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Notation

Indices:

i, i∗ Index for generation companies (GENCOs).

-i∗ Index for all GENCOs except GENCO i∗.

j, j∗ Index for generation technologies.

k Index for discretization intervals.

l Index for load levels per year.

m Index of intersection points.

s, s̃ Index for spot market scenarios.

y Index for years in time horizon.

Parameters:

Cx Suitably large constant used in discretization.

Cµ Suitably large constant used in discretization.

CPijy Capacity payment [Me/GW].

D0
yl Demand intercept [GW] of demand curve for year y and load period l.

Eiys Annual maximum hydro production [GWh].

F Discount rate [p.u.].

G0
y Maximum possible capacity payment [Me/GW].

Hiyls Upper bound on hydro production [GW].

I Total number of generation companies.

ISiylm Intersection points in discretization of quadratic term [GW].
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Kijy Existing generation capacity [GW].

LBi Active set of load blocks at capacity of firm i.

Miyl Amount used for financial hedging [GW].

MaxIt Maximum number of iterations in diagonalization.

P 0
yl Price intercept [e/MWh] of demand curve.

Sm Slope of tangent lines in discretization [GW].

Tyl Duration of the load period l in year y [kh].

Vi Weights of classification function [p.u.].

Ws Probability of scenario s [p.u.].

X-i∗jys Capacity investment data of competitors [GW].

αyl Demand slope [GW/(e/MWh)] of demand curve.

βijy Annual investment cost [(Me/GW)/year].

β̂ijy Total investment cost [Me/GW].

γy Slope of capacity payment curve [Me/GW2].

δij Production cost [e/MWh].

ε Convergence tolerance.

ζµ Lower bound in discretization of ζµi∗ijyl.

ηiyl Price of contract for differences for financial hedging [e/MWh].

θiyl Conjectured-price response parameter [(e/MWh)/GW].

Φiyl Normalized conjectured-price-response parameter [p.u.].

Variables:

bµiyls Binary variable needed to linearize complementarity conditions.

bxkijy Binary variable needed to discretize x.

bdistiylm Auxiliary binary variables used in discretization of quadratic term.

dyls Quantity demanded [GW].

distiylm Auxiliary variables used in discretization of quadratic term [GW].

hiyls Hydro quantity [GW] produced in the market.
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pyls Market clearing price [e/MWh].

qijyls Quantity [GW] produced in the market.

q̄iyl Auxiliary variables representing q2 [GW2].

xijy New capacity [GW] of firms i in technology j and year j.

x̃ijy Approximation of new capacity investments [GW].

zxkijy Variable used to discretize x.

zζki∗ijyl Variable used to discretize ζµi∗ijyl.

ζλi∗ijyl Dual variables of complementarity constraints.

ζµi∗ijyl Dual variables of complementarity constraints.

λijyls Dual variable of upper bound on thermal production.

λH
iyls Dual variable of upper bound on hydro production.

λE
iys Dual variable of maximum annual hydro energy.

µijyls Dual variable of lower bound on thermal production.

µH
iyls Dual variable of lower bound on hydro production.

Symbols:

∆ Step size.

L The Lagrangian function.

∇ Nabla symbol representing a vector differential operator.

∂ Partial derivative notation.

Acronyms:

AP Approximation.

BBOM Basic bilevel optimization model.

BBEM Basic bilevel equilibrium model.

BEM Bilevel equilibrium model.

BL Bilevel.
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BMEM Basic market equilibrium model.

BMOM Basic market equilibrium as optimization model.

BOM Bilevel optimization model.

BPP Bilevel programming problem.

BSEM Basic single-level equilibrium model.

CC Combined cycle gas turbine.

CO Coal technology.

CS Consumer surplus.

EPEC Equilibrium problem with equilibrium constraints.

FERC Federal energy regulatory commission.

GT Gas turbine.

ISO Independent system operator.

KKT Karush-Kuhn-Tucker conditions.

K-S Kreps and Scheinkman.

MCP Mixed complementarity problem.

ME Market efficiency.

MILP Mixed integer linear program.

MPEC Mathematical program with equilibrium constraints.

NPV Net present value.

NU Nuclear technology.

SBOM Stochastic bilevel optimization model.

SEOM Single-level equilibrium as optimization model.

SL Single level.
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Chapter 1

Introduction

1.1 Motivation

Sustainable and high-quality supply of electric energy is a key ingredient of every

modern-day society. All our lives critically depend in one way or another on the

smooth functioning of this energy supply, be it for indispensable services such as

health care, telecommunications, water supply, heating or lighting, or simply for the

sake of charging our smartphones or watching the television. Most consumers are

unaware of the complex set of tasks that are involved in switching on the light and,

in general, do not give a lot of thought to what it would mean for their lives if one

day this well-oiled machinery, the energy sector, stopped working. Sufficient and

adequate generation capacity will have to be installed in order to prevent this from

happening and in order to meet society’s future electricity demand under emerging

environmental constraints.

Within the last decade alone, the total world electricity consumption and corre-

sponding total installed generation capacity have grown by around 50% worldwide,

an enormous figure which would translate to around 500 new combined cycle plants

per year. The problem of generation expansion planning is one of the most important

within the electricity sector with good reason and this is why this thesis focuses on

finding a better solution for this problem.

The supply of energy not only requires thorough planning in terms of the transmis-
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sion network - which is usually a regulated activity - but also in terms of planning the

expansion of generation capacity in order to meet future electricity demand. In regu-

lated electricity systems this task is usually carried out by a centralized planner who

minimizes total cost while meeting a future demand forecast, reliability constraints

and environmental requirements identified by the government. Under this type of

framework, expansion planning can be regarded as stable, relatively predictable and

essentially risk-free for generation companies. However, the liberalization of the elec-

tricity sector and the introduction of electricity markets, which first emerged in the

1980s in countries like Chile, the United Kingdom and New Zealand and nowadays

have spread to the majority of all developed countries, have greatly complicated the

organization of the electricity sector, especially for generation companies.

Expansion decisions under a centralized framework are usually regulated activi-

ties and investment costs of generation companies are recognized. However, under

a liberalized framework investment decisions are no longer regulated but to a large

extent up to the responsibility of the generation companies. This has the effect that

generation companies are not only exposed to uncertainties stemming from demand,

hydro inflows and fuel costs - uncertainties which have already existed in regulated

systems - but also to uncertainty stemming from competition in imperfect markets

and from uncertain market prices. On top of that, generation expansion investments

are extremely capital-intensive and have very long amortization periods, which makes

them vulnerable to credit risk and long-term uncertainties such as unexpected reg-

ulatory changes. In summary, while the liberalization process might have succeeded

in increasing efficiency of the sector and decreasing prices, there is no doubt that the

role and tasks of generation companies have been complicated immensely.

In this context, the general goal of this thesis is to contribute to the smooth func-

tioning of the electricity sector under a liberalized setting by developing bilevel mod-

els, which will be defined below, that assist generation companies to take generation

expansion decisions in a highly competitive framework. There are several improve-

ments of existing models that can be made and limitations that we plan to overcome

with the work contained in this thesis, which has also been presented in five articles
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published in internationally recognized journals. There exist several methods to ad-

dress the generation expansion problem in liberalized electricity markets, however, in

this thesis a game-theoretic modeling approach is adopted due to the close analogy

between the competitive situation of generation companies in electricity markets and

the concept of “games” in game theory.

Bilevel models - which have first been used in the electricity sector to formulate

electricity markets for example by Cardell et al. [23], Berry et al. [12], Weber and

Overbye [114], Hobbs et al. [61] or Ramos et al. [100] just to name a few - allow

us to represent a sequential decision making process as opposed to single-level mod-

els where all decisions are considered to be taken simultaneously, which can be a

gross simplification of reality and distort model outcomes. As a matter of fact, one

of the main objectives of this thesis is to characterize the exact difference between

single-level generation expansion models, where investment and production decisions

are represented to be taken at the same time, and bilevel generation expansion mod-

els, where first investments are decided and then the market equilibrium takes place.

Once that this difference has been established, two different types of bilevel mod-

els for generation expansion planning will be defined: a bilevel optimization model

that assists one generation company in particular and that is formulated as a Math-

ematical Program with Equilibrium Constraints (MPEC); and a bilevel equilibrium

model where capacity decisions of all generation companies are represented and that

is formulated as an Equilibrium Problem with Equilibrium Constraints (EPEC). In

both models the market is represented via a conjectured-price response equilibrium

formulation, which gives us the advantage to explore the impact that the strategic

behavior of market agents in the spot market has on investment decisions.

The analysis of these types of models strongly supports the decisions of market

agents, decisions that are being taken under uncertainty and are therefore subject to

high risks. Therefore this thesis aims at developing relevant numerical bilevel models

for generation expansion planning in a liberalized framework, that are sufficiently

large in size to be realistic and that can be solved in a timely manner in order to

carry out relevant studies and to investigate the impact of strategic behavior of the
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agents on the market. Solving these types of problems adequately has become an

extremely important issue ever since the liberalization of the electricity sector, because

generation companies have to face tough decisions every day that not only involve

large amounts of money but also have a strong influence on the smooth functioning

of the supply of electric energy.

Section 1.2 presents the objectives that we aim to achieve with this thesis and

finally, in section 1.3, a thesis outline is presented which gives an overview of the

organization of this document and establishes what individual topic will be covered

in which chapter.

1.2 Thesis Objectives

In this section we give an outline of the objectives set to achieve by this doctoral

thesis. We start by presenting the main objective of this thesis in section 1.2.1 and

then in sections 1.2.2 and 1.2.3 more detailed information on specific objectives are

stated.

1.2.1 Main Objective

The general objective of this thesis is to advance research in generation expansion

planning for liberalized electricity markets by using bilevel mathematical program-

ming techniques. In particular, we want to analyze in depth the impact of bilevel

formulations on the generation planning problem and to investigate and study mar-

ket behavior within proposed bilevel formulations and draw relevant conclusions.

Moreover, we want to maintain an adequate balance between (I) models that are

sufficiently realistic in size and design to represent a liberalized electricity market in

order to carry out relevant studies, the bilevel formulation of these problems that

allows game-theoretic studies on strategic behavior of market agents and (II) models

that can be solved in a timely manner.

Therefore, the specific objectives of this thesis can be divided in two different

topics: methodological objectives and computational objectives, which are described
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in detail in sections 1.2.2 and 1.2.3 respectively.

1.2.2 Methodological Objectives

The overall methodological goal is to propose and formulate bilevel models that can

shed light on taking investments decisions influenced by the strategic behavior in

liberalized electricity markets and the specific goals are stated below:

1. Answer the question of how the results of a bilevel generation expansion model

differ compared to a more simplified model. And in particular, we analyze

the differences of a single-level (or open loop) investment problem, inspired by

the problem presented in work done by Ventosa et al. [113], where capacity

investment and production decisions are taken simultaneously and a bilevel

(closed loop) model proposed in this thesis where investment and production

decisions are taken sequentially.

2. Propose and formulate bilevel generation expansion models that extend existing

bilevel approaches in the literature. Design models that take the point of view

of one generation company in particular and assist this company to take its

capacity decisions (MPECs), but also models with a more general point of

view that take into account investment decisions of all generation companies

competing in the market (EPECs).

(a) We intend to extend the work of, for example, Garcia-Bertrand et al. [54],

Kazempour and Conejo [69] or Murphy and Smeers [84], which assume

either perfect competition or Cournot competition in the spot market - to

capture intermediate strategic behavior using a conjectured-price response

market representation. This allows us to model a range of oligopolistic

market behavior and to observe its impact on investment decisions.

(b) The proposed models yield an investment schedule over the entire time

horizon, as opposed to a static investment decision for a future target

year, as done by static approaches like the one in Kazempour et al. [70].
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(c) In order to take investment decisions many existing bilevel approaches

resort to cost minimization like the work of Baringo and Conejo [3], which

is not sufficiently representative of what happens in liberalized electricity

markets where companies rather maximize profits as opposed to minimize

costs. The models proposed in this thesis, however, assume that each

generation company maximizes its profits (rather than minimizing costs).

3. Extend and improve the proposed models by introducing some aspects that

make them more realistic: capacity mechanisms; incorporate hydro power;

model financial hedging through contracts for differences; discretize investment

decisions; introduce a methodology to handle different types of uncertainty, i.e.,

demand uncertainty, fuel price uncertainty or uncertainty regarding competi-

tors’ investments and their strategic market behavior. Illustrate and validate

the newly proposed models and methodologies in case studies.

1.2.3 Computational Objectives

The computational objectives contain everything that is related to the process of

being able to solve realistic bilevel generation expansion models satisfactorily. Bilevel

problems however have the tendency to be very hard to solve, particular cases have

even be proven to be NP-hard as shown by Jeroslow [67], especially when they increase

in size. We therefore state the following specific computational objectives of this thesis

below:

1. Propose a single-level generation expansion equilibrium model, inspired by the

work of Ventosa et al. [113], which captures intermediate strategic behavior and

formulate it as an equivalent convex quadratic optimization problem, which can

be solved efficiently.

2. Since the complexity of the EPEC complicates commonly known solution pro-

cesses, propose a methodology of a single-level approximation scheme for bilevel

generation expansion equilibria which reduces the computational time and al-
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lows us to solve bilevel equilibrium models reasonably well under certain cir-

cumstances.

3. Explore and compare different formulations and corresponding solution methods

for the arising bilevel problems. In particular, for bilevel optimization problems

formulated as MPECs explore nonlinear programming methods, mixed integer

programming methods where the MPECs are converted to mixed integer pro-

grams (MIPs), and decomposition techniques. For bilevel equilibrium problems

formulated as EPECs explore iterative methods like diagonalization which in

turn resort to nonlinear programming methods, mixed complementarity prob-

lem (MCP) approaches, mixed integer programming and finally, approximation

schemes.

1.3 Organization of the Document and Thesis Out-

line

In this thesis we develop and analyze mathematical bilevel models for generation

expansion planning in liberalized electricity markets.

In particular, in chapter 2 we first provide a literature review on the subject

which puts our work in context to the existing state of the art and then we discuss

the model hypotheses and other basic concepts which are useful to better understand

the rest of the thesis. These introductory sections are followed by the formulation

of a basic version of existing single-level models and the newly developed bilevel

generation expansion MPEC and EPEC models in order to motivate the question

whether the additional modeling effort with respect to the corresponding single-level

models actually pays off.

In chapter 3 we provide an answer to this question by carrying out a theoreti-

cal analysis of single-level and bilevel generation expansion equilibrium models. The

obtained results, which have been proven in a theorem, show that in general the

bilevel model is more realistic than the single-level model because it more adequately
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represents investment behavior of generation companies in liberalized electricity mar-

kets. However, we also demonstrate that under certain circumstances, single-level

and bilevel results can coincide and we characterize when this happens.

Since the theoretical framework of chapter 3 underlines that bilevel models are

more realistic for generation expansion planning, we want to derive large-scale versions

of such bilevel models. The first step towards formulating a large-scale bilevel equi-

librium model, is a bilevel generation expansion optimization model, i.e., an MPEC,

which represents the investment decision of one generation company and which is

discussed in detail in chapter 4 of this thesis. This model is particularly useful from

the point of view of a generation company because it allows to decide and assess in-

vestment decisions under an uncertain and highly competitive framework. Moreover,

the MPEC model can be extremely useful for solving EPEC models.

In chapter 5 we arrive at the bilevel generation expansion equilibrium model, for-

mulated as an EPEC, which consists of the MPEC models that have been introduced

in the previous chapter. Since these EPEC models are very hard to solve, we also

propose an approximation scheme which allows us to arrive at a good solution two

orders of magnitude faster than with standard EPEC methods. Chapter 5 concludes

the methodological contributions of this thesis.

Chapter 6 summarizes the numerical techniques that have been applied to solve

the MPEC and EPEC models that have arisen throughout this thesis, and chapter

7 contains some additional numerical examples of interest including real-size case

studies. Finally, chapter 8 presents the conclusions, the thesis contributions and

future research.
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Chapter 2

Generation Expansion Planning

Models in Liberalized Electricity

Markets

This chapter first gives an overview of existing techniques to analyze capacity expan-

sion in electricity markets, describes the state of the art of this topic and provides

a detailed literature review in section 2.1. Then in section 2.2 all model hypotheses,

that are used later in order to define the models proposed in this thesis, and simpli-

fications as well as the necessary basic concepts are presented. Section 2.3 contains

one of the main pillars of our generation expansion models - the conjectured-price

market equilibrium - and shows how to extend this approach to a single-level gener-

ation expansion model. Finally, section 2.4 introduces two basic versions of bilevel

models, which are an original contribution of this thesis, and raises the question if and

how bilevel models differ from single-level models, a question which is answered in

chapter 3. Moreover, possible model extensions are briefly discussed. These possible

extensions will be addressed in detail in the following chapters.
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2.1 Literature Review and State of the Art

This section is dedicated to a literature review and a revision of the state of the art

of the use of bilevel programming for analyzing the generation expansion problem

in liberalized electricity markets. First, in section 2.1.1, a brief general overview of

different methods that can be used for generation expansion planning is provided, and

then game theory is emphasized as the approach chosen in this thesis. Subsequently,

game-theoretic approaches are divided into single-level and bilevel approaches, the

latter being the main focus of this thesis. Finally, section 2.1.2 is dedicated to pointing

out the most relevant existing mathematical programming techniques that are used

to solve bilevel problems in this thesis.

2.1.1 Generation Expansion Planning Techniques

The liberalization of the electricity sector which began in the 1980s in pioneering

countries like Chile, Great Britain and Norway was a re-structuring process of the

entire electricity industry leading away from centralized, vertically integrated monop-

olies and going towards the introduction of competition and electricity markets. One

of the main reasons for this deregulation, which led to the privatization and vertical

de-integration of the industry, was that the introduction of competition would lead to

an increase of efficiency in the sector, thereby ultimately leading to lower electricity

prices. Nowadays, liberalized electricity markets are in place worldwide ranging from

Latin and Central America, the United States and Canada to Europe and Australia.

In Spain, the liberalization of the electricity sector took place in 1998.

Due to the liberalization of electricity markets the task of taking generation capac-

ity investment decisions has become an even more complex problem than it already

had been under a centralized framework. In regulated electricity systems, generation

expansion planning is usually carried out by a centralized planner who in general

minimizes total system costs subject to environmental constraints and reliability con-

straints, some of which can be found in Billinton and Allan [14]. For this reason

generation expansion decisions are generally easier to predict in centralized systems
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and therefore relatively stable. Under such a framework, generation companies are

guaranteed a certain return on their investments and therefore hardly face any risk at

all when taking investment decisions. The main techniques to model these kinds of

capacity investment decisions under a regulated framework are multi-criteria decision

methods, as proposed by Merrill and Schweppe [82] and optimization methods, which

often boil down to a cost minimization problem.

Liberalized systems pose a more complex task to generation companies, as they

make generation expansion decisions at their own risk, in a highly uncertain frame-

work which is no longer driven by mere cost minimization. Generation companies are

now exposed to a higher level of risk, having to deal with the strategic behavior of

competitors in imperfect markets and coping with the uncertainty due to regulatory

decisions, fuel prices, demand and hydro inflows among others.

For generation expansion planning in liberalized markets, let us classify the dif-

ferent techniques according to Sánchez [108] where available generation expansion

techniques are separated into methods that place emphasis on uncertainty treatment

and methods that focus on the analysis of markets and the behavior of its competitors.

Let us now point out some examples of these techniques applied to the energy sector.

When the focus lies on treating uncertainty, then typically the following methods are

employed: scenario analysis such as the work by Ghanadan and Koomey [55] where

the UK and Californian system are studied; decision theory as applied by Mosquera

et al. [83] analyzing medium-term risks faced by electrical generation companies in

competitive environments; risk management as for example applied by Cabero et

al. [20] in the context of the electricity sector; and real options theory, as applied

to generation expansion planning by Botterud [15] or to investment in distributed

generation by Siddiqui and Marnay in [109].

However, these techniques usually disregard the effects of strategic behavior of

market agents. Representing these effects often requires the use of methods such

as: system dynamics as applied to the electric power industry by Ford [48] and to

generation expansion by Kadoya et al. [68] and Sánchez [108]; agent-based simulation

applied to investment in electricity markets by Costa and Oliveira [29]; and game
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theory, which is the technique used in this thesis and which will therefore be analyzed

in greater detail as follows.

Game Theory in Generation Expansion Planning

Game theory is particularly useful in the energy sector because it represents a natural

way to model various agents - in our case generation companies - who are competing

in the market where the decision of each company has an influence on the outcome of

the other agents. This interactive and competitive behavior of generation companies

can be defined as a game where each player has its set of strategies and where the

optimal decision of each player depends on how the rest of the players behave. The

strong analogy between the concepts of games in game theory and the actual situa-

tion of generation companies in electricity markets is the reason why in this thesis we

adopt a game-theoretic approach to generation expansion planning. This methodol-

ogy allows us to analyze electricity markets in depth and in particular, it allows us to

focus on the impact that the strategic behavior in the spot market has on investment

decisions. It is pointed out here that in liberalized electricity markets there are many

situations that could be modeled as a game, such as the market equilibrium problem,

or providing optimal bids for the market, or the generation capacity expansion prob-

lem, which is the main focus of this thesis. The generation expansion problem can

be interpreted as a game among generation companies where each firm maximizes its

total profits, deciding capacities and subsequently productions.

Given the above definition of games in liberalized electricity markets, the concept

of a Nash equilibrium [86] can be introduced as the point where no market agent

can improve its profits by unilaterally changing its strategy, thereby moving away

from this equilibrium point. There exist different types of equilibrium formulations,

the most important ones being: the Bertrand equilibrium [13], where the decision

variables are prices; the Cournot equilibrium [31], where the decision variables are

quantities; and equilibrium formulations with conjectural variations, which under cer-

tain circumstances includes the above and moreover, allows to represent intermediate

situations of competitive market behavior or even collusion. The conjectural vari-
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ations approach is the one employed in the models of this thesis and is therefore

discussed in more detail in section 2.2.2.

Let us now revisit another type of equilibrium, i.e., the Stackelberg equilibrium

[110], which similar to Cournot also is an equilibrium in quantities; however, in the

Stackelberg equilibrium two different types of players are considered: the leader and

the followers. The leader firm is the first to set quantity levels, and then the followers

decide quantities depending on the leader’s previously made decision. In comparison

to the Cournot equilibrium concept, mentioned in the previous paragraph where all

players take decisions simultaneously, the Stackelberg game represents a sequential

decision making process, where a leader moves first and then the others follow. It

is commonly known that Cournot and Stackelberg equilibria yield different quantity

solutions and hence lead to different profits. This is due to the fact that the Stack-

elberg leader can change the Cournot outcomes in its favor because of the privilege

of moving before everybody else does. It is therefore stressed here that simultane-

ous decision making, as in the Cournot game, and sequential decision making, as in

the Stackelberg game, are not only conceptually different but can lead to different

outcomes.

With this in mind, we now consider the generation expansion planning problem.

Generation expansion planning has an innate sequential structure because first capac-

ity decisions are taken (power plants have to be built) and then, production decisions

can be taken in the market. If we draw a parallel to the Stackelberg game, then capac-

ity decisions would be considered the “leader” since they move first, and production

decisions in the market would be the “follower” decisions since they depend on what

has previously been decided in the investment stage. From this analogy it becomes

apparent that there are two separate levels in the generation expansion planning prob-

lem: the investment level and the production level. Therefore, all approaches that

model this type of two-level structure of the generation expansion problem are referred

to as bilevel approaches (also known as closed-loop or two-stage), which will be the

focus of this thesis. On the other hand, approaches where capacity and production

decisions are considered to be taken simultaneously will be referred to as single-level
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(also known as open-loop or one-stage) approaches. In the remainder of the literature

review single-level and bilevel modeling approaches to generation expansion planning

are going to be distinguished distinctly.

Strictly speaking both capacity and production decisions are taken in an alter-

nating manner repeatedly for all the years of the time horizon. However, it is a

common simplification, at least when modeling electricity systems, to consider the

capacity investments of the entire time horizon first, and then all the production

decisions of the entire time horizon. This simplification allows to keep the arising

models tractable and moreover, it yields a useful and reasonable representation of

how electricity markets work.

Single-Level Generation Expansion Planning Models

Within the game-theoretic framework, one approach for the capacity expansion prob-

lem is to extend medium-term models to longer terms, by considering that investment

and production decisions are taken at the same time. The medium term corresponds

to a time horizon ranging from one month to a couple of years and is usually dedicated

to tactical decisions such as maintenance management, hydro reservoir management

or more market-based analyses. Medium-term market models, as for example the one

presented by Barqúın et al. [5], can be extended to the longer term by introducing

investment decisions as additional variables. Such an approach has been adopted in

the Cournot-based equilibrium model by Ventosa et al. [113]. Let us now mention

some of these modeling approaches.

This corresponds to the perfectly-competitive case and the so called open-loop

equilibrium conditions presented in work of Murphy and Smeers [84], where the au-

thors theoretically explore different generation capacity expansion models. Since the

focus of this work lies on the theoretical analysis of the models, the actual problem

size is kept small, i.e., the time horizon is one year, two generators and investments

in one technology are considered. Murphy and Smeers prove that under the assump-

tions made in their paper, the open-loop Cournot equilibrium always exists and is

unique. They also compare their open-loop Cournot model to a closed-loop (two-
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stage) Cournot model, which will be discussed in more detail in the bilevel model

section of this literature review.

Another example of a single-level generation expansion model is the Cournot-

based model of Ventosa et al. [113]. This equilibrium model is more realistic than

the previous one since it accommodates a time horizon of various years, subperiods

within this year, e.g., months, and load periods within the subperiods. Moreover,

hydro-power constraints and pumped-hydro storage among other realistic details are

considered. The model is formulated as a Mixed Complementarity Problem (MCP)

and solved using the standard solver PATH [38]. The model analyzed by Centeno

et al. [25] extends the market model of Reneses, Centeno and Barqúın [101] and

improved by the same authors [5], to simultaneously consider continuous capacity

investments. The continuous capacity investments are then discretized for each year

in an algorithm using a static expansion for a single year in a future time horizon.

However, the single-level approach has its drawbacks, as it may overly simplify

the dynamic nature of the problem, as expansion and operation decisions are taken

simultaneously. In this case, the problem requires taking into account the fact that

expansion and operation decisions are taken sequentially instead of simultaneously.

Even when considering a perfectly competitive spot market, the fact that agents

decide their investments before the spot market takes place, creates the opportunity

for the players to benefit from spot market reactions to investment decisions.

Bilevel Generation Expansion Planning Models

In this section we focus on bilevel game-theoretic approaches to generation expan-

sion planning in liberalized electricity markets. In general, the term “bilevel” be-

fore generation expansion planning, refers to the sequentiality of decision making -

first capacity decisions and second production decisions - and more concretely speak-

ing, a mathematical programming problem is classified as a bilevel programming

problem when one of the constraints of an optimization problem is also an opti-

mization problem. Among existing bilevel approaches we furthermore distinguish

between: optimization-based bilevel approaches, which correspond to problems that
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are closely related to bilevel programs, i.e., Mathematical Programs with Equilib-

rium Constraints (MPECs); and equilibrium bilevel approaches, which correspond to

models formulated as Equilibrium Problems with Equilibrium Constraints (EPECs)

[111]. Both MPEC and EPEC approaches have been applied in various fields like en-

gineering, economics and finance. An MPEC is an optimization problem in which the

essential constraints are defined by a parametric variational inequality, see Facchinei

and Pang [43], or a complementarity system as mentioned by Cottle et al. [30], which

typically model a certain equilibrium phenomenon. In the electricity sector, MPECs

have first been used to formulate electricity markets for example by Cardell et al.

[23], Berry et al. [12], Weber and Overbye [114], Hobbs et al. [61] or Ramos et al.

[100]. An EPEC is an equilibrium problem where several market agents simultane-

ously face an MPEC. These problems (MPECs and EPECs) are more complicated

than single-level problems, but they fulfill the purpose of translating the sequentiality

of decision making into model formulations thereby differentiating capacity and pro-

duction decisions. Considering expansion and operation decisions separately leads to

bilevel modeling.

Let us first present the optimization-based bilevel approaches in the capacity

framework, which focus on the investment decisions of one market agent (usually

being a GENCO) in particular and are usually modeled as an MPEC. In the ca-

pacity framework there exist leader-follower games like the Stackelberg game as the

MPEC given by Ventosa et al. [113], where a leader firm takes capacity decisions in

the first stage and then in the second stage the market is cleared a la Cournot also

taking into account hydro constraints and pumped-hydro storage. This work focuses

on comparing numerical results of this Stackelberg model and a single-level Cournot

model. Other contributions take a more centralized approach to expansion planning

like the transmission and wind power investment MPEC of Baringo and Conejo [3]

where investments are decided in the upper level by minimizing total costs, subject

to a lower level that represents the market clearing under different load and wind

power conditions. The subsequent work of the authors [4] corresponds to the Benders

decomposition approach of the previous model. All of the following examples are op-
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timizing the capacity expansion decisions of only one GENCO. Garcia-Bertrand et al.

[54] present a linear bilevel model that determines the optimal investment decisions

of one generation company. They consider uncertainty in the demand and in the ca-

pacity decisions of the competition; however, the market is considered to be perfectly

competitive. In [107], Sakellaris applies a two-stage model in which firms choose

their capacities under demand uncertainty prior to competing in prices and presents

regulatory conclusions. In [70] Kazempour et al. present a stochastic static bilevel

generation capacity expansion model, i.e., an MPEC, where investment decisions and

strategic production actions are taken in the upper level for a single target year in

the future, while the lower level represents the market clearing. In [69], Kazempour

and Conejo apply Benders decomposition to this stochastic MPEC. The extension of

this model to incorporate futures markets is presented in the work of Kazempour et

al. [71].

Let us now discuss existing equilibrium bilevel approaches in the literature. An

instance of this modeling approach is the closed-loop Cournot game described in the

work of Murphy and Smeers [84]. As previously mentioned, in their paper Murphy

and Smeers theoretically analyze generation expansion models with a time horizon of

one year and Cournot behavior in the market and establish existence and uniqueness

results. In the case of the closed-loop Cournot model, the existence and uniqueness of

this kind of equilibrium are not guaranteed in most situations (see Ralph and Smeers

[99] for a discussion on the topic). Another example of bilevel equilibria in generation

expansion is the work of Kazempour, Conejo and Ruiz [72, 73]. The authors revisit

their previously mentioned MPEC model for each generation firm thereby obtaining

an EPEC which is then linearized and solved as a Mixed Integer Linear Problem

(MILP). Similar to the corresponding MPEC model, the EPEC model also computes

a static expansion for one future year. In the PhD thesis of Özdemir [92] two bilevel

equilibrium models for the generation expansion problem are presented: one with

perfectly competitive market behavior and another one assuming Cournot behavior.

In her thesis Özdemir shows that it is possible under certain circumstances to re-

cast the bilevel perfectly competitive equilibrium problem as a convex but nonlinear
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optimization problem. However, in general convexity properties are lost when market

power is introduced. Moreover existence and uniqueness results are discussed and

proven.

Thesis Scope

In general, in this thesis we would like to address some of the shortcomings of existing

approaches in the literature. First of all, even though existing open-loop approaches

such as the work of Centeno et al., Murphy and Smeers or Ventosa et al. [25, 84, 113]

are adequate and useful to approximate the generation capacity problem, they do

not model the significant temporal separation between when capacity decisions are

taken and when energy is produced with that capacity. We overcome this problem by

proposing a bilevel model. Furthermore, existing bilevel approaches in the literature

assume either perfectly competitive, for example in work of Garcia-Bertrand et al. and

Özdemir [54, 92], or Cournot behavior in the spot market, see Haurie et al., Murphy

and Smeers or Ventosa et al. [59, 84, 113]. We want to extend these approaches

to also capture intermediate oligopolistic behavior in order to explore how capacity

decisions would change if competitive behavior in the spot market changed. The

models presented in this thesis represent the market via a conjectured-price response

formulation, thereby allowing us to model a range of oligopolistic market behavior.

Finally, the models proposed in this thesis yield an investment schedule over the entire

time horizon, as opposed to a static investment decision for a future target year, as

done in the work of Kazempour et al. [69, 70].

In particular, the following optimization-based bilevel models have been devel-

oped: in Centeno, Wogrin et al. [26], which corresponds to a contribution of this

thesis, we have presented a deterministic MPEC, which decided capacity investments

in the upper level maximizing profits of one generation company, while the lower level

represented a conjectured-price response market equilibrium. The capacity decisions

of the competing market agents were assumed fixed. The extension of this work to

include stochasticity in terms of competitors’ investments and strategic spot market

behavior is presented in Wogrin et al. [116].
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As a part of this thesis the following bilevel equilibrium models have been de-

veloped: in Wogrin et al. [119], which also forms part of the contributions of this

thesis, the authors present and theoretically analyze a closed-loop single year capacity

expansion model with a conjectured-price response market equilibrium allowing for

strategic behavior to range between perfect competition and Cournot competition.

One result of this comparison is a Kreps-Scheinkman-like [74] result, which estab-

lished that the closed-loop (bilevel) model always yields Cournot capacities. Some

examples of more realistically-sized bilevel generation expansion equilibrium models

are given by the work of Wogrin et al. [115], which presents a novel way to model the

generation capacity expansion problem in a liberalized framework via a multi-year

bilevel equilibrium model. In the upper level the competing generation companies

maximize their individual profits, while the lower level represents the market using a

conjectured-price response approach, which allows us to vary the strategic spot mar-

ket behavior, to see how much the reigning competitive behavior impacts investment

decisions. This EPEC model represents part of the contributions of this thesis.

The purpose of Figure 2-1 is to establish how the work of this thesis compares

to other existing approaches in the literature in terms of four criteria that have been

established as the main focus of this thesis. The criteria that were considered as

most important in this thesis are: the market representation which we classify in

perfect competition or Bertrand behavior, Cournot behavior or conjectural variations;

the size of the model which can either be small as used for theoretical purposes

or realistically-sized; the type of investment decision where we distinguish between

linear objective functions (such as cost minimization for example) and more complex

nonlinear objective functions (as obtained under profit maximization for example)

and within both cases we furthermore classify whether the approach is a static or

a dynamic one; and finally, the number of investing agents considered in the model

where we distinguish between models that decide investments of only one agent and

models that have multiple investing agents.
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Figure 2-1: Comparison of the level of detail of different bilevel generation expansion models
in the literature with respect to the criteria emphasized in this thesis.
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2.1.2 Bilevel Programming Techniques

In this subsection of the literature review we mention some of the most relevant

techniques for solving bilevel problems and their most relevant applications to elec-

tricity markets. In particular, in the remainder of this section, we distinguish between

methods for MPECs and methods for EPECs. Note that this section contains a list

of methods for MPECs and EPECs most relevant to this thesis and not a complete

list of all existing numerical methods.

Bilevel Programming Problems (BPPs) were introduced in the operations research

literature in the early 1970s by Bracken and McGill in a series of papers [16, 17, 18].

From a general point of view, a BPP can be classified as a mathematical optimiza-

tion problem which is constrained by another optimization problem. A BPP is a

hierarchical programming problem where the constraints of a problem (the upper

level problem) are in part defined by another optimization problem (the lower level

problem). A Mathematical Program with Equilibrium Constraints (MPEC) [80] is

an optimization problem in which the essential constraints are defined by a para-

metric variational inequality or a complementarity system, which typically model a

certain equilibrium phenomenon. Under certain circumstances MPECs are equivalent

to bilevel problems. Finally, an Equilibrium Problem with Equilibrium Constraints

(EPEC) [111] is a problem of finding an equilibrium point that solves several MPECs

simultaneously.

MPECs have non-convex constraints and in some cases even nonlinear objective

functions and may therefore have multiple equilibria. For this reason in some cases

EPECs might not even have pure strategy equilibria as mentioned by Berry et al. or

Hu and Ralph [12, 63]. Under some circumstances bilevel problems have been proven

to be NP-hard as shown by Ben-Ayed and Blair [10]. For a discussion on MPEC

resolution algorithms the reader is referred to Luo et al. [80].

In the electricity sector, MPECs, bilevel problems, and EPECs were first used to

represent short-run bidding and production games among power producers with ex-

isting capacity, e.g.,[12, 23, 61, 114, 120]. EPECs belong to a recently developed class
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of mathematical programs that often arise in engineering and economics applications

and can be used to model electricity markets as shown by Ralph and Smeers [99].

Let us now revisit some of the existing MPEC approaches in literature. The first,

most straight-forward approach, as adopted by Centeno, Wogrin et al. [26] is to con-

vert the MPEC into a nonlinear program and to apply standard nonlinear solvers to

the problem. Some solvers such as NLPEC [46] take advantage of the complemen-

tarity problem formulation within the constraints of an MPEC to address it more

efficiently. Since the EPEC is an equilibrium problem, under certain circumstances,

it can be modeled as a complentarity problem and solved as such using standard solver

as for example PATH [38]. For a detailed discussion on complementarity problems

and their application in energy markets the reader is referred to the book of Gabriel

et al. [51]. Once the MPEC has been formulated as a nonlinear program it is also a

possibility to apply heuristic methods, as done by Fampa et al. [45] for the optimal

bidding problem.

Another approach to solve an MPEC is to linearize the nonlinear parts (such as

the complementarity conditions for example), thereby transforming the MPEC into

a MILP. Such an approach is adopted in work of Kazempour et al. or Wogrin et al.

[70, 71, 116] for the generation expansion problem, in work of Baringo and Conejo

[3] for the transmission expansion problem or in work of Fampa et al. [45, 104] for

the optimal bidding problem. The advantage of MIP approaches with respect to the

MPEC is that the obtained solution is globally valid as opposed to local solutions

which are yielded by nonlinear solvers. These MIP approaches to MPECs can be ex-

tended to EPECs. In particular, Ruiz et al. [105] suggest to linearize all nonlinearities

of the EPEC for the optimal bidding problem and then they propose a methodology

which allows them to choose among the different equilibrium solutions. The same

methodology has also been applied to the generation expansion planning problem by

Wogrin et al. [115] (presented in chapter 4 of this thesis) and by Kazempour et al.

[72, 73]. There also exist problems with three levels that can be transformed into

a MILP, such as the static generation and transmission planning model by Pozo et

al. [97]. In [96], Pozo and Contreras not only take a MILP approach to modeling
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a stochastic EPEC, but they also propose a procedure to find all Nash equilibria to

their problem by creating “holes” in the feasibility region.

Decomposition methods have also been successfully applied to MPECs, as for

example Kazempour and Conejo [69] for the generation expansion MPEC or Baringo

and Conejo [4] for transmission expansion.

Another method to solve EPECs is via an iterative procedure called diagonal-

ization, which solves the EPEC by iteratively solving MPECs. For more details on

methods to solve EPECs, i.e., diagonalization, the reader is referred to Hu, Hu and

Ralph or Leyffer and Munson [62, 63, 77]. The advantage of the diagonalization

method is that it only requires solving a less complicated model, i.e., an MPEC.

However, the disadvantages of diagonalization, as stated by Su [111], are that even if

an equilibrium exists, diagonalization might not find it and moreover, no convergence

results exist for this method. In the PhD thesis of Su [111], the author also develops

another method to solve EPECs, i.e., a sequential nonlinear complementarity method,

however, this type of method has not been applied in the scope of this thesis.

Finally, in order to solve a generation expansion EPEC, Wogrin et al. [117] (pre-

sented in chapter 5 of this thesis) have developed a single-level approximation scheme,

which approximates bilevel equilibria well if strategic spot market behavior is closer

to Cournot than to perfect competition. This methodology forms part of the contri-

butions of this thesis.

2.2 Modeling Hypotheses and Basic Concepts

In this section we first - in section 2.2.1 - discuss the hypotheses regarding the demand

representation that have been made in our models. Then, in section 2.2.2 we introduce

the concept of conjectural variations, which is indispensable for our representation of

the market equilibrium, followed by a brief discussion about the electricity network

in section 2.2.3. Since this thesis focuses on bilevel generation expansion models, in

section 2.2.4 provides a formal definition of bilevel programming and section 2.2.5

introduces the concept of complementarity problems, which also appear frequently in

45



the model formulations of this thesis.

Some aspects of our models have been simplified in order to achieve the maximum

clarity in the formulation of the models. Hence, in this section we point out all

the hypotheses taken in the development of our generation expansion models and

analyze the corresponding limitations of the models. Moreover, we describe some

basic concepts and prerequisites that are necessary in order to formulate and solve

the proposed models.

In general, the models that are developed in this thesis do not incorporate a

direct representation of reliability measurements, nor do they directly represent non-

supplied energy. Instead we consider an indirect treatment of reliability measures, see

Billinton and Allan [14], by assuming that measures such as the loss of load probability

or the equivalent expected forced outage rate have already been incorporated into all

system variables. For example, in the following the variable q which we will refer to as

(net) production decisions, really corresponds to the probabilistic term representing

average production minus average expected forced outage rates.

All the models presented in this thesis consider a load duration curve that is ap-

proximated by a step function. Demand is represented by an affine inverted price

curve, which means that we consider an affine relation between market price and

demand. This is discussed in more detail in section 2.2.1. When formulating the spot

market we do not consider each generator’s individual stepwise supply offer curves, in-

stead we approximate these curves by introducing a conjectured-price response which

represents the strategic behavior of each generator. The definition and interpreta-

tion of this conjectured-price response parameter are presented in section 2.2.2. The

network has not been incorporated into the models developed in this thesis. This

fact will be discussed in more detail in section 2.2.3 and future research will be mo-

tivated. Finally, in section 2.2.4 and section 2.2.5 we define the concept of a bilevel

programming problem - since these types of models are the core contribution of this

thesis - and introduce the concept of complementarity problems, which will serve as

an alternative way to formulate bilevel problems.
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2.2.1 Demand Representation

In most electricity markets each day can be divided into several periods per day. The

number of these daily periods depends on the design of each individual electricity

market. In the Spanish system there is a market clearing for each hour of the day,

which yields 24 pairs of market price and corresponding demand. In England even

half-hourly market prices are considered.

When trying to adequately represent what is going on in the electricity market, the

most realistic approach would be (for the example of Spain) an hourly representation

of price and demand. As a matter of fact, in models whose time horizon is short term,

for example the unit commitment problem, demand and prices are usually represented

on an hourly basis (or even less). Otherwise, operational details such as ramping con-

straints, start-up or shut-down decisions, could not be adequately modeled. However,

when considering the generation capacity expansion problem, the time horizon that

is explored can be up to several decades and an hourly representation of multiple

decades is simply not tractable computationally and might not even be crucial taking

into account that many operational details of the market, as for example start-up and

shut-down decisions, that might be crucial in a unit commitment framework, become

less important and more negligible in a long-term framework. It is therefore desirable

to represent demand in a more efficient way. A common approach is to approximate

demand by a step function by introducing what we will refer to as load periods, load

blocks or load levels.

In order to define these load periods, we start off with the annual hourly load

curve of the system that we are trying to model. In Figure 2-2 we present such an

annual load curve for the Spanish system. Then, we derive the monotonic annual load

curve, given in Figure 2-3, by ordering the previous curve in a descending manner.

In this process we lose information of sequentiality of individual hours. The goal is

to approximate this curve by introducing L load blocks, where each load block is

defined by a demand level and a duration. In order to achieve this goal we solve

an optimization problem that partitions the monotonic load curve into L clusters.
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Figure 2-2: Annual load curve of the Spanish system in 2007.

This partition minimizes the sum, over all clusters, of the within-cluster sums of

point-to-cluster-centroid distances. The result of this process yields a representation

of demand that looks like a step function, as given in Figure 2-4 where d represents

demand. Note that this approach is very common in the electricity sector and has been

adopted frequently to represent the demand curve, e.g., Barqúın et al. or Murphy

and Smeers [5, 84]

The advantage of this type of representation is that instead of 8760 individual one-

hour blocks per year, demand can be represented by only L blocks, where L � 8760.

This reduction in model size allows us to expand the time horizon to multiple years

(decades) while still representing demand in an adequate fashion. The disadvantage

is that we have lost some detail as for example sequentiality of individual hours,

however, this particular detail might be of less importance in the long run than in

the short run.

Finally, demand in each load level l is defined by an affine demand function which

links demand dl with price pl of the same load period. This demand function is given

by dl = D0
l − αlpl, and is defined by the data D0

l > 0 representing the demand

intercept and αl > 0 representing the demand slope. An example of such a demand

function of load period l is presented in Figure 2-5.
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Figure 2-3: Monotonic annual load curve of the Spanish system in 2007.
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Figure 2-4: Annual demand decomposition into L load periods.

2.2.2 Conjectured-Price Response in Expansion Models

One of our thesis objectives (in particular methodological objective 2a) is to ex-

tend existing generation expansion models which assume either perfect competition

or Cournot competition in the spot market to capture various degrees of strategic

behavior in the spot market because this allows us to observe the impact of market

behavior on investment decisions.

We achieve this goal by introducing conjectural variations into the short-run en-

ergy market formulation. The conjectural variations development can be related to

standard industrial organization theory, see Fudenberg and Tirole [50]. In particular,

we introduce a conjectured-price response parameter that can easily be translated
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Figure 2-5: Affine demand function (inverted price function).

into conjectural variations with respect to quantities, and vice versa if we consider

demand to be linear.

Definition of Conjectured-Price Response

Let us now introduce conjectural variations as will be used in this thesis. Therefore,

let us consider several firms (i = 1, . . . , I) with perfectly substitutable products,

for which we furthermore assume an affine relation between demand and price, i.e.,

d = D0−αp, where d is the quantity demanded, α is the demand slope andD0 > 0 the

demand intercept as previously mentioned in section 2.2.1. Demand d and quantities

produced qi, with i being the index for the market agents, are linked by the market

clearing condition
∑

i qi = d. Price can be written as a function of demand, i.e.,

p(d) = (D0−d)/α , which can furthermore be transformed into p(d) = (D0−∑
i qi)/α

using the market clearing condition. Hence, we will refer to price as a function of

quantities, i.e., p(q1, . . . , qi, . . . , qI). Furthermore, let i∗ be an alias index of i.

Then we define the conjectural variation parameters as Φi∗,i. These represent

agent i’s belief about how agent i∗ changes its production in response to a change in

i’s production. Therefore:

Φi∗,i =
dqi∗

dqi
, i �= i∗, (2.1)

Φi,i = 1. (2.2)
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Note that the expression in (2.1) does not represent the actual derivative but agent

i’s belief of what this derivative yields. And hence using (2.1)-(2.2) and our assumed

p(q1, . . . , qi, . . . , qI), we obtain:

dp(q1, . . . , qi, . . . , qI)

dqi
= − 1

α

∑
i∗

Φi∗,i = − 1

α
(1 +

∑
i∗ �=i

Φi∗,i) (2.3)

It may not always be practical to consider the conjectural variation Φi∗,i for each

individual competitor. Instead, a global conjectural variation Φ can be considered

which represents the reaction of all competitors combined. Therefore relation (2.3)

simplifies to:
dp(q1, . . . , qi, . . . , qI)

dqi
= − 1

α
(1 + Φ) (2.4)

Now let us define the conjectured-price response parameter θi as company i’s belief

concerning its influence on price p as a result of a change in its output qi:

θi = −dp(q1, . . . , qi, . . . , qI)

dqi
=

1

α
(1 + Φ) ≥ 0, (2.5)

which immediately shows how to translate a conjectural variations parameter into the

conjectured-price response and vice versa. Throughout the thesis we will formulate

all models using the conjectured-price response parameter as an alternative to the

conjectural variations parameter, because its depiction of the firms’ influence on price

is more convenient for the derivations, as opposed to a firm’s influence on production

by competitors. For a review and analysis of the main formulations of conjectural

variations equilibria applied to electricity markets, the reader is referred to Diaz et

al. [37].

Special Cases of Conjectured-Price Response

As has been proven by Daxhelet [33], the conjectural variation (conjectured-price re-

sponse) representation allows us to express special cases of oligopolistic behavior such

as perfect competition, the Cournot oligopoly, or collusion. A general formulation of

each firm’s profit objective would state that p = p(q1, . . . , qi, . . . , qI), with the firm
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anticipating that price will respond to the firm’s output decision. For the remainder

of the thesis we term this a conjectured-price response model. Let us now derive

how to express perfect competition, the Cournot oligopoly and collusion using the

conjectured-price response framework.

• If the firm takes p as exogenous (although it is endogenous to the market), the

result is the price-taking or perfect competition, similar to the Bertrand con-

jecture [74] under certain circumstances. Then the conjectured-price response

parameter θi equals 0, which means that none of the competing firms believes

it can influence price.

• If instead p = p(q1, . . . , qi, . . . , qI) is the inverse demand curve which is given by

(D0 − qi −
∑

i∗ �=i qi∗)/α, with qi∗ being rival firms’ outputs which are taken as

exogenous by firm i, then the model is a Nash-Cournot [31] oligopoly1. In the

Cournot case, θi equals 1/α, which would translate to Φ = 0 in the conjectural

variations framework.

• We can also express collusion2 (or quantity matching) as θi = I/α, which trans-

lates to Φ = I − 1 because it is considered that Φi∗,i = 1. Note that I is the

number of firms in the market.

• Apart from these special cases we also express values between the extremes of

perfect competition and the Cournot oligopoly.

Representation of Dynamic Games via Single-Level Conjectured-Price Re-

sponse Games

Some more complex dynamic games can be reduced to a one-stage game with inter-

mediate values for Φ (or θi respectively). For example, the well-known leader-follower

Stackelberg game. Let us now show in Lemma 2.1 how this two-stage game can be

1The Cournot-Nash model is the simplest oligopoly model which assumes that there are two
equally positioned firms that compete on the basis of quantity (as opposed to price as in the Bertrand
model). Each firm makes an output decision assuming that the other firm’s behavior is fixed.

2In economics, collusion can be defined as the cooperation of rival companies for their mutual
benefit, which most often takes place in an oligopolistic framework.
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reduced to a one-stage conjectural variations based game, as shown in Centeno et al.

[26].

Lemma 2.1. (Stackelberg as Single-Level Conjectural Variations Game)

The bilevel leader-follower Stackelberg game can be reduced to a one-stage conjectural

variations game where the leader firm has conjecture θ = 1/(α(1+I)) and the followers

have conjectures θ = 1/α, where I is the number of followers and α is the demand

slope of the affine demand curve.

Proof. Let us define q as the production decision of a leader firm and let qi be the

production decisions of a set of I followers. First, the leader chooses its production,

and then, followers compete for the rest of production “a la Cournot”. In order to solve

this model, we start off by defining the followers’ profits πi in (2.6) as market revenues

minus total production cost, where δi represents company i’s variable production cost.

Again, demand is given by d = D0 − αp and the market clearing condition reads

d = q +
∑

i qi. Assuming that there is Cournot competition between the followers,

individual profit maximization leads to (2.7)-(2.9).

πi = (p− δi)qi (2.6)

dπi

dqi
= p− δi +

dp

dqi
qi (2.7)

= p− δi − θiqi = 0 (2.8)

= p− δi − qi/α = 0 (2.9)

The system of equations consisting of (2.9), the market clearing condition and the

inverse demand function, yields an expression of price that - apart from data - only

depends on the leader’s output q and is given in (2.10).

p =
D0 − q + α

∑
i δi

α(1 + I)
(2.10)

Similar to the followers’ profit, we define the leader’s profit in (2.11). If we take the
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derivative of (2.11) with respect to q, this yields (2.12)-(2.14).

π = (p− δ)q (2.11)

dπ

dq
= p− δ +

dp

dq
q (2.12)

= p− δ − θq = 0 (2.13)

= p− δ − q/(α(1 + I)) = 0 (2.14)

The system of equations (2.9) and (2.14) together with the inverted demand function

and the market clearing conditions, corresponds to a conjectured-price response mar-

ket with the leader’s conjecture being θ = 1/(α(1+ I)) and the followers’ conjectures

being θ = 1/α.

In the case of electricity markets, production decisions undertaken by power pro-

ducers result from a complex dynamic game within multi-settlement markets. Typ-

ically, bids in the form of supply functions are submitted in two or more successive

markets at different times prior to operation, where the second and successive mar-

kets account for the commitments made in previous markets. Conjectural variations

models can represent a reduced form of a dynamic game as pointed out in Figurières

[47]. This kind of reinterpretation has been proposed by several authors: in the con-

text of the private provision of a public good as done by Itaya [65, 66], where steady

state conjectures in a dynamic game are interpreted as conjectural variations in the

corresponding static game; in the context of the oligopoly, conjectural variations have

been presented as the reduced form of a quantity-setting repeated game as done by

Cabral [21], or for example as the reduced form of a differential games model with

adjustment costs as presented by Dockner and Driskill [39, 40].

The two-stage forward contracting/spot market Allaz-Vila [2] game can also be

reduced to a one-stage conjectural variations model, as shown by Murphy [85], as-

suming Φ = −1/2 (or θ = 1/(2α)). In the remainder of this thesis, when we refer

to “Allaz-Vila” market behavior, we suppose spot market behavior of θ = 1/(2α).

Therefore, conjectural variations can be used to capture very complex games in a
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computationally tractable way. This is a major reason why many econometric indus-

trial organization studies estimate oligopolistic interactions using model specifications

based on the assumption of constant conjectural variations, see Perloff et al. [94]. Our

discussion of these references is only to state that in general conjectural variations

can represent more complicated games and that bilevel games, as the Stackelberg

game, can be equivalent to a single-level game in conjectural variations as has been

shown by Lemma 2.1. In this thesis we do not consider the problem of estimating or

calculating conjectural variations, which can be a very complicated process and would

depend on the nature of the particular game that is reduced. Reasonable values for

these parameters, representing different degrees of oligopoly, will be considered as

known. The estimation of the conjectured-price response is often based on historical

data and there exist implicit methods as presented by López de Haro [79] (adjusting

past market prices) and explicit methods as presented by Bunn [19]. For a summary

of conjectural variations estimation methods the reader is referred to Diaz et al. [37].

2.2.3 The Electricity Network

In general, the electricity network is an important factor to consider when designing

a generation capacity expansion plan. That being said, it should be pointed out that

in the models developed in this thesis, the electricity network has not been taken

into account. The reason for this is the following. When considering generation

expansion planning on a European scale, then including network constraints becomes

very important since they may influence generation expansion significantly. On the

other hand, when analyzing systems whose networks are meshed enough, the effect of

the network (and its arising constraints) is not as relevant. In such systems network

constraints are not of much physical relevance and are therefore not considered as

that critical in terms of investment behavior.

Moreover, considering a detailed network formulation in our models might make

the arising bilevel problems very complicated and even intractable. Since the main

purpose of this thesis was to understand the impact of a conjectured-price response

market equilibrium formulation on generation expansion decisions in a bilevel setting,
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which even without the network can still be regarded as a very challenging topic per

se, introducing the network into our models will be part of future research.

There exist some market equilibrium frameworks with conjectural variations that

also consider a formulation of the electricity network, as for example the work of

Barqúın et al. [6, 7] and Delgadillo et al. [35]. These articles could be considered as

a starting point for future research to formulate the lower level (market equilibrium)

with network constraints.

2.2.4 Bilevel Programming Problem

Bilevel Programming Problems (BPPs) were introduced in the operations research

literature in the early 1970s by Bracken and McGill in a series of papers [16, 17, 18].

From a general point of view, a BPP can be classified as a mathematical optimiza-

tion problem which is constrained by another optimization problem. A BPP is a

hierarchical programming problem where the constraints of a problem (the upper

level problem) are in part defined by another optimization problem (the lower level

problem). A BPP can be formulated mathematically as follows:

min
x,y

F (x, y) (2.15)

s.t. G(x, y) ≤ 0, H(x, y) = 0 (2.16)

min
y

f(x, y) (2.17)

s.t. g(x, y) ≤ 0, h(x, y) = 0 (2.18)

Now let us give a simple example of a bilevel problem - a toll-setting problem - which

was taken from Colson et al. [28]. Note that this is not an example from the electricity

sector. Let us assume we have a traffic transportation network, where there is a toll

set on some of the network links (for instance certain parts of the freeway) which

has to be paid by each user of this link. The network manager has the objective to

maximize the revenues raised from the tolls (upper level problem), the network users

however have the objective of minimizing their traveling costs (lower level problem).
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In this framework we can easily observe the hierarchical relationship between the two

decision makers, i.e., the network manager and the network users, who in this case

have conflicting interests, i.e., maximizing revenues and minimizing costs. Once the

network manager has set the values of the tolls, the users react to these tolls and

choose their traveling route such that their traveling costs, which may depend on

time or distance as well, are minimized. This example problem can easily be related

to the Stackelberg leader-follower problem, where in this case the leader would be the

network manager and the followers would be the network users. For further details

on BPPs the reader is referred to Candler and Norton or Colson et al. [22, 28].

In section 2.4 we introduce how the generation capacity expansion problem, that

will be studied in this thesis, can be formulated as a BPP.

2.2.5 Complementarity Problem

Informally, a complementarity problem is a problem that includes complementarity

conditions, which require that the product of two or more non-negative quantities

should be zero. Now let us define a generalized complementarity problem mathemat-

ically. Given a mapping F (y) : Rn → R
n, find a y ∈ R

n satisfying:

y ≥ 0, F (y) ≥ 0, yTF (y) = 0. (2.19)

Let us now present how the Karush-Kuhn-Tucker (KKT) conditions of an op-

timization problem can be written as a complementarity problem. Therefore, we

consider the following optimization problem:

max
x

f(x) (2.20)

s.t. F (x) ≥ 0 : λ (2.21)

x ≥ 0 : µ, (2.22)

where λ and µ represent the dual variables of the constraints in (2.21) and (2.22)

respectively. The KKT conditions of the optimization problem (2.20)-(2.22) are given
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by:

∇xf(x) + λT∇xF (x) + µ = 0 (2.23)

F (x) ≥ 0, x ≥ 0 (2.24)

λTF (x) = 0, µTx = 0 (2.25)

λ ≥ 0, µ ≥ 0 (2.26)

Using the positivity of µ given in (2.26) and the derivative of the Lagrangian, given

in (2.23), we obtain:

∇xf(x) + λT∇xF (x) ≤ 0 (2.27)

F (x) ≥ 0, x ≥ 0, λ ≥ 0 (2.28)

λTF (x) = 0, (∇xf(x) + λT∇xF (x))Tx = 0 (2.29)

Finally, we transform (2.27)-(2.29) into (2.30)-(2.31), which yields a complementarity

problem.

x ≥ 0 ⊥ ∇xf(x) + λT∇xF (x) ≤ 0 (2.30)

λ ≥ 0 ⊥ F (x) ≥ 0 (2.31)

As demonstrated, complementarity conditions arise for instance in the KKT con-

ditions but they also appear in the study of equilibrium problems and are therefore

related to Mathematical Problems with Equilibrium Constraints and Equilibrium

Problems with Equilibrium Constraints, which are the models that have been devel-

oped in this thesis.
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2.3 Market Equilibrium and Single-Level Genera-

tion Expansion Models

In this section we introduce the basic version of the conjectured-price response spot

market equilibrium in section 2.3.1, which will serve as the basis of our generation ex-

pansion models. Power market oligopolies, like the one presented here, have been pro-

posed before based on conjectural variations by Centeno et al. [24] and conjectured-

price responses by Day et al. [34], but only for short-term markets where capacity is

fixed.

Previously, in section 2.2.2, we have mentioned that in electricity markets, produc-

tion decisions undertaken by power producers result from a complex dynamic game

within multi-settlement markets where usually, bids in the form of supply functions

are submitted in two or more successive markets at different times prior to operation.

The second and successive markets account for the commitments made in previous

markets. Representing this complex dynamic process mathematically is very difficult.

From section 2.2.2 we also recall that sometimes it is possible to reduce a complex

dynamic game to a single-level game by introducing conjectural variations, as shown

in Lemma 2.1 for the Stackelberg game. Therefore in the proposed market models,

the introduced conjectured-price response parameter can be interpreted not only as

the strategic spot market behavior reigning in the market, but also as a parameter

representing the reduced version of the more complex multi-settlement market game.

As will be presented in section 2.3.2, the conjectured-price response market equi-

librium problem can also be formulated as an equivalent quadratic optimization prob-

lem, which has been proven by Barqúın et al. [5]. Finally, we show a straight-forward

approach to the generation expansion problem by extending the medium-term market

equilibrium model to longer terms, by considering that investment and production

decisions are taken at the same time. This approach is referred to as “single-level”

(also as open loop, one-shot or one-stage) investment equilibrium model because in-

vestment and production decisions are carried out simultaneously, and is presented

in section 2.3.3.
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This model is closely related to the open-loop equilibrium conditions presented

by Murphy and Smeers [84], the Cournot-based model presented by Ventosa et al.

[113], which is solved using a Mixed Complementarity Problem (MCP) scheme, and

the model analyzed in Centeno et al. [25], which is solved using an equivalent opti-

mization problem. Note that the model that is presented here considers an arbitrary

conjectured-price response, which allows us to change the strategic behavior in the

spot market instead of considering just one fixed value. This is an advantage since it

makes the model more flexible and allows us to try out different values of strategic

behavior to explore how this behavior affects market outcomes. However, this ap-

proach also has its drawbacks, as it may overly simplify the dynamic nature of the

problem, as expansion and operation decisions are taken simultaneously. Differenti-

ating expansion and operation decisions leads to the more complex bilevel modeling,

which we will introduce in section 2.4.

Definition of Indices

Before we formulate the models, let us first define all the indices that will be used

throughout this section. The index y corresponds to the set of years of the time

horizon that is considered; l corresponds to the load level with duration Tyl of each

year in the time scope; i is the index of all generation companies and j corresponds

to the different technologies of generation capacity.

2.3.1 Conjectured-Price Response Market Equilibrium

In this section, we formulate the basic version of the market equilibrium model

(BMEM), which consists of several simultaneously considered optimization problems,

which represent each generation firm’s individual market profit maximization prob-

lem. This system of optimization problems, together with a market clearing condition

and an affine function that links price and demand, form the market equilibrium prob-

lem as graphically depicted in Figure 2-6, where qi are the variables that represent

the production decisions, xi represents the newly-installed capacity and Ki is data
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representing already existing capacity.

Firm 1

Max{q1} Market Profits1
s. t. 0 <= q1 <= x1+K1

... ...

Market Clearing

Demand-Price Function

Firm i

Max{qi} Market Profitsi
s. t. 0 <= qi <= xi+Ki

Firm I

Max{qI} Market ProfitsI
s. t. 0 <= qI <= xI+KI

Market Equilibrium Model

Figure 2-6: Graphic representation of the market equilibrium problem.

Formally, the market equilibrium is formed by equations (2.32), (2.33) and (2.34).

In (2.32) all GENCOs individually maximize the net present value of their total

market profits as the difference between their market revenues minus their production

costs, deciding their production subject to the constraint that production will not

exceed capacity. These maximization problems are linked by the market clearing

condition (2.33) and the affine relation between price and demand (2.34) and together

they form the market equilibrium. Thus, the market equilibrium problem can be

written as:

Basic Market Equilibrium Model (BMEM):

∀i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

maxq
∑

y
1

(1+F )y

{∑
jl Tyl(pyl − δij)qijyl

}
s.t. qijyl ≤ xijy +Kijy ∀jyl : λijyl

0 ≤ qijyl ∀jyl : µijyl

(2.32)

dyl −
∑
ij

qijyl = 0 ∀yl (2.33)

dyl −D0
yl + αylpyl = 0 ∀yl (2.34)

The parameters of the equilibrium problem above as well as possible parameter units

are defined as follows: F [p.u.] corresponds to the discount rate; Tyl [kh] corresponds
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to the duration of load period l in year y; δij [e/MWh] corresponds to the production

cost of technology j and generation company i; Kijy [GW] is the already existing

capacity of generation company i in technology j and year y; as before, D0
yl and

αyl are the demand intercept and the slope of the demand curve. The new capacity

investments of GENCO i in technology j and year y are denoted by xijy [GW]. In

the market equilibrium these capacity investments are considered to be parameters,

however, they are decision variables in generation expansion models. The variables

of the market equilibrium problem are: the production decisions qijyl [GW] of firm

i in technology j, year y and load period l; the demand dyl [GW] and the resulting

price pyl [e/MWh] in each year y and load period l; µijyl and λijyl represent the

dual variables of the lower and upper bounds on production. Note that both demand

and price are not decision variables of each individual generation company’s profit

maximization problem given by (2.32), but are variables that are defined by the joint

production of all generation companies. It can be easily verified that the objective

function is measured in Me.

In the optimization problem given above in (2.32) for each i, the conjectured-

price-response parameter θiyl [(e/MWh)/GW], that we have defined in section 2.2.2,

is not explicitly visible, and hence we re-write the market equilibrium, and substitute

the optimization problem in (2.32) by its KKT conditions for all companies. In

the resulting equilibrium problem, which is presented below, the conjectured-price

response is explicit and can be found in equation (2.35). Considering the convexity

and continuity of all cost functions, the market equilibrium can be written as an

equivalent convex optimization problem, which was proven by Barqúın et al. [5]. We

present this equivalent optimization problem in 2.3.2. Hence the equations (2.35)-

(2.43) are also the optimality conditions.

δijTyl

(1 + F )y
+

∑
j θiylqijylTyl

(1 + F )y
− Tylpyl

(1 + F )y
+ λijyl − µijyl = 0 ∀ijyl (2.35)

µijylqijyl = 0 ∀ijyl (2.36)

λijyl(Kijy + xijy − qijyl) = 0 ∀ijyl (2.37)

qijyl ≤ xijy +Kijy ∀ijyl (2.38)
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0 ≤ qijyl ∀ijyl (2.39)

0 ≤ µijyl ∀ijyl (2.40)

0 ≤ λijyl ∀ijyl (2.41)

dyl −
∑
ij

qijyl = 0 ∀yl (2.42)

dyl −D0
yl + αylpyl = 0 ∀yl (2.43)

Above we present the first order conditions of the nonlinear program given by

(2.32). In general, the first order conditions or a nonlinear program characterize local

maxima, local minima or saddle points. In order to guarantee that the obtained

solution actually is a local maximum - since (2.32) represents a profit maximization

problem - the second derivatives of the objective function with respect to the decision

variables need to be non-negative. The second order conditions of each GENCO’s

individual market profit maximization given in (2.32) are as follows:

∂2L
∂q2ijyl

=
θiylTyl

(1 + F )y
≥ 0 ∀ijyl, (2.44)

where L is the Lagrangian of problem (2.32). This condition is satisfied because θiyl

is defined as a non-negative parameter.

The market equilibrium problem, as given by (2.35)-(2.43), is a nonlinear problem

due to complementarity conditions (2.36) and (2.37). It could therefore be solved as

a nonlinear problem using a nonlinear solver. However, this might not be the most

efficient way to tackle this problem. As has been mentioned in section 2.2.5, the

system of KKT conditions can be rewritten as a complementarity system and hence,

the market equilibrium problem can also be formulated as an MCP and solved as

such using a standard solver, e.g., PATH [38].

2.3.2 Market Equilibrium as Optimization Problem

In this section we present an optimization problem, given in (2.45)-(2.48), which first

has been introduced in work of Barqúın et al. [5] and which represents a basic version
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of the market equilibrium as an optimization model (BMOM). In this work the term

“extended cost” is introduced. The extended costs refer to the first two sums in (2.45)

and contain the total discounted production costs and the quadratic term including

θ. The demand utility is defined as the negative term in (2.45). The objective

function given in (2.45) resembles the expression of social welfare and in particular,

if market behavior were considered perfectly competitive, i.e., θ = 0, then the arising

objective function would be the same as a maximization of social welfare. However,

if market behavior is not exactly perfect competition, then the total costs reflected in

the objective function correspond to the sum of marginal costs plus a certain mark-up

which is defined by the term involving θ. Therefore, the objective function could be

interpreted as a kind of social welfare maximization but with generation companies’

extended costs, as opposed to their marginal costs. This optimization problem is

equivalent to the market equilibrium problem. Note that market price pyl is the dual

variable of the balance equation (2.48).

It is easy to verify that the KKT conditions of the optimization problem below

and the market equilibrium conditions given by (2.35)-(2.43) coincide. In equation

(2.48) the multiplication by parameters Tyl/(1+F )y is only done in order for the KKT

conditions to coincide exactly with the previously presented conditions. Furthermore,

this optimization problem is a convex problem, which has been proven and thoroughly

discussed by Barqúın et al. [5]. This implies that a local solution of this optimization

problem is also a global one and moreover, considering convexity of the cost functions,

it can be said that this solution will be unique. In [5] it has also been shown that the

solution of this optimization problem actually is a solution of the market equilibrium.

It is easy to verify that the second order conditions of the optimization problem below

coincide with (2.44) and Tyl/(αyl(1 + F )y).
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Basic Market Equilibrium as Optimization Model (BMOM):

min
q,d

∑
ijyl

δijqijylTyl

(1 + F )y
+

1

2

∑
iyl

θiylTyl(
∑

j qijyl)
2

(1 + F )y

−
∑
yl

Tyl

αyl(1 + F )y
(D0

yldyl −
d2yl
2
)

(2.45)

s.t. qijyl ≤ xijy +Kijy ∀ijyl : λijyl (2.46)

0 ≤ qijyl ∀ijyl : µijyl (2.47)

Tyl

(1 + F )y
(dyl −

∑
ij

qijyl) = 0 ∀yl : pyl (2.48)

2.3.3 Single-Level Investment Equilibrium

The single-level (or open loop) capacity expansion equilibrium model is depicted in

Figure 2-7 and formed by equations (2.49), (2.50) and (2.51). Throughout this thesis

we refer to single-level results as (SL). Its formulation is similar to the previously

presented market equilibrium problem (2.32)-(2.34), with the only difference that

now all GENCOs i are maximizing total profits as the difference between their market

revenues minus their production costs minus their investment costs, simultaneously

deciding capacity investments xijy as well as production decisions qijyl.

Basic Single-Level Equilibrium Model (BSEM):

∀i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

maxx,q
∑

y
1

(1+F )y

{∑
jl Tyl(pyl − δij)qijyl −

∑
j βijyxijy

}
s.t. qijyl ≤ xijy +Kijy ∀jyl : λijyl

0 ≤ qijyl ∀jyl : µijyl

(2.49)

dyl −
∑
ij

qijyl = 0 ∀yl (2.50)

dyl −D0
yl + αylpyl = 0 ∀yl (2.51)

The parameters of the single-level capacity equilibrium problem above are the same as

defined for the market equilibrium problem in section 2.3.1 and the annual investment

costs βijy which could be measured in [(Me/GW)/year]. The variables of the open-
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loop capacity equilibrium problem and possible units are: the capacity investments

xijy [GW], the production decisions qijyl [GW], the demand dyl [GW] and the resulting

price pyl [e/MWh]; again, µijyl and λijyl are the dual variables of the lower and upper

bounds on production. The objective function is measured in [Me].

Firm 1

Max{x1,q1} Total Profits1
s. t. 0 <= q1 <= x1+K1

... ...

Market Clearing

Demand-Price Function

Firm i

Max{xi,qi} Total Profitsi
s. t. 0 <= qi <= xi+Ki

Firm I

Max{xI,qI} Total ProfitsI
s. t. 0 <= qI <= xI+KI

Single-Level Investment Equilibrium Model

Figure 2-7: Graphic representation of the single-level investment equilibrium problem.

In the formulation above, the conjectured-price-response parameter θiyl given in

(e/MWh)/GW is not explicitly visible. Hence, we re-write the open-loop capacity

equilibrium conditions, and substitute the optimization problem in (2.49) by its KKT

conditions for all companies, which are given in (2.52)-(2.53).

βijy

(1 + F )y
−

∑
l

λijyl = 0 ∀ijy (2.52)

(2.35)− (2.43) (2.53)

Note that the majority of the constraints coincide with the KKT conditions repre-

senting the market equilibrium. As (2.49) is linear in x, there are no second order

conditions for x, and second order conditions for q coincide with (2.44).

Since, regarding its formulation, the single-level investment equilibrium model is

very similar to the market equilibrium model, it is not surprising that it can also

be formulated as an MCP and solved as such. Another way to solve this problem,

which is an original contribution of this thesis and a simple extension of the work of

Barqúın et al. [5] and Ventosa et al. [113], is to formulate an equivalent quadratic
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optimization problem, which has been proposed for a “Cournot” market by Centeno

et al. [25]. This alternative will be presented and discussed in detail in chapter 5 of

this thesis.

2.4 Bilevel Generation Expansion Models

This section represents an original contribution of this thesis, where we introduce the

basic versions of two types of newly developed generation capacity expansion models:

one that can be formulated as a Mathematical Program with Equilibrium Constraints

(MPEC), which is presented in section 2.4.1, and another one that is an Equilibrium

Problem with Equilibrium Constraints (EPEC), which is introduced in section 2.4.2.

Both of these types of models are bilevel problems where the upper level (or first

stage) corresponds to the investment stage where capacity expansion decisions are

taken, and the lower level (or second stage) represents the spot market level in which

productions and prices are decided. Finally, in section 2.4.3 we raise some aspects

that would need to be included in the models in order to make them more realistic.

Both types of models, MPECs and EPECs, are analyzed and discussed in great

detail in separate chapters of this thesis, i.e., in chapter 4 and 5, however, a basic

version of both models is introduced at this point to motivate the main research

questions of this thesis. First of all, when comparing model formulations, it becomes

apparent that the complexity of bilevel models exceeds the complexity level of single-

level models by far. One cannot help but wonder whether all this additional modeling

effort - let alone the additional effort when it comes to solving bilevel models - actually

pays off. The arising research question is whether single-level and bilevel models

yield different solutions, and under what circumstances. Finding the answer to these

questions is one of the thesis objectives (in particular methodological objective 1) and

has been achieved by chapter 3.

Second, since MPEC and EPEC models are conceptually different, it remains

to characterize where these differences lie, what impact they have on the results

and finally to give a recommendation as to how and where to employ these models.
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Therefore, in chapter 4 and 5, we give a detailed mathematical formulation and

analysis of both of the newly developed MPEC and EPEC generation expansion

models. In these chapters we also discuss how to realize possible model extensions,

which have been pointed out in 2.4.3.

As in the previous section, y corresponds to the set of years of the time horizon

that is considered, l corresponds to the load periods, i and i∗ are alias indices of all

generation companies and j corresponds to the different technologies of generation

capacity.

2.4.1 Mathematical Program with Equilibrium Constraints

In this section we define the term Mathematical Program with Equilibrium Con-

straints (MPEC) and propose a new generation expansion model, which is formulated

as an MPEC, to assist a generation company in making its long-term generation ca-

pacity investment decisions. The purpose of introducing this newly developed bilevel

model in this section is merely as a contrast to the already existing single-level models.

For the detailed mathematical formulation as well as the theoretical and numerical

analysis of this model and the conducted case studies, the reader is referred to chap-

ter 4. Let us state here that the bilevel formulation allows for the uncoupling of

investment and generation decisions, as investment decisions of the single investing

generation company are taken in the upper level with the objective to maximize prof-

its, and in the lower level generation decisions by all companies are considered. The

lower level represents the oligopolistic market equilibrium via a conjectured-price re-

sponse formulation, which can capture various degrees of strategic market behavior

like perfect competition, the Cournot oligopoly and intermediate cases.

In order to derive such a model, we first need to define the concept of a Mathemat-

ical Program with Equilibrium Constraints (MPEC). An MPEC is an optimization

problem in which the essential constraints are defined by a parametric variational

inequality 1 as in Facchinei and Pang [43, 44] or a complementarity system as in

1A variational inequality is an inequality involving a functional, which has to be solved for all
the values of a given variable, usually belonging to a convex set.
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Cottle et al. [30], which typically model a certain equilibrium phenomenon. Under

certain circumstances MPECs are equivalent to bilevel problems, which have been

introduced in section 2.2.4, providing an alternative way to formulate problems. In

the electricity sector, MPECs have first been used to formulate electricity markets by

Hobbs et al. [61] and Ramos et al. [100]. The general formulation of an MPEC taken

from Pieper [95], where f, g and F are twice continuously differentiable functions, is

presented below. Note how the constraints (2.56)-(2.58) correspond to the definition

of a complementarity problem in (2.19).

min
x,y

f(x, y) (2.54)

s.t. g(x, y) ≥ 0 (2.55)

y ≥ 0 (2.56)

F (x, y) ≥ 0 (2.57)

yTF (x, y) = 0 (2.58)

Let us now introduce an MPEC in the generation expansion framework. Let i∗

represent a specific generation firm that we would like to assist to take their capacity

decisions. For this purpose, we consider two different decision stages in our problem

setting: the investment stage or upper level, where firm i∗ takes capacity decisions

xi∗ by maximizing its total profits, consisting of the gross margin from the lower level

(revenues minus variable production costs) minus total investment costs (unitary

annual investment cost βijy [(Me/GW)/year] times capacity investments); and the

production stage or lower level represented by the conjectured-price response market

equilibrium, which yields production decisions of all firms competing in the market

and market price. Graphically, this problem is represented in Figure 2-8.

Let us now concretize the basic formulation of this problem, which we will refer

to as basic bilevel optimization model (BBOM). In the upper level or investment

stage, the generation company i∗ maximizes its total profits and chooses its capacities

subject to the lower level equilibrium response. We furthermore impose the constraint

that capacity can only increase in time. The fact that capacity can only increase
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MPEC Model of Firm i*

Max{xi*} Total Profitsi*
s. t.

Upper Level

Lower Level

Market Equilibrium
{p, q1, , qi*, , qI}

Figure 2-8: Graphic representation of the MPEC generation expansion problem faced by
firm i∗.

over time is only a weak hypothesis if a sustained demand increase is reflected in

the demand data. Increasing demand over time is a realistic assumption in light of

historic observations. This constraint has been introduced in order to facilitate the

numerical solution process, however, if this constraint were omitted, most likely the

optimal solution would not change. This (BBOM) model of the generation expansion

problem can be written as follows.

Basic Bilevel Optimization Model (BBOM):

max
xi∗jy

∑
y

1

(1 + F )y
{∑

jl

Tyl(pyl − δi∗j)qi∗jyl −
∑
j

βi∗jyxi∗jy
}

(2.59)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (2.60)

s.t. Market Equilibrium Formulation (2.61)

Equation (2.61) is a placeholder for a mathematical formulation of the conjectured-

price response market equilibrium problem. As we have mentioned in previous sec-

tions, there are several ways to formulate this equilibrium problem, for example, as

the optimization problem given by (2.45)-(2.48). Replacing (2.61) with the market
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equilibrium optimization problem (2.45)-(2.48) in the generation expansion problem

of firm i∗, leads to a problem formulation that coincides exactly with the definition of a

bilevel programming problem, i.e., (2.15)-(2.18), previously presented in section 2.2.4.

Therefore, considering two separate decision stages, i.e., investment and production

stage, in the generation expansion problem, yields formulations that mathematically

belong to the class of bilevel problems.

Furthermore, in section 2.3.1 we have derived the formulation of the conjectured-

price response market equilibrium problem as the system of KKT conditions of all

market agents, given by (2.35)-(2.41), connected by the market clearing condition

(2.42) and the affine demand function (2.43). Using this particular representation of

the market equilibrium, literally yields a mathematical problem with constraints that

represent an equilibrium (MPEC). Moreover, in section 2.2.5 we have introduced

complementarity problems and have shown that an optimization problem can also

be re-written as a complementarity problem, by first deriving its KKT conditions

and then condensing them using the complementarity conditions. If we apply this

methodology to the market profit maximization problems given in (2.32), this yields

the following complementarity problem ∀ijyl:

qijyl ≥ 0 ⊥ δijTyl

(1 + F )y
+

∑
j θiylqijylTyl

(1 + F )y
− Tylpyl

(1 + F )y
+ λijyl ≥ 0 (2.62)

λijyl ≥ 0 ⊥ xijy +Kijy − qijyl ≥ 0 (2.63)

If instead of representing the market equilibrium via an optimization problem, i.e.,

(2.45)-(2.48), we represent the market equilibrium as the complementarity problem

(2.62)-(2.63), the market clearing condition and the demand function and add these

constraints to the generation expansion problem, then the arising formulation of the

entire generation expansion problem coincides with our definition of an MPEC, given

in (2.54)-(2.58).
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2.4.2 Equilibrium Problem with Equilibrium Constraints or

Bilevel Investment Equilibrium

In this section we define the term Equilibrium Problem with Equilibrium Constraints

(EPEC) and propose a new generation expansion model, which is formulated as an

EPEC, to assist all generation companies, that are participating in the market, with

their long-term generation capacity expansion decisions. Similarly to the previous

section, the purpose of introducing this EPEC model at this point is merely to com-

pare it to the existing single-level (SL) equilibrium model presented in section 2.3.3.

Again, for the detailed theoretical and numerical analysis of this model as well as

the conducted case studies and possible model extensions, the reader is referred to

chapters 3 and 5. In general it can be said that while single-level equilibrium models

represent simultaneous decision making, the bilevel equilibrium model presented here

represents sequential decision making, i.e., first capacity is decided and then, pro-

duction decisions and prices follow. At first glance, this might seem as only a slight

difference, however, it has a very significant impact on results. Chapter 3 is dedicated

entirely to pointing out the differences between these two types of equilibrium models.

Throughout the thesis we will refer to all bilevel results as (BL).

An EPEC belongs to class of mathematical programs that often arise in engi-

neering and economics applications, as in Berry et al., Cardell et al. or Hobbs et

al. [12, 23, 61]. Formally, we could describe an EPEC as finding a Nash equi-

librium between I players that are all facing an MPEC, i.e., resolving {MPEC(1),

. . . ,MPEC(i∗),. . . ,MPEC(I)}, where each MPEC is the type of problem that has

been defined in the previous section 2.4.1. For further information on EPECs the

reader is referred to Su [111]. Incorporating this definition to the generation ca-

pacity expansion framework, we define the generation capacity EPEC as the equi-

librium problem where each firm i∗ for i∗ = 1, . . . , I faces the generation capacity

MPEC defined in the previous section, which is a bilevel problem where the firm

i∗ decides its capacity investments subject to the conjectured-price response market

equilibrium. This EPEC represents a two-stage equilibrium in capacity investments
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EPEC Model of all Firms

Firm 1

MPEC

Firm i*

MPEC

Firm I

MPEC
... ...

MPEC Model of Firm i*

Max{xi*} Total Profitsi*
s. t.

Upper Level

Lower Level

Market Equilibrium
{p, q1, , qi*, , qI}

Figure 2-9: Graphic representation of the EPEC generation expansion problem faced by all
firms.

and in production decisions. Figure 2-9 graphically represents basic version of the

bilevel equilibrium model for generation capacity expansion planning formulated as

an EPEC.

Basic Bilevel Equilibrium Model (BBEM):

∀i∗

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

maxxi∗jy
∑

y
1

(1+F )y

{∑
jl Tyl(pyl − δi∗j)qi∗jyl −

∑
j βi∗jyxi∗jy

}
s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy
s.t. Market Equilibrium Formulation

(2.64)

We will see later on, in chapter 3, that single-level (or one-stage) equilibrium mod-

els and bilevel (or two-stage) equilibrium models in general yield different results. The

bilevel model captures the sequential decision making process, where investment and

generation decisions are separated. The single-level model does not consider sequen-
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tial decision making and is therefore a simplification, which tends to lead to results

which are overly confident in terms of capacity investment. The bilevel model is

therefore more realistic because it captures that GENCOs know that their capacity

investments will influence the market. The proof and detailed comparison of single-

level and bilevel models for capacity expansion can be found in chapter 3, where we

show that it is not the same to take investments and generation decisions simultane-

ously maximizing total profits, or to first, decide investments maximizing total profits

and then take generation decisions maximizing market profits.

2.4.3 Model Extensions

In the previous section 2.4.1 and 2.4.2 we have introduced the basic versions of the

MPEC and EPEC models. The purpose of this section is to point out the aspects

that would have to be added to these models in order to make them more realistic. In

the list below, we enumerate certain topics, which will be formulated and discussed

in detail in the following chapters 4 and 5.

• First of all, in the basic version of the proposed models we only consider thermal

production qijyl in different thermal technologies j, however, it is also important

to model hydro-technology in order to represent a realistic electricity system.

Since hydro has different characteristics than other technologies, hydro-specific

additional constraints will also have to be added to the models.

• The investment decision variables xijy are considered to be continuous variables,

which obviously is a simplification of reality. It is, however, a reasonable ap-

proach because when analyzing the long term, continuous investment decisions

can be interpreted as an approximation of “real” investment decisions. More-

over, when considering investment in for example renewable energy technologies

with small individual plant size, then continuous variables might be a sensible

approximation. A desirable extension would be to actually consider discrete

decision variables xijy, however, it is clear that this drastically complicates the
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resolution of the models. In chapter 4 we will discuss how this issue can be

tackled for the MPEC models.

• In many liberalized markets it has become apparent that an “energy only”

market might not offer enough incentives for new capacity investments. In order

to guarantee the security of supply, capacity mechanisms have to be introduced

to the system. Therefore we will consider capacity mechanisms in our models

and assess their impact on investment decisions.

• Generation expansion planning is a long-term problem whose time horizon can

stretch over various decades, which makes it very vulnerable to all kinds of

uncertainties. For example, fuel prices or demand-induced uncertainty caused

by renewable energy sources like solar or wind. In chapter 3 we will develop a

new methodology to cope with uncertainty in the generation expansion problem

by introducing different scenarios of the market equilibrium. This methodology

is also useful to model different scenarios of strategic behavior of competing

firms in order to assess its impact on optimal investment decisions.

• More realistic details have to be added to the models, like for example financial

hedging through the consideration of long-term contracts.

2.5 Conclusions

In this chapter we have presented a literature review on generation expansion planning

in section 2.1 in order to emphasize how our work differs from the existing literature.

Then, we have introduced some basic concepts and modeling hypotheses in section 2.2

for a better understanding of the thesis. In sections 2.3 and 2.4 we have presented a

basic version of single-level and bilevel generation expansion models and pointed out

that they are different in terms of formulation, which immediately raises the question

whether their results will be very different as well. Chapter 3 provides an answer to

this question.
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Chapter 3

Single-Level Versus Bilevel

Capacity Equilibria in Electricity

Markets under Perfect and

Oligopolistic Competition

This chapter provides an answer to the question whether and under what circum-

stances single-level and bilevel generation expansion models may yield the same solu-

tions by carrying out a theoretical analysis of a single-level and a bilevel conjectured-

price response investment equilibrium model. In particular, in this chapter, which

constitutes a key contribution of this thesis accepted for publication in Wogrin et

al. [119], we consider two game-theoretic models of the generation capacity expan-

sion problem in liberalized electricity markets. The first is a single-level equilibrium

model, where generation companies simultaneously choose capacities and quantities

to maximize their individual profit. The second is a bilevel model, in which compa-

nies first choose capacities maximizing their profit anticipating the market equilib-

rium outcomes in the second stage. This problem is an Equilibrium Problem with

Equilibrium Constraints. In both models, the intensity of competition among pro-

ducers in the energy market is represented using conjectural variations. Considering

77



one load period, we show that for any choice of conjectural variations ranging from

perfect competition to Cournot, the bilevel equilibrium coincides with the Cournot

single-level equilibrium, thereby obtaining a “Kreps and Scheinkman”-like result [74]

and extending it to arbitrary strategic behavior. In the bilevel model the investment

stage is Cournot-like. Therefore similarities arise in the results of the bilevel model,

which yields Cournot outcomes even when the market stage is perfectly competitive.

When expanding the model framework to multiple load periods, the bilevel equilibria

for different conjectural variations can diverge from each other and from single-level

equilibria. We also present and analyze alternative conjectured-price response models

with switching conjectures. Surprisingly, the rank ordering of the bilevel equilibria in

terms of consumer surplus and market efficiency (as measured by total social welfare)

is ambiguous. Thus, regulatory approaches that force marginal cost-based bidding

in spot markets may diminish market efficiency and consumer welfare by dampen-

ing incentives for investment. We also show that the bilevel capacity yielded by a

conjectured-price response second stage competition can be less or equal to the bilevel

Cournot capacity, and that the former capacity cannot exceed the latter when there

are symmetric agents and two load periods.

3.1 Introduction

The purpose of this chapter is to compare game-theoretic models that can be used

to analyze the strategic behavior of companies facing generation capacity expansion

decisions in liberalized electricity markets. In particular, we seek to characterize

the difference between single and bilevel models of investment. The obtained results

provide the theoretical basis for a single-level approximation scheme of the bilevel

generation expansion model which is presented later on in section 5.4.

Single-level models, similar to the one presented in this chapter, extend short-term

models to a longer time horizon by modeling investment and production decisions

as being taken at the same time. This corresponds for example to the single-level

Cournot equilibrium conditions presented by Murphy and Smeers [84], the Cournot-
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based model presented in Ventosa et al. [113], which is solved using a Mixed Com-

plementarity Problem (MCP) scheme, and the model analyzed in Centeno et al. [25],

which is solved using an equivalent optimization problem. However, this approach

may overly simplify the dynamic nature of the problem, as it assumes that expansion

and operation decisions are taken simultaneously.

The reason to employ more complicated bilevel formulations is that the generation

capacity expansion problem has an innate two-stage structure: first investment deci-

sions are taken followed by determination of energy production in the spot market,

which is limited by the previously chosen capacity. A two-stage decision structure

is a natural way to represent how many organizations actually make decisions. One

organizational subunit is often responsible for capital budgeting and anticipating how

capital expenditures might affect future revenues and costs over a multi-year or even

multi-decadal time horizon, whereas a different group is in charge of day-to-day spot

market bidding and output decisions. This type of bilevel model is in fact an Equi-

librium Problem with Equilibrium Constraints (EPEC), see Leyffer and Munson or

Su [77, 111], arising when each of two or more companies simultaneously faces its

own profit maximization problem modeled as a Mathematical Program with Equilib-

rium Constraints (MPEC). In reality, the generation expansion problem is even more

complicated and has more than just two levels, however, representing and solving

multi-level games computationally is almost intractable at this point in time. In the

literature, there are some recent three-level approaches as for example the transmis-

sion and generation expansion problem by Pozo et al. [97], but currently it seems like

three levels are the limit.

Solving large-scale bilevel models can be very challenging, sometimes even not

tractable. Therefore, in real-world applications there is a strong incentive to resort

to easier single-level models, simply because the corresponding bilevel model cannot

be solved (yet). The results presented in this chapter indicate that when practical

considerations motivate adoption of easier, less complicated single-level models, the

results may be very different from (possibly more realistic) bilevel formulations.
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3.1.1 Review of Literature

Several bilevel approaches to the generation capacity expansion problem have been

proposed. The papers most relevant for our work are Murphy and Smeers [84] and

Kreps and Scheinkman [74], which will be discussed below. With their paper [74],

Kreps and Scheinkman (K-S) tried to combine Cournot’s [31] and Bertrand’s [13]

theory by constructing a two-stage game, where first firms simultaneously set capacity

and second, after capacity levels are made public, there is price competition. They

find that when assuming two identical firms and an efficient rationing rule (i.e., the

market’s short-run production is provided at least cost), their two-stage game yields

Cournot outcomes. Davidson and Deneckere [32] formulate a critique of K-S, where

they say that results critically depend on the choice of the rationing rule. They claim

that if the rationing rule is changed, the equilibrium outcome need not be Cournot. In

defense of K-S, Paul Madden proved [81] that if it is assumed that demand functions

are of the constant elasticity form and that all costs are sunk, then the K-S two-stage

game reduces to the Cournot model for any rationing mechanism between the efficient

and proportional extremes. However, Deneckere and Kovenock [36] find that the K-S

result does not necessarily hold if costs are asymmetric.

More recently, Hartmann and Lepore [58, 75] address the extension of the K-S

model to uncertainty of marginal costs. Hartmann [58] shows that due to uncertainty

of marginal costs, equilibria were necessarily asymmetric. Reynolds and Wilson [102]

address the issue of uncertain demand in a K-S like model, which is related to our

extension to multiple load periods. They discover that if costs are sufficiently high,

the Cournot outcome is the unique solution to this game. However, they also find that

if costs are lower, no pure strategy equilibria exists. Lepore [76] also demonstrates

that, under certain assumptions, the K-S result is robust to demand uncertainty.

Our results extend this literature by considering generalizations of K-S-like models

to conjectural variations other than competitive (or Bertrand) as well as multiple

load periods or, equivalently, stochastic load which is a different concept but which

mathematically can be modeled the same way.
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In [84] Murphy and Smeers present and analyze three different models: a single-

level perfectly competitive model, a single-level Cournot model and a bilevel Cournot

model. Each considers several load periods which have different demand curves and

two firms, one with a peak load technology (low capital cost, high operating cost)

and the other with a base load technology (high capital cost, low operating cost).

They analyze when single and bilevel Cournot models coincide and when they are

necessarily different. Moreover, they demonstrate that the bilevel Cournot equilib-

rium capacities fall between the single-level Cournot and the single-level competitive

solutions. Our work differs by considering a range of conjectural variations between

perfect competition and Cournot. Our formal results are for symmetric agents but

they extend to asymmetric cases. We derive certain equivalency results that can also

be extended to asymmetric firms. Moreover, in our models we consider a constant

second stage conjectural variation rather than a situation in which the conjectural

variation switches to Cournot when rival firms are at capacity. We consider this

alternative conjectural variation in section 3.3.5.

Existing generation capacity expansion approaches in the literature assume either

perfectly competitive, for example Garcia-Bertrand et al. [54], or Cournot behavior

in the spot market, for example Centeno et al. or Ventosa et al. [25, 113]. Power

market oligopoly models have been proposed before based on conjectural variations,

see Centeno et al. [24] and conjectured-price responses, see Day et al. [34], but

only for short-term markets in which capacity is fixed. The proposed single and

bilevel models of this chapter extend previous approaches by including a generalized

representation of market behavior via conjectural variations, in particular through an

equivalent conjectured-price response. This allows us to represent various forms of

oligopoly, ranging from perfect competition to Cournot.

3.1.2 Outlook on Results

In this chapter, we consider two identical firms with perfectly substitutable products

- in our case electricity - each facing either a one-stage or a two-stage competitive

situation. The one-stage situation, represented by the single-level model, describes

81



the one-shot investment operation market equilibrium. The bilevel model, which

is an EPEC, describes the two-stage investment-operation market equilibrium and is

similar to the well-known K-S game [74]. Considering one load period, we find that the

bilevel equilibrium for any strategic market behavior between perfect competition and

Cournot yields the single-level Cournot outcomes, thereby obtaining a K-S-type result

and extending it to any strategic behavior between perfect competition and Cournot.

As previously mentioned, Murphy and Smeers [84] have found that under certain

conditions the single and bilevel Cournot equilibria coincide. Our result furthermore

shows that considering one load period, all bilevel models assuming strategic spot

market behavior between perfect competition and Cournot coincide with the single-

level Cournot solution. In the multiple load period case we define some sufficient

conditions for the single and bilevel capacity decisions to be the same. However, this

result is parameter dependent. When capacity is the same, outputs in non-binding

load periods are the same for single and bilevel models when strategic spot market

behavior is the same, otherwise outputs can differ.

When the bilevel capacity decisions differ for different conjectural variations, then

the resulting consumer surplus and market efficiency (as measured by social welfare,

the sum of consumer surplus and profit) will depend on the conjectural variation. It

turns out that which conjectural variation results in the highest efficiency is parameter

dependent. In particular, under some assumptions, the bilevel model considering

perfect competition in the energy market can actually result in lower market efficiency,

lower consumer surplus and higher prices than Cournot competition. This surprising

result implies that regulatory approaches that force marginal cost-based bidding in

spot markets may decrease market efficiency and consumer welfare and may therefore

actually be harmful. For example, the Irish spot market rules [98] require bids to

equal short-run marginal cost. Meanwhile, local market power mitigation procedures

in several US organized markets reset bids to marginal cost (plus a small adder)

if significant market power is present in local transmission-constrained markets, see

O’Neill et al. [91]. These market designs implicitly assume that perfect competition

is welfare superior to more oligopolistic behavior, such as Cournot competition. As
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our counter-example will show, this is not necessarily so.

In [57], Grimm and Zoettl have arrived at a similar result, however, they only

examine the polar cases of perfect competition or Cournot-type competition. In our

work we generalize strategic behavior using conjectural variations and look at a range

of strategic behavior, from perfect competition to Cournot competition and we also

observe that an intermediate solution between perfect and Cournot competition can

lead to even larger social welfare and consumer surplus.

The results obtained are suggestive of what might occur in other industries where

storage is relatively unimportant and there is time varying demand that must be met

by production at the same moment. Examples include, for instance, industries such

as airlines or hotels.

The remaining chapter is organized as follows. In section 3.2 we formulate sym-

metric single and bilevel models for one load period and establish that our K-S-like

result also holds for arbitrary strategic behavior ranging from perfect to Cournot

competition. This is followed by section 3.3, which extends the symmetric K-S-like

framework to multiple load periods. We furthermore analyze alternative models in

which the second stage conjectural variation switches depending on whether rivals’

capacity is binding or not, instead of being constant. In section 3.4 we first show that

the bilevel capacity yielded by a conjectured-price response second stage competition

can be less or equal to the bilevel Cournot capacity, and that the former capacity can-

not exceed the latter for symmetric agents and two load periods. Also in that section

we show by example that under the bilevel framework, more competitive behavior

in the spot market can lead to less market efficiency and consumer surplus. Finally,

section 3.5 concludes this chapter.
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3.2 Generalization of the K-S-like Single Load Pe-

riod Result to Arbitrary Oligopolistic Conjec-

tures

In this section we consider two identical firms with perfectly substitutable products,

facing either a one-stage or a two-stage competitive situation. The one-stage situ-

ation is represented by the single-level model presented in 3.2.1 and describes the

one-shot investment-operation market equilibrium. In this situation, firms simulta-

neously choose capacities and quantities to maximize their individual profit, while

each firm conjectures a price response to its output decisions consistent with the

conjectured-price response model. The bilevel model given in 3.2.2 describes the two-

stage investment-operation market equilibrium, where firms first choose capacities

that maximize their profit while anticipating the equilibrium outcomes in the second

stage, in which quantities and prices are determined by a conjectured-price response

market equilibrium. We furthermore assume that there is an affine relation between

price and demand and that capacity can be added in continuous amounts.

The main contribution of this section is Theorem 3.1, in which we show that for

two identical agents, one load period and an affine non-increasing inverse demand

function, the one-stage model solution assuming Cournot competition is a solution to

the bilevel model independent of the choice of conjectured-price response within the

perfect competition-Cournot range. When the conjectured-price response represents

perfect competition, then this result is very similar to the findings of Kreps and

Scheinkman [74]. As a matter of fact, Bertrand competition boils down to perfect

competition when there is no capacity constraint as shown by Tirole [112], in which

case our results would be equivalent to the K-S result. However, considering that

we have a capacity limitation, Bertrand competition and perfect competition are not

equivalent. For this reason our results are not exactly K-S, however, taking into

account the similarities, they can be labeled as K-S-like. Thus, Theorem 3.1 extends

the “Kreps and Scheinkman”-like result to any conjectured-price response within a
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range. Later in the chapter we show how this result can be generalized to the case of

multiple load periods.

Throughout this section we will use the notation presented below. Note that in

parenthesis we give an example of coherent units.

• qi denotes the quantity [MW] produced by firms i = 1, 2.

• xi denotes the capacity [MW] of firms i = 1, 2.

• d denotes quantity demanded [MW].

• p [e/MWh] denotes the clearing price. Moreover p(d) = (D0 − d)/α where D0

and α are positive constants, and P 0 denotes D0/α.

• T [h/year] corresponds to the duration of the load period per year.

• β [e/MW/year] corresponds to the annual investment cost.

• δ [e/MWh] is the variable production cost.

• θ is a constant in [0, 1/α], that is the conjectured-price response corresponding

to the strategic spot market behavior for each i, see (2.2.2).

Furthermore we will make the following assumptions:

• Both cost parameters, δ, β, are nonnegative.

• The investment cost plus the variable cost will be less than the price intercept

times duration T , i.e., δT + β < P 0T , which is an intuitive condition as it

simply states that the maximum price P 0 is high enough to cover the sum

of the investment cost and the operation cost. Otherwise there is clearly no

incentive to participate in the market.

• The same demand curve assumptions are made as in section 2.2.1.

• We consider one year rather than a multi-year time horizon, and so each firm

attempts to maximize its annualized profit.
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3.2.1 The Single-Level Model

In the single-level model, every firm i faces a profit maximization problem in which

it chooses capacity xi and production qi simultaneously. When firms simultaneously

compete in capacity and quantity, the single-level investment-operation market equi-

librium problem consists of all the firms’ profit maximization problems plus market

clearing conditions that link together their problems by d = D0 − αp(qi, q-i). Note

that -i is the index corresponds to the all firms except i. Conceptually, the resulting

equilibrium problem can be written as (3.1)-(3.3):

∀i
⎧⎨
⎩

maxxi,qi T (p(qi, q-i)− δ)qi − βxi

s.t. qi ≤ xi

(3.1)

d = qi + q-i (3.2)

d = D0 − αp(qi, q-i) (3.3)

In (3.1) we describe i’s profit maximization as consisting of market revenues Tp(qi, q-i)qi

minus production costs Tδqi and investment costs βxi. The non-negativity constraints

can be omitted in this case.1

Although (3.1)’s constraint is expressed as an inequality, it will hold as an equality

in equilibrium, at least in this one-period formulation. That xi = qi for i = 1, 2 will be

true in equilibrium, can easily be proven by contradiction. Let us assume that at the

equilibrium xi > qi; then firm i could unilaterally increase its profits by shrinking xi

to qi (assuming β > 0), which contradicts the assumption of being at an equilibrium.

In this representation the conjectured-price response is not explicit. Therefore we

re-write the single-level equilibrium stated in (3.1)-(3.3) as a Mixed Complementarity

Problem (MCP) by replacing each firm’s profit maximization problem by its first order

Karush-Kuhn-Tucker (KKT) conditions. The objective function in (3.1) is concave

1For completeness, let us consider the explicit non-negativity constraint 0 ≤ qi in the optimization
problem (3.1) and let us define µi ≥ 0 as the corresponding dual variable. Then, due to complemen-
tarity conditions arising from the KKT conditions, we can separate two cases, the one where µi = 0
and the other where µi > 0. The first case will lead us to the solution presented in this chapter, and
case µi > 0 will lead us to a solution where µi = T (δ − P 0). Considering that we assumed P 0 > δ,
this yields a contradiction to the non-negativity of µi. Hence, this cannot be the case and therefore
we omit the non-negativity constraint.
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for any value of θ in [0, 1/α]. Note that the parameter θ represents strategic spot

market behavior and its value can vary depending on who is taking decisions. Then,

due to linearity of p(d), (3.1)-(3.3) is a concave maximization problem with linear

constraints, hence its solutions are characterized by its KKT conditions. Therefore

let Li denote the Lagrangian of company i’s corresponding optimization problem,

given in (3.1) and let λi be the Lagrange multiplier of constraint qi ≤ xi. Then, the

single-level equilibrium problem is then given in (3.4)-(3.6).

∀i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Li

∂qi
= Tp(qi, q-i)− Tθqi − Tδ − λi = 0

∂Li

∂xi
= β − λi = 0

qi ≤ xi

λi ≥ 0

λi(xi − qi) = 0

(3.4)

d = qi + q-i (3.5)

d = D0 − αp(qi, q-i) (3.6)

Due to the fact that λi = β > 0, the complementarity condition yields xi = qi in

equilibrium. In this formulation we can directly see the conjectured-price response

parameter θ in ∂Li

∂qi
. Solving the resulting system of equations yields:

qi =
D0T − α(β + δT )

T (αθ + 2)
∀i (3.7)

p =
D0Tθ + 2(β + δT )

T (αθ + 2)
. (3.8)

In the single-level model we have not explicitly imposed qi ≥ 0, however, from (3.7)

we obtain that the single-level model has a non-trivial solution (i.e., each quantity is

positive at equilibrium) if parameters are chosen such that D0T − α(β + δT ) > 0 is

satisfied. This condition is equivalent to δT+β < P 0T using the fact that α = D0/P 0

and D0 > 0, which has already been stated in the assumptions above.

A special case of the conjectured-price response is the Cournot oligopoly. In order

to obtain the single-level Cournot solution, we just need to insert the appropriate
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value of the conjectured-price response parameter θ, which for Cournot is θ = 1/α.

This solution is unique, see Murphy and Smeers [84]. Then (3.7)-(3.8) yield:

qi =
D0T − α(β + δT )

3T
∀i (3.9)

p =
D0T + 2α(β + δT )

3Tα
. (3.10)

3.2.2 The Bilevel Model

We now present the bilevel conjectured-price response model describing the two-stage

investment-operation market equilibrium. In this case, firms first choose capacities

maximizing their profit anticipating the equilibrium outcomes in the second stage, in

which quantities and prices are determined by a conjectured-price response market

equilibrium. We stress that the main distinction of this model from the equilibrium

model described in section 3.2.1 is that now there are two stages in the decision

process, i.e., capacities and quantities are not chosen at the same time. Then we

present Theorem 3.1 which establishes a relation between the single-level and the

bilevel models for the single demand period case.

The Production Level - Second Stage

The second stage (or lower level) represents the conjectured-price-response market

equilibrium, in which both firms maximize their market revenues minus their pro-

duction costs, deciding their production subject to the constraint that production

will not exceed capacity. The argument given above shows, at equilibrium, that this

constraint binds if there is a single demand period. These maximization problems are

linked by the market clearing condition. Thus, the second stage market equilibrium

problem can be written as:

∀i
⎧⎨
⎩

maxqi T (p(qi, q-i)− δ)qi

s.t. qi ≤ xi

(3.11)

d = qi + q-i (3.12)
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d = D0 − αp(qi, q-i) (3.13)

As in the single-level case, pmay be conjectured by firm i to be a function of its output

qi. Using a justification similar to that in the previous section, we now substitute

firm i’s KKT conditions for (3.11) and arrive at the conjectured-price response market

equilibrium conditions given by:

∀i

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Li

∂qi
= Tp(qi, q-i)− Tθqi − Tδ − λi = 0

qi ≤ xi

0 ≤ λi

λi(xi − qi) = 0

(3.14)

d = qi + q-i (3.15)

d = D0 − αp(qi, q-i) (3.16)

The Investment Level - First Stage

In the first stage, both firms maximize their total profits, consisting of the gross

margin from the second stage (revenues minus variable production costs) minus in-

vestment costs, and choose their capacities subject to the second stage equilibrium

response. This can be written as the following equilibrium problem:

∀i
⎧⎨
⎩

maxxi
T (p(qi, q-i)− δ)qi − βxi

s.t. Second Stage, (3.14)− (3.16)
(3.17)

We know that at equilibrium, production will be equal to capacity. As in the single-

level model, this can be shown by contradiction. Since there is a linear relation

between price and demand, it follows that price can be expressed as p = D0−d
α

.

Substituting xi = qi in this expression of price, yields p = D0−x1−x2

α
. Then expressing

the objective function and the second stage in terms of the variables xi yields the

following simplified bilevel equilibrium problem:
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∀i
⎧⎨
⎩

maxxi
T (D

0−x1−x2

α
− δ)xi − βxi

s.t. D0−x1−x2

α
− θxi − δ ≥ 0 : γi

(3.18)

where γi are the dual variables to the corresponding constraints. Writing down the

bilevel equilibrium conditions (assuming a nontrivial solution xi > 0) then yields:

∀i

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T (D
0−x1−x2

α
− δ)− Txi/α− β + γi(−θ − 1/α) = 0

D0−x1−x2

α
− θxi − δ ≥ 0

γi(
D0−x1−x2

α
− θxi − δ) = 0

γi ≥ 0

(3.19)

When solving the system of equations given by (3.19) we distinguish between two

separate cases: γi = 0 and γi > 0. The first case, i.e., γi = 0, yields the following

solution for the bilevel equilibrium, where λi has been obtained from (3.14):

xi =
D0T − α(β + δT )

3T
∀i. (3.20)

p =
D0T + 2α(β + δT )

3Tα
(3.21)

λi =
D0T + α2(β + δT )θ + α(2β − T (δ +D0θ))

3α
∀i. (3.22)

Moreover, it is easy to show that for θ ∈ [0, 1/α] λi ≥ 0 will be satisfied,2 which shows

that xi is indeed the optimal value of qi in (3.14), confirming the validity of (3.18) for

γi = 0. As in the previous section, the solution is nontrivial due to the assumption

that δT + β < P 0T .

As for uniqueness of the bilevel equilibrium, Murphy and Smeers [84] have proven

for the Cournot bilevel equilibrium that if an equilibrium exists, then it is unique. We

will investigate uniqueness issues of the bilevel conjectured-price response model in

2Case θ = 0: from (3.22) we get D0T + 2αβ − αδT = D0P 0T + 2αβP 0 −D0δT ≥ 2αβP 0 ≥ 0;
Case θ = 1/(kα) with k ≥ 1: D0T + α2(β + δT )/(kα) + α(2β − T (δ +D0(kα))) = (k − 1)D0T/k +
2αβ + αβ/k − (k − 1)D0Tδ/(kP 0) ⇒ (k − 1)D0TP 0/k + 2αβP 0 + αβP 0/k − (k − 1)D0Tδ/k ≥
2αβP 0 + αβP 0/k ≥ 0.
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future research. Comparing (3.20) and (3.21) with the single-level equilibrium (3.7)

and (3.8) we see that this is exactly the single-level solution considering Cournot

competition, i.e., (3.9) and (3.10).

Now let us consider the second case, i.e., γi > 0. Then (3.19) yields the following

values for capacities and γi:

xi =
D0 − αδ

2 + αθ
∀i. (3.23)

γi =
−(D0T + α2(β + δT )θ + α(2β − T (δ +D0θ)))

(αθ + 1)(αθ + 2)
∀i. (3.24)

In the formulation of γi in (3.24), the numerator of the right hand side is the negative

of numerator on the right hand side of the formula (3.22), where we know that latter

is nonnegative for θ ∈ [0, 1/α]. That is, it is impossible for γi > 0. Hence the only

solution to the bilevel equilibrium is the single-level Cournot solution that results

when γi = 0.

3.2.3 Theorem: Comparison of Single and Bilevel Equilibria

In Theorem 3.1 presented below, we compare the single-level generation expansion

equilibrium problem with the bilevel generation expansion equilibrium problem in

terms of investment decisions.

Theorem 3.1. Let there be two identical firms with perfectly substitutable products

and one load period. Let the affine price p(d) and the parameters needed to define

the single-level equilibrium problem (3.4)-(3.6) be as described at the start of section

3.2. When comparing the single and bilevel competitive equilibria for two firms, we

find the following: The single-level Cournot solution, see (3.9)-(3.10), is a solution to

the bilevel conjectured-price response equilibrium (3.20)-(3.22) for any choice of the

conjectured-price response parameter θ from perfect competition to Cournot competi-

tion.

Proof. Sections 3.2.1 and 3.2.2 above prove this theorem. As in the single-level model,

the bilevel model has a non-trivial solution if data is chosen such that P 0T > β + δT
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is satisfied.

Theorem 3.1 extends to the case of asymmetric firms but we omit the somewhat

tedious analysis which can, however, be found in working paper Wogrin et al. [118].

What we have proven in Theorem 3.1 is that as long as the strategic behavior

in the market (which is characterized by the parameter θ) is more competitive than

Cournot, then in the bilevel problem firms could decide to build Cournot capacities.

Even when the market is more competitive than the Cournot case (e.g., Allaz-Vila or

perfect competition), firms can decide to build Cournot capacities. Hence Theorem

3.1 states that the Kreps and Scheinkman-like result holds for any conjectured-price

response more competitive than Cournot (e.g., Allaz-Vila or perfect competition),

not just for the case of perfect second stage competition. When referring to the

“Allaz-Vila” case, we refer to a strategic spot market behavior of θ = 1/(2/α).

Note that Theorem 3.1 describes sufficient conditions but they are not necessary.

This means that there are cases where Theorem 3.1 also holds for θ > 1/α. For

example Theorem 3.1 may hold under collusive behavior (θ = 2/α) when the marginal

cost of production (δ) is sufficiently small.3

In the following section we will extend the result of Theorem 3.1 to the case

of multiple demand periods. In particular, under stringent conditions, the Cournot

single-level and bilevel solutions can be the same, and the Cournot single-level capac-

ity can be the same as the bilevel capacity for more intensive levels of competition in

the second stage of the bilevel game. But this result is parameter dependent, and in

general, these solutions differ. Surprisingly, for some parameter assumptions, more

intensive competition in the second stage can yield economically inferior outcomes

compared to Cournot competition, in terms of consumer surplus and total market

surplus.

3Let D0 = 1, T = 1, α = 1, β = 1/2 and δ = 0, then the single-level Cournot solution is p = 2/3,
with x = 1/6 for each firm. In this case, with these cost numbers, the single-level Cournot equals
the bilevel equilibrium with θ = 2/α (collusion, Φ = 1).
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3.3 Extension of K-S-like Result for Multiple Load

Periods

In this section we extend the previously established comparison between the single-

level and the bilevel model to the situation in which firms each choose a single ca-

pacity level, but face time varying demand that must be met instantaneously. This

characterizes electricity markets in which all generation capacity is provided by dis-

patchable thermal plants and there is no significant storage (e.g., reservoirs associated

to hydraulic plants). We also do not consider intermittent nondispatchable resources

(such as wind); however, if their capacity is exogenous, their output can simply be

subtracted from consumer quantity demanded, so that d represents effective demand.

In particular, this extension will be characterized by Proposition 3.2. We start out by

introducing some definitions and conditions, followed by the statement of Proposition

3.2 in which we compare single-level and bilevel equilibrium models with multiple load

periods. In the remainder of this section we then introduce the single and the bilevel

model for multiple load periods in sections 3.3.1 and 3.3.2. In section 3.3.3 we present

the proof of Proposition 3.2. Section 3.3.4 contains a numerical example of the the-

oretical results obtained in this section. Finally, in section 3.3.5 we introduce and

briefly analyze alternative conjectured-price response models with switching instead

of constant second stage behavior, which is arguably more realistic.

We adopt the following assumptions:

• We still consider two identical firms and a linear demand function.

• Additionally let us define l as the index for distinct load periods. Now produc-

tion decisions depend on both i and l.

• Furthermore let us define the active set of load blocks (or load periods) LBi as

the set of load periods in which equilibrium production equals capacity for firm

i, i.e., LBi := {l|qil = xi}.

• θl is a constant in [0, 1/α], that is the conjectured-price response in each load

period l for each i.
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• Both cost parameters, δ, β, are nonnegative.

• The same demand curve assumptions are made as in section 2.2.1 and an affine

relation between demand and price is assumed, i.e., dl = D0
l − αlpl or pl(d) =

(D0
l − dl)/αl where D0

l and αl are positive constants, and P 0
l denotes D0

l /αl.

• In addition, let P 0
l > δ be true for l ∈ LBi, which means that the maximum

price that can be attained in the market has to be bigger than the production

cost, otherwise there would be no investment or production.

• We also assume P 0
l ≥ δ for l �∈ LBi, which is similar to the condition above

and guarantees non-negativity, however, it allows production to be zero in non-

binding load periods.

• Similarly to the assumption made in the previous section, we also assume that∑
l∈LBi

P 0
l Tl > β + δ

∑
l∈LBi

Tl, which states that if maximum price P 0
l is paid

for the durations Tl then the resulting revenue must be more than the sum of

the investment cost and the operation cost, otherwise there is no incentive to

participate in the market.

• We consider one year rather than a multi-year time horizon, and so each firm

is maximizing its annualized profit.

Let us now present Proposition 3.2, in which single-level and bilevel multi-period

equilibrium models are compared in terms of their capacity solutions. Moreover, we

point out when single-level and bilevel equilibria coincide. The proof of Proposition

3.2 can be found a little later in this chapter, in particular, in section 3.3.3. This

proposition provides the theoretical foundation for the approximation scheme of the

bilevel model that we derive in section 5.4 and which is an original of this thesis.

Proposition 3.2. (a) If the bilevel solutions for different θ between perfect competi-

tion and Cournot competition exist and have the same active set of load periods (i.e.,

firm i’s upper bound on production is binding for the same load periods l) and the

second stage multipliers, corresponding to the active set, are positive at equilibrium,
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then capacity xi is the same for those values of θ. (b) Furthermore, if we assume that

the single-level Cournot equilibrium, i.e., θ = 1/α, has the same active set, then the

Cournot open and bilevel equilibria are the same.

Perhaps the most difficult assumption of Proposition 3.2 is the existence of bilevel

equilibria, since in general, EPECs may not have pure strategy equilibria as shown

by Hobbs and Helman [60] and example 4 of the work of Hu and Ralph [63].

3.3.1 The Single-Level Model for Multiple Load Periods

The purpose of this section is to develop the stationary conditions for the single-

level model for general θ and multiple load periods and thereby characterize the

equilibrium capacity xi. Therefore, we write the single-level investment-operation

market equilibrium as:

∀i
⎧⎨
⎩

maxxi,qil

∑
l Tl(pl(qil, q-il)− δ)qil − βxi

s.t. qil ≤ xi ∀l
(3.25)

dl = qil + q-il ∀l (3.26)

dl = D0
l − αlpl(qil, q-il) ∀l (3.27)

As previously mentioned in section 3.2.1, the non-negativity constraints can be omit-

ted in this case.4 Let us now derive the investment-operation market equilibrium

conditions distinguishing load levels where capacity is binding from when capacity is

slack. We can omit the complementarity between λil and qil < xi, because λil = 0 for

4As in section 3.2.1, let us consider the explicit non-negativity constraints 0 ≤ qil in the above
optimization problem (3.25)-(3.27) and let us define µil ≥ 0 as the corresponding dual variables.
Then, due to complementarity conditions arising from the KKT conditions, we can separate two
cases, the one where µil = 0 and the other where µil > 0. First, let us consider the non-binding load
periods: the case µil = 0 leads us exactly to what we have presented in this chapter; when µil > 0
then this simply leads us to zero production in the non-binding load periods. Now let us consider
the binding load periods: again, the case µil = 0 leads us exactly to the capacity presented in this
chapter; case µil > 0 immediately leads us to the trivial solution of zero capacity. Therefore we omit
the explicit non-negativity constraint.
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l �∈ LBi and xi = qil for l ∈ LBi.

∀i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Li

∂qil
= Tlpl(qil, q-il)− Tlθlqil − Tlδ − λil = 0 l ∈ LBi

∂Li

∂qil
= Tlpl(qil, q-il)− Tlθlqil − Tlδ = 0 l �∈ LBi

∂Li

∂xi
= −β +

∑
l∈LBi

λil = 0

qil = xi l ∈ LBi

qil < xi l �∈ LBi

0 ≤ λil ∀l

(3.28)

dl = qil + q-il ∀l (3.29)

dl = D0
l − αlpl(qil, q-il) ∀l (3.30)

For the non-binding load periods l �∈ LBi we can obtain the solution to the equilibrium

by solving the system of equations given by (3.28)-(3.30), which yields:

qil =
D0

l − αlδ

2 + αlθl
∀i, l �∈ LBi (3.31)

pl =
D0

l θ + 2δ

2 + αlθl
∀l �∈ LBi. (3.32)

In order to obtain the solution for load levels when capacity is binding, we sum ∂Li

∂qil

over all load periods l ∈ LBi, substitute qil = xi and use the ∂Li

∂xi
= 0 condition:

∑
l∈LBi

∂Li

∂qil
=

∑
l∈LBi

(Tlpl(qil, q-il)− Tlδ − Tlθlqil)−
∑
l∈LBi

λil (3.33)

=
∑
l∈LBi

(Tlpl(qil, q-il)− Tlδ − Tlθlxi)− β = 0 (3.34)

If we express price as a function of capacity (qi = xi) and we solve the system of

equations (3.30), together with (3.34) ∀i, this yields:

xi =

∑
l∈LBi

(D0
l Tl

∏
n �=l∈LBi

αn)−
∏

l∈LBi
αl(β + δ

∑
l∈LBi

Tl)∑
l∈LBi

(Tl(2 + αlθl)
∏

n �=l∈LBi
αn)

, ∀i (3.35)

We know that for θl ∈ [0, 1/αl], qil will be a continuous function of xi and hence

from (3.28) we get that λil will also be a continuous function of xi. Having obtained
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capacities xi, the prices pl and demand dl for l ∈ LBi follow. We furthermore observe

that (3.7) is a special case of (3.35) in which we only have one binding load period.

Above it has not been explicitly stated that qi and xi are positive variables, but

it can be easily seen that this is satisfied at the equilibrium point. In non-binding

load periods, production levels qil given in (3.31) will be nonnegative due to the

assumption that P 0
l ≥ δ. Capacity xi given in (3.35) will be positive as long as∑

l∈LBi
(D0

l Tl

∏
n �=l∈LBi

αn) >
∏

l∈LBi
αl(β + δ

∑
l∈LBi

Tl) holds, which is true due to

the assumption
∑

l∈LBi
P 0
l Tl > β + δ

∑
l∈LBi

Tl.
5

3.3.2 The Bilevel Model for Multiple Load Periods

Let us now derive the stationary conditions for the bilevel problem for multiple load

periods which then yields an expression for the equilibrium capacity. First, we state

the second stage production game for the bilevel game with multiple load periods in

(3.36)-(3.38) and define Lagrange multipliers λil for the constraint qil ≤ xi.

∀i
⎧⎨
⎩

maxqil
∑

l Tl(pl(qil, q-il)− δ)qil

s.t. qil ≤ xi ∀l
(3.36)

dl = qil + q-il ∀l (3.37)

dl = D0
l − αlpl(qil, q-il) ∀l (3.38)

Now we derive the market equilibrium conditions, assuming that each firm holds the

same conjectured-price response θl in each load period l. θl can differ among periods.

The complementarity between λil and qi < xi for l �∈ LBi implies that λil = 0

for l �∈ LBi. Hence we omit that complementarity condition for those load periods

in the market equilibrium formulation of (3.39)-(3.41). Moreover, we assume that

multipliers λil for l ∈ LBi will be positive at equilibrium. (If any multipliers are zero,

5Let us consider the numerator of (3.35). Dividing the numerator by
∏

l∈LBi
αl yields:∑

l∈LBi
(D0

l Tl

∏
n �=l∈LBi

αn)/
∏

l∈LBi
αl − β − δ

∑
l∈LBi

Tl =
∑

l∈LBi
(D0

l Tl/αl) − β − δ
∑

l∈LBi
Tl

=
∑

l∈LBi
(P 0

l Tl)− β − δ
∑

l∈LBi
Tl > 0 due to assumption.
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then Proposition 3.2 may not hold.)

∀i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Li

∂qil
= Tlpl(qil, q-il)− Tlθlqil − Tlδ − λil = 0 l ∈ LBi

∂Li

∂qil
= Tlpl(qil, q-il)− Tlθlqil − Tlδ = 0 l �∈ LBi

qil = xi l ∈ LBi

qil < xi l �∈ LBi

0 ≤ λil ∀l

(3.39)

dl = qil + q-il ∀l (3.40)

dl = D0
l − αlpl(qil, q-il) ∀l (3.41)

For the non-binding load periods l �∈ LBi we can obtain the solution to the conjectured-

price response market equilibrium by solving the system of equations given by (3.39)-

(3.41), which yields:

qil =
D0

l − αlδ

2 + αlθl
∀i, l �∈ LBi (3.42)

pl =
D0

l θ + 2δ

2 + αlθl
∀l �∈ LBi. (3.43)

We cannot yet solve the market equilibrium for the binding load periods l ∈ LBi

depending as they do upon the xi’s. Hence we move on to the investment equilibrium

problem to obtain those xi’s, which is formulated below:

∀i
⎧⎨
⎩

maxxi

∑
l Tlpl(qil, q-il)qil −

∑
l Tlδqil − βxi

s.t. (3.39)− (3.41)
(3.44)

After recalling that qi = xi for l belonging to LBi and then re-arranging terms, we

can rewrite the objective function as:

∑
l∈LBi

(Tlplxi − Tlδxi) +
∑
l �∈LBi

(Tlplqil − Tlδqil)− βxi (3.45)

Note that we have separated the terms of the objective function that correspond to

inactive capacity constraints (l �∈ LBi) which do not involve xi’s at all, and the terms
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that correspond to the active capacity constraints (l ∈ LBi). We furthermore know

that for load periods l ∈ LBi the price pl =
D0

l −dl
αl

=
D0

l −
∑

i xi

αl
. Replacing pl for

l ∈ LBi in (3.45), yields:

∑
l∈LBi

(Tl
D0

l − x1 − x2

αl

xi − Tlδxi) +
∑
l �∈LBi

(Tlplqil − Tlδqil)− βxi (3.46)

We now show that (3.46) is smooth for small perturbations of xi around its equilib-

rium level. In other words, (3.46) is a local description of the MPEC (3.44). Barqúın

et al. have proven in [5] that the second stage problem, i.e., the conjectured-price

response spot market equilibrium, has an equivalent strictly concave optimization

problem. Hence the solution qil is unique, see Nocedal and Wright [87]. This yields

that qil is a continuous function of xi. Therefore it follows from uniqueness of multipli-

ers as a function of the optimal second stage quantity (due to the linear independence

constraint qualification [87]) that λil is also a continuous function of xi. Hence, for

small changes in xi the active set will not change and we obtain smoothness of ob-

jective function (3.46). Finally, it is obvious that the only nonlinear term in (3.46) is

quadratic in xi with a negative coefficient,
∑

l∈LBi
Tl/αl, thus (3.46) is concave in xi.

Therefore all we need to do is take the derivative of the objective function (3.46)

with respect to xi, set it to zero and solve for xi, which yields:

xi =

∑
l∈LBi

(D0
l Tl

∏
n �=l∈LBi

αn)−
∏

l∈LBi
αl(β + δ

∑
l∈LBi

Tl)

3
∑

l∈LBi
(Tl

∏
n �=l∈LBi

αn)
∀i (3.47)

We observe that the capacity given by (3.47) is independent of θl. This means that for

any other bilevel equilibrium whose active set coincides with LBi and whose λil are

positive at equilibrium, the capacity at equilibrium will also be described by (3.47),

even though strategic spot market behavior may be different. We furthermore observe

that (3.20) is a special case of (3.47) in which we only have one binding load period.

Now that we have obtained the values for xi, the values for qil as well as prices

pl and demand dl with l ∈ LBi follow. As we have already shown in the single-level

section, our assumptions imply that the solution will be non-trivial.

99



3.3.3 Proof of Proposition: Comparison Single and Bilevel

Capacity Equilibria

In this section we present the proof of the previously stated Proposition 3.2, which

compares single-level and bilevel capacity equilibria in a multiple load period setting.

Proof. (Part a - Bilevel capacity solutions) First, we observe that the bilevel ca-

pacity, given by (3.47), does not depend on the conjectured-price responses θl, for

l = 1, . . . , L, and in particular this means that two bilevel equilibria with different

θl’s have the exact same capacity solution as long as their active sets are the same

with λil positive for l ∈ LBi.

(Part b - Equivalence of single and bilevel model) comparing the bilevel capacity

(3.47) with the single-level capacity (3.35) we note that the single-level capacity does

depend on the strategic behavior θl in the market whereas the bilevel capacity does

not. Moreover we observe that if single-level and bilevel models have the same active

set at equilibrium, then their solutions are exactly the same under Cournot compe-

tition (θl = 1/αl). If single-level and bilevel equilibria have the same active set and

their θl coincide but are not Cournot, then in general their capacity will differ. How-

ever, their production qil for l �∈ LBi will be identical, as can be seen by comparing

(3.31)-(3.32) and (3.42)-(3.43).

In general, prices will be lower in the second stage under perfect competition than

under Cournot competition for periods other than LBi. In that case, consumers will

be better off (and firms worse off) under perfect competition than Cournot compe-

tition. The numerical example in section 3.3.4 illustrates this point. However, this

result is parameter dependent as will be demonstrated by the example in section 3.4.2,

where we will show that in some cases Cournot competition can yield more capacity

and higher market efficiency than perfect competition. This can only occur for cases

where either the binding sets LBi differ, or the LBi are the same but the λil are zero

for some l. Note that for one load period, Proposition 3.2 reduces to Theorem 3.1.

Proposition 3.2, like Theorem 3.1, can be extended to asymmetric firms. As the

details are tedious we refer the reader to the general proof presented in [118].
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3.3.4 Example with Two Load Periods: Same Binding Peri-

ods for all Values of Conjectural Variations

Let us now consider an illustrative numerical example where two firms both consider

an investment in power generation capacity with the following data:

• Two load periods l, with durations of T1 = 3760 and T2 = 5000 [h/year]

• Demand intercepts D0
l given by D0

1 = 2000 and D0
2 = 1200 [MW]

• Demand slopes αl equal to α1 = D0
1/250 and α2 = D0

2/200

• Annualized capital cost β = 46000 [e/MW/year]

• Operating cost δ = 11.8 [e/MWh]

Having chosen the demand data for the two load levels such that capacity will not

be binding in both periods in any solution, we solve the single-level and the bilevel

model and compare results. In Figure 3-1 we present the solution of one firm (as

the second firm - being identical - will have the same solution). First we depict the

capacity that was built, then we compare production for both load periods and finally

profits. Note that for both firms, LBi will be the same for all θ and will include only

period l = 1. Later we will present another example where this is not the case, and

the results differ in important ways.

As demonstrated in Proposition 3.2 part (a), the bilevel capacity does not depend

on behavior in the spot market. However we will see that profits do depend on the

competitiveness of short-run behavior, and unlike the single demand period case, are

not the same for all conjectural variations θ between perfect competition and Cournot.

We refer to the binding load period as “peak” and to the non-binding load period as

“base”. The bilevel production in the peak load level is the same for all θ, as long

as the competitive behavior in the spot market is at least as competitive as Cournot.

However, base load production depends on the strategic behavior in the spot market.

This can be explained as follows: as long as the strategic behavior in the spot market

is at least as competitive as Cournot, peak load outputs are independent of θ because
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Figure 3-1: Built capacity, production and profit of one firm in the two load period numerical
example.

102



Table 3.1: Bilevel equilibrium solution perfect competition (θl = 0), Allaz-Vila (θl =
1/(2αl)) and Cournot (θl = 1/αl) second-stage competition.

l Peak Base

qil[MW] θl = 0 602.6 564.6
qil[MW] θl = 1/(2αl) 602.6 451.7
qil[MW] θl = 1/αl 602.6 376.4
pl [e/MWh] θl = 0 99.4 11.8
pl [e/MWh] θl = 1/(2αl) 99.4 49.4
pl [e/MWh] θl = 1/αl 99.4 74.5

agents are aware that building Cournot capacities will cause the peak period capacity

constraint to bind and will limit production on the market to the Cournot capacity.

However, given our demand data we also know that capacities will not be binding

in the base period and as a consequence outputs will not be limited either. Hence

during the base periods the closed loop model will find it most profitable to produce

the equilibrium outcomes resulting from the particular conjectured-price response.

On the other hand, when considering the single-level model, the capacity (peak

load production) does depend on θ. In particular, the single-level capacity will be

determined by the spot market equilibrium considering the degree of competitive be-

havior specified by θ. We observe that for increasing θ between perfect competition

and Cournot in the single-level model, less and less capacity is built until we reach

the Cournot case, at which point the single and bilevel results are exactly the same.

Comparing single and bilevel models for a given θ reveals that while their base load

outputs are identical, see Tables 3.1 and 3.2, capacity and thus peak load production

differs depending on θ. Figure 3-1 also shows that profits obtained in the bilevel

model equal or exceed the profits of the single-level model. This gap is largest assum-

ing perfect competition and becomes continuously smaller for increasing θ until the

results are equal under Cournot. This means that the further away that spot market

competition is from Cournot, the greater the difference between model outcomes.

In standard single-level oligopoly models, see Fudenberg and Tirole [50], without

capacity constraints, perfect competition gives lower prices and total profits of firms,

and greater consumer surplus, and market efficiency compared to Cournot compe-
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Table 3.2: Single-level equilibrium solution perfect competition (θl = 0), Allaz-Vila (θl =
1/(2αl)) and Cournot (θl = 1/αl) second-stage competition.

l Peak Base

qil[MW] θl = 0 903.9 564.6
qil[MW] θl = 1/(2αl) 723.1 451.7
qil[MW] θl = 1/αl 602.6 376.4
pl [e/MWh] θl = 0 24.0 11.8
pl [e/MWh] θl = 1/(2αl) 69.2 49.4
pl [e/MWh] θl = 1/αl 99.4 74.5

Table 3.3: Market efficiency (ME), consumer surplus (CS) and total profit in bilevel solu-
tions.

Perfect competition Allaz-Vila Cournot

ME [109e] 1.21 1.19 1.15
CS [109e] 0.87 0.68 0.57
Total profit [109e] 0.34 0.51 0.58

tition.6 We observe that this occurs for this particular instance of the single and

bilevel models, see Tables 3.2 and 3.3. Note that in Table 3.3 the units are given in

billion or giga e, i.e., [109 e]. It can be readily proven more generally that market

efficiency, consumer surplus, and average prices are greater for lower values of θ (more

competitive second stage conditions) if LBi are the same for those θ (and multipliers

are positive), and capacity is not binding in every l.7 However, we will also demon-

strate by counter-example that this result does not necessarily apply when LBi differ

for different θ. In particular, in section 3.4.2 we will present an example in which

Cournot competition counterintuitively yields higher market efficiency than perfect

competition.

6Total Profit is defined as
∑

l Tl(pl−δ)(qil+q-il)−β(xi+x-i). Consumer Surplus (CS) is defined as
the integral of the demand curve minus payments for energy, equal here to

∑
l Tl(P

0
l −pl)(qil+q-il)/2.

Market Efficiency (ME) is defined as CS plus Total Profits.
7This is proven by demonstrating that for smaller θ, the second stage prices will be lower and

closer to marginal operating cost in load periods for those periods that capacity is not binding
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3.3.5 Conjectured-Price Response Models with Switching Con-

jectures

In this section we consider and analyze alternative conjectured-price response mod-

els that are a variant of the previously presented models. In particular, we propose

models in which a firm always has a Cournot conjectured-price response with respect

to the output of a rival in periods when their capacity is binding, and an arbitrary

conjectured-price response θ between perfect competition and Cournot when the ri-

val’s capacity is not binding. This type of model is arguably more realistic because

producers in the second stage will recognize the times when rivals are at their capacity

constraint and cannot increase output. This argument has been thoroughly discussed

in [85]. In general, when solving models with switching conjectures, one has to have

in mind that in a multi-player game, some generation companies may have binding

capacity, but others might not in the same load period. In this case, the conjecture

of the generation company at capacity would be θ and the rival’s conjecture would be

the Cournot conjecture. Such models are more difficult to solve than the previously

presented models as some kind of iterative process has to be adopted and moreover,

pure strategy equilibria might not exist. Hence, for the sake of simplicity of this

analysis, we assume that a pure strategy equilibrium exists and we furthermore as-

sume that the equilibrium is a symmetric one. A detailed analysis for asymmetric

equilibria, which is more complicated and extensive than the case discussed in this

section, can be found in work of Murphy and Smeers [85]. In this thesis we do not

explore these alternative models outside of this section, however, we recognize their

interest and we may address this topic in future research.

Let us now introduce this alternative type of model first for the single-level case.

Note that, due to the symmetry assumption we get LBi = LB-i. Then, the alternative

single-level model is almost identical to the single-level model introduced in section

3.3.1, with the only difference that now there are two different parameters for the

conjectured-price response: θ̂l for load periods l ∈ LBi when capacity is binding; and

θl for the non-binding load periods. Moreover, while θl can represent any strategic
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behavior between perfect competition and Cournot, the conjectured-price response

in load periods when capacity is binding is chosen to always correspond to Cournot

behavior, i.e., θ̂l = 1/αl. With this in mind the single-level investment-market equi-

librium conditions, which are given in (3.48)-(3.50), only differ from the previously

presented single-level model (3.28)-(3.30) in its expression of ∂Li

∂qil
when l ∈ LBi.

∀i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Li

∂qil
= Tlpl(qil, q-il)− Tlθ̂lqil − Tlδ − λil = 0 l ∈ LBi

∂Li

∂qil
= Tlpl(qil, q-il)− Tlθlqil − Tlδ = 0 l �∈ LBi

∂Li

∂xi
= −β +

∑
l∈LBi

λil = 0

qil = xi l ∈ LBi

qil < xi l �∈ LBi

0 ≤ λil ∀l

(3.48)

dl = qil + q-il ∀l (3.49)

dl = D0
l − αlpl(qil, q-il) ∀l (3.50)

If we assume that a pure strategy equilibrium exists, then we can analyze this

alternative single-level model in a manner paralleling the analysis in section 3.3.1.

As a result, we can see that this model yields the capacity given in equation (3.52),

which coincides with the expression of the bilevel capacity previously given in (3.47),

once we substitute that θ̂l = 1/αl.

xi =

∑
l∈LBi

(D0
l Tl

∏
n �=l∈LBi

αn)−
∏

l∈LBi
αl(β + δ

∑
l∈LBi

Tl)∑
l∈LBi

(Tl(2 + αlθ̂l)
∏

n �=l∈LBi
αn)

, ∀i (3.51)

=

∑
l∈LBi

(D0
l Tl

∏
n �=l∈LBi

αn)−
∏

l∈LBi
αl(β + δ

∑
l∈LBi

Tl)

3
∑

l∈LBi
(Tl

∏
n �=l∈LBi

αn)
, ∀i (3.52)

Similar to the alternative single-level model, we can derive the alternative bilevel

model by replacing θl with θ̂l when l ∈ LBi, yielding market equilibrium equations

identical to (3.39)-(3.41) with the only exception that in ∂Li

∂qil
for l ∈ LBi we now use

the Cournot conjecture θ̂l = 1/αl. Paralleling the bilevel analysis of section 3.3.2 it is

easy to see that this alternative type of model yields the same closed form expression

for capacity as the bilevel model previously presented in (3.47).
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The comparison between these alternative single and bilevel models yields the re-

sult that if their sets of active load periods LBi coincide and a pure strategy solution

exists, both models (single and bilevel) yield the same capacity independent of the

choice of strategic behavior θl in the spot market when capacity is not binding. More-

over, the same can be said when comparing two instances of the alternative bilevel

model with different strategic behavior (i.e., different assumed values of θl) in load

periods when capacity is not binding, i.e., if the active sets of load periods are the

same at equilibrium, then they both yield the same capacity solution. The proof of

the comparison of two bilevel models is a simple extension of the Allaz-Vila analysis

in [85], which furthermore provides numerical examples. Moreover, when comparing

the bilevel model with switching conjectures to the bilevel model previously presented

in this chapter, it can be said that if they are at capacity in the same load periods,

then their capacity will be the same; however, when the binding load periods are

different, then the alternative model where strategic behavior switches can yield a

different capacity than the model where the second stage behavior is constant.

Asymmetric equilibria may exist, even if the firms themselves are symmetric. This

may happen, for example, when the conjectural variation assumed for the production

game is greater than Cournot. The character of the equilibrium in this case is that

one generation company is at capacity and sees the conjectural variation in the rival

while the generation company below capacity sees the Cournot conjectural variation.

If there is no symmetric equilibrium because the production in one load period exceeds

capacity when using θ but falls below capacity when using θ̂, one firm is at capacity

and the other is below. Total capacity is larger than with the Cournot conjecture. If

there is a symmetric equilibrium with a load period near capacity but below, there

may be an asymmetric equilibrium in which one firm reduces capacity to cause the

capacity to bind because that causes a discrete drop in production by the other firm

in that load period. For a detailed analysis of asymmetric equilibria and numerical

examples that show this can happen with the Allaz-Vila conjectural variation, the

reader is referred to Murphy and Smeers [85].
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3.4 Ranking of Bilevel Equilibria: Capacity and

Market Efficiency

In this section we make some observations concerning capacity results in bilevel equi-

libria. We also discuss the ambiguities that occur regarding social welfare when

comparing two bilevel equilibrium solutions with different strategic behavior in the

spot market. In section 3.4.1 we prove that the capacity of a bilevel model with

competitive behavior between perfect competition and Cournot can be lower or equal

to the bilevel Cournot second stage capacity, depending on the choice of data, and

moreover, that it cannot be higher for symmetric players in the two period case.

In 3.4.2 we prove by counter-example that the ranking of bilevel conjectured-price

response equilibria, in terms of market efficiency (aggregate consumer surplus and

market surplus) and consumer welfare, is parameter dependent.

3.4.1 Comparisons of Capacity from Bilevel Equilibria

In this section we analyze the effects of the strategic behavior in the spot market

on capacity in the bilevel model. This work is an extension of the work of Murphy

and Smeers [85], in which they compare a bilevel Cournot model to a model with

an additional forward market stage, i.e., a bilevel Allaz-Vila model with capacity

decisions. They find that, depending on the data, the capacity yielded by the bilevel

Allaz-Vila model can either be more, less or equal to the capacity given by the bilevel

Cournot model in a market with asymmetric players. We extend their results to

general conjectural variations considering symmetric companies, and compare our

bilevel model with Cournot second stage competition to a bilevel model with arbitrary

second stage competition between perfect competition and Cournot. We show that

in this comparison the capacity yielded by conjectured-price response second stage

competition can be less (decreasing) or equal to the bilevel Cournot capacity, which is

shown in section 3.4.1. Further, in section 3.4.1, we prove a stronger result: that the

former capacity cannot exceed the latter for symmetric agents and two load periods.
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Conjectured-Price Response Can Yield Same or Less Capacity

Part (a) of Proposition 3.2 proves that if two bilevel solutions for different θ between

perfect competition and Cournot competition have the same active set of load periods,

then capacity is the same for those values. The corresponding numerical example has

been presented in section 3.3.4. This demonstrates that it is possible for two different

bilevel models to yield the same capacity.

When the active sets of two solutions with different strategic behavior coincide,

we know that their capacity must be equal. However, from the closed form expression

for capacity, given in (3.47), we also know that when active sets of load periods do

not coincide, then the solutions will generally not be the same. We show that the

relationship between capacities resulting from different θ is ambiguous.

For an example in which the bilevel Cournot second stage capacity is strictly

above the capacities yielded by other bilevel models with more competitive strategic

behavior, we revisit the numerical example in section 3.3.4 and increase the base

demand intercept D0
2 to 1650 MW. In Table 3.4 we present the corresponding bilevel

results for second stage perfect competition, Allaz-Vila, and Cournot second stage

competition. It can be observed that for second stage Cournot competition, the

capacity of 602.6 MW is only binding in the peak period. This fact does not change

for more competitive strategic spot market behavior until we reach a certain threshold,

θ around 1/(1.7α), when base load production exceeds the capacity of 602.6 MW. At

this point the set of active load periods at equilibrium changes and capacity is binding

in both peak and base load period and the new capacity is 554.7 MW.

In Table 3.5 we present the market efficiency, the consumer surplus and the total

profits of the decreasing capacity solution in billion or giga e, i.e., [109e]. We ob-

serve that Allaz-Vila second stage competition yields a lower market efficiency than

Cournot second stage competition. In section 3.4.2 we will demonstrate that this

market efficiency result is ambiguous, as we present a counter-example where market

efficiency is higher under Allaz-Vila than under Cournot second stage competition,

even though capacity is less in the Allaz-Vila case than in the Cournot case.
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Table 3.4: Bilevel equilibrium less capacity under more competition: perfect competition
(θl = 0), Allaz-Vila (θl = 1/(2αl)), and Cournot (θl = 1/αl) second-stage competition.

l Peak Base

qil[MW] θl = 0 554.7 554.7
qil[MW] θl = 1/(2αl) 554.7 554.7
qil[MW] θl = 1/αl 602.6 517.6
pl [e/MWh] θl = 0 111.3 65.5
pl [e/MWh] θl = 1/(2αl) 111.3 65.5
pl [e/MWh] θl = 1/αl 99.4 74.5

Table 3.5: Market efficiency (ME), consumer surplus (CS) and total profit of bilevel solutions
in which more competition yields less capacity.

Perfect competition Allaz-Vila Cournot

ME [109e] 1.32 1.32 1.33
CS [109e] 0.66 0.66 0.66
Total profit [109e] 0.66 0.66 0.67

Conjectured-Price Response Can Yield More Capacity

When presenting the case in which conjectured-price response yields more capacity

than Cournot in the bilevel game in [85], Murphy and Smeers mainly restrict their

discussion to a case with two load periods, peak and base. We will do the same here.

However, we also demonstrate that in the case of symmetric agents and two load

periods the conjectured-price response assumption cannot yield more capacity. This

will be proven in Lemma 3.3.

Lemma 3.3. In the case of symmetric agents and two load periods, the solution of

the conjectured-price response bilevel generation expansion game can never yield more

capacity than the Cournot bilevel game.

Proof. Due to Proposition 3.2 we know that this increasing capacity case could only

happen when the active sets of bilevel solutions with different strategic behavior

do not coincide. Hence we consider two separate cases: case one where the bilevel

Cournot capacity is binding only in the peak period; and case two where it is binding

in both load periods.
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Case 1: Let therefore xpeak denote the bilevel Cournot second stage capacity

solution, which is only binding in the peak period and let xboth denote the capacity of

the bilevel conjectured-price response equilibrium, where capacity is binding in both

load periods. Then, from (3.47) we obtain the values for both terms and they are

given below.

xpeak =
D0

1T1 − α1(β + δT1)

3T1

(3.53)

xboth =
D0

1T1α2 +D0
2T2α1 − α1α2(β + δ(T1 + T2))

3(T1α2 + T2α1)
(3.54)

In Table 3.4 we have presented an example where xpeak was larger than xboth.

However, in order for the opposite case to be possible and feasible, the following two

conditions have to hold. First, production in the base period, given by (3.42), for

the Cournot case cannot exceed its capacity xpeak, which is formulated in (3.55) and

second, xboth has to be strictly larger than xpeak, which is expressed in (3.56).

D0
2 − α2δ

3
≤ xpeak (3.55)

xpeak < xboth (3.56)

If we insert the expression of xpeak given in (3.53) into (3.55) and simplify the

resulting inequality8, we obtain a lower bound on the peak demand intercept D0
1,

which is given in (3.57). Similarly, if we insert expressions (3.53) and (3.54) into

(3.56) and simplify the resulting inequality9, we obtain a strict upper bound on D0
1,

8The inequality given by (3.55) reads
D0

2−α2δ
3 ≤ D0

1T1−α1(β+δT1)
3T1

. First, we multiply both sides
by 3, then we multiply the resulting inequality by T1, add α1(β + δT1) and finally we divide by T1.

The resulting inequality then reads
(D0

2−α2δ)T1+α1(β+δT1)
T1

≤ D0
1.

9The inequality given by (3.56) reads
D0

1T1−α1(β+δT1)
3T1

<
D0

1T1α2+D0
2T2α1−α1α2(β+δ(T1+T2))
3(T1α2+T2α1)

. Again

we multiply both sides by 3, and then we multiply the numerator of each side with the denominator of
the other side. As both sides now have the same denominator we only compare resulting numerators,
which yield (D0

1T1−α1(β+ δT1))(T1α2+T2α1) = D0
1T

2
1α2+D0

1T1T2α1−α1(β+ δT1)(T1α2+T2α1)
< D0

1T
2
1α2 +D0

2T1T2α1 − T1α1α2(β + δ(T1 + T2)). Now we bring all terms that include D0
1 to the

left side of the inequality and the remaining terms to the right. Then D0
1(T

2
1α2 + T1T2α1 − T 2

1α2)
= D0

1T1T2α1 < D0
2T1T2α1 − T1α1α2(β + δ(T1 + T2)) + α1(β + δT1)(T1α2 + T2α1) = α1(D

0
2T1T2 −

T1α2(β + δ(T1 + T2)) + (β + δT1)(T1α2 + T2α1)). Dividing both sides by T1T2α1 yields that D0
1 <

D0
2T1T2+(β+δT1)(T1α2+T2α1)−T1α2(β+δ(T1+T2))

T1T2
.
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which is given in (3.58).

(D0
2−α2δ)T1+α1(β+δT1)

T1
≤ D0

1 (3.57)

D0
1 <

D0
2T1T2+(β+δT1)(T1α2+T2α1)−T1α2(β+δ(T1+T2))

T1T2
(3.58)

It is easy to verify that both the lower bound in (3.57) and the strict upper

bound in (3.58) of D0
1 yield the same value, which is a contradiction to the strict

inequality and hence to the assumption that xpeak < xboth. Thus the capacity under

more intensive competition (xboth) cannot exceed the Cournot capacity (xpeak) under

the assumption that Cournot binds only in the peak period while more intensive

competition binds in both.

Case 2: We furthermore show that the case of increasing capacity under more

intensive competition can never happen when the active set of load periods is reversed,

i.e., when the bilevel Cournot second stage capacity is binding in both load periods

and the bilevel conjectured-price response capacity is only binding in the peak period.

Let us assume we had such a case, then the conjectured-price response production in

the base period, given by (3.42), will be strictly less than its capacity xpeak because

we know that capacity is only binding in the peak load period. Moreover, from (3.42)

it is easy to see that unrestricted Cournot base production would be less than (3.42)

for all θ2 ≤ 1/α2, all of which is shown in (3.59). As we assumed that the Cournot

bilevel capacity is binding in both load periods, it follows that xboth will be less or

equal to the unrestricted Cournot base production, which is expressed in (3.60).

D0
2−α2δ

3
≤ D0

2−α2δ

2+α2θ2
< xpeak (3.59)

xboth ≤ D0
2−α2δ

3
(3.60)

Similarly to before we insert the expression of xpeak and xboth into (3.59) and

(3.60) and simplify the resulting inequalities to obtain a lower and upper bound on

the base demand intercept D0
2, which are given in (3.61) and (3.62). It is easy to

verify that both the lower bound in (3.61) and the strict upper bound in (3.62) of D0
2
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yield the same value, which is a contradiction to the strict inequality and hence to

the assumption that xboth (Cournot capacity) < xpeak (capacity under more intensive

competition).

D0
1T1α2−α1α2(β+δ(T1+T2))+α2δ(T1α2+T2α1)

T1α2
≤ D0

2 (3.61)

D0
2 <

D0
1T1−α1(β+δT1)+α2δT1

T1
(3.62)

Hence, we have demonstrated that, for two load periods, the case in which capac-

ity increases with increasing competition (which occurred for an asymmetric case in

Murphy and Smeers [85]) cannot happen for symmetric agents.

Our result therefore shows that, for the two load period case by Murphy and

Smeers [85], asymmetry is a necessary condition in order for the capacity of the

bilevel conjectured-price response solution to be larger than in the bilevel second

stage Cournot equilibrium. We raise the hypothesis that in the case of symmetric

agents this might generally be true for multiple load periods as well. However, proving

this hypothesis or finding a counterexample is out of the scope of this thesis and will

be a topic of future research.

3.4.2 Ambiguity in Ranking of Bilevel Equilibria when Bind-

ing Load Periods Differ for Different Values of Conjec-

tural Variations

In this section we show by counter-example that the ranking of the bilevel conjectured-

price response equilibria, in terms of market efficiency and consumer welfare, is pa-

rameter dependent. An interesting result we obtain is that it is possible for the bilevel

model that assumes perfectly competitive behavior in the market to actually result

in lower market efficiency (as measured by the sum of surpluses for all parties and

load periods), lower consumer surplus, and higher average prices than when Cournot

competition prevails. This counter-intuitive result implies that contrary to the com-

mon belief that requiring marginal cost bidding is enough to protect consumers - a
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belief underlying some regulatory market rules - it can actually be harmful. Perfect

markets in both the investment and the operation stage protect consumers, however,

partially imperfect markets (as in our case in the investment stage) can lead to the

effects described in this section. In [57] Grimm and Zoettl have arrived at a similar

result comparing perfectly competitive and Cournot spot market behavior, however,

they only look at the polar cases of perfect competition or Cournot-type competition.

In our work we generalize strategic behavior using conjectural variations and look at

a range of strategic behavior, from perfect competition to Cournot competition and

we furthermore observe that an intermediate solution between perfect and Cournot

competition can lead to even larger social welfare and consumer surplus despite yield-

ing a level of installed capacity intermediate between the perfect competition and the

Cournot cases. In particular: The ranking of conjectured-price response equilibria in

terms of market efficiency and consumer welfare is parameter dependent. This occurs

because in general the LBi differ among the solutions. It does not occur when LBi

are the same for all θ and multipliers are positive as proven (and illustrated) in the

previous section.

A counter-example: Let us now consider two firms both making an investment

in generation capacity using the following data:

• Twenty equal length load periods l, so Tl = 438 [h/year] for l = 1, . . . , 20

• Demand intercept D0
l , obtained by D0

l = 2000−50(l−1) [MW] for l = 1, . . . , 20

• Demand slope αl, obtained by D0
l /250 for l = 1, . . . , 20

• Capital cost β = 46000 [e/MW/year]

• Operating cost δ = 11.8 [e/MWh]

First we will assume perfect competition, i.e., θl = 0. We solve the resulting

bilevel game by diagonalization, see Hu and Ralph [63], which is an iterative method

in which firms take turns updating their first-stage capacity decisions, each time

solving a two-stage MPEC while considering the competition’s capacity decisions as
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fixed. The bilevel equilibrium solution assuming perfect competition in stage two is

shown in Table 3.6. Second, we assume Cournot competition in the spot market, i.e.,

θl = 1/αl. Again we solve the bilevel game by diagonalization, yielding the results

shown in Table 3.7. We observe that under second stage perfect competition, the

capacity of 456.2 MW is binding in every load period and prices never fall to marginal

operating cost. Moreover, the total installed capacity of 912.4 MW is significantly

lower than that installed under Cournot, which is 1101.2 MW. On the other hand,

under Cournot competition, each firm’s capacity of 550.6 MW is binding only in

the first six load periods and the firms exercise market power by restricting their

output to below capacity in the other fourteen periods. Furthermore considering

that the Cournot capacity is well above the perfectly competitive capacity, it follows

that during the six peak load periods, perfectly competitive prices will be higher than

Cournot prices. The single-level equilibrium solutions assuming Cournot competition,

perfectly competitive behavior and Allaz-Vila competition are presented in Tables 3.7,

3.10 and 3.11 respectively. Under Cournot competition, single and bilevel equilibrium

solutions coincide. Meanwhile the system optimal plan, which is obtained by central

planning under a maximization of social welfare objective, yields the same solution

as the single-level equilibrium under perfect competition, which is presented in Table

3.10. As expected, this solution exhibits the highest total installed capacity of 1651.8

MW, the lowest prices and the greatest market efficiency.

This bilevel investment game can be viewed as a kind of prisoners’ dilemma among

multiple companies. An individual company might be able to unilaterally improve its

profit by expanding capacity, with higher volumes making up for lower prices. But

if all companies do that, then everyone’s profits could be lower than if all companies

instead refrained from building. (Of course, in this prisoners’ dilemma metaphor

we have not taken into account another set of players that is better off when the

companies all build. These are the consumers, who enjoy lower prices and more

consumption; as a result, overall market efficiency as measured by total market surplus

may improve when firms “cheat”.)

Standard (single stage) oligopoly models, see Fudenberg and Tirole [50], with-
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Table 3.6: Bilevel equilibrium solution under second-stage perfect competition (θl = 0) with
capacity xi = 456.2 MW.

l 1 2 3 4 5 6 7 8 9 10

qil [MW] 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2
pl [e/MWh] 135.9 133.0 129.9 126.7 123.3 119.7 115.8 111.8 107.4 102.8

l 11 12 13 14 15 16 17 18 19 20
qil [MW] 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2
pl [e/MWh] 97.9 92.7 87.1 81.0 74.5 67.5 59.9 51.6 42.6 32.8

out capacity constraints find that perfect competition gives lower prices and greater

market efficiency than Cournot. Considering that standard result, our results seem

counter-intuitive, but they are due to the two-stage nature of the game. In particular,

less intensive competition in the commodity market can result in more investment

and more consumer benefits than if competition in the commodity market is intense

(price competition a la Bertrand). In terms of the prisoners’ dilemma metaphor,

higher short run margins under Cournot competition provide more incentive for the

“prisoners” to “cheat” by adding capacity. Note that in order to get these counter-

intuitive results, firms do not need to be symmetric, as shown in a numerical example

in Wogrin et al. [118].

Finally, we solve the bilevel game assuming Allaz-Vila as competitive behavior

between perfect competition and Cournot, i.e., θl = 1/(2αl). This yields the equilib-

rium given in Table 3.8. Comparing the market efficiency (ME) and the consumer

surplus (CS) that we obtain in the perfectly competitive, Cournot, Allaz-Vila and the

social welfare maximizing solutions in Table 3.9 in billion e, we observe that, surpris-

ingly, apart from the welfare maximizing solution the highest social welfare and the

highest consumer surplus is obtained under the intermediate Allaz-Vila case. Even

more surprising is that the capacity obtained under Allaz-Vila competition is lower

than the Cournot capacity, but still yields a higher social welfare. This is because the

greater welfare obtained during periods when capacity is slack (and Allaz-Vila prices

are lower and closer to production cost) offsets the welfare loss during peak periods

when the greater Cournot capacity yields lower prices.
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Table 3.7: Bilevel equilibrium solution under Cournot second-stage competition (θl = 1/αl)
and single-level Cournot equilibrium solution, both with capacity xi = 550.6 MW.

l 1 2 3 4 5 6 7 8 9 10

qil [MW] 550.6 550.6 550.6 550.6 550.6 550.6 539.9 524.0 508.2 492.3
pl [e/MWh] 112.4 108.8 105.1 101.2 97.1 92.7 91.2 91.2 91.2 91.2

l 11 12 13 14 15 16 17 18 19 20
qil [MW] 476.4 460.5 444.6 428.8 412.9 397.0 381.1 365.2 349.4 333.5
pl [e/MWh] 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2

Table 3.8: Bilevel equilibrium solution assuming Allaz-Vila second-stage competition (θl =
1/(2αl)) with capacity xi = 515.2 MW.

l 1 2 3 4 5 6 7 8 9 10

qil [MW] 515.2 515.2 515.2 515.2 515.2 515.2 515.2 515.2 515.2 515.2
pl [e/MWh] 121.2 117.9 114.4 110.8 106.9 102.8 98.5 93.9 89.0 83.8

l 11 12 13 14 15 16 17 18 19 20
qil [MW] 515.2 515.2 515.2 514.5 495.5 476.4 457.3 438.3 419.2 400.2
pl [e/MWh] 78.3 72.3 66.0 59.4 59.4 59.4 59.4 59.4 59.4 59.4

Another surprise is that not only market efficiency but also profits are non-

monotonic in θ. Both perfect competition and Cournot profits are higher than Allaz-

Vila profits; the lowest profit thus occurs when market efficiency is highest, at least

under these parameters. However, higher profits do not always imply lower market

efficiency, as a comparison of the perfect competition and Cournot single-level cases

shows. Cournot shows higher profit, consumer surplus, and market efficiency than

perfect competition. That is, Cournot is pareto superior to perfect competition under

these parameters because all parties are better off under the Cournot equilibrium.

Finally, we observe the market efficiency (ME), the consumer surplus (CS) and

total profits of the single-level model assuming perfect competition, Allaz-Vila and

Cournot competition in the market. As opposed to the bilevel case, market efficiency

in the single-level solutions increases monotonically with the level of competition in

the market and is therefore highest under perfect competition.
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Table 3.9: Market efficiency (ME), consumer surplus (CS) and total profit in bilevel solu-
tions and social welfare maximizing solution.

Perfect competition Allaz-Vila Cournot Social welfare

ME [109e] 1.24 1.30 1.28 1.47
CS [109e] 0.62 0.72 0.64 1.44
Total profit [109e] 0.62 0.58 0.64 0.03

Table 3.10: Single-level equilibrium solution assuming perfect competition and system op-
timal plan solution with capacity xi = 825.9 MW.

l 1 2 3 4 5 6 7 8 9 10

qil [MW] 825.9 825.9 825.9 825.9 825.9 825.9 809.9 786.1 762.2 738.4
pl [e/MWh] 43.5 38.2 32.7 26.8 20.6 14.0 11.8 11.8 11.8 11.8

l 11 12 13 14 15 16 17 18 19 20
qil [MW] 714.6 690.8 667.0 643.1 619.3 595.5 571.7 547.9 524.0 500.2
pl [e/MWh] 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8

Table 3.11: Single-level equilibrium solution assuming Allaz-Vila competition (θl = 1/(2αl))
with capacity xi = 660.7 MW.

l 1 2 3 4 5 6 7 8 9 10

qil [MW] 660.7 660.7 660.7 660.7 660.7 660.7 647.9 628.8 609.8 590.7
pl [e/MWh] 84.8 80.6 76.1 71.4 66.5 61.2 59.4 59.4 59.4 59.4

l 11 12 13 14 15 16 17 18 19 20
qil [MW] 571.7 552.6 533.6 514.5 495.5 476.4 457.3 438.3 419.2 400.2
pl [e/MWh] 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4

Table 3.12: Market efficiency (ME), consumer surplus (CS) and total profit in single-level
solutions.

Perfect competition Allaz-Vila Cournot

ME [109e] 1.47 1.39 1.28
CS [109e] 1.44 0.92 0.64
Total profit [109e] 0.03 0.47 0.64
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3.5 Conclusions

In this chapter we compare two types of models for modeling the generation ca-

pacity expansion game: a single-level model describing a game in which investment

and operation decisions are made simultaneously, and a bilevel equilibrium model,

where investment and operation decisions are made sequentially. The purpose of this

comparison is to emphasize that when resorting to easier, less complicated single-level

models, instead of solving the more realistic but more complicated bilevel models, the

results may differ greatly and to characterize when results are similar. In both models

the market is represented via a conjectured-price response, which allows us to capture

various degrees of oligopolistic behavior. Setting out to characterize the differences

between these two models, we have found that for one load period, the bilevel equilib-

rium equals the single-level Cournot equilibrium for any choice of conjectured-price

response between perfect competition and Cournot competition - a generalization of

Kreps and Scheinkman-like [74] findings. In the case of multiple load periods, this re-

sult can be extended. In particular, if bilevel models under different conjectures have

the same set of load periods in which capacity is constraining and the correspond-

ing multipliers are positive, then their first stage capacity decisions are the same,

although not their outputs during periods when capacity is slack. Furthermore, if the

Cournot single and bilevel solutions have the same periods when capacity constrains,

then their solutions are identical. We also explore alternative conjectured-price re-

sponse models in which the strategic second stage competition switches to Cournot

in load periods in which rivals’ capacity is binding. When capacity does not bind, the

strategic behavior can range from perfect competition to Cournot. Such alternative

models may be more realistic, however, pure strategy equilibria might not exist and

they are more difficult to solve.

A first numerical example indicates that when having market behavior close to

Cournot competition, the additional effort of computing the bilevel model (as opposed

to the simpler single-level model) does not pay off because the outcomes are either

exactly the same or very similar. But if behavior on the spot market is far from
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Cournot and approaching perfect competition, the additional modeling effort might be

worthwhile, as the bilevel model is capable of depicting a feature that the single-level

model fails to capture, which is that generation companies would not voluntarily build

all the capacity that might be determined by the spot market equilibrium if that meant

less profits for themselves. Thus the bilevel model could be useful to evaluate the

effect of alternative market designs for mitigating market power in spot markets and

incenting capacity investments in the long run, e.g., capacity mechanisms, in Sakellaris

[107]. Extensions could also consider the effect of forward energy contracting (as in

Murphy and Smeers [85]). These policy analyses will be the subject of future research.

The second numerical example shows that when the sets of active load periods do

not coincide for bilevel solutions with different strategic spot market behavior, then

the bilevel conjectured-price response capacity can be less than the bilevel Cournot

second stage capacity. We also prove that the former capacity cannot exceed the

latter when there are symmetric agents and two load periods.

The third numerical example demonstrates that depending on the choice of pa-

rameters, more competition in the spot market may lead to less market efficiency and

less consumer surplus in the bilevel model. This surprising result indicates that regu-

latory approaches that encourage or mandate marginal pricing in the spot market in

order to protect consumers may actually lead to situations in which both consumers

and generation companies are worse off.

In future research we may address the issue of existence and uniqueness of solu-

tions, as has been done for the Cournot case by Murphy and Smeers [84], who found

that a pure-strategy bilevel equilibrium does not necessarily exist but if it exists it is

unique. We may also address the question concerning under what a priori conditions

the active sets of single-level and bilevel equilibria coincide. There may be further in-

vestigation of games in which the conjectural variation is endogenous, resulting from

the possibility that power producers might adopt the Cournot conjecture in binding

load periods since they may be aware that their rivals cannot expand output at such

times. The extension of these games to multi-year games with sequential capacity

decisions will be presented in the following chapters.
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Chapter 4

Bilevel Generation Expansion

Optimization Models

Since chapter 3 has established that bilevel generation expansion models are more

realistic than single-level models, we now want to extend the theoretically-sized mod-

els from chapter 3 to more realistic, large-scale, multi-year, multi-load period and

multi-technology models. In order to model large-scale bilevel equilibrium models

formulated as EPECs, the first step is to formulate the corresponding MPECs. There-

fore this chapter is dedicated entirely to bilevel models representing the generation

expansion problem, i.e., building new power stations, of one generation company in

particular, which is formulated as an MPEC and represents an original contribution

of this thesis.

The bilevel formulation allows for the differentiation of investment and operating

decisions. Investment decisions of only one generation company are taken in the upper

level with the objective to maximize profits and generation decisions by all companies

are considered in the lower level which is constituted by the conjectured-price response

market equilibrium. If one (and only one) firm decides investments, then this yields

a bilevel optimization problem which is the type of model we discuss in this chapter.

If instead all firms compete in capacities, this yields a bilevel equilibrium problem,

which is the type of model that will be discussed in the following chapter 5.

In particular, we start out by an introduction of this topic in section 4.1 and
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continue by modeling and discussing the bilevel expansion optimization model in

detail in section 4.2, which can be formulated as an MPEC and whose basic version

has already been introduced in chapter 2. Apart from the theoretical methodology,

a case study is presented and results are analyzed thoroughly. Then, in section

4.3 we extend the presented framework to incorporate stochasticity of competitors’

investment decisions and strategic behavior, derive an extended stochastic version of

the MPEC and verify the model in a numerical example. Section 4.4 describes how to

formulate the possible model extensions, which have been raised in section 2.4.3 and

which allow for a more realistic representation of the generation expansion model.

Finally, section 4.5 concludes this chapter.

4.1 Introduction

Due to the liberalization of electricity markets the task of taking generation capacity

investment decisions has become an even more complex problem than it already has

been under a centralized framework. Generation companies are now exposed to a

higher level of risk, having to deal with the strategic behavior of competitors in

imperfect markets and coping with the uncertainty due to fuel prices, demand and

hydro inflows among others.

In this thesis we focus on game-theoretic methods in liberalized frameworks, in

particular on bilevel formulations since - as we have established in chapter 3 - bilevel

models are more realistic than single-level models because they embody a sequential

decision-making process. Game theory is particularly useful in the energy sector

because it allows us to analyze the strategic behavior of agents - in our case generation

companies - whose interests are opposing and whose decisions influence the outcome

of other agents.

With the newly developed model in this chapter we would like to address some

of the shortcomings of existing approaches in the literature. First of all, even though

existing single-level approaches like in Centeno et al., Murphy and Smeers or Ventosa

et al. [25, 84, 113] are adequate and useful to approximate the generation capacity
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problem, they do not model the significant temporal separation between when capac-

ity decisions are taken and when energy is produced with that capacity. We overcome

this problem by proposing a bilevel model. Furthermore, existing bilevel approaches

in the literature assume either perfectly competitive, see Garcia-Bertrand et al. [54],

or Cournot behavior in the spot market, see Haurie et al. or Ventosa et al. [59, 113] .

We want to extend these approaches to also capture intermediate oligopolistic behav-

ior in order to explore how capacity decisions would change if competitive behavior in

the spot market changed. The model presented in this chapter represents the market

via a conjectured-price response formulation like the one presented in 2.3.1, thereby

allowing us to model a range of oligopolistic market behavior. Finally, the model

yields an investment schedule over the entire time horizon, as opposed to a static

investment decision for a future target year, as done by Kazempour and Conejo [70].

In particular, in this chapter a bilevel optimization model - formulated as an

MPEC - is proposed which takes the point of view of a single investing agent faced

with generation capacity expansion decisions. This model represents an original con-

tribution of this thesis and is presented in section 4.2, which includes a basic version

of the MPEC model and a corresponding numerical example, both of which have

previously been published in an international journal [27]. In the upper level the

investing agent maximizes its profit deciding its generation capacity. The lower level

problem corresponds to a conjectural variations market equilibrium closely inspired

by Centeno et al. [24], which can be formulated as a convex optimization problem

corresponding to Barqúın et al. [5]. Replacing the lower level by its KKT conditions,

yields an MPEC.

Since this MPEC is a deterministic model, and there are several sources of uncer-

tainty in the generation expansion problem, in section 4.3 we extend this basic model

formulation to a stochastic optimization problem. This newly developed model can be

formulated as a stochastic MPEC, where the investing agent maximizes its expected

profit in the upper level subject to various scenarios of the lower level equilibrium.

The scenarios of the particular case considered in section 4.3 are dependent on the

uncertainty regarding the investment decisions of the competition and a correspond-
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ing strategic behavior on the market. As investment decisions crucially depend on the

strategic behavior of the generation companies in the market, which we model using a

conjectured-price-variation approach, we incorporate a set of scenarios of conjectured-

price responses into the generation capacity expansion problem, each representing a

different realization of possible market behavior. The proposed model, as well as the

presented case study, represent another original contribution of this thesis and have

been published in an international journal [116].

In order to keep the model formulation simple, uncertainty corresponding to com-

petition is being considered as the most driving factor in section 4.3. Additional

sources of uncertainty, such as fuel prices or demand growth, are not considered in

the stochastic MPEC model of section 4.3, however, in section 4.4 we show how to

approach these other important sources of uncertainty. Furthermore, in section 4.4

we also address possible model extensions, such as introduction of hydro energy, ca-

pacity mechanisms, financial hedging or how to discretize investment decisions in the

model formulation. Such extensions have been stated as very desirable in section

2.4.3 as they improve the representation of reality of the proposed MPEC models.

These extensions provide the tools to explore and analyze the electricity market using

mathematical models.

It is important to keep in mind that the type of model presented in this chapter

prioritizes the capacity investment decision of only one market agent, which could be

seen as a limitation of the model. But if we consider that we have one large generation

company, and the rest of the firms are followers, then the large company has a pretty

good idea about how the followers are going to respond to certain actions. In this

case the MPEC approach presented in this chapter is a suitable approach to assist

this large generation company when taking capacity investment decisions since we

are representing a Stackelberg-type situation; however, when the scope of the study

is different, for example when the regulator or the government want to study how the

generation capacity is going to evolve over the next decades, then models like the ones

by Kazempour et al. or Wogrin et al. [70, 116] or Kazempour and Conejo [69] are not

that suitable considering that there is clear favoritism towards only one generation
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company. Therefore when the purpose of the model is to study the general evolution

of the generation capacity of a country or region, then a different type of model is

needed which does not prioritize any generation company in particular and which

allows analyzing the strategic investment trends when all GENCOs are competing

against each other. We propose such a model in the following chapter 5 of this thesis

and remind the reader that all models presented in chapter 4 have to be interpreted as

a tool whose purpose it is to be employed by a single GENCO exploring its capacity

investment options. Moreover, the ability to solve MPEC models will be extremely

useful when solving more complicated EPEC models in chapter 5.

4.2 Generation Expansion Planning: An MPEC

Approach

This section describes the basic version of the bilevel generation expansion optimiza-

tion model that assists one generation company in taking its capacity investment

decisions. First, in section 4.2.1 the lower level or production stage of the bilevel

problem, which models the strategic spot market equilibrium among all market par-

ticipants, is introduced, followed by a description of the upper level or investment

stage in section 4.2.2 where capacity decisions are being taken. Merging the formu-

lations of upper and lower level, leads to the formulation of the entire problem as an

MPEC which is given by section 4.2.3. This type of model embodies a sequential deci-

sion making process (similar to the Stackelberg game). Finally, section 4.2.4 presents

a numerical example of the presented MPEC model which contains a detailed analysis

of results.

4.2.1 Formulation of the Lower Level (or Production Stage)

The lower level or production stage of the MPEC generation expansion model cor-

responds to the conjectured-price response market equilibrium which has been intro-

duced in chapter 2. We recall that the market equilibrium can be written as a system
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of nonlinear equations given by (2.35)-(2.43), which arise from the KKT conditions of

each individual generation company, or an equivalent convex quadratic optimization

problem which has been presented in (2.45)-(2.48) and which we remember below:

min
q,d

∑
ijyl

δijqijylTyl

(1 + F )y
+

1

2

∑
iyl

θiylTyl(
∑

j qijyl)
2

(1 + F )y

−
∑
yl

Tyl

αyl(1 + F )y
(D0

yldyl −
d2yl
2
)

(4.1)

s.t. qijyl ≤ xijy +Kijy ∀ijyl : λijyl (4.2)

0 ≤ qijyl ∀ijyl : µijyl (4.3)

Tyl

(1 + F )y
(dyl −

∑
ij

qijyl) = 0 ∀yl : pyl (4.4)

Since in this chapter we focus on assisting one generation company, GENCO i∗,

in taking its investments decisions, let us rewrite the market equilibrium (as a system

of nonlinear equations) (2.35)-(2.43) making a distinct separation between agent i∗

whose investment decisions are considered variables and the rest of the agents -i∗

whose investment decisions are considered constants. This distinction is made only

in constraints that involve investment decisions xijy, i.e., constraints that correspond

to (2.37) (a complementarity condition) and (2.38) (the upper bound on production).

When considering only the lower level, then there is absolutely no difference between

(2.35)-(2.43) and (4.5)-(4.14). The difference only comes into existence when adding

an upper level and will therefore be pointed out in the next sections.

δijTyl

(1 + F )y
+

∑
j θiylqijylTyl

(1 + F )y
− Tylpyl

(1 + F )y
+ λijyl − µijyl = 0 ∀ijyl (4.5)

µijylqijyl = 0 ∀ijyl (4.6)

λi∗jyl(Ki∗jy + xi∗jy − qi∗jyl) = 0 ∀jyl (4.7)

λ-i∗jyl(K-i∗jy +X-i∗jy − q-i∗jyl) = 0 ∀-i∗jyl (4.8)

qi∗jyl ≤ xi∗jy +Ki∗jy ∀jyl (4.9)

q-i∗jyl ≤ X-i∗jy +K-i∗jy ∀-i∗jyl (4.10)

0 ≤ qijyl ∀ijyl (4.11)
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0 ≤ µijyl, 0 ≤ λijyl ∀ijyl (4.12)

dyl −
∑
ij

qijyl = 0 ∀yl (4.13)

dyl −D0
yl + αylpyl = 0 ∀yl (4.14)

As a reminder, the parameters (and possible parameter units) of the equilibrium

problem above are: F [p.u.] the discount rate; Tyl [kh] the duration of each load

period; δij [e/MWh] the unitary production cost; Kijy [GW] the already existing

capacity; D0
yl the demand intercept; αyl the demand slope and θiyl [(e/MWh)/GW]

the conjectured-price-response parameter. Note that at the market stage, the new

capacity investments xijy [GW] are considered to be parameters as well, however, at

the investment stage some are considered variables. In particular, since in this chap-

ter we are considering the MPEC generation expansion model where only company

i∗ is taking investment decisions, only xi∗jy will be considered variables at the invest-

ment stage. The competitors’ investment variables X-i∗jy on the other hand will be

considered parameters even at the investment stage.

The decision variables (and possible variable units) of the market equilibrium

problem are: the production decisions qijyl [GW]; the demand dyl [GW]; the resulting

market price pyl [e/MWh]; µijyl and λijyl which represent the dual variables of the

lower and upper bounds on production.

4.2.2 Formulation of the Upper Level (or Investment Stage)

The upper level or investment stage determines the value of the maximum plant

capacity x for each year, with the objective of maximizing one agent’s, that is, i∗,

net present value (NPV) considering the discount rate F , consisting of the gross

margin from the lower level (revenues minus production costs) minus total investment

costs (total investment cost β̂ijy [Me/GW] or unitary annual1 investment cost βijy

[(Me/GW)/year] times capacity investments), by choosing its capacities xi∗jy subject

1The unitary annual investment cost can be calculated as for example βij = β̂ij/
∑Y

y=1 1/(1+F )y,
where F is the discount rate and Y corresponds to the number of years in the life cycle of a plant
of technology j.
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to the lower level equilibrium response. It is considered that agent i∗ is the only one

investing and thus the capacity built by the rest of the companies, which is referred

to as -i∗ , is considered as exogenous. The NPV is a parameter maximized in the

long term as a measurement of a firm’s value. It is used in this work, but includes

some simplifications to ease the implementation and to keep it country independent.

Taxes, as well as tax savings as a result of assets depreciation, have not been included.

We furthermore impose the constraint that capacity can only increase in time ((4.16)

and (4.18)), as annual investments have to be positive and always greater or equal

to its value in the previous year. The fact that capacity can only increase over

time is only a weak hypothesis if a sustained demand increase is reflected in the

demand data. Increasing demand over time is a realistic assumption in light of historic

observations. This constraint has been introduced in order to facilitate the numerical

solution process, however, if this constraint were omitted, most likely the optimal

solution would not change.

Essentially we consider two different versions to model the NPV, one that considers

the total investment costs β̂ijy which could have the unit [Me/GW] and another one

where instead we consider the unitary annual investment costs βijy which can have

the units [(Me/GW)/year]. This difference in concept of how to interpret investment

costs, leads to two different formulations of the upper level, the first one being:

max
xi∗jy

∑
y

1

(1 + F )y
{∑

jl

Tyl(pyl − δi∗j)qi∗jyl −
∑
j

β̂i∗jy(xi∗jy − xi∗j(y−1))
}

(4.15)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.16)

Considering total investment costs β̂ijy means that the entire cost of investment is

paid at once, exactly when the investment is taken. Since the variable xi∗jy represents

the total new capacity available in a certain year, the investment cost corresponds

to the increment in investments with respect to the previous year. The disadvantage

of this formulation is that, when considering a relatively short time horizon, base-

load technologies like nuclear or coal are not profitable, which is why some sort of

residual value would have to be considered. Base-load technologies are characterized

128



by very high investment costs and low production costs. Since these technologies need

a longer time horizon to recover their capital investments, the corresponding models

have to consider some extra years in the time horizon in order to estimate companies’

residual value.

The second formulation considers annual investment costs βijy instead of total

investment costs. Instead of paying the total investment cost at once, with this type

of formulation, the generation company i∗ pays a certain amount βi∗jyxi∗jy during a

fixed number of years, which are considered the years of the life cycle of a plant with

technology j. This allows us to consider the total amount of new capacity, instead of

annual capacity increments. Moreover, with this type of formulation the length of the

time horizon that is considered in the model does not distort the optimal technology

spectrum in the same way that the previous formulation does. This means that

even when considering a shorter time horizon, of for example five years, base-load

technologies can and do appear in the optimal technology mix in comparison to the

previous formulation where base-load technologies are not considered profitable unless

the time horizon is at least as long as the life cycle of the power plant in question.

The arising upper level formulation is given below:

max
xi∗jy

∑
y

1

(1 + F )y
{∑

jl

Tyl(pyl − δi∗j)qi∗jyl −
∑
j

βi∗jyxi∗jy
}

(4.17)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.18)

The formulation of the upper level that can be found in (4.17)-(4.18) corresponds

to the “leave it to the market” approach. The “leave it to the market” approach refers

to a type of market in which no regulatory capacity mechanism is in place and where

capacity decisions are solely driven by market prices and productions. The presented

methodology could be adapted in order to incorporate a different capacity mechanism,

e.g., capacity markets or capacity payments, by adding a new term corresponding

to the capacity revenues in the objective function. This possible extension will be

discussed later on in this chapter.
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4.2.3 Formulation of the MPEC

The bilevel generation expansion optimization model which has been developed as

a part of this thesis, is a Mathematical Program with Equilibrium Constraints and

consists of an upper level introduced in section 4.2.2, where investment decisions of

firm i∗ are taken, subject to the lower level introduced in 4.2.1 which represents the

conjectured-price response spot market equilibrium where all GENCOs compete in

the market. The formulation of the arising MPEC for company i∗ is given in (4.19)-

(4.30), where equations (4.19) and (4.20) correspond to the upper level or investment

stage and equations (4.21)-(4.30) correspond to the lower level or production stage.

Bilevel Optimization Model (BOM):

max
Ωi∗

∑
y

1

(1 + F )y
{∑

jl

Tyl(pyl − δi∗j)qi∗jyl −
∑
j

βi∗jyxi∗jy
}

(4.19)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.20)

δijTyl

(1 + F )y
+

∑
j θiylqijylTyl

(1 + F )y
− Tylpyl

(1 + F )y
+ λijyl − µijyl = 0 ∀ijyl (4.21)

µijylqijyl = 0 ∀ijyl (4.22)

λi∗jyl(Ki∗jy + xi∗jy − qi∗jyl) = 0 ∀jyl (4.23)

λ-i∗jyl(K-i∗jy +X-i∗jy − q-i∗jyl) = 0 ∀-i∗jyl (4.24)

qi∗jyl ≤ xi∗jy +Ki∗jy ∀jyl (4.25)

q-i∗jyl ≤ X-i∗jy +K-i∗jy ∀-i∗jyl (4.26)

0 ≤ qijyl ∀ijyl (4.27)

0 ≤ µijyl, 0 ≤ λijyl ∀ijyl (4.28)

dyl −
∑
ij

qijyl = 0 ∀yl (4.29)

dyl −D0
yl + αylpyl = 0 ∀yl (4.30)

The set Ωi∗ , i.e., Ωi∗ = {xi∗jy, pyl, dyl, qijyl, µijyl, λijyl} ∀ijyl, contains the variables
of the presented MPEC. Remember that only firm i∗’s capacity investments are con-

sidered variables of this problem. The capacity decisions of the competitors X-i∗jy
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are parameters of this problem. In the previous section 4.2.1, we have separated

some lower level equations in equations for agent i∗ and the rest -i∗. This has been

done in order to emphasize now that while in equation (4.25) the right-hand side

of the inequality contains a variable of the MPEC, i.e., xi∗jy, in equation (4.26) the

right-hand side is a parameter of the problem. In the market stage, all GENCOs

decide their productions qijyl in the market, which furthermore yields market price

pyl and demand dyl and implicitly yields dual variables µijyl and λijyl. However, in

the bilevel optimization model given by this MPEC, only one GENCO decides its

capacity investments, while the competitors investments are considered exogenous.

Note that in this formulation βijy is the unitary annual investment costs in units

of [(Me/GW)/year]. By replacing (4.19) with (4.15) and changing the annual in-

vestment costs βijy to total investment costs β̂ijy, the other previously discussed

formulation can be considered.

The MPEC model presented above is conceptually quite different from a single-

level model. The conceptual difference is that capacity decisions of firm i∗ are decided

knowing that they can and will influence the market outcome. This has been thor-

oughly discussed in chapter 3. In particular, this bilevel model embodies sequential

decision making as opposed to simultaneous decision making. By just looking at the

formulation of the MPEC given by (4.19)-(4.30) one might be led to believe that all

variables given by the set Ωi∗ are decided simultaneously, which numerically speaking

would be true, however conceptually speaking it is not. It is important to remember

that the set of lower level constraints, i.e., (4.21)-(4.30), are the KKT conditions of

an equivalent optimization problem (4.1)-(4.4) which has been pointed out in section

4.2.1. This means that the above MPEC could also be written as the BPP given by

equations (4.31)-(4.37).

In the BPP format it is quite obvious that not all problem variables are concep-

tually decided at the same time. When looking at the above model formulation, the

parallel to a Stackelberg-type model becomes apparent and in a Stackelberg model

we have leader decisions and follower decisions, which conceptually speaking are not

taken at the same time. We therefore draw the conclusion that - even by just look-
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ing at the formulation of the MPEC model - it is clear that this model represents

sequential decision making and in particular, first capacity decisions are taken and

then quantities and the corresponding demand are decided.

max
xi∗jy

∑
y

1

(1 + F )y
{∑

jl

Tyl(pyl − δi∗j)qi∗jyl −
∑
j

βi∗jyxi∗jy
}

(4.31)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.32)

min
q,d

∑
ijyl

δijqijylTyl

(1 + F )y
+

1

2

∑
iyl

θiylTyl(
∑

j qijyl)
2

(1 + F )y

−
∑
yl

Tyl

αyl(1 + F )y
(D0

yldyl −
d2yl
2
)

(4.33)

s.t. qi∗jyl ≤ xi∗jy +Ki∗jy ∀jyl : λi∗jyl (4.34)

q-ijyl ≤ X-ijy +Kijy ∀-i∗jyl : λ-i∗jyl (4.35)

0 ≤ qijyl ∀ijyl : µijyl (4.36)

Tyl

(1 + F )y
(dyl −

∑
ij

qijyl) = 0 ∀yl : pyl (4.37)

Due to the complementarity conditions (4.22)-(4.24) and the bilinear term pylqi∗jyl

in the objective function describing the market revenues, the MPEC model becomes

a nonlinear and in particular a non-convex optimization problem. There are several

ways to tackle the resolution of this type of problem, which will be discussed in great

detail in chapter 6 and in particular in section 6.1.

4.2.4 Numerical Example of Generation Expansion MPEC

This numerical example has previously been presented and published in a journal

article [27], which forms part of the original contributions of this thesis.

System Description

The case study represents a stylized electric power system with the objective of as-

sessing the performance of the MPEC generation expansion model. There are three

generation companies (i1 the investing company, i2 and i3) in the market, and four
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Table 4.1: Installed generation capacity [MW] of firm 2 and firm 3.

Firm 2 Firm 3

Nuclear 2500 2500
Coal 1250 1250
CC 750 750
Gas turbine 500 500

Table 4.2: Production and investment cost for each technology.

Production cost δ Investment cost β̂
[e/MWh] [Me/GW]

Nuclear 11.8 1380
Coal 16.2 915
CC 24.0 460
Gas turbine 34.0 240

different technologies, that is, nuclear (NU), coal (CO), combined cycle gas turbine

(CC) and gas turbine (GT). The capacity plans for companies i2 and i3 are considered

fixed and are given in Table 4.1. The first company will be the only company who

can change its investments unilaterally. As previously mentioned, this represents a

dominant position for i1 at the investment level because it implies that company i1

knows what the competition is going to do. The known capacity plan x-ijy is given

in Table 4.1 and we assume a 0.5% increase in generation capacity every year for

companies i2 and i3. Note that Kijy is considered to be zero in this case study.

The production costs of each technology, as well as its investment costs, are given

in Table 4.2 and were based on data given by the International Energy Agency [89].

Since we consider total investment costs β̂ (instead of annual investment costs), the

MPEC model will be of the first version, which we have mentioned in section 4.2.2.

We furthermore assume that production costs are the same for every firm. Nuclear

and coal technologies have a high investment cost and a low production cost. Hence,

they represent base-load plants. The remaining technologies, i.e., CC and gas turbine,

on the other hand, have low investment costs but high production costs, and therefore

correspond to peak technologies.

Tables 4.3 and 4.4 represent the demand data of the system. The scope is split
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into 15 years, and six load levels are considered for each year (see Table 4.3). Ta-

ble 4.4 shows the intercept D0 of the demand curve in the first year. Each year a

sustained demand increase of 3% is considered. Additionally, the demand slope α is

0.23 GW/(e/MWh) for each level, which was based on Garcia-Alcalde et al. [53]. A

discount rate F of 2% is considered. Four different market situations have been con-

sidered at the lower level (Table 4.5 shows values of conjectured-price responses for

each one) ranging from perfect competition to Cournot oligopoly. Two intermediate

oligopoly situations have been considered. A period of 10 years has been analyzed.

Five extra years (11 - 15) have been included to estimate companies’ residual value.

This MPEC was modeled using General Algebraic Modeling System (GAMS)

and solved using the solver CONOPT [41]. Owing to the non-convexities, which are

stemming from complementarity conditions and the bilinear market revenue term,

the solver only guarantees to find a local optimum. In this application a good local

solution may be very interesting for the investing company i1, as they were start-

ing from a given plan trying to improve their profits by unilaterally changing their

investment. A local solution may not be as good as the global one, but it is still

useful when improving a known solution. A gradient-based method, like the one used

by CONOPT, may therefore be useful when initialized smartly. Hence, to obtain a

meaningful initial solution to the MPEC, we first solve a simultaneous optimization

problem, that is, investment and production decisions are taken simultaneously, such

as done by Ventosa in Appendix B of [113] or the one introduced in section 2.3.3,

which is formulated as a MCP. The computational time to solve the MCP in order to

obtain a good initial guess, and then to solve the MPEC for one set of conjectured-

price responses on an Intel(R) Core(TM) 2 Quad Processor with 3.21 GB RAM is

6.4 seconds.

Table 4.3: Annual load period duration [h].

Working day Weekend
Peak Off-peak 1 Off-peak 2 Peak Off-peak 1 Off-peak 2

300 3000 3000 300 1080 1080
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Table 4.4: Demand intercept D0 in year 1 [GW].

Working day Weekend
Peak Off-peak 1 Off-peak 2 Peak Off-peak 1 Off-peak 2

31.5 27.2 17.9 23.8 19.7 15.1

Table 4.5: Conjectured-price responses θ of firms [(e/MWh)/GW].

Firm 1 Firm 2 Firm 3

Perfect competition 0.0 0.0 0.0
Intermediate case 1 1.3 1.3 1.3
Intermediate case 2 4.1 4.1 4.1
Cournot 4.35 4.35 4.35

Analysis of Results

In this section, we analyze the strategic behavior one company has to adopt when

deciding its investments in generation capacity by optimizing its generation portfolio.

For doing so, the firm assumes rivals’ investment decisions fixed and known. Thus,

in this case study we are assuming that i1 is the only firm deciding on its investment.

Generation companies i2 and i3 have a fixed investment determined by their initial

capacity of 5 GW total, given in Table 4.1, and a 0.5% increase in this capacity in

each subsequent year.

Regardless of the strategic behavior of the spot market, the case study considers

a strategic investor who benefits from two mechanisms to manipulate spot prices.

On the one hand, the power producer can reduce investments to obtain higher spot

prices. On the other hand, when there are opportunities to exercise market power

in the spot market, the power producer may prefer higher investment levels, and use

the strategy of withholding production in the spot market to raise the price.

In order to demonstrate the application of the first strategy, in Figure 4-1 we

will compare the total installed capacity of two models: the proposed bilevel model

assuming perfect competition in the spot market; and a one-stage cost minimization

problem - which will be referred to as “cost-based case” - also assuming perfect

competition. As shown in Figure 4-1, when the investor takes into account the increase
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in future spot prices resulting from low investment levels, the optimal amount of

capacity installed in the system is significantly lower. The reason for this result is

that strategic investors (bilevel case) use their ability of withholding investment to

benefit from higher spot prices.

Another effect given by this analysis is that, if power producers are forced to bid

their true production costs, the only remaining strategy to raise the spot price is to

under-invest. Therefore if there is strategic behavior in the investment level, the lower

the market power opportunities in the spot market, the higher the incentive to under-

invest. Thus, under the model’s assumptions, one should expect higher investment

levels under imperfect spot competition.
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Figure 4-1: Total capacity in perfect competition (bilevel case) versus perfect competition
(cost-based case).

To investigate this effect, we first present the results of our model under four

different assumptions of the strategic behavior of the firms in the spot market: per-

fect competition; a Cournot model as the extreme case for oligopolistic imperfect

competition; and two intermediate cases modeled by conjectural variations. Note

that perfect competition, Cournot and intermediate cases refer only to the behavior

of companies in the lower level, while at the upper level, i1 always has a dominant
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position. In Figure 4-2, we can observe the total installed capacity corresponding

to the strategic behavior. We can observe that the total installed capacity increases

when the strategic behavior in the market becomes increasingly oligopolistic. When

considering perfect competition, company i1 invests 6 GW in new capacity; however,

in the most extreme oligopolistic case - the Cournot case - company i1 invests 7 GW.

The interaction between both strategies (withholding investment or production)

also has an effect on the generation portfolio. The advantage of withholding pro-

duction instead of investment is that, in the former case, the power producer can

choose the hours in which to exercise market power. For instance, it is likely that

prices during peak hours are high enough to make the producer prefer producing at

the maximum output than raising the price even more. Conversely, low prices during

off-peak hours likely make it more profitable to raise the price by withholding pro-

duction. However, when spot markets are perfectly competitive, the only strategy to

raise the price is to lower the investment level.

From this viewpoint, the optimal generation portfolio in the case of oligopolistic

spot market would be made up of some base-load plants (high investment cost, low

operation cost), intended to produce in every period, and some peak-load plants (low

investment cost, high operation cost) that can be used only in the periods when there

is little incentive to withhold production. On the other hand, if the spot market is

perfectly competitive, all investments are aimed at producing in every period, and so

the percentage of base-load technologies should be higher.

To show this effect in the generation portfolio, in Figure 4-4 we show the in-

vestment decisions of company i1 for all four cases of different strategic behavior in

the spot market and we compare the obtained solutions. As the conjectural varia-

tion cases represent intermediate steps between perfect competition and the Cournot

case, we directly compare perfect competition with the intermediate case 1 (in the

first subplot of Figure 4-4), the two intermediate cases (in the second subplot) and

finally the intermediate case 2 with the Cournot case.

Analyzing the investments in intermediate case 1 with respect to perfect compe-

tition, we can observe a lower investment in nuclear (a base-load technology) which
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Figure 4-2: Total installed capacity for different cases of strategic spot market behavior.

is compensated for by a higher investment in technologies coal and CC. With re-

spect to the two previous cases, the observed shift in technologies continues in the

intermediate case 2. Capacity in nuclear decreases even more, capacity in coal and

CC increases, and for the first time there is an investment in gas turbines, the most

extreme peak-load technology in the model. In the Cournot case, capacity in coal

and CC decreases slightly with respect to the intermediate case 2 and is compensated

for by an increased investment in gas turbines.

Turning to the analysis of spot prices, when the firm plays both the under-

investment and the withholding-production strategies, the incentive for obtaining

extremely high peak prices is reduced with respect to the case where only the under-

investment strategy is played (the case with a cost-based spot market). The logic

for this is that the former investor can raise off-peak prices without the need for

withholding capacity in peak hours. To put it in another way, peak prices will be

higher in the cost-based spot market than in the Cournot spot market, which may

seem surprising at first sight but which becomes clear with the reasoning explained

above. On the other hand, cost-based spot market will have lower off-peak prices
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Figure 4-3: Price evolution for different cases of strategic spot market behavior.

than the Cournot spot market. Figure 4-4 shows this effect. When the competition

in the spot market is closer to Cournot’s, the peak prices fall whereas the off-peak

two prices increase. In fact, Figure 4-4 shows that the lowest peak prices correspond

to a Cournot investor in most of the years.

The evolution in capacity and prices is closely related to the generation company’s

profits. In Table 4.6, we present the NPV of company i1 for the four different strategic

situations. Note that the profit in the intermediate case 1 is only 7.3% higher than

the value obtained under perfect competition. The profit in the Cournot case is

significantly different from the perfect competition case, that is, 24.6% higher.
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Figure 4-4: Capacity evolution comparing all cases of strategic behavior.

The limitations of the presented model are that the investment decisions are as-

sumed to be continuous and that the investment decisions of the competition is fixed.

Moreover, the obtained solution is only local, even though a local solution is useful
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Table 4.6: Net present value of investor firm i1 [Me].

NPV

Perfect competition 12019
Intermediate case 1 12893
Intermediate case 2 14854
Cournot 14977

when parting from an existing capacity plan that should be improved. All these topics

will be addressed in the remainder of this chapter.

4.3 Stochastic Generation Expansion MPEC Ap-

proach

Generation expansion planning is a long-term problem that is subject to uncertain-

ties. This section presents a methodology to handle uncertainty in the generation

expansion problem by introducing stochasticity into the model formulation yielding

a stochastic MPEC. Obviously, there are various sources of uncertainty, however, in

this chapter we focus on uncertainty stemming from competitors’ investment deci-

sions. This methodology can be extended to other uncertain factors, e.g., fuel prices,

demand etc, will be addressed and discussed in chapter 7.

Similar to section 4.2, in this section we start out by discussing lower and up-

per level formulations in sections 4.3.1 and 4.3.2, followed by the stochastic MPEC

formulation in section 4.3.3 and a case study given in 4.3.4. The idea behind this

stochastic model is that capacity decisions in the upper level are taken considering

several scenarios of the lower level, which is depicted in Figure 4-5. As previously

mentioned, a variety of parameters can be considered stochastically with this type

of methodology. However, in order to derive a concrete model formulation, in this

section, we consider competitors’ investments as stochastic parameter.

In our approach, the choice of capacity investments of the investing generation

company mainly depends on two factors: the investment of the competing genera-

tion companies and the strategic behavior in the market, which determines prices
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Figure 4-5: Graphic representation of the stochastic MPEC generation expansion problem
faced by firm i∗.

and productions. As these two factors are by no means independent of each other,

uncertainty has been introduced through a set of scenarios s of investment capacities

of competitors coupled with corresponding conjectured-price responses. Note that

the capacity investment can also depend on financial limitations of the generation

company, however, this factor is not addressed here.

Then these scenarios are introduced in the formulation of the market equilibrium.

Hence all lower level variables like productions qi, demand d and price p will be

stochastic variables and therefore depend on the chosen scenario. The upper level

variables, which correspond to the installed generation capacity of the investing agent,

however will not be stochastic variables, because a generation company can only make

one investment decision as it is impossible to know which scenario is going to occur

in reality. In order to incorporate the uncertainty in the upper level of our bilevel

model, the criterion of maximizing the expected value to the upper level objective

function is applied, i.e., the investing generation company will now be maximizing

the expected profits considering all given scenarios. This implies that the investing

firm is assumed to be risk neutral. Introducing risk aversion in our models might be
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an interesting extension for future work.

Definition of Indices

Before we formulate the model, let us define all the indices that will be used through-

out this section. The index y corresponds to the set of years of the time horizon for

which we make our investment decisions; l corresponds to the load level with duration

T of each year in the time scope; i is the index of all generation companies; by i∗ we

denote the investing generation company and by -i∗ we denote all generation compa-

nies excluding the investing company; j corresponds to the different technologies of

generation capacity; s is the set of all scenarios and finally let s̃ denote one of these

scenarios.

4.3.1 Formulation of Stochastic Lower Level

For one scenario s̃, the lower level is presented in (4.38)-(4.41) and represents the

conjectured-price response market equilibrium mentioned in section 2.3.1, formulated

as an optimization problem as detailed in section 2.3.2 and re-introduced in section

4.2.1. In this section the lower level model will be presented for one scenario, however

the reader should keep in mind that in the resulting bilevel model the lower level

model has to be solved simultaneously for every scenario s.

Let us now describe the lower level model under scenario s̃ in detail. The decision

variables of the lower level are given by:

• Production qijyls̃ [GW] of each agent i, of each technology j, in each load level

l of each year y in scenario s̃.

• Demand dyls̃ [GW] in each load level l and year y depending on the current

scenario s̃.

min
q,d

∑
ijyl

δijqijyls̃Tyl

(1 + F )y
+

1

2

∑
iyl

θiyls̃Tyl(
∑

j qijyls̃)
2

(1 + F )y

−
∑
yl

Tyl

αyl(1 + F )y
(D0

yldyls̃ −
d2yls̃
2

)

(4.38)
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s.t. 0 ≤ qi∗jyls̃ ≤ xi∗jy +Ki∗jy : µi∗jyls̃, λi∗jyls̃ (4.39)

0 ≤ q-i∗jyls̃ ≤ X-i∗jys̃ +K-i∗jy : µ-i∗jyls̃, λ-i∗jyls̃ (4.40)

Tyl

(1 + F )y

∑
ij

(dyls̃ − qijyls̃) = 0 : pyls̃ (4.41)

The lower level objective function, which corresponds to the one in (4.1), is stated

in (4.38) and yields the market equilibrium by minimizing the difference between

the extended costs minus the demand utility, i.e., solving the market clearing. The

extended costs don’t correspond to a real-life measure but represent an auxiliary

function in order to capture the market outcomes. The extended costs are computed

using the constants δij [e/MWh] which correspond to unitary production costs of

each technology j, the duration of each load level Tyl [kh] and the conjectured-price

responses θiyls̃ [(e/MWh)/GW] of each company i in each load level l of each year y

in scenario s̃.

The constraints that are linking the lower and the upper level can be found in

(4.39) and (4.40), which correspond to the lower and upper bounds of production

qijyls̃. For the investing agent, the production is limited from above by the upper

level variable xi∗jy plus the already installed capacity data Ki∗jy, see (4.39), which is

the generation capacity in technology j and year y. For the non-investing companies

however, the productions are limited from above, see (4.40), by the constants X-i∗jys̃,

which depend on the scenario s̃ plus the already installed capacity constants plus

K-i∗jy. Equation (4.41) represents the power-demand balance equation that we have

also seen in problem (4.4). Note that the dual variable of this equation pyls̃ corre-

sponds to the system’s marginal price that clears the market. Similarly, µijyls̃, λijyls̃

are dual variables corresponding to the constraints given in (4.39)-(4.40).

Since the previously presented optimization problem is continuous and convex, it

can be replaced by its KKT conditions. The optimization problem given by (4.38)-

(4.41) represents the conjectural variations market equilibrium under one particular

scenario s̃. However, the MPEC model that we set out to develop in this section is a

stochastic model and therefore has to be able to handle various scenarios. Therefore,

the spot market equilibrium for a set of scenarios s, using the KKT conditions to
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represent each individual market equilibrium, is given by:

δijTyl

(1 + F )y
+

∑
j θiylsqijylsTyl

(1 + F )y
− Tylpyls

(1 + F )y
+ λijyls − µijyls = 0 ∀ijyls (4.42)

µijylsqijyls = 0 ∀ijyls (4.43)

λi∗jyls(Ki∗jy + xi∗jy − qi∗jyls) = 0 ∀jyls (4.44)

λ-i∗jyls(K-i∗jy +X-i∗jys − q-i∗jyls) = 0 ∀-i∗jyls (4.45)

qi∗jyls ≤ xi∗jy +Ki∗jy ∀jyl (4.46)

q-i∗jyls ≤ X-i∗jys +K-i∗jy ∀-i∗jyls (4.47)

0 ≤ qijyls ∀ijyls (4.48)

0 ≤ µijyls, 0 ≤ λijyls ∀ijyls (4.49)

dyls −
∑
ij

qijyls = 0 ∀yls (4.50)

dyls −D0
yl + αylpyls = 0 ∀yls (4.51)

4.3.2 Formulation of Stochastic Upper Level

In the upper level, which can be found in (4.52)-(4.53), we maximize the expected

value of profit, i.e., net present value of company i∗ which is the only company deciding

its investment in generation capacity xi∗jy of each technology j in each year y. When

considering the expected NPV we assume that firm i∗ is risk neutral, however, a firm

that is risk averse or prone could adopt a different approach. Note that the capacities

of the rest of the companies X-i∗jys are not decision variables of this problem, and

are incorporated via the scenarios s. In (4.52) we sum over the net present value,

discounted with discount rate F , obtained in each scenario s multiplied by the

probability of this scenario Ws.

In general the profit of company i∗ corresponds to the market revenues minus the

arising costs. The market revenues are given by the product between market price

pyls and productions qi∗jyls. The costs consist of production costs and investment

costs. The production costs correspond to the term δi∗jqi∗jyls and the investment

costs are given by the term βi∗jyxi∗jy, where βi∗jy [(Me/GW)/year] is the unitary
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annual investment cost. An additional monotonicity of generation capacity is fulfilled

in (4.53). Monotonicity of generation capacity is a weak hypothesis considering that

demand usually increases over time. This assumption has been made in order to

assist the solver in the search for a solution, however, if this constraint were omitted,

most likely the optimal solution would not change.

max
xi∗jy

∑
sy

Ws

(1 + F )y
[∑

jl

Tyl(pyls − δi∗j)qi∗jyls −
∑
j

βi∗jyxi∗jy
]

(4.52)

s.t. 0 ≤ xi∗j(y−1) ≤ xi∗jy (4.53)

4.3.3 Formulation of Stochastic MPEC

The proposed stochastic MPEC modeling the stochastic generation capacity expan-

sion problem is given in (4.54)-(4.65), where (4.54) and (4.55) is the part correspond-

ing to the former upper level and (4.56)-(4.65) represents the lower level for each

scenario s. The difference between this model and the one previously presented in

section 4.2.3, is that while previously only one deterministic case was considered, the

stochastic MPEC provides the methodology to consider various scenarios of competi-

tors’ investments (or production costs or demand data).

Equations (4.56) and (4.65) are the derivatives of the Lagrangian of the lower level,

(4.57)-(4.59) are the complementarity conditions and (4.63) contains the positivity

constraints of the dual variables from the lower level. Finally, (4.60)-(4.62) and (4.64)

are the constraints of the lower level. The set of variables of the stochastic MPEC

is Ωi∗ = {xi∗jy, qijyls, pyls, dyls, µijyls, λijyls, } ∀ijyls. The nonlinearities or the arising

MPEC are the complementarity conditions (4.57)-(4.59) and the market revenue term

in the objective function.

Stochastic Bilevel Optimization Model (SBOM):

max
Ωi∗

∑
sy

Ws

(1 + F )y
[∑

jl

Tyl(pyls − δi∗j)qi∗jyls −
∑
j

βi∗jyxi∗jy
]

(4.54)

s.t. 0 ≤ xi∗j(y−1) ≤ xi∗jy ∀jy (4.55)
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δijTyl

(1 + F )y
+

∑
j θiylsqijylsTyl

(1 + F )y
− Tylpyls

(1 + F )y
+ λijyls − µijyls = 0 ∀ijyls (4.56)

µijylsqijyls = 0 ∀ijyls (4.57)

λi∗jyls(Ki∗jy + xi∗jy − qi∗jyls) = 0 ∀jyls (4.58)

λ-i∗jyls(K-i∗jy + x-i∗jys − q-i∗jyls) = 0 ∀-i∗jyls (4.59)

qi∗jyls ≤ xi∗jy +Ki∗jy ∀jyl (4.60)

q-i∗jyls ≤ x-i∗jys +K-i∗jy ∀-i∗jyls (4.61)

0 ≤ qijyls ∀ijyls (4.62)

0 ≤ µijyls, 0 ≤ λijyls ∀ijyls (4.63)

dyls −
∑
ij

qijyls = 0 ∀yls (4.64)

dyls −D0
yl + αylpyls = 0 ∀yls (4.65)

4.3.4 Numerical Example of Stochastic MPEC

In this section we present a numerical example of the stochastic MPEC to demon-

strate how the new stochastic methodology can be applied. In particular, we start

out by briefly discussing two different solution methods of the stochastic MPEC,

one involving nonlinear programming and the other one involving mixed integer pro-

gramming. Then the test system and necessary data is described. Finally, the results

are presented and analyzed paying particular attention to the performance of the

different resolution methods and a comparison between the stochastic and the de-

terministic cases. This case study forms part of the journal article [116] and is an

original contribution of this thesis.

Resolution Methods

Here we will present two ways to solve the presented stochastic MPEC: via nonlinear

programming and via mixed integer programming. Nonlinear programming has the

advantage of solving realistically-sized problems in reasonable time but fails to yield a

global solution whereas mixed integer programming yields a global solution but takes

longer to solve and in general only allows us to solve smaller problem instances.
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The presented MPEC is a nonlinear non-convex problem, due to the complemen-

tarities and the bilinear product of prices and quantities in the objective function.

Therefore employing a nonlinear solver does not guarantee to find a global optimum.

However, smart initialization may assist the nonlinear solver to find a satisfactory

solution. In order to obtain a meaningful initial solution to the MPEC, we first solve

a simultaneous optimization problem, i.e., investment and production decisions are

taken simultaneously, such as is done by Ventosa in appendix B of [113], which is

formulated as a Mixed Complementarity Problem (MCP).

As a second resolution approach we linearize the presented MPEC to obtain a

MILP. As stated above the nonlinearities of the MPEC are due to the complementar-

ities and the product of prices and quantities in the objective function. We take care

of the complementarities (4.57)-(4.59) by replacing them by their linear equivalent,

as done by Fortuny-Amat [49]:

Cµbµijyls ≥ µijyls, (4.66)

Cµ(1− bµijyls) ≥ qijyls, (4.67)

Cλbλi∗jyls ≥ λi∗jyls, (4.68)

Cλ(1− bλi∗jyls) ≥ (Ki∗jy + xi∗jy − qi∗jyls), (4.69)

Cλbλ-i∗jyls ≥ λ-i∗jyls, (4.70)

Cλ(1− bλ-i∗jyls) ≥ (K-i∗jy +X-i∗jys − q-i∗jyls), (4.71)

for Cµ, Cλ suitably large constants and bµijyls, b
λ
ijyls binary variables.

As for the bilinear terms pylsqi∗jyls in the objective function, we apply a method

called binary expansion to the variable price pyls, as done by Pereira in [93]:

pyls = p
yls

+∆pyls

∑
k

2kbpkyls, (4.72)

where p
yls

is the lower bound, ∆pyls is the step size of price, k the set of discretization

intervals and bpkyls are binary variables. Then the bilinear terms pylsqi∗jyls of the

objective can be replaced by p
yls
qi∗jyls +∆pyls

∑
k 2

kzki∗jyls, where zki∗jyls symbolizes
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the product of prices with quantities and is defined by the following constraints, which

also have to be added to the problem:

0 ≤ zki∗jyls ≤ Cpbpkyls, (4.73)

0 ≤ qi∗jyls − zki∗jyls ≤ Cp(1− bpkyls), (4.74)

for Cp a suitably large constant.

System Description

In this case study we present a stylized electric power system consisting of three

generation companies i1, i2, i3, where i1 will be the only firm deciding its investment

in generation capacity while the capacity investments of the other two firms will

be incorporated via three alternative scenarios s1, s2, s3. It will be assumed that

generation companies i2 and i3 are identical. The installed capacity of these two

firms in the first year is given in Table 4.7 for each of the investment scenarios. The

initial investments are assumed to increase 0.5% with every passing year. Note that

Kijy is considered to be zero in this case study.

Three different scenarios of the competitors’ investments and corresponding conjectured-

price responses θ are incorporated: perfect competition (s1), an intermediate case

(s2) which lies between perfect competition and the Cournot oligopoly, and finally

the Cournot oligopoly (s3). Table 4.8 provides the probability Ws as well as the

corresponding conjectured-price response θ of each scenario.

Company i1 will have the choice between two different technologies, which corre-

spond to Nuclear and CC, where Nuclear represents a base-load technology as it has

high investment costs and low variable costs and CC represents a peak-load technol-

ogy because it has lower investment but higher production costs. Investment costs

and production costs of each technology are presented in Table 4.9 and were estimated

based on data given by the International Energy Agency [89]. We assume these costs

are the same for every company.

Table 4.11 provides the duration of each of the two load levels and Table 4.10
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Table 4.7: Installed generation capacity [MW] of firm 2 and firm 3 for all scenarios.

s1 s2 s3

Nuclear 8000 6210 4520
CC 2670 2070 1510

Table 4.8: Probability [p.u.] and conjectured-price response θ [(e/MWh)/GW] of scenarios.

s1 s2 s3

Ws 0.2 0.5 0.3
θ 0.0 2.175 4.35

the intercept of the demand curve in the first year. Each year a sustained 3% in-

crease of the demand is considered. The demand slope α was chosen to be 0.23

[GW/(e/MWh)] based on Garcia-Alcalde et al. [53]. Moreover we consider a time

scope of five years and a discount rate F of 2%.

Analysis of Results

All models have been formulated in GAMS. The computational time to solve the

stochastic MPEC of the case study - a problem of 643 variables - by initializing smartly

and by using the solver CONOPT on an Intel(R) Core(TM) 2 Quad Processor with

3.21 GB RAM was 0.8 seconds. Using CPLEX to solve the case study problem as a

MILP with a step size ∆pyls = 0.15 e/MWh yields a model of about 1850 variables

and took about 11.5 hours. For a MILP with a finer step size of ∆pyls = 0.04 e/MWh

the number of variables increases to about 2050 and the resolution time increases to

about 20 hours.

In Table 4.12 we compare the expected profits of the investing firm obtained by

solving the MPEC using the nonlinear solver CONOPT and by solving the MILP

Table 4.9: Production and investment cost for each technology.

Production cost δ Annual investment cost β
[e/MWh] [Me/GW]

Nuclear 11.8 46,000
CC 24.0 15,000
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Table 4.10: Demand intercept D0 in year 1 [GW].

Peak Off-peak

55.213 36.036

Table 4.11: Annual load level durations [h].

Peak Off-peak

3300 5460

with two different step sizes using CPLEX. In this particular case we observe that

the MPEC yields expected profits that are higher than the profits obtained by the

coarser MILP but lower than the profits of the finer MILP, implying that the choice

of ∆pyls is critical.

In Figure 4-6 we present the corresponding capacity investment decisions over

the entire time horizon, as well as the starting point that was used to compute the

MPEC, which is referred to as MCP and was obtained by solving a simultaneous op-

timization problem, as the MCP given in Ventosa et al. [113]. The upper plot depicts

capacity investments in nuclear and the lower plot depicts the capacity investments

in CC. Comparing the investment decisions of the two MILPs, we observe that even

though there only is a 4% difference in the objective function value, the investment

decisions are very different, i.e., under the coarser MILP there is more than double

the investment in CC than under the finer MILP and there are 6 GW less of nuclear

investments. This shows that the solution of the MILP depends considerably on the

choice of the step size and hence it has to be chosen carefully.

Moreover we observe that for this case study the investment decisions of the

MPEC are not too different from the decisions taken by the finer MILP, i.e.,∆p = 0.04

Table 4.12: Total expected net present value of investing firm in [Me].

MPEC MILP MILP
∆p = 0.15 ∆p = 0.04
[e/MWh] [e/MWh]

NPV [Me] 30921 30691 31877
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Figure 4-6: Capacity investment results obtained by MILPs, MPEC and MCP.

e/MWh, while only taking a small fraction of its computational time. In particular,

when comparing the MPEC and the finer MILP, the investment in nuclear is almost

exactly the same - in the last year there only is a difference of about 0.5 GW out

of 18 GW installed. Under the finer MILP the investment in CC is about 1.9 GW

higher than under the MPEC. In terms of total capacity the difference amounts to

1.4 GW, which yields a relative difference of only 7%.

Figure 4-7 gives the investment results of the stochastic MILP with ∆pyls = 0.15

e/MWh and compares them to three deterministic MILPs, each representing one of

the three scenarios individually. In particular we solve three deterministic MILPs,

each considering a fixed generation capacity of the competition, given by Table 4.7,

and a corresponding strategic behavior in the spot market (lower level), which is
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characterized by θ, given in Table 4.8. As scenario s1 assumes a perfectly competi-

tive market, we will refer to its deterministic results as “Perfect Competition”. The

deterministic results of scenario s2 will be referred to as “Intermediate” and the de-

terministic results of scenario s3 shall be referred to as “Cournot” as the strategic

behavior in the market is the Cournot oligopoly. Finally, note that each deterministic

MILP was discretized using the same step size.

The first observation we make is that the investment in the stochastic case lies

between the deterministic scenarios as expected. The stochastic investment in nuclear

almost exactly coincides with the Cournot solution, while the stochastic investment

in CC lies about halfway between the Cournot and the Intermediate solution. We

furthermore notice that when the strategic behavior in the spot market becomes more

competitive, the investments in the peak load technology CC decrease while invest-

ments in the base load technology nuclear seem to increase. This can be explained

as follows. When the spot market is perfectly competitive, it is not lucrative for the

investing agent to build peaking units because these units do not yield any profits

in off-peak hours. In off-peak hours capacity will not be binding in the market and

hence the perfectly competitive solution in the market yields the market price as the

marginal cost of the most expensive unit needed. Even if this unit is a CC peaking

unit and is hence dispatched during off-peak hours, it would only recover its vari-

able cost but not the investment cost. In peak hours capacity will be binding and

the market price will be higher than the marginal cost of a peaking unit as there is

under-investment in capacity even in the perfectly competitive case. This is due to

the fact that in a two-stage model the investing generation company is aware that

investments influence market outcomes and that if there were over-investment there

would be no profits at all. This is often observed for two-stage models. However,

in this case study the peak period seems to be too short for the peaking units to be

profitable under perfect competition.

On the other hand, when the strategic behavior in the spot market is oligopolistic

then the market price will be above marginal costs, hence yielding profits for peaking

units in both peak and off-peak periods. Therefore, investment in peaking units
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Figure 4-7: Capacity investment results obtained by stochastic MILP and deterministic
MILPs.

becomes more attractive under oligopolistic behavior than under perfect competition.

Moreover, under oligopolistic behavior the investing generation company can exert

market power and hence raises prices by decreasing its amount of base load capacity.

Both effects can be observed in Figure 4-7.

In the following section 4.4 we discuss how to formulate possible model extensions,

which have previously been motivated in section 2.4.3. The corresponding case studies

can be found in chapter 7.
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4.4 Generation Expansion Model Extensions

In chapter 2, the generation expansion optimization model, which is formulated as an

MPEC, has been introduced in a basic version. In the section 2.4.3, we have pointed

out that there are certain aspects of the model which could be extended in order to

make the model more realistic. After having discussed the MPEC model in detail

in this chapter, we now present how to model the motivated extensions mentioned

in section 2.4.3. In particular, in section 4.4.1 we introduce hydro energy, show how

investment decisions can be discretized in section 4.4.2, how capacity mechanisms

can be approached in section 4.4.3 and other instances of uncertainty treatment in

fuel prices or hydro inflows in section 4.4.4, and finally in section 4.4.5 we briefly talk

about other details in the model formulation.

In order to keep the formulation of the extended model as simple as possible, in

all subsections of this section 4.4 we part from the same basic version of the MPEC

that has been introduced previously in (4.19)-(4.30), however, it is also possible to

consider an MPEC that is a combination of various of the below presented features.

4.4.1 Introduction of Hydro Power

As pointed out in section 2.4.3, in the basic version of our MPEC model we only

consider thermal technologies. However, in order to represent a realistic power system,

hydro power has to be introduced. Hence, in this section we first formulate the lower

level with introduced hydro power constraints, then we show how to adapt the upper

level formulation in order to include hydro power, and finally, we merge the two levels

to present the new MPEC model which also represents the hydro technology.

Lower Level with Hydro Production

First of all, let us denote hiyl, which is a variable of the lower level, as the power

production of hydro plants of firm i in year y and load period l. Then the conjectured-

price response market equilibrium including hydro energy, can be written as an equiv-

alent optimization problem, which is given by (4.75)-(4.79). Note that the only change
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in the extended cost term in the objective function (4.75) is that now total production

is considered as the sum of hydro and thermal production. While the lower and up-

per bound on thermal production given in (4.76) have not changed, there are several

new constraints considered in this problem. The remaining constraints are related to

hydro production: upper (and lower) (4.77) hydro level bounds with H, maximum

company hydro power output considered as constant throughout each year; (4.78)

maximum yearly hydro energy production represented as Eiy; and (4.79) the power

balance, whose dual variable is price p; It can be shown that the lower level opti-

mization problem is convex. The model is oriented to study thermal expansion and

hydro capacity, included to make the model more realistic, is taken as known. With

this representation, each agent dispatches its hydro production in order to maximize

profit.

min
q,h,d

∑
ijyl

δijqijylTyl

(1 + F )y
+

1

2

∑
iyl

θiylTyl(hiyl +
∑

j qijyl)
2

(1 + F )y

−
∑
yl

Tyl

αyl(1 + F )y
(D0

yldyl −
d2yl
2
)

(4.75)

s.t. 0 ≤ qijyl ≤ xijy +Kijy ∀ijyl : µijyl, λijyl (4.76)

0 ≤ hiyl ≤ Hiyl ∀iyl : µH
iyl, λ

H
iyl (4.77)∑

l

Tylhiyl ≤ Eiy ∀iy : λE
iy (4.78)

Tyl

(1 + F )y
(dyl −

∑
i

hiyl −
∑
ij

qijyl) = 0 ∀yl : pyl (4.79)

Since the equivalent optimization problem in (4.75)-(4.79) is a convex problem, it

can be replaced by its KKT conditions which are:

δijTyl

(1 + F )y
+

θiylTyl(hiyl +
∑

j qijyl)

(1 + F )y
− Tylpyl

(1 + F )y
+ λijyl − µijyl = 0 ∀ijyl (4.80)

θiylTyl(hiyl +
∑

j qijyl)

(1 + F )y
− Tylpyl

(1 + F )y
+ λH

iyl − µH
iyl + λE

iyTyl = 0 ∀iyl (4.81)

µijylqijyl = 0, λijyl(Kijy + xijy − qijyl) = 0 ∀ijyl (4.82)
µH
iylhiyl = 0, λH

iyl(Hiyl − hiyl) = 0 ∀iyl (4.83)
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λE
iy(Eiy −

∑
l

Tylhiyl) = 0 ∀iy (4.84)

0 ≤ qijyl ≤ xijy +Kijy ∀ijyl (4.85)
0 ≤ hiyl ≤ Hiyl ∀iyl (4.86)

0 ≤ µijyl, 0 ≤ λijyl ∀ijyl (4.87)
0 ≤ µH

iyl, 0 ≤ λH
iyl ∀iyl (4.88)

0 ≤ λE
iy ∀iy (4.89)

dyl −
∑
i

hiyl −
∑
ij

qijyl = 0 ∀yl (4.90)

dyl −D0
yl + αylpyl = 0 ∀yl (4.91)

Upper Level with Hydro Production

The upper level considering hydro production is similar to the already known version

of the upper level given in previous sections of this chapter. The only change is that

now market revenues in the objective function (4.92) are calculated as the product of

market price and total productions, given as the sum of hydro and thermal produc-

tion. Note that for hydro energy, a variable production cost of zero is considered and

hence there are no corresponding production costs. Moreover, since in many coun-

tries, for example in Spain, the maximum capacity for hydro technology has already

been reached, no further capacity investment decisions in hydro technology are being

considered.

max
xi∗jy

∑
y

1

(1 + F )y
{∑

l

Tylpyl(hi∗yl +
∑
j

qi∗jyl)

−
∑
jl

Tylδi∗jqi∗jyl
∑
j

βi∗jyxi∗jy
} (4.92)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.93)

MPEC with Hydro Production

Finally, the bilevel optimization generation expansion model considering hydro en-

ergy is given by the MPEC below, where the set of MPEC variables Ωi∗ is given
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as Ωi∗ = {xi∗jy, pyl, dyl, qijyl, hiyl, µijyl, λijyl, µ
H
iyl, λ

H
iyl, λ

E
iy} ∀ijyl. Note that equation

(4.96) represents the market equilibrium.

max
Ωi∗

∑
y

1

(1 + F )y
{∑

l

Tylpyl(hi∗yl +
∑
j

qi∗jyl)

−
∑
jl

Tylδi∗jqi∗jyl
∑
j

βi∗jyxi∗jy
} (4.94)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.95)

Constraints: (4.80)− (4.91) (4.96)

4.4.2 Discrete Investment Decisions

One of the simplifications of the basic generation expansion bilevel optimization model

is that investment decisions xijy were assumed to be continuous variables. However,

in reality capacity decisions are discrete and it would therefore be desirable to model

these variables as such. In a first, naive approach variables xijy could be defined as

integer variables, which would yield a mixed integer nonlinear program, which can be

quite complicated to solve. However, when taking a closer look at the basic MPEC

model, given by (4.19)-(4.30), it can be shown that this nonlinear program can be

transformed into a MILP by discretizing investment decisions.

First of all, let us recall that the nonlinearities of the MPEC were formed by

the complementarity conditions that arise when replacing the lower level by its KKT

conditions, and the nonlinear market revenue term of the objective function. As

has been mentioned in section 4.3.4, there is a linear equivalent of complementarity

conditions which can be obtained introducing large constants and binary variables

in the model formulation. In this way, all complementarity conditions constraints of

the MPEC, like µq = 0, can be replaced by the following expression, where Cµ is a

sufficiently large constant and bµ is a binary variable.

Cµbµ ≥ µ (4.97)

Cµ(1− bµ) ≥ q (4.98)
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The only nonlinearity left to deal with is the bilinear term of the market revenues

in the objective function of the MPEC. In the previously presented case study in

section 4.3.4, this nonlinearity has been linearized by discretizing the market price

pyl. While this approach has the desired effect of transforming the MPEC into a

MILP, it does not solve the issue of having discrete investment decisions, and more-

over, market prices are lower level variables, which should be continuous since they

correspond to the dual variable of the demand balance equation. By discretizing

prices we might loose valuable possible solutions to the problem. For example, the

globally optimal solution might occur at a market price of 43.21 e/MWh, however,

if due to the discretization the market price is composed of increments of 4 or 15

ce, then this solution can never be achieved by the discretized MILP. Therefore, due

to discretization, the optimal solution of the original problem and the MILP might

not coincide, leading to the loss of the actual optimum. Hence, another approach to

discretize the market revenue term has to be considered. For this purpose, we recall

the basic MPEC model with Ωi∗ = {xi∗jy, pyl, dyl, qijyl, µijyl, λijyl} ∀ijyl:

max
Ωi∗

∑
y

1

(1 + F )y
{∑

jl

Tylpylqi∗jyl −
∑
jl

Tylδi∗jqi∗jyl

−
∑
j

βi∗jyxi∗jy
} (4.99)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.100)

δijTyl

(1 + F )y
+

∑
j θiylqijylTyl

(1 + F )y
− Tylpyl

(1 + F )y
+ λijyl − µijyl = 0 ∀ijyl (4.101)

µijylqijyl = 0 ∀ijyl (4.102)

λijyl(Kijy + xijy − qijyl) = 0 ∀ijyl (4.103)

qijyl ≤ xijy +Kijy ∀ijyl (4.104)

0 ≤ qijyl ∀ijyl (4.105)

0 ≤ µijyl, 0 ≤ λijyl ∀ijyl (4.106)

dyl −
∑
ij

qijyl = 0 ∀yl (4.107)

dyl −D0
yl + αylpyl = 0 ∀yl (4.108)
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From equation (4.101) we obtain an expression for price pyl, which is given in

(4.109). Multiplying both sides of (4.109) with qijyl yields (4.110). Due to the com-

plementarity conditions (4.102) and (4.103), the term µijylqijyl is zero and the term

λijylqijyl can be replaced by λijyl(Kijy + xijy). Considering that (4.110) is true for all

j, we sum (4.110) over j, which in turn yields (4.111).

It is clear to see that the left-hand side of (4.111) represents the nonlinear term

of the classification function. The terms on the right-hand side of (4.111) are linear

except the term including λijylxijy and the quadratic term including (
∑

j∗ qij∗yl)
2. The

first term can be linearized by discretizing investment decisions and the quadratic

term can be represented by a piecewise linear function. In the remainder of this

section we describe in detail how to linearize both of these terms which then yields

the linear formulation of the objective function.

Tylpyl
(1 + F )y

=
δijTyl

(1 + F )y
+

θiylTyl

∑
j∗ qij∗yl

(1 + F )y
+ λijyl − µijyl (4.109)

Tylpylqijyl
(1 + F )y

=
δijTylqijyl
(1 + F )y

+
qijylθiylTyl

∑
j∗ qij∗yl

(1 + F )y
(4.110)

+λijylqijyl − µijylqijyl∑
j Tylpylqijyl

(1 + F )y
=

∑
j δijTylqijyl

(1 + F )y
+

θiylTyl(
∑

j∗ qij∗yl)
2

(1 + F )y
(4.111)

+
∑
j

λijyl(Kijy + xijy)

Discretize Approximated Investments

The bilinear term λijylxijy in (4.111) can be linearized easily by discretizing investment

decisions xijy. We discretize xijy as presented in (4.112), where ∆x is the chosen step

size, k the set of discretization intervals and bxkijy are binary variables. Then the

bilinear terms λijylxijy, can be replaced by ∆x

∑
k 2

kzxkijy, where zxkijy symbolizes the

product of the two variables and is defined by the following constraints, which also

have to be added to the problem:

xijy = ∆x

∑
k

2kbxkijy, (4.112)
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0 ≤ zxkijy ≤ Cxbxkijy, (4.113)

0 ≤ λijyl − zxkijy ≤ Cx(1− bxkijy), (4.114)

for Cx a suitably large constant. With this formulation we achieve that investment

decisions are converted into discrete variables, which is more realistic than considering

them continuous variables.

Piecewise Linear Function

In order to linearize the quadratic (
∑

j qijyl)
2 in (4.111), we formulate a piecewise

linear function. This is done in the following fashion. At several points the curve

(
∑

j qijyl)
2 is approximated by the tangent lines. Let us refer to the x-axis value of

the intersection points of these lines as ISiylm, where m is the index of intersection

points and Siylm represents the slope of the tangent lines. Then the variables distiylm,

that are supposed to sum up to
∑

j qijyl, refer to the part of
∑

j qijyl between the

intersection points m and m − 1. The binary variables bdistiylm are one if the variable

distiylm is at its upper bound. Then, in order to approximate the function (
∑

j qijyl)
2

linearly, we define the variable q̄iyl as follows:

(ISiylm − ISiylm−1)b
dist
iylm ≤ distiylm ∀iylm (4.115)

(ISiylm − ISiylm−1)b
dist
iylm−1 ≥ distiylm ∀iylm (4.116)∑
j

qijyl =
∑
m

distm ∀iyl (4.117)

q̄iyl =
∑
m

distmSm ∀iyl (4.118)

Discrete Investment MPEC

Finally, applying this to the basic version of the MPEC that we started out with,

yields a MILP formulation of this MPEC, which is formulated as:

161



max
∑
iy

1

(1 + F )y
{∑

l

Tylθiq̄iyl −
∑
j

βijyxijy +
∑
lj

λijylKijy(1 + F )y

+
∑
jl

(1 + F )y∆x

∑
k

2kzxkijy
} (4.119)

s.t. Linear complementarity conditions: (4.97)− (4.98) (4.120)

s.t. Rest of lower level constraints: (4.101), (4.104)− (4.108) (4.121)

s.t. Discretized approximated investments: (4.112)− (4.114) (4.122)

s.t. Piecewise linear function: (4.115)− (4.118) (4.123)

4.4.3 Capacity Mechanisms

One of the main advantages of the type of model that we propose in this thesis is that

it is useful to assess the functionality and effectiveness of certain regulatory measures

before introducing them into the market. For a thorough discussion of this topic the

reader is referred to Battle and Rodilla [8, 103]. In this section we discuss the very

important topic of capacity mechanisms and how they can be introduced into the

presented bilevel optimization model.

First of all, the basic version of the MPEC model which has been introduced in

section 4.2 does not consider any kind of regulatory intervention in the market in order

to guarantee security of supply. The regulatory instrument of no intervention can be

referred to as “leave it to the market” or “energy-only” approach. This is the simplest

capacity mechanism, which is based on the principle that the market itself will provide

the appropriate price signals to incentivize capacity investments and that market

agents will learn about the importance of long-term hedging. Theoretically speaking,

this instrument has its merits but for it to work there have to be blackouts and non-

served energy - causing energy prices to go through the roof - which furthermore

leads to the recuperation of the investments of peaking plants. In practice however,

this method ignores the existence of market failures as for example the risk aversion

of investors or the passiveness of consumers. Moreover, in many electricity systems
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there are price caps which distort the economic signals of the market. Therefore in

the majority of electricity systems there exists some form of regulatory intervention in

the market in order to guarantee security of supply. In this section we motivate how

to introduce two different regulatory capacity instruments in our model - capacity

payments and some form of locational capacity market - and in section 7.1 we carry

out a corresponding case study. Other capacity mechanisms as for example capacity

options are more complicated to model and their introduction into our models would

be an interesting line of future research.

Capacity Payments

The capacity payment is a price-based mechanism which assigns payments to indi-

vidual generators based on their contribution to system reliability. The motivation

of this regulatory mechanism is to incentivize more capacity investments and reduc-

ing the risk aversion of investors by guaranteeing them a stable income. This type

of payment is usually linked to the firm capacity installed by all generators. The

amount of the payment depends on the technology of the individual plant because 1

MW of hydro technology contributes differently to the system reliability as 1 MW of

installed CC depending on reservoir management strategies or contracts etc. From

a regulatory point of view, this mechanism has two weak points: first, the lack of a

clear definition of a reliability product and second, they have to fix a certain price.

For a detailed discussion on capacity payments, we refer the reader to Battle and

Rodilla [8]. In our models we therefore introduce the capacity payment parameter

CPijy [Me/GW] and we furthermore assume for simplicity of the formulation that

the newly installed capacity xijy and the already existing capacityKijy are firm. Then

the arising MPEC with Ωi∗ = {xi∗jy, pyl, dyl, qijyl, µijyl, λijyl} ∀ijyl can be formulated

as follows.

max
Ωi∗

∑
y

1

(1 + F )y
{∑

jl

Tyl(pyl − δi∗j)qi∗jyl −
∑
j

βi∗jyxi∗jy

+
∑
j

CPi∗jy(xi∗jy +Ki∗jy)
} (4.124)
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s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.125)

s.t. Market Equilibrium: (4.21)− (4.30) (4.126)

In the upper level objective function, given in (4.124), the first term corresponds

to market revenues minus production costs, the second term corresponds to invest-

ment costs and the new third term represents the capacity payments that firm i∗

receives for the total installed capacity in technology j for each year y. We omit the

full formulation of the lower level at this point since it is equivalent to a previous

formulation. The difference between this model and the basic MPEC (without regu-

latory intervention) is that here the generation company also takes into account the

additional revenues that it obtains for its installed capacity. The purpose of capacity

payments, obviously, is to increase capacity investments. This model can be employed

to assess how much a certain amount of capacity payments CPijy actually increases

investments in comparison to the basic MPEC which considered a “leave it to the

market” approach. Exactly this type of comparison will be carried out in chapter 7.

Locational Capacity Markets

Capacity markets are a specific example of a regulatory measure known as capacity

obligations, whose goal is to guarantee a regulated adequacy target for the system and

define commitments of the individual agents. The system operator or the regulator

determine certain levels of capacities - MW of installed capacity - and then load

entities have to contract this capacity. In capacity markets, demand has the obligation

to contract capacity required to supply future consumption. For more detail, the

reader is referred to Batlle and Rodilla [8].

Capacity prices stemming from systems with a capacity market are often volatile,

since they are either zero if there is excess capacity or an extremely high penalty if

there is lack of capacity. In order to reduce spikes in capacity prices, the ISO New

England proposed a different approach to FERC, i.e., the locational capacity market

(LICAP) [42] . In this method instead of considering a zero/penalty capacity price

step curve a “demand-for-generation-capacity” curve was proposed. Let us revisit
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this approach in a very simplified manner. Essentially we propose here to define the

capacity price CPy in year y as a function of total system capacity x̄y in this year,

i.e., CPy = CPy(x̄y). With this definition let us formulate the corresponding MPEC

in (4.127)-(4.132).

max
Ωi∗

∑
y

1

(1 + F )y
{∑

jl

Tyl(pyl − δi∗j)qi∗jyl −
∑
j

βi∗jyxi∗jy

+CPy

∑
j

(xi∗jy +Ki∗jy)
} (4.127)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.128)

x̄y =
∑
ij

(xijy +Kijy) ∀y (4.129)

CPy = G0
y − γyx̄y ∀y (4.130)

0 ≤ CPy ∀y (4.131)

(4.21)− (4.30) (4.132)

This MPEC is similar to the one previously defined when discussing capacity pay-

ments. However, the main difference is that now the actual capacity price CPy, which

appears in the upper level objective function (4.127), is not a constant but a variable

function which depends on total system capacity x̄y. Total system capacity is defined

in (4.129) as the sum of already existing capacity and new capacity investments of all

firms and over all technologies. In theory, the capacity price could be defined as any

function in x̄y, but here we will assume that CPy(x̄y) is linear in x̄y. In particular,

this affine relation between total system capacity and the resulting capacity payment

is formulated in (4.130), where G0
y [Me/GW] corresponds the maximum possible

capacity payment and γy [Me/GW2] is the slope of this “demand-for-generation-

capacity” curve. Note that the point G0
y/γy [GW] represents the maximum remu-

nerated capacity. Capacity price CPy is furthermore defined as positive in (4.131)

which guarantees that the maximum remunerated capacity is never exceeded. The

market equilibrium is given in (4.132). The set of variables of this MPEC is given by

Ωi∗ = {xi∗jy, x̄y, CPy, pyl, dyl, qijyl, µijyl, λijyl} ∀ijyl.
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4.4.4 Sources of Uncertainty

As previously pointed out in section 2.4.3, the long-term generation expansion prob-

lem is subject to various sources of uncertainty. In section 4.3 of this chapter we have

introduced a methodology to handle uncertainty when designing expansion planning

models. In particular, we have adapted this methodology to handle uncertainty stem-

ming from competitors’ investment decisions and their corresponding strategic spot

market behavior. However, there are other factors that have an important impact

on capacity expansion planning, the most significant being: uncertainty in fuel prices

and demand uncertainty. In this section we want to formalize how these types of un-

certainty can be addressed in the stochastic MPEC setting that we have introduced

in this chapter. Another factor that can influence investments is future hydro inflows,

for which we also propose an adequate model alternative. Other possible sources of

uncertainty in the generation expansion planning are not explicitly modeled here;

however, for some of them the presented methodology can be adapted correspond-

ingly. An important part of the problem, which the model by itself does not reflect, is

to adequately characterize the random variables and construct appropriate scenarios.

Fuel Price Uncertainty

Similar to the uncertainty in hydro inflows or demand uncertainty, presented below,

it is possible to model uncertainty stemming from varying fuel prices. In this setting,

the variable production costs would be considered under different fuel price scenarios,

which would lead to a stochastic parameter δijys. In order to model this type of

uncertainty it makes sense to have production costs that can vary each year y. Since

we are considering various scenarios of variable costs in the lower level, all lower level

variables become stochastic and depend on s. The arising lower level is similar to the

stochastic lower level with hydro inflow uncertainty or other stochastic lower levels

that have been presented in this section and will therefore be omitted here. However,

the upper level objective function for firm i∗ can be formulated as:

166



� pyl

�
dyl

�
�
�
�
�
�
�
��

D0
yl

D0
yl − αylpyl

Figure 4-8: Affine demand function in year y and load period l.

max
xi∗jy

∑
y

Ws

(1 + F )y
{∑

jl

Tyl(pyls − δi∗js)qi∗jyls −
∑
j

βi∗jyxi∗jy
}

(4.133)

Demand Uncertainty

The introduction of renewable energy sources, like wind or solar energy, in modern

electricity systems, has caused a rising level of uncertainty of net demand (real demand

minus available non-dispatchable renewable generation). In a country like Spain,

where more than 20 GW of wind capacity is installed for a peaking power of about 45

GW, the fluctuations in net demand depending on whether or not there is a lot of wind

energy dispatched in the system can be quite large. Naturally, this additional source of

uncertainty has an impact on the optimal investment mix. For this purpose we present

a methodology that allows us to handle wind-induced (or non-dispatchable renewable-

induced) uncertainty in the bilevel optimization generation expansion problem.

When introducing the basic version of the MPEC model in section 4.2, demand dyl

in year y and load period l has been taken as elastic, which is a realistic assumption

when considering the long term. Moreover, demand is defined by an affine expression

involving market price pyl, i.e., dyl = D0
yl − αylpyl, where D0

yl has been defined as the

demand intercept and αyl the demand slope. This relation is presented graphically

in Figure 4-8.

We recall from section 2.2.1 where we introduced this demand representation, that
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the load periods l of a certain year y are based on the monotonic annual load curve,

like the one presented in Figure 2-3. Instead of considering the actual hourly demand,

let us consider the hourly net demand, calculated as demand minus wind production,

then this would yield the monotonic annual net demand curve, which in general is

a much flatter curve than the monotonic annual demand curve. Following the same

methodology as in section 2.2.1, load periods can be carved out of this monotonic

annual net demand curve. Note that in terms of formulation there is no difference

between considering actual demand and net demand, however, there is a conceptual

difference. Therefore, when considering net demand in order to form load blocks, the

arising data of the demand intercept D0
yl and the demand slope αyl depend on the

hourly wind profile that has been used to calculate the net demand. We emphasize

here that different wind profiles or different wind scenarios lead to a different mono-

tonic annual net demand curve and therefore to a different representation of the net

demand in a certain year, which in turn leads to different values of demand intercept

and demand slope. In Figure 4-9 we have depicted possible scenarios of the affine

demand curve in year y and load period l stemming from different scenarios of wind

production. Note that introducing renewables into the power system, changes the

representation of demand and most likely it changes they way in which load periods

are constructed. In a system with a high penetration of renewable energy sources

other more technical details of the markets (as for example start-ups, shut-downs

and ramping constraints) become more important drivers of the investment decision.

Introducing these types of constraints into our generation expansion models poses an

interesting task for future research. We have taken a first step in this direction in the

conference paper by Nogales et al. [88].

Taking into account different scenarios s of net demand, originating from dif-

ferent scenarios of renewable energy sources like wind energy, the bilevel generation

expansion optimization problem can be derived correspondingly. The arising stochas-

tic MPEC is given below, where (4.134)-(4.135) corresponds to the upper level and

(4.136)-(4.141) represents the spot market equilibrium for each scenario. The set of

variables is characterized by Ωi∗ = {xi∗jy, pyls, dyls, qijyls, µijyls, λijyls} ∀ijyls.
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Figure 4-9: Scenarios of the affine demand function in year y and load period l.

max
Ωi∗

∑
y

Ws

(1 + F )y
{∑

jl

Tyl(pyls − δi∗j)
∑
j

qi∗jyls

−
∑
j

βi∗jyxi∗jy
} (4.134)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.135)

δijTyl

(1 + F )y
+

θiylTyl

∑
j qijyls

(1 + F )y
− Tylpyls

(1 + F )y
+ λijyls − µijyls = 0 ∀ijyls (4.136)

µijylsqijyls = 0, λijyls(Kijy + xijy − qijyls) = 0 ∀ijyls (4.137)

0 ≤ qijyls ≤ xijy +Kijy ∀ijyls (4.138)

0 ≤ µijyls, 0 ≤ λijyls ∀ijyls (4.139)

dyls −
∑
ij

qijyls = 0 ∀yls (4.140)

dyls −D0
yls + αylspyls = 0 ∀yls (4.141)

Hydro Inflow Uncertainty

In the previous section 4.4.1 we have presented how the basic MPEC model can be

extended to accommodate hydro production, which is an essential part of realistic

energy systems. The model that has been introduced in 4.4.1, and in particular in

(4.94)-(4.96), is a deterministic model which assumes one value of maximum hydro

production Hiyl [GW] and one fixed value for maximum annual hydro energy Eiy

[GWh]. The maximum hydro production Hiyl is data which mainly depends on the
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capacity of the turbine of hydro plants, but it is also related to the water level in

reservoirs which in turn depends on hydro inflows of a particular year. The maximum

annual hydro energy Eiy completely depends on the hydro inflows that have taken

place in year y. Hence, different scenarios s of possible hydro inflows are introduced

and the corresponding hydro data is defined as dependent on the scenarios s yielding

Hiyls and Eiys.

When introducing stochasticity in the lower level of the MPEC, all the lower level

variables become stochastic variables and hence depend on s. The lower level variables

are: market price pyls; thermal production qijyls; hydro production hiyls; demand dyls;

and all dual variables of lower level constraints, them being upper and lower bounds

on thermal production µijyls, λijyls, upper and lower bounds on hydro production

µH
iyls, λ

H
iyls, and the maximum annual hydro energy constraint with dual variable λE

iys.

With this notation in mind, the corresponding market equilibrium problem, written

as the system of KKT conditions, can be formulated as:

δijTyl

(1 + F )y
+

θiylTyl(hiyls +
∑

j qijyls)

(1 + F )y
− Tylpyls

(1 + F )y

+λijyls − µijyls = 0

∀ijyls (4.142)

θiylTyl(hiyls +
∑

j qijyls)

(1 + F )y
− Tylpyls

(1 + F )y
+ λE

iysTyl

+λH
iyls − µH

iyls = 0

∀iyls (4.143)

µijylsqijyls = 0, λijyls(Kijy + xijy − qijyls) = 0 ∀ijyls (4.144)

µH
iylshiyls = 0, λH

iyls(Hiyls − hiyls) = 0 ∀iyls (4.145)

λE
iys(Eiy −

∑
l

Tylhiyls) = 0 ∀iys (4.146)

0 ≤ qijyls ≤ xijy +Kijy ∀ijyls (4.147)

0 ≤ hiyls ≤ Hiyls ∀iyls (4.148)

0 ≤ µijyls, 0 ≤ λijyls ∀ijyls (4.149)

0 ≤ µH
iyls, 0 ≤ λH

iyls ∀iyls (4.150)

0 ≤ λE
iys ∀iys (4.151)
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dyls −
∑
i

hiyls −
∑
ij

qijyls = 0 ∀yls (4.152)

dyls −D0
yl + αylpyls = 0 ∀yls (4.153)

Since we have introduced stochasticity in the lower level, the upper level of the

MPEC has to be adapted to (4.154)-(4.155) for example if we assume that firm i∗ is

risk neutral. The parameter Ws represents the probability of each scenario s. Note

that the arising stochastic MPEC is formed by the upper level (4.154)-(4.155) subject

to all the scenarios of the lower level given by (4.142)-(4.153). This formulation allows

us to study how different hydro inflow scenarios can impact the generation expansion

decisions. In section 7.1 a corresponding case study is presented.

max
xi∗jy

∑
y

Ws

(1 + F )y
{∑

l

Tylpyls(hi∗yls +
∑
j

qi∗jyls)

−
∑
jl

Tylδi∗jqi∗jyls
∑
j

βi∗jyxi∗jy
} (4.154)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.155)

4.4.5 More Details

Additionally to the model extensions that have been presented in section 4.4, there

are other details that can be modeled in the generation expansion problem in order

to make it more realistic. One of these examples would be financial hedging (or

price hedging). Let us define the parameter financial coverage Miyl as the quantity in

[GW] of a firm i which is not exposed to the market price. This can be obtained, for

example, through contracts for differences where quantity Miyl is offered at a certain

price ηiyl in [e/MWh]. BothMiyl and ηiyl can be considered as data for the generation

expansion problem. With this in mind we can formulate the concept of the market

equilibrium problem below. The only difference to the formulation introduced in

section 2.3.1 is the lower level objective function representing the market net present

value.
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∀i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

maxq
∑

y
1

(1+F )y

{∑
jl Tyl(pyl − δij)qijyl +

∑
l TylMiyl(ηiyl − pyl)

}
s.t. qijyl ≤ xijy +Kijy ∀jyl : λijyl

0 ≤ qijyl ∀jyl : µijyl

(4.156)

dyl −
∑
ij

qijyl = 0 ∀yl (4.157)

dyl −D0
yl + αylpyl = 0 ∀yl (4.158)

By rearranging terms the lower level objective function can be rewritten as (4.159).

The last term is a constant and does hence not influence the optimality conditions.

The term (
∑

j qijyl − Miyl) represents the power that is still exposed to the market

and is therefore subject to price risk. With respect to this term the situation of the

firm is usually characterized by the expressions “short” or “long”. When the term

is positive the firm is “long”, which means that they produce more power than they

have hedged by a contract for differences, then it is interested in high market prices

which would increase profits. On the other hand, when the firm is “short” then they

produce less than what is covered by the contract for differences and hence they are

interested in low market prices.

max
q

∑
y

1

(1 + F )y
{∑

l

Tylpyl(
∑
j

qijyl −Miyl)−
∑
jl

Tylδi∗jqijyl+

∑
l

TylMiylηiyl
} (4.159)

The conceptual market equilibrium given by (4.156)-(4.158) can be replaced by

its KKT conditions, given by (4.160)-(4.165), since the convexity of the problem is

not compromised by adding the linear term representing the contract for differences.

δijTyl

(1 + F )y
+

Tylθiyl(
∑

j qijyl −Miyl)

(1 + F )y
− Tylpyl

(1 + F )y

+λijyl − µijyl = 0

∀ijyl (4.160)

µijylqijyl = 0, λijyl(Kijy + xijy − qijyl) = 0 ∀ijyl (4.161)
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0 ≤ qijyl ≤ xijy +Kijy ∀ijyl (4.162)

0 ≤ µijyl, 0 ≤ λijyl ∀ijyl (4.163)

dyl −
∑
ij

qijyl = 0 ∀yl (4.164)

dyl −D0
yl + αylpyl = 0 ∀yl (4.165)

Finally, the corresponding MPEC which contains a formulation for price hedging

through a contract for differences is presented below. The set of variables remains

the same as in the basic model, i.e., Ωi∗ = {xi∗jy, pyl, dyl, qijyl, µijyl, λijyl} ∀ijyl.

max
Ωi∗

∑
y

1

(1 + F )y
{∑

jl

Tyl(pyl − δi∗j)
∑
j

qi∗jyl

−
∑
j

βi∗jyxi∗jy +
∑
l

TylMiyl(ηiyl − pyl)
} (4.166)

s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy (4.167)

δijTyl

(1 + F )y
+

Tylθiyl(
∑

j qijyl −Miyl)

(1 + F )y
− Tylpyl

(1 + F )y

+λijyl − µijyl = 0

∀ijyl (4.168)

µijylqijyl = 0, λijyl(Kijy + xijy − qijyl) = 0 ∀ijyl (4.169)

0 ≤ qijyl ≤ xijy +Kijy ∀ijyl (4.170)

0 ≤ µijyl, 0 ≤ λijyl ∀ijyl (4.171)

dyl −
∑
ij

qijyl = 0 ∀yl (4.172)

dyl −D0
yl + αylpyl = 0 ∀yl (4.173)

4.5 Conclusions

In this chapter we have discussed bilevel optimization models for generation expansion

planning. In particular, we have introduced a bilevel optimization problem in section

4.2 that models the behavior of an investing firm when facing generation capacity

investment decisions. The lower level represents the market using a conjectured-price

variation, which allows to consider market situations between perfect competition
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and Cournot oligopoly. In the upper level, a simplified version of the NPV of the

investor firm is maximized. The model shows that, even if the spot market is per-

fectly competitive, strategic behavior at the investment stage, for example, caused

by significant entry barriers, reduces the efficiency of the market, and that such ef-

fects can be higher than oligopoly in spot markets. A numerical example has been

presented in section 4.2.4 to confirm the relevance of the proposed model formula-

tion. We furthermore observe different investment portfolios, that is, a shift from

base-load to peak-load technologies, when the representation of the spot market is

changed from perfect competition to Cournot oligopoly, considering different values

for conjectural variations as intermediate situations. The obtained capacity in the

perfect competition situation is smaller than in the oligopolistic cases.

Then, in section 4.3 we extend the previously proposed model to a stochastic

framework, where we introduce a stochastic bilevel model to assist a generation com-

pany to decide its investment schedule assuming different investment scenarios of the

competition, however, the same methodology could be applied to different produc-

tion cost scenarios or demand uncertainty, as will be shown in section 7. In the upper

level the investing agent maximizes its expected net present value. The lower level

corresponds to several scenarios of a conjectural variations market equilibrium, which

allows us to cope with uncertainty in the generation expansion problem. The pro-

posed bilevel methodology has been applied to a case study in section 4.3.4, where

two resolution methods, a nonlinear method and a linearization method, have been

compared. The nonlinear method quickly resolves the exact problem but can not

guarantee global optimality. The linearization method guarantees a global optimum,

but it takes much longer to solve and the choice of the step size is critical. We further-

more compare the stochastic solution to several instances of the deterministic MPEC

and observe that the investment decisions vary drastically.

Finally, in section 4.4 we have discussed how to formulate possible model exten-

sions, which help to make our models more realistic and help address the issue of

modeling different kinds of uncertainty in the generation expansion problem.
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Chapter 5

Bilevel Generation Expansion

Equilibrium Models

In this chapter a bilevel generation expansion equilibrium model is introduced and

formulated as an EPEC. In contrast to the previous chapter 4 where the presented

MPEC model only considered one generation company to decide its capacity invest-

ments, the EPEC model of this chapter takes into account investment decisions of all

generation companies. Therefore, this chapter extends the bilevel equilibrium model

of chapter 3 to a multi-year and multi-technology framework which is necessary when

trying to tackle real-world problems. First of all, an introduction to this problem and

a literature review are presented in section 5.1. Then, in section 5.2 the formulation

of the EPEC is introduced and a case study is presented from which it becomes ap-

parent that EPECs are quite hard to solve. In section 5.3 we revisit the single-level

expansion equilibrium and show how to formulate it as an equivalent quadratic con-

vex optimization problem, which can be solved very efficiently, which will be taken

advantage of in the following section. As an alternative, in section 5.4 a single-level

approximation scheme of the bilevel equilibrium problem is proposed and validated

in a numerical example. Due to this newly developed scheme, bilevel equilibria can

- under certain conditions - be approximated two orders of magnitude faster than

with a standard EPEC solving technique like diagonalization. Finally, we draw some

conclusions in section 5.5.
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5.1 Introduction

Generation capacity expansion planning in liberalized electricity markets is a very

complex task and poses a great challenge to both generation companies (GENCOs)

and regulators. Planning capacity expansion is a long-term problem whose time

horizon can range up to several decades and involves the investment of huge quantities

of money.

As mentioned, there exist various approaches to generation expansion planning,

including scenario analysis, decision theory, real options, system dynamics or game

theory. A natural way of representing the generation expansion planning problem is

using a game-theoretic approach because it allows us to define the generation capacity

expansion problem as a game among generation companies where each GENCO is

explicitly maximizing total profits deciding capacity investments. Arising profits do

not only depend on capacity investments of the individual GENCO but also on the

decisions taken by the competitors which allows to represent this problem as a game,

with an equilibrium point a la Nash [86].

Within the game-theoretic framework we particularly want to differentiate be-

tween single-level and bilevel generation expansion equilibrium approaches. In previ-

ous work, presented in chapter 3 or published in Wogrin et al. [119], we have compared

two different capacity equilibrium models that represent either a one-stage or a two-

stage competitive situation. The one-stage situation is represented by a single-level

model and describes the one-shot investment-operation market equilibrium. In this

situation, firms simultaneously choose capacities and quantities to maximize their

individual profit, while each firm conjectures a price response to its output decisions.

The bilevel model describes the two-stage investment-operation market equilibrium,

where firms first choose capacities that maximize their profit while anticipating the

equilibrium outcomes in the second stage, in which quantities and prices are deter-

mined by a conjectured-price-response market equilibrium. When comparing these

single-level and bilevel equilibrium models, we have found that the bilevel model is

more realistic than the single-level model. One-stage models can fail to capture re-
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alistic features, as for example the under-investment for strategic reasons, and that

is why we think a two-stage problem is better suited for representing the generation

expansion problem. We adopt this modeling approach because it captures the innate

temporal and hierarchical separation between the time when investment decisions are

taken and the time when energy is dispatched.

Within the last decade, bilevel models have been increasingly applied to prob-

lems arising from the energy sector and in particular from electricity markets. Some

examples of operational bilevel equilibrium approaches can be found in the work of

Pozo and Contreras [96], Ralph and Smeers [99] and Ruiz et al. [105]. Considering

that the focus of this thesis is bilevel approaches to capacity expansion, we discuss

the existing literature in more detail.

As previously mentioned, bilevel generation capacity models represent sequential

decision making, which is more realistic than single-level approaches. Among the

bilevel approaches we differentiate between the two-stage optimization models which

lead to mathematical programs with equilibrium constraints (MPECs) [80], and two-

stage equilibrium models which lead to equilibrium problems with equilibrium con-

straints (EPECs) [111]. Since bilevel MPEC approaches to generation expansion

planning have been discussed in chapter 4, they will not be repeated here. Instead

we focus on bilevel EPEC approaches.

A classic example of EPECs or bilevel equilibrium models can be found in [74],

where Kreps and Scheinkman construct a two-stage game, where first firms simulta-

neously set capacity and second, after capacity levels are made public, there is price

competition. They find that when assuming two identical firms and an efficient ra-

tioning rule their two-stage game yields Cournot outcomes. Another example is the

bilevel Cournot model of Murphy and Smeers [84], where in the upper level firms

choose capacity and in the lower level they sell production. The authors further-

more demonstrate that the bilevel Cournot equilibrium capacities fall between the

single-level Cournot and the single-level competitive solutions. In a working paper

by Grimm and Zoettl [56], the authors examine bilevel equilibrium models consider-

ing only the polar cases of perfect or Cournot-type competition, where firms choose
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capacities under uncertainty. Gabszewicz and Poddar [52] study the impact of un-

certain demand on firms’ capacity decisions when they operate in an oligopolistic

environment. The authors define a two-stage game where firms choose capacity in

the first stage subject to a second stage with demand uncertainty.

The contributions in the methodology and formulation of the generation expansion

EPEC in this chapter are as follows: first of all, we extend existing bilevel approaches

- as for example the work of Kazempour and Conejo [69] or Murphy and Smeers [84],

which assume either perfect competition or Cournot competition in the spot market -

to capture intermediate strategic behavior using a conjectured-price response market

representation. Second, the model presented in this chapter extends the single-year,

single-technology bilevel equilibrium presented in chapter 3 to a multi-year framework,

and it yields an investment schedule over the entire time horizon, as opposed to a

static investment decision for a future target year. Third, instead of considering to

cost minimization as the driver of investment decisions, which is not representative of

what happens in liberalized electricity markets, we rather maximize profits as opposed

to minimize costs. Furthermore we extend MPEC approaches, that emphasize on

investment decisions of one generation company in particular while competitors play

a secondary role, to EPEC approaches where each generation company maximizes

its profits (rather than minimizing costs) subject to the conjectured-price response

market equilibrium.

From a computational point of view it should be stated that solving large-scale

bilevel equilibrium models can be challenging and potentially take a very long time, as

pointed out in the works of Hu [62], Garcia-Bertrand [63], Leyffer [78] and Ruiz [105].

In the numerical example, presented in section 5.2.4, this also becomes apparent.

Since the complexity of the model formulation complicates commonly known solution

processes, an improved technique - an approximation scheme - to solve the generation

expansion EPEC is developed and has been published in Wogrin et al. [117].

For this purpose, the following computational contributions have been made: in

section 5.3 we show how to formulate the single-level capacity expansion equilibrium

problem as an equivalent convex quadratic optimization problem, which can be solved
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very efficiently. Second, we propose a newly developed single-level approximation

scheme for the bilevel capacity expansion equilibrium problem in section 5.4, which

is based on the theoretical results obtained in chapter 3 and relies on the alternative

formulation of the single-level equilibrium presented in section 5.3. Third, in section

5.4.3 we carry out a small numerical example to test the proposed approximation

scheme and draw conclusions of when the approximation works best. A large-scale

case study, which confirms our initial conclusions of when the approximation is most

accurate, is presented later on in section 7.3.

5.2 Bilevel Generation Expansion Equilibria For-

mulated as an EPEC

This section is dedicated to the presentation of the bilevel generation expansion equi-

librium model, formulated as an EPEC, in a multi-year and multi-technology frame-

work, as opposed to the single-year, single technology model that has previously been

discussed in chapter 3. The bilevel model results will be referred to as (BL) through-

out this section. This model also yields an investment schedule over the entire time

horizon, as opposed to a static investment decision for a future target year, as done

by static approaches like the one in Kazempour et al. [70]. This model formulation

has been published in Wogrin et al. [115]. Unlike approaches that resort to cost min-

imization when deciding investments, such as Baringo and Conejo [3], in our model

we consider profit maximization. Other approaches, like the ones presented in chap-

ter 4, emphasize on investment decisions of one generation company in particular,

while competitors play a secondary role as in Kazempour et al. [69, 70] or Wogrin

et al. [116]. We remedy this by proposing an EPEC where each generation company

maximizes its profits (rather than minimizing costs) subject to the conjectured-price

response market equilibrium.

We start out by recalling the concepts of bilevel equilibria in section 5.2.1 which

have been introduced in chapter 2 and which present the MPEC as a part of the
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EPEC. Since the MPEC is a necessary ingredient to arrive at the EPEC, in section

5.2.2 we recall the formulation of the MPEC of chapter 4. Finally, in section 5.2.3

the EPEC is formulated. This formulation as well as the following numerical example

of section 5.2.4 are an original contribution of this thesis and have been published in

Wogrin et al. [115]. In this section we do not focus on EPEC solution techniques.

For this topic the reader is referred to chapter 6.

5.2.1 Revisiting Concepts of Bilevel Expansion Equilibria

The concept of the bilevel generation expansion equilibrium models have first been

introduced in section 2.4.2 of this thesis, where we mentioned that they were the type

of problems where each player was facing a bilevel generation expansion optimization

problem. This bilevel generation expansion optimization problem can be formulated

as an MPEC and has been discussed and analyzed in detail in the previous chapter

of this thesis. It can therefore be said that the corresponding MPEC of a certain

player, i.e., a generation company participating in the market, is a key ingredient of

the bilevel equilibrium model that we derive in this chapter.

A rather conceptual formulation of such a bilevel equilibrium model has already

been made in section 2.4.2 of this thesis and shall be repeated here for the purpose

of clarity. In the upper level, firms i∗, where i and i∗ are alias indices, maximize

total profits deciding capacity investments xi∗jy in all technologies j and all years y,

subject to the market equilibrium conditions, which yields production decisions qijyl,

demand dyl and prices pyl.

∀i∗

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

maxxi∗jy
∑

y
1

(1+F )y

{∑
jl Tyl(pyl − δi∗j)qi∗jyl −

∑
j βi∗jyxi∗jy

}
s.t. 0 ≤ xi∗jy ≤ xi∗j(y+1) ∀jy
s.t. Market Equilibrium Formulation

(5.1)

From the above formulation it becomes apparent that this type of model actually

is an equilibrium problem in two levels - just as the name “bilevel equilibrium” moti-

vates. As a matter of fact, in this type of problem, firms are competing on both levels,
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the upper level representing the investment stage, and the lower level representing the

market stage. This stands in contrast to the MPEC models of the previous chapter.

Even though MPECs are also bilevel models, they only consider an equilibrium in the

lower level but the upper level consists of an optimization problem. This is exactly

the reason why the MPEC is referred to as a “bilevel optimization” model.

Since we have established the MPEC as a key module of the bilevel capacity

equilibrium model, this problem can be written as {MPEC(i∗)}Ii∗=1, where i∗ is the

index of generation firms and I is the total number of firms. In section 2.4.2 we

have previously mentioned that this type of problem can be formulated as an EPEC.

Finally, in the remainder of section 5.2 we show how to come by such a formulation.

5.2.2 The MPEC as Part of the EPEC

It has been established, in section 2.4.2 such as in section 5.2.1, that the generation

expansion bilevel optimization MPEC, like the one presented in the previous chapter

in section 4.2.3 of this thesis, form a part of the bilevel capacity equilibrium model

that we wish to derive in this thesis chapter. Therefore, we revisit the previously pro-

posed MPEC, representing the generation expansion bilevel problem of one generation

company i∗.

Let us now write the corresponding MPEC for company i∗ whose primal variables

are given by the set Ωi∗ = {xi∗jy, qijyl, pyl, dyl, µijyl, λijyl}. The dual variables of each

constraint can be found after the colon or that same constraint. Note that the notation

of the dual variables is slightly different here (as opposed to previous instances) due

to their increased amount in the subsequent formulation.

max
Ωi∗

∑
y

1

(1 + F )y
{∑

jl

Tyl(pyl − δi∗j)qi∗jyl −
∑
j

βi∗jyxi∗jy
}

(5.2)

s.t. 0 ≤ xi∗jy ∀jy : ξxmin
i∗jy (5.3)

xi∗j(y−1) ≤ xi∗jy ∀jy : ξxmax
i∗jy (5.4)

qijyl ≤ xijy +Kijy ∀ijyl : ξqmax

i∗ijyl (5.5)

0 ≤ qijyl ∀ijyl : ξqmin

i∗ijyl (5.6)
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0 ≤ µijyl ∀ijyl : ωµ
i∗ijyl (5.7)

0 ≤ λijyl ∀ijyl : ωλ
i∗ijyl (5.8)

δijTyl

(1 + F )y
+

∑
j θiylqijylTyl

(1 + F )y
− Tylpyl

(1 + F )y

+λijyl − µijyl = 0 ∀ijyl
: ζqi∗ijyl (5.9)

µijylqijyl = 0 ∀ijyl : ζµi∗ijyl (5.10)

λijyl(Kijy + xijy − qijyl) = 0 ∀ijyl : ζλi∗ijyl (5.11)

D0
yl − αylpyl − dyl = 0 ∀yl : ζdi∗yl (5.12)∑

ij

qijyl − dyl = 0 ∀yl : ζBal
i∗yl (5.13)

5.2.3 Formulation of the EPEC

Finally, we arrive at the desired bilevel (BL) equilibrium model when all companies

i face the MPEC described in the previous section 5.2.2. We formulate the bilevel

equilibrium as an EPEC by combining the KKT conditions of each GENCO’s MPEC,

which is presented below. A graphic representation of the EPEC consisting of each

generation company’s MPEC is provided in Figure 5-1.

Note that ⊥ denotes a complementarity between a constraint and its dual variable.

Equations (5.14)-(5.19) correspond to the derivative of the Lagrangian with respect

to the decision variables. In particular, equation (5.14) corresponds to the derivative

of the Lagrangian with respect to the investment variables. Depending on the year y,

the variable xi∗jy can appear on either one or both sides of the constraint (5.4). Let

us consider that y = 1, . . . , Y , then we have to differentiate three cases: if 1 < y < Y

then xi∗jy appears on both sides of (5.4), which leads to terms like ξxmax
i∗jy − ξxmax

i∗jy−1

in the derivative; if y = Y then xi∗jy only appears once, on the right hand side of

(5.4), which leads to −ξxmax
i∗jy−1; similarly, if y = 1, then xi∗jy also only appears once,

on the left hand side of (5.4) which leads to ξxmax
i∗jy in the derivative. In order to

show that the derivative of xi∗jy in (5.14) depends on the index y, we have put the

corresponding terms in between curly braces {·}. These terms are only included if

the condition, which is indicated on the lower right corner of the closing bracket, is
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EPEC Model of all Firms

Firm 1

MPEC

Firm i*

MPEC

Firm I

MPEC
... ...

MPEC Model of Firm i*

Max{xi*} Total Profitsi*
s. t.

Upper Level

Lower Level

Market Equilibrium
{p, q1, , qi*, , qI}

Figure 5-1: The EPEC generation expansion as a system of MPEC problems faced by all
firms.

true. The same is also true for (5.15), where the term in curly braces is only included

when i = i∗. (5.20)-(5.25) represent the inequality constraints and the corresponding

complementarity conditions. Finally, (5.26) corresponds to the equality conditions

stemming from the lower level.

Bilevel Equilibrium Model (BEM):

∂Li∗/∂xi∗jy = {ξxmax

i∗j(y+1)}y=1 + {ξxmax

i∗j(y+1) − ξxmax
i∗jy }1<y<Y

+{−ξxmax
i∗jy }y=Y +

βi∗jy

(1 + F )y
− ξxmin

i∗jy

−
∑
l

ξqmax

i∗i∗jyl +
∑
l

λi∗jylζ
λ
i∗i∗jyl = 0

∀i∗jy (5.14)

∂Li∗/∂qijyl = {− Tylpyl
(1 + F )y

+
Tylδij

(1 + F )y
}i=i∗ +

θiylTylζ
q
i∗ijyl

(1 + F )y

+ζBal
i∗yl + ξqmax

i∗ijyl − ξqmin

i∗ijyl + ζµi∗ijylµijyl − ζλi∗ijylλijyl = 0

∀i∗ijyl (5.15)
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∂Li∗/∂µijyl = −ζqi∗ijyl − ωµ
i∗ijyl + qijylζ

µ
i∗ijyl = 0 ∀i∗ijyl (5.16)

∂Li∗/∂λijyl = ζqi∗ijyl − ωλ
i∗ijyl + (Kijy + xijy − qijyl)ζ

λ
i∗ijyl = 0 ∀i∗ijyl (5.17)

∂Li∗/∂pyl = −Tyl

∑
j qi∗jyl

(1 + F )y
−

∑
ij ζ

q
i∗ijylTyl

(1 + F )y
− ζdi∗ylαyl = 0 ∀i∗yl (5.18)

∂Li∗/∂dyl = −ζdi∗yl − ζBal
i∗yl = 0 ∀i∗jy (5.19)

0 ≤ ξxmax
i∗jy ⊥ xi∗j(y−1) ≤ xi∗jy ∀i∗jy (5.20)

0 ≤ ξxmin
i∗jy ⊥ 0 ≤ xi∗jy ∀i∗jy (5.21)

0 ≤ ξqmax

i∗ijyl ⊥ qijyl ≤ xijy +Kijy ∀i∗ijyl (5.22)

0 ≤ ξqmin

i∗ijyl ⊥ 0 ≤ qijyl ∀i∗ijyl (5.23)

0 ≤ ωµ
i∗ijyl ⊥ 0 ≤ µijyl ∀i∗ijyl (5.24)

0 ≤ ωλ
i∗ijyl ⊥ 0 ≤ λijyl ∀i∗ijyl (5.25)

(5.9)− (5.13) (5.26)

From the mathematical point of view, the optimization problem of one GENCO

that we describe in section 5.2.2 is a nonlinear problem. Moreover, due to the market

revenue term in the objective function, the entire objective function is non-concave

and we have nonlinear, non-convex constraints as well, which are the complementar-

ity conditions. Hence, global optimality is not guaranteed. This means that when

applying a nonlinear solver, we might end up in a local optimum and there might be

multiple local optima. This problem does not disappear when forming the EPEC,

quite the contrary. EPECs are known to be very complicated problems which could

have multiple equilibria (including an infinite number of them) or even none at all.

There exist various methods to solve an EPEC and section 6.2 of chapter 6 has

been dedicated to discuss and analyze these methods in more detail. As a preview let

us mention methods like diagonalization, see Hu [62] or writing the EPEC as a Com-

plementarity Problem and solving it using, for example, PATH [63]. A disadvantage

of the aforementioned methods is that - even when terminated properly - one can

only guarantee to find a local equilibrium. However, the advantage of these methods

is that the computational time can be quite fast. An EPEC may have multiple (even

infinite) equilibria, which could be very different from each other. For this reason,
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another resolution method would be a combination between diagonalization and the

linearization approach as proposed in Ruiz et al. [105], where a linear version of the

EPEC is formulated and a linear classification function is defined, which characterizes

the equilibrium that one wants to find and then diagonalization is employed to verify

that the obtained point actually is an equilibrium.

5.2.4 Numerical Example of Bilevel Expansion Equilibria

This case study has been taken from Wogrin et al. [115] and its purpose is threefold:

first, we apply the presented EPEC methodology to a numerical example; second, we

show that even for a simple instance of the EPEC, there can be multiple equilibria,

which is why it is so important to be able to choose among them; third, we want

to demonstrate that equilibrium solutions of the EPEC can differ in terms of the

optimal technology mix - another argument for the necessity of exploring the solution

space of the EPEC. First, we briefly describe the methodology we apply to be able to

choose among different equilibria of the EPEC, then we describe the stylized electric

power system that serves as our case study and finally we present the corresponding

numerical results.

Classification of Equilibria

As above, we want to be able to choose a particular equilibrium among all the pos-

sible equilibria of the EPEC. In order to achieve this goal, we employ a linearization

approach which is discussed in detail in section 6.2. In this approach the EPEC is

formulated as a MILP with a naive objective function and then a linear classification

function which serves as the objective function of this MILP whose constraints consist

of the linear version of the EPEC. This is an additional objective function which is

neither the objective function of the lower nor of the upper level of the EPEC.

There is a wide range of classification functions that would make sense in the

generation capacity expansion framework and different market agents might be inter-

ested in different types of equilibria. However, considering that our EPEC is designed
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to facilitate capacity investment decisions in a liberalized framework, it makes sense

to choose the equilibrium that maximizes total profits. The desired classification

function representing weighted total profits of all GENCOs is given in (5.27), where

Vi represents the weight that we assign to each GENCO’s profit. Changing these

weights allows us to explore the solution space of the EPEC.

∑
i

Vi

∑
y

1

(1 + F )y
{∑

jl

Tylpylqijyl −
∑
jl

Tylδijqijyl −
∑
j

βijyxijy

}
(5.27)

As we are trying to build a MILP, the classification function has to be linear. The

annual market revenues of GENCO i (price times quantities) in the classification func-

tion presented above, however, are nonlinear. Therefore, this particular classification

function has to be approximated linearly in order for us to use it in a MILP setting.

The details of this linearization/approximation approach can be found in section 6.2.

For the remainder of this case study we assume that such a linear approximation has

been achieved.

System Description

The stylized electric power system in this case study consists of two generation com-

panies i1, i2, each of which has the choice to invest in two different technologies, them

being coal and combined cycle gas turbine (CC). The respective unitary production

and investment costs are given in Table 5.1. The time horizon considered is two

years with two load levels each, i.e., peak and off-peak. In Table 5.6 we provide the

duration Tyl of each of the two load levels and the demand intercept D0
yl of the affine

price-demand function. The demand slope αyl for all years and load levels is consid-

ered to be 0.23 GW/(e/MWh) based on Garcia-Alcalde [53]. In this case study we

do not consider initial capacity. Moreover the discount rate F is set at 9%. As for

the weights V of the classification function and the strategic spot market behavior

θiyl, we try out several different cases to explore the solution space of the EPEC and

the corresponding results are presented as follows.
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Table 5.1: Production and investment cost for each technology.

Production cost δ Annual investment cost β
[e/MWh] [(Me/GW)/year]

Coal 33.0 50.3
CC 39.0 25.4

Table 5.2: Demand intercept D0
yl and load level durations Tyl.

Peak Off-peak
l1 l2

D0
yl [GW]

y1 27.61 18.03
y2 28.22 18.42

Tyl [h]
y1 3300 5460
y2 3300 5460

Analysis of Results

The bilevel equilibrium capacity expansion model presented in this case study trans-

lates to the optimization of the linear classification function subject to the linear

version of the EPEC and is modeled as a MILP, formulated in GAMS, and solved

using CPLEX on an Intel(R) Core(TM) i5-2410M running at 2.30 GHz 4 GB RAM.

The numerical model of this case study consists of 2609 continuous and 1036 binary

variables.

We consider several different cases of strategic behavior and weights in this case

study. In the first four cases we present how different weights can lead to different

equilibria. In the first two cases for example, the strategic behavior we adopt is

θiyl = 0.25/αyl, and we vary the weights of the classification function. In particular,

in the first case, the classification function maximizes the approximated profits of

i1 only, i.e., Vi = (1, 0); in the second case the classification function regards both

GENCOs as equally important, i.e., Vi = (0.5, 0.5). The same is done assuming

θiyl = 0.5/αyl. The average computational time with weights Vi = (1, 0) is about 10

hours.

In the rest of the cases we compare results with the same weights, i.e., Vi =

(0.5, 0.5) and vary the strategic spot market behavior in order to compare how it af-
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fects investment decisions. In particular we change the reigning spot market behavior

from more competitive cases starting at θil = 0.25/αyl to Cournot, i.e., θil = 1/αyl.

The average computational time with weights Vi = (0.5, 0.5) is about 24 hours.

Table 5.3: Investments [GW] and total capacity [GW].

Case Year
Investments Investments

Total capacity
Coal CC

i1 i2 i1 i2
θil = 0.25/αyl y1 4.32 3.79 1.33 1.79

11.68
V = (1, 0) y2 4.34 4.09 1.46 1.79

θil = 0.25/αyl y1 4.03 4.02 1.60 1.60
11.65

V = (0.5, 0.5) y2 4.20 4.20 1.63 1.63
θil = 0.5/αyl y1 3.91 3.42 1.73 2.17

11.67
V = (1, 0) y2 3.91 3.69 1.90 2.17
θil = 0.5/αyl y1 3.62 3.62 2.00 2.00

11.65
V = (0.5, 0.5) y2 3.78 3.78 2.04 2.05
θil = 0.6/αyl y1 3.48 3.48 2.14 2.14

11.65
V = (0.5, 0.5) y2 3.64 3.63 2.19 2.20
θil = 1/αyl y1 3.40 3.40 2.22 2.22

11.65
V = (0.5, 0.5) y2 3.54 3.54 2.29 2.29

Table 5.4: Profits and classification function value [Me].

Case Profits Classification function value
i1 i2

θil = 0.25/αyl 1213.74 1178.78 1223.43
V = (1, 0)

θil = 0.25/αyl 1201.94 1201.53 1201.80
V = (0.5, 0.5)
θil = 0.5/αyl 1306.25 1262.40 1315.07
V = (1, 0)
θil = 0.5/αyl 1291.21 1290.63 1292.82
V = (0.5, 0.5)
θil = 0.6/αyl 1315.59 1314.85 1318.98
V = (0.5, 0.5)
θil = 1/αyl 1328.33 1328.33 1328.39

V = (0.5, 0.5)

In Table 5.3 we present the total capacity and the individual capacity investment

decisions of both GENCOs for all the different cases of the weights of the classification
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Table 5.5: Market prices [e/MWh].

Case Year Load levels
l1 l2

θil = 0.25/αyl y1 71.24 43.12
V = (1, 0) y2 71.92 43.44

θil = 0.25/αyl y1 71.14 43.37
V = (0.5, 0.5) y2 72.03 43.56
θil = 0.5/αyl y1 71.21 46.44
V = (1, 0) y2 71.96 47.02
θil = 0.5/αyl y1 71.14 46.87
V = (0.5, 0.5) y2 72.03 47.21
θil = 0.6/αyl y1 71.14 48.08
V = (0.5, 0.5) y2 72.03 48.47
θil = 1/αyl y1 71.45 49.33

V = (0.5, 0.5) y2 72.35 50.61

function and the strategic spot market behavior, while Table 5.4 contains the corre-

sponding total profits of each GENCO and the value of the classification function of

each case. Table 5.5 contains the market prices for all different cases.

Comparing the investment decisions of the first four cases, we observe that de-

pending on the choice of weights in the classification function, the equilibrium solu-

tion is different. This means that the EPEC does not have a unique solution but that

there exist several equilibria. For example, in the first case with asymmetric weights

Vi = (1, 0) we obtain an asymmetric equilibrium while weights Vi = (0.5, 0.5) yield

a symmetric equilibrium where both GENCOs build the same amount of capacity in

each technology. Moreover, in the first case the GENCOs build 11.68 GW, 8.43 GW

in coal and 3.25 GW in CC, while in case two, we get slightly less total capacity 11.65

GW. This decrease is happening only in coal capacity. Total CC capacity actually

increases slightly to 3.26 GW, which indicates that different equilibrium solutions can

yield a different technology mix.

In the cases where weights are Vi = (1, 0), GENCO i1 builds more coal and less

CC capacity than GENCO i2, which seems to be more profitable as can be seen in

Table 5.4. We furthermore observe in Table 5.4 that the more weight we assign to

one GENCO, the higher the corresponding profits. This is not surprising, considering
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that the weight determines whose approximated profits are more important when

searching the solution space of the EPEC.

In the cases where weights stay the same, fixed at Vi = (0.5, 0.5), and the strategic

behavior θil changes from very competitive (θil = 0.25/αyl ) to Cournot (θil = 1/αyl)

behavior, there is a clear trend in investments: coal capacity decreases and CC ca-

pacity increases. Having more CC capacity in the systems leads to higher market

prices and therefore to higher profits, which increase when the market behavior is

less competitive. In general, the more market power, the higher the profits for the

GENCOs. It seems intuitive that more competition in the spot market leads to lower

market prices, as can be observed in Table 5.5.

Finally, the weighted approximation of the profits, which we used as classification

function, is very close to the real profits. This can be verified by taking the weighted

sum of the real profits and comparing it to the classification function value. For the

cases presented, the relative error between the two is never more than 0.8%.

5.3 Alternative Formulation of the Single-Level In-

vestment Equilibrium

In this section we propose an alternative formulation of the single-level conjectured-

price response generation expansion equilibrium model, which has been initially in-

troduced and formulated in section 2.3.3, where it has been presented as a straight-

forward extension of the spot market equilibrium problem. We recall the formulation

of the single-level (SL) equilibrium problem in section 2.3.3 as a system of opti-

mization problems in (2.49)-(2.51), and as a system of arising KKT conditions in

(2.52)-(2.53). In this section we will propose an alternative formulation of the single-

level investment-production problem as a quadratic optimization problem, which will

be useful later on in section 5.4.

A simplified version of this model has also been considered previously in chapter 3

where it has been compared to a bilevel equilibrium model. The conclusions about this
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type of single-level equilibrium model that can be drawn from chapter 3 is that they

are not as realistic as bilevel models since they assume that investment and production

decisions are taken simultaneously, which is a gross simplification of reality. On the

other hand, single-level models are mathematically easier to formulate and a lot easier

to solve, which is demonstrated in this section. For this purpose we will present an

alternative formulation of the single-level generation expansion equilibrium model as

an equivalent quadratic optimization problem.

In equations (5.28)-(5.31) we present the equivalent optimization problem of the

single-level capacity expansion equilibrium of section 2.3.3. We refer to this model

as Single-Level Equilibrium as Optimization Model (SEOM). To our knowledge, this

model has not been proposed before and therefore is an original contribution of this

thesis, which has been published in Wogrin et al. [117]. This is a simple extension of

Barqúın et al. [5] where we extend the market equilibrium problem (and its equiv-

alent optimization problem) to include investment decisions as well. In particular,

starting from the equivalent optimization problem of the market equilibrium, given in

section 2.3.2, we include an additional linear term in the objective function of (2.45)

representing total investment costs and declare xijy as variables of the problem. This

arising problem is very similar to the Cournot model presented by Ventosa et al. [113]

with the difference that instead of assuming a fixed strategic behavior, we introduce

conjectural variations into the model. These alterations do not compromise convexity

properties of the optimization problem, which has been proven below in Lemma 5.1.

Moreover, it can be verified that the KKT conditions of the equivalent optimization

problem coincide with the single-level equilibrium conditions given in (2.52)-(2.53).

Single-Level Equilibrium as Optimization Model (SEOM):

min
x,q,d

∑
ijyl

δijqijylTyl

(1 + F )y
+
∑
ijy

βijyxijy

(1 + F )y
+

1

2

∑
iyl

θiylTyl(
∑

j qijyl)
2

(1 + F )y

−
∑
yl

Tyl

αyl(1 + F )y
(D0

yldyl −
d2yl
2
)

(5.28)

s.t. qijyl ≤ xijy +Kijy ∀ijyl : λijyl (5.29)
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0 ≤ qijyl ∀ijyl : µijyl (5.30)

Tyl

(1 + F )y
(dyl −

∑
ij

qijyl) = 0 ∀yl : pyl (5.31)

Due to the convexity assumptions of the cost functions, it holds that the solution

to this optimization problem is unique which furthermore yields that the single-level

capacity equilibrium solution is unique as well. It can also be verified that the second

order conditions for a local optimum of (5.28)-(5.31), given below in Lemma 5.1, hold.

Since Lemma 5.1 furthermore proves convexity of the given optimization problem, the

obtained local solution, automatically is a global solution.

Lemma 5.1. The quadratic minimization problem given by equations (5.28)-(5.31)

is a convex optimization problem.

Proof. In order to prove the convexity of the equivalent optimization problem of

the single-level investment model presented above, we revisit the formulation given

by equations (5.28)-(5.31) and make a simple variable transformation, i.e., Qiyl =∑
j qijyl. This constraint is added to the optimization problem, which then reads:

min
x,q,d,Q

∑
ijyl

δijqijylTyl

(1 + F )y
+
∑
ijy

βijyxijy

(1 + F )y
+

1

2

∑
iyl

θiylTylQ
2
iyl

(1 + F )y

−
∑
yl

Tyl

αyl(1 + F )y
(D0

yldyl −
d2yl
2
)

(5.32)

s.t. qijyl ≤ xijy +Kijy ∀ijyl (5.33)

0 ≤ qijyl ∀ijyl (5.34)

Tyl

(1 + F )y
(dyl −

∑
ij

qijyl) = 0 ∀yl (5.35)

∑
j

qijyl −Qiyl = 0 ∀iyl (5.36)

In the optimization problem presented above all constraints are linear. The ob-

jective function is quadratic, however, we will show that the objective function is a

convex function. To this purpose we form its Hessian matrix, which consists of the

second order derivatives of the objective function with respect to the variables x, q, d
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and Q. First of all we note that the objective function is linear in variables x and q,

which implies that its second order derivatives will be zero. Furthermore we observe

that there are no bilinear terms in the objective function, which implies that the Hes-

sian matrix will be a diagonal matrix. Therefore, we only have to look at the second

derivatives ∂2/∂Q2
iyl and ∂2/∂d2yl, which are given by (5.37) and (5.38) respectively

and are both nonnegative due to the assumptions that θiyl ≥ 0 and αyl ≥ 0, which

have been stated in sections 2.2.1 and 2.2.2. Therefore all eigenvalues of the Hessian

are nonnegative as well, which finally yields that the objective function is convex.

∂2

∂Q2
iyl

=
θiylTyl

(1 + F )y
≥ 0 (5.37)

∂2

∂d2yl
=

Tyl

αyl(1 + F )y
≥ 0 (5.38)

5.4 Approximation of Bilevel Equilibria by Single-

Level Equilibria

In section 5.4 we propose a new methodology to approximate bilevel capacity equilib-

ria using only single-level capacity equilibrium models. This newly developed method-

ology represents an original contribution of this thesis which has been published in

Wogrin et al. [117]. In the bilevel model, generation companies choose capacities that

maximize their individual profit in the first stage while the second stage represents

the conjectured-price-response market equilibrium. In the single-level model, firms

simultaneously choose capacities and quantities to maximize their individual profit,

while each firm conjectures a price response to its output decisions. The bilevel equi-

librium model is an equilibrium problem with equilibrium constraints, which belongs

to a class of problems that is very hard to solve. The single-level equilibrium model

is much easier to solve, however, it is also less realistic in some situations. With

the approximation scheme proposed in this thesis, we are able to solve the bilevel
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model reasonably well by smartly employing single-level models which reduces the

computational time by two orders of magnitude. We achieve this by transforming

the single-level equilibrium problem into an equivalent convex quadratic optimization

problem which can be solved efficiently. The theoretical basis that sparked the idea

of the approximation scheme is the comparison between single and bilevel equilib-

rium models from chapter 3. In section 5.4.1 we recall the most relevant points of

this theoretical analysis. Then, in section 5.4.2 the actual approximation scheme is

presented. In section 5.4.3 a small case study is presented in order to validate the

proposed approximation scheme. A large-scale case study is carried out in section 7.3

where we find that for multi-year, multi-load period cases the approximation scheme

works well when market behavior is closer to oligopoly than to perfect competition.

5.4.1 Recalling Comparison of Single and Bilevel Capacity

Equilibria

In chapter 3 of this thesis, which has been accepted for publication in Wogrin et

al. [119], we have theoretically analyzed and compared single and bilevel genera-

tion capacity equilibrium models for a single-year framework and for strategic spot

market behavior ranging between perfect competition and Cournot. The single-level

model describes the one-shot investment-operation market equilibrium, where firms

simultaneously choose capacities and quantities to maximize their individual profit.

The bilevel model describes the two-stage investment-operation market equilibrium,

where firms first choose capacities that maximize their profit and then decide mar-

ket outcomes in the second stage. In both models, the strategic market behavior is

represented by a conjectured-price response. We now summarize the most relevant

results of this work, since they have great relevance in this section.

First of all, the capacity yielded by the bilevel model is independent of the strategic

(or oligopolistic) spot market behavior. For the case of one load period, this result

has been proven in Theorem 3.1 of chapter 3. In particular, in chapter 3 we showed

that the capacity yielded by the bilevel model, given by equation (3.20), is always the
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same and does not depend on the strategic behavior.

Second, the single-level solution, which in general depends on the strategic spot

market behavior as can be seen in equation (3.7), considering Cournot behavior is

given by equation (3.9) and coincides with the bilevel solution for any strategic be-

havior. This is why we use the term “Cournot” capacities for bilevel models. The fact

that the bilevel model always yields Cournot capacities is an extension to the result

of Kreps and Scheinkman [74], which states that capacity precommitment followed

by Bertrand competition yields Cournot capacities. We have shown that capacity

precommitment followed by any market behavior between perfect competition and

Cournot, yields Cournot capacities. The result of Theorem 3.1 can be extended to

the multiple load period case, which we have proven in Proposition 3.2, but the proof

gets a little more complicated. When considering only one load period, it is obvious

that - no matter what the strategic behavior - capacity is always going to be binding

in this load period otherwise it would not be an equilibrium. When we have multiple

load periods a priori we do not know in which load periods capacity is going to be

binding. As a matter of fact when considering two different degrees of strategic be-

havior, the resulting equilibria could be binding in different load periods. However,

if two equilibria happen to be binding in the same load periods, then we can prove

something about the resulting capacity. In particular, in part (a) of Proposition 3.2

we show that if the bilevel solutions for different strategic behavior have the same

active set of load periods, then they yield the same capacity. The bilevel capacity,

given by equation (3.47), does not depend on strategic behavior. And moreover, if we

assume that the active sets coincide then the single-level Cournot solution coincides

with the bilevel solution, which has been proven in part (b) of Proposition 3.2.

Third, we have shown that if the single and bilevel solutions are at capacity in the

same load periods and if they consider the same conjectured-price response, then their

production decisions and prices in load periods that are not at capacity are identical.

In particular, this has been shown in chapter 3 by comparing single-level production

decisions in not binding load periods, given by (3.31)-(3.32), and the corresponding

bilevel production decisions, given by (3.42)-(3.43).
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One conclusion of chapter 3 is that the bilevel model is more realistic than the

single-level model because it captures that GENCOs would never voluntarily build all

the capacity that might be determined by the spot market if that meant less (or none

at all) profits for themselves. The bilevel model depicts how strategic underinvestment

can improve profits. The single-level model on the other hand fails to capture this

feature.

As the bilevel model is more complicated to solve than the single-level model,

it would be desirable to approximate the equilibrium solution of the bilevel model

by solving the simpler single-level model and thereby avoiding having to solve a

complicated problem which is known as EPEC. In section 5.4.2 we propose such an

approximation scheme and we motivate how the findings of chapter 3 have sparked

the idea of this approximation scheme.

5.4.2 Single-Level Approximation Scheme of Bilevel Model

In section 5.4.1 as well as in chapter 3, we have already discussed that in general,

the bilevel model is more realistic than the single-level model because the single-

level model tends to yield over-investment as it does not consider the sequentiality

of decision making. However, the bilevel model is also much more difficult to solve.

Considering that the single-level model is comparably easy to solve, employing the

equivalent convex quadratic optimization problem defined in 5.3, it would be desirable

to be able to approximate the complicated but more realistic bilevel model with the

single-level model. In this section we present such an approximation scheme.

A first idea of a single-level approximation scheme could go along the lines of

section 2.2.2, where we have shown that conjectural variations can be used to re-

duce multi-level games into single-level games, as for example the Allaz-Vila game

or Stackelberg game as shown in Lemma 2.1. A straight forward idea could be to

approximate the bilevel generation expansion equilibrium by a single-level model us-

ing a specific conjectural variation which embodies the reduction of the bilevel game.

We have not employed this method for two reasons. First, because finding such a

conjecture can be very complicated and second, even if by change we might find a
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conjecture which yields a good approximation for capacity investments, the arising

market prices and production decisions might not resemble the bilevel results at all

and hence not be useful. Therefore, the approximation scheme we propose here not

only succeeds in yielding accurate capacity values, but also good approximations of

market prices, NPVs and production decisions - that is if the strategic spot market

behavior is closer to Cournot than to perfect competition.

In order to motivate the proposed approximation scheme, let us recall three points

from section 5.4.1 which have been proven in chapter 3: First, the bilevel capacity

solutions are the same for different degrees strategic spot market behavior θ as long as

the active sets of load periods of the solutions coincide. In the special case of only one

load period, this means that no matter what the strategic behavior, the bilevel capac-

ity solution is the same. Second, if the active sets of load periods coincide, then the

single-level model assuming Cournot behavior in the market yields the same solution

as the bilevel model for arbitrary θ. Third, for the same value of the strategic spot

market behavior θ, single and bilevel models yield the same production decisions in

load periods where capacity is not binding. We have already recalled these properties

in section 5.4.1 and refer to either chapter 3 or to Wogrin et al. [119] for the detailed

proof.

From these properties we draw the conclusion that in the bilevel model the capac-

ity decisions seem to be “Cournot” no matter what the strategic spot market behavior

θ. However, in load periods where capacity is not binding, the specific market behav-

ior θ determines production decisions. Since solving a bilevel model can be quite hard,

we would like to approximate the bilevel solutions using a single-level model. From

what we have learned in chapter 3, capacity decisions and production decisions in the

bilevel model follow a different trend and need to be approximated separately. Since

we know that the single-level Cournot capacities coincide with the bilevel capacities

when the active set of load periods is the same, we propose to approximate bilevel

capacities by solving the single-level Cournot model. However, we also know that in

load periods where capacity is not binding, production decisions depend on θ and

therefore we fix the obtained capacities and solve the single-level model again, but
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this time assuming behavior θ instead of Cournot behavior. This leads to the follow-

ing approximation scheme of the bilevel capacity equilibrium problem with strategic

spot market behavior θiyl:

Single-Level Approximation Scheme of Bilevel Model

1. Solve the single-level equilibrium model, (5.28)-(5.31), assuming

Cournot behavior in the market. This yields capacity decisions

xijy.

2. Fix the capacity decisions xijy which have been decided in the

previous step.

3. For fixed capacity decisions, solve the single-level equilibrium

model again but this time with strategic spot market behavior

θiyl, which yields market prices pyl, demand dyl and production

decisions qijyl. Note that it is the same to solve the single-level

generation expansion equilibrium, given by (5.28)-(5.31), for fixed

capacity decisions and to solve the market equilibrium, (2.45)-

(2.48), for the same value of fixed capacity.

It is easy to see that this approximation scheme is exact for one load period and

a time horizon of one year, since the single-level Cournot capacity is the same as

the bilevel capacity for any strategic behavior, as has been discussed in section 5.4.1.

For a bilevel model with multiple load periods and a time horizon of one year, the

approximation would also be exact but only if the active set of load periods of the

bilevel model and the single-level Cournot model coincided, which a priori cannot be

predicted. If the active sets coincided, then the bilevel capacity - independent of θ -

would be the same as the Cournot capacity as has been proven by Proposition 3.2.
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Since the approximation tries to imitate bilevel behavior and is exact in very

simplified cases as we pointed out previously in chapter 3, in this section we wanted

to verify from a practical point of view whether the approximation also works for

cases with multiple load periods where active sets of load periods do not coincide.

Since there is no guarantee that at equilibrium the single-level Cournot model and

the bilevel model are going to have the same set of active load levels, it cannot

be guaranteed that the capacity obtained by the single-level Cournot model will

actually coincide with the bilevel capacity. Therefore in the approximation we expect

to commit an error. The purpose of this the next section, i.e., a case study, is

to quantify this error and to validate whether the newly proposed approximation

scheme can be successfully applied to multi-load-period cases. The extension of this

numerical validation to a multi-year, multi-load-period and multi-technology case is

presented in section 7.3 of this thesis.

In order to evaluate the quality of the solution obtained with the proposed ap-

proximation scheme we compare it to the actual bilevel solution which we obtain via

diagonalization, which is a technique where MPECs are solved iteratively until con-

vergence. For more details on this method, the reader is referred to section 6.2. If this

algorithm converges, then it yields an equilibrium point of the bilevel problem. The

question we want to answer is whether there exists a bilevel equilibrium which is close

to the solution yielded by the single-level approximation scheme. In fact, numerical

evaluation in the small case study of section 5.4.3 shows that indeed results are not

very different which is partly due to the size of the case study. Hence, we extend

the case study to a large-scale numerical example presented in section 7.3 where we

conclude that the quality of the approximation for large-scale models depends on the

level of competition in the market: the closer the market behavior is to oligopoly, the

more accurate the approximation.

5.4.3 Numerical Example of Approximation Scheme

The purpose of this numerical example is to validate the approximation scheme nu-

merically. Moreover, we want to show that even in cases where active sets of load pe-
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riods of the bilevel and the single-level Cournot solution do not coincide (and capacity

solutions therefore differ), the approximation still works well. Hence, for simplicity in

this case study we consider a time horizon of only one year and one technology. Note

that a large-scale numerical example with a time horizon of multiple years, multiple

load periods and various technologies is presented in section 7.3. In this large-scale

case study we also carry out an analysis yielding the result that for a multi-year,

multi-technology case, approximation results are most accurate and thus useful when

the strategic spot market behavior is closer to Cournot than to perfect competition.

The electricity system we use in this case study is very simple and consists of

two generation companies only. Furthermore we consider investment in only one

technology, i.e., combined cycle gas turbine (CC), since for the last decades this has

been the prominent technology for new capacity investments in Spain. For the sake of

simplicity, we consider a time horizon of one year and six load periods within this year.

The discount rate is 9%. The demand slope α is assumed to be 0.23 GW/(e/MWh),

while the corresponding demand intercepts and durations for each of the six load

periods are presented in Table 5.6. Variable costs δ are 39 e/MWh and investment

costs are considered as 113 (Me/GW)/year. The strategic spot market behavior

θ is 0.3/α. Therefore, the objective is to solve the bilevel investment equilibrium

model, which has been introduced in this chapter, assuming strategic behavior as

given above. Note that we refer to results corresponding to the bilevel equilibrium

model as (BL) for bilevel.

Table 5.6: Demand intercept D0
l and load level durations Tl.

WD WD WD WE WE WE
Peak Shoulder Off-peak Peak Shoulder Off-peak
l1 l2 l3 l4 l5 l6

D0
l [GW] 94.46 54.44 35.8 47.6 39.4 30.1

Tl [h] 300 3000 3000 300 1080 1080

First of all we solve the original BL model using diagonalization, an iterative

method which is discussed in more detail in section 6.2.1. The convergence tolerance

(for definition refer to section 6.2.1) for the diagonalization method is of 10−4. Note
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that the computational time of this method depends on the initial point and can

therefore vary. Without any prior knowledge of the optimal investment solutions,

an arbitrary point was chosen as initial solution. On an Intel(R) Core(TM) 2 Quad

Processor with 3.21 GB RAM the diagonalization converged after 180 iterations and

a computational time of 144 seconds. The obtained capacity investment for one

GENCO in CC is 13.67 GW. Note that since both GENCOs consider the exact same

data, their solutions are identical. In Table 5.7 production decisions and market prices

are presented. We observe that capacity is binding in three load periods, i.e., l1, l2

and l4. The obtained BL net present value for each GENCO is 3507.62 Me.

Table 5.7: Bilevel (BL) equilibrium solution under intermediate second-stage competition
(θ = 0.3/α) with capacity xi = 13.67 GW.

l 1 2 3 4 5 6
ql [GW] 13.67 13.67 11.66 13.67 13.24 9.19
pl [e/MWh] 291.82 117.81 54.21 87.96 56.27 50.99

Let us now present the obtained results of the approximation scheme (AP), step

by step. As pointed out in section 5.4.2, the first step of the approximation scheme is

to solve the single-level investment equilibrium model assuming Cournot conjectures.

This first step in the approximation scheme aims at obtaining a realistic solution for

the investment capacity, as theoretical results - provided in chapter 3 - establish that

in bilevel models capacity decisions behave in a “Cournot” manner. The first step of

the AP yields results presented in Table 5.8 with investment capacities of 13.74 GW

in CC for one GENCO. The first observation we make is that in the solution of the

single-level Cournot model, capacity is only binding in two load periods, as opposed

to the bilevel solution. In section 5.4.2, we mention that for a multiple-load period

case, the approximation scheme is exact but only if the active sets of load periods

of the bilevel model and the single-level Cournot model coincided. This has been

proven theoretically by Proposition 3.2. However, when active sets do not coincide,

which is the case here, then the AP capacity solution does not necessarily have to

coincide with the BL capacity. Our numerical results show that since active sets of

load periods are not identical, the obtained capacity solutions differ. However, we
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also observe that they do not differ by much. The absolute difference between BL

and AP capacity investment solutions is 7 MW, which translates to a relative error

of only 0.5%. Step 1 of the approximation scheme therefore fulfills its purpose in

obtaining a capacity solution very close to the bilevel one. The following steps of the

AP scheme assume capacity levels to be fixed to 13.74 GW and try to approximate

market prices and production quantities more accurately.

Table 5.8: Solution after first step of approximation (AP) scheme with capacity xi = 13.74
GW.

l 1 2 3 4 5 6
ql [GW] 13.74 13.74 8.94 12.87 10.15 7.05
pl [e/MWh] 291.19 117.18 77.88 94.94 83.14 69.64

Once capacity levels are fixed, the approximation scheme proceeds by solving

the conjectured-price response market equilibrium but this time assuming strategic

behavior θ = 0.3/α, which is the conjecture that has been used in the bilevel model.

The results after the final step of the AP scheme are presented in Table 5.9.

Table 5.9: Solution after final step of approximation (AP) scheme with capacity xi = 13.74
GW.

l 1 2 3 4 5 6
ql [GW] 13.74 13.74 11.66 13.74 13.24 9.19
pl [e/MWh] 291.19 117.18 54.21 87.32 56.27 50.99

When comparing the AP solution after the first step, given in Table 5.8, and the

final step, given in Table 5.9, we note that in the final solution capacity is binding in

l4 as well. This is due to the fact that in Table 5.8 the market behavior is assumed

to be Cournot, i.e., θ = 1/α, but in the final solution market behavior is more

competitive than Cournot, i.e., θ = 0.3/α, which leads to higher production decisions

in general, and in particular, in l4 it has led to production reaching capacity limits.

We furthermore observe that since capacity in the final AP solutions is binding in

the same load periods as in the BL solution, production decisions in non-binding load

periods are identical. The same is true for market prices in these load levels. When
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comparing AP and BL solutions for binding load periods, it should be noted that

since capacities differ slightly, market prices as well as production decisions are also

slightly different. The average relative error in prices1 is only around 0.2%. The NPV

obtained by the AP is 3493.13 Me, which is differs from the BL solution by only

0.4%.

In summary, the AP scheme decently approximates the BL solution. In particular,

the relative error in capacity investments is 0.5%, the maximum relative error in

market prices is 0.7% and the relative error in production decisions is zero for non-

binding load periods and 0.5% for binding load periods. The computational time of

the AP on an Intel(R) Core(TM) 2 Quad Processor with 3.21 GB RAM was only

0.5 seconds. In comparison, the diagonalization method with arbitrary initial point

was 144 seconds, so the AP scheme is more than two orders of magnitude faster than

diagonalization. Note that the performance of the diagonalization can be improved

by using a better initial point. For example, when using the solution obtained by the

AP scheme as initial point for diagonalization, then the computational time of this

method can be reduced to 6.5 seconds and converges in only 7 iterations. However,

this improved performance is entirely due to the accuracy with which the AP scheme

approximates the BL solution.

Let us now briefly explore the solution space of the bilevel equilibrium problem.

For this purpose the market equilibrium problem is solved for many different com-

binations of capacity investments and the corresponding net present values of each

firm are observed. In Figure 5-2 the net present value of GENCO i1 is presented for

different values of investments of GENCO i2. The black continuous lines in the figure

correspond to the NPV that GENCO i1 obtains depending on its capacity invest-

ments when assuming that the capacity of firm i2 is fixed to a certain value, and in

particular, to values ranging from 0 GW to 20 GW in 2.5 GW increments. The blue

dotted line represents the NPV of GENCO i1 if we fix the capacity of GENCO i2 to

the equilibrium capacity of 13.67 GW. The red continuous line represents the NPV

of GENCO i1 for the cases where both i1 and i2 have the same amount of capacity

1The average relative error in prices is calculates as
∑

l
Tl|pAP

l −pBL
l |

8760 pBL
l

.
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Figure 5-2: Net present value of firm 1 for different fixed values of capacity of firm 2.

(which is indicated by the x-axis). Since in this case study the parameters of both

market agents are assumed to be identical, it makes sense to observe the points where

capacity investments of both agents are identical, i.e., the red line. For example, if

we observe the point where both firms invest in 5 GW, where the red curve intersects

with the black line (in which firm i1 varies its capacity while firm i2 is fixed to 5

GW), then it is clear to see that i1 has an incentive to move away from this point

along the black line since it can increase its NPV. In particular, this means that the

gradient of the black line at the intersection point with the red line is not zero, which

furthermore means that this point cannot be an equilibrium. As a matter of fact,

the same is true for each of the intersection points of the red with the black lines

depicted in the figure. The only point where the gradient disappears, i.e, where there

is no incentive to unilaterally change its capacity, is at the intersection of the red

and the blue dotted line, which is exactly where both i1 and i2 build 13.67 GW of

capacity. This is the equilibrium point and - as can be see in Figure 5-2 - it is the only

symmetric equilibrium point. The green line connects the maximum NPV points of

each of the black continuous lines and also the blue dotted line. At the equilibrium
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point, the red, blue and green lines intersect which means that in this point both

agents build the same amount of capacity, which is 13.67 GW, and that for i1 this is

the NPV maximum point, which means there is no incentive to move away.

In Figure 5-3 the net present value curves of both GENCOs are presented at

once. Since both market agents assume symmetric data it is not surprising that the

equilibrium occurs at the intersection of both curves. Furthermore it can be observed

that - due to the curvature of the net present value curves - the other points on the

intersection curve allow an increase of the net present value by unilaterally changing

capacity, which means that these points do not qualify as local equilibria. Note that

the curve where both NPVs intersect in Figure 5-3, actually corresponds to the red

curve previously depicted in Figure 5-2. For this very simplified numerical example

it can therefore be concluded that there is only one symmetric equilibrium, which is

the one presented in Table 5.7.
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Figure 5-3: Net present value of both firms for different range of capacity investments.

In summary, it can be said that for the assumed strategic behavior of θ = 0.3/α,

the approximation scheme succeeds in approximating the results of the bilevel equi-

librium in capacities as well as in market prices and production decisions. Let us now
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analyze whether the success of the AP depends on the particular value of θ.

To that purpose, we repeat this case study with different strategic behavior ranging

from perfect competition θ = 0 (corresponds to Φ = 0 on a normalized scale) to the

Cournot oligopoly θ = 1/α (corresponds to Φ = 1 on a normalized scale). In Figure

5-4 we present the average relative errors in capacities, prices and NPVs between the

AP and the BL solution for a range of strategic market behavior. It can be observed

that for market behavior between Φ = 0.81 and Cournot (Φ = 1) the AP and the BL

solutions coincide exactly. Between Φ = 0.24 and Φ = 0.8 the average relative errors

of NPVs, prices and capacities are still very small and only go up to 0.5%, which

indicates that the AP is working extremely well. Between Φ = 0.1 and Φ = 0.23

the average relative errors increase notably to 4.1% for prices, to 6.4% for capacities,

and 7.3% to for the NPV, however, they can still be considered acceptable. In the

interval between Φ = 0 and Φ = 0.09 on the other hand, the average relative errors

shoot up significantly to 17.4% in capacities, 20.5% in prices and 27.6% in NPVs. For

this particular range the average errors are so high that the AP cannot be considered

successful.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Strategic Market Behavior Φ

A
ve

ra
ge

 R
el

at
iv

e 
E

rr
or

 (
%

)

Capacity−Error
Price−Error
NPV−Error

Figure 5-4: Average relative errors between approximation and bilevel solution for a range
of strategic market behavior.

206



For this small case study we observe the overall trend that the closer we get to

Cournot, the more accurate the approximation scheme. In a case study, presented in

section 7.3, we verify that this trend is also true for large-scale numerical examples. It

can be concluded that the developed approximation scheme works well when market

behavior is closer to Cournot than to perfect competition.

5.5 Conclusions

In this chapter we have discussed bilevel equilibrium models for generation expansion

planning. In section 5.2 we introduced an EPEC model to tackle the generation

capacity investment problem in liberalized electricity markets. In the upper level

of this bilevel equilibrium problem, firms choose capacities maximizing their profit

anticipating the equilibrium outcomes of the lower level, in which quantities and prices

are determined by a conjectured-price response market equilibrium, which allows for

an assessment of the impact of the strategic spot market behavior on investment

decisions. Moreover, this model yields an annual investment schedule over the entire

time horizon. In a case study in section 5.2.4 we have proven by example that even

a small numerical example can yield multiple equilibrium solutions, and that the

corresponding investment decisions can vary in terms of the optimal technology mix.

In section 5.4 we have proposed a single-level approximation scheme of a bilevel ca-

pacity expansion equilibrium problem and furthermore we have presented a quadratic

optimization problem that is equivalent to the single-level capacity expansion equi-

librium problem. The bilevel equilibrium more accurately represents reality than the

single-level problem, however, it is also more complicated to formulate and solve. A

numerical example, presented in section 5.4.3, shows that our approximation scheme

yields a good, unique solution in computational times two orders of magnitude smaller

than the computational times of the bilevel problem, which allows us to apply this

technique to real-size problems although with some constraints as has been shown in

section 5.4.3 and will be confirmed in section 7.3. In particular, we have observed a

trend that the closer market behavior is to Cournot, the better the approximation.
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In the large-scale case study, presented in section 7.3, the approximation scheme

is validated and we furthermore explore the impact of the model parameters on the

quality of the approximation scheme. A detailed study on strategic spot market

behavior leads to confirm the conclusion that when strategic spot market behavior

moves away from perfect competition, then the proposed approximation scheme works

very well and yields accurate price and capacity investment results.
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Chapter 6

Solution Techniques for Bilevel

Generation Expansion Models

This chapter summarizes all the numerical techniques that have been applied when

solving the MPEC and EPEC models of this thesis representing the generation ex-

pansion problem. Since bilevel problems are a class of problems that can be very hard

to solve, there is no such thing as a perfect solution method. Hence, several different

solution techniques have been explored and evaluated. In particular, section 6.1 is

dedicated to the methods that solve bilevel generation expansion optimization prob-

lems, formulated as MPECs. Solving MPEC models by itself is an interesting and

challenging endeavor, but on top of that it also provides the basis for EPEC solution

methods as some of these methods resort to iteratively solving a series of MPECs.

Section 6.2 focuses on the techniques that have been applied to tackle bilevel gen-

eration expansion equilibrium problems, formulated as EPECs. Finally, section 6.3

provides an overview of the explored methods and their advantages as well as disad-

vantages are pointed out. It is emphasized here that this chapter does not represent

a complete overview of all available methods to solve MPECs and EPECs, as for

example the method presented by Su [111], but simply addresses the methods that

have been employed in this thesis. All of the presented models and methods have

been formulated in GAMS.
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6.1 Solution Techniques for the Generation Ex-

pansion MPECs

This section is dedicated to the solution techniques that have been applied to solve the

proposed MPECs in this thesis. Apart from discussing computational performance,

we also point out advantages and disadvantages of the techniques. Section 6.1.1

discusses the nonlinear programming approach to the MPEC, while in section 6.1.2

linearization techniques are analyzed. In section 6.1.3 we briefly raise the topic of

decomposition methods and in particular Benders decomposition. It is discussed that

the standard approach of Benders decomposition cannot be applied to the type of

MPECs that are proposed in this thesis. However, decomposition methods pose a

promising topic for future research.

6.1.1 Nonlinear Programming

The bilevel generation expansion optimization model (BOM), which has been ana-

lyzed in detail in chapter 4 of this thesis, is formulated as an MPEC in section 4.2.3

and in particular in equations (4.19)-(4.30). It is clear to see from this formulation

that the presented optimization problem is a nonlinear program due to the numerous

complementarity conditions (4.22)-(4.24) and the bilinear market revenues term in

the objective function (4.19). Apart from being nonlinear, the nonlinearities are also

non-convex which complicates the solution techniques of this problem because glob-

ality of the solution cannot be guaranteed. In general, non-convex functions can have

multiple local optima. Therefore, a gradient-based solution method, which searches

the solution space along the descent (or ascent if we are maximizing) lines, terminates

when they arrive at a point where the first derivative is zero. Since there can be many

such points (multiple local optima), the final point that is yielded by the algorithm

can depend greatly on the initial solution. This implies that a priori one cannot say

which of the local optima the algorithm is going to yield, nor how many there are in

total, nor - and this is the most important fact - whether the obtained solution is the
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best among all local optima, i.e., whether the solution is global.

Since the problem in question is a nonlinear program, the most straight-forward

way to tackle the MPEC is to employ a nonlinear solver. In particular, the MPEC

models in this thesis have been solved (if not otherwise stated) using the NLPEC [46]

solver which reformulates the MPEC into a NLP and then calls the solver CONOPT

[41]. In our experience this technique is very efficient computationally speaking. For

example, the case study presented in section 4.3.4 led to an MPEC of 643 variables (5

years, 2 load periods, 3 firms, 3 scenarios, 2 technologies) and only took 0.8 seconds

to solve on an Intel(R) Core(TM) 2 Quad processor with 3.21 GB RAM. On the

same machine, a larger case study (10 years, 6 load periods, 3 firms, 4 technologies),

presented in section 4.2.4 only took 6.4 seconds.

The advantage of this method is the computational efficiency which allows us

to tackle large-scale problems in very reasonable time (the order of seconds) and

moreover memory does not pose a problem.

The clear disadvantage of applying a nonlinear solver like NLPEC is that when

the algorithm terminates correctly it only yields a local solution. The problem is that

a priori we do not know how many local optima the MPEC has. Moreover, with

the solution obtained by NLPEC there is no way of saying how good the solution is

globally speaking. As a matter of fact, the local optimum heavily depends on the

initial point that is given to the solver. Therefore, one possible approach to remedy

the downside of this method is to try out many different initial points in order to

search the solution space of the MPEC for possible local optima. Another option

could be a heuristic search, however, in the proposed problem, heuristic methods also

fail to provide information about global optimality and take considerably longer to

solve and might not even yield a feasible solution, which may make this method less

desirable in this context.

There are other nonlinear solvers, like BARON [106], that when given appropriate

bounds on variables solve a nonlinear problem to global optimality, even if the problem

is non-convex. This solver has been applied to our generation expansion MPEC and

we have drawn the following conclusions. For very small case studies (with a total
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size of 34 variables, which translates to 3 firms, 2 technologies, 1 scenario, 1 years and

1 load period) the solver yields the globally optimal solution after 61 seconds on an

Intel(R) Core(TM) 2 Quad processor with 3.21 GB RAM. Note that the purpose of

this very small case study is to compare computational techniques and therefore the

investment and other results are not presented here. When comparing the obtained

solution with the solution yielded by NLPEC in only 0.5 seconds, it turns out the both

solutions coincide. This means that NLPEC, even though global optimality could not

be guaranteed, yielded the global optimum. The potential issue with BARON is that

a large amount of memory is required and that even slightly larger case studies (for

example the 60 variable case study - which is similar to the previous one with the only

difference that now it considers 2 load periods) could not be solved on the available

machine and ran out of memory after three hours, even after having augmented the

workspace available to the solver. Therefore, it seems that for now BARON is not

going to be successful for large-scale case studies.

6.1.2 Linearization Methods

Another solution technique for the MPEC, which has previously been mentioned

briefly in the numerical example in section 4.3.4, is mixed integer programming. The

core idea of this method is that the nonlinear MPEC is transformed into a MILP

and solved as such using numerical solver like CPLEX [64]. As we pointed out in

the previous section, the nonlinearities of the MPEC stem from the complementarity

conditions (4.22)-(4.24) and the bilinear term of market revenues in the objective

function (4.19).

The complementarity conditions can be “linearized” by applying a trick by Fortuny-

Amat [49] where we introduce binary variables and replace each complementarity

equality by two inequalities as follows. For example, in order to linearize the nonlin-

ear complementarity µijylsqijyls = 0.

Cµbµijyls ≥ µijyls, (6.1)

Cµ(1− bµijyls) ≥ qijyls, (6.2)
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for Cµ a suitably large constant and bµijyls binary variables. Note that all other

complementarity conditions can be approached equivalently.

The only nonlinearity left to deal with in the MPEC is the market revenue term in

the objective function. So far, we have identified two effective ways to deal with this

term. The first approach involves the discretization of the lower level variable price

p by binary expansion [93] as has been mentioned in section 4.3.4. To that purpose,

price is written as:

pyls = p
yls

+∆pyls

∑
k

2kbpkyls, (6.3)

where p
yls

is the lower bound, ∆pyls is the step size of price, k the set of discretization

intervals and bpkyls are binary variables. Usually, in our numerical examples, the lower

bound p
yls

of price has been set to be zero. The most accurate choice of step size

∆pyls would be 1 ce/MWh, however, reasonable results might also be obtained with a

slightly higher step size, for example, 5 ce/MWh, but would not lead to such a high

number of binary variables. Then the bilinear terms pylsqi∗jyls of the objective can

be replaced by p
yls
qi∗jyls+∆pyls

∑
k 2

kzki∗jyls, where zki∗jyls symbolizes the product of

prices with quantities and is defined by the following constraints, which also have to

be added to the problem:

0 ≤ zki∗jyls ≤ Cpbpkyls, (6.4)

0 ≤ qi∗jyls − zki∗jyls ≤ Cp(1− bpkyls), (6.5)

for Cp a suitably large constant.

In the lower level, market price has been considered as a continuous variable.

Therefore, when discretizing this variable, the solution space of the lower level prob-

lem, i.e., the market equilibrium, might be reduced and in particular, this can lead

to situations were the actual solution of the initial continuous market equilibrium is

not a feasible solution when considering market prices as discrete. This means that

in the attempt to obtain a global solution to the MPEC instead of only a local one
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(which could be obtained by nonlinear programming techniques), we might have lost

the actual global solution due to the discretization of the market price. Due to this

reason, when applying this approach, one has to be careful when choosing the step

size of price. For example, if the step size were 1 ce/MWh, then the discretization

would not lead to a loss of realism of the model, however, this small step size might

lead to a high number of binary variables which furthermore complicates the solution

process of the MILP. The reader is referred the case study in section 4.3.4 where the

performance of this discretization method is compared to the method of the previous

section 6.1.1 (nonlinear programming).

The second approach to deal with the bilinear market revenue term is by discretiz-

ing capacity investment decisions. This method has been derived and discussed in

detail in section 4.4.2. When discretizing price, as mentioned in the first approach,

realistic solutions of the problem might be lost, as we discretize a continuous lower

level variable. However, investment decisions are inherently discrete and therefore we

actually increase realism of the model when discretizing capacity decisions. Therefore,

the discretization of investments is superior to the approach of discretized prices. In

any case, both of the previously mentioned approaches to linearize the market revenue

term, lead to the desired MILP formulation of the MPEC.

In general, the obvious advantage of the arising MILP is that the obtained solution

is a global optimum. On the other hand, the disadvantage is that due to the binary

variables that we have introduced in the problem formulation, the computational

time of the MILP increases greatly with respect to a standard nonlinear solver. For

example, the small numerical example of section 4.3.4 which took only 0.8 seconds

to solve using NLPEC, now leads to a MILP of 1850 variables (with a step size of

15 ce/MWh) and takes about 11.5 hours on the same machine. When considering a

smaller step size of 4 ce/MWh, then computational time increases to 20 hours. With

the MILP approach, memory also becomes an issue.
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6.1.3 Decomposition Methods

In this section we briefly discuss the potential of decomposition methods and in

particular the Benders decomposition [11] for the proposed MPEC models (BOM)

and (SBOM). This type of method has not yet successfully been applied to model

(BOM) and (SBOM); however, such an approach and its challenges are outlined below

and remain to be addressed in future research.

First of all, let us recall that the MPEC is a type of bilevel programming problem

(BPP) where the upper level is the investment stage and the lower level represents

the market equilibrium problem. Once the investment variables are fixed, the market

equilibrium is very easy to solve, for example as its equivalent quadratic optimization

problem. In section 4.3 we introduced a stochastic MPEC model (SBOM) where

capacity decisions were subject to many different scenarios of what could happen in

the market. Once the capacity decision is clear, all these different scenarios of the

market equilibrium are independent from each other and can be solved separately. At

first glance, this might seem like a suitable problem to apply the standard Benders

decomposition, but actually due to the bilevel nature of the problem, the application

of Benders is not straight forward.

In particular, the BPPs we propose in this thesis consist of two levels: the up-

per level and the lower level, which forms part of the constraints of the upper level

problem. The lower level is another optimization problem with a different objective

function than the upper level objective function. When considering the formulation

of a bilevel problem, it becomes clear that a standard Benders approach cannot be ap-

plied to a BPP, which has two different objective functions, one in the upper level and

one in the lower level. First of all, the arising BPP has to be transformed into a reg-

ular optimization problem consisting of only one objective function and constraints.

Therefore, the lower level optimization problem - representing the market equilibrium

- is replaced by its KKT conditions. This transformation yields a nonlinear optimiza-

tion problem - the MPEC (BOM) or the stochastic MPEC (SBOM). In particular, the

arising optimization problems are non-convex due to the complementarity conditions
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of the lower level. For the Benders decomposition to work successfully, the objective

function expressed as a function of capacity investment variables has to have a convex

envelope. Since our entire problem is inherently non-convex, the standard Benders

approach is not guaranteed to converge. It is therefore clear that with an MPEC we

cannot apply the standard Benders decomposition. In any case, let us now consider

applying an adapted Benders decomposition, such as proposed by Kazempour and

Conejo [69] to this problem and discuss the arising issues further.

As previously mentioned, the complicating variables are the investment decisions.

Once these decisions are known, the rest of the problem, i.e., the market equilibrium,

can be solved efficiently and separately for each scenario. Therefore, when separating

the MPEC into a Master and a subproblem, the investment decisions and the corre-

sponding constraints will be part of the Master problem, and the production decisions,

market prices and demand will form part of the subproblem. The complication that

occurs is that the subproblem is non-convex due to the complementarity conditions.

In order to tackle this problem, the subproblem can be re-written as a convex prob-

lem by linearizing the complementarity conditions using Fortuny-Amat [49]. In total,

we consider two options to model the subproblem. First, considering the contin-

uous KKT conditions, which are nonlinear and non-convex and second, linearizing

the complementarity conditions which convexifies the formulation of the constraints,

however, it also introduces binary variables into the subproblem formulation.

A subproblem containing the nonlinear but continuous formulation of the lower

level provides accurate sensitivities which are needed in a Benders approach; however,

the nonlinearities may lead to non-robust behavior. On the other hand, a subproblem

containing the linearized formulation of the lower level provides the optimal solution

but does not provide useful sensitivities. The combination of the two subproblems -

one for providing sensitivities and the other one for providing an optimal solution - can

be used to supply the Master problem with useful information. In some cases it can be

shown as for example by Kazempour and Conejo [69] that with an increasing number

of scenarios, the objective function expressed as a function of capacity investment

variables becomes increasingly convex which makes a Benders approach possible.
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In current work in progress, we have implemented this approach, however, the

obtained results have not been satisfactory so far. When comparing the solutions

of the Benders approach as described above and the global solution of the MPEC

formulated as a MILP, then the performance of the Benders approach was poor since

solutions were very different. This poor performance might be due to the small

number of scenarios that were considered in the case studies, however, the MILP

cannot be solved for a large-scale scenario and as a first step, we wanted to test the

performance of the Benders approach on a small case study before applying it to a

large-scale problem. In future research this should to be analyzed in more detail.

It also remains to be shown that the objective function of our proposed MPEC as

a function of capacity investments has a convex envelope and whether some type

of Benders decomposition can be applied. Successful Benders approaches to the

investment problem in energy markets, as done by Baringo, Kazempour and Conejo

[3, 69], should be considered as references in the literature.

6.2 Solution Techniques for the Generation Ex-

pansion EPECs

In general, EPECs are known to be very complicated problems which could have mul-

tiple equilibria or even none at all, due to inherent nonlinearities and non-convexities

(due to the complementarity conditions). There exist a variety of methods to solve

EPECs, and in this section we mention some of them - as well as their advantages

and disadvantages - that we have applied when solving the EPEC models which have

been proposed in this thesis. In particular, we present an iterative method called

diagonalization in section 6.2.1 and then in section 6.2.2 we briefly talk about the

complementarity problem formulation of the EPEC. In section 6.2.3 the linearization

method is presented and finally in section 6.2.4 an approximation scheme, which is

an original contribution of this thesis, is mentioned.
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6.2.1 Diagonalization

Solving an EPEC directly can be very complicated, therefore a straight-forward way

to solve an EPEC is by iteratively solving a series of MPECs which are simpler to solve

than the EPEC. This method is called diagonalization. Diagonalization, as mentioned

by Hu, Hu and Ralph or Leyffer and Munson [62, 63, 77], is a kind of fixed-point

iteration where each player, in our case each GENCO, updates its investment strategy

(by solving an MPEC) while considering the competition’s investment decisions to

be fixed. This type of method has been previously applied in energy bilevel models

by Ahn and Hogan [1], Cardell et al. [23] and more recently by Hu and Ralph [63].

Let us now concretize this method for the bilevel generation expansion equilibrium

model that we aim to solve. We therefore define the following algorithm:

Solving the Generation Expansion EPEC of Section 5.2.3 by

Diagonalization

1. Initialization: Set iteration counter count = 0; define a maxi-

mum number of iterations MaxIt and define a convergence toler-

ance ε; provide initial point x(0) = {x0
1jy, . . . , x

0
ijy, . . . , x

0
Ijy}.

2. Iteration: For i = 1 to I: given the current iterate x(count),

solve GENCO i’s bilevel generation expansion problem [MPECi

given by (4.19)-(4.30)] which yields firm i’s optimal investment

decision x∗
ijy. Update the current iterate by replacing x

(count)
ijy with

the obtained optimal solution x∗
ijy.

3. Stopping Condition: If ‖ x(count+1)−x(count) ‖< ε then we have

converged to point x(count+1) and stop the algorithm; else if count

< MaxIt then set count = count+1 and go to Step 2; else if count

= MaxIt then we stop the algorithm without having converged.
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Step 1 of the diagonalization method is the initialization step, where we set the

convergence tolerance ε, the maximum allowed number of iterations MaxIt, the initial

capacity investment solution given by vector x(0) = {x0
1jy, . . . , x

0
ijy, . . . , x

0
Ijy} and the

iteration counter count. Step 2 of the algorithm is referred to as the iterative step

because this is repeated in each iteration of the algorithm. For the current point

of capacity investments, i.e., x(count), we loop through all GENCOs i and solve the

MPECi of the current GENCO i (while keeping the other GENCOs’ investments

fixed to x(count)). MPECi yields a new solution for the optimal investment decision

of GENCO i which we refer to as x∗
ijy. We now update the current vector of capacity

investments x(count) by replacing x
(count)
ijy with the optimal solution x∗

ijy just obtained

from MPECi. We repeat this for all GENCOs. Then we move on to the third

step of the algorithm in which we check the stopping criterion. In particular, if the

difference between two consecutive solutions x(count) and x(count+1) is sufficiently small,

i.e., ‖ x(count+1) − x(count) ‖< ε, then the algorithm has converged and we can stop.

However, if the difference is greater than the tolerance ε then we have not converged

yet. If we have not reached the maximum number of iterations yet, then the counter

is therefore incremented by one and we go to step 2 of the algorithm, otherwise the

algorithm terminates without having converged.

One of the advantages of this method is that it yields a bilevel equilibrium solution

- that is if it converges - without having to actually solve an EPEC. Instead, this bilevel

equilibrium solution is obtained by cyclically solving MPECs, which is a much easier

task. In particular, as mentioned in section 6.1.1, the corresponding MPEC can be

formulated in GAMS and solved using the solver NLPEC [46] which transforms the

MPEC into a nonlinear program and furthermore calls another solver, i.e., CONOPT

[41]. Another advantage of this method is that the computational time is relatively

small, even for larger case studies. The case study which has been presented in section

5.4.3 (2 firms, 4 technologies, 6 load periods and time horizon of 15 years) led to an

MPEC that consisted of 2400 variables. The arising bilevel equilibrium model has also

been solved using diagonalization and on an Intel(R) Core(TM) i5-2410M running at

2.30 GHz 4 GB RAM, the computational time was 68 seconds.
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The disadvantage of the diagonalization technique is that, depending on the initial

point, we can end up at different solutions. This is not surprising, since an EPEC

can have multiple solutions and therefore the bilevel generation expansion problem

can have multiple equilibrium solutions. The diagonalization, if it converges, yields

one of these equilibrium points but a priori we cannot say which one, nor can we

actively choose among these equilibria. Moreover, the diagonalization method does

not necessarily always converge. If it does not converge, this might point to the lack

of a pure strategy equilibrium and the existence of an equilibrium in mixed strategies.

A pure strategy provides a complete definition of how a player will play a game and

determines the move this player will make for any situation he or she could face.

There are games where there exist no Nash equilibria in pure strategies, however,

they exist in mixed strategies. A mixed strategy is an assignment of a probability to

each pure strategy. This allows for a player to randomly select a pure strategy with

a certain probability. As for the bilevel generation expansion equilibrium problem,

that we have proposed in this thesis, so far the diagonalization method has always

converged to a pure strategy equilibrium.

Diagonalization can also be useful to check certain points for their equilibrium

status - points that might have been obtained through other EPEC solution methods.

Such a point is then used as initial solution for diagonalization. If the algorithm

converges immediately, then the initial solution actually was an equilibrium point,

otherwise it was not. It might have been just a saddle point of the EPEC or no

special point in particular.

6.2.2 Mathematical Complementarity Problem

Another option to solve EPECs is via the complementarity problem formulation. In

section 2.2.5 we have introduced the definition of a mixed complementarity problem

(MCP). Moreover, in section 2.2.5 we have shown that an optimization problem such

as the one presented below can be formulated as an MCP by using its KKT conditions.
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max
x

f(x) (6.6)

s.t. F (x) ≥ 0 : λ (6.7)

x ≥ 0 : µ (6.8)

In particular, the MPEC problem (BOM) given by equations (5.2)-(5.13) can be

interpreted as an optimization problem as the one presented above. As has been

shown in section 2.2.5, the KKT conditions of such an optimization problem can be

transformed into the following MCP:

x ≥ 0 ⊥ ∇xf(x) + λT∇xF (x) ≤ 0 (6.9)

λ ≥ 0 ⊥ F (x) ≥ 0 (6.10)

Since the generation expansion EPEC model (BEM), presented in (5.14)-(5.26),

is a set of KKT conditions of each GENCO’s MPEC, it can also be written as a

complementarity problem. In fact, the formulation of the EPEC model (BEM) in

(5.14)-(5.26) already is a complementarity problem formulation.

This type of problem can be addressed using specific MCP solvers like PATH [38].

For our particular generation expansion equilibrium problem, the complementarity

approach has not worked very well. In the majority of cases the solver terminated

yielding an infeasible solution, even if we could prove (by using other methods like

diagonalization) that equilibria existed. In some sporadic cases and only for very

small problem instances, the solver actually yielded a feasible solution. Another

disadvantage of the MCP formulation is that feasibility does not necessarily imply

that the obtained solution is an equilibrium of the EPEC, it might just be a stationary

point of the EPEC as observed by Hu and Ralph [63]. Therefore, the MCP approach

- while working well for single-level equilibrium problems - has not been employed

further for the EPEC model in this research. However, this type of approach has

successfully been applied in the literature. In particular, the reader is referred to the
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book of S. Gabriel et al. [51] for theory and applications of complementarity modeling

in energy markets.

6.2.3 Linearization Methods

In the numerical example of the EPEC presented in section 5.2.4 we have already

emphasized that the EPEC has multiple equilibria and that some of them may be

more interesting than others depending on the scope of the study. The set of equa-

tions and inequalities as formulated in (5.14)-(5.26) in section 5.2.3 representing the

EPEC can therefore have several solutions and it would be desirable to be able to

choose among the different equilibria. It is therefore necessary to define an additional

criterion to choose a specific equilibrium of interest. This criterion is embodied by

the classification function introduced herein.

Therefore, let us interpret the EPEC model, which consists of a set of equations

and inequalities, as the constraints of an optimization problem, whose objective func-

tion fulfills the purpose to classify the type of equilibrium that we would like to choose.

This methodology allows to choose a specific equilibrium (among possibly many ex-

isting equilibria) which for example maximizes total market profits. In order for the

obtained solution to be globally valid, the proposed optimization problem should be

transformed into a MILP. We hence define a MILP, as proposed below, where the

constraints correspond to a linear version of the EPEC and the objective function

corresponds to a classification function. This allows us to choose the equilibrium that

most appropriately satisfies the criterion of the classification function.

max Linear classification function

s.t. Linear version of the EPEC (6.11)

Moreover, points that satisfy the previously defined EPEC conditions are called

Nash stationary points and are not necessarily always an equilibrium. Therefore,

after having solved (6.11) we carry out a post-optimality check in order to identify

whether the obtained stationary point is also an equilibrium. To this end, we apply
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a diagonalization technique, which has previously been introduced in section 6.2.1,

where the investment decisions obtained by (6.11) serve as the initial point. If it

turns out that the obtained point is not an equilibrium then we solve (6.11) again

adding an upper bound on the classification function value that is strictly less than

the one previously obtained. This procedure allows us to search the solution space for

different equilibria. Furthermore we employ another check where we manually change

the obtained investment decisions and solve the market equilibrium and calculate

profits. If unilateral changes in investments lead to a decrease in profit, then the

obtained points actually are equilibria. However, it has to be stated that the process

of solving the linear version of the EPEC various times can be quite slow.

In the remainder of the section we discuss how to linearize the nonlinear program

that is the EPEC, given by (5.14)-(5.26), and we propose a suitable classification

function and put all of the parts together.

Linearization of EPEC

The nonlinearities of the EPEC model (BEM), given by (5.14)-(5.26), are due to

the complementarity conditions and the bilinear terms arising from the product of

ζµi∗ijyl and ζλi∗ijyl with other variables. We take care of the complementarities (5.10),

(5.11) and (5.20)-(5.25) by replacing them by their linear equivalent, as presented by

Fortuny-Amat [49]. An example for the linear equivalent of complementarity (5.10)

can be seen below:

Cµbµijyl ≥ µijyl (6.12)

Cµ(1− bµijyl) ≥ qijyl, (6.13)

for Cµ suitably large constants and bµijyl binary variables.

As for the other bilinear terms, arising in (5.14)-(5.17), we apply a binary ex-

pansion, as proposed by Pereira et al. [93] to the variables ζµi∗ijyl and ζλi∗ijyl. The
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formulation of the binary expansion for ζµi∗ijyl is given below:

ζµi∗ijyl = ζµ +∆ζµ

∑
k

2kbζki∗ijyl, (6.14)

where ζµ is the lower bound, ∆ζµ is the chosen step size, k the set of discretization

intervals and bζki∗ijyl are binary variables. Then the bilinear terms ζµi∗ijylqijyl, for

example, can be replaced by ζµqijyl + ∆ζµ
∑

k 2
kzζki∗ijyl, where zζki∗ijyl symbolizes the

product of the two variables and is defined by the following constraints, which also

have to be added to the problem:

0 ≤ zζki∗ijyl ≤ Cζbζki∗ijyl (6.15)

0 ≤ qijyl − zζki∗ijyl ≤ Cζ(1− bζki∗ijyl), (6.16)

for Cζ a suitably large constant.

In this way we transform the nonlinear EPEC into a system of linear equations

and inequalities, which we refer to as the linear version of the EPEC.

Classification Function

In section 5.2.4 we have established that an interesting classification function would

be the weighted sum of overall profits, given by equation (5.27) and presented below,

where Vi represent the weight of firm i’s total profit. The total profits consist of

the market revenue term (Tylpylqijyl), minus total production cost (Tylδijqijyl), minus

investment costs (βijyxijy):

∑
i

Vi

∑
y

1

(1 + F )y
{∑

jl

Tylpylqijyl −
∑
jl

Tylδijqijyl −
∑
j

βijyxijy

}
(6.17)

The variables of that appear in this classification function are: capacity invest-

ments xijy, market prices pyl and production decisions qijyl. Since the market revenue

term (Tylpylqijyl) of the total profits is nonlinear, this function needs to linearized

in order to serve as a classification function in a MILP framework. Similar to the
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derivations previously carried out in section 4.4.2 when introducing a discretized ver-

sion of the MPEC, we rewrite the market revenue term of the classification function

as equation (6.18). For the details of this derivation the reader is referred to section

4.4.2.

∑
j Tylpylqijyl

(1 + F )y
=

∑
j δijTylqijyl

(1 + F )y
+

θiylTyl(
∑

j∗ qij∗yl)
2

(1 + F )y
(6.18)

+
∑
j

λijyl(Kijy + xijy)

In the expression of market revenues given by (6.18), there are still two nonlin-

earities: a bilinear term stemming from the product λijylxijy and a quadratic term

(
∑

j∗ qij∗yl)
2. The quadratic term can be approximated by a piece-wise linear func-

tion, as has been previously shown in equations (4.115)-(4.118). Let us now focus on

the other nonlinear term.

The bilinear term λijylxijy in the classification function could be linearized easily

by discretizing investment decisions xijy. However, even though this was a desirable

approach for the MPEC, in the EPEC investment decisions have been considered

continuous variables, which was necessary in order to take derivatives. Therefore

discretizing xijy in the classification function would mean reducing the solution space

of a primal variable of the EPEC and is therefore not desirable in this case because

it might lead to the loss valid solutions of the EPEC. Instead we introduce a new

variable x̃ijy which represents the approximation of investment decisions xijy and we

replace λijylxijy with λijylx̃ijy in the classification function. Then we discretize x̃ijy

using a binary expansion as presented in (6.19), where ∆x is the chosen step size,

k the set of discretization intervals and bxkijy are binary variables. Then the bilinear

terms λijylx̃ijy, can be replaced by ∆x

∑
k 2

kzxkijy, where z
x
kijy symbolizes the product

of the two variables and is defined by the following constraints, which also have to be

added to the problem:

x̃ijy = ∆x

∑
k

2kbxkijy, (6.19)

0 ≤ zxkijy ≤ Cxbxkijy, (6.20)
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0 ≤ λijyl − zxkijy ≤ Cx(1− bxkijy), (6.21)

for Cx a suitably large constant. We also add constraints (6.22) and (6.23) in order

to guarantee that the difference between x and its approximation is at most the step

size.

x̃ijy − xijy ≤ ∆x (6.22)

xijy − x̃ijy ≤ ∆x (6.23)

Finally, applying this to (6.17) yields a linear classification function that represent

the approximation of profits and completes the MILP, that we solve in the case study

presented in section 5.2.4:

max
∑
iy

Vi

(1 + F )y
{∑

l

Tylθiq̄iyl −
∑
j

βijyxijy +
∑
lj

λijylKijy(1 + F )y

+
∑
jl

(1 + F )y∆x

∑
k

2kzxkijy
} (6.24)

s.t. Discretize approximated investments: (6.19)− (6.23) (6.25)

s.t. Piecewise linear function: (4.115)− (4.118) (6.26)

s.t. Linear version of the EPEC (6.27)

The advantage of this method is that it allows us to search the solution space

of the EPEC and find different equilibria. As the numerical example presented in

section 5.2.4 shows, even for a relatively small case of an EPEC multiple equilibria

exist and they yield a different technology mix in capacities. Moreover, by introducing

the classification function, we are able to choose particular equilibria that might be

interesting depending on the study that is carried out. However, when converting

the EPEC into a MILP many binary variables are required, which makes this a

particularly difficult model to solve. As mentioned in the numerical example in section

5.2.4, on an Intel(R) Core(TM) i5-2410M running at 2.30 GHz 4 GB RAM, depending

on the choice of weights, the computational time could range from 10 to 24 hours and
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it is a very memory intensive process, which for the time being makes the resolution

of large-scale examples intractable.

6.2.4 Approximation Scheme

An alternative method to solve the EPEC generation expansion model is the single-

level approximation scheme that has been presented previously in section 5.4 and that

has been published in an international journal, see Wogrin et al. [117]. In this scheme

the EPEC is approximated by solving the single-level expansion equilibrium model

twice, first assuming Cournot behavior in the market, fixing the obtained investment

decisions and then solving the single-level model a second time assuming the actual

strategic behavior θ.

In section 5.4.1 it has been discussed in detail how the results from chapter 3

have sparked the idea for this approximation scheme and how they are the theoret-

ical basis for the functioning of this scheme. Essentially, what has been found in

chapter 3 is that the generation expansion EPEC for a single-year, single-period sit-

uation yields Cournot capacities despite of the strategic behavior in the spot market

and that the single-level and bilevel model coincide when assuming Cournot behav-

ior. Under certain circumstances these results extend to the multiple-period case.

Therefore, instead of solving the bilevel model, we solve the single-level model as-

suming Cournot behavior in the market, which hopefully yields investment decisions

similar to what the bilevel model would have yielded. This is the first step of the

approximation procedure which provides us with investment decisions, however, the

single-level Cournot model does not yield appropriate market prices and productions

since the bilevel model considered different strategic behavior θ in the market. Hence,

we fix the investment decisions that we have obtained in the first step and solve the

market equilibrium problem again, this time assuming strategic behavior θ instead

of Cournot behavior. This provides us with a good approximation of prices and pro-

duction decisions. All in all, the first step of the approximation yields the investment

decisions and the rest yields prices and production decisions. For further detail the

reader is referred to section 5.4.
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The advantages of this methodology are numerous. First of all, we have devel-

oped an alternative way to formulate the single-level expansion equilibrium as an

equivalent quadratic convex optimization problem, see section 5.3, which is a very ef-

ficient way to solve this problem computationally, even for very large-scale problems.

As a reference we refer to the numerical example presented in section 5.4.3, where

the computational time of a two player, four technology, six load level and 15 year

EPEC on an Intel(R) Core(TM) i5-2410M running at 2.30 GHz 4 GB RAM using the

CPLEX solver was only 0.6 seconds. Let us compare this computational time to other

methods, for example diagonalization. The same problem, when solved using diago-

nalization, where one MPEC consisted of 2400 variables and the stopping tolerance

was set to 0.0001 was 68 seconds. This means that the approximation scheme by two

orders of magnitude faster than the diagonalization methods, which demonstrates the

promise that the approximation method has when wanting to tackle real-life large-

scale problems. Let us also recall from 5.2.4 that the linearization approach for a

much smaller numerical example of two firms, two technologies, two load periods and

two years, yields a computational time of about 10 hours, which would be five orders

of magnitude larger than the approximation scheme. Not to mention that with the

available computational power, a numerical example of the size considered in 5.4.3

could not have been solved to optimality using the linearization approach.

On the other hand, the disadvantages of employing the approximation scheme

to solve the generation expansion EPEC is that in the only one unique solution is

provided, which is independent from starting points etc. But we know from the

previous section 6.2.3 that the EPEC has multiple equilibria. It might be interesting

to explore the space of possible equilibria in order to analyze in what kind of market

situation a certain equilibrium might occur and/or how to avoid this from happening.

Since the approximation scheme only yields one solution, even though this solution

might be very well motivated, this technique does not allow for further exploration of

the solution space of the EPEC. Moreover, it has to be considered that the solution

yielded by the approximation scheme - as the name indicates - is an approximation of

an EPEC solution which does not necessarily have to coincide with an actual EPEC
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solution. However, the numerical example in 5.4.3 has shown that under certain

circumstances, this approximation is very accurate.

6.3 Summary of Solution Methods and Conclu-

sions

Table 6.1 contains a summary of the solution methods for MPECs and EPECs that

have been discussed in this chapter. In Table 6.1 we present the type of bilevel problem

that has been discussed (MPEC or EPEC), the solution method applied, a relevant

reference where to find such an approach, and a summary of the advantages and

disadvantages of such an approach. Note that the comparison only refers to methods

that have in one way or another been used in this thesis and is not a complete list of

all existing solution methods for MPECs and EPECs.

As a summary, for MPEC problems, NLP has allowed us to solve realistic case

studies very efficiently, however, since the MPEC problem is non-convex, the ob-

tained solution is only local and there is no way of saying how far this solution might

be from the global optimum. MILP methods on the other hand provide this type

of information. The obtained solution is a global maximum, however, since many

binary variables are introduced into the problem, so far only moderately-sized prob-

lem instances could be solved. Decomposition methods could solve this problem,

however, since MPEC problems are inherently non-convex, straight-forward decom-

position methods, such as Benders decomposition, are not guaranteed to work.

For EPEC problems, there are methods such as diagonalization which relies on the

iterative solution of MPEC problems. This method can handle large-scale problems

and if it converges, then it yields an equilibrium solution. However, this method is not

guaranteed to converge even if an equilibrium exists. Moreover, diagonalization yields

one equilibrium solution, but there might be many local equilibria to choose from. The

proposed MILP methods provide the methodology to choose a specific equilibrium

among all the existing ones, however, only relatively small problem instances can be
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solved. Moreover, the solution might not even be an equilibrium but only a stationary

point. MCP methods can handle large-scale problems, even though for our problem

they have not worked well, but they also yield only stationary points, which would

have to be checked for their equilibrium status. Finally, the proposed approximation

scheme yields good solutions very fast, but only works well when the strategic spot

market behavior is closer to Cournot than to perfect competition.

It is clear to see that each of the explored approaches has its strong and its weak

points and that among these methods there is no such thing as the perfect solution

method with only advantages and no drawbacks. Therefore, as a conclusion in terms

of computational methods for MPECs and EPECs and as a recommendation it can

only be said that the choice of method greatly depends the purpose of the analysis.
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Chapter 7

Additional Case Studies

This chapter is dedicated to some additional case studies that have been referred to

throughout the thesis. In total, three different case studies are presented here. First,

in section 7.1 a large-scale stochastic MPEC with demand uncertainty is introduced.

Furthermore, in this numerical example, capacity payments, financial hedging and

hydro energy are considered, which makes this the most realistic case study presented

in this thesis. Then, in section 7.2 a stochastic MPEC which considers discrete

investment decisions is considered. Finally, in the case study of section 7.3 the single-

level approximation scheme of the bilevel generation expansion equilibrium model -

an original contribution of this thesis - is applied to a large-scale numerical example

in order to verify its validity. In section 5.4.3 the approximation scheme has been

validated numerically for a very small case study. Section 7.3 aims at applying the

approximation scheme to a multi-year, multi-technology, multi-load period numerical

example in order to characterize the quality of the scheme with respect to realistic

case studies. We draw the conclusion that the bilevel model can be approximated

reasonably well for cases where the market behavior is closer to oligopoly than to

perfect competition. The reduction in computational time by two orders of magnitude

still applies even for the large-scale numerical example. This case study answers one of

the main research questions that have been posed in this thesis, which was to quantify

if and when bilevel generation expansion models can be accurately approximated by

single-level models. Moreover, a sensibility analysis on how model parameters affect
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the quality of the approximation scheme is carried out. Finally, section 7.4 contains

the conclusions and an overview of the case studies of this thesis.

7.1 Large-Scale Stochastic MPEC with Demand

Uncertainty

The purpose of this first case study is to present a large-scale numerical example

in which several of the proposed model extensions, motivated in section 4.4, are in-

cluded. In particular, in the following we present a stochastic MPEC which considers

stochastic demand, which also incorporates hydro energy, capacity payments and con-

tracts for differences. The data of this case study is calibrated in order to resemble

the Spanish power system.

In particular, we consider six generation companies i1 to i6 where the first five

correspond to five large GENCOs of Spain and the sixth GENCO i6 has been de-

signed as an aggregate of the rest of the players in the market. Four different thermal

technologies are considered for investment capacity, i.e., nuclear (NU), coal (CO),

combined cycle gas turbines (CC) and open cycle gas turbines (GT). Production and

annual investment costs of those technologies are based on the updated document

of the International Energy Agency [90] and are presented in Table 7.1, which also

contains values of a capacity payment which has been inspired by the Spanish sys-

tem. The discount factor F is assumed to be 9% and the demand slope is taken as

0.26 GW/(e/MWh). Due to space limitations, not all data is presented here but can

be found in the appendix A. Tables A.4, A.5 and A.6 contain the already existing

generation capacity Kijy of each of the six GENCOs, which has roughly been based

on the Spanish power system. Note that the expected equivalent forced outage rates

and self-consumption of power real plants have been incorporated and hence Tables

A.4, A.5 and A.6 have to be interpreted as an approximation of the net existing ca-

pacity (capacity minus expected equivalent forced outage rates and self-consumption

of generators) in Spain.
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Table 7.1: Production and investment cost for each technology.

Production cost δ Annual investment cost β Capacity payment CP
[e/MWh] [(Me/GW)/year] [(Me/GW)/year]

NU 6.41 386.77 0.00
CO 20.78 229.60 12.00
CC 43.57 70.90 3.15
GT 65.10 39.00 3.15

Since the main focus of this numerical example is to study the impact of demand

uncertainty on investments, both the hydro data and the competitors’ investment

and strategic data is assumed deterministic. Total annual hydro generation for each

market agent has been estimated as follows. Parting from an average annual hydro

energy value of 26 TWh, this energy has been divided among the individual market

agents according to realistic shares of Spanish market agents. The individual hydro

energy data for each generation company can be found in the appendix in Table A.1.

Maximum hydro output per load period Hiyl is given in Table A.2. Strategic spot

market behavior (characterized by the conjectured-price response) for each firm is

given in Table A.7. Contracts for differences have been considered at 40 e/MWh

and an annual quantity Miyl is presented in Table A.8. No new investment of the

competitors’ Xijy is considered, however, in the solution they still have production

since they part from some existing capacity Kijy.

Since Spain is a country with a considerable amount of non-dispatchable renewable

energy, which is not explicitly modeled in the stochastic MPEC, we incorporate this

as follows: the term demand dyls that is considered in this model does not represent

the real demand of the stylized Spanish power system, but the net demand (calcu-

lated as demand minus wind) of a stylized Spanish power system. In order to derive

corresponding demand intercept data, we therefore assume two different scenarios of

annual demand growth and one scenario of wind production growth. The obtained

values are subtracted and ultimately lead to the demand intercept data presented in

Tables A.9 and A.10, which are both considered equally likely demand scenarios, i.e.,

a high-demand scenario and a low-demand scenario. In the high-demand scenario,
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demand intercept values range from 17.5 GW in off-peak periods to 62.7 GW in peak

periods in the first year of the time horizon. In the last year of the time horizon

these values range from 14.7 GW to 90.2 GW. On average, a 2% demand intercept

increase is considered in peak periods. In the low-demand scenario, the demand in-

tercept ranges from 15.6 GW in off-peak periods to 55.8 GW in peak periods during

the first year of the time horizon. In the last year of the time horizon the demand

intercept ranges from 2.2 GW to 59.5 GW and on average, a 0.3% demand intercept

increase is considered in peak periods. For further detail, the reader is referred to

Tables A.9 and A.10. It should be kept in mind that when we refer to “demand”

in the remainder of this section, we actually mean net system demand, where wind

production has already been subtracted.

The considered time horizon of this case study is 20 years and we consider 12 load

periods in each year. Annual load period durations of the 12 annual load periods

considered are presented in Table A.3. These 12 periods can be separated into four

peak periods (l1 to l4), four shoulder periods (l5 to l8) and four off-peak periods (l9

to l12). The arising stochastic MPEC has been formulated in GAMS and is made up

of 30483 variables and 30459 equations - a problem size which could not be tackled

so far with the existing MIP methods. Solving this model using NLPEC [46] on an

Intel(R) Core(TM) 2 Quad Processor with 3.21 GB RAM takes around 7 minutes.

In Figure 7-1 we present the solution for capacity investments in coal technology of

firm i1 obtained by the stochastic MPEC. Note that in the optimal solution there are

no investments in other technologies. Moreover, we include the capacity investment

plans that we obtain if we solve two deterministic MPECs, one for each demand

scenario, the high and the low-demand scenario. Due to the existing over-capacity

that is currently reigning in Spain, it is not surprising that until the year 16 of the

time horizon, the are no new investments in capacity yielded by the stochastic MPEC.

At the end of the explored time horizon, the stochastic MPEC yields a capacity of

1.6 GW in coal. In comparison, in the high-demand scenario capacity investments

become more attractive at an earlier time and in particular, capacity investments in

coal start in year 13 and yield a total of 3.3 GW. On the other hand, in the low
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Figure 7-1: Capacity investment results obtained by stochastic MPEC and by the deter-
ministic high-demand scenario.

deterministic demand scenario, capacity investments are not profitable for the entire

time horizon, since demand can be covered by already existing capacity and there

are therefore no new capacity investments in this scenario. The investment plan

determined by the stochastic MPEC yields an expected NPV of 21360 Me, while

in the deterministic cases the obtained NPVs in the high and low demand cases are

26054 and 16775 Me, respectively. As a summary it can be said that, since both

scenarios are considered equally likely, the new capacity investments yielded by the

stochastic MPEC are quite low, simply because if more capacity were built and a

low-demand scenario occurred, then firm i1 would not recover its investments. It is

therefore more profitable to invest less capacity.

Annual net demand (demand minus wind) and average annual spot market prices

of the stochastic MPEC for each demand scenario are presented in Figure 7-2. Under

the high-demand scenario we obtain an annual average price of 46.1 e/MWh in the

first year, which ranges from 21.9 to around 75.2 e/MWh depending on the load

period. At the end of the explored time horizon prices range from 22.3 to 180.0

e/MWh with an annual average of 81.0 e/MWh. Thus in the last year of the time

horizon, peak prices can go as high as 180 e/MWh which is the value of the price

cap in the Spanish system. It seems that the investments are not enough to lower

237



2 4 6 8 10 12 14 16 18 20
40

60

80

100

Years

P
ric

es
 (

E
ur

o/
M

W
h)

Average Annual Prices

High-Demand Scenario
Low-Demand Scenario

2 4 6 8 10 12 14 16 18 20
200

250

300

350

Years

N
et

 D
em

an
d 

(T
W

h)

Annual Net Demand

High-Demand Scenario
Low-Demand Scenario

Figure 7-2: Average annual prices [e/MWh] and annual net demand [TWh] under both
scenarios.

peak prices more. Let us now observe the low-demand scenario prices. Due to the

lower values of assumed demand intercept and actual demand, given in the second

subplot of Figure 7-2, prices in this scenario are lower than the ones in the high-

demand scenario. This is due to the fact that in this scenario the assumed annual

increase in demand intercept is considered very small. As a matter of fact, due to

the increased integration of wind power, actual net system demand decreases over

time in the low-demand scenario. In the first year of the time horizon prices range

from about 21.2 to 66.5 e/MWh with an annual average of 43.4 e/MWh, and in

the last year prices range from 5.5 to 75.1 e/MWh with an average of 42.1 e/MWh,

which is lower compared to the first year because off-peak prices have dropped more

drastically in future years since a higher wind generation (which leads to a lower net

demand level) has been assumed. The detailed results of demand in each load period,

year and scenario can be found in Tables A.11 and A.12.

Let us now analyze the return on investments, given in Table 7.2, of our investing

generation company starting in year 16 of the time horizon. The return on invest-
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Table 7.2: Return on investments [%] for investing market agent i1 over time horizon.

Stochastic High Demand Low Demand

y16 0.9 24.0 -22.2
y17 2.4 32.7 -27.9
y18 2.2 37.1 -32.8
y19 4.5 40.3 -31.2
y20 3.9 41.7 -34.0

ments has been calculated as annual net profits of investments divided by annual

investment costs. Note that the annual net profits of investments have been obtained

as the difference of total annual profits minus total annual profits in the case where

no investments have been assumed. In Table 7.2 we present the return on invest-

ments yielded by the stochastic model, but also for each of the demand scenarios

individually. It is interesting to observe that the high-demand scenario leads to a

return on investments as high as 41.74%, whereas under the low-demand scenario the

return on investments is negative. This means that if the low-demand scenario occurs

then the investing company is not going to recover its investments. However, since

the possible return on investments under the high-demand scenario is slightly higher

then the possible losses under the low-demand scenario, on average we still obtain a

positive return on investments of up to 4.54% in the stochastic model. These results

would dissuade a risk-averse firm from making this investment.

In conclusion it can be stated that in a power system resembling the Spanish one,

the possibility of the low-demand scenario delays possible capacity investments and

the current capacity payments are not enough to counter this effect. If the capacity

payments were to be doubled, then new investments in coal would already emerge one

year earlier, i.e., in year 15, and in total around 480 MW more would be built. This

shows us that the presented stochastic MPEC model can be employed to analyze the

impact of regulatory measures.
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7.2 Comparison between Continuous and Discrete

Investment Decisions

In this case study we revisit the numerical example of section 4.3.4, where we pre-

sented a stochastic MPEC. The stochastic parameters were the competitors’ invest-

ment decisions and their corresponding strategic spot market behavior. In the case

study in section 4.3.4 we also compared two different solution techniques of the MPEC:

the first was to employ the nonlinear solver NLPEC, and the second option was to

transform the MPEC to a MILP by discretizing market prices. Since market prices

are lower level variables, this particular discretization may lead to the loss of realism

of the representation, apart from the fact that computational times increase tremen-

dously (NLPEC takes 0.8 seconds while the MILP depending on the step size used

in the discretization can take up to 20 hours). Therefore, in this case study we apply

the discretization of investment variables, as proposed in section 4.4.2, instead. Since

investment decisions are inherently discrete, this type of discretization even increases

the state of realism of the model. The purpose of this case study is to show the differ-

ence in terms of optimal capacity mix yielded by the MPEC solved by NLPEC and

the MILP with discrete capacity decisions and analyze the results. We also compare

the obtained results to a static expansion, which optimizes investments for one target

year in the future, and analyze its differences.

All the data that has been assumed in this case study is identical to the data in

the numerical example of section 4.3.4 and is therefore not repeated here. However,

let us define all the additional data that has been used in the MILP model with

discretized capacity investment decisions. The discrete step size for each power plant

is 1000 MW for nuclear and 400 MW for combined cycles.

Let us now analyze the obtained results. In Table 7.3 the total expected NPV is

presented for the original MPEC with continuous variables, the stochastic MILP with

discrete investment decisions, a static MILP which also assumed discrete investment

decisions but only for one target year in the future, and for three deterministic MILPs

considering discrete investments and different strategic spot market behavior, i.e.,
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Table 7.3: Total expected net present value [Me] of investing firm.

NPV

MPEC 30921
Stochastic MILP 30893
Static MILP 30877
Deterministic MILP

19610
(Perfect competition)
Deterministic MILP

29732
(Intermediate competition)
Deterministic MILP

40980
(Cournot competition)

perfect competition, Cournot behavior and intermediate behavior. Note that the

NPV for the static case has been calculated as follows: the discrete MILP is solved

for a future target year, i.e., the last year of the time horizon. All the data considered

- the discount factor, the demand intercept and the competitors’ investments - have

to be adapted to this future target year. Once we obtain the optimal total investment

capacity of each technology in this target year, we solve the stochastic MILP again

but this time fixing the capacity of year 5 to the static capacity. We do this in order to

obtain an investment schedule over the entire time horizon, however, we stick to the

total capacity yielded by the static MILP. We carry out such a procedure because the

computational time is only a small fraction of the computational time of the complete

stochastic MILP. Therefore this could be a promising approach to tackle large-scale

case studies. The resulting NPV is presented in Table 7.3 and referred to as “Static

MILP”. Comparing the resulting NPVs our first observation is that the difference

between the stochastic and the static MILP is relatively small, only 0.05%. It is also

interesting that the MPEC yields a slightly higher NPV than the stochastic MILP,

which means that even though global optimality of the MPEC cannot be guaranteed,

the relaxation of the investment variables to continuous variables leads to an increase

of the NPV with respect to the MILP solution, which we know to be globally optimal.

From the NPVs of the deterministic cases and the stochastic MILP we obtain the

expected value of perfect information, which is the amount which GENCO i1 would

be willing to pay in order to obtain a perfect forecast of competitors’ investments
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Figure 7-3: Capacity investment results obtained by MPEC, stochastic and static MILP
with discrete capacity decisions.

and behavior. The expected value of perfect information is 189Me, which means

that with perfect information, GENCO i1 would be able to increase its NPV for only

around 0.6%. This value depends on the choice of scenarios.

In Figure 7-3 the investment decisions of the stochastic MILP, the MPEC and the

static MILP, for which we have calculated an investment plan over the entire time

horizon as mentioned in the previous paragraph. The capacity invested in nuclear

technology is very similar in all three cases. As a matter of fact the total nuclear

capacity at the end of the time horizon is 18 GW in all cases and 15 GW in the first

year. In terms of nuclear investments, the static and the stochastic MILP only differ

by one plant of 1000 MW, which the static MILP builds in year 2 and the stochastic

MILP builds in year 3 instead. When comparing the stochastic MILP with the MPEC

solution for nuclear investments it is clear to see that the difference in capacity is never

greater than 1000 MW, which is the step size that has been chosen. It can therefore
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Figure 7-4: Capacity investment results obtained by stochastic MILP and deterministic
MILPs with discrete capacity decisions.

be said that the MPEC and the stochastic MILP are fairly similar. When looking

at the investment in combined cycle gas turbines (CC), it can be observed that the

static and the stochastic MILP differ by two CC plants of 400 MW each. Under

the stochastic framework it is profitable to invest 800 MW more in CC. The MPEC

solution lies in between the other two solutions and in particular around 1.2 GW of

CC, which is one plant more than in the static solution and one plant less than in

the stochastic solution.

Figure 7-4 contains a comparison of the investment decisions made by the stochas-

tic MILP and three separate deterministic cases of the discrete MILP assuming either

perfect competition, Cournot behavior or intermediate strategic spot market behav-

ior. The investments in nuclear technology of the stochastic MILP coincide with the

perfectly competitive solution. The more oligopolistic the spot market behavior, the

higher the investments in nuclear technology. This is due to the fact that, the closer
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to Cournot, the higher the market prices, the higher the obtained NPVs and therefore

the higher the incentive to invest. On the other hand, as for investments in CC plants,

in neither of the deterministic MILPs there is investment in this technology, however,

there is in the stochastic solution. If strategic behavior and capacity investment of

the competition are certain, then it seems more profitable to cover the entire new

demand with nuclear capacity which in comparison to CC might be cheaper over the

entire time horizon. However, if strategic behavior is uncertain, then it makes sense

to also have a certain amount of CC capacity installed.

7.3 Large-Scale Numerical Example of Approxi-

mation Scheme

In this case study we apply the single-level approximation scheme of bilevel generation

expansion equilibria, as proposed in section 5.4 of this thesis, to a large-scale numer-

ical example. With the approximation scheme proposed in this thesis, we are able

to solve large-scale bilevel models reasonably well when market behavior is closer to

oligopoly than to perfect competition by smartly employing single-level models which

reduces the computational time by two orders of magnitude. This is achieved by

transforming the single-level equilibrium problem into an equivalent convex quadratic

optimization problem which can be solved efficiently. This case study validates the

proposed approximation scheme for large-scale models for a certain range of param-

eters. Moreover a sensibility analysis on model parameters is carried out. From the

results it can be concluded that strategic spot market behavior is one of the main

drivers of the quality of the approximation scheme.

In the following, we first describe the stylized electric power system that serves as

our case study in section 7.3.1 and then in section 7.3.2 we present and analyze the

results.
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7.3.1 System Description for Approximation Scheme

We consider a system with four different thermal technologies them being nuclear

(NU), coal (CO), combined cycle gas turbine (CC) and gas turbine (GT) that can

be built by two generation companies i1, i2. We consider a time horizon of 15 years

and each year is represented by six individual load periods, which are separated into

peak, shoulder and off-peak of the weekdays (WD) and peak, shoulder and off-peak of

weekends (WE). Demand is affine and defined by the demand slope αyl which is equal

to 0.23 GW/(e/MWh) based on [53] and the demand intercept D0
yl [GW], which is

defined in Table A.13. In Table 7.4 we present the durations Tyl [h] of each load level

l in each year y. The assumed discount rate F is 9%.

Both generation companies consider capacity investments in each of the four avail-

able technologies. Table 7.5 shows both production and investment costs of each

thermal technology. If not otherwise specified, the strategic spot market behavior

θ, i.e., the conjectured-price response variation, is assumed to be 0.7/αyl, which lies

between perfect competition θiyl = 0 and Cournot θiyl = 1/αyl.

Table 7.4: Annual load level durations Tyl [h].

WD WD WD WE WE WE
Peak Shoulder Off-peak Peak Shoulder Off-peak

Tyl 300 3000 3000 300 1080 1080

Table 7.5: Production and investment costs.

Technology Production cost Investment cost
δ [e/MWh] β [(Me/GW)/year]

NU 8.0 230
CO 33.0 113
CC 39.0 57
GT 55.0 12
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7.3.2 Results of Approximation Scheme

This section contains the results of the case study and in particular it contains the

comparison between the bilevel equilibrium solution considering a strategic market

behavior of θiyl = 0.7/αyl and its approximation under the previously presented

scheme. In the approximation scheme we first solve the single-level equilibrium assum-

ing Cournot market behavior, then fix investment decisions obtained under Cournot,

and finally solve the single-level equilibrium again assuming the same market behav-

ior as in the bilevel model. In the following we denote single-level by (SL), bilevel by

(BL) and approximation by (AP).

All models have been formulated in GAMS and solved on an Intel(R) Core(TM)

i5-2410M running at 2.30 GHz 4 GB RAM. The SL equilibrium model has been

formulated as a quadratic program and solved using CPLEX. Since the AP scheme

solves the SL model twice, it has also been solved using the solver CPLEX. The BL

capacity equilibrium problem has been solved using diagonalization. Each individual

MPEC has been solved using the non-linear solver CONOPT. The numerical model

of the SL equilibrium consists of 930 primal continuous variables, while each MPEC

consists of 2400 variables. The computational time of the AP scheme is 0.6 seconds

whereas the BL model (with a convergence tolerance of 10−4) takes 68 seconds. The

AP scheme is more than two orders of magnitude faster than the BL model.

We present the demand yielded by the approximation scheme in Table A.14, and

in Figure 7-5 we compare the investments yielded for one generation company by the

BL model (dashed line), the SL model (dash-dot line) and by the AP (continuous

line). The first subplot of Figure 7-5 contains investments in NU and the second

corresponds to investments in CC. Neither CO nor GT plants are built and are hence

omitted in the Figure. It can be observed that with respect to the BL solution, the AP

yields a little more capacity in CC and a little less in NU. In particular, the relative

errors of investments between the BL solution and the AP can be found in Table 7.6

and are calculated as REijy = (xBL
ijy − xAP

ijy )/x
AP
ijy . Since neither CO nor GT plants

are built, the corresponding error is zero and is hence omitted in Table 7.6. The total
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average relative error (calculated as the sum of absolute value of relative errors for

all technologies divided by the number of values, i.e.,
∑

jy |REijy|/30) in capacities

is 2.26%. It can furthermore be observed that the SL solution is overly conservative

and yields investments that are way beyond the obtained BL investments. The total

average relative error between SL and BL solutions in capacities is 11.54% which is

five times larger than the total relative error obtained with the AP scheme.

Table 7.6: Relative errors of investments [%].

Year NU CC
y1 1.14 -6.11
y2 1.02 -5.88
y3 1.00 -5.68
y4 0.88 -5.22
y5 0.77 -5.04
y6 0.67 -4.85
y7 0.66 -4.72
y8 0.56 -4.59
y9 0.55 -4.25
y10 0.38 -4.12
y11 0.30 -3.99
y12 0.29 -3.68
y13 0.22 -0.56
y14 0.14 -0.37
y15 0.07 -0.18

Figure 7-6 contains the market prices of the AP and the BL model, separated

into weekdays and weekends. Relative errors between the BL and the AP solution

are presented in Table 7.7. We can see that BL peak prices are slightly above the

AP prices during peak and shoulder periods on weekdays and during the peak on

weekends. This is most likely due to the fact that in the BL solution less peak

capacity, i.e., CC, is built. In the off-peak period on weekdays BL prices are slightly

below AP prices, which is due to the fact that in the BL solution more NU capacity

is available. We furthermore observe that prices coincide exactly for the shoulder

and off-peak periods on weekends. Relative errors in prices are quite small and never

exceed 1.61%, while the total average relative error is only 0.52%. Since the SL

model yields investments that are very different from the BL solution, as can be seen
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Figure 7-5: Capacity investment results of one firm in CC and NU technologies obtained
by the single-level model (SL), the bilevel model (BL) and its approximation (AP).

in Figure 7-5, it is not surprising that also the prices given by the SL model are quite

different from the BL solution. As a comparison, the total average relative error

between the SL and the BL prices is 8.38%. In summary, the approximation only

yields a 2.26% error in capacity investments and a 0.52% error in market prices which

is acceptable.

We carry out a study to see what parameters of the model most affect the quality

of the AP and hence we present total average relative errors between BL and AP

results in prices and investments, as defined above, in Table 7.8 for different cases.

The first case is the base case and contains the previously mentioned total average

relative errors. In the subsequent cases we change one parameter with respect to

the base case. The parameter change is pointed out in the first column of Table

7.8. Overall, we observe that the AP prices are very accurate, considering that total
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Figure 7-6: Market prices of the bilevel model (BL) and its approximation (AP) during
weekdays and weekends.

average relative errors never exceed 1.61%. Relative errors in capacity are higher than

relative errors in prices, however, still relatively small.

Comparing the results to the base case, we observe that the demand intercept D0

and demand slope α do not seem to be driving factors of the quality of AP as relative

errors remain more or less the same. Production costs seem to have a considerable

impact on the solution. Changes of the NU production cost can lead to an average

relative error of 5.01%, however, this seems still quite reasonable when taking into

account the considerable decrease in computational time of the AP scheme. In order

to assess the impact of the strategic spot market behavior θ on the results, we carry

out a more detailed analysis.

In order to fully capture the impact of the strategic market behavior on the quality

of AP results, we calculate the total average relative error in investments and prices
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Table 7.7: Relative errors of prices [%].

Year WD WD WD WE WE WE
Peak Shoulder Off-peak Peak Shoulder Off-peak

y1 0.59 0.78 -1.61 1.04 0.00 0.00
y2 0.60 0.79 -1.51 1.09 0.00 0.00
y3 0.62 0.83 -1.38 1.12 0.00 0.00
y4 0.64 0.85 -1.27 1.15 0.00 0.00
y5 0.66 0.87 -1.13 1.18 0.00 0.00
y6 0.67 0.89 -1.02 1.22 0.00 0.00
y7 0.68 0.91 -0.93 1.26 0.00 0.00
y8 0.70 0.93 -0.83 1.29 0.00 0.00
y9 0.70 0.95 -0.74 1.32 0.00 0.00
y10 0.72 0.97 -0.64 1.35 0.00 0.00
y11 0.74 0.99 -0.54 1.38 0.00 0.00
y12 0.76 1.01 -0.44 1.39 0.00 0.00
y13 0.00 0.00 -0.35 0.00 0.00 0.00
y14 0.00 0.00 -0.25 0.00 0.00 0.00
y15 0.00 0.00 -0.15 0.00 0.00 0.00

between the AP and the BL solution considering a large variety of strategic spot

market behavior ranging from perfect competition (θ = 0) to Cournot behavior (θ =

1/α). Even though it is not very likely that in a market with only two players the

strategic behavior will be perfect competition or even close to perfect competition,

the results assuming perfectly competitive behavior are included in this case study

for completeness and to validate when the approximation scheme is most accurate.

In order to benchmark these results we also calculate the total average relative error

between the SL and the BL solution. The obtained results of the total average

relative errors are presented in Figure 7-7 on a normalized scale of strategic spot

market behavior ranging from perfect competition (Φ = 0) to Cournot (Φ = 1).

The difference between the AP and the SL solution is that when deciding capacities

the approximation considers Cournot behavior, while the SL solution considers the

same θ as the BL solution. In the first subplot of Figure 7-7 we present the total

average relative error of the AP and the SL solution in investments and in the second

subplot the total average relative error in prices. In general it can be said that the

closer θ is to Cournot behavior, the more accurate the AP and the SL equilibrium,

250



Table 7.8: Total average relative errors [%].

Case
Average relative Average relative
error in prices error in investments

Base 0.52 2.26

D0 +5% 0.46 2.82
−5% 0.69 2.77

α
0.25 0.73 2.81
0.21 0.31 1.22

θ

1/α 0.00 0.00
0.75/α 0.14 1.10
0.65/α 1.12 2.62
0.6/α 0.97 4.16

δNU
8.5 1.58 5.01
7.5 0.60 3.18

δCC
41 0.71 4.29
37 0.70 3.81

βNU
240 0.93 1.92
220 0.66 3.41

βCC
60 0.64 2.89
55 0.46 1.65

both in investments and prices. If strategic spot market behavior is close to perfect

competition, then the AP error in investments can become up to 46% which means

that the investment decisions are not accurate. However, in the range between Φ = 0.4

and Cournot, i.e., (Φ = 1), the AP in capacity investments is quite good and the error

does not exceed 10%. As for the AP error in prices, between Φ = 0.2 and Cournot

the relative error is less than 10% and even very close to perfect competition the error

in prices is relatively small and only goes up to 29%. On the other hand, the SL error

in prices skyrockets up to 175%. Finally, it should be observed that even though the

AP might not be very accurate in capacity investments close to perfect competition,

it still outperforms the SL solution. The error yielded by the AP is always below

the error given by the SL solution for prices and in the majority of cases also for

investments. We observe that the AP quite accurately reproduces BL prices when

market behavior is not close to perfect competition while the SL equilibrium fails to

capture BL prices when θ is not very close to Cournot behavior.
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Figure 7-7: Total average relative error in investments and prices for θ ranging from perfect
competition to Cournot behavior.

7.4 Conclusions of Case Studies

In this chapter we carry out three case studies. The first numerical example presented

in section 7.1 is a large-scale stochastic MPEC designed to resemble the Spanish power

system. In this model the possible model extensions of introducing uncertainty in

demand, capacity payments, financial hedging and hydro power are considered, as

motivated previously in section 4.4. The second case study in section 7.2 explores the

possibility of considering discretized investment decisions in an MPEC framework,

as proposed in section 4.4.2. Finally, section 7.3 contains a case study in which

the single-level approximation scheme of bilevel generation expansion equilibria is

applied to a large-scale, multi-year, multi-technology, multi-load-period numerical

example. Carrying out a sensitivity analysis on model parameters yields that the
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quality of the approximation scheme greatly depends on the choice of strategic spot

market behavior. In particular, it can be concluded that the approximation scheme

works well when strategic behavior is closer to oligopoly than to perfect competition.

In the presented numerical example it is validated that the approximation scheme

yields a solution in computational times two orders of magnitude smaller than the

computational times of standard bilevel problem techniques such as diagonalization.

This makes the approximation scheme a suitable approach for real-size problems

provided that strategic spot market behavior is not close to perfect competition.

This result provides an answer to one of the main research questions of this the-

sis, namely whether and how single-level models can approximate bilevel generation

expansion models accurately. The case study presented in section 7.3 of this chap-

ter not only affirms that large-scale bilevel models can be approximated efficiently

by single-level models, but it also provides a precise characterization of when this

approximation works and when it does not. In particular, by observing the arising

error between the approximation and the real bilevel solution, it can be concluded

that when the strategic spot market behavior is closer to Cournot than to perfect

competition, then the approximation works well and can be computed two orders of

magnitude faster than the bilevel solution.

In Table 7.9 we provide a summary and comparison of all the case studies carried

out in this thesis, the corresponding models, the problem type that has been solved,

model size, solution method and CPU time. Note that model size is defined by

stating the maximum number of each index, i.e., the number of firms considered i,

the technologies j, the years of the time horizon y, the load periods per year l and, if

stated, the scenarios s.
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Chapter 8

Conclusions

This chapter summarizes the work presented in this dissertation and points out its

main conclusions in section 8.1. Then, in section 8.2 the most relevant contributions

of this work are stated and contrasted to the original thesis objectives. Finally, some

possible lines of future research are mentioned in section 8.3.

8.1 Thesis Summary and Conclusions

This section contains a summary of the main results of this thesis and the most

relevant conclusions that can be drawn from the presented research.

Ever since the liberalization of the electricity sector, generation expansion plan-

ning has moved away from a centralized planner and has become the responsibility of

generation companies, which has greatly increased the complexity of the investment

decision process as stated in chapter 1 of this thesis. Therefore generation companies

require the most adequate tools to assist them to take and evaluate generation expan-

sion decisions while coping with an uncertain and highly competitive environment.

Bilevel models allow generation companies to represent a sequential decision making

process where first capacity decisions are taken and then there is the market clear-

ing, as opposed to simplified approaches which assume simultaneous decision making

using single-level models where both capacity and production decisions are taken at

the same time. This thesis aims at proposing such bilevel models to tackle the gen-
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eration expansion planning problem in liberalized electricity markets, to point out

the difference and advantages that such an approach has with respect to single-level

models, and to solve realistic instances of such bilevel models satisfactorily, which can

be challenging since bilevel models are known to be complicated.

In chapter 2 we first present a literature review of generation expansion planning

in liberalized electricity markets and of computational methods used in bilevel pro-

gramming in order to emphasize how our work differs from the existing literature.

Then we introduce the hypotheses made in our models and discuss the basic concepts

necessary for a better understanding of the thesis. Among other topics, we cover the

concepts of conjectural variations and bilevel programming. Everything discussed un-

til this point provides the background necessary to understand the single-level mod-

els which are introduced subsequently, i.e., a single-level conjectured-price response

market equilibrium model and its simple extension to a single-level investment equi-

librium model. Once these single-level models have been established, we introduce

a basic version of the newly developed bilevel models that are proposed in this the-

sis. Among bilevel models we distinguish between a bilevel optimization model that

represents the investment problem of one generation company which is formulated

as an MPEC, and a bilevel equilibrium model representing the generation capacity

investment problem of all generation companies in the market which is formulated as

an EPEC. The MPEC model can be seen as a crucial intermediate step on the way

to formulate an EPEC. Comparing the previously mentioned single-level models to

the newly introduced bilevel models it becomes obvious that the bilevel models are

a lot more complicated - in terms of formulation and as we will see later on also in

terms of solution techniques - than the single-level models, which immediately raises

the question whether this additional modeling effort actually pays off. In particular,

it raises the question whether single-level and bilevel generation expansion models

sometimes yield the same solutions and if they do, under what circumstances, and

moreover, it raises the question whether the more complicated bilevel model provides

us with additional valuable information which justifies the additional modeling effort.

Chapter 3 provides an answer to the questions raised by chapter 2 by carrying
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out a theoretical analysis of a single-level and a bilevel conjectured-price response

investment equilibrium model for a time horizon of one year. The single-level model

describes a game in which investment and operation decisions are made simultane-

ously, and in the bilevel equilibrium model investment and operation decisions are

made sequentially. The purpose of this comparison is to emphasize that when re-

sorting to easier, less complicated single-level models, instead of solving the more

realistic but more complicated bilevel models, the results may differ greatly and to

characterize when results are similar. Let us now point out the main conclusions of

this analysis.

(a) This comparison shows that independent of the strategic spot market behavior,

the bilevel model always yields Cournot capacities, which is proved in a theorem

and a subsequent proposition. This result is an extension of the findings of

Kreps and Scheinkman [74] which have shown that a bilevel equilibrium game

where first companies compete in capacities and then in prices a la Bertrand

yields Cournot capacities. Our results show that this is not only true for a

Bertrand second stage, but also for any second-stage behavior between perfect

competition and Cournot behavior. These findings underline that bilevel models

yield more realistic results than single-level models since they capture the effect

that generation companies know that even if the market is perfectly competitive

they can influence the market outcomes by building less capacity than needed

in the market, which leads to a substantial increase in prices which furthermore

makes profits go up as well. The capacity solution of the single-level model

on the other hand depends on the strategic behavior and therefore tends to

unrealistic over-investment when compared to the bilevel results. Thus the

bilevel model could be useful to evaluate the effect of alternative market designs

for mitigating market power in spot markets and incenting capacity investments

in the long run.

(b) Another conclusion we obtain is that under certain circumstances the single-

level and the bilevel model indeed yield the same result, and in particular, this
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happens when both models consider Cournot market behavior and when their

active sets of load periods coincide. However, the further away the strategic

behavior is from Cournot the more the results between single-level and bilevel

model differ. This indicates that the further away market behavior moves from

Cournot competition, the more the additional effort of computing the bilevel

model (as opposed to the simpler single-level model) pay off because the out-

comes are very different. On the other hand, when market behavior is close to

Cournot then single-level and bilevel results are either exactly the same or very

similar depending on the data.

(c) In addition to this theoretical analysis, we also prove by counter-example that

depending on the choice of parameters, more competition in the spot market

may lead to less market efficiency and less consumer surplus in the bilevel model.

This surprising, counter-intuitive result implies that contrary to the common

belief that marginal cost bidding protects consumers - a belief underlying some

regulatory market rules - it can actually be harmful and it may lead to situations

in which both consumers and generation companies are worse off.

Since chapter 3 has established that bilevel generation expansion models are more

realistic than single-level models, we now want to extend the theoretically-sized mod-

els from chapter 3 to more realistic, large-scale, multi-year, multi-load period and

multi-technology models. In order to model large-scale bilevel equilibrium models

formulated as EPECs, the first step is to formulate the corresponding MPECs. There-

fore chapter 4 is dedicated entirely to the bilevel model representing the generation

expansion problem of one generation company, which is formulated as an MPEC.

First of all, the basic version of this model is introduced and a case study is pre-

sented which shows how the conjectured-price response market representation allows

to study how strategic behavior impacts capacity decisions. Then, we extend this

model to incorporate stochasticity in order to handle certain sources of uncertainty

that are common to the generation expansion problem and thereby improve the de-

cision making process. Finally, we show how to introduce desirable model extensions
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into the MPEC. Let us now point out the main conclusions of this chapter.

(a) From numerical examples it can be verified that indeed the strategic spot market

behavior has a great impact on investment decisions, because it greatly affects

the capacity solution in terms of total capacity and moreover depending on

the assumed strategic spot market behavior, the optimal technology mix also

changes. Thus, it can be concluded that when taking generation expansion

decisions, the assumed strategic market behavior has to be studied carefully

since it can change the optimal investment decisions for the generation company

in question.

(b) The proposed MPEC models are nonlinear, non-convex optimization problems

and therefore straight-forward NLP methods can only guarantee a local solution

of a problem that has multiple equilibria. On the other hand, these methods

allow for large-scale problem instances to be solved at least locally.

(c) When transforming the MPECs into MILPs, then the global solution can be

obtained, however, at the cost of only being able to solve moderately-sized

problems.

In chapter 5 the focus lies on the bilevel equilibrium generation expansion model

formulated as an EPEC. The generation expansion EPEC model consists of each gen-

eration company’s MPEC model, which has been discussed in great detail in chapter

4 and which provides the theoretical basis for the EPEC models further analyzed

in chapter 5. This type of model takes into account all market agents and yields a

capacity plan for each of them, which makes it useful from the point of view of a reg-

ulator for example. First, the EPEC formulation of the bilevel generation expansion

model is derived and then a case study is presented which underlines how difficult it

can be to solve EPECs. Then, an alternative formulation of the single-level gener-

ation expansion model is presented which allows solving this model very efficiently.

Finally, an approximation scheme for the EPEC is presented which only makes use

of single-level models. In a small case study it is derived that the approximation
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scheme works well when strategic behavior is not close to perfect competition. The

main conclusions of this chapter are as follows:

(a) From the first numerical example it becomes apparent that even for a small

problem instance, the generation expansion EPEC can have multiple equilibria,

each yielding a different optimal technology mix.

(b) Since there exist multiple equilibrium solutions for the EPEC, it is desirable to

be able to classify them in order to explore the solution space of the EPEC. To

this purpose a MIP methodology is presented.

(c) The advantage of the MIP approach for solving EPECs is that it allows us to

classify equilibria, but so far only small problem cases could be solved. Diago-

nization on the other hand can handle large-scale problem sizes, however, there

is no a priori way of knowing in which of the multiple equilibria we are going

to end up at.

(d) Another alternative to solve EPECs is the proposed approximation scheme

which works very well for problems with strategic spot market behavior close to

Cournot and yields a solution in computational time two orders of magnitude

faster than standard EPEC techniques such as diagonalization. This algorithm

is therefore very promising for realistically-sized problems.

Even though chapter 5 concludes the methodological contributions of this thesis,

it still remains to discuss the numerical solution techniques of MPECs and EPECs

that have been employed in several numerical examples throughout the thesis. There-

fore, chapter 6 summarizes all the numerical techniques that have been applied when

solving the MPEC and EPEC models of this thesis representing the generation ex-

pansion problem. We individually discuss and analyze methods for both MPECs and

EPECs and point out advantages and disadvantages. It is emphasized here that the

following conclusions only refer to the generation expansion models of this thesis.

(a) When facing a large-scale bilevel generation expansion optimization model for-

mulated as an MPEC, then NLP methods are the most successful even though
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they cannot guarantee globality of the solution. To that purpose many differ-

ent starting points are employed to search the solution space for different local

optima. If on the other hand, the globality of the solution is the main focus,

then MIP methods are more adequate, however, so far we have only been able

to solve moderately-sized problems. In order to still represent a long-term time

horizon one could consider clusters of years instead of individual years.

(b) When solving EPECs and the main focus is to study the solution space of the

EPEC, then MIP methods provide a framework to search the solution space,

however, one has to keep in mind the limitation of this method in terms of

problem size. On the other hand, if the emphasis lies on solving a large-scale

EPEC then methods like diagonalization or the newly proposed approximation

scheme work best.

In chapter 7 some additional case studies of interest are presented: a realistic case

study representing the Spanish power system considering demand uncertainty, hydro

power and other realistic market details is considered; a stochastic MIP considering

discrete investment decisions is also presented; finally, the previously presented ap-

proximation scheme of chapter 5 is applied to a large-scale model. The following

conclusions can be obtained from these case studies:

(a) The proposed model extensions of section 4.4, as discrete capacity decisions,

hydro power and demand uncertainty, can be successfully introduced in our

generation expansion models.

(b) The single-level approximation scheme of bilevel generation expansion equilib-

ria also works well for large-scale, multi-year, multi-technology and multi-load

period cases as long as strategic spot market behavior is closer to Cournot

than to perfect competition. This means that under certain circumstances the

bilevel generation expansion model actually can be approximated by simplified

single-level models.
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8.2 Original Contributions

In this section the original contributions of this thesis are pointed out. As follows, first

we revisit the methodological contributions and then the computational contributions

of this thesis and finally, we mention the contributions in terms of journal articles

that are directly related to this dissertation.

Methodological Contributions

Let us now revisit the specific methodological thesis contributions and explain what

exactly has been done to cover the corresponding methodological thesis objectives

given in section 1.2.2 :

1. One of the key contributions of this thesis is the theoretical comparison of single-

level and bilevel generation expansion equilibrium models carried out in chapter

3 which has quantified the difference between model outcomes thereby estab-

lishing the impact that a simultaneous modeling approach (single-level model)

has on investment decisions compared to a sequential decision making process

(bilevel model). The results have been proven in a theorem and a proposition,

which furthermore show that single-level and bilevel models sometimes coincide,

and in particular that this happens when Cournot market behavior is consid-

ered. This work, which has also been accepted for publication in Mathematical

Programming [119], more than fulfills the second methodological thesis objec-

tive, which raises the question how the results of a bilevel generation expansion

model differ compared to a more simplified single-level model. We furthermore

show by counter-example that in bilevel models more competition can lead to

less market efficiency and less consumer surplus which implies that contrary to

the common belief that marginal cost bidding protects consumers it can actually

be harmful.

2. Since we have proven that bilevel models are more realistic than single-level

models, we propose and formulate two novel bilevel generation expansion mod-

els: the first model assists one generation company in particular to take capacity
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investment decisions and is modeled as an MPEC; the second model takes into

account all generation companies in the market and is formulated as an EPEC.

Chapter 4 is dedicated entirely to the detailed formulation of the MPEC model

which is an intermediate step necessary to formulate the EPEC. Moreover, this

type of model also provides valuable insight for a generation company since

it focuses only on one market agent. The introduction of stochasticity to this

modeling framework allows one generation company to assess optimal capacity

decisions under uncertainty, which provides a useful modeling tool for genera-

tion companies. We propose and analyze the EPEC in chapter 5 which decides

capacity investments of all agents and takes a more general point of view. This

type of model can be very useful for the regulator in order to assess the im-

pact of new regulatory measures on the market and its agents. The proposed

models cover the second thesis objective, which proposed the development of

bilevel generation expansion models assisting either one (MPEC) or all (EPEC)

generation companies.

3. The proposed MPEC and EPEC models have been extended and made more re-

alistic. In particular, section 4.4 contains the detailed derivation of the desired

model extensions for incorporating hydro power, discrete capacity decisions,

stochastic treatment of uncertain parameters as demand or competitors’ invest-

ments, the introduction of capacity mechanisms and other realistic details like

financial hedging parameters. Throughout the thesis there have been carried

out several case studies to evaluate the proposed models, thereby fulfilling the

third methodological thesis objective in which specific model extensions are

requested.

Computational Contributions

Let us now revisit the computational contributions and compare them to the compu-

tational objectives of this thesis given in section 1.2.3:

1. An alternative formulation of the single-level generation expansion equilibrium
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model as a convex quadratic optimization problem is proposed in section 5.3,

published in [117], which allows us to solve this problem very efficiently. This

model is a straight-forward extension of works of Barqúın [5] and Ventosa [113]

to consider investment decisions in a conjectured-price response market formu-

lation. This contribution corresponds to the first computational objective.

2. A key contribution of this thesis is the single-level approximation scheme for

large-scale bilevel generation expansion equilibria which is proposed in section

5.4 of this thesis. Due to the fact that this approximation scheme only solves

the alternative formulation of the single-level model, the computational time

of this method is by two orders of magnitude faster than a standard EPEC

technique like diagonalization. The large-scale numerical case study provided

in section 7.3 confirms that this approximation scheme works well when strategic

spot market behavior is closer to Cournot than to perfect competition. Both

the approximation scheme and the numerical case study have been published

in an international journal [117]. This work covers the second computational

objective which requested a methodology to approximate generation expansion

EPECs.

3. In chapter 6 we present, analyze and compare the solution techniques and nu-

merical methods that have been applied to solve the bilevel generation expansion

models of this thesis. Pros and cons of each method are discussed. This chap-

ter addresses the third computational objective in which an exploration and

comparison of different existing solution techniques is requested.

Publications

The following five papers are directly related to this dissertation and have been pub-

lished or accepted in relevant SCI-indexed international journals. Note that appendix

B contains a list of all conference presentations.

• S. Wogrin, B. F. Hobbs, D. Ralph, E. Centeno, and J. Barqúın. Open ver-

sus closed loop capacity equilibria in electricity markets under perfect and
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oligopolistic competition. Mathematical Programming (Series B), 2012, ac-

cepted for publication. (Results of reference [119] appear in chapter 3.)

• E. Centeno, S. Wogrin, A. López-Peña, and M. Vázquez. Analysis of invest-

ments in generation capacity: A bilevel approach. Generation, Transmission

Distribution, IET, 5(8):842-849, 2011. (Results of reference [27] appear in chap-

ter 4.)

• S. Wogrin, E. Centeno, and J. Barqúın. Generation capacity expansion in lib-

eralized electricity markets: A stochastic MPEC approach. IEEE Transactions

on Power Systems, 24(4):2526-2532, 2011. (Results of reference [116] appear in

chapter 4.)

• S. Wogrin, J. Barqúın, and E. Centeno. Capacity expansion equilibria in liber-

alized electricity markets: An EPEC approach. IEEE Transactions on Power

Systems, 28(2):1531-1539, 2013. (Results of reference [115] appear in chapter

5.)

• S. Wogrin, E. Centeno, and J. Barqúın. Generation capacity expansion analy-

sis: Open loop approximation of closed loop equilibria. IEEE Transactions on

Power Systems, PP(99):1, 2013. (Results of reference [117] appear in chapters

5 and 7.)

8.3 Future Research

To conclude this thesis we point out some interesting topics for future research which

have arisen throughout this document. Let us divide these lines of future work in

four different topics: improvement of the formulation of current bilevel generation ex-

pansion models; theoretical analysis; computational improvements and development

of new generation expansion models.

• Improvement of the formulation of current bilevel generation expansion models
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– In the models proposed in this thesis the generation companies are con-

sidered risk-neutral, since they decide investments maximizing their net

present value. Risk measures could be introduced in order to capture for

example risk aversion of generation companies.

– In this thesis we have considered the formulation of capacity payments,

however, it might be interesting to consider other capacity mechanisms as

reliability options (as in Batlle et al. [9]) or capacity markets.

– A CO2 emissions market could be incorporated into the generation expan-

sion models.

– The representation of pump storage facilities or other storage devices in

the models might be considered.

– The electricity network could also be introduced into the presented model

formulations.

– Model extensions could also consider the effect of forward energy contract-

ing (as in Murphy and Smeers [85]).

• Theoretical analysis

– In future research we may address the issue of existence and uniqueness of

bilevel conjectured-price response models, as has been done for the Cournot

case by Murphy and Smeers [84], who found that a pure-strategy bilevel

equilibrium does not necessarily exist but if it exists it is unique.

– We may also address the question concerning under what a priori condi-

tions the active sets of single-level and bilevel generation expansion equi-

libria coincide.

– Extend Lemma 3.3 to the multiple load period case, which would prove

the hypothesis that for symmetric agents the conjectured-price response

bilevel equilibrium solution never yields more capacity than the Cournot

bilevel equilibrium solution.
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• Computational improvements

– Extend the standard Benders decomposition methods to tackle the non-

convex MPEC problem with binary variables in the subproblem, or ap-

ply other decomposition techniques to the stochastic generation expansion

MPEC models of this thesis.

• Development of new generation expansion models

– There may be further investigation of games in which the conjectural vari-

ation is endogenous, resulting from the possibility that power producers

might adopt the Cournot conjecture in binding load periods since they

may be aware that their rivals cannot expand output at such times. The

conjectural variation could be calculated as a function of the capacity mix.

– In a system with a high penetration of renewable energy sources, other

more technical details of the market (as for example start-ups, shut-downs,

secondary reserve requirements, minimum power constraints and ramping

constraints) become more important drivers of the investment decision.

Introducing these types of constraints into generation expansion models

poses an interesting task for future research. We have taken a first step in

this direction in the conference paper by Nogales et al. [88].
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Appendix A

Additional Tables

Table A.1: Total annual hydro energy Eiy [TWh] of firm i in section 7.1.

i1 i2 i3 i4 i5 i6

6.0 13.0 4.0 0.5 1.0 2.0

Table A.2: Maximum hydro output Hiyl [GW] of firm i, year y and load period l in section
7.1.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12

i1 1.50 1.50 1.31 1.31 0.87 0.87 0.00 0.00 0.28 0.28 0.00 0.00
i2 3.25 3.25 2.85 2.85 1.90 1.90 0.00 0.00 0.60 0.60 0.00 0.00
i3 0.98 0.98 0.86 0.86 0.57 0.57 0.00 0.00 0.18 0.18 0.00 0.00
i4 0.20 0.20 0.17 0.17 0.11 0.11 0.00 0.00 0.04 0.04 0.00 0.00
i5 0.20 0.20 0.17 0.17 0.11 0.11 0.00 0.00 0.04 0.04 0.00 0.00
i6 0.46 0.46 0.40 0.40 0.27 0.27 0.00 0.00 0.08 0.08 0.00 0.00

Table A.3: Annual duration [h] of load period l used in section 7.1.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12

60 180 560 960 1190 1350 1190 1190 1120 680 220 60
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Table A.4: Existing net nuclear generation capacity [GW] of firm i and year y.

i1 i2 i3 i4 i5 i6

y1 2.77 2.57 0.46 0.12 0.00 0.00
y2 2.77 2.57 0.46 0.12 0.00 0.00
y3 2.77 2.57 0.46 0.12 0.00 0.00
y4 2.77 2.57 0.46 0.12 0.00 0.00
y5 2.77 2.57 0.46 0.12 0.00 0.00
y6 2.77 2.57 0.46 0.12 0.00 0.00
y7 2.77 2.57 0.46 0.12 0.00 0.00
y8 2.60 2.40 0.46 0.12 0.00 0.00
y9 2.60 2.40 0.46 0.12 0.00 0.00
y10 2.60 2.40 0.46 0.12 0.00 0.00
y11 2.60 2.40 0.46 0.12 0.00 0.00
y12 2.60 2.40 0.46 0.12 0.00 0.00
y13 2.60 2.40 0.46 0.12 0.00 0.00
y14 2.60 2.40 0.46 0.12 0.00 0.00
y15 2.60 2.40 0.46 0.12 0.00 0.00
y16 2.60 2.40 0.46 0.12 0.00 0.00
y17 2.60 2.40 0.46 0.12 0.00 0.00
y18 2.60 2.40 0.46 0.12 0.00 0.00
y19 2.60 2.40 0.46 0.12 0.00 0.00
y20 2.31 1.97 0.37 0.12 0.00 0.00
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Table A.5: Existing net coal generation capacity [GW] of firm i and year y.

i1 i2 i3 i4 i5 i6

y1 3.79 0.71 1.49 1.14 1.07 0.24
y2 3.79 0.54 1.37 0.95 0.79 0.24
y3 3.79 0.54 1.16 0.95 0.79 0.24
y4 3.68 0.54 1.16 0.95 0.67 0.24
y5 3.68 0.54 1.16 0.95 0.67 0.00
y6 3.68 0.54 1.16 0.95 0.67 0.00
y7 3.68 0.54 1.16 0.42 0.67 0.00
y8 3.59 0.27 0.42 0.42 0.67 0.00
y9 3.59 0.00 0.42 0.42 0.67 0.00
y10 3.59 0.00 0.42 0.42 0.67 0.00
y11 3.59 0.00 0.42 0.42 0.67 0.00
y12 3.59 0.00 0.42 0.42 0.43 0.00
y13 3.59 0.00 0.42 0.42 0.43 0.00
y14 3.59 0.00 0.42 0.42 0.43 0.00
y15 3.59 0.00 0.42 0.42 0.43 0.00
y16 3.59 0.00 0.42 0.42 0.43 0.00
y17 3.59 0.00 0.42 0.42 0.43 0.00
y18 3.59 0.00 0.42 0.42 0.43 0.00
y19 3.59 0.00 0.42 0.42 0.43 0.00
y20 3.59 0.00 0.42 0.42 0.43 0.00
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Table A.6: Existing net combined cycle generation capacity [GW] of firm i and year y.

i1 i2 i3 i4 i5 i6

y1 4.25 4.96 3.00 1.19 1.50 10.26
y2 4.25 4.96 3.00 1.19 1.50 10.26
y3 4.25 4.96 3.00 1.19 1.50 10.26
y4 4.25 4.96 3.00 1.19 1.50 10.26
y5 4.25 4.96 3.00 1.19 1.50 10.26
y6 4.25 4.96 3.00 1.19 1.50 10.26
y7 4.25 4.96 3.00 1.19 1.50 10.26
y8 4.25 4.96 3.00 1.19 1.50 10.26
y9 4.25 4.96 3.00 1.19 1.50 10.26
y10 4.25 4.96 3.00 1.19 1.50 10.26
y11 4.25 4.96 3.00 1.19 1.50 10.26
y12 4.25 4.96 3.00 1.19 1.50 10.26
y13 4.25 4.96 3.00 1.19 1.50 10.26
y14 4.25 4.96 3.00 1.19 1.50 10.26
y15 4.25 4.96 3.00 1.19 1.50 10.26
y16 4.25 4.96 3.00 1.19 1.50 10.26
y17 4.25 4.96 3.00 1.19 1.50 10.26
y18 4.25 4.96 3.00 1.19 1.50 10.26
y19 4.25 4.96 3.00 1.19 1.50 10.26
y20 4.25 4.96 3.00 1.19 1.50 10.26
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Table A.7: Conjectured price responses θ [(e/MWh)/GW] of firms i and load period l.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12

i1 3.5 2.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5
i2 4.0 2.0 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
i3 3.5 1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
i4 3.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
i5 3.5 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
i6 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table A.8: Total amount of contracts for differences Miyl [GW] for each market agent i and
year y in section 7.1.

i1 i2 i3 i4 i5 i6

y1 2.16 1.65 0.99 0.49 0.51 2.10
y2 2.16 1.61 0.97 0.45 0.46 2.10
y3 2.16 1.61 0.92 0.45 0.46 2.10
y4 2.14 1.61 0.92 0.45 0.43 2.10
y5 2.14 1.61 0.92 0.45 0.43 2.05
y6 2.14 1.61 0.92 0.45 0.43 2.05
y7 2.14 1.61 0.92 0.35 0.43 2.05
y8 2.09 1.53 0.78 0.35 0.43 2.05
y9 2.09 1.47 0.78 0.35 0.43 2.05
y10 2.09 1.47 0.78 0.35 0.43 2.05
y11 2.09 1.47 0.78 0.35 0.43 2.05
y12 2.09 1.47 0.78 0.35 0.39 2.05
y13 2.09 1.47 0.78 0.35 0.39 2.05
y14 2.09 1.47 0.78 0.35 0.39 2.05
y15 2.09 1.47 0.78 0.35 0.39 2.05
y16 2.09 1.47 0.78 0.35 0.39 2.05
y17 2.09 1.47 0.78 0.35 0.39 2.05
y18 2.09 1.47 0.78 0.35 0.39 2.05
y19 2.09 1.47 0.78 0.35 0.39 2.05
y20 2.03 1.39 0.76 0.35 0.39 2.05
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Table A.9: Demand intercept D0 [GW] of load period l and year y used in high-demand
scenario in section 7.1.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12

y1 62.72 59.54 56.23 52.61 48.92 45.20 41.68 38.23 33.92 28.72 23.33 17.49
y2 62.66 59.48 56.16 52.54 48.82 45.09 41.58 38.12 33.82 28.60 23.18 17.33
y3 64.08 60.85 57.47 53.78 50.02 46.23 42.65 39.11 34.74 29.44 23.93 17.98
y4 65.75 62.44 59.02 55.26 51.45 47.59 43.94 40.35 35.90 30.53 24.95 18.92
y5 67.43 64.07 60.57 56.74 52.86 48.94 45.20 41.53 36.99 31.51 25.82 19.66
y6 68.95 65.50 61.91 58.00 54.00 49.99 46.17 42.41 37.77 32.14 26.31 20.00
y7 70.51 66.96 63.25 59.22 55.11 50.96 47.03 43.18 38.38 32.58 26.57 20.06
y8 72.02 68.39 64.58 60.41 56.16 51.90 47.87 43.89 38.98 32.99 26.79 20.07
y9 73.78 70.02 66.09 61.79 57.39 53.00 48.85 44.76 39.67 33.49 27.08 20.14
y10 75.15 71.31 67.30 62.88 58.36 53.85 49.60 45.42 40.22 33.88 27.28 20.16
y11 76.77 72.84 68.71 64.17 59.51 54.89 50.54 46.24 40.88 34.35 27.57 20.24
y12 78.35 74.30 70.04 65.33 60.50 55.72 51.24 46.78 41.26 34.49 27.45 19.87
y13 80.14 75.94 71.52 66.60 61.54 56.56 51.90 47.26 41.51 34.42 27.06 19.16
y14 81.55 77.23 72.67 67.56 62.32 57.17 52.38 47.56 41.63 34.27 26.64 18.46
y15 83.20 78.74 74.03 68.73 63.26 57.93 52.97 47.97 41.82 34.15 26.21 17.75
y16 84.88 80.27 75.41 69.89 64.21 58.68 53.55 48.35 41.94 33.98 25.70 16.95
y17 86.84 82.08 77.01 71.26 65.35 59.60 54.26 48.82 42.16 33.85 25.23 16.13
y18 88.35 83.47 78.25 72.32 66.18 60.27 54.74 49.11 42.21 33.59 24.67 15.32
y19 90.17 85.14 79.76 73.61 67.25 61.15 55.44 49.59 42.45 33.52 24.28 14.64
y20 90.24 85.21 79.83 73.68 67.32 61.22 55.51 49.66 42.52 33.59 24.35 14.71
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Table A.10: Demand intercept D0 [GW] of load period l and year y used in low-demand
scenario in section 7.1.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12

y1 55.86 53.03 50.09 46.86 43.58 40.26 37.13 34.04 30.21 25.58 20.78 15.59
y2 56.13 53.28 50.31 47.07 43.76 40.42 37.26 34.16 30.32 25.65 20.82 15.59
y3 56.40 53.54 50.55 47.28 43.95 40.59 37.41 34.29 30.42 25.73 20.87 15.60
y4 56.70 53.82 50.82 47.54 44.19 40.83 37.64 34.50 30.62 25.92 21.03 15.75
y5 56.97 54.06 51.05 47.75 44.37 40.98 37.77 34.62 30.71 25.96 21.05 15.72
y6 57.20 54.27 51.21 47.85 44.43 41.00 37.76 34.56 30.60 25.79 20.79 15.38
y7 57.39 54.42 51.30 47.88 44.37 40.88 37.58 34.34 30.30 25.37 20.25 14.73
y8 57.59 54.57 51.41 47.90 44.31 40.74 37.41 34.10 29.99 24.96 19.73 14.09
y9 57.78 54.72 51.50 47.91 44.22 40.59 37.20 33.83 29.64 24.48 19.13 13.37
y10 57.99 54.89 51.61 47.96 44.21 40.52 37.08 33.63 29.39 24.12 18.66 12.79
y11 58.20 55.05 51.74 48.00 44.18 40.41 36.92 33.42 29.09 23.70 18.13 12.17
y12 58.36 55.16 51.77 47.93 43.98 40.14 36.56 32.94 28.50 22.95 17.22 11.12
y13 58.49 55.20 51.72 47.75 43.64 39.67 35.99 32.24 27.63 21.87 15.90 9.65
y14 58.64 55.28 51.72 47.61 43.40 39.33 35.52 31.64 26.88 20.92 14.77 8.37
y15 58.77 55.35 51.69 47.46 43.10 38.92 34.98 30.95 26.03 19.88 13.53 7.01
y16 58.91 55.40 51.63 47.27 42.77 38.46 34.39 30.20 25.10 18.74 12.20 5.58
y17 59.04 55.43 51.54 47.03 42.38 37.94 33.72 29.34 24.03 17.46 10.74 4.16
y18 59.24 55.50 51.48 46.83 42.05 37.50 33.14 28.61 23.12 16.38 9.56 3.08
y19 59.49 55.58 51.38 46.59 41.69 37.02 32.52 27.84 22.19 15.29 8.42 2.19
y20 59.49 55.58 51.38 46.59 41.69 37.02 32.52 27.84 22.19 15.29 8.42 2.19
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Table A.11: Demand d [GW] of load period l and year y obtained in high-demand scenario
in section 7.1.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12

y1 43.03 43.56 41.70 39.11 36.10 33.78 30.26 26.81 22.51 17.31 14.35 11.74
y2 42.78 43.37 41.54 38.97 35.93 33.32 29.72 26.71 22.41 17.19 13.60 11.55
y3 43.67 44.42 42.60 40.01 36.98 33.76 30.53 27.70 23.33 18.02 13.38 12.12
y4 44.53 44.88 43.82 41.27 38.22 34.80 31.50 28.94 24.48 19.11 13.53 12.93
y5 44.63 44.64 43.83 42.28 39.44 35.96 32.54 29.54 25.57 20.10 14.40 12.91
y6 44.63 44.64 43.83 43.18 40.45 36.89 33.40 30.24 26.35 20.73 14.90 12.91
y7 44.10 44.10 43.29 43.29 41.26 37.69 34.10 30.74 26.97 21.17 15.15 12.38
y8 42.66 42.66 41.85 41.85 39.94 38.42 34.65 31.22 27.56 21.58 15.37 10.94
y9 42.39 42.39 41.58 41.58 39.67 39.26 35.37 31.98 27.85 22.07 15.66 10.67
y10 42.39 42.39 41.58 41.58 39.67 39.59 35.83 32.57 28.28 22.46 15.87 10.67
y11 42.39 42.39 41.58 41.58 39.67 39.59 35.83 33.29 28.80 22.94 16.16 10.67
y12 42.15 42.15 41.34 41.34 39.43 39.35 35.59 33.68 29.05 23.08 16.04 10.43
y13 42.15 42.15 41.34 41.34 39.43 39.35 35.59 34.06 29.25 23.01 15.65 10.43
y14 42.15 42.15 41.34 41.34 39.43 39.35 35.59 34.30 29.35 22.86 15.22 10.43
y15 42.15 42.15 41.34 41.34 39.43 39.35 35.59 34.62 29.49 22.74 14.80 10.43
y16 42.31 42.31 41.50 41.50 39.58 39.51 35.74 34.92 29.62 22.57 14.29 10.58
y17 42.55 42.55 41.74 41.74 39.82 39.75 35.98 35.30 29.85 22.43 13.81 10.18
y18 42.90 42.90 42.09 42.09 40.17 40.10 36.33 35.53 29.96 22.18 13.25 9.46
y19 43.24 43.24 42.43 42.43 40.51 40.44 36.67 35.90 30.22 22.11 12.86 8.86
y20 42.96 42.96 42.16 42.16 40.24 40.17 36.40 35.84 30.29 22.18 12.93 8.86
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Table A.12: Demand d [GW] of load period l and year y obtained in low demand scenario
in section 7.1.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12

y1 38.42 38.39 36.67 35.44 32.16 28.84 25.71 22.62 18.79 15.53 14.35 10.04
y2 38.40 38.46 36.66 35.31 32.34 29.01 25.84 22.74 18.90 14.77 13.60 9.97
y3 38.51 38.62 36.82 35.09 32.53 29.17 25.99 22.87 19.00 14.56 13.38 9.96
y4 38.66 38.82 37.02 34.86 32.77 29.41 26.22 23.08 19.20 14.50 13.15 10.07
y5 38.76 38.96 37.17 34.81 32.70 29.56 26.35 23.20 19.29 14.55 12.91 10.02
y6 38.91 39.12 37.31 34.89 32.70 29.58 26.34 23.14 19.18 14.37 12.91 9.71
y7 38.87 39.13 37.30 34.80 32.17 29.46 26.16 22.92 18.88 13.95 12.38 9.08
y8 38.71 39.07 37.24 34.68 31.81 29.32 25.99 22.68 18.57 13.54 10.94 8.40
y9 38.83 39.18 37.31 34.69 31.73 29.17 25.78 22.41 18.22 13.06 10.67 7.76
y10 38.97 39.31 37.41 34.73 31.72 29.10 25.66 22.21 17.97 12.70 10.67 7.26
y11 39.11 39.44 37.51 34.77 31.69 28.99 25.50 22.00 17.67 12.28 10.67 6.72
y12 39.14 39.47 37.49 34.67 31.49 28.72 25.14 21.52 17.08 11.60 10.43 5.67
y13 39.22 39.51 37.45 34.51 31.22 28.26 24.57 20.82 16.21 11.60 9.98 5.57
y14 39.32 39.57 37.45 34.40 31.03 27.91 24.10 20.22 15.46 11.60 8.98 5.57
y15 39.41 39.62 37.43 34.27 30.79 27.51 23.56 19.53 14.61 11.60 7.88 5.18
y16 39.50 39.66 37.38 34.10 30.56 27.04 22.98 18.78 13.68 11.76 6.75 3.90
y17 39.59 39.68 37.30 33.89 30.61 26.52 22.30 17.92 12.61 11.02 5.57 2.56
y18 39.73 39.74 37.25 33.72 30.63 26.08 21.72 17.19 12.35 10.17 5.57 1.57
y19 39.90 39.80 37.17 33.56 30.27 25.60 21.10 16.42 12.68 9.30 5.57 0.76
y20 39.82 39.75 37.13 33.58 30.27 25.60 21.10 16.42 12.41 9.18 4.77 0.74

Table A.13: Demand intercept D0 [GW] for entire time horizon in section 7.3.

Year WD WD WD WE WE WE
Peak Shoulder Off-peak Peak Shoulder Off-peak

y1 63.0 54.4 35.8 47.6 39.4 30.1
y2 64.4 55.6 36.6 48.6 40.3 30.8
y3 65.7 56.8 37.3 49.6 41.1 31.4
y4 67.2 58.1 38.2 50.8 42.1 32.1
y5 68.8 59.5 39.1 52.0 43.1 32.9
y6 70.4 60.9 40.0 53.2 44.1 33.7
y7 71.6 61.9 40.7 54.1 44.8 34.2
y8 72.9 63.1 41.5 55.1 45.7 34.9
y9 74.3 64.2 42.2 56.1 46.5 35.5
y10 75.8 65.6 43.1 57.3 47.5 36.3
y11 77.4 66.9 44.0 58.4 48.4 37.0
y12 78.9 68.2 44.9 59.6 49.4 37.7
y13 80.5 69.6 45.8 60.8 50.4 38.5
y14 82.1 71.0 46.7 62.0 51.4 39.3
y15 83.7 72.4 47.6 63.3 52.4 40.0
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Table A.14: Approximation demand d [GW] in section 7.3.

Year WD WD WD WE WE WE
Peak Shoulder Off-peak Peak Shoulder Off-peak

y1 28.2 28.2 21.0 28.2 22.6 20.9
y2 29.0 29.0 21.5 29.0 23.2 21.4
y3 29.8 29.8 22.0 29.8 23.8 21.9
y4 30.7 30.7 22.6 30.7 24.5 22.5
y5 31.6 31.6 23.2 31.6 25.3 23.0
y6 32.5 32.5 23.9 32.5 26.0 23.6
y7 33.2 33.2 24.3 33.2 26.6 24.0
y8 34.0 34.0 24.8 34.0 27.2 24.5
y9 34.8 34.8 25.4 34.8 27.8 24.9
y10 35.7 35.7 26.0 35.7 28.5 25.5
y11 36.6 36.6 26.6 36.6 29.2 26.0
y12 37.5 37.5 27.2 37.5 30.0 26.6
y13 38.4 38.4 27.8 38.4 30.7 27.1
y14 39.4 39.4 28.4 39.3 31.4 27.7
y15 40.3 40.3 29.1 40.2 32.2 28.3
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Appendix B

Publications and Conference

Presentations

Publications

The following five papers are directly related to this dissertation and have been pub-

lished or accepted in relevant SCI-indexed international journals.

• S. Wogrin, B. F. Hobbs, D. Ralph, E. Centeno, and J. Barqúın. Open ver-

sus closed loop capacity equilibria in electricity markets under perfect and

oligopolistic competition. Mathematical Programming (Series B), 2012, ac-

cepted for publication.

• E. Centeno, S. Wogrin, A. López-Peña, and M. Vázquez. Analysis of invest-

ments in generation capacity: A bilevel approach. Generation, Transmission

Distribution, IET, 5(8):842-849, 2011.

• S. Wogrin, E. Centeno, and J. Barqúın. Generation capacity expansion in lib-

eralized electricity markets: A stochastic MPEC approach. IEEE Transactions

on Power Systems, 24(4):2526-2532, 2011.

• S. Wogrin, J. Barqúın, and E. Centeno. Capacity expansion equilibria in liber-

alized electricity markets: An EPEC approach. IEEE Transactions on Power

Systems, 28(2):1531-1539, 2013.
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• S. Wogrin, E. Centeno, and J. Barqúın. Generation capacity expansion analy-

sis: Open loop approximation of closed loop equilibria. IEEE Transactions on

Power Systems, PP(99):1-10, 2013.

Conference Presentations

The following conference presentations are related to the work carried out in this

thesis.

• S. Wogrin, E. Centeno and J. Barqúın. Impact of renewable energy sources

on generation capacity investments: a stochastic MPEC approach. INFORMS

2012 Annual Meeting, Phoenix, USA, October 2012.

• E. Centeno, S. Wogrin, J. Barqúın. Study of strategic behavior impact in the

spot market on capacity expansion using a linearised EPEC. INFORMS 2012

Annual Meeting, Phoenix, USA, October 2012.

• S. Wogrin, B.F. Hobbs, D. Ralph, E. Centeno and J. Barqúın. Market power

and investment decisions in electricity markets: open vs closed loop equilibria.

INFORMS 2011 Annual Meeting, Charlotte, USA, November 2011.

• S. Wogrin, J. Barqúın and E. Centeno. How capacity payments influence in-

vestment decisions in electricity markets. 12th Centre for Competition and

Regulatory Policy Workshop - CCRP, Paris, France, July 2011.

• E. Centeno, J. Reneses, S. Wogrin and J. Barqúın. Representation of Electricity

Generation Capacity Expansion by Means of Game Theory Models. European

Energy Markets 2011, Zagreb, Croatia, May 2011.

• S. Wogrin, E. Centeno and J. Barqúın. Analysis of investments in electric-

ity plants with Stochastic Bilevel programming techniques. INFORMS 2010

Annual Meeting, Austin, USA, November 2010.

• S. Wogrin, E. Centeno and J. Barqúın. Advantages of Stochastic Bilevel pro-

gramming in the generation capacity expansion problem. 4th Annual Trans-

280



Atlantic INFRADAY Conference on Applied Infrastructure Modeling and Policy

Analysis, Washington, USA, November 2010.

• S. Wogrin, E. Centeno and J. Barqúın. Analysis of strategic investments in

electricity generation capacity under uncertainty. 8th Young Energy Economists

& Engineers Seminar - YEEES, Cambridge, UK, April 2010.
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