
 1

Resumen—En este proyecto se ha realizado una comparación

entre diversas arquitecturas de red neuronal para evaluar el efecto

del tipo de arquitectura en un problema de predicción de

generación de energía eólica. El trabajo incluye un estado del arte

extenso sobre la materia y un caso práctico. Se concluye que la red

neuronal GRU es la más adecuada, que la CNN se debe utilizar en

sets de datos extensos y que existen alternativas eficaces a la función

de activación ReLU.

Abstract--This project contains a comparison between different

neural network architectures with the goal of evaluating the effect

a given architecture has in a wind power generation forecasting

problem. It includes an extensive state of the art and a use case. The

project concludes the GRU neural networks are successful at

tackling timeseries forecasting, the CNN should be used for large

datasets and that several alternative activation functions can

outperform the ReLU.

I. INTRODUCTION

he main purpose of this final thesis is to come up with a

series of recommendations to select the right architecture

for a neural network for a specific problem, focusing on

timeseries forecasting problems. The project involves an

extensive state-of-the-art section in which a review of current

and past trends is carried out in order to explore the most popular

neural network architectures. The second part of the project

involves selecting, designing and analyzing networks that were

tested using a real dataset from a wind energy forecasting

competition containing wind power generation data.

II. STATE OF THE ART

In this section some of the most common neural network

architectures are introduced, exposing their inner workings,

most common problems and giving an overview of its most

extended applications in the fields of machine learning and deep

learning.

A. Multilayer Perceptron

This was the first neural network model developed. It is

composed of perceptrons. A perceptron is a model for

supervised learning, this means the model is given pairs of input-

output couples in the training process, of binary classifiers. The

neuron is given a set of training data that allows it to adjust the

inner parameters to find the best fit possible.

A multilayer perceptron is made up of an input layer, hidden

layers and an output layer. Each layer is composed by a

previously fixed number of neurons. A hidden layer consists of

neuron nodes stacked in that do not directly connect with inputs

and outputs.

The dimension of the input layer depends on the dimension of
the training data. The number of neurons in the hidden layer is

one of the hyperparameters of the model and should be decided

by the user. The dimension of the output layer depends on the

application.

A multilayer perceptron is usually trained using a

backpropagation algorithm [1]. It is a machine learning training

iterative algorithm that consists of adjusting the weights of the

model to minimize the difference between actual output and

desired output. The weights of the network are updated using

gradient descent computing the derivative of the error with

respect to the weights.

Figure 1: Multilayer `perceptron diagram

B. Convolutional Neural Networks

Convolutional neural networks are a type of feed-forward

artificial neural networks that are mainly applied to machine
vision. One main task of CNNs is to reduce the images into a

form which is easier to process, without losing critical

information to obtain an accurate prediction. This is referred as

feature extraction or feature recognition. A usual requirement in

CNNs is that they must be computationally viable in massive

datasets.

CNNs can be broadly divided into two parts, the feature

recognition part and the classification part. The classification

part is usually similar to a multilayer perceptron. It connects the

detected visual features to the desired output.

 Some common types of layers that are present in

convolutional neural networks are:

○ Convolutional layers: a filter or Kernel is applied to a
matrix or 2D input. This Kernel is a moving window

and computes calculations that result in another matrix,

usually of a smaller size, although a bigger size or the

same size can also be obtained. The objective of the

convolution operation is to extract high-level features

Advanced neural networks architectures

research – forecasting recommendations
Santiago Rilo Sánchez, Student of the Master´s Degree in Smart Industry at ICAI, Comillas Pontifical

University,25 Alberto Aguilera street, Madrid, Spain, santiago.rilo@alu.comillas.edu)

T

 2

such as edges from the input image. Several features

can be applied simultaneously [2].

○ Pooling layer: the result of a convolutional layer is an

activation map. The objective of pooling layer is to

provide a non-linear downsampling for those activation

maps.

○ Flattened Layer: the purpose of this part of the network

is to condense the information into a one-dimensional

array to pass it to the Fully Connected Layer.

○ Fully Connected Layer: It receives the flattened image

as a column vector. This flattened output is fed to a

feed-forward neural network. Over the training process

this part of the network learns to distinguish between
dominating and low-level features.

C. Recurrent Neural Networks

Recurrent neural networks can send information over time-

steps. Recurrent neural networks can store information of

previous steps to modify its behaviour in the future.
They are usually referred as systems with memory. This is

due to the way they compute their output, using not only the

inputs of each sample in isolation, but also some internal

variables that are influenced by the values of the inputs of

previous timesteps.

In order to visualize a RNN it is good practice to first observe

the perpendicular vision of an MLP presented in Figure 2,

comparing it with the “flattened” version shown below in Figure

4. In the last example, we can imagine one of the two

perpendicular directions as normal to our vision plain. The loops

represent the recurrent connections.

Figure 2: Flattened diagram of recurrent neural network

Recurrent neural networks commonly use backpropagation

through time for the training process. Backpropagation through

time is fundamentally the same idea as standard

backpropagation, a chain rule is applied to calculate the

derivatives based on the connection structure of the network.

However, the loss is calculated in a forward motion before

calculating the gradient.

There are several variants that differ on their cell structure:

Figure 3: Inner cell structure of vanilla recurrent networks

 1) Vanilla Recurrent Neural Networks

The simple RNN cell is a basic model in which there is a

multiplication of the input by the previous output.

Vanilla RNNs are a prime example of a model affected by

the two most prominent problems related to the training phase

of recurrent neural networks.

1. Vanishing gradients: The vanishing gradient problem

takes place when the derivatives are smaller than one, and

a as a result the update speed of the weights turns very

slow. This problem might grow in each iteration,

producing an almost zero gradient and preventing the

model to train correctly.

2. Exploding gradients: due to the chain calculations, if

several partial derivatives turn out to be higher than one,

the first weights of the network will have a large gradient

which will modify greatly the weights value. It could
make the computer crash if the values are greater than the

maximum the datatype supports in that memory spot.

Figure 4: Inner cell structure of Long-Short Term Memory Cells

 2) Long-Short Term Memory Cells

The LSTM cell has what is called a cell state. This is usually

referred as the memory of the cell and it passes across the cell
(represented as the top way). It allows information from earlier

timesteps to affect the output, reducing the effect of the short-

term memory. It also has a hidden state that comes from previous

timesteps and that is represented with the letter h in the diagram.

As the cell state goes through the cell, information is added or

removed from it by the gates.

The gates are different neural networks that decide which

information is allowed on the cell state. LSTM cells have a

forget gate (first equation), an input gate (second and third

equations) and an output gate (fifth equation). The forget gate

decides whether if information from the hidden state and from

the previous gate should be kept or thrown away. The input gate
decides how relevant information from the current step is, it will

transform it into a number between 0 and 1 (sigmoid) and

multiply it for a number between -1 and 1 to regulate it (tanh in

this case). The output gate decides what the next hidden state

should be. The hidden state is also used for predictions. It uses

information from the previous hidden state, the input and the cell

state.

Figure 5: Inner cell structure of Gated Recurrent Units

 3) Gated Recurrent Units

They were a posterior development to the LSTM. It intended

to be similarly powerful but lighter than LSTM cells. It is

considered a valid alternative to LSTMs as it is more powerful

than vanilla RNNs and it is comparatively less costly to train.

The GRU cell has no cell state, and the gates directly modify the

hidden state and use it to pass information. GRU cells have two
gates: the reset gate (second equation) and the update gate (first

 3

equation). The update gate works in a similar way as the input

gate in an LSTM. It decides what information to keep or discard.

The reset gate decides how much past information to forget.

The more complex the individual cell becomes, the more

matrixes are involved in solving its equations and the heavier the

computational needs become. Vanilla RNNs are simple but they

struggle with passing information after a few timesteps due to

variability in the gradients. Both GRU and LSTM are widely

used nowadays. GRU is significantly lighter to compute and

performs better in some small size datasets [3]. LSTM networks
need to train numerous parameters, but they are robust.

 4) Bi-directional RNNs and Bi-directional LSTMs

Bi-directional RNN structures are models in which the same

input is introduced in order and in reverse to different first layers

of the neural network.

In a Bidirectional LSTM the building blocks of the network

are LSTM memory cells. Deep BLSTM networks are obtained

by stacking layers in between the input and the output.

InBRNN, backpropagation through time must be computed

separately on both the forward andthe backward networks.

Figure 6: Simple bi-directional RNN network [4]

 5) Hopfield Networks

 Defined as a “loopy binary network with symmetric

connections” [4]. These networks are made up by nodes and
connections between the nodes. Each node is updated by a

calculation that involves the value of the node (typically 1 or -1)

and the values of the connections to the surrounding nodes

multiplied by the values of the surrounded nodes. If the result is

contrary to the sign of the node value (threshold), the value of

that node is flipped (now it has the opposite value). The energy

of the network is a property of Hopfield Networks that can be

calculated taking into consideration all nodes and all

connections [5].

Figure 7: Three neuron Hopfield Network [5]

 6) Boltzmann Machine

A Boltzmann Machine is a Hopfield Network that has N + K

neurons, where N are the visible neurons (the ones that will store

the actual patterns of interest and are form a HN) and K are

hidden neurons.

The value of each node is not deterministic but based on a

probability distribution function. Ina Boltzmann Machine the

probability of generating a “visible” vector (the desired output)

is defined in terms of the energies or joint configurations of the

visible and hidden units.

Boltzmann machines are limited due to an extensive training

time and therefore they are only suitable for small problems [6].

To solve these issues, the alternatives are Restricted Boltzmann

machines [7], Deep Boltzmann Machines [8] and the Helmholtz

machines [9]. Restricted Boltzmann Machines have been used

in regression and forecasting applications.

 7) Deep Believe Networks

A Deep Belief Networks is a generative graphical model.
Generative means that it not only focusses on the distribution of

our output variable given our input variables, but that it can also

learn the distribution of the inputs [10].

Back-propagation is considered the standard method in

artificial neural networks to calculate the error contribution of

each neuron after a batch of data is processed. However, it

comes with its own problems and limitations and Deep Belief

Networks were a proposed solution for it. The main problems of

back-propagation are that it requires labelled data (when many

data sources are unlabelled), the learning time does not scale

well when you had multiple hidden layers and the training
process can stop in a poor local minima.

Deep Belief Networks contain many layers of hidden

variables. Each layer captures high-order correlations between

the activities of hidden features in the layer immediately below,

performing a de facto feature extraction. The superior two

layers of DBNs form a restricted Boltzmann Machine. The

lower layers form a directed sigmoid belief network [11].

Figure 8: Representation of Deep Belief network

 8) Deep Auto-encoders

An autoencoder is a type of neural network designed to learn

data codings in an unsupervised manner. The input is the same

as the output. Autoencoders are able to compress the input into

a lower dimensional code and then reconstruct the output from

this representation [12].

An autoencoder consists of three different parts, an encoder,

a code and a decoder. The encoder processes the inputs and

produces the code, while the decoder uses the code to

reconstruct the input. In order for an autoencoder to run we need
a loss function compering the output with the target.

Autoencoders are trained using back-propagation.

Figure 9: Diagram of an auto-encoder [13]

 4

D. Activation functions

 Activation functions play an essential role in an artificial neural

network. They are the mathematical equivalent of the electrical

potential that builds up in biological neurons which then fire
when a given threshold is reached. Its job is determining the

magnitude of the output after receiving the inputs of the neurons

multiplied by the weights as an argument (potentially internal

variables too, as in recurrent neural networks).

The main activation functions used in the case study are:

 1) Rectified Linear Unit

The rectified linear unit is one of the simplest non-linear

functions. It returns zero as an output if the input value is below

zero. It returns the input when the input is above zero [14]. It is

computationally lightweight, and it is very extended for deep

learning applications, especially when applied to the hidden
layers.

 2) Exponential Linear Unit

It is very similar to the ReLU function, but it avoids the zero

values when the inputs are negative.

𝑅(𝑧) = {
 𝑧 𝑧 > 0

∝∗ (𝑒𝑧 − 1) 𝑧 ≤ 0

 3) Scaled Exponential Linear Unit
Evolves on the idea of the ELU function, including an offset

with an extra parameter.

𝑅(𝑧) = 𝛾 {
 𝑧 𝑧 > 0

∝∗ (𝑒𝑧 − 1) 𝑧 ≤ 0

Figure 10: Visual representation of ReLU, ELU and SELU

E. Optimization Algorithms

Optimization involving neural networks means non-convex

optimizations. In order to tackle this problem, there are two main

approaches, the first order optimization algorithms and the

second order optimization algorithms. First order optimization

algorithms minimize a loss function using the values of the

gradient with respect to the parameters. Second order

algorithms compute the second order derivative to minimize the

loss function.

The main optimization algorithms present in the use case will

be highlighted:

 1) Gradient Descent

It is the most common technique and the foundation to the

ones developed in this section. It uses the gradient of the cost

function in order to update the parameter and obtain a new

configuration that leads to a reduced loss [15].

θ = θ − η ⋅ ∇ ⋅ 𝐽(θ)

 2) Momentum

Momentum is an added term to the optimization equation. It

attempts to replicate the concept of momentum in physics, as an

object slides down a slope its velocity increases and it becomes

harder for it to change directions [15]. It results in faster and

more consistent optimization with less oscillations.

 3) Adam

It stands for adaptive moment estimation. It is one of the most

popular optimization algorithms nowadays [16]. It is a

combination of standard Momentum with another algorithm
called RMSprop. Adam computes adaptative learning rates for

each parameter. It calculates an exponential decaying average

for past squared gradients, as well as an exponential decaying

average of past gradients.

Estimate first momentum:

𝑣𝑖 = ρ1 ⋅ 𝑣𝑖 + (1 − ρ1) ⋅ 𝑔𝑖

Estimate second momentum:

𝑟𝑖 = ρ2 ⋅ 𝑣𝑖 + (1 − ρ2) ⋅ 𝑔𝑖
2

Update parameters:

θ𝑖 = θ𝑖 −
ε

δ + √𝑟𝑖

⋅ 𝑣𝑖

4) Nadam

It was proposed to improve the Adam algorithm. It is a

combination of Nesterov momentum and Adam.

The only significant change is that the momentum is

computed using interim parameters, instead of current

parameters.

Estimate first momentum:

𝑣𝑖+1 = ρ1 ⋅ 𝑣𝑖 + (1 − ρ1) ⋅ 𝑔𝑁𝐴𝐺

Estimate second momentum:

𝑟𝑖 = ρ2 ⋅ 𝑣𝑖 + (1 − ρ2) ⋅ 𝑔𝑁𝐴𝐺
2

Update parameters:

θ𝑖+1 = θ𝑖 −
ε

δ + √𝑟𝑖

⋅ 𝑣𝑖+1

F. Loss functions

A loss function (or cost function) is a measure of how the

neural network performs with respect to the ideal behaviour

given the application. Therefore, it is dependent on the end

use and the output of the network. It can be a function of the

output, the input, the weights and biases.

The loss functions utilized for the use cases are exposed

below:

 1) Mean squared error

Also known as maximum likelihood or sum squared error.
Common in regression and forecasting problems, it has the issue

that individual extreme values can significantly taint the

resulting value.

𝐶𝐶𝐸(𝑊, 𝐵, 𝑆𝑟 , 𝐸𝑟) =
1

𝑛
∑(𝑎𝑗

𝐿 − 𝐸𝑗
𝑟)

2

𝑗

 2) Mean Absolute Error

This measure of accuracy is frequently found in forecasting
and regression problems. It measures the average magnitude of

the errors in a set of predictions, without considering their

direction.

𝐶𝐶𝐸(𝑊, 𝐵, 𝑆𝑟 , 𝐸𝑟) =
1

𝑛
∑|𝑎𝑗

𝐿 − 𝐸𝑗
𝑟|

𝑗

 5

III. CASE STUDY

A. Problem Statement

The dataset to be analyzed comes from a machine learning

contest and it contains recorded values of wind power generation

with 90 different input variables. The available explanatory

variables include wind speed, wind direction and temperatures

in a given area. Overall, this problem accounts with over 35,000

samples.

Figure 11: Different types of inputs in the forecasting problem

In Figure 12 the three different types of input variable are

visible. In the top chart the temperatures are displayed in

degrees Celsius. In the second chart the display shows the

aggregate of the wind direction variables. This can oscillate

from -180º to 180º. In the last graph the wind speed variables are

shown and how they evolve through time.

As a way to test the value added with the trained models, they
are compared with two benchmarking algorithms.

The first benchmark (from now one just benchmark) is a

simple one-day forecasting window using the value of the

previous datapoint. It is a common proxy used in several

industries such as the financial services and it is an easy way to

set a target for any forecasting model.

𝑦𝑝𝑟𝑒𝑑[𝑡] = 𝑦[𝑡 − 1]

The one-timestep lag error with outliers is shown in Table 4.
The one-timestep lag error without outliers in shown in Table 6.

The second benchmark model (from now on MLP) is a

simpler neural network, a multilayer perceptron. One of the

objectives of the project is to show how this more complex

models contribute to a better explanation of a time series

forecasting problem. The parameter for batch size was selected

at 50 and the number of iterations was initially set to 30. This

are common initial values in similar applications. The MLP will

change the structure in every experiment. In the first ones it will

have the same structure as the GRU and MLP, layer and neuron

wise.
The parameter for batch size was selected at 50 and the

number of iterations was initially set to 30. This are common

initial values in similar applications.

The training-validation split is 80% training, 20% validation.

The validation set corresponds with the last part of the dataset in

order, given the sequential nature of the problem.

The error measures showed in every single one of the

following experiments are the errors of the validation dataset, as

it shows if the models are capable of generalizing and correctly

leverage the relationships between outputs and inputs. The

optimal model would be the one with lowest validation error.

B. LSTM and GRU networks comparison

The cell state present in the LSTM algorithm is a powerful

feature that allows it to control the information flow from past

timesteps to influence the output. However, the GRU was
created under the believe that a simpler algorithm could not only

improve the running time, but also the performance scores of the

LSTMs.

 1) First LSTM-GRU Test

The first experiment was carried out using a random neural

network architecture with 3 layers and 20 neurons per layer for

each case. The epochs were set to 20 while the batch size was

fixed at 50. These values are common initial values and will be

changed in the optimized models.

The rationale behind the experiment was to check the

behaviour of both algorithms with the same structure and testing
out common alternatives of activation functions and

optimization functions. Tanh, maxout and sigmoid were used to.

Table 1: Results of the first test

The average validation MSE value in Table 1 refers to the

MSE score achieved by the different algorithms average over

the five simulations carried out.

The main conclusion of this initial test is that the SELU

activation function is a promising rival for the ReLU,

outperforming it in several cases. At this level of complexity, the

GRU algorithm outperformed the LSTM algorithm in 3 out of 4

cases. No definitive conclusions are driven from the comparison

between the Adam and Nadam optimization algorithms.

 2) Second LSTM-GRU Test
As learned in the previous section, the activation functions do

impact in a notable way the performance of the algorithm.

Therefore, it was decided to keep the SELU and the ReLU

options and to include the ELU as an alternative as well.

Given that Adam is simpler and more common in the

literature than Nadam, and that there was no significant

difference in behaviour found in the first LSTM-GRU test, the

Adam algorithm was selected as the only choice for the second

LSTM-GRU test.

In this case, the number of simulations was 30 to make the

results more reliable with a larger sample. This way there is a

higher statistical certainty of the veracity of the results, as the
results are an aggregate and not just a single data point. All the

networks had 3 layers and 20 neurons, as in the previous

experiment. Epochs where kept to 20 and batch size to 50.

Table 2: Results of the second test

 6

The results of this test indicate that, at this level of complexity

the GRU algorithm is more powerful than the LSTM algorithm.

The ReLU activation function turned out to be better than the

SELU, however, the simpler ELU was the best activation

function referring to its average MSE validation values.

 3) Optimized algorithms and analysis with outliers

In order to compare the best performing versions of the MLP

benchmark, the GRU and the LSTM, a hyperparameter

optimizator was used. In this case, it is a Bayesian optimizator,

which creates a statistical model that evaluates the predictors as
a black box. By updating the believes after each tested point, via

multiple iterations, it trains the model in each iteration with the

hyperparameter configuration which should have the lowest

error predicted by the statistical model [17].

Using the Bayesian enables to find optimized solutions faster

than by manually fixing several parameters. The tuned

hyperparameters in this experiment were the model, activation

function, number of layers, neurons per layer, learning rate and

optimization algorithm. The optimization process used 200

iterations in each case.

Table 3: Hyperparameters values for the models with outliers

Table 4: Results of prediction models with outliers

The interesting side of this experiment lays in observing how

the models behave when facing an outlier. Under these

circumstances some models have learned how to avoid

individual outliers. This is the case for the Optimized GRU

(hyperparameters shown in Table 3, results shown in Table 4)

and it can be observed in Figure 13.

Figure 12: Optimized GRU avoiding an outlier

When analyzing the normalized residuals of the fitted

optimized LSTM and GRU, it can be observed how there are

multiple outliers not avoided in the validation set.

Figure 13: Normalized residuals of opt. LSTM and opt. GRU

 4) Optimized algorithms and analysis without outliers

For the second experiment in this series, the power output

function was cleaned to make sure no outliers were passed to

the algorithms.

The timeseries was corrected both in the training and

validation datasets. The number of outliers located in the

validation dataset far exceeds the ones found in the training

dataset. Despite being just 20% of the data, it contained 13

outliers versus 4 outliers found in the rest of the set.

The Bayesian algorithm was used again for hyperparameter
optimization purposes with 200 iterations in each case.

Table 5: Hyperparameters values for models without outliers

Table 6:Results of prediction models without outliers

Several relevant observations can be made from the tables

above. On one hand, none of the optimized models choose the

ReLU option. On the other hand, the GRU model is deeper than

the rest, using 4 layers. It is also the best performer and it has a

particularly small learning rate.

Figure 14: fitted models, output and benchmarks

In Figure 14 we observe a sample of the fitted models in the

same region that used to host an outlier (See Figure 12). The

behaviour of the models has improved without the outliers, it

seems like interpolate the outliers was the right thing to do to

improve the predictions.

Figure 15:Normalized residuals without outliers

In Figure 15, we can see the contrast when the outliers were
removed (See Figure 13). Regarding the residuals, they do not

follow a normal distribution (See Figure 16). This implies that

the model is not explaining all the error possible, as the result is

not a white noise.

 7

Figure 16:Q-Q plot of the optimized GRU

Despite not following a normal distribution, the residuals of

the optimized GRU model are promising since it beats the MSE
score of the one lag benchmark by a 22.3% and the MSE score

of the MLP by a 27.4%.

 Furthermore, the partial and total autocorrelation plots show

the optimized GRU can explain significant information from

previous lags, especially when compared with the closest

algorithm, the LSTM. (Figures 18 and 19).

Figure 17: LSTM partial and total autocorrelation plots

Figure 18: GRU partial and total autocorrelation plots

 5) Model dynamic response

After training the models and computing the errors, the next

part of the project consisted in observing the time response of

the neural network architectures when a step is simulated in the

output variable. The neural networks are capable of mimicking

dynamics, and the step experiment is a way of showing what

dynamics were learned.
As previously mentioned, the models are already trained and

the steps do not affect the training data set, but only the

validation one. The resulting validation dataset with the two

steps implemented is shown in Figure 20.

Figure 19:Validation dataset with steps implemented

In the downwards step the three models follow the one
timestep lag immediately. In this sense, they all behave the same

way. However, the LSTM model seems to have a positive offset.

The step values are 205 MW and 155 MW. The GRU model

follows the step better, and it reaches the permanent step at the

end of the plain. The MLP is not able to come back to the real

output level. Both the LSTM and the GRU overshooted when

approximating the upwards part of the step.

Figure 20:Time response of the downwards step

When analyzing the time response of the upwards step, the

starting low value is around 12 MW and then it rises to 62 MW.

In this case, the GRU model is the one showing the most
overshoot. Again, the LSTM model is the slowest in reacting

and it is the one with the highest error in the first timestamps. It

is important to notice how none of the predictors stabilize in the

high value of the upwards step. The reason behind this seems to

be that the inputs are clearly indicating that the output should be

significantly smaller. It also shows that the predictors rely on the

one lag benchmark for big changes, but this influence wears

down as the timesteps pass.

Figure 21:Time response

C. Convolutional neural network predictor

In the final experiment of the project, the one-dimensional

convolutional neural network (CNN from now onwards) will be

explored. The main objective is to observe differences in the

predictions compared with the most successful recurrent neural

network. In this model the output is modelled using pattern

recognition and extraction, so an improvement over the

benchmark is expected beforehand.

The way of approaching the training of the CNN was to run a

Bayesian hyperparameter optimizator in two steps. The first one

with 200 iterations and a wide hyperparameter space so the

algorithm could explore different and diverse solutions.

After obtaining the solution, a second optimization process
was launched with 50 iterations and with the space of the hyper-

parameters more restricted around the values that rose in the first

process. It is very relevant to find the optimized function this

way, given that the CNN has a larger number of hyper-

parameters, including activation function, kernel size, pool size,

dropout, neuron layers, neurons per layer, number of filter

layers, filters per layer and others.

Figure 22: Hyperparameters values for CNNs

 8

Table 7: Results of CNN, benchmark and GRU

Figure 23: fitted models, output and benchmark

In Figure 24 several observations can be made. The GRU and

the CNN model alternate between a close follow up of the output

and a follow up of the one timestep lag. It is only when having

a look at the results in Table 7 that the best neural network is

shown; in this case the GRU holds the first position in both

metrics.

For this experiment, the results did not follow a normal

distribution and the normalized residuals were very similar to

the ones of the GRU in Figure 16, reason why those figures are

not attached.

Figure 24: CNN partial and total autocorrelation plots

With respect to the autocorrelation plots, the CNN predictor

obtained a good result, eliminating many significant lags.

However, the GRU predictor still seems to better capture the

influence of lag and inputs to reconstruct the output.

IV. CONCLUSIONS

 1) Key takeaways

After carrying out an in-depth analysis of the multiple

experiments in the project, several conclusions are drawn:

Recurrent neural networks are a powerful tool to address

timeseries forecasting problems. Their internal memory captures

information from past timesteps and allowed them to beat both

benchmarks, the one-day window and the MLP. The ability to

better interpret and replicate the dynamics of the output results

in better predictions. A prove that the models replicate the

dynamic response of the outputs is the fact that they do not

follow the permanent value of an arbitrary step in the validation
dataset. Better dynamics is not the only quality in favour of

RNNs, they can also learn how to avoid outliers; however, it is

not reliable as not all the outliers are avoided (some are just not

detected). This behaviour was observed the GRU algorithm.

When talking about RNN alternatives, the LSTM is usually

the first one mentioned. However, in this project the GRU

algorithm outperformed to LSTM algorithm almost at all times.

Alternatively from RNNs, the optimized CNN proved to be a

lightweight model that was trained in under 10 seconds each

iteration. It is the model with the second most accurate result and

with the fastest training time.

On the activation functions side, the ReLU was surpassed by

modified versions, such as the ELU activation function. In the

first experiment the ReLU activation function was outperformed

by SELU. In the second ELU outperformed ReLU in all cases.

The ReLU activation function was never the chose none for any

Bayesian optimization except for the CNN.

 2) Recommendations for forecasting problems

The GRU model should be the first one used for a timeseries
forecasting problem given the good results. It provides the most

accurate results with smaller datasets and its training is lighter

than more complex models, like the LSTM.

Alternatives to ReLU should always be tested. ReLU is only

recommended for very complex networks or CNNs.

Try convolutional neural networks when dealing with

forecasting problems and very large datasets. They deliver am

attractive results vs training time trade-off.

Have a look at partial and total autocorrelation plots when

choosing between different neural networks. Apparently similar

looking models may have quite different ACF and PACF plots.

REFERENCES

[1] J. Loenel, Multilayer Perceptron - Jorge Leonel - Medium, 2018. [Online].

Available: https://medium.com/@jorgesleonel/multilayer-perceptron-

6c5db6a8dfa3 (visited on 04/05/2020).

[2] M. Stewart, Intermediate Topics in Neural Networks - Towards Data Science,

Jun. 2019. [Online]. Available:

https://towardsdatascience.com/comprehensive-introduction-to-neural-

network-architecture-c08c6d8e5d98 (visited on 04/05/2020).

[3] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling”, arXiv:1412.3555 [cs].

[4] B. Raj,11-785 Deep Learning, 2019. [Online]. Available:

https://www.cs.cmu.edu/~bhiksha / courses / deeplearning / Spring . 2019 /

archive - f19 / www - bak11 - 22 - 2019/ (visited on 04/05/2020).

[5] S. Dennis, The Hopfield Network: Descent on an Energy Surface, 1997.

[6] J. A. Hertz, Introduction To The Theory Of Neural Computation, Mar. 2018.

[7] A. Sayantini, Restricted Boltzmann Machine Tutorial | Deep Learning

Concepts, en-US, Library Catalog: www.edureka.co Section: Artificial

Intelligence, Nov. 2018. [Online]. Available:

https://www.edureka.co/blog/restricted-boltzmann-machinetutorial/ (visited

on04/05/2020).

[8] R. Khandelwal, Deep learning — Deep Boltzmann Machine (DBM), en,

Library Catalog: medium.com, Dec. 2018. [Online]. Available: del are

promising sincehttps://medium.com/datadriveninvestor/deep-learning-deep-

boltzmann-machine-dbm-e3253bb95d0f (visited on 04/05/2020).

[9] K. G. Kirby, “A Tutorial on Helmholtz Machines”, en, p. 26, 2006.

[10] B. Póczos, Advanced Introduction to Machine Learning, CMU-10715, Sep.

2017. [Online]. Available:

https://www.cs.cmu.edu/~epxing/Class/10715/lectures/DeepArchitectures.pdf

[11] Z. Gan, R. Henao, D. Carlson, and L. Carin, “Learning Deep Sigmoid Belief

Networks with Data Augmentation”, en, p. 9, 2015.

[12] A. Dertat, Applied Deep Learning - Part 3: Autoencoders, en, Library Catalog:

towardsdata-science.com, Oct. 2017.

[13] Q. V. Le, “A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional

Neural Networks and Recurrent Neural Networks”, en, p. 20, 2015.

[14] M. Stewart, Intermediate Topics in Neural Networks - Towards Data Science,

Jun. 2019. [Online]. Available:
https://towardsdatascience.com/comprehensive-introduction-to-neural-

network-architecture-c08c6d8e5d98 (visited on 04/05/2020).

[15] A. Singh Walia, Types of Optimization Algorithms used in Neural Networks

and Ways to Optimize Gradient Descent, Jun. 2017.

[16] A. Karpathy, A Peek at Trends in Machine Learning, en, Library Catalog:

medium.com, Apr.2017. [Online]. Available:

https://medium.com/@karpathy/a- peek- at- trends- in-machine-learning-

ab8a1085a106 (visited on 04/05/2020).

[17] Frazier. Peter I, A Tutorial on Bayesian Optimization, July 2017. [Online].

Available:

https://arxiv.org/abs/1807.02811#:~:text=Bayesian%20optimization%20is%2

0an%20approach,stochastic%20noise%20in%20function%20evaluations.

(visited on 27/08/2020).

https://medium.com/@jorgesleonel/multilayer-perceptron-6c5db6a8dfa3
https://medium.com/@jorgesleonel/multilayer-perceptron-6c5db6a8dfa3
https://towardsdatascience.com/comprehensive-introduction-to-neural-network-architecture-c08c6d8e5d98
https://towardsdatascience.com/comprehensive-introduction-to-neural-network-architecture-c08c6d8e5d98
https://www.edureka.co/blog/restricted-boltzmann-machinetutorial/
https://medium.com/datadriveninvestor/deep-learning-deep-boltzmann-machine-dbm-e3253bb95d0f
https://medium.com/datadriveninvestor/deep-learning-deep-boltzmann-machine-dbm-e3253bb95d0f
https://www.cs.cmu.edu/~epxing/Class/10715/lectures/DeepArchitectures.pdf
https://towardsdatascience.com/comprehensive-introduction-to-neural-network-architecture-c08c6d8e5d98
https://towardsdatascience.com/comprehensive-introduction-to-neural-network-architecture-c08c6d8e5d98
https://medium.com/@karpathy/a-%20peek-%20at-%20trends-%20in-machine-learning-ab8a1085a106
https://medium.com/@karpathy/a-%20peek-%20at-%20trends-%20in-machine-learning-ab8a1085a106
https://arxiv.org/abs/1807.02811#:~:text=Bayesian%20optimization%20is%20an%20approach,stochastic%20noise%20in%20function%20evaluations
https://arxiv.org/abs/1807.02811#:~:text=Bayesian%20optimization%20is%20an%20approach,stochastic%20noise%20in%20function%20evaluations

