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RESUMEN

En este trabajo presentamos un framework que facilita el desarollo y evaluacion de métodos
de poda para redes neuronales. Debido a la falta de estandarizacion en la literatura existente
sobre los métodos de poda, es dificil comparar y evaluar los métodos desarrollados de una
forma rigurosa. Nuestra libreria es capaz de realizar experimentos de forma estandarizada,
controlando posibles factores de confusion tales como la eleccion de conjunto de datos,
modelo predictivo o las métricas de evaluacion. Demostramos la eficacia de la metodolo-
gia desarrollada implementando varios métodos de poda de redes neuronales. Nuestros
resultados indican cémo el uso un proceso de evaluacién estandarizdo es necesario para
evitar alcanzar conclusiones incorrectas a la hora de comparar métodos de poda.
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1. Introduccion

La inferencia de redes neuronales profundas a menudo requiere grandes cantidades de
computacién y memoria. Esto aumenta los costes de infraestructura, ademds de convertir
el despliegue de estas redes en entornos con recursos limitados en todo un desafio. Los
métodos de poda, es decir, la reduccidn del tamafio de una red mediante la eliminacién de
pardmetros, es un enfoque popular para reducir estos requisitos. Tipicamente, los métodos
comienzan con una red grande y precisa, y luego tratan de hacerla mas pequefa con la
menor pérdida de precision posible.

Muchos de los trabajos publicados utilizan diferentes conjuntos de datos, podan arquitectu-
ras de red muy variadas y no utilizan las mismas métricas para medir el rendimiento, lo
que dificulta en gran medida la comparacion de técnicas. En este trabajo presentamos una
libreria de c6digo abierto disefiada para facilitar a los investigadores la comprobacién de
los métodos de poda de manera que facilite las comparaciones directas. Ademads, utiliza-
mos esta libreria para examinar algunas de las heuristicas de poda existentes. Nuestros
resultados empiricos demuestran que el rendimiento relativo de un método de poda puede
variar en funcién de los conjuntos de datos, redes, pesos iniciales y métricas reportadas, lo
que confirma la necesidad de una evaluacion estandarizada de los métodos de poda.

2. Descripcion del sistema

ShrinkBench es una biblioteca de Python disefiada para facilitar la evaluacion de los
métodos de poda de redes neuronales. ShrinkBench ha sido disefiado con dos objetivos
principales: 1) permitir la creacion rdpida de prototipos de métodos de poda de redes neuro-
nales, y 2) facilitar el uso de métricas estandarizadas, conjuntos de datos, arquitecturas de
red y configuraciones de ajustes. El objetivo de ShrinkBench es facilitar a los investigado-
res e ingenieros la implementacidn de estrategias de poda y la evaluacion de su efectividad
en distintos escenarios. La biblioteca proporciona herramientas para realizar experimentos
utilizando combinaciones estandarizadas de conjuntos de datos y modelos, controlando
factores potencialmente confusos como la afinacién de hiperparametros o pesos iniciales.



Los resultados pueden entonces ser agregados para producir comparaciones de métodos
usando varias métricas y ratios de compresion. ShrinkBench trabaja con arquitecturas
estdndar de PyTorch[PGC+17], simplemente requiriendo al usuario que proporcione las
mdscaras que indican qué pardmetros se deben mantener, y opcionalmente nuevos valores
para los pesos restantes. Para facilitar la tarea de computar el conjunto de mdscaras de
parametros, ShrinkBench proporciona primitivas para acceder a parametros, activaciones y
gradientes. Dadas las mascaras de pardmetros, ShrinkBench entrena y ajusta los modelos
asegurando que los parametros enmascarados no contribuyen a la salida de la red y no
se actualizan durante la retropropagacion. Usandp estas mdscaras, ShrinkBench aplica la
poda automdticamente, actualiza la red de acuerdo con un entrenamiento o un ajuste fino,
y calcula métricas a través de muchos modelos, conjuntos de datos, semillas aleatorias y
ratios de compresion.

3. Resultados

Testeamos ShrinkBench podando més de 800 redes usando las bases descritas y variando
los conjuntos de datos, redes, ratios de compresion, pesos iniciales y semillas aleatorias.
Al hacerlo, identificamos varios escollos asociados con las practicas experimentales que
son actualmente comunes en la literatura pero que pueden evitarse usando la evaluacién de
ShrinkBench. Es una practica comun describir la cantidad de poda informando de bien
la reduccion del nimero total de pardmetros o del nimero de FLOPs tedricos. Si estos
parametros estin suficientemente correlacionados, uno solo es suficiente para caracterizar
la eficacia de un método de poda. Nuestros experimentos indican que esto no es necesa-
riamente cierto. Como muestra la Figura 1, los métodos de poda global son mds precisos
que los métodos por capas para un tamafio de modelo dado, pero los métodos por capas
son mds precisos para una aceleracion tedrica dada. Esta discrepancia estd relacionada con
el hecho de que la poda de las capas con mayores entradas puede resultar en un mayor
ahorro en los calculos. Ademas, muchos métodos informan de los resultados de sélo un
pequefio nimero de conjuntos de datos, modelos y ratios de compresion. Si el rendimiento
relativo de los diferentes métodos fuera constante en todos estos factores, esto no seria
problematico. Pero no lo son. La figura 2 muestra la precision para aumentar los ratios de
compresion para CIFAR-VGG [Zag15] y ResNet56 en CIFAR10. Como podemos observar,
el método dominante cambia dependiendo de la red y la relaciéon de compresion, lo que
demuestra la necesidad de evaluar un método de poda en varias combinaciones de modelos
y conjuntos de datos para asegurar que no depende de la arquitectura. De manera similar,
esto muestra la necesidad de informar sobre la métrica de varios ratios de compresion para
caracterizar la curva de compensacién a medida que aumenta la poda.

4. Conclusiones

Con ShrinkBench pretendemos proporcionar un conjunto de herramientas que faciliten
la tarea de producir evaluaciones exhaustivas y reproducibles de los enfoques de poda
propuestos. Ademads, nuestros resultados ponen de manifiesto la necesidad de realizar
experimentos normalizados al evaluar los métodos de poda de la red neuronal debido a la
presencia de posibles factores de confusion.
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ABSTRACT

Neural network pruning consists of reducing the size of a network by removing parameters.
In this work, we introduce ShrinkBench, an open-source library to facilitate standardized
evaluation of neural network pruning methods. ShrinkBench simplifies using standardized
datasets, pretrained models, and evaluation metrics for implementing pruning methods.
In addition to describing the functionality of ShrinkBench, we demonstrate its utility by
using it to implement and evaluate several pruning methods. We show that ShrinkBench’s
comprehensive evaluation can prevent common pitfalls when comparing pruning methods.

Keywords: Neural Networks, Pruning, Deep Learning, Standardized Evaluation, PyTorch

1. Introduction

Deep neural network inference often requires large amounts of computation and mem-
ory. This not only increase infrastructure costs, but also makes deploying these networks
to resource-constrained environments challenging. Pruning, i.e. reducing the size of a
network by removing parameters, is a popular approach for reducing these requirements.
Typically, methods start with a large and accurate network, and then try to make it smaller
with as little loss in accuracy as possible. Unfortunately, unlike in some other areas of
machine learning, there is no widely agreed upon set of benchmarks or measurements
that facilitate comparison of methods [DZW18; LSZ+18]. Different papers use different
datasets, prune different network architectures, and report performance in differing ways,
making it almost impossible to know under what conditions one technique is better than
another. In this work, we present ShrinkBench, an open-source library designed to make it
easier for researchers to test pruning methods in a way that facilitates direct comparisons.
In addition to describing ShrinkBench, we use it to examine some existing pruning heuris-
tics. Our empirical findings demonstrate that a pruning method’s performance can vary
across datasets, networks, initial weights and reported metrics—confirming the need for
standardized evaluation of pruning methods.

2. System Overview

ShrinkBench is a Python library designed to ease evaluation of neural network pruning
methods. ShrinkBench was designed with two goals in mind: 1) enable rapid prototyping
of neural network pruning methods, and 2) facilitate the use of standardized metrics,
datasets, network architectures, and finetuning setups. Using ShrinkBench, researchers and
engineers can easily implement pruning strategies and evaluate their effectiveness across a
wide range of scenarios. The library provides tools for running experiments using standard-
ized dataset-model combinations and controlling for potentially confounding factors such
as finetuning hyperparameters or initial weights. Results can then be aggregated to produce
method comparisons across several metrics and amounts of compression. ShrinkBench
works with off-the-shelf PyTorch[PGC+17] model architectures, simply requiring the user
to provide parameter masks that indicate which parameters to keep, and optionally new



values for the remaining weights. To facilitate the task of computing the set of parameter
masks, ShrinkBench provides primitives for retrieving parameters, activations, and gra-
dients. From the parameter masks, ShrinkBench can train and fine-tune models ensuring
that masked parameters do not contribute to the output of the network and are not updated
during backpropagation. Given these masks, ShrinkBench will automatically apply the
pruning, update the network according to a training or fine-tuning setup, and compute
metrics across many models, datasets, random seeds, and compression ratios.
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3. Results

We tested ShrinkBench by pruning over 800 networks using the described baselines and
varying datasets, networks, compression ratios, initial weights, and random seeds. In doing
so, we identified various pitfalls associated with experimental practices that are currently
common in the literature but that can be avoided by using ShrinkBench’s evaluation. It
is a common practice to describe the amount of pruning by reporting either the reduction
in the total number of parameters or in the number of theoretical FLOPs. If these metrics
are sufficiently correlated, reporting only one is sufficient to characterize the effectiveness
of a pruning method. Our experiments indicate that this not necessarily true. As Figure 1
shows, Global pruning methods are more accurate than Layerwise methods for a given
model size, but Layerwise methods are more accurate for a given theoretical speedup. This
discrepancy is related to the fact that pruning layers with larger inputs can result in higher
computational savings. Moreover, many methods report results on only a small number of
datasets, models, and compression ratios. If the relative performance of different methods
were constant across these factors, this would not be problematic. But they are not. Figure 2
shows accuracy for increasing compression ratios for CIFAR-VGG [Zag15] and ResNet56
on CIFAR10. As we can observe, the dominant method changes depending on the network
and compression ratio, showing the need to evaluate a pruning method on various model
and dataset combinations to ensure it is not architecture dependent. Similarly, this shows
the need to report metrics for several compression rations to characterize the trade-off
curve as pruning increases.

4. Conclusions

With ShrinkBench we aim to provide a toolkit that facilitates the task of producing
comprehensive and reproducible evaluations of proposed pruning approaches. Furthermore,
our results evidence the need for standardized experiments when evaluating neural network
pruning methods because of the presence of potential confounding factors.



5. References

[DZW18]

[FDRC19]

[GEH19]

[HMD15]

[HPTDI15]

[LAGT19]

[LAT18]

[LSZ+18]

[PGC+17]

[YLC+18]

[Zagl5]

Bin Dai, Chen Zhu, and David Wipf. “Compressing neural networks using
the variational information bottleneck™. In: arXiv preprint arXiv:1802.10399
(2018).

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael
Carbin. “The Lottery Ticket Hypothesis at Scale”. In: arXiv preprint arXiv:1903.01611
(2019).

Trevor Gale, Erich Elsen, and Sara Hooker. The State of Sparsity in Deep
Neural Networks. 2019. arXiv: 1902.09574 [cs.LG].

Song Han, Huizi Mao, and William J Dally. “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman
coding”. In: arXiv preprint arXiv:1510.00149 (2015).

Song Han, Jeff Pool, John Tran, and William Dally. “Learning both weights
and connections for efficient neural network™. In: Advances in neural infor-
mation processing systems. 2015, pp. 1135-1143.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip H.
S. Torr. “A Signal Propagation Perspective for Pruning Neural Networks
at Initialization”. en. In: arXiv:1906.06307 [cs, stat] (June 2019). arXiv:
1906.06307.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. “SNIP: Single-
shot network pruning based on connection sensitivity”. In: arXiv preprint
arXiv:1810.02340 (2018).

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. “Re-
thinking the value of network pruning”. In: arXiv preprint arXiv:1810.05270
(2018).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. “Automatic differentiation in pytorch”. In: (2017).

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong
Han, Mingfei Gao, Ching-Yung Lin, and Larry S Davis. “Nisp: Pruning
networks using neuron importance score propagation”. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 9194-9203.

Sergey Zagoruyko. 92.45% on CIFAR-10 in Torch. https://torch.ch/
blog/2015/07/30/cifar.html. Accessed: 2019-07-22. July 2015.



“The purpose of a storyteller is not to tell you
how to think, but to give you questions to think
upon.”

— BRANDON SANDERSON

“In life, there are no solutions, only trade-offs.”
— C.G.P. Grey

“The brick walls are there for a reason. The
brick walls are not there to keep us out; the
brick walls are there to give us a chance to show
how badly we want something. The brick walls
are there to stop the people who don’t want it
badly enough. They are there to stop the other
people!”

— Ranpy PauscH






A mis padres, por su apoyo inasequible al desaliento









Contents

2.2 High-Level Algorithm| . . ... ... ...
[2.3  Differences Betweeen Pruning Methods| . .

2.4 Evaluating Pruning| . . . . . ... .. ...

[Chapter 3 State of the Art

(3.1 Effectivity of Pruning| . . . . . . . .. ... o
[3.2  Pruning vs Architecture Changes| . . . . . . .. ... ... ... ........
[3.3  Metrics Fragmentation| . . . . . . ... ... ... ... ... .. ... ...,
[3.4 Confounding Variables| . . . . ... ... ... ... ... .. ...
[Chapter 4 Standardizing Neural Network Pruning
@1 System Overview| . . . . . . . . .. e e e
4.2 Pipeline Design| . . . . . . . ... ... ...
4.3 Pruning through binary masks| . . . . . . ... ... ... ... . 0oL,
4.4 Evaluation Metrics| . . . . . . . . .. . L
4.5 Sample Implementations| . . . . ... ... o oo
4.6 Recommendations for Evaluating a Pruning Method|. . . . . . .. ... .. ..

[Chapter 5 Experimental Setup|

0.1 Motivationl. . . . . ... ...
[5.2 Baseline Pruning Methods| . . . . ... ..
[5.2.1 Random Pruning| . . . . . ... ..
[5.2.2  Global Magnitude Pruning| . . . . .
[5.2.3  Layerwise Magnitude Pruning| . . .

[5.2.4  Global Gradient Magnitude Pruning

W NN =

O O 9 O U U W

10
10
13

15
15
16
17
19
20
22

25
25
25
26
26
27
27

José Javier Gonzalez Ortiz



[5.2.5 Layerwise Magnitude Pruning| . . . . . ... ... ... ... ..... 28

[5.3 Techniques| . . . . . . . . . . . .. 28
[Chapter 6 Results| 31
6.1 Experiment Details| . . . . . ... ... ... ... ... . 0 31
[6.2 Metrics are not Interchangeable(. . . . . . .. ... ... . 00 0oL 32
(6.3 Results Vary Across Models, Datasets, and Compression| . . . . .. ... ... 33
[6.4 Using the Same Initial Model is Essential] . . . . . ... ... ... .. .... 34
[Chapter 7 Conclusions and Future Work| 37
(/.1 Future Workl . . . . . . . . . 37
(7.2 _Conclusion| . . . . . . . . . . . e 39
B orap 40
[Appendix A Additional Results| 45
[Appendix B Sustainable Development Goals| 47

II Standardization of Neural Network Pruning Methods



List of Figures

B

Size and speed vs accuracy tradeoffs for different pruning methods and families

of architectures. Pruned models sometimes outperform the original architecture,

but rarely outperform a better architecture. (Blalock et al., 2020). | . . . .. ..

B2

Fragmentation of results. Shown are all self-reported results on the most common

(dataset, architecture) combinations. Each column is one combination, each row

shares an accuracy metric (y-axis), and pairs of rows share a compression metric

(x-axis). Up and to the right is always better. Standard deviations are shown for

He 2018 on CIFAR-10, which is the only result that provides any measure of

central tendency. (Blalock et al., 2020). [ . . . . .. ... ... ... ......

B3

Pruning ResNet-50 on ImageNet. Methods in the upper plot all prune weights

with the smallest magnitudes, but differ in implementation, pruning schedule,

and fine-tuning. The variation caused by these variables is similar to the variation

across different pruning methods, whose results are shown in the lower plot. All

results are taken from the original papers. (Blalock et al., 2020),] . . . . .. ..

A1

Typical diagram for a neural network pruning pipeline. Starting from a pretrained

network on a set of data, a pruning algorithm is applied to the model that only

preserves a sparse subset of the weights. After the weight pruning is done, the

network is trained on the target dataset for a few epochs to restore some of the

lost accuracy (finetuning). Finally, the network is evaluated on the heldout test

set with a set of metrics which include both performance and efficiency. | . . . .

%)

In our proposed framework, the API to the pruning algorithm is exposed in a

way that facilitates the overall evalutaion of the methodology while ensuring that

evaluation experiments are performed in a controlled and reproducible way. | . .

17

3

By replacing w with w’ = w ® m in the computational graph we can achieve a

persistent pruning that prevails after forward and backwards passes of the network.| 19

6.1

Top 1 Accuracy for ResNet-18 on ImageNet for several compression ratios and

their corresponding theoretical speedups. Global methods give higher accuracy

than Layerwise ones for a fixed model size, but the reverse is true for a fixed

theoretical speedup. | . . . . . ... oo

José Javier Gonzalez Ortiz

I



(6.2 Top 1 Accuracy on CIFAR-10 for several compression ratios. Global Gradient |
| performs better than Global Magnitude for CIFAR-VGG on low compression |
| ratios, but worse otherwise. Global Gradient is consistently better than Layerwise |
| Magnitude on CIFAR-VGG, but consistently worse on ResNet-56. One standard |
| deviation bars across three runs are included for all compression ratios greater |
[ thanone. | . . . . . . . .. 34

6.3  Global and Layerwise Magnitude Pruning on two different ResNet-56 models. |
| Even with all other variables held constant, different initial models yield different |
| tradeof! curves. This may cause one method to erroneously appear better than |
| another. Controlling for initial accuracy does not fix this. |. . . . . . .. .. .. 35

[A.1 Accuracy as compression varies for ResNet-18 on ImageNet| . . . . .. .. .. 45

|A.2  Accuracy as speedup varies for ResNet-18 on ImageNet . . . . . . ... .. .. 45

|A.3  Accuracy as compression varies for CIFAR-VGG on CIFAR-10{. . . . . . . .. 45

|IA.4  Accuracy as speedup varies for CIFAR-VGG on CIFAR-10] . . . . . . ... .. 45

IA.5 Accuracy as compression varies for ResNet-20 on CIFAR-10] . . . . . . . . .. 46

|A.6  Accuracy as speedup varies for ResNet-20 on CIFAR-10, . . . . . ... .. .. 46

|A.7 Accuracy as compression varies for ResNet-56 on CIFAR-10 . . . . . . . . .. 46

IA.8 Accuracy as speedup varies for ResNet-56 on CIFAR-10 . . . . . ... .. .. 46

[A.9  Accuracy as compression varies for ResNet-110 on CIFAR-10[ . . . . . . . .. 46

[A.10 Accuracy as speedup varies for ResNet-110 on CIFAR-10[. . . . . . .. .. .. 46

v

Standardization of Neural Network Pruning Methods



List of Tables

6.1 Hyperparmeter details for the pruning experiments|

José Javier Gonzalez Ortiz



VI

Standardization of Neural Network Pruning Methods



Chapter 1

Introduction

eep Neural Networks have played a major role in the progress the machine learning field and
D industry have experienced over the past decade. In order to achieve competitive performance
these networks require environments amounts of computation and memory Huang et al., 2018|
These constraints not only make neural network infrastructure costs to be quite sizable but also
limit the adoption of these models to more constrained environments such as mobile platforms or
embedded devices Han et al., 2015; Sze et al., 2017; Yang et al., 2017,

Neural network pruning is one of the techniques practitioners have devised for reducing the
high computation and memory requirements these networks entail. Usually, one starts with a
large and accurate network that has been pretrained on a dataset of interest and the goal is to
produce a smaller network without dropping the accuracy of the model in a significant manner.
Conceptually, neural network pruning has existed since the 1980s (Janowsky, |1989; Karnin, |1990;
Mozer and Smolensky, 1989a, |1989b)) but it has seen an explosion of interest in the recent years
because of the widespread use of deep neural networks.

1.1 Overview

Deep neural network inference often requires large amounts of computation and memory. Prun-
ing, i.e. reducing the size of a network by removing parameters, is a popular approach for re-
ducing these requirements. Typically, methods start with a large and accurate network, and then
try to make it smaller with as little loss in accuracy as possible. Unfortunately, unlike in some
other areas of machine learning, there is no widely agreed upon set of benchmarks or measure-
ments that facilitate comparison of methods Dai et al., 2018 Liu et al., 2019, Different papers
use different datasets, prune different network architectures, and report performance in differing
ways, making it almost impossible to know under what conditions one technique is better than
another.

In this work, we present ShrinkBench, an open-source library designed to make it easier for
researchers to test pruning methods in a way that facilitates direct comparisons. ShrinkBench
simplifies using standardized datasets, pretrained models, and evaluation metrics for implement-
ing pruning methods. In addition to describing the functionality of ShrinkBench, we demonstrate
its utility by using it to implement and evaluate several pruning methods. Our results evidence
the need for standardized evaluation given that a pruning method's performance can vary across

José Javier Gonzalez Ortiz 1



CHAPTER 1. INTRODUCTION

datasets, networks, initial weights and reported metrics. In addition to describing ShrinkBench,
we use it to examine some existing pruning heuristics.

1.2 Motivation

The motivation of this work stems from the intersection of the exponentially growing interest
in deploying neural network models in a efficient and scalable way, and the current state of
the neural network pruning literature which lacks consistent findings and recommendations. In
order for pruning techniques to continue improving upon each other there needs to be clear
benchmarks and ways for researchers to compare their results in a fair manner. Many machine
learning subfields have converged on specific datasets and metrics for results to be comparable. In
some scenarios machine learning competitions have been held to foster the development of novel
and more accurate approaches, such as the ImageNet Large Scale Visual Recognition Challenge
Russakovsky et al., 2015l Moreover, the experimental setting and guidelines from the ImageNet
competition have been quite valuable for other fields of machine learning and computer vision
research who have used them to great benefit.

Unfortunately, there seems to be a significant fragmentation in the neural network pruning
literature on the choice of datasets, models, metrics and hyperparameter settings which make
understanding the current state-of-the-art a fundamentally difficult task. Since the interest in
neural network predictive models seems to be only increasing, we deem important to 1) perform
a systematic analysis of the neural network pruning literature to distill any consistent findings
and detect potential pitfalls and 2) develop a framework that facilitates the development and
evaluation of neural network pruning methods in a rigorous and standardized way.

1.3 Contributions

The main contributions of this work are:

* We identify what are some the current consistent findings and existing limitations in the
state-of-the-art of neural neural pruning methods.

* We develop ShrinkBench, an open-source evaluation framework for neural network pruning
methods that enables researchers and practitioners to efficiently perform standardized
evaluation of their methods.

* In addition to describing ShrinkBench, we use it to examine some existing pruning heuris-
tics. Our empirical findings show that a pruning method’s performance can vary across
datasets, networks, initial weights and reported metrics—confirming the need for standard-
ized evaluation of pruning methods.

2 Standardization of Neural Network Pruning Methods
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1.4 Structure

This thesis has the following structure: Chapter 2 provides some background knowledge to
contextualize this work; Chapter 3 provides a literature metanalysis that motivates the need
for standardized evaluation of pruning methods; Chapter 4 throughly describes ShrinkBench’s
implementation and design choices; Chapter 5 document the experimental setup followed for all
the obtained results, including the baseline pruning methods implemented with ShrinkBench;
Chapter 6 includes results from pruning over 800 neural networks and presents potential pitfalls
caused by lurking confounding factors in the neural network evaluation pipeline; Chapter 7 closes
by discussing potential avenues of future work.
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Chapter 2

Background

B EFORE proceeding further, we will first introduce some background on neural network pruning
and a high-level overview of how existing pruning methods typically work. We will also
detail how evaluation of pruning is usually performed.

2.1 Definitions

We define a neural network architecture as a function family f(z;-). The architecture consists of
the configuration of the network's parameters and the sets of operations it uses to produce outputs
from inputs, including the arrangement of parameters into convolutions, activation functions,
pooling, batch normalization, etc. Example architectures include AlexNet and ResNet-18. We
define a neural network model as a particular parameterization of an architecture, i.e., f(x; W)
for specific parameters 1. Neural network pruning entails taking as input a model f(x; W) and
producing a new model f(x; M @ W'). In practice, rather than using an explicit mask, pruned
parameters of W are fixed to zero or removed entirely.

2.2 High-Level Algorithm

There are many methods of producing a pruned model f(z; M ©® W) from an initially untrained
model f(x;Wy), where W is sampled from an initialization distribution D. Nearly all neural
network pruning strategies derive from Algorithm (Han et al., 2015)). In this algorithm, the
network is first trained to convergence. Afterwards, each parameter or structural element in the
network is issued a score, and the network is pruned based on these scores. Pruning reduces the
accuracy of the network, so it is trained further (known as fine-tuning) to recover. The process
of pruning and fine-tuning is often iterated several times, gradually reducing the network's size.

Many papers propose slight variations of this algorithm. For example, some papers prune
periodically during training (Gale et al.,|2019) or even at initialization (Lee et al.,[2018)). Others
modify the network to explicitly include additional parameters that encourage sparsity and serve
as a basis for scoring the network after training (D. Molchanov et al., 2017).
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Algorithm 2.1 Pruning and Fine-Tuning

Require: N: the number of iterations of pruning
Require: X: the dataset on which to train and fine-tune
1: W < initialize()
2: W« trainToConvergence(f(X;W))
3 M« 1Vl

4: fori in1to N do

5: M <« prune(M, score(W))
6: W« fineTune(f(X; M oW))
7: return M, W

2.3 Differences Betweeen Pruning Methods

Within the framework of Algorithm[2.1] pruning methods vary primarily in their choices regard-
ing sparsity structure, scoring, scheduling, and fine-tuning.

e Structure. Some methods prune individual parameters (unstructured pruning). Other
methods consider parameters in groups (structured pruning), removing entire neurons,
filters, or channels to exploit hardware and software optimized for dense computation (Y.
He et al.,[2017; Li et al.,[2016).

* Scoring. It is common to score parameters based on their absolute values, trained im-
portance coeflicients, or contributions to network activations or gradients as well as other
measures of saliency. Some pruning methods compare scores locally, pruning a fraction
of the parameters with the lowest scores within each structural subcomponent of the net-
work (e.g., layers) (Han et al., 2015). Others consider scores globally, comparing scores to
one another irrespective of the part of the network in which the parameter resides (Frankle
& Carbin, 2019; Lee et al., [2018)).

* Scheduling. Pruning methods differ in the amount of the network to prune at each step.
Some methods prune all desired weights at once in a single step (Liu et al.,|[2019). Others
prune a fixed fraction of the network iteratively over several steps (Han et al., 2015) or
vary the rate of pruning according to a more complex function (Gale et al., 2019).

* Fine-tuning. For methods that involve fine-tuning, it is most common to continue to train
the network using the trained weights from before pruning. Alternative proposals include
rewinding the network to an earlier state (Frankle et al.,[2019a) and reinitializing the net-
work entirely (Liu et al., 2019). Liu et al. (2019) suggest that, when performing structured
pruning, reinitializing the network weights before fine-tuning has no detrimental affect on
the accuracy of the eventual network.

6 Standardization of Neural Network Pruning Methods
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2.4 Evaluating Pruning

Pruning can accomplish many different goals, including reducing the storage footprint of the neu-
ral network, the computational cost of inference, the energy requirements of inference, etc. Each
of these goals favors different design choices and requires different evaluation metrics. For ex-
ample, when reducing the storage footprint of the network, all parameters can be treated equally,
meaning one should evaluate the overall compression ratio achieved by pruning. However, when
reducing the computational cost of inference, different parameters may have different impacts.
For instance, in convolutional layers, filters applied to spatially larger inputs are associated with
more computation than those applied to smaller inputs. Thus, given two convolutional filters
pruned by the same amount, the one with a larger input size will lead to higher computational
savings.

Regardless of the goal, pruning imposes a trade-off between model efficiency and quality,
with pruning increasing the former while (typically) decreasing the latter. This means that a
pruning method is best characterized not by a single model it has pruned, but by a family of
models corresponding to different points on the efficiency-quality curve.

To quantify efficiency, most papers report at least one of two metrics. The first is the number
of multiply-adds (often referred to as FLOPs) required to perform inference with the pruned
network. The second is the fraction of parameters pruned. To measure quality, nearly all papers
report changes in Top-1 or Top-5 image classification accuracy.

As others have noted (Figurnov et al.,[2016; Han et al., 2015} Y. He et al., 2018}, Kim et al.,
2015; Lebedev et al.,[2014; Louizos et al.,|2017; Luo et al.,[2017; Wen et al., 2016; Yang et al.,
2017)), these metrics are far from perfect. Parameter and FLOP counts are a loose proxy for real-
world latency, throughout, memory usage, and power consumption. In particular, despite many
papers assuming otherwise, the number parameters has little bearing on memory of activations.
Similarly, image classification is only one of the countless tasks to which neural networks have
been applied. However, because the overwhelming majority of published papers focus on these
metrics, our analysis necessarily does as well.

To evaluate computational costs, many papers measure the number of multiply-adds (of-
ten referred to as FLOPs) required to perform inference with the pruned network. In practice,
nearly all pruning papers measure the compression ratio or FLOP reduction (or equivalently the
associated speedup) achieved by pruning, so we focus on these metrics throughout the paper.
However, we acknowledge (as do others (Han et al.,|[2015; Kim et al.,2015; Louizos et al., 2017}
Yang et al.,|[2017)) that these metrics may not capture the performance considerations of running
neural network inference on modern hardware. A crucial aspect of the pruning problem is that
it usually requires optimizing a trade-off between efficiency and quality. That is, achieving a
particular efficiency threshold may require removing parameters such that performance on the
network's task declines. This means that, when comparing pruning methods, it is important to
consider the entire pruning/quality trade-off curve for different amounts of pruning.

José Javier Gonzilez Ortiz 7



CHAPTER 2. BACKGROUND

Standardization of Neural Network Pruning Methods



Chapter 3

State of the Art

ANY neural network pruning methods have been described in the recent years given the
M exponential growth of deep learning research. In this chapter we analyze the current
state of the literature for neural network pruning methods, identifying what are some the current
consistent findings and existing limitations in the literature

3.1 Effectivity of Pruning

Pruning, i.e. reducing the size of a network by removing parameters, is a popular approach for
reducing the requirements of training and performing inference on large deep neural networks.
Typically, methods start with a large and accurate network, and then try to make it smaller with as
little loss in accuracy as possible. Unfortunately, unlike in some other areas of machine learning,
there is no widely agreed upon set of benchmarks or measurements that facilitate comparison of
methods (Dai et al.,[2018; Liu et al.,[2019).

One of the clearest findings about pruning is that it works. More precisely, there are various
methods that can significantly compress models with little or no loss of accuracy. In fact, for
small amounts of compression, pruning can sometimes increase accuracy (Han et al., [2015;
Suzuki et al., 2018). This basic finding has been replicated in a large fraction of the papers in
our corpus. Along the same lines, it has been repeatedly shown that, at least for large amounts of
pruning, many pruning methods outperform random pruning (Frankle et al.,|2019a; Gale et al.,
2019; Y. He et al., 2017; Mariet & Sra, 2015; Suau et al., 2018} Yu et al., 2018). Interestingly,
this does not always hold for small amounts of pruning (Morcos et al., 2019). Similarly, pruning
all layers uniformly tends to perform worse than intelligently allocating parameters to different
layers (Gale et al., 2019; Han et al., 2015} Li et al.,[2016; Luo et al., 2017; P. Molchanov et al.,
2016)) or pruning globally (Frankle & Carbin, 2019; Lee et al., 2018)). Lastly, when holding the
number of fine-tuning iterations constant, many methods produce pruned models that outperform
retraining from scratch with the same sparsity pattern (Frankle & Carbin, 2019; Y. He et al.,
2017} Louizos et al.,2017; Luo et al.,[2017; Yu et al., 2018}; X. Zhang et al.,|[2015) (at least with
a large enough amount of pruning (Suau et al., 2018)). Retraining from scratch in this context

'Parts of the analysis in this chapter are from a related piece of work (Blalock, D., Ortiz, J. J.
G., Frankle, J., & Guttag, J. (2020). What is the State of Neural Network Pruning? Third Con-
ference on Machine Learning and Systems). We thank our collaborators for the great insights
presented here.
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means training a fresh, randomly-initialized model with all weights clamped to zero throughout
training, except those that are nonzero in the pruned model.

Another consistent finding is that sparse models tend to outperform dense ones for a fixed
number of parameters. Lee et al. (2019) show that increasing the nominal size of ResNet-20 on
CIFAR-10 while sparsifying to hold the number of parameters constant decreases the error rate.
Kalchbrenner et al. (2018]) obtain a similar result for audio synthesis, as do Gray et al. (2017) fora
variety of additional tasks across various domains. Perhaps most compelling of all are the many
results, including in Figure @ (Blalock et al., 2020), showing that pruned models can obtain
higher accuracies than the original models from which they are derived. This demonstrates that
sparse models can not only outperform dense counterparts with the same number of parameters,
but sometimes dense models with even more parameters.

While there do appear to be a few general and consistent findings in the pruning literature,
by far the clearest takeaway is that pruning papers rarely make direct and controlled compar-
isons to existing methods. This lack of comparisons stems largely from a lack of experimental
standardization and the resulting fragmentation in reported results. This fragmentation makes it
difficult for even the most committed authors to compare to more than a few existing methods.

3.2 Pruning vs Architecture Changes

One current unknown about pruning is how effective it tends to be relative to simply using a more
efficient architecture. These options are not mutually exclusive, but it may be useful in guiding
one's research or development efforts to know which choice is likely to have the larger impact.
Along similar lines, it is unclear how pruned models from different architectures compare to one
another---i.e., to what extent does pruning offer similar benefits across architectures?

Figure (Blalock et al., 2020) suggests several conclusions. First, it reinforces the con-
clusion that pruning can improve the time or space vs accuracy tradeoff of a given architecture,
sometimes even increasing the accuracy. Second, it suggests that pruning generally does not
help as much as switching to a better architecture. Finally, it suggests that pruning is more ef-
fective for architectures that are less efficient to begin with. Finally, it suggests that pruning is
more effective at reducing the size of models (left column) than their number of FLOPs (right
column). This is unsurprising,

While there do appear to be a few general and consistent findings in the pruning literature
(see the previous section), by far the clearest takeaway is that pruning papers rarely make direct
and controlled comparisons to existing methods. This lack of comparisons stems largely from
a lack of experimental standardization and the resulting fragmentation in reported results. This
fragmentation makes it difficult for even the most committed authors to compare to more than a
few existing methods.

3.3 Metrics Fragmentation

As depicted in Figure (Blalock et al., 2020), papers report a wide variety of metrics and
operating points, making it difficult to compare results. Each column in this figure is one (dataset,
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Speed and Size Tradeoffs for Original and Pruned Models
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Figure 3.1: Size and speed vs accuracy tradeoffs for different pruning methods and families of architectures.
Pruned models sometimes outperform the original architecture, but rarely outperform a better
architecture. (Blalock et al., 2020).
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Figure 3.2: Fragmentation of results. Shown are all self-reported results on the most common (dataset,
architecture) combinations. Each column is one combination, each row shares an accuracy
metric (y-axis), and pairs of rows share a compression metric (x-axis). Up and to the right is
always better. Standard deviations are shown for He 2018 on CIFAR-10, which is the only
result that provides any measure of central tendency. (Blalock et al., 2020).

architecture) combination taken from the four most common combinations, excluding results on
MNIST. Each row is one pair of metrics. Each curve is the efficiency vs accuracy trade-off
obtained by one method. Methods are color-coded by year.

It is hard to identify any consistent trends in these plots, aside from the existence of a trade-
off between efficiency and accuracy. A given method is only present in a small subset of plots.
Methods from later years do not consistently outperform methods from earlier years. Meth-
ods within a plot are often incomparable because they report results at different points on the
x-axis. Even when methods are nearby on the x-axis, it is not clear whether one meaningfully
outperforms another since neither reports a standard deviation or other measure of central ten-
dency. Finally, most papers in our corpus do not report any results with any of these common
configurations.
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3.4 Confounding Variables

Even when comparisons include the same datasets, models, metrics, and operating points, other
confounding variables still make meaningful comparisons difficult. Some variables of particular
interest include:

* Accuracy and efficiency of the initial model
» Data augmentation and preprocessing

* Random variations in initialization, training, and fine-tuning. This includes choice of
optimizer, hyperparameters, and learning rate schedule.

* Pruning and fine-tuning schedule

* Deep learning library. Different libraries are known to yield different accuracies for the
same architecture and dataset (Nola, 2016; Northcutt,[2019) and may have subtly different
behaviors (Vryniotis, 2018)).

 Subtle differences in code and environment that may not be easily attributable to any of
the above variations (Crall, |2018; Jogeshwar, 2017; “Keras Exported Model shows very
low accuracy in Tensorflow Serving,”[2017).

In general, it is not clear that any paper can succeed in accounting for all of these confounders
unless that paper has both used the same code as the methods to which it compares and reports
enough measurements to average out random variations. This is exceptionally rare, with Gale
et al. (2019) and Liu et al. (2019) being arguably the only examples. Moreover, neither of these
papers introduce novel pruning methods per se but are instead inquiries into the efficacy of
existing methods.

There are at least two more empirical reasons to believe that confounding variables can have
a significant impact. First, as one can observe in Figure[3.2] methods often introduce changes in
accuracy of much less than 1% at reported operating points. This means that, even if confounders
have only a tiny impact on accuracy, they can still have a large impact on which method appears
better.

Second, as shown in Figure [3.3] existing results demonstrate that different training and fine-
tuning settings can yield nearly as much variability as different methods. Specifically, consider
1) the variability introduced by different fine-tuning methods for unstructured magnitude-based
pruning (Figure [3.3] top) and 2) the variability introduced by entirely different pruning meth-
ods (Figure [3.3 bottom). The variability between fine-tuning methods is nearly as large as the
variability between pruning methods.
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Pruning ResNet-50 with Unstructured Magnitude-Based Pruning
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Figure 3.3: Pruning ResNet-50 on ImageNet. Methods in the upper plot all prune weights with the
smallest magnitudes, but differ in implementation, pruning schedule, and fine-tuning. The
variation caused by these variables is similar to the variation across different pruning methods,
whose results are shown in the lower plot. All results are taken from the original papers.
(Blalock et al., 2020).
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Chapter 4

Standardizing Neural Network Pruning

s we have seen in the previous section, the task of correctly evaluating neural network pruning
methods is a challenging one. A main barrier towards comparison is the fact that in most
pruning methods, the main contribution is the pruning algorithm but one needs to build an entire
machine learning pipeline in order to obtain results from using the pruning algorithm in practice.

In this chapter we describe ShrinkBench, an open-source library aimed at facilitating the
development and evaluation of neural network pruning methods in a standardized and reproducible
way. We will first describe how we implemented ShrinkBench, highlighting the design choices
taken and describing how we believe those decisions should help the community adhering to best
practices.

4.1 System Overview

ShrinkBench is a Python library designed to ease evaluation of neural network pruning meth-
ods. ShrinkBench was designed with two goals in mind: 1) enable rapid prototyping of neural
network pruning methods, and 2) facilitate the use of standardized metrics, datasets, network
architectures, and finetuning setups.

Using ShrinkBench, researchers can easily implement pruning strategies and evaluate their
effectiveness across a wide range of scenarios (datasets, models and compression ratios). The
library provides tools for running experiments using standardized dataset-model combinations
and controlling for potentially confounding factors such as finetuning hyperparameters or initial
weights. Results can then be aggregated to produce method comparisons like the ones presented
in the results chapter. ShrinkBench works with off-the-shelf PyTorch (Paszke et al.,[2017) model
architectures, simply requiring the user to provide parameter masks that indicate which param-
eters to keep, and optionally new values for the remaining weights.

To facilitate the task of computing the set of parameter masks, ShrinkBench provides prim-
itives for retrieving parameters, activations, and gradients. Since only the parameter masks are
required, ShrinkBench supports arbitrary scoring functions, allocation of parameters across lay-
ers, and sparsity structures. From the parameter masks, ShrinkBench can train and fine-tune
models ensuring that masked parameters do not contribute to the output of the network and are
not updated during backpropagation. Given these masks, ShrinkBench will automatically ap-
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ply the pruning, update the network according to a training or fine-tuning setup, and compute
metrics across many models, datasets, random seeds, and compression ratios. Since the existing
literature on pruning has mostly focused on computer vision tasks, ShrinkBench provides a set
of vision-related dataset-model combinations with pretrained weights.

The entire source code and revision history of ShrinkBench is publicly available at https:
//github.com/JJGO/shrinkbench and can be used under the MIT License. The pretrained models
for the networks trained in the CIFAR10 dataset can be found under https://github.com/JJGO/
shrinkbench-models.

4.2 Pipeline Design

In order to design ShrinkBench we went back and analyzed how traditional neural network
pruning baselines worked to identify what were the potential confounding factors that need to be
abstracted away.

N
Em

t

Pruning
Algorithm

Potential confounding factors

Figure 4.1: Typical diagram for a neural network pruning pipeline. Starting from a pretrained network on
a set of data, a pruning algorithm is applied to the model that only preserves a sparse subset of
the weights. After the weight pruning is done, the network is trained on the target dataset for a
few epochs to restore some of the lost accuracy (finetuning). Finally, the network is evaluated
on the heldout test set with a set of metrics which include both performance and efficiency.

As figure [4.1] depicts, a traditional pipeline for evaluating a pruning algorithm. Starting
from a dataset-architecture combination, usually encoded as a pretrained model on the data, a
pruning algorithm is applied to reduce the number of weights in the network. The pruned model
is now trained for several epochs, to recover some of the lost accuracy introduced by the removal
of weights. Here, training is done over the pruned topology, ensuring that the pruned weights
remained pruned (i.e. at zero). This inner loop of pruning and finetuning can be repeated several
times when weights are pruned in a iterative fashion instead of pruning all of them upfront.

However, usually the novel contribution in this entire pipeline is the choice of pruning
algorithm |I| whilst the rest of the moving parts is a potential source of confusion that might
become a barrier to further comparison. In ShrinkBench we prevent all the potential confounding
factors from interacting with the design of the pruning algorithm as depicted in Figure §.2]
ShrinkBench provides standardized model and dataset combinations of associated complexities,

ISome methods do implement custom finetuning procedures, however these can be viewed as a iterative stateful
pruning algorithm and thus can fit into the depicted pipeline.
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preventing the pitfall of using a overparametrized network for a target dataset. The end user can
also extend ShrinkBench by implementing custom dataset and model combinations, however
ShrinkBench’s design ensures that these additions do not affect the behavior of the rest of the
pruning pipeline. ShrinkBench also provides tested evaluation metrics for measuring sparsity in
arigorous way as well as a variety of auxiliary utilities that facilitate the development of neural
network pruning methods. Both of these will be described later in this chapter with corresponding
examples.

Pruning
Algorithm

Figure 4.2: In our proposed framework, the API to the pruning algorithm is exposed in a way that facilitates
the overall evalutaion of the methodology while ensuring that evaluation experiments are
performed in a controlled and reproducible way.

4.3 Pruning through binary masks

As we discussed in the background chapter, a given pretrained neural network can be described
as a parametric function f(x; W) where W is the set of all parameters or weights of the network.
The act of pruning produces a new model with the same architecture f(z;W'® M) where
M € {0, 1}|W/| is a binary mask that fixes some of the parameters to 0 and © is the tensor
elementwise product operator. In ShrinkBench, we make use of these binary masks not only as a
useful abstraction to specify arbitrary pruning methods but also as a low level detail to ensure the
correctness of the pruning procedure.

In practice, once a network is pruned, the mask abstraction is not needed anymore since the
weights are either set to zero or removed from the specification of the architecture. However, when
finetuning steps are required over a pruned model, steps need to taken so that the network stays
pruned after every single optimizer iteration, namely after every forward and backward pass over
a minibatch of data. In practice, layers are defined over dense tensor weights so unless structured
pruning is used, in order to make use of the efficient hardware primitives that implement the
layers, one needs to take steps to prevent gradients from reviving pruned weights.

There are different ways of achieve this. A simple naive way is to keep the masks in memory
and perform the elementwise mask multiplication after every minibatch. This will zero out the
pruned weights, undoing any gradient updates performed by the optimizer. However, because of
the nature of Python interpreter and how GPU tensors work, this can be time consuming to do
since one needs to iterate over each weight tensor and
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In ShrinkBench we decided to explicitly implement the mask elementwise product multi-
plication as part of the architecture of the network. Despite this requiring more GPU memory
to store the masks, implementing masking this way achieves a higher resource utilization and
throughput since the masking operations can be computed directly in the GPU. To achieve this,
we effectively modify the computation graph of the network replacing each weight with the
elementwise product of said weight and its associated mask.

We show the correctness of this approach by proving that for masked weights the gradients
will be zero while for the unpruned weights will remain as if the masks were not there. Given
a weight tensor involved in some operation y = f(x,w) where x is the input to the layer, y is
the output and f is the function the layer implements, let us replace w by w’ = w ® m where
m € {0, 1}‘1”| is the weight mask. Now, when computing the gradients with respect to the weights,
the mask will ensure no updates reach the masked weights. We can see this by deriving the
gradient of the loss £ £ L£(f(x; W), y) with respect to the weights using the chain rule. Originally,
the updates are as follows

oL _ oL oy an
ow  Jy ow
After substituting the masks we get

o _ocoy
ow Oy dw
o oy o
Oy \ow' dw

oL [ 0

ey,
- Oy \ow
_ocay
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Which is the same expression except that is multiplied by the value of m € {0,1} so the
gradient will be the expected value when m = 1 and zero otherwise. This depicted in Figure 4.3
where the same analysis is shown over the equivalent computation graph.

Technically, PyTorch does not have static computation graph since it is centered around a
dynamic computation graph paradigm. In order to edit it we replace each parametric module (i.e.
layers) with modified modules that perform the same operation but with the premultiplication by
the binary mask.
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(a) Forward Pass (b) Backward Pass (pruned weights)
m 0
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Figure 4.3: By replacing w with w’ = w ® m in the computational graph we can achieve a persistent
pruning that prevails after forward and backwards passes of the network.

4.4 Evaluation Metrics

As we saw in the literature metanalysis, standardization of metrics is also required so that results
can be compared in a meaningful way. To this end, ShrinkBench provides a set of standardized
metrics to measure the amount of pruning in a network as well as related metrics to approximate
the potential performance gains to be achieved by that amount of pruning. The correctness and
behavior of these metrics are critical in order to ensure that comparisons between methods.

ShrinkBench includes the following primitives:

* Model Size - Returns the total number of parameters in the network and the number of
unpruned parameters (i.e. with nonzero value).

* Compression - Ratio between total model size and unpruned model size

* FLOPs - Number of floating point operations per second. We also report the amount of
FLOPs involving unpruned parameters.

» Speedup - ratio between the original FLOPs and FLOPs involving unpruned parameters.

* Memory Usage - Amount of memory required to store the model along with its activations.
As the previous metrics, it also returns the amount of memory taken by unpruned parameters.
Importantly, this considers activations where all connected weights are pruned to be zero.
Otherwise false positives might be reported because of activation functions outputting zero
such as ReL.Us.

As we will see in the results section while some of these metrics are vaguely correlated since
model with more parameters lead to higher FLOPs and higher memory usage this is not a strict
relationship. Namely, a larger model can have fewer FLOPs and memory footprint that a smaller
network because the latter metrics also depend on the size of the input and output tensors. Thus
we encourage authors to use all metrics where applicable to better understand the performance
trade-offs of pruning methods.
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A known limitatation of ShrinkBench is that it does not attempt to get actual hardware
measurements apart from wallclock time, i.e. the amount of time taken for each step. Getting
accurate hardware measurements for many of these metrics is a challenging task and it will vary
depending on the choice of hardware backend: CPU, GPU, TPU, FPGA, &c. Moreover, some
metrics such as latency or energy consumption are fundamentally hard to standardize since they
will vary greatly depending on the platform. Thus, while we encourage authors to report hardware
metrics is those when those are relevant to the bottom line of a pruning method, ShrinkBench
assumes ideal hardware performance and reports all its metrics in a hardware agnostic way. As
we will see in the results chapter, even with a hardware abstraction in place, standardization of all
the above layers is required to prevent confounding factors leading us to incorrect conclusions.

4.5 Sample Implementations

In this section we show how ShrinkBench can be used to implement a couple simple magnitude
pruning methods.

Magnitude pruning methods use the absolute value of the weights as a proxy for their im-
portance and have proved to be good baseline that performs competitive in many tasks (Frankle
et al.,[2019a; Gale et al., 2019; Han et al., 2016; Han et al.,2015). For instance, to achieve a
compression ratio of 4, we would compute the absolute value of the set of parameters we care
about, sort them and keep the 25% with highest value, discarding the rest. More generally, to
achieve a compression of x, one computes the 1/x quantile of the distribution of importances
(here the absolute weights), and keeps the values above that quantile.

However, magnitude pruning just indicates that we are using the absolute value function
as our scoring function, we still need to decide what groupings we are going to choose when
computing the relative weight importances. In practice, two common choices are:

* Globally - All the weights from the network are treated equally, and ranked in a global
fashion. This approach can lead to larger amounts of pruning on over-parametrized layers
but it ignores the relative scale of weights within each layer which can affect the selectivity
of the scoring function.

* Layerwise - Instead of concatenating all the weights of the network, layerwise approaches
treat each layer of the neural network independently. This way, the scale of the weights in
each layer is accounted for in the pruning step which can lead to better accuracy. Never-
theless, underparametrized layers can be quite impacted from this choice since the same
amount of pruning will be enforced in every single layer.

In the Listing 4.1] we show how to implement both of these approaches using the API
provided by ShrinkBench. In the implementation we can observe that the user is tasked with just
computing the tasks from the set of parameters. Since the parameters of PyTorch models are
contained in a nested hierarchy of modules, ShrinkBench offers convenient accessors for those
with self .params () and self.module_params().

Moreover, even though our scoring function is quite trivial to specify (in our example is just
NumPy’s absolute value np . abs), we still need to broadcast its application to all the parameters
to obtain the required weight masks. To this end, ShrinkBench provides auxiliary functions such
as:
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nrnygyy a9
shrinkbench.pruning VisionPruning, LayerPruning
shrinkbench.utils (map_importances,
flatten_importances,
fraction_threshold,
fraction_mask,
importance_masks)

class GlobalMagWeight (VisionPruning) :

def model masks(self):
importances = map_importances(np.abs, self.params())
flat_importances flatten_importances(importances)
threshold fraction_threshold(flat_importances, self.fraction)
masks importance_masks (importances, threshold)
return masks

class LayerMagWeight (LayerPruning, VisionPruning):

def layer_masks(self, module):
params = self .module_params(module)
importances = {param: np.abs(value) for param, value params.items()}
masks = {param: fraction_mask(importances[param], self.fraction)
for param, value params.items() if value None}
return masks

Listing 4.1: ShrinkBench’s implementation of Global and Layerwise Weight Magnitude pruning. In this
examples, we can observe how both pruning strategies are specified concisely and in a fairly
descriptive fashion. From the model parameters the user just needs to return the associated
binary masks. To simplify the tasks, there are helper functions to map arbitrary scoring
functions in a global or layerwise manner.

* map_importances - Applies a scoring function in a elementwise manner to each one of
the weights in the provided argument

* flatten_ importances - Flattens a potentially nested hierarchy of importances to a flat
array for easier handling.

* fraction_threshold - Computes the threshold so that the specified fraction of the
weights are larger than said threshold. Very similar to a quantile function.

* importance_masks - Computes binary masks from a set of importances and a associated
threshold value to use as a cut-off.

e fraction_mask - Compound function of importance_masksand fraction_threshold

By using these util functions, the task of specifying a pruning method is further simplified
while still keeping. Moreover, researchers are free to implement their own versions of these
functions and modify them as they see fit. These are provided for convenience and to show how
decomposition of the steps of developing a pruning algorithm can lead to simple implementation
and code reuse.
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Recommendations for Evaluating a Pruning Method

In this section we provide a set of general recommendations and guidelines for evaluation pruning
methods. Whilst some are enforced in ShrinkBench’s design, it might be in researchers’ best
interest to write their own implementation since ShrinkBench cannot account for all possible
scenarios.

For any pruning technique proposed, check if:

It is contextualized with respect to magnitude pruning, recently-published pruning tech-
niques, and pruning techniques proposed prior to the 2010s.

The pruning algorithm, constituent subroutines (e.g., score, pruning, and fine-tuning
functions), and hyperparameters are presented in enough detail for a reader to reimplement
and match the results in the paper.

All claims about the technique are appropriately restricted to only the experiments presented
(e.g., CIFAR-10, ResNets, image classification tasks, etc.).

There is a link to downloadable source code.

For all experiments, check if you include:

A detailed description of the architecture with hyperparameters in enough detail to for a
reader to reimplement it and train it to the same performance reported in the paper.

If the architecture is not novel: a citation for the architecture/hyperparameters and a
description of any differences in architecture, hyperparameters, or performance in this

paper.

A detailed description of the dataset hyperparameters (e.g., batch size and augmentation
regime) in enough detail for a reader to reimplement it.

A description of the library and hardware used.

For all results, check if:

Data is presented across a range of compression ratios, including extreme compression
ratios at which the accuracy of the pruned network declines substantially.

Data specifies the raw accuracy of the network at each point.
Data includes multiple runs with separate initializations and random seeds.

Data includes clearly defined error bars and a measure of central tendency (e.g., mean)
and variation (e.g., standard deviation).

Data includes FLOP-counts if the paper makes arguments about efficiency and performance
due to pruning.

For all pruning results presented, check if there is a comparison to:
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* A random pruning baseline.

— A global random pruning baseline.
— A random pruning baseline with the same layerwise pruning proportions as the
proposed technique.

* A magnitude pruning baseline.

— A global or uniform layerwise proportion magnitude pruning baseline.
— A magnitude pruning baseline with the same layerwise pruning proportions as the
proposed technique.

 Other relevant state-of-the-art techniques, including:

— A description of how the comparisons were produced (data taken from paper, reim-
plementation, or reuse of code from the paper) and any differences or uncertainties
between this setting and the setting used in the main experiments.
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Chapter 5

Experimental Setup

N this chapter we detail the experimental setup used to carry out the results presented in the
I results chapter along with the motivation for these experiments. Here we describe the pruning
baselines we implemented into ShrinkBench and the set of experiments we used them in along
with detailed accounts of hyperparameter and pipelines choices to ensure the reproducibility of
the experiments.

5.1 Motivation

So far we have analyzed the current state of the neural network pruning literature and described
ShrinkBench, our proposed framework that attempts to remediate most of the identified barriers
to comparison. However, it remains unclear whether the need for standardization satisfies merely
a data aggregation and analysis issue or whether there are fundamental issues when running
pruning experiments without using a common ground. Namely, we need to identify whether the
potential confounding factors do actually become sources of confusion if they are not accounted
for. Even though proving that they are not confounding factors is a fundamentally hard problem
since it needs to be shown for every possible experiment, showing that they are reduces to finding
a counterexample.

To test this, we implement a few simple yet common pruning baselines and use them to prune
popular models on a set of vision classification tasks. While vision classification tasks are not a
fully representative sample of all the deep learning models being used, as we saw the existing
pruning literature focused on these tasks.

5.2 Baseline Pruning Methods

In order to test our hypothesis we need to implement a series of pruning methods so that we can
compare them and analyze the effect of the potential confounding factors of the pipeline. We
denominate them as baselines since they represent unsophisticated yet performant approaches to
neural network pruning and thus will showcase the behavior that we expect from an actual pruning
method. As we delineated in the recommendations section in the previous chapter we encourage
authors to include at least a random and magnitude pruning baselines in their experiments to
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better understand the relative performance of the proposed methods.

Magnitude-based approaches are common baselines in the literature and have been shown to
be competitive with more complex methods (Frankle et al.,[2019a; Gale et al.,[2019; Han et al.,
2016; Han et al., 2015). Gradient-based methods are less common, but are simple to implement
and have recently gained popularity (Lee et al., 2019; Lee et al., 2018}; Yu et al., 2018). Note
that these baselines are not reproductions of any of these methods, but merely inspired by their
pruning heuristics. Namely, when implementing these we aimed at simplicity while maintaining
the choice of heuristics for the scoring function.

We used ShrinkBench to implement several existing pruning heuristics, both as examples
of how to use our library and as baselines that new methods can compare to. An important
consideration is that when designing this baseline we made a couple of choices specific to vision
classification networks:

* Pruned layers are just dense layers (i.e. nn.Linear) and convolutional layers (nn . Conv2d).
All considered networks in the torchvision package (Marcel & Rodriguez, 2010), only
contain parameters in linear, convolutional and batch normalization layers. Moreover,
pruning batch normalization layers is not recommended since it will effectively prune
entire neurons instead of weights which can lead to many pathways in the network to be
lost. Since these parameters are a minority, even if left unpruned, they will not have a very
large impact unless we reach very high compression ratios.

* The very last dense layer is not pruned in any model. This is a common rule applied in
most pruning methods (Frankle et al., 2019a; Gale et al., 2019) motivated by the fact that
overly pruning the last layer can have a very significant impact in the performance of the
network. Namely, pruning the layer leading to the softmax operator excessively can make
some of the output neurons disconnected or weakly connected leading to some classes not
being outputted during inference.

* When aiming for a compression level, all parameters in a network are counted, includ-
ing parameters not considered for the pruning task (in our experiments these are batch
normalization layer parameters).

5.2.1 Random Pruning

This strategy prunes each weight independently with probability equal to the fraction of the
network to be pruned. Random pruning is just a straw man approach that is useful for debugging
purposes since any approach should be better than randomly pruning weights.

5.2.2 Global Magnitude Pruning

This strategy prunes the weights with the lowest absolute value anywhere in the model. Parameters
are ranked using their absolute value. Let 11/ be the set of all parameters in the network, then we
compute the quantile over the absolute values and threshold smaller values than the quantile.

To keep a proportion p € {0, 1} of the parameters. Compute the threshold 7'(p) as the (1 —p)"
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def random mask(tensor, fraction):
idx np.random.uniform(0, 1, size=tensor.shape) fraction
mask = np.ones_like(tensor)
mask [idx] 0.0
return mask

class RandomPruning(VisionPruning) :

def model_masks(self):
params = self.params()
masks = map_importances(lambda x: random_mask(x, self.fraction), params)
return masks

Listing 5.1: Implementation for Random Pruning. ShrinkBench’s design allows for this approach to be
implemented in a succinct manner.

quantile of the set Iy = {|w|,w € W} of importances and then set the masks as follows.

m(w) = {1 v T(p; 5.1)

ShrinkBench’s implementation can be found in Listing [4.1]

5.2.3 Layerwise Magnitude Pruning

For each layer prunes the weights with the lowest absolute value. The implementation can be
found in Listing .1} The same pruning fraction is applied to each layer independently of how
many parameters it has.

5.2.4 Global Gradient Magnitude Pruning

Prunes the weights with the lowest absolute value of (weight x gradient), evaluated on a batch of
inputs. Let S = {x;,y; : i =1...n} be a set of input, output pairs to the network. We compute a
Montecarlo approximation of the gradients with respect to the weights using these inputs:

= LV &ROL(f(zi; W), i)
== 5.2
V= X, (52)
Then the set of importances [yy is defined as
Iy = {|w- V| :we W} (5.3)

And then the masks are computed analogously to the Global Magnitude Pruning method.
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class GlobalMagGrad(GradientMixin, VisionPruning):

def model_masks(self):
params = self.params()
grads = self.param_gradients()
importances = {mod:
{p: np.abs(params[mod] [p]+*grads [mod] [p])
for p mod_params}
for mod, mod_params params.items()}
flat_importances flatten_importances (importances)
threshold = fraction_threshold(flat_importances, self.fraction)
masks importance_masks (importances, threshold)
return masks

class LayerMagGrad(GradientMixin, LayerPruning, VisionPruning) :

def layer_masks(self, module):

params = self.module_params(module)

grads = self module_param_gradients(module)

importances = {param: np.abs(value*grads[param]) for param, value

params.items ()}

masks = {param: fraction_mask(importances[param], self.fraction)
for param, value params.items() if value None}

return masks

Listing 5.2: Implementations for Global Gradient Magnitude Pruning and Layerwise Gradient Magnitude
Pruning. In these implementations we can see how the user can access sample parameter
gradients to use them in the computation of the weight masks.

ShrinkBench’s implementation of Global Gradient Magnitude Pruning is shown in Listing

5.2.5 Layerwise Magnitude Pruning

For each layer, prunes the weights the lowest absolute value of (weight x gradient), evaluated
on a batch of inputs. Uses analogous importances to the ones described for Global Gradient
Magnitude Pruning but only considers one layer at a time. The implementation can be found
in Listing[5.2] The same pruning fraction is applied to each layer independently of how many
parameters it has.

5.3 Techniques

To perform the described analysis several tools and techniques were be employed. The analysis
can be broken down into two parts: performing the experiments that prune neural networks using
different heuristics and then analyzing processing the results.

To implement the neural network pruning techniques the PyTorch framework (Paszke et al.,
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2019) were used, one of the most popular open source neural network libraries. The PyTorch
library is throughly documented and provided a solid foundation upon which to build the frame-
work for the described experiments. First, it provided a flexible interface that allows us to edit the
architecture and behavior of neural networks. Moreover, by using PyTorch we were also able to
leverage torchvision (Marcel & Rodriguez,|[2010), a package written in PyTorch that implements
popular datasets, transformations and model architectures for computer vision tasks.

To perform the analysis shown in the Results chapter, we employed a wide variety of Python
packages for scientific computing, including:P

* NumPy (Oliphant,|2006; Van Der Walt et al.,|[2011)) - NumPy is a library that adds support
in Python for large, multi-dimensional arrays and matrices, along with a large collection
of high-level mathematical functions to operate on these arrays. NumPy was employed
in other to implement the pruning heuristics that output binary masks that encode what
neural network weights to keep as part of the model.

* Pandas (McKinney, 2010; pandas development team, |2020) - Data analysis and manipula-
tion tool. It was employed to aggregate the results from the different experiments and post
process them in efficient and reproducible manner.

* Matplotlib (Hunter, 2007) - As a last step in our pipeline, we are interested in producing
plots that report the drop in accuracy of the studied model as we increase the amount of
pruning. Therefore, we employ matplotlib, the most popular plotting library for Python.

All the listed software is licensed as Free and Open Source Software (FOSS) so it is readily
available. Since a core goal of this project is to produce a framework that enables researchers
to perform standardized evaluation of neural network pruning methods, it is crucial that we can
distribute this framework in FOSS way as well.
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Results

HIs chapter details the experimental results that we obtained when using ShrinkBench to
T prune over 800 networks with varying datasets, networks, compression ratios, initial weights
and random initializations. During this process we identified various pitfalls linked with common
experimental practices in the literature that can be prevented by using ShrinkBench.

We highlight several noteworthy results below and comment their implications. Additional
experimental results are included in Appendix [A]for completeness.

6.1 Experiment Details

We swept a series of geometrically spaced values of compression for all the experiments. To
simplify the analysis we chose increasing powers of two, including the value 1 with the original
unpruned network to act as a reference for original performance of the network. We computed the
pruned fraction so that the actual compression ratio would be as close as possible to the desired
ratio and made sure that parameters not considered for pruning were used in the computation of
the compression values. For all networks, compression ratios and FLOP counts were stored at
the beginning and end of the finetuning step.

We evaluated the following network-dataset combinations on all the described baseline
pruning methods.

* CIFARI10 dataset with the following networks (Zagoruyko, 20135)):

CIFAR-VGG
ResNet-20
ResNet-56
ResNet-110

* ImageNet dataset with ResNet-18 (Deng et al.,[2009; K. He et al.,[2016)

After applying the corresponding pruning technique, networks were finetuned until con-
vergence. Pruning was performed from the pretrained weights and fixed from there forwards.
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Unless otherwise noted, the reported values are always for the held out validation set and no
hyperparameter was performed. Early stopping is implemented during finetuning. Thus if the
validation accuracy repeatedly decreases after some point we stop the finetuning process to
prevent overfitting. The hyperparameter choices for the experiments are displayed in Table[6.1]

Hyperparameter CIFAR10 ImageNet
Batch size 64 256
Epochs 30 20
Optimizer Adam SGD

Nesterov Momentum 0.9
Initial Learning Rate 3x107% 1073

Learning rate schedule Fixed Fixed

Table 6.1: Hyperparmeter details for the pruning experiments

For reproducibility purposes, ShrinkBench fixes random seeds for all the dependencies
(PyTorch, NumPy, Python). Three independent runs using different random seeds were performed
for every CIFAR10 experiment. This was not done for the ImageNet networks because of how
time consuming and computationally expensive training ImageNet networks is. For the CIFAR10
experiments, we found some variance across methods that relied on randomness, such as random
pruning or gradient based methods that use a sampled minibatch to compute the gradients with
respect to the weights.

6.2 Metrics are not Interchangeable

As we discussed previously, it is a common practice to report either reduction in the number
of parameters or in the number of FLOPs. If these metrics are extremely correlated, reporting
only one is sufficient to characterize the efficacy of a pruning method. We found after computing
these metrics for the same model under many different settings that reporting one metric is not
sufficient.

While these metrics are correlated, the correlation is different for each pruning method. Thus,
the relative performance of different methods can vary significantly under different metrics.
Figure [6.1] showcases and example of this scenario by displaying the same 4 pruned ResNet-18
networks on ImageNet using the previously described baselines. The four pruned methods are
plotted both in terms of compression ratio and theoretical speedup.

As Figure [6.1] shows, Global pruning methods are more accurate than Layerwise methods for
a given model size, but Layerwise methods are more accurate for a given theoretical speedup.
This discrepancy is related to the fact that pruning layers with larger inputs can result in higher
computational savings. This might appear counterintuive since in the presented results, networks
with more parameters (i.e. lower compression) perform fewer operations (i.e. higher speedup).
However, this can be easily explained by the fact that in convolutional neural networks the amount
of operations in a convolutional layer depends linearly both on the size of the convolutional filter
and the size of the input. Thus, since layerwise methods prune uniformly all layers to achieve
the same sparsity, this leads to higher reductions of parameters in layers with large inputs (early
layers in the network).
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ResNet-18 on ImageNet
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Figure 6.1: Top 1 Accuracy for ResNet-18 on ImageNet for several compression ratios and their corre-
sponding theoretical speedups. Global methods give higher accuracy than Layerwise ones for
a fixed model size, but the reverse is true for a fixed theoretical speedup.

6.3 Results Vary Across Models, Datasets, and Compres-
sion

Many methods report results on only a small number of datasets, models, amounts of pruning, and
random seeds. If the relative performance of different methods tends to be constant across all of
these variables, this may not be problematic. However, our results suggest that this performance
is not constant. Figure shows the accuracy for various compression ratios for CIFAR-VGG
(Zagoruyko, 2015) and ResNet-56 on CIFAR-10. In general, Global methods are more accurate
than Layerwise methods and Magnitude-based methods are more accurate than Gradient-based
methods, with random performing worst of all.

However, if one were to look only at CIFAR-VGG for compression ratios smaller than 10,
one could conclude that Global Gradient outperforms all other methods. Similarly, while Global
Gradient consistently outperforms Layerwise Magnitude on CIFAR-VGG, the opposite holds on
ResNet-56 (i.e., the orange and green lines switch places). This is the opposite of the conclusion
one would reach using ResNet-56, where that method is always outperformed by Global and
Layerwise Magnitude Pruning. This shows the need to evaluate on a pruning method on various
model and dataset combinations to ensure it is not architecture dependent. Similarly, this shows
the need to report metrics for several compression rations to characterize the trade-off curve as
pruning increases.

Moreover, we found that for some settings close to the drop-off point (such as Global Gradient,
compression 16), different random seeds yielded significantly different results (0.88 vs 0.61
accuracy) due to the randomness in minibatch selection. This is illustrated by the large vertical
error bar in the left subplot.
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Figure 6.2: Top 1 Accuracy on CIFAR-10 for several compression ratios. Global Gradient performs better
than Global Magnitude for CIFAR-VGG on low compression ratios, but worse otherwise.
Global Gradient is consistently better than Layerwise Magnitude on CIFAR-VGG, but consis-
tently worse on ResNet-56. One standard deviation bars across three runs are included for all
compression ratios greater than one.

6.4 Using the Same Initial Model is Essential

As mentioned previously, many methods are evaluated using different initial models with the
same architecture. To assess whether beginning with a different model can skew the results, we
created two different models and evaluated Global vs Layerwise Magnitude pruning on each with
all other variables held constant.

To obtain the models, we trained two ResNet-56 networks using Adam until convergence
with 7 = 1072 and 1 = 10~%. We’ll refer to these pretrained weights as Weights A and Weights
B, respectively. As shown on the left side of Figure the different methods appear better on
different models. With Weights A, the methods yield similar absolute accuracies. With Weights
B, however, the Global method is more accurate at higher compression ratios.

We also found that the common practice of examining changes in accuracy is insufficient to
correct for initial model as a confounder. Even when reporting changes, one pruning method
can artificially appear better than another by virtue of beginning with a different model. We
see this on the right side of Figure[6.3] where Layerwise Magnitude with Weights B appears to
outperform Global Magnitude with Weights A, even though the former never outperforms the
latter when initial model is held constant.

All these results evidence the need for standardized experiments when evaluating neural
network pruning methods. With ShrinkBench we aim to provide a toolkit that facilitates the task
of producing comprehensive and reproducible evaluations of proposed pruning approaches.
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Figure 6.3: Global and Layerwise Magnitude Pruning on two different ResNet-56 models. Even with all
other variables held constant, different initial models yield different tradeoff curves. This may
cause one method to erroneously appear better than another. Controlling for initial accuracy
does not fix this.
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Chapter 7

Conclusions and Future Work

WE wrap up by providing future avenues of work in this area and provide some concluding
remarks that highlight the contributions and developments that this work encompasses.

7.1 Future Work

There are multiple avenues for extending the work presented here. In its current state ShrinkBench
cannot evaluate any type of neural network experiment. We have identified the following limita-
tions:

e Some structured pruning methods implicitly have higher amount of effective pruning
than what ShrinkBench would report. This happens when there are compounding effects
between the pruning between layers. For instance, if one prunes all the weights in the same
channel in a convolutional layer then the output will always be zero for that entire channel.
Thus any nonzero weights in any consecutive layer are effectively pruned as well since
they will always take zeros as input.

However, this compounding effect is difficult to account for since it requires knowledge of
the computational graph of the network a priori. Because of PyTorch’s uses a dynamic
computational graph design paradigm, it is very hard to efficiently and correctly perform
an automated analysis of an arbitrary computational graph. A potential approach would
be to use to compile the model to a static graph representation like ONNX and use that
information to get the effective sparsity. Another potential way of dealing with this would
be to design a set of inputs so that the gradient information from those inputs would help
uncover these dependencies.

* Inits current state, ShrinkBench assumes that pruning is an operation that is performed once
training has completed, and does not provide support for incorporating that operation while
the network trains. Evaluating approaches that prune during training is a fundamentally
harder task since it requires standardizing the training procedure itself since there is no
pretrained state to start from. However, the recent interest of these type of approaches
(Frankle et al., 2019a, |2019b) proves that there is interest in this type of functionality.

* As we indicated during ShrinkBench’s description, it only reports hardware agnostic
metrics to facilitate the comparison between methods. However, in many scenarios the

José Javier Gonzalez Ortiz 37



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

main motivation behind pruning is improving some hardware dependent metric for a
network such a energy consumption, latency or throughput. Future work could analyze
ways to standardize this task drawing insights from existing approaches like the MLPerf
benchmark.

Moreover, ShrinkBench could also be easily extended to run other type of experiments:

* Given the rise of deep learning models for NLP applications, ShrinkBench could be
extended so that it Modern NLP models are implemented using Recurrent Neural Networks
(RNN), oftentimes in the form of Long Short Term Memory Networks (LSTM) along
with Transformers architectures that rely on attention based building blocks. Despite some
of the required layers not being explicitly implemented in ShrinkBench, they could be
added by employing the same approach used for the dense and convolutional layers. More
generally, any parametric layer can be replaced by a layer that performs a elementwise
multiplication by a prespecified mask. Using this design, most of the current design of
ShrinkBench can be reused for other tasks.

* ShrinkBench can be easily extended to support other datasets. Since it uses the standard
PyTorch Dataset and Datal.oader interface, relevant datasets can be incorporated.

 Similarly, ShrinkBench can be extended to other network architectures and models. Whereas
architectures are arguably as easy to add as datasets are, the issue would be to ensure pre-
trained models have been trained using a correct hyperparameter choice. For ImageNet
models ShrinkBench uses torchvision’s model architectures and publicly available pre-
trained models. For CIFAR10, it provides its own models under https://github.com/JJGO/
shrinkbench-models. Moreover, any provided models should be representative of the types
of models employed for the task of interest, otherwise it wouldn’t be beneficial to include
in the framework.

Lastly, neural network pruning is just one of the many sub-fields that have seen an explosion
of interest over the past few years given the rise of deep learning in general. However, the same
evaluation issues that we have identified and done our best to remedy are present to some extent
in other machine learning domains. For instance, the gradient-compression literature seems to
suffer from some of the same systematic problem that we listed in the pruning literature. Gradient
compression is a task common is distributed training scenarios, where gradients are compressed
(sometimes in a lossy fashion) to minimize the network requirements for communicating the
gradient updates. Given the similarity between gradient compression and pruning, developing
a similar standardized evaluation framework with similar principles would of benefit to the
literature and community.
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7.2 Conclusion

Given the enormous interest in neural network pruning over the past decade, it seems natural to
ask simple questions about the relative efficacy of different pruning techniques. Although a few
basic findings are shared across the literature, missing baselines and inconsistent experimental
settings make it impossible to assess the state of the art or confidently compare the dozens of
techniques proposed in recent years. After carefully studying the literature and enumerating
numerous areas of incomparability and confusion, we suggest concrete remedies in the form of
a list of best practices and an open-source library —ShrinkBench —to help future research en-
deavors to produce the kinds of results that will harmonize the literature and make our motivating
questions easier to answer. Furthermore, ShrinkBench results on various pruning techniques ev-
idence the need for standardized experiments when evaluating neural network pruning methods.
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Appendix A

Additional Results

HERE we include the entire set of results obtained with ShrinkBench. For CIFAR10, results
are included for CIFAR-VGG, ResNet-20, ResNet-56 and ResNet-110. Standard deviations
across three different random runs are plotted as error bars. For ImageNet, results are reported

for ResNet-18.
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Appendix B

Sustainable Development Goals

A significant fraction of the deployed machine learning models in practice, are neural network
models ((Frankle & Carbin, 2019; Han et al., 2016} S. Zhang et al.,[2017). Because of the large
amount of parameters these networks have and the number of stochastic optimization iterations
required to train them to convergence, neural networks are very computationally expensive to train.
In practice, this leads to Graphical Processing Units (GPUs) to be used as hardware accelerators
for all the tensor operations. This leads to a significant energy footprint associated with the
training of neural network models. For instance a Nvidia P100 consumes approximately 250 W
(“Nvidia Tesla P100 DataSheet,” n.d.) during heavy deep learning workloads. Moreover, neural
network models often need to be cross validated against different model and hyperparameter
choices to maximize performance which leads to a combinatorial growth of training runs.

Neural network pruning techniques offer a way of taking a large and accurate pretrained
network and decreasing its complexity whilst maintaining most of its original performance. Most
pruning heuristics can be materialized in reduced training and inference times which reduce the
overall energy consumption. However, because of the lack of standardized evaluation it is unclear
which pruning methods could lead to smaller and more efficient models that retain accuracy.

This work is aligned from United Nations’ Sustainable Development Goals. The Sustainable
Development Goals (SDGs) are a collection of 17 global goals designed to be a “blueprint to
achieve a better and more sustainable future for all”. First, we believe that by enhancing the
way neural network pruning research is carried out, we can enable a more efficient and energy
responsible deployment of these models. Pruned models not only have a smaller instantaneous
energy footprint, but in most cases it takes less time to finetune and to perform inference. Ensuring
efficient and scalable energy consumption is a core part of the Responsible Consumption and
Production goal and we think that there a lot of room for improvement in the energy efficiency in
current neural network models.

Moreover, neural network pruning methods not only produce models that run more efficiently
and with less energy consumption but they also enable the deploymnet of neural networks in
platforms where it wasn’t feasible before. Mobile systems and embedded devices are some
examples of the kind of platforms that require neural network technology to be more energy
efficient to be practical. Thus we believe that by providing a way for scientist and engineers to
better evaluate and compare pruning methods, we can increase the availability and access to these
technologies, a key part of the Industry, Innovation, and Infrastructure goal.
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