuartil		51,62	
		Asimetría		-0,598	0,687
		Curtosis		-1,065	1,334

Pruebas de normalidad

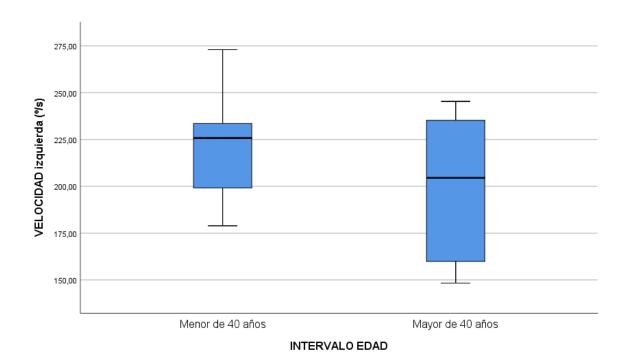
GÉNERO	Kolmogoro	v-Smirı	nov ^a	Shapiro-Wilk			
	Estadístico	gl	Sig.	Estadístico	gl	Sig.	
VELOCIDAD izquierda (º/s)	ELOCIDAD izquierda (º/s) Hombre		10	0,200*	0,949	10	0,662
	Mujer	0,231	10	0,139	0,907	10	<mark>0,261</mark>

^{*.} Esto es un límite inferior de la significación verdadera.

En nuestro caso al tener menos de 30 datos debemos elegir la prueba de normalidad de Shapiro, la cual nos da p-valores no significativos (p>0,05), por tanto, aceptamos la hipótesis de que la variable si tiene distribución normal en ambos grupos.

a. Corrección de significación de Lilliefors

Descriptivos


		Descriptivos	<u> </u>		_
INTERVALO EDAD)				Desv.
				Estadístico	Error
VELOCIDAD	Menor de	Media		221,0030	8,82870
izquierda (º/s)	40 años	95% de intervalo de	Límite	201,0311	
		confianza para la	inferior	l.	
		media	Límite	240,9749	
			superior		
		Media recortada al 5%		220,4556	
		Mediana		225,7750	
		Varianza		779,460	
		Desv. Desviación		27,91881	
		Mínimo		178,91	
		Máximo		272,95	
		Rango		94,04	
		Rango intercuartil		40,32	
		Asimetría		0,170	0,687
		Curtosis		0,140	1,334
	Mayor de	Media		200,0620	11,46119
	40 años	95% de intervalo de	Límite	174,1350	
		confianza para la	inferior		
		media	Límite	225,9890	
			superior		
		Media recortada al 5%		200,4217	
		Mediana		204,5200	
		Varianza		1313,589	
		Desv. Desviación		36,24347	
		Mínimo		148,32	
		Máximo		245,33	
		Rango		97,01	
		Rango intercuartil		76,85	
		Asimetría		-0,189	0,687
		Curtosis		-1,649	1,334

Pruebas de normalidad

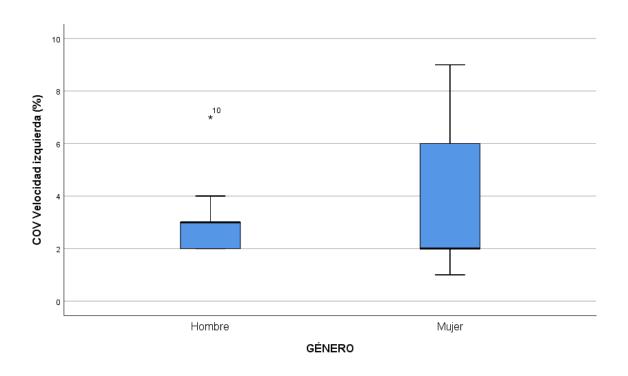
INTERVALO EDAD		Kolmogoro	v-Smirr	nov ^a	Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.	
VELOCIDAD izquierda (º/s)	Menor de 40 años	0,160	10	0,200*	0,964	10	<mark>0,831</mark>
	Mayor de 40 años	0,187	10	0,200*	0,909	10	0,275

^{*.} Esto es un límite inferior de la significación verdadera.

En nuestro caso al tener menos de 30 datos debemos elegir la prueba de normalidad de Shapiro, la cual nos da p-valores no significativos (p>0,05), por tanto, aceptamos la hipótesis de que la variable si tiene distribución normal en ambos grupos.

a. Corrección de significación de Lilliefors

Descriptivos


GÉNERO					Desv.
				Estadístico	Error
COV Velocidad	Hombre	Media		3,20	0,467
izquierda (%)		95% de intervalo de confianza para la media	Límite inferior	2,14	
			Límite superior	4,26	
		Media recortada al 5%		3,06	
		Mediana		3,00	
		Varianza		2,178	
		Desv. Desviación		1,476	
		Mínimo		2	
		Máximo		7	
		Rango		5	
		Rango intercuartil		1	
		Asimetría		2,168	0,687
		Curtosis		5,562	1,334
	Mujer	Media		3,40	0,846
		95% de intervalo de confianza para la media	Límite inferior	1,49	
			Límite superior	5,31	
		Media recortada al 5%		3,22	
		Mediana		2,00	
		Varianza		7,156	
		Desv. Desviación		2,675	
		Mínimo		1	
		Máximo		9	
		Rango		8	
		Rango intercuartil		4	
		Asimetría		1,249	0,687
		Curtosis		0,591	1,334

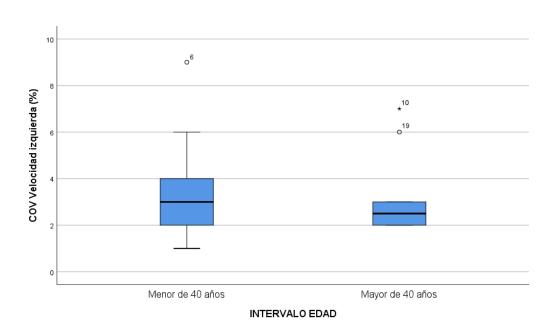
Pruebas de normalidad

GÉNERO	Kolmogoro	v-Smirr	10V ^a	Shapiro-Wilk			
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
COV Velocidad izquierda (%)	Hombre	0,354	10	0,001	0,714	10	0,001
	Mujer	0,300	10	0,011	0,808	10	0,018

a. Corrección de significación de Lilliefors

En nuestro caso al tener menos de 30 datos debemos elegir la prueba de normalidad de Shapiro, la cual nos da p-valores con distinta significancia, por tanto, aplicaríamos la prueba no paramétrica al no haber normalidad en ambos grupos.

Descriptivos


INTERVALO EDAD		Descriptivos			Desv.
				Estadístico	Error
COV Velocidad	Menor de	Media		3,40	0,777
izquierda (%)	40 años	95% de intervalo de	Límite	1,64	
		confianza para la	inferior		
		media	Límite	5,16	
			superior		
		Media recortada al 5%		3,22	
		Mediana		3,00	
		Varianza		6,044	
		Desv. Desviación		2,459	
		Mínimo		1	
		Máximo		9	
		Rango		8	
		Rango intercuartil		3	
		Asimetría		1,496	0,687
		Curtosis		2,252	1,334
	Mayor de	Media	-	3,20	0,573
	40 años	95% de intervalo de	Límite	1,90	
		confianza para la	inferior		
		media	Límite	4,50	
			superior		
		Media recortada al 5%		3,06	
		Mediana		2,50	
		Varianza		3,289	
		Desv. Desviación		1,814	
		Mínimo		2	
		Máximo		7	
		Rango		5	
		Rango intercuartil		2	
		Asimetría		1,587	0,687
		Curtosis		1,317	1,334

Pruebas de normalidad

INTERVALO EDAD	Kolmogoro	v-Smiri	nov ^a	Shapiro-Wilk			
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
COV Velocidad izquierda	Menor de 40	0,265	10	0,046	0,847	10	0,053
(%)	años						
	Mayor de 40 años	0,344	10	0,001	0,703	10	<mark>0,001</mark>

a. Corrección de significación de Lilliefors

En nuestro caso al tener menos de 30 datos debemos elegir la prueba de normalidad de Shapiro, la cual nos da p-valores con distinta significancia, por tanto, aplicaríamos la prueba no paramétrica al no haber normalidad en ambos grupos.

CONTRASTES DE HIPOTESIS

En este apartado veremos si las principales variables de nuestro trabajo son independientes respecto a ciertas variables que utilizaremos como factores (genero, intervalo edad), es decir, se recurre a comparar las medias de las distribuciones de la variable cuantitativa en los diferentes grupos establecidos por la variable categórica. Utilizaremos diferentes métodos dependiendo de si la variable principal cuantitativa se distribuye normalmente o no. Para los test que vamos a aplicar, dentro de los paramétricos de independencia, cuando la variable categórica tiene 2 categorías utilizaremos la prueba de la *T de Student*, siendo su equivalente no paramétrico el test *U de Mann-Whitney*.

GENERO

Veamos si en nuestras principales variables objeto de estudio hay diferencia estadísticamente significativa entre el valor medio de hombres y mujeres:

Prueba de muestras independientes

		Prueba Levena igualda varian	e de ad de	prueba t para la igualdad de medias							
						Sig.	Diferen	Diferen cia de error	95% de i de confia la difer	anza de	
						(bilater	cia de	estánd	Inferi	Superi	
		F	Sig.	t	gl	al)	medias	ar	or or		
ROM	varianz	0,5	0,4	0,4	18	<mark>0,643</mark>	1,4970	3,1770	-	8,1716	
derecha	as	85	54	71			0	2	5,177	8	
(°)	iguales								68		
	No			0,4	17,2	0,643	1,4970	3,1770	-	8,1920	
	varianz			71	67		0	2	5,198	5	
	as								05		
	iguales										
COV	varianz	0,4	0,4	-	18	0,422	-0,700	0,852	-	1,090	
ROM	as	82	96	0,8					2,490		
	iguales			22							

derecha	No			_	16,9	0,423	-0,700	0,852	_	1,098
(%)	varianz			0,8	20				2,498	
	as			22						
	iguales									
ROM	varianz	0,6	0,4	0,7	18	0,487	2,3510	3,3129	-	9,3111
izquierda	as	77	21	10			0	1	4,609	7
(°)	iguales								17	
	No			0,7	17,2	0,487	2,3510	3,3129	-	9,3328
	varianz			10	52		0	1	4,630	6
	as								86	
	iguales									
COV	varianz	0,6	0,4	-	18	<mark>0,826</mark>	-0,200	0,894	-	1,679
ROM	as	14	44	0,2					2,079	
izquierda	iguales			24						
(%)	No			-	16,6	0,826	-0,200	0,894	-	1,690
	varianz			0,2	13				2,090	
	as			24						
	iguales									
VELOCID	varianz	0,1	0,7	1,6	18	<mark>0,106</mark>	24,066	14,161	-	53,818
AD	as	17	37	99			00	84	5,686	93
derecha	iguales								93	
(°/s)	No			1,6	17,5	0,107	24,066	14,161	-	53,875
	varianz			99	36		00	84	5,743	48
	as								48	
	iguales									
VELOCID	varianz	0,0	0,7	1,5	18	<mark>0,130</mark>	22,735	14,316	-	52,812
AD	as	81	79	88			00	14	7,342	10
izquierda	iguales								10	
(°/s)	No			1,5	17,7	0,130	22,735	14,316	-	52,843
	varianz			88	46		00	14	7,373	02
	as								02	
	iguales									

Primeramente debemos mirar el test de Levene para saber si podemos asumir igualdad de varianzas en ambos grupos, en nuestro caso en todos los test el p-valor de Levene sale no significativo (p>0,05), por tanto, asumimos igualdad de varianzas. La prueba de independencia T-Student sale no significativa (p>0,05) en todas las variables, por tanto, con un 95% de confianza podemos asumir que no hay diferencias estadísticamente significativas en el valor medio de ninguna de las variables entre hombres y mujeres.

Veamos la prueba de independencia no paramétrica de Mann Whitney para las variables que no tenían distribución normal:

Estadísticos de pruebaª

	COV Velocidad	COV Velocidad
	derecha (%)	izquierda (%)
U de Mann-Whitney	41,500	39,500
W de Wilcoxon	96,500	94,500
Z	-0,662	-0,823
Sig. asintótica(bilateral)	<mark>0,508</mark>	0,410
Significación exacta [2*(sig.	0,529 ^b	0,436 ^b
unilateral)]		

a. Variable de agrupación: GÉNERO

Ambos p-valores salen no significativos (p>0,05), tanto para la variable COV velocidad derecha como para COV velocidad izquierda, por tanto, con un 95% de confianza podemos asumir que no hay diferencias estadísticamente significativas en el valor medio de ninguna de las dos variables entre hombres y mujeres.

INTERVALO EDAD

Veamos si en nuestras principales variables objeto de estudio hay diferencia estadísticamente significativa entre el valor medio de mayores de 40 y menores de 40:

b. No corregido para empates.

Prueba de muestras independientes

Prueba de muestras independientes												
		Prueb	a de									
		Leven	e de									
		igualda	ad de									
		variar	ızas			prueba t	oara la igualo	dad de media	as			
								Diferen	95% de i	ntervalo		
								cia de	de confiar	nza de la		
						Sig.	Diferen	error	difere	ncia		
						(bilater	cia de	estánd		Superi		
		F	Sig.	t	gl	al)	medias	ar	Inferior	or		
ROM	varianz	0,1	0,7	1,3	18	0,201	4,0470	3,0509	-	10,456		
derecha	as	27	25	26			0	1	2,3627	73		
(°)	iguales								3			
	No			1,3	17,6	0,202	4,0470	3,0509	_	10,466		
	varianz			26	41		0	1	2,3721	11		
	as								1			
	iguales											
COV	varianz	1,1	0,2	0,3	18	<mark>0,733</mark>	0,300	0,865	-1,517	2,117		
ROM	as	87	90	47								
derecha	iguales											
(%)	No			0,3	17,3	0,733	0,300	0,865	-1,522	2,122		
	varianz			47	04							
	as											
	iguales											
ROM	varianz	0,0	0,8	0,8	18	0,397	2,8550	3,2908	-	9,7687		
izquierda	as	21	85	68			0	4	4,0587	9		
(°)	iguales								9			
	No			0,8	17,9	0,397	2,8550	3,2908	-	9,7711		
	varianz			68	16		0	4	4,0611	1		
	as								1			
	iguales											
COV	varianz	0,4	0,5	0,6	18	0,506	0,600	0,884	-1,258	2,458		
ROM	as	74	00	78								
izquierda	iguales											
(%)	No			0,6	17,6	0,506	0,600	0,884	-1,261	2,461		
	varianz			78	16							
	as											
	iguales											
VELOCID	varianz	1,9	0,1	1,3	18	<mark>0,187</mark>	19,926	14,514	-	50,420		
AD	as	66	78	73			00	68	10,568	21		
	iguales								21			

derecha	No			1,3	16,9	0,188	19,926	14,514	-	50,553
(°/s)	varianz			73	73		00	68	10,701	05
	as								05	
	iguales									
VELOCID	varianz	2,0	0,1	1,4	18	<mark>0,165</mark>	20,941	14,467	-	51,335
AD	as	37	71	47			00	38	9,4538	83
izquierda	iguales								3	
(°/s)	No			1,4	16,8	0,166	20,941	14,467	-	51,478
	varianz			47	99		00	38	9,5963	33
	as								3	
	iguales									

Primeramente, debemos mirar el test de Levene para saber si podemos asumir igualdad de varianzas en ambos grupos, en nuestro caso en todos los test el p-valor de Levene sale no significativo (p>0,05), por tanto, asumimos igualdad de varianzas. La prueba de independencia T-Student sale no significativa (p>0,05) en todas las variables, por tanto, con un 95% de confianza podemos asumir que no hay diferencias estadísticamente significativas en el valor medio de ninguna de las variables entre hombres y mujeres.

Veamos la prueba de independencia no paramétrica de Mann Whitney para las variables que no tenían distribución normal:

Estadísticos de pruebaª

	COV Velocidad	COV Velocidad
	derecha (%)	izquierda (%)
U de Mann-Whitney	48,000	49,000
W de Wilcoxon	103,000	104,000
z	-0,156	-0,078
Sig. asintótica(bilateral)	<mark>0,876</mark>	0,938
Significación exacta [2*(sig.	0,912 ^b	0,971 ^b
unilateral)]		

a. Variable de agrupación: INTERVALO EDAD

Ambos p-valores salen no significativos (p>0,05), tanto para la variable COV velocidad derecha como para COV velocidad izquierda, por tanto, con un 95% de confianza podemos asumir que no hay diferencias estadísticamente significativas en el valor medio de ninguna de las dos variables entre hombres y mujeres.

b. No corregido para empates.

		GÉN	ERO		INTERVALO DE EDADES						
	НОМ	IBRE	MU	IER	MENOF	RES 40	MAYOF	RES 40			
	Frec.		Frec.		Frec.		Frec.				
	10	50%	10	50%	10	50%	10	50%			
	Media	SD	Media	SD	Media	SD	Media	SD			
ROM											
d.(°)	60,6100	7,80168	59,1130	6,32998	61,8850	7,29272	57,8380	6,31641			
COV											
ROM											
d.(%)	2,90	2,132	3,60	1,647	3,40	2,119	3,10	1,729			
ROM											
i.(°)	61,7600	8,14267	59,4090	6,59171	62,0120	7,60603	59,1570	7,10242			
COV ROM											
i.(%)	3,20	1,687	3,40	2,271	2,08	2,119	3,00	1,826			
VEL.											
d.(°/s)	222,2300	34,14574	198,1640	28,97666	220,1600	28,18215	200,2340	36,22881			
COV											
Vel.											
d.(%)	3,50	2,173	3,00	1,700	3,10	1,792	3,40	2,119			
VEL.											
i.(º/s)	221,9000	33,87375	199,1650	30,03479	221,0030	27,91881	220,0620	36,24347			
COV											
Vel.											
i.(%)	3,20	1,476	3,40	2,675	3,40	2,459	3,20	1,814			

Tabla resumen análisis estadísticos de las mediciones (1). (Elaboración propia)

	MEDIA	SD (desviación típica)
ROM d. (°)	59,8815	6,95708
COV ROM d. (%)	3,25	1,888
ROM i. (°)	60,5845	7,31048
COV ROM i. (%)	3,30	1,949
VEL. d. (°/s)	210,1970	33,20278
COV VEL. d. (%)	3,25	1,916
VEL. i. (°/s)	210,5325	33,26929
COV VEL. i. (%)	3,30	2,105

Tabla resumen análisis estadísticos de las mediciones (2). (Elaboración propia)

CONTRASTE DE HIPÓTESIS (Comparación de Medias)									
GÉNERO	Hombre	P>0.05 → No existen diferencias							
	Mujer	estadísticamente significativas							
INTERVALO DE EDAD	> 40 años	P>0.05 → No existen diferencias							
LUAU	< 40 años	estadísticamente significativas							

Tabla resumen contraste de hipótesis. Nivel de confianza: 95%. (Elaboración propia)

10. Discusión

De la literatura analizada, no hemos podido encontrar un estudio con el mismo objetivo y metodología aplicada con el que comparar nuestros resultados. Sin embargo, buscaremos analogías comparativas con algunos autores que tengan artículos con alguna relación respecto de nuestro estudio. Así, A. Haj et al. (39) (2019) realizan una investigación en relación a la rotación lumbar pero en pacientes con dolor lumbar crónico inespecífico y en bipedestación, con una muestra total de 50 hombres (25 de control sin patología), obteniendo un sesgo evidente por no bloquear la movilidad de la pelvis al realizarse en bipedestación, al contrario que en nuestro caso. Ellos obtienen que aparece una disminución general del ROM al pasar de bipedestación a flexión en la posición de medición frente a los controles, y que en bipedestación encuentran un menor ROM para la rotación izquierda, obteniéndose estos mismos resultados para los sujetos controles.

Lee et al. (14) realizan un estudio con voluntarios coreanos (igual que nosotros: muestra de 20 sujetos, 50% hombres y 50% jóvenes) estratificados por edad (jóvenes, 20-30 años y mayores, > 65 años), sin antecedentes en los 6 meses anteriores de lumbalgia en los que se evalúan los perfiles sagitales lumbares (ángulos lordóticos lumbares y ángulos segmentarios en el plano sagital) mediante radiografías laterales (por ser el único método para medir los ángulos óseos del raquis lumbar) en diferentes posturas relacionadas con las AVDs: de pie, en posición supina y sentado (30°, 60° y 90°). Tras su estudio, indican que la mayor flexibilidad del raquis lumbar en individuos jóvenes puede desembocar en un mayor rango de movimiento, situación que también se reproduce en nuestro estudio, puesto que los menores de 40 años obtienen mayor ROM y velocidad respecto de los mayores, aunque no de manera significativa.

Lazennec et al. (15), a través de su trabajo estudian, mediante radiografías, las variaciones posturales de las referencias lumbopélvicas en el plano sagital, analizando una serie de casos para valorar el equilibrio sagital del tronco, tanto en la postura sentada como en la de bipedestación. Concluyen que aparece un posible deterioro severo del ROM funcional lumbar como consecuencia de la edad avanzada o una postura sagital anormal. En nuestro caso, también se observa que los sujetos mayores de 40 años presentan una reducción del ROM y de la Velocidad de ejecución.

Intolo et al. (42) realizan una revisión sistemática y un metanálisis para valorar el efecto de la edad sobre el rango de movimiento lumbar (2009) en pacientes sanos y asintomáticos. En la determinación de la muestra utilizaron a dos revisores independientemente para buscar consenso en relación a la inclusión de los artículos revisados y la calidad de los estudios, decidiendo en caso de contrariedad un tercer revisor. Revisaron 511 títulos de artículos y 19 manuscritos relevantes en los que se utilizaron procedimientos no invasivos para hacer las valoraciones de los sujetos incluidos (desde sistemas de análisis de movimientos de laboratorio a cintas métricas, radiografías...), incluyéndose finalmente un total de 16 estudios para la revisión sistemática. Para el metanálisis se incluyeron inicialmente 1323 mujeres y 1001 hombres entre 8-90 años, con buen estado de salud y sin presentar afectación patológica del raquis lumbar. Finalmente quedaron disponibles 109 mujeres y 154 hombres. Los resultados que obtuvieron indican que la rotación lumbar no está fuertemente influenciada por la edad, y que se produce una mayor reducción en la rotación izquierda frente a la derecha. Nuestros resultados van en ese sentido, ya que no existen diferencias estadísticamente significativas; sin embargo, encontramos que los mayores de 40 años, en el intervalo de edad de 40-50, aumentan ligeramente el ROM izquierdo

A. Ashad et al. (2018) (40) han valorado el efecto de la edad y el sexo sobre la lordosis lumbar y el ROM a través de una revisión sistemática y un metaanálisis, donde dos revisores de forma independiente identificaron 2372 artículos posibles de entre 1960 y 2018, en sujetos mayores de 18 años agrupados en intervalos de edad (20-29, 30-39, 40-49, 50-59 y 60-69), sin afectación del raquis lumbar actual o previa y donde se informó sobre la influencia del sexo o la edad como principales objetivos en relación al ROM activo desde bipedestación con mediciones. Se evaluaron 218 estudios a texto completo relacionados, con mediciones o no radiológicas, de lordosis lumbar o ROM y, finalmente, se incluyeron, por consenso de estos dos revisores, 65 estudios, de los cuales, 11 pasaron a formar parte del metanálisis aunque no fueran estudios radiológicos. Se encontró que los estudios de rotación axial tuvieron datos simétricos entre las mediciones del lado izquierdo y lado derecho. Por género, había una mayor rotación axial en las mujeres y, por edad, un mayor ROM en jóvenes, disminuyendo progresivamente con el envejecimiento de manera más significativa. En nuestro caso, los datos también fueron muy parecidos entre un lado y otro, mientras que, por el contrario, la diferencia fue mínima

pero a favor de los hombres, sin ser nada significativa. En relación a la edad y el ROM, los resultados obtenidos fueron similares a dicho estudio.

En nuestra revisión literaria encontramos a dos grupos de autores que han valorado cómo varían ROM y Velocidad en relación con el miedo al dolor. Así, Matheve et al. (17), realiza un estudio (2019) con 55 pacientes diagnosticados de lumbalgia crónica inespecífica (más de 3 meses con mínimo 3 días a la semana de dolor) y los compara con otros 54 sanos, de entre 18 y 65 años de edad, en la tarea de levantar un objeto pesado con la espalda doblada y rodillas estiradas, como acción para valorar el miedo al dolor mediante test (PHODA-SeV, escala de Tampa para la kinesiofobia y subescalas de Evitación de actividad y enfoque somatico) y dispositivo IMU validado, para el control cinemático. En este caso se indica que tanto la acción propioceptivamente similar a la que provoca dolor, como la nocividad percibida en el gesto pueden desembocar en un comportamiento de movimiento protector que disminuye el ROM y su velocidad de realización. Para nuestro estudio esta situación es desconocida, puesto que nadie percibió dolor durante la actividad realizada, de ahí que los COVs sean bajos, al no haber variación significativa (repetibilidad) en la comparación de las cinco repeticiones solicitadas de rotación. Por otro lado, Peydro et al.(16) (2011) utiliza una muestra de 141 sujetos, 90 patológicos (lumbalgia) y 51 normales sin patología (controles) donde se les realiza una valoración funcional instrumentada mediante sistema de análisis de movimiento en laboratorio de biomecánica del gesto de levantarse de una silla, con el mismo número de hombres que de mujeres y estratificados por edad. El resultado que obtienen indica que, tanto el ROM como la Velocidad de ejecución y la repetibilidad del gesto, son estadísticamente menores de manera significativa respecto del grupo control por el miedo a reproducir o agravar su dolor al pasar de la sedestación a la bipedestación. En nuestro estudio no se puede valorar esta situación, puesto que se trata de sujetos sanos, sin dolor, sin embargo, aunque no obtenemos resultados de diferencias estadísticamente significativas, obtenemos también una ligera reducción de todos los valores cinemáticos estudiados sólo para la rotación derecha.

Williams et al. (36) en 2012 realizan una comparativa para investigar las relaciones entre ROM y velocidad angular para la descripción de la trayectoria e irregularidad del movimiento. Para ello cogieron inicialmente una muestra de 40 pacientes con lumbalgia (20 agudos y 20 crónicos, aunque con las exclusiones quedaron finalmente para el estudio

16 y 12 respectivamente), con edades comprendidas entre 18 y 55 años y con dolor en 3 de los movimientos de la prueba, la cual consistió en completar desde bipedestación 3 ejercicios de flexión, extensión, lateroflexión derecha e izquierda, rotación derecha e izquierda y una última de levantamiento de peso (caja de 3 kg). Como resultados se obtuvieron excelentes similitudes en relación al ROM y Velocidad angular respecto de sus curvas, así como de moderadas a buenas en la aceleración. Nuevamente, la posición de estudio es en bipedestación, pero en nuestros resultados observamos también una relación directa entre ROM y Velocidad, ya que cuando obtenemos un valor medio de ROM más elevado frente al que se compara, su Velocidad de ejecución también lo es.

Atendiendo a la biomecánica se podría especular que las diferencias en la rotación axial y la velocidad de ejecución podrían deberse a los diferentes perfiles sagitales existentes de los sujetos (afectan a la estabilidad lumbopélvica), a la forma en la que se bloqueen las facetas articulares lumbares durante la rotación axial, al distinto nivel de control motor de cada sujeto, por la kinesiofobia específica que se pueda tener, por la deshidratación y degeneración discal que se va produciendo progresivamente con la edad, por el horario de las mediciones (se produce una rehidratación discal durante las horas de descanso-sueño) y por tener antecedentes de parto, ya que tienen un rango de movimiento aumentado como consecuencia de un aumento de la laxitud articular o unos músculos abdominales débiles.

Por último, Kapandji (7) recoge en su libro de fisiología lumbar que la rotación total derecha-izquierda aislada en sedestación, para la totalidad del raquis lumbar, sólo es de 10°. En su caso no se comenta qué muestra ni qué metodología se ha utilizado, pero sin embargo, cuando lo comparamos con nuestros resultados, para la muestra que hemos utilizado, discrepamos mucho, ya que hemos obtenido para la rotación completa derecha una media de 59,88° con una desviación típica de 6,96° y para la rotación completa izquierda una media de 60,58° con una desviación típica de 7,31°.

Aunque los resultados obtenidos en nuestro estudio apoyan la no existencia de diferencias estadísticamente significativas de edad y género, en esencia, se requieren más datos (mayor muestra) y más evidencia para fundamentar y fortalecer con rotundidad los hallazgos relacionados con la edad y el género. Para el futuro, el consenso entre los investigadores en relación a la metodología de los estudios, características de los

dispositivos de medición, definición de los parámetros a investigar, etc, haría que los datos reportados fueran útiles y viables para valiosos metaanálisis.

11. Conclusiones

La principal conclusión estadísticamente obtenida es la de que no existen diferencias significativas en relación a los valores medios obtenidos de ROM, Velocidad y sus COV correspondientes para la rotación axial lumbar completa, en función de la edad y el género, para individuos sanos-asintomáticos.

En relación a las hipótesis que teníamos planteadas y los valores medios cinemáticos obtenidos estadísticamente de rotación axial lumbar completa, encontramos que:

- Los hombres tienen más velocidad de ejecución que las mujeres.
- Los hombres tienen más rango de movimiento que las mujeres.
- Los jóvenes tienen más rango de movimiento y velocidad de ejecución que los mayores.
- No existen diferencias estadísticamente significativas en el ROM, Velocidad y COV para la Velocidad y el ROM, aunque sí existen diferencias levemente favorables hacia la izquierda.

12. Bibliografía

- Acevedo González JC, Pérez Rodríguez JC. Nuevo concepto de unidad funcional lumbo-sacro-coccígea-pélvica. Bases teóricas y repercusión en el análisis clínico y terapéutico de los pacientes con dolor lumbar. Rev. Soc. Esp Dolor. 2016; 23(5):260-268.
- **2.** Miralles Marrero, R.C, Miralles Rull, Iris. Biomecánica clínica de los tejidos y las articulaciones del aparato locomotor. 2ª edición. Barcelona: Masson; 2005.
- Acevedo González JC, Quintero ST. Escala de diagnóstico (SI5) de disfunción de la articulación sacroiliaca: estudio piloto. Rev. Soc. Esp. Dolor. 2014; 21(3): 123-130.
- **4.** White AA, Panjab MMJB. The problem of clinical instability in the human spine: A systematic approach. In clinical biomechanics of the spine. 2nd ed. Philadelphia: Lippincott. 1990; p. 277-378.
- **5.** Po-Chou L, Kang L, Cheng-Loong L, Yu-Duan T, Kuo-Wei W, Han-Jung C. Sacroiliac joint pain after lumbar and lumbosacral fusion: Findings using dual sacroiliac joint blocks. Pain Medicine. 2011; 12:565-70.
- **6.** Ricard, F. Tratamiento osteopático de las lumbalgias y lumbociáticas por hernias discales. Madrid: Medos; 2013.
- 7. Kapandji, A.. Fisiologia articular. Barcelona: Editorial Medica Panamericana. 2010.
- **8.** López-Miñarro y cols. Validez del test sit-and-reach para valorar. Nutr. Hosp. La extensibilidad isquiosural en mujeres mayores. 2015; 32(1):312-317 313.
- **9.** Corkery, M., Cohen, E., Esposito, M., Newton, R., Rogazzo, M., Rudnick, C., Yen, S.-C. Trunk kinematics and motor control in athletes with and without patellofemoral pain during a lateral step-down test. Manual Therapy. 2016; 25, e132.
- **10.** Husson J.L. et al. The lumbar-pelvic-femoral complex: applications in spinal imbalance. Orthop. Traumat., Surg Res. 2010; 96, pp. S1-S9.
- **11.** Wilder DG. The biomechanics of vibration and low back pain. American Journal of Industrial Medicine.1993;23:557-88.
- **12.** Nachemson A.: Advances in low back pain. Clinical Orthopaedisc. 1985;200:266-78.
- **13.** Kelsey, j. l.. An epidemiological study of acute herniated lumbar intervertebral discs. Rheumatology.1975;14(3), 144–159.

- **14.** Lee, E., Ko, C., Suh, S., Kumar, S., Kang, I., & Yang, J. The effect of age on sagittal plane profile of the lumbar spine according to standing, supine, and various sitting positions. Journal of Orthopaedic Surgery and Research. 2014; 9(1), 11.
- **15.**Lazennec, J. Y., Brusson, A., & Rousseau, M. A. (2013). Lumbar-pelvic-femoral balance on sitting and standing lateral radiographs. Orthopaedics & Traumatology: Surgery & Research. 2013; 99(1), S87–S103.
- **16.** Peydro, M. F., López, J., Cortés, A., Vivas, M. J., Garrido, J. D., & Tortosa, L. Análisis cinético y cinemático del gesto «levantarse de una silla» en pacientes con lumbalgias. Rehabilitación. 2011; 45(2), 99–105.
- **17.** Matheve, T., de Baets, L., Bogaerts, K., & Timmermans, A. Lumbar range of motion in chronic low back pain is predicted by task-specific, but not by general measures of pain-related fear. European Journal of Pain. 2019.
- **18.** Diez, J.M. Estudio de los factores clínico epidemiológicos de las lumbalgias en trabajadores y su relación con la satisfacción laboral. Rev. Asoc. Esp. Espec. Med. Trab. 2018; 27: 232-243.
- **19.** Ahlers SJ, van der Veen AM, van Dijk M, et al. The use of the Behavioral Pain Scale to assess pain in conscious sedated patients. Anesth Analg, 2010; 110:127-133.
- **20.** García A. et al. Análisis Sistema Sanitario de Navarra. 2015; Vol. 38, Nº 1, eneroabril.
- **21.** Papi, E., Koh, W. S., & McGregor, A. H. Wearable technology for spine movement assessment: A systematic review. Journal of Biomechanics. 2017; 64, 186–197.
- 22. Vera Vicuña A. y Medina Macías S.M.. Análisis retrospectivo sobre la utilidad de las herramientas de valoración funcional, en las dolencias lumbares a nivel del ámbito laboral (Regional Canarias de Fremap). Med. Segur. Trab. 2014; 60(Suppl 1): 254-263.
- **23.** González-Torrecillas J.L., Romero-Puertas B., Ballestín-Lopez J.L., LaCarcel-Tejero B., Sarasa-Olivan F.L.. Perfil psicosocial y sobrevaloracion en lumbalgias crónicas. Importancia de las pruebas de biomecánica y valoración psiquiatrica. Rev. Asoc. Esp. Espec. Med. Trab. 2017; 26(3): 186-195.
- **24.** Estudio EPISER. Prevalencia e impacto de las enfermedades reumáticas en la población adulta. Monografía Sociedad Española de Reumatología. Madrid, marzo de 2001.

- **25.** Encuesta Europea de Salud en España (EESE) 2014. Instituto Nacional de Estadística (INE).
- **26.**Encuesta Nacional de Salud de España (ENSE) 2017. Ministerio de Sanidad, Consumo y Bienestar Social. Gobierno de España.
- 27. Torres L.-M., Jiménez A.-J., Cabezón A., Rodríguez M.-J.. Prevalencia del dolor irruptivo asociado al dolor crónico por lumbalgia en Andalucía (estudio COLUMBUS). Rev. Soc. Esp. Dolor. 2017; 24(3): 116-124.
- **28.** Versión española de la Guía Práctica Clínica para el manejo de la lumbalgia. Programa Europeo COST B13. Fundación Kovacs. 2005.
- **29.** Calvo-Muñoz, I., Gómez-Conesa, A., Sánchez-Meca, J. Prevalencia del dolor lumbar durante la infancia y la adolescencia. Una revisión sistemática. Rev. Esp. Salud Pública. 2012; 86: 331-356.
- **30.** Aso Escario, J., Martínez Quiñones, J. V., Aso Vizán, A., Arregui Calvo, R., Bernal Lafuente, M., & Alcázar Crevillén, A. Simulation in Spinal Diseases. Reumatología Clínica (English Edition). 2014; 10(6), 396–405.
- **31.**López-Pascual, J., Peydro-de-Moya, M. F., Garrido-Jaén, J. D., Bausá-Peris, R., & Villadeamigo-Panchón, M. J. Análisis del uso de herramientas de valoración funcional de las dolencias lumbares en el ámbito laboral. Rehabilitación. 2009; 43(1), 16–23.
- **32.**Chen, H., Schall, M. C., & Fethke, N. Accuracy of angular displacements and velocities from inertial-based inclinometers. Applied Ergonomics. 2018; 67, 151–161.
- **33.** https://goniometro-hawk.com/producto/certificado-goniometro/
- **34.** Ha, T.-H., Saber-Sheikh, K., Moore, A. P., & Jones, M. P. Measurement of lumbar spine range of movement and coupled motion using inertial sensors A protocol validity study. Manual Therapy. 2013; 18(1), 87–91.
- **35.** Aranda Valera, I. C., Mata Perdigón, F. J., Martínez Sánchez, I., González Navas, C., Collantes Estévez, E., & Garrido Castro, J. L. Utilización de sensores inerciales para la evaluación de la movilidad espinal en pacientes con espondiloartritis axial. Rehabilitación. 2018; 52(2), 100–106.
- **36.** Williams, J. M., Haq, I., & Lee, R. Y A novel approach to the clinical evaluation of differential kinematics of the lumbar spine. Manual Therapy. 2012; 18(2), 130–135.

- **37.**Troke, M., Moore, A. P., Maillardet, F. J., Hough, A., & Cheek, E. A new, comprehensive normative database of lumbar spine ranges of motion. Clinical Rehabilitation. 2001; 15(4), 371–379.
- **38.** Troke, M., Moore, A. P., Maillardet, F. J., & Cheek, E. A normative database of lumbar spine ranges of motion. Manual Therapy. 2005; 10(3), 198–206.
- **39.** Haj, A., Weisman, A., & Masharawi, Y. Lumbar axial rotation kinematics in men with non-specific chronic low back pain. Clinical Biomechanics. 2019; 61, 192–198.
- **40.** Arshad, R., Pan, F., Reitmaier, S., & Schmidt, H. Effect of age and sex on lumbar lordosis and the range of motion. A systematic review and meta-analysis. Journal of Biomechanics. 2018.
- **41.** Marras, W. The future of research in understanding and controlling work-related low back disorders. Ergonomics. 2005; 48(5), 464–477.
- **42.** Intolo, P., Milosavljevic, S., Baxter, D. G., Carman, A. B., Pal, P., & Munn, J. The effect of age on lumbar range of motion: A systematic review. Manual Therapy. 2009; 14(6), 596–604.
- **43.** Tapia Castejón, J.C. Validación del goniómetro digital Hawk HCT como herramienta de medida para la flexo-extensión de rodilla. Repositorio de la Universidad de Enfermería y Fisioterapia Pontificia Comillas (Madrid). 2017.
- **44.** Cereceda Súnico, C. Validación del goniómetro digital Hawk HCT para los movimientos de rotación en la columna cervical. Repositorio de la Universidad de Enfermería y Fisioterapia Pontificia Comillas (Madrid). 2017.
- **45.** Callejas Romero, J. A.. Validación del goniómetro digital Hawk HCT en la medición del balance articular y velocidad de la flexión de hombro. Repositorio de la Universidad de Enfermería y Fisioterapia Pontificia Comillas (Madrid). 2018.
- 46. World Medical Association Declaration of Helsinki. JAMA. 2013; 310(20), 2191.
- **47.**Tixa S. Atlas de anatomía palpatoria del cuello, tronco y extremidad superior. Investigación manual de superficie. Barcelona: Masson. 2000.

13. Anexos

Anexo 1: Consentimiento informado

DOCUMENTO DE INFORMACIÓN AL PACIENTE

Investigador Principal: Ángel Manuel Troncoso Rodríguez

Centros de Recogida de Datos:

• Escuela Universitaria de Enfermería y Fisioterapia "San Juan de Dios", Universidad

Pontificia Comillas (Madrid).

Clínica de Fisioterapia Ángel Troncoso

Yo, Ángel Manuel Troncoso Rodríguez, fisioterapeuta por la Universidad Europea de

Madrid, me dirijo a usted para informarle de la existencia del estudio previamente citado e

invitarle a su participación. Dicho estudio está aprobado por el Comité de Ética conforme

a la legislación vigente y siguiendo las normas de buena práctica de la Declaración de

Helsinki de la Asociación Médica Mundial.

Con este documento, queremos que reciba toda la información necesaria para su

participación. Para ello, rogamos lea este documento con atención y en caso de duda no

dude en preguntarnos para que le podamos aclarar las posibles dudas que pudieran surgir

o sino, le invitamos a que pregunte las personas que usted crea conveniente.

La participación en este estudio es absolutamente voluntaria y podrá abandonar el

estudio en cualquier momento si así lo desea. Debe saber también que tanto la

participación como el abandono, estará exento de coste económico.

Usted tiene derecho a conocer a qué intervención se expone y las posibles

complicaciones que se pudieran dar.

100

Mediante este estudio se pretende determinar, a través de la utilización del Goniómetro digital Hawk HCT, los valores de normalidad en velocidad de movimiento, ROM (rango articular de movimiento) y COV (coeficiente de variación) de velocidad y de ROM, determinados para el movimiento de rotación completa lumbar según edad y género.

Las mediciones se llevarán a cabo en una única sesión y de una sola vez, a través del siguiente procedimiento:

- Se colocará el sujeto en sedestación erguida (apoyo sobre tuberosidades isquiáticas), con tronco y cuello orientados al frente, con triple flexión de 90° de tobillo, rodilla y cadera respectivamente y quedando su espalda libre de apoyos, roces..., con cualquier parte de la silla para poder hacer libre el movimiento de rotación lumbar completa. Las manos quedarán entrelazadas a nivel de cuello-nuca y los pies con apoyo completo y separados a la altura de los hombros.
- El fisioterapeuta se colocará de frente y un poco lateral al sujeto, separado del mismo y sin interrumpir el libre movimiento de rotación lumbar, para con sus manos darle estabilidad tanto a nivel abdominal como detrás, en su espalda, sujetando al Hawk, colocado a nivel de la apófisis espinosa de L1.
- Para obtener los datos de velocidad del movimiento de rotación y del ROM lumbar completo se utilizará un goniómetro digital Hawk junto con una Tablet Samsung Tab 3, con su software específico, y una hoja Excel para introducir los datos calculados. Dicha Tablet estará colocada frente a nosotros y cerca, para iniciar/terminar con facilidad la obtención de los datos por nosotros. El Hawk se calibrará antes de su utilización para cada sujeto.
- Antes de iniciar la toma de datos se le explicará al sujeto cómo ha de realizar el movimiento de rotación lumbar completa: desde sedestación erguida y orientado al frente debe realizar un movimiento de rotación lumbar (sin mover los MMII) que vaya de un extremo al otro cinco veces seguidas y finalizar en la posición de partida (desde centro → derecha → izquierda → derecha → izquierda → derecha → izquierda → derecha → vuelta al centro). Debe realizarse a la mayor velocidad posible y llegar a los límites del movimiento en cada sentido.

Criterios de Inclusión:

- Hombres y mujeres con edades comprendidas entre 18 y 65 años, ambos límites incluidos.
- Sujetos sanos.
- Firma del consentimiento informado y la hoja de información al paciente.

Criterios de Exclusión:

- Intervención quirúrgica en raquis lumbar
- Alteraciones del tronco y/o MMSS que puedan dificultar el movimiento libre de rotación completa lumbar desde la posición de estudio
- Alteraciones de origen reumatológico (espondilitis, artritis, etc.) y genéticas que cursen con modificación de la elasticidad miotendinosa local o sistémica
- Molestias-dolor local en el momento de la realización de la prueba
- Realizar ejercicio intenso de manera habitual (> 3 veces / semana)

Los datos que se van a obtener y que irán recogidos en la ficha de datos, así como el manejo de la documentación derivada de la investigación estarán anonimizados al sustituirse el nombre del sujeto por un número, pudiendo tener sólo acceso a ello el propio investigador y el tutor del mismo.

Si tiene alguna duda sobre si puede o no puede participar en el estudio, le rogamos se ponga en contacto con nosotros. Gracias por su colaboración.

CONSENTIMIENTO INFORMADO

D. Ángel Manuel Troncoso Rodríguez, fisioterapeuta de la Universidad Pontificia de Comillas, en la Escuela Universitaria de Enfermería y Fisioterapia San Juan de Dios, con DNI 34036530-A, declaro haber facilitado al participante en el estudio toda la información necesaria en los distintos documentos para integrarse en el mismo, y confirmo que reúne las condiciones necesarias para ello.

En Madrid a	de	de 2019.	Firma:
Lii iviaaiia, a	46	uc 2010.	ı ııııa.

A RELLENAR POR EL PACIENTE:

D/Da.						,	CC	n	DN
	, declar	o que he	leído,	me	han	resuelto	todas	las	dudas
preguntas surgio	das durante el p	período de	informa	ación	de fo	orma sati	sfactori	ау	se me h
entregado una c	copia del Docum	iento de Inf	formacio	ón al	pacie	ente.			
Soy plena	amente consciei	nte y se me	e ha exp	olicac	do el	objetivo d	del estu	ıdio.	Además
declaro que no d	oculto informaci	ón al inves	tigador,	que	mis d	latos repo	ortados	ace	rca de n
estado de salud	son verdaderos	s y que reú	no los c	criteri	os de	e inclusió	n propu	iesto	os para e
estudio.									
Al mismo	tiempo, declaro	la confide	ncialida	ad de	mis	datos y q	ue en (caso	de tene
la voluntad de a	bandonar el est	udio, seré	libre de	pode	er ha	cerlo en d	cualquie	er m	omento
circunstancia; po	or tanto, doy mi	consentim	iento pa	ıra pa	articip	ar en est	e estud	lio.	
En Madrid	d, a de		d	le 20	19.		Firma	a:	

DOCUMENTO DE REVOCACIÓN

D/Da.				•••••	,	con	DN
	,	declaro mi	voluntad	de rescindir	el do	ocumento	de
consentimiento	informado y por	tanto, de par	ticipar en e	l estudio.			
En Madr	rid a d	ام		de 2019		Firma:	

CÓDIGO	NOMBRE	APELLIDOS	F. NACIMIENTO	TLF
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30	Anovo 2: Codific			

Anexo 2: Codificación del paciente

Excel 1: Toma de valores prácticos

		ROM d			ROM izq					VE	LOCIDA	D d		VELOCIDAD izq					
1	2	3	Media	cov	1	2	3	Media	COV	1	2	3	Media	COV	1	2	3	Media	COV
59,96	62,65	57,77	60,13	4%	63,13	59,86	63,41	62,15	3%	238,01	232,66	230,06	233,58	2%	237,72	229,75	238,22	235,23	2%
69,17	70,42	68,57	60,39	1%	66,67	71,41	69,49	69,19	3%	242,52	246,05	231,56	240,04	3%	236,25	249,87	234,65	240,26	3%
65,01	64,97	64,04	64,67	1%	66,02	61,92	66,05	64,66	4%	238,90	224,13	224,63	229,22	4%	232,96	223,38	231,38	229,24	2%
66,42	63,66	64,60	64,89	2%	63,65	66,06	63,23	64,31	2%	220,23	215,04	210,72	215,33	2%	214,73	221,84	207,76	214,78	3%
67,05	64,70	69,35	67,03	3%	67,26	64,67	67,69	66,54	2%	242,98	244,14	259,85	248,99	4%	234,48	247,29	249,55	243,77	3%
64,51	57,87	58,75	60,38	6%	66,50	62,51	56,39	61,80	8%	233,96	216,29	203,60	217,95	7%	243,78	229,05	202,78	225,20	9%
64,84	64,55	66,67	65,35	2%	65,53	64,65	66,39	65,52	1%	225,81	229,39	236,27	230,49	2%	239,59	228,09	232,98	233,55	2%
45,49	51,04	49,86	48,80	6%	46,48	50,54	47,69	48,24	4%	176,20	186,37	175,78	179,45	3%	179,92	180,78	176,02	178,91	1%
47,42	51,71	50,98	50,04	5%	47,14	51,28	49,60	49,34	4%	181,27	195,48	190,14	188,96	4%	177,57	188,11	192,18	185,95	4%
67,94	65,81	69,13	67,63	2%	70,23	69,95	62,10	67,43	7%	255,16	243,28	238,51	245,65	3%	254,34	254,83	226,81	245,33	7%
46,00	51,30	44,57	47,29	7%	47,08	50,69	48,46	48,74	4%	147,94	174,61	149,73	157,43	9%	154,84	163,77	161,18	159,93	3%
69,78	70,21	70,15	70,05	0%	72,89	70,26	70,35	71,17	2%	272,52	269,86	272,43	271,60	1%	280,65	267,58	270,61	272,95	3%
57,52	58,93	60,12	58,86	2%	60,16	59,36	58,74	59,42	1%	183,91	183,89	189,94	185,91	2%	191,46	179,46	185,79	185,57	3%
63,92	64,80	60,39	63,04	4%	61,58	65,80	63,09	63,49	3%	214,74	219,18	212,83	215,58	2%	213,48	222,20	217,36	217,68	2%
54,96	53,09	54,49	54,18	2%	56,04	53,05	53,00	54,03	3%	146,59	149,84	152,17	149,53	2%	148,72	145,53	150,72	148,32	2%
51,45	55,92	54,56	53,98	4%	53,99	53,40	54,82	54,07	1%	190,88	196,60	186,95	191,48	3%	191,90	187,18	195,01	191,36	2%
50,60	49,62	50,75	50,12	2%	50,30	50,69	49,30	50,10	1%	160,23	153,32	166,62	160,06	4%	161,80	159,69	154,72	158,74	2%
67,04	66,11	70,93	68,03	4%	70,30	67,95	66,42	68,22	3%	226,47	229,30	225,98	227,25	1%	228,19	222,73	228,13	226,35	1%
60,55	63,11	64,63	62,76	3%	60,42	63,37	65,05	62,95	4%	213,53	225,84	229,80	223,06	4%	204,21	221,51	228,88	218,20	6%
61.80	60.83	56.20	57.61	5%	63.54	60.70	56.71	60.32	6%	197.01	194.98	185.09	192.36	3%	213.10	194.46	189.83	199.13	6%

Excel 2: Datos para SPSS

												1	_
	GÉNERO		INTERVAL EDAD		, ,		COV ROM iz (%)	, ,	COV VEL d (%)		COV VEL iz (%)		╀
1	0	48	1	60,13	4	62,15	3	233,58	2	235,23	2		H
2	0	49	1	60,39	1	69,19	3	240,04	3	240,26	3		+
3	0	23	0	64,67	1	64,66	4	229,22	4	229,24	2		L
4	0	29	0	64,89	2	64,31	2	215,33	2	214,78	3		L
5	0	23	0	67,03	3	66,54	2	248,99	4	243,97	3		L
6	1	23	0	60,38	6	61,8	8	217,95	7	225,2	9		L
7	1	23	0	65,35	2	65,52	1	230,49	2	233,55	2		L
8	1	22	0	48,8	6	48,24	4	179,45	3	178,91	1		L
9	0	25	0	50,04	5	49,34	4	188,96	4	185,95	4		L
10	0	42	1	67,63	2	67,43	7	245,65	3	245,33	7		
11	0	46	1	47,29	7	48,74	4	157,45	9	159,93	3		
12	0	29	0	70,05	0	71,17	2	271,6	1	272,95	3		
13	1	46	1	58,86	2	59,42	1	185,91	2	185,57	3		
14	1	41	1	63,04	4	63,49	3	215,58	2	217,68	2		
15	1	49	1	54,18	2	54,03	3	149,53	2	148,32	2		Т
16	0	44	1	53,98	4	54,07	1	191,48	3	191,36	2		Т
17	1	46	1	50,12	2	50,1	1	160,06	4	158,74	2		Т
18	1	25	0	68,03	4	68,22	3	227,25	1	226,35	1		Т
19	1	41	1	62,76	3	62,95	4	223,06	4	218,2	6		Т
20	1	23	0	59,61	5	60,32	6	192,36	3	199,13	6		Т
21													Т
22													Т
23													Т
24													Т
25													T
26													T
27													T
28													Ť
													T
				GÉNERO				INTERVALO EDA		D			T
				HOMBRE 0				MENOR 40 AÑOS		0			T
				MUJER 1				MAYOR 40 AÑOS		1			T
													+