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Although Bermudan options are routinely priced by simulation and least-squares methods using lower
and dual upper bounds, the latter are hardly optimized. In this paper, we optimize recursive upper
bounds, which are more tractable than the original/nonrecursive ones, and derive two new results: (1)
An upper bound based on (a martingale that depends on) stopping times is independent of the next-
stage exercise decision and hence cannot be optimized. Instead, we optimize the recursive lower bound,
and use its optimal recursive policy to evaluate the upper bound as well. (2) Less time-intensive upper
bounds that are based on a continuation-value function only need this function in the continuation re-
gion, where this continuation value is less nonlinear and easier to fit (than in the entire support). In the
numerical exercise, both upper bounds improve over state-of-the-art methods (including standard least-
squares and pathwise optimization). Specifically, the very small gap between the lower and the upper
bounds derived in (1) implies the recursive policy and the associated martingale are near optimal, so
that these two specific lower/upper bounds are hard to improve, yet the upper bound is tighter than the
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1. Introduction

Pricing Bermudan options in high dimensions requires Monte
Carlo methods, and two simulation-based prices have been de-
veloped: lower and dual upper bounds. Specifically, Longstaff and
Schwartz (2001) use a standard least-squares Monte Carlo (LSM)
approach to compute lower bounds. Likewise, upper bounds are
also based on least squares and simulation (Andersen & Broadie,
2004). Although both bounds are widely used, upper bounds are
hardly optimized, which is important because simulation is time
consuming, demanding a smart approach.

In this paper, we optimize (the more tractable) recursive upper
bounds and provide two new results. Lower/upper bounds gener-
ated by simulation depend on an exercise policy, whereby the up-
per bound is derived from a martingale based on this policy. First,
we show a recursive upper bound is independent of the next-stage

* A previous version of this paper was titled “Pricing Bermudan Options by
Simulation: When Optimal Exercise Matters.” We thank Peter Carr for comments.
This paper has been presented at Morgan Stanley (NYC) and Oxford University
(Mathematics department). We are especially grateful to all referees for their con-
structive comments that led to a better paper. Research funded by Plan Nacional
de 1+D+i (ECO2017-86009-P, MDM 2014-0431, and PEP-BS-INV/GRF-12002_01) and
Comunidad de Madrid, MadEco-CM (S2015/HUM-3444).

* Corresponding author.

E-mail addresses: aibanez@comillas.edu (A. Ibafiez), Carlos.Velasco@uc3m.es (C.
Velasco).

https://doi.org/10.1016/j.ejor.2019.07.031
0377-2217/© 2019 Elsevier B.V. All rights reserved.

exercise decision and hence cannot be optimized. Therefore, we
optimize the recursive lower bound, following Ibafiez and Velasco
(2018) local LSM approach, and use its optimal recursive policy
to evaluate the upper bound as well. We find these two bounds,
which have a similar cost to the reciprocal bounds based on a pol-
icy estimated by the standard LSM method, are very tight. Second,
we study separately an upper bound generated from a martingale
based on continuation-value functions, a bound that is less time
intensive yet more upper biased, and show how to reduce its bias
as well.

In our first approach, we consider a given family of exercise
policies—or stopping times. Ibafiez and Velasco maximize a recur-
sive lower bound—or Bermudan price, L, with regard to this family
at each exercise stage. An open question is which exercise strat-
egy minimizes the upper bound, U. We show the exercise strat-
egy that maximizes a recursive lower bound also minimizes not
the recursive upper bound itself, but rather the gap between them,
U — L. We provide a recursive expression for the gap (Theorem 1),
and show a recursive upper bound U is independent of the next-
stage exercise policy (Proposition 1). Therefore, minimizing the
gap, U — L, is equivalent to maximizing the Bermudan price, L, re-
cursively.

In the second approach, we consider a family of continuation-
value functions. We show (i) a recursive upper bound is inde-
pendent of the next-stage continuation-value function as well
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(Proposition 1). (ii) By factorizing the two martingales that are
based on either stopping times or continuation values, the latter
martingale includes a third error term, which ensures the process
is actually a martingale yet implies more biased upper bounds. The
other two terms of the martingale are those of the standard factor-
ization of the American option into an early-exercise premium and
the European counterpart (Carr, Jarrow, & Myneni, 1992). This third
term, however, depends only on the option continuation value in
the waiting/continuation region.

The latter constraint is critical because Bermudan options are
highly nonlinear near the exercise boundary but less so in the
waiting region, and fitting a continuation-value function only in
this region is easier. This new upper bound, based on a contin-
uation value estimated only in the waiting region, is as accurate
as an upper bound based on an exercise policy estimated by the
LSM method (Andersen & Broadie, 2004), but in a fraction of the
time. The new bound is especially accurate for at-/in-the-money
options, which depend mostly on sample paths that cross the exer-
cise region and that do not contribute to the martingale’s third er-
ror term. This dual waiting-region constraint is the reciprocal con-
straint of using in-the-money paths, and hence, the exercise region,
to estimate the continuation value in the LSM/primal method.

In the numerical exercise, we price up-and-out Bermudan max-
options (Desai, Farias, & Moallemi, 2012). The up-and-out barrier
makes this option very sensitive to suboptimal exercise, provid-
ing a good test. From the local LSM method (Ibafiez & Velasco,
2018), we derive the optimal recursive exercise policy and com-
pute the two bounds associated with this policy: the lower bound
improves upon the reciprocal bounds based on the standard LSM
and pathwise optimization (Desai et al., 2012) by more than 100-
200 cents; the upper bound yields a one-digit gap. This small gap
implies the recursive policy and the associated martingale are near
optimal and the two bounds are close to the true price. The local
policy is so good that reducing the number of subsimulation paths
by 20 (i.e., 5% of the original subsimulations) decreases the time
effort by a factor of 10, yet the upper bound increases only by a
few cents.

Notably, the upper bound based on the local-LSM policy only
changes marginally with the number of subsimulations and is ro-
bust to all refinements, implying the upper bound is tighter and
closer to the true price than the lower bound. With other meth-
ods (e.g., the standard LSM) that yield a nontrivial gap, this claim
cannot be made. This result agrees with the two-period Bermudan
upper bound, which is independent of the (one-period) exercise
policy. A tighter upper bound implies a mid point between lower
and upper bounds is lower biased.

The duality approach in option pricing (Haugh & Kogan, 2004;
Rogers, 2001) has been extended in many ways. Chen and
Glasserman (2007) and Rogers (2010) study optimal dual bounds;
Belomestny, Schoenmakers, and Dickmann (2013) use a multilevel
approach; Glasserman (2004) studies dual bounds based on regres-
sion methods; Christensen (2014) and Bhim and Kawai (2018) de-
rive upper bounds using linear and semidefinite programming.
Desai et al. (2012) use a pathwise-optimization approach that is
less time consuming. In a novel extension, Brown, Smith, and
Sun (2010) uses an information relaxation that nests the perfect-
information assumption of the martingale approach, and also ap-
plies to other problems in operations research (Balseiro & Brown,
2019).

We tailor Haugh-Kogan and Andersen-Broadie results to our
optimal recursive setting, which yields such tight bounds. Specifi-
cally, in the former case based on continuation values, we improve
the upper bound by computing the continuation value only in the
waiting region. In the latter case based on stopping times, the up-
per bound is both tight and efficient if we use fewer subsimulation
paths, but a near-optimal exercise strategy as in the local LSM ap-

proach. In both ways, we bring the overall cost of the martingale
approach in line with pathwise optimization or information relax-
ation. Moreover, the factorization of the dual martingales in terms
of the components of the Bermudan process is mostly new. Our
tight bounds are an useful benchmark for new methods that try to
improve upper bounds in terms of accuracy or time effort.

Section 2 reviews the local LSM method and explains the exer-
cise policies and continuation values needed later for dual bound-
ing; Section 3 shows the independence of the recursive upper
bound on the next-stage exercise policy; Section 4 shows an up-
per bound based on a continuation-value function only needs this
function in the waiting region; Section 5 provides the complexity
analysis and examples; Section 6 concludes. Proofs are left to the
Appendix.

2. Bermudan options: a local Least-Squares §

In this section, we explain the difference between the standard
and the local LSM methods. Because the local approach yields an
optimal recursive exercise policy, it is our method of choice to de-
rive both the lower bound and the martingale associated with the
upper bound. We next discuss precisely how we compute various
exercise policies and continuation-value functions needed later for
dual bounding. Lastly, we define the lower and the upper bound.

Consider a Bermudan option that can be exercised at te
{1,2,..., T}, where t =0 is today. We denote by I; >0 the intrinsic
value (or option payoff) if the Bermudan option is exercised at t.
Consider a vector of N stock prices S;. Interest rates are stochas-
tic, Ry > 0 is a bank-account process, Ry = 1, and Rj: = R¢/R;. If the
interest rate r is constant, R = ™A, R, .1 =™, and At is the
time between t and t + 1.

We introduce two binary auxiliary processes, Y and b; by =1
and

Y, €{0.1} and b =b,y xY, t=12....T. (1)

Both processes are used in the case of barrier options (e.g., secu-
rities subject to default risk). In the numerical exercise, in which
we study an up-and-out max-option, Y; = 1{max(s,}<y Where B is
the up-and-out barrier (and the no barrier case is equivalent to as-
sume that Y; =1 for all t or B— o). In this case, the intrinsic value
is given by Iy x b, t <1,2,...,T.

From the Bellman principle, the continuation value V*(t, S;) of a
Bermudan option satisfies

1
V*(t,St):E[Q|:R

x Max {11 x beyr, V¥(E+1, St+l)}i|v
t,t+1

t=0,1,....T—1, 2)

and V*(T,St) = 0. EtQ[ | is the expectation operator under the risk-
neutral measure Q conditional to the information at time t. We
refer to V* as the “first-best” Bermudan price. Although the re-
sults below can be derived in terms of a bank account (in which
Re=1,t=0,1,..., T), we work in nominal terms; thus, all equa-
tions carry directly to the computer.

Remark. In Eq. (2), we assume b; = 1, and hence V*(¢, St) is the
continuation value seen since t, that is, conditional on no previous
barrier (otherwise, V*(t,S;) = 0 if b = 0).

2.1. The local LSM algorithm

Let nmax > 1 be the number of iterations. We specify the final
periodt = T, and recursively solve the continuation value for T —
1, T -2, until t =1, where VTLE"{’ is a standard LSM estimator of
the continuation value at the initial stage T — 1. Specifically, y; is
the realized payoff at t stage (of the Bermudan option exercisable
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between t and T), V" is a local LSM estimator of the continuation
value at t stage and n iteration, and K(z, h) is a Gaussian kernel
(which is_evaluated at z, and h is the bandwith). The algorithm
provides V* which is the final local LSM estimator of the continu-
ation value at t, and VC" which is the estimator of the continuation
value in the contmuatlon regionatt(t=1,2,. -1).

We assume a specific set of regressors xt, which depend on
prices or state variables S; (or earlier values if necessary), where
ft(x¢) is an affine function to be estimated by least squares.

The local LSM algorithm: Consider a set of simulated paths,
we 2.

0. At maturity, set t = T. Define yr,1 =0, \7T* =0, and \7TC° =0

1. Updating paths, me Q

It, lfItht*
Ye=Ye x

-1 :
R /1 X Yer1,  otherwise.

If a barrier exists, Y;
hits the barrier.
Sett=t—-1.
2. The new Continuation value. Set n =1 and V = Vr*+1
T—1, set VO, = VISM,
2.1. Localizing the exercise boundary: a local regression

vr = arg min Z (fexe) = Ry x Vern) x K021 (x) — I, )

= 0 cancels (set to a 0 value) a path that

Ift=

><1{:[>0}1{Y,=1},
- ‘7tn + ‘7tn—1

VI« 3 (if necessary, to avoid potential loops) (3)
Set n=n+ 1. Go back to step 2.1 until n = nmax.
Set V= Vimax,

3. The new Continuation value in the waiting region
. -1 2
o _ al’gr};lel};lwzg (ft(Xt) - Rt.H—l X ytH) X 1{‘7[*21[}. (4)
€

Go back to step 1 until ¢t = 1.

End of the local LSM algorithm _ .

At t =1, we have estimated all continuation values: Vi* and V°,
t=1,2,..., T-1. O

Four remarks. First, from the value-matching condition (i.e.,
V*(t,S) =I;(S)), the function IC(\Z”H (xt) — I+, h) is a Gaussian ker-
nel that underweights paths that are far away from the optimal-
exercise boundary at the t stage and n — 1 iteration. In Eq. (3), in
the case of a barrier, if 1jy,_qy =0, this term excludes the paths
that hit the barrier from the regression. Second, the standard LSM
method is given by no iterations and no kernel (nmax =1 and
K() = 1), where only in-the-money paths are used (i.e., the term
14j,>0y)- Third, \7f° is an estimator of the continuation value in the
waiting region. At time ¢t, we compute many samples of the dis-

counted realized payoff, Rt t+1 X Ye+1. Then, the payoffs in the wait-

ing region (i.e., if Vr* > I;) are approximated using standard least-
squares by the family F. (Without the binary function 1{‘76&}, %
>

is estimated by a standard regression, only that the exercise policy
is based on a local approach.)

Finally, fourth, step 2.1 in the local LSM algorithm is a Newton-
type iteration (in a multi-dimensional setting), which converges in
a few (from one to three) iterations because the intrinsic value—I;
is a linear function in the in-the-money region and the continua-
tion value—V* is a smooth and monotonic function, in the case of
standard put/call payoffs. However, in the case of a barrier, which
if hit cancels the option, V* is not monotonic. Because of this lack

of monotonicity, which makes harder to price the Bermudan op-
V[;1+‘7tn—l

tion, we include the step \7{1 <«
(in the Newton iterations).

, to avoid potential loops

The stopping time—or exercise stre;‘egy

Let T(t) eft.t+1,..., T}, and hence T(t) >t, be a stopping
time indexed in t, for t € {1,2,...,T}, and T(T) =T. If T is not
indexed in t, T = T(1). First, from the continuation value obtained
from the local LSM method (\7*), the stopping time T(t) is recur-
sively defined as follows:

Tt)=t if I >V T(t)=7T(t+1) otherwise. (5)

The stopping time T is used to compute both the lower bound
(Vé""") and the martingale (M/R) associated with the upper bound,
which are defined below. This stopping time T provides the exer-
cise strategy that optimizes a recursive lower bound. Second, the
other continuation-value function V% is used to estimate a new
martingale and second upper bound.

Henceforth, no other least-squares estimators are necessary. In
addition, for simplicity, in the following lower/upper bounds, the
intrinsic value is written as I; (instead of I x b).

2.2. Lower and dual upper bounds

We rewrite Eq. (2) for a Monte-Carlo setting. Let 7 be the set of
stopping-times, T € {1,2,...,T}. For a given T € 7, a lower bound
VoW is defined as follows:

low._QIi QIT] Q|:IT ]._ *

v =g ] = s [ =8| | = ®
where Vi =V*(0,So) is the Bermudan price and t*
ated first-best stopping time.

A dual upper bound is an estimator of the Bermudan price and
allows us to build a mid point and to assess a lower bound. How-
ever, a dual upper bound depends ona martingale that is not spec-
ified. For a martingale Y & t€{0,1,.... T}, upper bounds Vy P are

based on the following result:
T=T*:|

/A _M0+EQ[max {1;7%” 3M0+EOQ[IL M
t
=V (7)

1<t<T R'L" RI

The last equality follows from the optional sampling theorem and
the inequality follows from
{I[_Mt} - Iy — M

R: - R
The upper bound is binding (i.e., Vé‘p:Vg) for the process as-
sociated with the first-best Bermudan price, M* (Andersen &
Broadie, 2004; Rogers, 2001; our Proposition 1). To define M* (in
Section 3.1), we use the standard factorization of the American op-
tion into the early-exercise premium and the European counter-
part.

Vé’p is independent of the initial value M, (see Appendix A). In
particular, if the initial value of the process M is set (not to zero
but) to Mo = V", it follows, along with

low __ * up
Vo' =Mo = Vg = V",

that the following expectation is a proper gap:

E(‘}[max {I‘ RMf }] =Vy? -V > 0;

1<t<T t

is the associ-

max
1<t<T

T T=T*

that is, the difference between the upper and the lower bound
is nonnegative. Then, conditional on Vé”"", we approximate VS"’ by
simulation in two ways that correspond to two different types of
martingales.

3. Recursive upper bounds based on stopping times

Because optimizing the dual upper bound is not tractable, we
study a recursive version. Ibafiez and Velasco (2018) maximize re-
cursively the Bermudan price with respect to a family of stopping
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times at each exercise period; we refer to this price as a recur-
sive Bermudan price, which is the objective function of the pri-
mal problem. The dual problem is to minimize the recursive upper
bound and to determine whether the solution to these two (recur-
sive) primal and dual problems are linked. If we consider a family
of stopping times that are specified in a recursive way, a martin-
gale based on the exercise strategy that maximizes the Bermudan
price also minimizes not the upper bound itself, but rather the gap
between the lower and the upper bound.

We derive a simple recursive expression for this gap
(Theorem 1), from which we prove all results. A recursive
upper bound is independent of the next-stage stopping time
(Proposition 1). Therefore, for a martingale based on stopping
times, minimizing the gap is equivalent to maximizing the lower
bound in a recursive way (Proposition 3). In Section 4, we show
Theorem 1 and Proposition 1 also hold for an upper bound based
on continuation values.

From Eq. (6), which is based on stopping times, we build a mar-
tingale by using the exercise policy in Eq. (5). We define Z: as fol-
lows:

Zi = TezopVs + pczeph t =12, T. (8)

The process Z is similar to the value process of a Bermudan option
(either to wait or to exercise) associated with T, in which V; =0
and

Z
Vt1=E[Q_]|:R[[“:|.t=l,2,...,T‘ 9)

We then define the process M as follows; that is, 1\710 = VO and
My =M 1R 1¢+Z — Vet xReagy t=1,2,...,T, (10)

so that Mt/Rt is a martingale (i.e., Et 1[Mt/Rt 11l = Mt 1)» Which
follows from V definition. In particular, M1 Zl

In addition, from Eq. (9) for t =1, we also define the lower
bound from VO namely, V"’W VO (given that VO < V). This lower
bound Vo is approximated by simulation.

3.1. Factorizing the martingale

_ Importantly, the process M in (10) is explicitly defined by IWO =
VO and

t-1
Me =Y (I = Vi) x 1izeqy x Ry + (TezzaonVe + Tp—zanh)-
j=1
(11)

which is equal to the sum of the early-exercise premium (rein-
vested in a bank account) plus the right to exercise at time t
(Appendix A). For t =T, because VT =0, the risk-neutral expec-
tation of the discounted value of Eq. (11)'s right-hand-side (rhs)
implies the classical factorization of an American option into an
early-exercise premium plus the European counterpart (if T = 7*).
This factorization is related to the Doob-decomposition theorem,
in which the Bermudan-option price process is the Snell envelope
(e.g., Carr et al., 1992).

From Eq. (11), it follows for t < T that
M=V, ift <%; and M, =1, if t = 7,
and therefore,
max {I; - M;} > Iz —= Mz = 0. (12)

1=<t<T

The martingale associated with the optimal stopping-time fam-
ily, t*, is denoted by M*/R and is defined in a similar way as in Eq.
(11), where M{ =Vg. The next result complements the literature
(Rogers, 2001) on dual upper bounds for the optimal t*.

Proposition 1. (i) An upper bound based on the optimal stopping
time t* is binding, V¥ = V;. And (ii), for any path,

inf (arg max {I — M;‘}),
0 = max {It—M }7

1<t<T

.[*

in which the “inf" is taken in the case of multiple solutions.
Proof. See Appendix A. O

Remark. Proposition 1 shows Eq. (12)'s inequality is binding and
the maximum is equal to 0 path by path for the optimal martin-
gale M* (associated with t*). It follows that the term max; <7 {l —
Mt} as well as the (sample) gap between the lower and the upper
bound, has little variance if the process M is based on a good ex-
ercise policy T (and if, in addition, V in M is estimated with little
simulation error). Next, we define the recursive lower and upper
bounds, and then try to minimize the recursive upper bound and
a recursive gap.

3.2. Recursive lower and upper bounds

We define a new variable GAP at time s as follows:

LW Z I - M
GAPS._R—S &+Sr1<1ta<>§{ R },15551 (13)
Ms

where - R— s<t, are Doob-martingale increments. In particu-
lar, because M1 Zl,

I — M,
GAP; :=
! 1‘“?’%{ R }

and the upper bound is given by

L-M -
VP i= Mo+ E$| max { ~—— 4 | = Mo + E2[GAP,],
o+ max R, o + E;[GAP(]
where I\% = VO. The next result allows us to understand a recursive
gap between lower and upper bounds (see Belomestny et al., 2013,
for other recursive statements).

Theorem 1. The process GAP defined in Eq. (13) for 1 <s<T, with
GAPr, 1 = 0, satisfies that

Is

GAP, = & +max{R,V$+cAPm}, (14)
S S

R,

where GAPr = 0. Moreover, in Eq. (14)’s rhs, only Zs depends on the
function T (s).

Proof. See Appendix A. O

Example. Consider a Bermudan option with three exercise oppor-
tunities (s=1 and T = 3), from Eq. (14),

GAP, + al max{ h Vi, GAPZ}

Ry R’ Ry
I V] 22 L VZ
=max{ —, — — =— + max + GAP. ,
Ri'Ri R, Ry R, X2

=0

which, from Egs. (8) and (9), is independent of the stopping time
7(1), as in Theorem 1.

For tractability, we analyze the upper bound recursively. We
consider the following lower and upper bounds, which correspond
to a Bermudan option that can only be exercised from s to T,
1<s<T-1.Thatis,

vi =88 2| ana g o eg[ Yt | s mRaans as)
RS—] RS,1
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Consistent with our notation, we have V[ =v/o v? = V¥ and
ViP —view — EJ[GAR].

S,

Proposition 2. V' is independent of T(s), which is the next-stage
exercise decision.

Proof. From Eq. (15) and Theorem 1,

-~ -

V.
- Q| U1 Q
Vit s =Eg| g | +Eg[GAR]
- 5—1_
(V1] —Z, IV,
—FQ| 51| ol =5 =, 1 GAP,
ORo | TR R T RoR T

I Vi
= EY| max R—s = +GAPS+1}1|.
S S

V;’g does not depend on T(s) because the upper bound di-
rectly compares the intrinsic value and an estimated continuation
value at time s (i.e., max{l, \75}). In particular, a two-period Bermu-
dan upper bound is always binding.! For a two-period Bermudan,
T=2,

VIP = V' = Mo + ES[GAP|

1.0 —
-~ = 1 IV
:vo_Eg[z]xE]+Eg max { 2. 2h o+ GAR
=0

U

1 1
— EQ Q - el U ¥
=E; |:max {11,51 I:Iz X R1,2i|} X R1i| Vo,

where the last equality follows from V{ definition (i.e., the maxi-
mum between exercise and the European option at t = 1).

Following the example of a Bermudan option with three exer-
cise opportunities, te{1, 2, 3}, consider a family of exercise strate-
gies. The first-order conditions associated with maximizing the
Bermudan price at t =0 imply optimal exercise at te{1, 2}, but
only for those paths that are alive for the exercise decision at t = 2
(Ibafiez & Velasco, 2018). Hence, if we consider all paths at t = 2,
we can solve this problem recursively, which is tractable and close
to the optimal one. By contrast, minimizing the upper bound de-
pends only on the exercise decision at t =2, not on t = 1. That is,
Proposition 1 implies that we cannot minimize the upper bound
V;_‘é’ but rather the gap, Eg[GAPs], in a recursive way (where T(t) is
given for t > s).

3.3. An optimal recursive gap

Define

T*(s):=arg_ max Vo, (16)
F($)eTIT(s+1)

where VS’.%W is given in Eq. (15). The stoEping time 7*(s) means

optimal exercise at time s, conditional on T(s+ 1) and subject to a

given set of stopping times 7 (in which now 7 € {s,s+1,...,T}).

Namely, if T#(s) > s, T#(s) = T(s+ 1) where T(s+ 1) is computed

in advance.

Proposition 3. Consider a Bermudan option that can only be exer-
cised from s to T, 1 <s<T —1; that is, s <T(s) € T. Assume the
stopping time T(s+ 1) is given. Then T*(s), which is defined in Eq.
(16), satisfies

T*(s) =arg_ min
T(s)eT T (s+1)

EJ[GAR,].
1 Kaniel, Tompaidis, and Zemlianov (2008), Lemma 1, proved this result for a two-

period Bermudan option, te {1, 2}; the upper bound does not depend on the t =1
exercise decision, implying a two-period Bermudan upper bound is unbiased.

Further, if T(s+1)=1*(s+1) and t*(s) € T, then T*(s) = t*(s)

low __ yup
and Vs,o =V

In particular, for s =1 (where Rg = 1, \70 = Vé"W and I% = \70),

T(1):=arg_ max Vi =arg_ min {Vi? - viv).

T(eTiz2) ° TeTIFQ)
Proof. See Appendix A. O

Minimizing Eg[GAPs] corresponds to optimally exercising at
time s conditional on T(s+ 1) and is solved by the local LSM ap-
proach, which yields a continuation-value function V.

The lower/upper bound biases

From Eg[GAPl] = (Vg = V™) + (V47 — V). we obtain the bias
associated with the lower bound,
0 < Vg -yl

N
= E(?[(l{lzp(mh + ey Vi) x E]

o 1
_E(()zl:(l{lﬁ(l)}h + 1{1<?(1)}V1) x R71:|
and with the upper-bound (from VoLlp=Mo+Eg[GAP1] and Eq.
(14) for GAPy),
0<V,;P-V;

P A
- Eg[max{h,w + GAP, (E) } x R1]

L1
—Eg[max (L, V) x R—]]

For instance, if GAP, = 0, because V; < Vi and Vg < VP, then
V= Vi (if I <V;) and V? = V; so that the upper bound is unbi-
ased and independent of the (t = 1) next-period exercise decision,
as in Proposition 1. Here, we have assumed \71 is computed with-
out simulation error.

3.4. Computing the martingale paths and the upper bound
From Eq. (10), one path of the process M is approximated as
follows, My =V and, for t € {1,2,...,T},
Me = M_1Revc+ (Tezzoy (Ve + &) + Tz le) — (Vi + 1)
><Rt71_rv (]7)

where § is a zero-mean approximation error (i.e., E[g] =0), and
hence M;/R; is a martingale.
Based on Eq. (9), V is computed separately from T and

—~ I=
Vo1 =E2, |:R[_1 x R;(:t))}

Because the latter expectation is not analytical, V is estimated by
subsimulation. For every path, and for every t € {1,2,...,T -1},
the value V; is approximated by a new subsimulation (from t to
T(t+ 1)), where & is the error, which introduces a second bias in
the upper bound.

Then, we directly simulate the following gap,

I — M,
=_rQ t t
g=to [f“?’%{ R }]

That is, we approximate VO and g by two independent simulations
and approximate the two bounds as follows:

VW ~ Vo + £ and VP ~ Vo + 8 + 8+ £8,

where S(’J"W and é‘g are the respective simulation errors. Although
the upper bound is basically as in Andersen and Broadie (2004),
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it is based on an optimal recursive exercise policy (i.e., T in Eq.
(5))—and the martingale (17) associated with this optimal recursive
policy. _

In addition, from Eq. (11), the martingale (i.e., M/R) is explicitly
given by
M=) (1= (V; +5))

=1
x iz () % Ric + (Tpzoy (Ve + &) + Lzl (18)

In the Appendix, we show how the computational cost of M could
be reduced.

4. Upper bounds based on continuation values

We compute an upper bound based on continuation-value func-
tions. First, we show why an upper bound that is based on a good
exercise strategy is less biased than a bound based on continuation
values. In the latter case, the martingale has an additional third er-
ror term, which implies a larger bias (from Jensen inequality). Sec-
ond, we show fitting the continuation value in the waiting region
is sufficient. In this region, the continuation value is less nonlinear
and easier to fit than in the entire support. We show the second
result in two different ways.

Consider a new f~ami1y of continuation-value functions \7t t=
1,2,...,T -1, and V; =0. Extending (the stopping-times based)
Eq. (8), we define

Z; = max{V, I}, (19)

where VNis defined as in Eq. (9) with the new Z (ie., \7t_1 =
B, (M) =12, ).

We define new recursive lower and upper bounds akin to
Eq. (15), but using the new process Z. Because Theorem 1 and
Proposition 1 trivially hold for this new process Z (which depends
on the max function and \7), the new recursive upper bound is
given by

. V—1 Is Vs
vip =g [t | gtonn = g [max . v an |

(20)

which does not depend on V, at time s (ie., Ve depends on \75+1).
Here, minimizing the gap is not well defined, because the lower
bound based on Vi,

viw .~ Egl:}‘gsﬂ = Eg[max {IS,\Z} x Rl] (21)
S— S

is not necessarily lower biased.

Hence, let us impose the best case Eg[GAPs] =0 in (the second
equality of) Eq. (20), and search for the best 1% guaranteeing this
zero equality. If we assume GAP;,1 =0,

w451 ] -7
E§ [max {IS,VS} X% E$| max {IS,VS} <z
and the simple solution associated with the latter equation is that
Vi = Vs subject to Vs > Is. This solution implies a fitting of the func-
tion \75 only in the waiting region, in which Vs > I;. This same
(waiting-region constraint) result is derived next by factorizing the
process M.

Remark. In the case of stopping times (ie., Z = 1{t<%‘(t)}‘//\t +
1it=z(t))It), the last equation is given by

~ 1 =y 1
Eg[(l{k;(s)}vs + 1oz ls) % E] = Eg[max {I5, Vs} = E]’

and the same V; appears on both sides of the equality, where
the only possible difference is because of T(s).

4.1. Computing a martingale based on the continuation value

Extending Eq. (17), we define a martingale based on the con-
tinuation value (V) in Eq. (19); that is, Mg =Vp, and for t ¢
{1,2,..., T},

M; = M;_1R;_1 + max {Vt It} - (vu] + SH) x Re_1¢, (22)
and

Vi = E2, [R;

¢_1,c MaX {‘Zlf}]

Now, for every path, the process V is computed for te
{1,2,...,T -1} by a one-period subsimulation (from ¢ to t+1),
where £ is the one-period subsimulation error, E[&;] = 0.

Then (see Appendix A)

t—1

t—1
Me =" {l; =V} xR+ 3 (Vi (V;+§)))
=1

=
x Rj¢ + max {V;. I}, (23)

where the second sum is a martingale error-correcting term (i.e.,
\7j —\//\j). However, \7j cancels if {I; —\71}+ > 0, from the first and
second sums, implying the error \7j - VJ only matters in the waiting
region, in which I; < \7j. Hence, we define V = V¢, where V< is
given in the local LSM algorithm (see Eq. (4)).

Two remarks. First, from the factorizations in Eqs. (18) and (23),
the former implies a martingale that is close to the optimal mar-
tingale M*|R, if T is close to t*. The latter factorization includes
a second sum that depends on the error between V¢ and the im-
plicit V in the waiting region, implying a more biased upper bound.

Second, in the examples below, we show a standard-LSM stop-
ping time produces only slightly worse upper bounds than the
local-LSM stopping time, assuming in both cases V =V, This find-
ing implies estimating the continuation value in the waiting re-
gion (i.e., V = V@) is the key insight for upper bounds based on
a continuation-value function. That is, instead of localizing the es-
timation (of a continuation value) in the exercise boundary as in
the local LSM method, we localize this estimation in the waiting
region.

In addition, we can build a third martingale based on both T (t)
and V;. However, this martingale yields a less tight upper bound
than a martingale based exclusively on Vi, and hence is relegated
to the Appendix.

5. Complexity analysis and numerical example

For N state variables, T exercise dates, and M paths, the stan-
dard LSM method requires simulating O(NTM) sample points and
computing T regressions. For npmax iterations, the local LSM re-
quires O(NTM) sample points, O(TM x nmax) kernel evaluations, and
Nmax x T regressions. In practice, a few (npmax = 1 to 3) local regres-
sions are sufficient, if the solution of stage t is used as the initial
step at t — 1. The local approach increases the computational effort
in a linear way, which is given by the number of iterations above
one (nmax > 1). In addition, the lower bound, which is independent
of the specific LSM method, requires up to M,,, T intrinsic values
(where M, is the number of simulated paths).

The upper bound is costly; it requires computing the Bermudan
value (\7) in every exercise stage and in every path, which implies
MypT subsimulations, where My, is the number of simulated paths.
In the case of an upper bound based on stopping times (continu-
ation values), the subsimulation is launched until a path is exer-
cised and is bounded by T stages (is a one-period subsimulation).
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Table 1
Lower and upper bounds.

Lower bound, V"

Upper bound, V?

So binomial price LSM local LSM iterations T -based Ve-based
Vi 1st 2nd 3rd 3rd LSM 3rd LSM
N = 2 assets (kernel = 0.5%)
100 31.074 28.799 30.869 30.988 31.016 31.083 31.278 31.347 31.331
(:006) (.008) (.006) (.006) (.001) (.028) (.006) (.007)
(Ve Vo pem] N = 4 assets (kernel= 1%)
90 [33.011, 34.989] 32.706 34.612 34.656 34.667 34.749 34.934 34.976 34.962
(:008) (004) (.004) (.004) (.005) (.015) (.013) (.010)
100 [41.541, 43.587] 40.328 43.117 43.138 43.161 43.251 43.630 43.558 43.557
(008) (003) (004) (004) (004) (024) o1 (010)
110 [48.169, 49.909] 47.197 49.398 49.429 49.430 49.482 49.998 49.780 49.851
(.007) (604) (004) (604) (004) (028) (607) (607)
N = 8 assets (kernel = 5%)
90 [44.113, 45.847] 43.321 45.460 45.460 45.460 45.580 46.743 45.847 45.830
(006) (604) (004) (604) (003) (015) (607) (.008)
100 [50.252, 51.814] 49.523 51.357 51.360 51.360 51.433 51.646 51.668 51.667
(007) (.003) (.003) (.003) (.003) (015) (:003) (.005)
110 [53.488, 54.890] 52.319 54.525 54.527 54.527 54.564 54.898 54.697 54.744
(.006) (002) (002) (002) (.001) (018) (004) (003)
N = 16 assets (kernel = 5%)
90 [50.885, 52.316] 49.779 51.916 51.923 51.925 51.981 52.252 52.158 52.184
(005) (.003) (.002) (.002) (.002) (015) (:005) (006)
100 [53.638, 54.883] 52.574 54.601 54.603 54.603 54.633 53.806 54.718 54.800
(:002) (.002) (.002) (.002) (002) (017) (002) (.003)
110 [55.146, 56.201] 54,968 55.994 55.995 55.995 56.025 56.200 56.070 56.125
(.005) (003) (003) (.003) (002) (018) (002) (003)

Hence, in addition to My,T intrinsic values, the upper bound re-
quires up to Mup,sthKst (Mup-cvTKcy) evaluations due to the mar-
tingale, where K and K¢, are the subsimulation paths. Because of
the quadratic effort (72), Myp—st and K¢ are kept small in the for-
mer case.

In the case of stopping times, the upper bound is equal to the
lower bound plus the gap. Hence, we directly estimate the gap
(2), which is less volatile (see Proposition 1) and requires a much
smaller number of paths, Myp_st < Mg,

5.1. Numerical example: pricing up-and-out Bermudan max-options

We price up-and-out max-call Bermudan options. The up-and-
out barrier feature makes call payoffs sensitive to suboptimal ex-
ercise. We define I; = {max{S;} — K}*, S are lognormal-distributed
prices, K is the strike price, and B>K is the barrier.>2 We define
Yt = Umax(s,)<y> t = 1,2,.... T, in Eqg. (1). Hence, by = 0 indicates
the up-and-out barrier (B) has been hit (b; =0, j=t,t+1,...,T).
The Bermudan payoff is given by I x by.

We follow the MC exercise in Table 1 in Desai et al. (DFM). This
table has nine examples, corresponding to three numbers of stocks
(N ={4,8,16}) and three initial stock prices (So = {90, 100, 110}).
The strike price K =100 is common across all scenarios. The up-
and-out barrier is B = 170. To derive the two exercise strategies
associated with the local and standard LSM methods, we exclude
those points that are out of the money or hit the barrier (i.e., if
max {S¢} <K or if max{S;}>B). In the Appendix, we emphasize a
few points regarding the implementation of local LSM for this bar-
rier problem.

We wuse the same basis of N+2 variables as DFM,
namely, a constant, every component of the price vector
S= (M, s@ . sM) and {max{S;} — K}*; that is,

e = (1. (max(sd) - K)°).

and the same linear function, namely, f;(x;) = B/ x ¢, where B €
RN+Z are the parameters. For both bounds, we report the mean
and standard error over 10 independent trials.

5.1.1. Lower and upper bounds based on stopping times
In our Table 1, we provide the lower bound produced by two
regression methods: the standard and the local LSM method (first

2 See Ballotta and Bonfiglioli (2016) or Zeng and Kwok (2014) for European op-
tions in a rich jump setting.

to third iterations). From the exercise strategies associated with the
standard LSM and the local third iteration, we also generate upper
bounds.

Table 1. Prices of Bermudan up-and-out max-call options for
N = {4, 8, 16} uncorrelated stocks in a lognormal setting (where
r=0.05 is the riskfree rate, § =0 is the dividend yield, and o =
0.20 is volatility). K = 100 is the strike price, B= 170 is the bar-
rier, T =3 is maturity, and 54 exercise opportunities exist. The
first column is the stock price and the second is the best lower
and upper bound, [Véf’l‘SVFM, Vo bem > reported by DFM (Desai et al,,
2012). The third to sixth and seventh to tenth are the lower and
upper bounds, respectively. The third column is the standard LSM
method, and the fourth to sixth columns are the first three it-
erations of the local LSM method. The seventh and eighth are
upper-bounds based on a stopping time T, which are associated
with the standard LSM (as Andersen-Broadie) and local LSM third-
iteration exercise strategies, respectively. The last two columns are
upper bounds based on a continuation value V*°, which is rees-
timated in the continuation region, which is associated with the
LSM and third-iteration local LSM exercise strategies, respectively.
As in DSM, for both LSM methods, we use 200,000 paths to recur-
sively compute the continuation values and then 2 million paths
to compute the Bermudan price. We report the mean and standard
error (over 10 independent trials). For the gap of the upper bound
based on T, we use 3,000 external paths and 10,000 subsimulation
paths. For the upper bound based on V, we use 10,000 external
paths and 500 subsimulation paths. We also report the two-asset
case, in which the true price is derived from the binomial method
and linear extrapolation (to correct the erratic binomial prices).

The local-LSM lower bounds improve upon the reciprocal
standard-LSM lower bounds by 100-280 cents (upon DFM by 85
to 160 cents). In the nine examples, the first iteration of the local
method yields the most significant improvement. For four assets,
this bound increases only by a couple of cents after the third iter-
ation; for eight and 16 assets, the price converges in one iteration.
In all cases, the local upper bound yields a one-digit gap.

In Table 2, we increase the number of paths that are used in
the local regression to improve Table 1 numbers. We consider the
hardest problem, N = 4 stocks. Improving the lower bound is diffi-
cult. We reduce the standard error and get smoother prices, which
is intuitive in a least-squares setting. In Fig. 1, we show the lower
bound’s robustness to the kernel. More (less) than 1% of the paths
that are used in the Table 1 kernel imply lower (slightly larger but
erratic) prices. This 1% is our optimal kernel choice.
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Table 2
Increasing the number of paths in the regression.

Lower bound, Vo

Upper bound, V,?

paths LSM local LSM iterations T-based Ve-based
M 1st 2nd 3rd 4th 5th 10th 3rd 3rd
5*10* 40.327 43.106 43.128 43.147 43.153 43.160 43.178 43.251 43.558
(010 (004) (005) (004) (004) (004) (004) (004) o)
10° 40.329 43.112 43.135 43.154 43.161 43.167 43.183 43.250 43.558
(.008) (005) (004) (005) (005) (.005) (004) (.005) (011)
2*10° 40.328 43.117 43.138 43.161 43.168 43.175 43.191 43.251 43.558
(.008) (003) (004) (004) (004) (004) (004) (004) (011)
4*10° 40.325 43.119 43.143 43.164 43.172 43.179 43.193 43.250 43.559
(006) (003) (603) (602) (602) (602) (602) (002) (011)
108 40.328 43.118 43.143 43.163 43.170 43.177 43.193 43.250 43.558
(002) (002) (002) (002) (002) (002) (002) (003) (011)
2*10° 40.322 43.120 43.144 43.165 43.172 43.179 43.194 43.250 43.559
(003) (003) (002) (002) (002) (002) (002) (003) 011
43.6
43.25
43.15

&
\

Values of lower and upper bounds
I I

43.30
Standard LSM Local LSM1 LLSM2 LLSM3

LLSM4

LLSM5 LLSM10 Upper-tau Upper-VCon

Lower-bound (with number of iterations in the Local LSM) and upper-bound methods

Fig. 1. Values of lower and upper bounds for different kernels and numbers of iterations in the local LSM method. For the kernels, the proportion p indicates the effective
number of points used in the local regression (p = 0.5% in the dark blue line, p = 1% in the red line, and p = 5% in the light blue line). For example, Local LSM1 (LLSM3)
indicates one (three) local regressions. We also show the lower-bound value of the standard LSM method and two upper bounds based on stopping times and a continuation
value estimated in the waiting region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2. Prices of Bermudan up-and-out max-call options for
N =4 stocks and Sy = 100, in the setup of Table 1. The first col-
umn (M) is the number of paths in the backward regressions to
estimate the continuation values. The second column is the LSM
method, and the third to eighth columns are the first five and the
tenth iteration of the local-LSM lower bounds. The ninth and tenth
are the upper bounds. We report the mean and standard error over
10 trials. Lower and upper bounds are as in Table 1.

Table 2 and Fig. 1 show the robustness of both upper bounds to
the estimation of the continuation value by local least squares (i.e.,
number of simulation paths and kernel). Because the upper bound
based on stopping times is also robust to the number of iterations,
this upper bound is tighter (closer to the true price) than the lower
bound.

5.1.2. Upper bounds

Table 3 shows the upper bound deteriorates little with the
number of subsimulated paths. We can reduce the upper-bound
cost without losing accuracy: By reducing the number of subsimu-
lated paths from 10,000 to 500—a 5% (to 100—a 1%) of the original
subsimulations, the gap rises by only 3 (15) cents.

Table 3. Gaps of lower and 7-based upper bounds for up-and-
out Bermudan max-call options for N =4 stocks, in the setup
of Table 1. We directly compute the gap for different numbers
of subsimulation paths (sub-paths): 100, 500, and 10,000. The
upper bound is defined as the lower bound plus the gap (i.e.,
Vé‘p:VéOW+Gap). We report the mean and standard error over
10 trials. Table 1 represents the case using 10,000 subsimulation
paths.

From Table 1, an upper bound based on continuation values is
more biased. Yet fitting a continuation value (V) in the waiting
region yields upper bounds that, especially if the option is at-/in-
the-money, are as accurate as those based on stopping times and
the standard LSM but in a fraction of the time. The improvement
in this dual bound is mostly due to the waiting-region constraint
and not the subsequent policy (e.g., if alternatively based on the
standard LSM method); see Table 1, last two columns.?

3 In addition (not reported here for brevity), for four assets, we can reduce this
upper bound by another 10 bps if we use a quadratic (instead of a linear) function
Vo, and by another few points if V< is estimated from paths simulated exactly from
So (to compute V* for the T stopping-time, it is convenient to simulate paths not
from Sy and t = 0 but from in-the-money values and ¢t < 0).
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Lower bound, V¥

Gap t-based

Upper bound, V,?

local LSM 100 sub-paths 500 sub-paths 10,000 sub-paths 10,000 sub-paths
So LSM 3rd iter LSM 3rd iter LSM 3rd iter LSM 3rd iter LSM 3rd iter
90 32.706 34,647 2.405 0.306 2.257 0.133 2228 0.082 34.934 34752
(:008) (.005) (.015) (:007) (015) (.006) (.015) (.005) (.015) (.005)
100 40.328 43.159 3.483 0.284 3.329 0.120 3.302 0.090 43.630 43.249
(.008) (.002) (:025) (.004) (.026) (.004) (:024) (:005) (.024) (.004)
110 46.197 49.429 3.965 0.234 3.833 0.082 3.801 0.052 49.998 49.480
(.007) (.003) (.029) (.004) (.027) (.003) (.028) (.004) (.028) (.003)
Table 4a DSM report (see their Table 2) the cost of the upper bound
Relative computing times for continuation-value parameters. is similar in these two methods, in their pathwise optimization
Method Bandwidth N and in the martingale-based continuation values. Pricing Ameri-
4 3 16 can options with stochastic parameters, Brown et al. (2010) also
LSM - 1 1 1 report both martingale-based upper bounds are time consum-
Local LSM 1st iter Fixed 229 227 2.31 ing compared to upper bounds based on information relaxation.
) Optimal 1075 1234 1443 Hence, our paper provides two extensions of martingale-based
Local LSM 3rd iter (F)'Xteicrlnal 128374 128996 11:9589 upper bounds. First, when using continuation values, we get a
LSM + LSM Veo P 358 366 341 tighter upper bound by computing the continuation value only in
Local LSM 1st iter + LSM V< Fixed 4.87 4.93 4.73 the waiting region. Second, when using stopping times, the upper
Optimal 13.33 15.00 16.84 bound is both tight and efficient if we use fewer subsimulation
Local LSM 3rd iter + LSM V** gixe.d | 745 7.55 7.39 paths, but a near-optimal exercise strategy as in the local LSM ap-
prima 1392 1762 19.00 proach. With both methods, we bring the overall cost of the mar-
tingale approach in line with pathwise optimization or information
relaxation.
Table 4b
Relative computing times for lower and upper bounds.
Bound Method Sub-paths N
2 3 16 6. Concluding remarks
Lower Vv LSM - 1 1 1
Local LSM 3rd iter - 142 153 164 In this paper, we show the exercise strategy that maximizes

Upper V' Ve-based Local LSM 3rd iter 500 3.77 2.85 2.88

Upper V,? t-based  Local LSM 3rd iter 10,000 113.40 125.40 197.39
500 10.83  9.75 9.20
100 6.73 569 477

In Tables 4a and 4b, we report the effort required to compute
the optimal-recursive exercise policy along with V° and the asso-
ciated lower and upper bounds. We use a fixed and an optimized
kernel, and use one and three local regressions. All times are rela-
tive to the standard LSM. First, to estimate the exercise policy and
Ve, the cost increases between 1 and 19 times in the 30 entries
of Table 4a. Second, to compute the lower bound, the total cost in-
creases only between 42% and 64% (because the lower bound uses
2 million paths) in Table 4b. In the case of the upper bound based
on a continuation value (stopping times), the cost increases by one
order of magnitude (between 100 and 200 times). Yet, in the lat-
ter case of stopping times, reducing the number of subsimulation
paths to 500, the increase is just 10 times.

Table 4a. Relative computing times for parameter estimation
times normalized by column in the setup of Table 1. The LSM, local
LSM, and LSM V¢ methods use 200,000 paths to recursively com-
pute the parameters associated with continuation values to define
7 or V (Matlab R2017a 64-bit, HP Z620 Workstation, and Intel
Xeon CPU E5-2620 0 @2.00 gigahertz).

Table 4b. Relative computing times for lower and upper bounds
in the setup of Table 1. Lower Vé""" bounds (LSM and local LSM)
use 200,000 paths to recursively compute the continuation values
to define ¥ and another 2 million paths to compute the Bermudan
price. Upper V;” Ve°-based and Upper V,” 7 -based use 30,000 and
3000 outer paths, respectively.

the Bermudan price/lower bound also minimizes the gap between
the lower and the dual upper bound. We assume both bounds are
specified recursively, and show the upper bound is independent
of the next-stage policy. Upper bounds based on this optimal re-
cursive exercise policy are very tight, as we show for up-and-out
Bermudan max-options, and require few nested simulations. Up-
per bounds are tighter but more time intensive than lower bounds.
In addition, a better upper bound based on continuation values,
which is not as accurate but is more efficient than one based on
stopping times, requires reestimating the continuation value only
in the waiting region. From these results emerges the fact that al-
though a tradeoff between tighter bounds and time effort is not
straightforward in other methods, this tradeoff exists for optimal
recursive lower/upper bounds.

Securities that provide flexibility of early exercise are ubig-
uitous in financial markets: from single-name American-equity
options and Bermudan options to enter/cancel an interest-rate
swap, to credit-risk models (Ayadi, Ben-Ameurb, & Fakhfakh,
2016). Specifically, for applications of lower/dual bounds in eq-
uity models with stochastic volatility, see Ibafiez and Velasco
(2016) and Fabozzi, Paletta, and Tunaru (2017); for the ap-
praisal of Bermudan swaptions prices, see Andersen and Andreasen
(2001) and Svenstrup (2005); for term-structure applications, see
Joshi and Tang (2014); and see Kogan and Mitra (2017) and
Bender, Schweizer, and Zhuo (2017) for extensions to other eco-
nomic problems. Lower/dual bounds applications are also com-
mon in operations research (Trigeorgis & Tsekrekos, 2018), such as
when to launch a new product or halt a failing project, delayed-
purchase options (Aydin, Birbil, & Topaloglu, 2017), inventory prob-
lems (Brown et al., 2010), or energy real options (Nadarajaha, Mar-
got, & Secomandi, 2017), which includes more references to the lit-
erature.
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Appendix A. Proofs

V,? does not depend on the martingale initial value Mo.
Consider a different initial value Xy # V. From Eq. (7),

VP =V +EQ|:maX {Ir — M ”
1<t<T R[

O i B

1<t<T Rt
and a more general martingale mt/Rf is given by m, Mo = Xo and My =
(VO —Xp) xR for t>1. And m; = M; if X —VO
Proof of Eq. (11). From the same Eq. (11),
Mr - IVI[—IR[—LI = (It—l - Vc—l) X 1{t—1=?(t—1)}
XRe_1¢ + (1{t<?(t)}‘7t + l{t:?(t)}lt)
—(Tgo1<za-1y Vi 1+ Yeozzoho1) x Reoae
= (ezonVe + Tgeznh) = Vet x Rt
which is Eq. (10). O

Proof of Proposition 1. M is explicitly defined as M in Eq. (11) for
T = t*. The definition of t* (i.e., t*(t) =t if I, > V*; v*(t)>t oth-
erwise) implies

(It = Vi) x Vyepe oy = (e =V} = 0.

From Eq. (11
that

Mf >, ift#1%

) for T = t* and from the last equation, it follows

and M{ =1, if t =77%,
where 7* means t*(1), and therefore,

max {I — M{} = I — M%, =0, and

1<t<T

I - M;
up . Q t _y* Q _
VP = My + EQ []m%{ - ”_Vo—i—EO[O]_
O

Proof of Theorem 1. From Eq. (13),

-7 I Ms+ max :It—IVIt”
s+1<t<T R;

S
max{ =, ==
R, T {
MR 511+ Zs 11 — ViR 511

GAR, = Ry Rs

% +max | & 2 +
Rs Rs ’ Rs Rs+l

Zs I — M
— ma.
Rsiq + s+15r§T R

—As Is Vs Merl Zs+1 It - Mr
= max{ —, — — max ,
R ROR T Ron Ry s R
=GAP,.
(24)
the last equality follows from the definition of M in Eq. (10). Then,

it is easy to show by induction that GAP +
7(s) or Vs, because GAP;,, does not either.
Next, we prove GAPr = 0. From Eq. (13),
Ir -7y
Rr -
And from Eq. (14) (because VT =0, GAPr;1 =0, and 1>0), it fol-
lows that GAPy = (— ZT +IT)R as well. Then, GAPr =0 if ZT =Ir,
which is the case because VT =0. O

does not depend on

GAP; =

Proof of Proposition 3. V') does not depend on 7(s), and hence,
from Eq. (15),

Q
ar m GAP,
gt(s)eT\r(sH) [ s]

ar min — ylow

g?(s)eTI?(s+l) { s0 70 }

ar min —ylow
g?(s)eTl?(s+l){ 50 }

View — +(s).

arg_ max Vg

T(S)eT|T(s+1)
O

Proof of Eq. 23. We assume § =0 for simplicity. From the same
Eq. (23),

M; — My _1R_1 = ({It—l Vi }+ +Vig— V\t—l)
xR¢_1¢ + max {\7t It}

—max {‘2713 It } x Re_1¢

= max {‘7[ Ir} Vi1 x Re_1y,
because

which is Eq. (22), (g =V}t +V g =

max{V,_q.—1}. O

Reducing the upper-bound computational cost

Consider a path “w” such that the stopping time satisfies that
t<7T(t) and T(t+1)=t+1 (and let & = 0). From Eq. (18) and
Rjc/Re =R,

M -1 & 1 V-1

R :]Z](I —V')X‘l].[(])} Rij—i_ R .

Likewise, noting the “j =t” term of the sum in I\7lm is zero be-
cause t < T(t),

Mept =l & 1
— = I - Vi) x 1 —.
Res ]gl:( ) (=T} X R;

Note that t < T(t) does not necessarily imply Vi > It (ie., V; is
independent of the stopping time at time t); if it did, T(t) = T(t +
1) would be the optimal time - t recursive exercise policy. Hence,
we have no guarantee that

—(M; — 1) - —(Mey1 —Ies1)
Ry Res1 '

which would imply computing V; is not necessary if t < T(t). Sim-
ilarly, given t(t +1) =t + 1, computing \Z,j is also not necessary
for any previous period t — j (j>0) such that the path is in the
continuation region, namely, t — j < T(t — j).

Hence, for any path w, it does not necessarily follow that

max M| _ max ﬂ
1<t<T: (=% (t) R: T i<t<T R; ’

Using the lhs, however, reduces the number of periods in which
to launch a subsimulation (especially for at-the-money/out-of-the-
money options, as paths start in the waiting region), but introduces
a negative bias that lowers the upper bound. If T is a good exercise
policy, this bias may be negligible, p===<ially compared to the time
saved in subsimulations.*

A martingale based on both stopping times and continuation val-
ues, T(t) and V;

Extending Egs. (8) and (19), we define,

’Z\t(cvst) -1

{t<?(t)}‘7t + Tz opy e (25)

4 Broadie and Cao (2008) and Joshi (2007) introduce a similar idea to reduce the
cost of dual upper bounds.
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which also asks for setting A :/\?5 only in the waiting region
(where Vs > I or s < T(s)). Then M is given by My =Vy, and for
t={1,2,....T},

M, = MtflRtfl,t + (1{t<?(t)}‘7t + 1{t=?(t)}1t) - (thl + Sm)
X Re_1t,

and

Vir = EL [R o (Leczon Ve + pezaonle) |-

We combine, in a one-period subsimulation, T from the local re-
gression and V from least-squares (in the waiting region). This ap-
proach is intuitive if T is close to *. It follows that

-1 t-1
Me =3~ (1= V) x ez x Rie+ 3 (V= (Vi +&5)) x Ry
j=1 j=1
+(Lezo Ve + Tezzaplk)- (26)

However, a low-biased ‘7r implies a process based on max{\7t, It}
is closer to the optimal Z; = max{V,I;} (where V* is defined in
Eq. (2)) than the one based on (1 _z()}Ve + 1{r—z(r)It)- That is, for
any stopping time T (t) (including T (t) = t*(t)),

if V; <V, max{Vy, I} > max{V;, I;} > 1{t<;(t)}\7t + Lz ople-

We indeed find the latter martingale yields the most biased upper
bound of the three.

Additional details on the local-regression example

First, for a local regression, having paths close to the unknown
exercise boundary is critical; otherwise, we have no information to
rely on. We start to simulate paths three months before the ini-
tial period t =0, so rich price dispersion is present at the first
exercise dates. For N = {4, 8}, we simulate paths from an in-the-
money point (i.e., 120 for all assets). If the boundary is well above
K =100, and we simulate paths from 90 or 100 (and from t = 0),
few paths overshoot the boundary at the first exercise dates. For
N =16 assets, we simulate from 100 because many paths will
eventually hit the barrier. The simulated paths are the same for
the standard LSM method. These changes improve the robustness
of the local method. The local exercise strategy does not depend
on moneyness.

Second, by using the continuation value estimated in the previ-
ous stage to define the kernel, one local regression produces very
good prices. We iterate this local regression a couple of times to in-
crease this price a few cents. Third, the up-and-out barrier implies
the Bermudan price is not monotonic near the exercise boundary.
To avoid potential cycles, we define the new continuation value as
one half the local regressions of the present and previous periods
(the last two iterations, in the case of more than one iteration).

Lastly, the optimal kernel uses approximately 1%-5% of the
200,000 simulated points that are closer to the exercise boundary.
This percentage determines the value of the kernel bandwidth h in
the local estimation of the continuation value for each period by
an iterative procedure starting from a grid search to adapt to the
dispersion of the exercise boundary. The effective number of local
(to the exercise-boundary) points used in the local estimation is
obtained as in (Fan & Gijbels, 1995, p. 374), so that a larger (lower)
number of paths implies more biased (more erratic) prices due to
a wider (narrower) kernel, that is, a larger (smaller) h. Fixing a
unique h for all exercise periods after some limited number of tri-
als can speed up the procedure at a limited cost in terms of price
accuracy (e.g., he[0.5, 1.5] produces lower bounds similar to the

optimal kernel). For eight and 16 stocks, many of those 200,000
paths eventually hit the barrier near expiry, which implies fewer
available points for the local regression, requiring a less localized
kernel of 5%.
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