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Resumen—En este proyecto se ha realizado una comparación 

entre diversas arquitecturas de red neuronal para evaluar el efecto 

del tipo de arquitectura en un problema de predicción de 

generación de energía eólica. El trabajo incluye un estado del arte 

extenso sobre la materia y un caso práctico. Se concluye que la red 

neuronal GRU es la más adecuada, que la CNN se debe utilizar en 

sets de datos extensos y que existen alternativas eficaces a la función 

de activación ReLU. 

 

Abstract--This project contains a comparison between different 

neural network architectures with the goal of evaluating the effect 

a given architecture has in a wind power generation forecasting 

problem. It includes an extensive state of the art and a use case. The 

project concludes the GRU neural networks are successful at 

tackling timeseries forecasting, the CNN should be used for large 

datasets and that several alternative activation functions can 

outperform the ReLU. 

I.  INTRODUCTION 

 

he main purpose of this final thesis is to come up with a 

series of recommendations to select the right architecture 

for a neural network for a specific problem, focusing on 

timeseries forecasting problems. The project involves an 

extensive state-of-the-art section in which a review of current 

and past trends is carried out in order to explore the most popular 

neural network architectures. The second part of the project 

involves selecting, designing and analyzing networks that were 

tested using a real dataset from a wind energy forecasting 

competition containing wind power generation data.  

II.  STATE OF THE ART 

In this section some of the most common neural network 

architectures are introduced, exposing their inner workings, 

most common problems and giving an overview of its most 

extended applications in the fields of machine learning and deep 

learning. 

A.  Multilayer Perceptron 

This was the first neural network model developed. It is 

composed of perceptrons. A perceptron is a model for 

supervised learning, this means the model is given pairs of input-

output couples in the training process, of binary classifiers. The 

neuron is given a set of training data that allows it to adjust the 

inner parameters to find the best fit possible. 

A multilayer perceptron is made up of an input layer, hidden 

layers and an output layer. Each layer is composed by a 

 
 

previously fixed number of neurons.  A hidden layer consists of 

neuron nodes stacked in that do not directly connect with inputs 

and outputs.  

The dimension of the input layer depends on the dimension of 
the training data. The number of neurons in the hidden layer is 

one of the hyperparameters of the model and should be decided 

by the user. The dimension of the output layer depends on the 

application. 

A multilayer perceptron is usually trained using a 

backpropagation algorithm [1]. It is a machine learning training 

iterative algorithm that consists of adjusting the weights of the 

model to minimize the difference between actual output and 

desired output.  The weights of the network are updated using 

gradient descent computing the derivative of the error with 

respect to the weights.  

 
Figure 1: Multilayer `perceptron diagram 

B.  Convolutional Neural Networks 

Convolutional neural networks are a type of feed-forward 

artificial neural networks that are mainly applied to machine 
vision. One main task of CNNs is to reduce the images into a 

form which is easier to process, without losing critical 

information to obtain an accurate prediction. This is referred as 

feature extraction or feature recognition. A usual requirement in 

CNNs is that they must be computationally viable in massive 

datasets. 

CNNs can be broadly divided into two parts, the feature 

recognition part and the classification part. The classification 

part is usually similar to a multilayer perceptron. It connects the 

detected visual features to the desired output. 

 Some common types of layers that are present in 

convolutional neural networks are: 

○ Convolutional layers: a filter or Kernel is applied to a 
matrix or 2D input. This Kernel is a moving window 

and computes calculations that result in another matrix, 

usually of a smaller size, although a bigger size or the 

same size can also be obtained. The objective of the 

convolution operation is to extract high-level features 
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such as edges from the input image. Several features 

can be applied simultaneously [2]. 

○ Pooling layer: the result of a convolutional layer is an 

activation map. The objective of pooling layer is to 

provide a non-linear downsampling for those activation 

maps.  

○ Flattened Layer: the purpose of this part of the network 

is to condense the information into a one-dimensional 

array to pass it to the Fully Connected Layer. 

○ Fully Connected Layer: It receives the flattened image 

as a column vector. This flattened output is fed to a 

feed-forward neural network. Over the training process 

this part of the network learns to distinguish between 
dominating and low-level features. 

C.  Recurrent Neural Networks 

Recurrent neural networks can send information over time-

steps. Recurrent neural networks can store information of 

previous steps to modify its behaviour in the future.  
They are usually referred as systems with memory. This is 

due to the way they compute their output, using not only the 

inputs of each sample in isolation, but also some internal 

variables that are influenced by the values of the inputs of 

previous timesteps. 

In order to visualize a RNN it is good practice to first observe 

the perpendicular vision of an MLP presented in Figure 2, 

comparing it with the “flattened” version shown below in Figure 

4.  In the last example, we can imagine one of the two 

perpendicular directions as normal to our vision plain. The loops 

represent the recurrent connections. 

 
Figure 2: Flattened diagram of recurrent neural network 

Recurrent neural networks commonly use backpropagation 

through time for the training process. Backpropagation through 

time is fundamentally the same idea as standard 

backpropagation, a chain rule is applied to calculate the 

derivatives based on the connection structure of the network. 

However, the loss is calculated in a forward motion before 

calculating the gradient. 

There are several variants that differ on their cell structure:  

 
Figure 3: Inner cell structure of vanilla recurrent networks 

    1)  Vanilla Recurrent Neural Networks 

The simple RNN cell is a basic model in which there is a 

multiplication of the input by the previous output. 

Vanilla RNNs are a prime example of a model affected by 

the two most prominent problems related to the training phase 

of recurrent neural networks. 

1. Vanishing gradients: The vanishing gradient problem 

takes place when the derivatives are smaller than one, and 

a as a result the update speed of the weights turns very 

slow. This problem might grow in each iteration, 

producing an almost zero gradient and preventing the 

model to train correctly. 

2. Exploding gradients: due to the chain calculations, if 

several partial derivatives turn out to be higher than one, 

the first weights of the network will have a large gradient 

which will modify greatly the weights value. It could 
make the computer crash if the values are greater than the 

maximum the datatype supports in that memory spot. 

 
Figure 4: Inner cell structure of Long-Short Term Memory Cells 

    2)  Long-Short Term Memory Cells 

The LSTM cell has what is called a cell state. This is usually 

referred as the memory of the cell and it passes across the cell 
(represented as the top way).  It allows information from earlier 

timesteps to affect the output, reducing the effect of the short-

term memory. It also has a hidden state that comes from previous 

timesteps and that is represented with the letter h in the diagram. 

As the cell state goes through the cell, information is added or 

removed from it by the gates. 

The gates are different neural networks that decide which 

information is allowed on the cell state. LSTM cells have a 

forget gate (first equation), an input gate (second and third 

equations) and an output gate (fifth equation). The forget gate 

decides whether if information from the hidden state and from 

the previous gate should be kept or thrown away. The input gate 
decides how relevant information from the current step is, it will 

transform it into a number between 0 and 1 (sigmoid) and 

multiply it for a number between -1 and 1 to regulate it (tanh in 

this case). The output gate decides what the next hidden state 

should be. The hidden state is also used for predictions. It uses 

information from the previous hidden state, the input and the cell 

state. 

 
Figure 5: Inner cell structure of Gated Recurrent Units 

    3)  Gated Recurrent Units 

They were a posterior development to the LSTM. It intended 

to be similarly powerful but lighter than LSTM cells.  It is 

considered a valid alternative to LSTMs as it is more powerful 

than vanilla RNNs and it is comparatively less costly to train.  

The GRU cell has no cell state, and the gates directly modify the 

hidden state and use it to pass information.  GRU cells have two 
gates: the reset gate (second equation) and the update gate (first 
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equation).  The update gate works in a similar way as the input 

gate in an LSTM. It decides what information to keep or discard.  

The reset gate decides how much past information to forget. 

The more complex the individual cell becomes, the more 

matrixes are involved in solving its equations and the heavier the 

computational needs become. Vanilla RNNs are simple but they 

struggle with passing information after a few timesteps due to 

variability in the gradients. Both GRU and LSTM are widely 

used nowadays. GRU is significantly lighter to compute and 

performs better in some small size datasets [3]. LSTM networks 
need to train numerous parameters, but they are robust. 

    4)  Bi-directional RNNs and Bi-directional LSTMs 

Bi-directional RNN structures are models in which the same 

input is introduced in order and in reverse to different first layers 

of the neural network. 

In a Bidirectional LSTM the building blocks of the network 

are LSTM memory cells. Deep BLSTM networks are obtained 

by stacking layers in between the input and the output.  

InBRNN, backpropagation through time must be computed 

separately on both the forward andthe backward networks. 

 

 
Figure 6: Simple bi-directional RNN network [4] 

    5)  Hopfield Networks 

 Defined as a “loopy binary network with symmetric 

connections” [4]. These networks are made up by nodes and 
connections between the nodes. Each node is updated by a 

calculation that involves the value of the node (typically 1 or -1) 

and the values of the connections to the surrounding nodes 

multiplied by the values of the surrounded nodes. If the result is 

contrary to the sign of the node value (threshold), the value of 

that node is flipped (now it has the opposite value). The energy 

of the network is a property of Hopfield Networks that can be 

calculated taking into consideration all nodes and all 

connections [5]. 

 
Figure 7: Three neuron Hopfield Network [5] 

    6)  Boltzmann Machine 

A Boltzmann Machine is a Hopfield Network that has N + K 

neurons, where N are the visible neurons (the ones that will store 

the actual patterns of interest and are form a HN) and K are 

hidden neurons. 

The value of each node is not deterministic but based on a 

probability distribution function. Ina Boltzmann Machine the 

probability of generating a “visible” vector (the desired output) 

is defined in terms of the energies or joint configurations of the 

visible and hidden units. 

Boltzmann machines are limited due to an extensive training 

time and therefore they are only suitable for small problems [6]. 

To solve these issues, the alternatives are Restricted Boltzmann 

machines [7], Deep Boltzmann Machines [8] and the Helmholtz 

machines [9]. Restricted Boltzmann Machines have been used 

in regression and forecasting applications. 

    7)  Deep Believe Networks 

A Deep Belief Networks is a generative graphical model.  
Generative means that it not only focusses on the distribution of 

our output variable given our input variables, but that it can also 

learn the distribution of the inputs [10].  

Back-propagation is considered the standard method in 

artificial neural networks to calculate the error contribution of 

each neuron after a batch of data is processed. However, it 

comes with its own problems and limitations and Deep Belief 

Networks were a proposed solution for it. The main problems of 

back-propagation are that it requires labelled data (when many 

data sources are unlabelled), the learning time does not scale 

well when you had multiple hidden layers and the training 
process can stop in a poor local minima. 

Deep Belief Networks contain many layers of hidden 

variables. Each layer captures high-order correlations between 

the activities of hidden features in the layer immediately below, 

performing a de facto feature extraction.  The superior two 

layers of DBNs form a restricted Boltzmann Machine. The 

lower layers form a directed sigmoid belief network [11]. 

 

 
Figure 8: Representation of Deep Belief network 

    8)  Deep Auto-encoders 

An autoencoder is a type of neural network designed to learn 

data codings in an unsupervised manner. The input is the same 

as the output. Autoencoders are able to compress the input into 

a lower dimensional code and then reconstruct the output from 

this representation [12]. 

An autoencoder consists of three different parts, an encoder, 

a code and a decoder.  The encoder processes the inputs and 

produces the code, while the decoder uses the code to 

reconstruct the input. In order for an autoencoder to run we need 
a loss function compering the output with the target. 

Autoencoders are trained using back-propagation. 

 
Figure 9: Diagram of an auto-encoder [13] 
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D.  Activation functions 

 Activation functions play an essential role in an artificial neural 

network.  They are the mathematical equivalent of the electrical 

potential that builds up in biological neurons which then fire 
when a given threshold is reached. Its job is determining the 

magnitude of the output after receiving the inputs of the neurons 

multiplied by the weights as an argument (potentially internal 

variables too, as in recurrent neural networks). 

The main activation functions used in the case study are: 

    1)  Rectified Linear Unit 

The rectified linear unit is one of the simplest non-linear 

functions. It returns zero as an output if the input value is below 

zero. It returns the input when the input is above zero [14]. It is 

computationally lightweight, and it is very extended for deep 

learning applications, especially when applied to the hidden 
layers. 

    2)  Exponential Linear Unit 

It is very similar to the ReLU function, but it avoids the zero 

values when the inputs are negative. 

𝑅(𝑧) = {
         𝑧              𝑧 > 0

∝∗ (𝑒𝑧 − 1)    𝑧 ≤ 0 
 

    3)  Scaled Exponential Linear Unit 
Evolves on the idea of the ELU function, including an offset 

with an extra parameter. 

𝑅(𝑧) = 𝛾 {
       𝑧                𝑧 > 0

∝∗ (𝑒𝑧 − 1)    𝑧 ≤ 0 
 

 
Figure 10: Visual representation of ReLU, ELU and SELU 

E.  Optimization Algorithms 

Optimization involving neural networks means non-convex 

optimizations. In order to tackle this problem, there are two main 

approaches, the first order optimization algorithms and the 

second order optimization algorithms. First order optimization 

algorithms minimize a loss function using the values of the 

gradient with respect to the parameters.  Second order 

algorithms compute the second order derivative to minimize the 

loss function. 

The main optimization algorithms present in the use case will 

be highlighted: 

 
    1)  Gradient Descent 

It is the most common technique and the foundation to the 

ones developed in this section.  It uses the gradient of the cost 

function in order to update the parameter and obtain a new 

configuration that leads to a reduced loss [15]. 

θ = θ − η ⋅ ∇ ⋅ 𝐽(θ) 

    2)  Momentum 

Momentum is an added term to the optimization equation. It 

attempts to replicate the concept of momentum in physics, as an 

object slides down a slope its velocity increases and it becomes 

harder for it to change directions [15]. It results in faster and 

more consistent optimization with less oscillations. 

    3)  Adam 

It stands for adaptive moment estimation.  It is one of the most 

popular optimization algorithms nowadays [16]. It is a 

combination of standard Momentum with another algorithm 
called RMSprop. Adam computes adaptative learning rates for 

each parameter. It calculates an exponential decaying average 

for past squared gradients, as well as an exponential decaying 

average of past gradients. 

Estimate first momentum: 

𝑣𝑖 = ρ1 ⋅ 𝑣𝑖 + (1 − ρ1) ⋅ 𝑔𝑖 

Estimate second momentum: 

𝑟𝑖 = ρ2 ⋅ 𝑣𝑖 + (1 − ρ2) ⋅ 𝑔𝑖
2 

Update parameters: 

θ𝑖 = θ𝑖 −
ε

δ + √𝑟𝑖

⋅ 𝑣𝑖 

4) Nadam 

It was proposed to improve the Adam algorithm. It is a 

combination of Nesterov momentum and Adam.  

The only significant change is that the momentum is 

computed using interim parameters, instead of current 

parameters. 

Estimate first momentum: 

𝑣𝑖+1 = ρ1 ⋅ 𝑣𝑖 + (1 − ρ1) ⋅ 𝑔𝑁𝐴𝐺 

Estimate second momentum: 

𝑟𝑖 = ρ2 ⋅ 𝑣𝑖 + (1 − ρ2) ⋅ 𝑔𝑁𝐴𝐺
2  

Update parameters: 

θ𝑖+1 = θ𝑖 −
ε

δ + √𝑟𝑖

⋅ 𝑣𝑖+1 

F.  Loss functions 

A loss function (or cost function) is a measure of how the 

neural network performs with respect to the ideal behaviour 

given the application.  Therefore, it is dependent on the end 

use and the output of the network. It can be a function of the 

output, the input, the weights and biases. 

The loss functions utilized for the use cases are exposed 

below: 

    1)  Mean squared error 

Also known as maximum likelihood or sum squared error. 
Common in regression and forecasting problems, it has the issue 

that individual extreme values can significantly taint the 

resulting value. 

 

𝐶𝐶𝐸(𝑊, 𝐵, 𝑆𝑟 , 𝐸𝑟) =
1

𝑛
∑(𝑎𝑗

𝐿 − 𝐸𝑗
𝑟)

2

𝑗

 

    2)  Mean Absolute Error 

This measure of accuracy is frequently found in forecasting 
and regression problems. It measures the average magnitude of 

the errors in a set of predictions, without considering their 

direction. 

𝐶𝐶𝐸(𝑊, 𝐵, 𝑆𝑟 , 𝐸𝑟) =
1

𝑛
∑|𝑎𝑗

𝐿 − 𝐸𝑗
𝑟|

𝑗
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III.  CASE STUDY 

A.  Problem Statement 

The dataset to be analyzed comes from a machine learning 

contest and it contains recorded values of wind power generation 

with 90 different input variables. The available explanatory 

variables include wind speed, wind direction and temperatures 

in a given area. Overall, this problem accounts with over 35,000 

samples. 

 
Figure 11: Different types of inputs in the forecasting problem 

In Figure 12 the three different types of input variable are 

visible.  In the top chart the temperatures are displayed in 

degrees Celsius. In the second chart the display shows the 

aggregate of the wind direction variables. This can oscillate 

from -180º to 180º. In the last graph the wind speed variables are 

shown and how they evolve through time. 

As a way to test the value added with the trained models, they 
are compared with two benchmarking algorithms. 

The first benchmark (from now one just benchmark) is a 

simple one-day forecasting window using the value of the 

previous datapoint. It is a common proxy used in several 

industries such as the financial services and it is an easy way to 

set a target for any forecasting model.  

𝑦𝑝𝑟𝑒𝑑[𝑡] = 𝑦[𝑡 − 1] 

The one-timestep lag error with outliers is shown in Table 4. 
The one-timestep lag error without outliers in shown in Table 6. 

The second benchmark model (from now on MLP) is a 

simpler neural network, a multilayer perceptron.  One of the 

objectives of the project is to show how this more complex 

models contribute to a better explanation of a time series 

forecasting problem. The parameter for batch size was selected 

at 50 and the number of iterations was initially set to 30. This 

are common initial values in similar applications. The MLP will 

change the structure in every experiment. In the first ones it will 

have the same structure as the GRU and MLP, layer and neuron 

wise.  
The parameter for batch size was selected at 50 and the 

number of iterations was initially set to 30. This are common 

initial values in similar applications. 

The training-validation split is 80% training, 20% validation. 

The validation set corresponds with the last part of the dataset in 

order, given the sequential nature of the problem.  

The error measures showed in every single one of the 

following experiments are the errors of the validation dataset, as 

it shows if the models are capable of generalizing and correctly 

leverage the relationships between outputs and inputs. The 

optimal model would be the one with lowest validation error. 

B.  LSTM and GRU networks comparison 

The cell state present in the LSTM algorithm is a powerful 

feature that allows it to control the information flow from past 

timesteps to influence the output. However, the GRU was 
created under the believe that a simpler algorithm could not only 

improve the running time, but also the performance scores of the 

LSTMs. 

    1)  First LSTM-GRU Test 

The first experiment was carried out using a random neural 

network architecture with 3 layers and 20 neurons per layer for 

each case. The epochs were set to 20 while the batch size was 

fixed at 50. These values are common initial values and will be 

changed in the optimized models. 

The rationale behind the experiment was to check the 

behaviour of both algorithms with the same structure and testing 
out common alternatives of activation functions and 

optimization functions. Tanh, maxout and sigmoid were used to. 

 
Table 1: Results of the first test 

The average validation MSE value in Table 1 refers to the 

MSE score achieved by the different algorithms average over 

the five simulations carried out.  

The main conclusion of this initial test is that the SELU 

activation function is a promising rival for the ReLU, 

outperforming it in several cases. At this level of complexity, the 

GRU algorithm outperformed the LSTM algorithm in 3 out of 4 

cases. No definitive conclusions are driven from the comparison 

between the Adam and Nadam optimization algorithms. 

    2)  Second LSTM-GRU Test 
As learned in the previous section, the activation functions do 

impact in a notable way the performance of the algorithm. 

Therefore, it was decided to keep the SELU and the ReLU 

options and to include the ELU as an alternative as well. 

Given that Adam is simpler and more common in the 

literature than Nadam, and that there was no significant 

difference in behaviour found in the first LSTM-GRU test, the 

Adam algorithm was selected as the only choice for the second 

LSTM-GRU test. 

In this case, the number of simulations was 30 to make the 

results more reliable with a larger sample. This way there is a 

higher statistical certainty of the veracity of the results, as the 
results are an aggregate and not just a single data point. All the 

networks had 3 layers and 20 neurons, as in the previous 

experiment. Epochs where kept to 20 and batch size to 50.  

 
Table 2: Results of the second test 
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The results of this test indicate that, at this level of complexity 

the GRU algorithm is more powerful than the LSTM algorithm. 

The ReLU activation function turned out to be better than the 

SELU, however, the simpler ELU was the best activation 

function referring to its average MSE validation values. 

    3)  Optimized algorithms and analysis with outliers 

In order to compare the best performing versions of the MLP 

benchmark, the GRU and the LSTM, a hyperparameter 

optimizator was used. In this case, it is a Bayesian optimizator, 

which creates a statistical model that evaluates the predictors as 
a black box. By updating the believes after each tested point, via 

multiple iterations, it trains the model in each iteration with the 

hyperparameter configuration which should have the lowest 

error predicted by the statistical model [17]. 

Using the Bayesian enables to find optimized solutions faster 

than by manually fixing several parameters. The tuned 

hyperparameters in this experiment were the model, activation 

function, number of layers, neurons per layer, learning rate and 

optimization algorithm. The optimization process used 200 

iterations in each case. 

 
Table 3: Hyperparameters values for the models with outliers 

 
Table 4: Results of prediction models with outliers 

The interesting side of this experiment lays in observing how 

the models behave when facing an outlier. Under these 

circumstances some models have learned how to avoid 

individual outliers. This is the case for the Optimized GRU 

(hyperparameters shown in Table 3, results shown in Table 4) 

and it can be observed in Figure 13. 

 
Figure 12: Optimized GRU avoiding an outlier 

When analyzing the normalized residuals of the fitted 

optimized LSTM and GRU, it can be observed how there are 

multiple outliers not avoided in the validation set. 

 
Figure 13: Normalized residuals of opt. LSTM and opt. GRU 

    4)  Optimized algorithms and analysis without outliers 

For the second experiment in this series, the power output 

function was cleaned to make sure no outliers were passed to 

the algorithms. 

The timeseries was corrected both in the training and 

validation datasets. The number of outliers located in the 

validation dataset far exceeds the ones found in the training 

dataset. Despite being just 20% of the data, it contained 13 

outliers versus 4 outliers found in the rest of the set. 

The Bayesian algorithm was used again for hyperparameter 
optimization purposes with 200 iterations in each case. 

 
Table 5: Hyperparameters values for models without outliers 

 
Table 6:Results of prediction models without outliers 

Several relevant observations can be made from the tables 

above. On one hand, none of the optimized models choose the 

ReLU option. On the other hand, the GRU model is deeper than 

the rest, using 4 layers. It is also the best performer and it has a 

particularly small learning rate. 

 
Figure 14: fitted models, output and benchmarks 

In Figure 14 we observe a sample of the fitted models in the 

same region that used to host an outlier (See Figure 12). The 

behaviour of the models has improved without the outliers, it 

seems like interpolate the outliers was the right thing to do to 

improve the predictions. 

 
Figure 15:Normalized residuals without outliers 

In Figure 15, we can see the contrast when the outliers were 
removed (See Figure 13). Regarding the residuals, they do not 

follow a normal distribution (See Figure 16). This implies that 

the model is not explaining all the error possible, as the result is 

not a white noise.  
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Figure 16:Q-Q plot of the optimized GRU 

Despite not following a normal distribution, the residuals of 

the optimized GRU model are promising since it beats the MSE 
score of the one lag benchmark by a 22.3% and the MSE score 

of the MLP by a 27.4%. 

 Furthermore, the partial and total autocorrelation plots show 

the optimized GRU can explain significant information from 

previous lags, especially when compared with the closest 

algorithm, the LSTM. (Figures 18 and 19). 

 
Figure 17: LSTM partial and total autocorrelation plots 

 
Figure 18: GRU partial and total autocorrelation plots 

    5)  Model dynamic response 

After training the models and computing the errors, the next 

part of the project consisted in observing the time response of 

the neural network architectures when a step is simulated in the 

output variable. The neural networks are capable of mimicking 

dynamics, and the step experiment is a way of showing what 

dynamics were learned. 
As previously mentioned, the models are already trained and 

the steps do not affect the training data set, but only the 

validation one. The resulting validation dataset with the two 

steps implemented is shown in Figure 20.  

 
Figure 19:Validation dataset with steps implemented 

In the downwards step the three models follow the one 
timestep lag immediately. In this sense, they all behave the same 

way. However, the LSTM model seems to have a positive offset. 

The step values are 205 MW and 155 MW. The GRU model 

follows the step better, and it reaches the permanent step at the 

end of the plain. The MLP is not able to come back to the real 

output level. Both the LSTM and the GRU overshooted when 

approximating the upwards part of the step. 

 
Figure 20:Time response of the downwards step 

When analyzing the time response of the upwards step, the 

starting low value is around 12 MW and then it rises to 62 MW. 

In this case, the GRU model is the one showing the most 
overshoot. Again, the LSTM model is the slowest in reacting 

and it is the one with the highest error in the first timestamps.  It 

is important to notice how none of the predictors stabilize in the 

high value of the upwards step.  The reason behind this seems to 

be that the inputs are clearly indicating that the output should be 

significantly smaller. It also shows that the predictors rely on the 

one lag benchmark for big changes, but this influence wears 

down as the timesteps pass. 

 
Figure 21:Time response  

C.  Convolutional neural network predictor 

In the final experiment of the project, the one-dimensional 

convolutional neural network (CNN from now onwards) will be 

explored. The main objective is to observe differences in the 

predictions compared with the most successful recurrent neural 

network. In this model the output is modelled using pattern 

recognition and extraction, so an improvement over the 

benchmark is expected beforehand. 

The way of approaching the training of the CNN was to run a 

Bayesian hyperparameter optimizator in two steps. The first one 

with 200 iterations and a wide hyperparameter space so the 

algorithm could explore different and diverse solutions.   

After obtaining the solution, a second optimization process 
was launched with 50 iterations and with the space of the hyper-

parameters more restricted around the values that rose in the first 

process.  It is very relevant to find the optimized function this 

way, given that the CNN has a larger number of hyper-

parameters, including activation function, kernel size, pool size, 

dropout, neuron layers, neurons per layer, number of filter 

layers, filters per layer and others. 

 
Figure 22: Hyperparameters values for CNNs 
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Table 7: Results of CNN, benchmark and GRU 

 
Figure 23: fitted models, output and benchmark 

In Figure 24 several observations can be made.  The GRU and 

the CNN model alternate between a close follow up of the output 

and a follow up of the one timestep lag. It is only when having 

a look at the results in Table 7 that the best neural network is 

shown; in this case the GRU holds the first position in both 

metrics. 

For this experiment, the results did not follow a normal 

distribution and the normalized residuals were very similar to 

the ones of the GRU in Figure 16, reason why those figures are 

not attached. 

 
Figure 24: CNN partial and total autocorrelation plots 

With respect to the autocorrelation plots, the CNN predictor 

obtained a good result, eliminating many significant lags. 

However, the GRU predictor still seems to better capture the 

influence of lag and inputs to reconstruct the output. 

IV.  CONCLUSIONS 

    1)  Key takeaways 

After carrying out an in-depth analysis of the multiple 

experiments in the project, several conclusions are drawn: 

Recurrent neural networks are a powerful tool to address 

timeseries forecasting problems. Their internal memory captures 

information from past timesteps and allowed them to beat both 

benchmarks, the one-day window and the MLP. The ability to 

better interpret and replicate the dynamics of the output results 

in better predictions. A prove that the models replicate the 

dynamic response of the outputs is the fact that they do not 

follow the permanent value of an arbitrary step in the validation 
dataset. Better dynamics is not the only quality in favour of 

RNNs, they can also learn how to avoid outliers; however, it is 

not reliable as not all the outliers are avoided (some are just not 

detected). This behaviour was observed the GRU algorithm. 

When talking about RNN alternatives, the LSTM is usually 

the first one mentioned. However, in this project the GRU 

algorithm outperformed to LSTM algorithm almost at all times. 

Alternatively from RNNs, the optimized CNN proved to be a 

lightweight model that was trained in under 10 seconds each 

iteration. It is the model with the second most accurate result and 

with the fastest training time. 

On the activation functions side, the ReLU was surpassed by 

modified versions, such as the ELU activation function. In the 

first experiment the ReLU activation function was outperformed 

by SELU. In the second ELU outperformed ReLU in all cases. 

The ReLU activation function was never the chose none for any 

Bayesian optimization except for the CNN. 

    2)  Recommendations for forecasting problems 

The GRU model should be the first one used for a timeseries 
forecasting problem given the good results. It provides the most 

accurate results with smaller datasets and its training is lighter 

than more complex models, like the LSTM. 

Alternatives to ReLU should always be tested. ReLU is only 

recommended for very complex networks or CNNs. 

Try convolutional neural networks when dealing with 

forecasting problems and very large datasets. They deliver am 

attractive results vs training time trade-off. 

Have a look at partial and total autocorrelation plots when 

choosing between different neural networks. Apparently similar 

looking models may have quite different ACF and PACF plots.  
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