

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Transmisión de Calor	
Código	DIM-GITI-314	
Título	<u>Grado en Ingeniería en Tecnologías Industriales por la Universidad Pontificia</u> <u>Comillas</u>	
Impartido en	Grado en Ingeniería en Tecnologías Industriales [Tercer Curso] Grado en Ingeniería en Tecnologías Industriales y Grado en Administración y Dirección de Empresas [Tercer Curso]	
Nivel	Reglada Grado Europeo	
Cuatrimestre	Semestral	
Créditos	4,5 ECTS	
Carácter	Obligatoria (Grado)	
Departamento / Área	Departamento de Ingeniería Mecánica	
Responsable	Luis Mochón Castro	

Datos del profesorado		
Profesor		
Nombre	Federico Ramírez Santa-Pau	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	framirez@icai.comillas.edu	
Profesor		
Nombre	José Rubén Pérez Domínguez	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	jrpdominguez@icai.comillas.edu	
Profesor		
Nombre	Luis Manuel Mochón Castro	
Departamento / Área	Departamento de Ingeniería Mecánica	
Despacho	Alberto Aguilera 25 [D-308]	
Correo electrónico	Imochon@icai.comillas.edu	
Teléfono	2365	
Profesor		
Nombre	Iñigo Sanz Fernández	
Departamento / Área	Departamento de Ingeniería Mecánica	

Correo electrónico	isanz@icai.comillas.edu	
Profesores de laboratorio		
Profesor		
Nombre	Juan Norverto Moriñigo	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	jnorvert@icai.comillas.edu	
Profesor		
Nombre	Jorge Sampedro Feito	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	jsampedro@icai.comillas.edu	
Profesor		
Nombre	José Luis Becerra García	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	jlbecerra@icai.comillas.edu	
Profesor		
Nombre	Leopoldo Prieto Fernández	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	lpfernandez@icai.comillas.edu	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado en Ingeniería Electromecánica, esta asignatura proporciona los principios básicos de la transmisión de calor y su aplicación a la resolución de problemas en el campo de la ingeniería.

Al finalizar el curso los alumnos dominarán el cálculo de problemas relacionados con la transmisión de calor por conducción, convección y radiación. Los conceptos aquí adquiridos sentarán las bases para el aprendizaje de asignaturas que se estudiarán en los cursos posteriores como Motores Alternativos de Combustión Interna, Turbomáquinas, y Climatización, entre otras.

Además, esta asignatura tiene un carácter mixto teórico-práctico por lo que a los componentes teóricos se les añaden los de carácter práctico, tanto la resolución de cuestiones numéricas como la realización de trabajos prácticos de laboratorio en los que se ejercitarán los conceptos estudiados.

Prerequisitos

No existen prerrequisitos que de manera formal impidan cursar la asignatura. Sin embargo, por estar inmersa en un plan de estudios sí se apoya en conceptos vistos con anterioridad en asignaturas precedentes:

- Ecuaciones Diferenciales
- Cálculo
- Termodinámica
- Mecánica de Fluidos

Competencias - Objetivos Competencias GENERALES CG01 Capacidad para el desarrollo de proyectos en el ámbito de la Ingeniería Industrial. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de **CG03** nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento **CG04** crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial. Conocimientos para la realización de mediciones, cálculos, valoraciones, tasaciones, **CG05** peritaciones, estudios, informes, planes de labores y otros trabajos análogos. **ESPECÍFICAS CEM03** Conocimientos aplicados de ingeniería térmica. Conocimientos de termodinámica aplicada y transmisión de calor. Principios básicos y su CRI01 aplicación a la resolución de problemas de ingeniería.

Resultados de Aprendizaje		
RA1	Conocer los modos básicos de transferencia de calor y las propiedades térmicas asociadas	
RA2	Conocer y comprender las diferentes implicaciones de la transferencia de calor por conducción.	
RA3	Conocer y comprender las diferentes implicaciones de la transferencia de calor por convección.	
RA4	Conocer y comprender las tipologías y métodos de cálculo de intercambiadores de calor.	
RA5	Conocer y comprender la transferencia de calor por radiación.	

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

Tema 1. Modos básicos de Transferencia de Calor

- 1.1 Ley de Fourier de la conducción.
- 1.2 Ley enfriamiento de Newton y resistencia convectiva.
- 1.3 Ley de Stefan-Boltzmann de la radiación y resistencia radiante.

Tema 2. Conducción

- 2.1 Ecuación diferencial de conducción del calor.
- 2.2 Conducción unidimensional estacionaria: paredes planas, cilíndricas, esféricas y otras, resistencia conductiva y paredes compuestas.
- 2.3 Espesor crítico de recubrimiento.
- 2.4 Resistencia de contacto.
- 2.5 Conducción unidimensional con generación interna de calor.
- 2.6 Aletas.
- 2.7 Conducción transitoria: modelo de la resistencia interna despreciable y sólido semi-infinito.

Tema 3. Radiación térmica

- 3.1. Radiación del cuerpo negro.
- 3.2. Intercambio radiante entre cuerpos negros.
- 3.3. Propiedades radiantes de los cuerpos reales.
- 3.4. Ley de Kirchoff.
- 3.5. Cuerpo gris.
- 3.6. Intercambio radiante entre cuerpos grises difusos.
- 3.7. Radiación medioambiental.

Tema 4. Convección

- 4.1. Capas límite hidrodinámica y térmica.
- 4.2. Regímenes laminar y turbulento.
- 4.3. Resolución experimental del problema convectivo: grupos adimensionales en transferencia de calor.

- 4.4. Flujo forzado: externo e interno.
- 4.5. Convección natural.
- 4.6. Convección mixta.

Tema 5. Intercambiadores de calor

- 5.1. Clasificación de los intercambiadores de calor.
- 5.2. Hipótesis y ecuaciones básicas.
- 5.3. Coeficiente global de transferencia de calor.
- 5.4. Cálculo de intercambiadores: métodos DTlm y e-NTU.
- 5.5. Análisis y diseño de intercambiadores.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

- **1.** Clase magistral y presentaciones generales: Exposición de los principales conceptos y procedimientos mediante la explicación por parte del profesor. Incluirá presentaciones dinámicas, pequeños ejemplos prácticos y la participación reglada o espontánea de los estudiantes (**26 horas**).
- **2. Resolución en clase de problemas propuestos:** Se explicarán, resolverán y analizarán problemas propuestos por el profesor y trabajados por el alumno **(10 horas).**
- **3. Prácticas de laboratorio.** Se formarán grupos de trabajo que tendrán que realizar prácticas de laboratorio regladas o diseños de laboratorio. Estas prácticas podrán requerir la realización de un trabajo previo de preparación y finalizar con la redacción de un informe o la inclusión de las distintas experiencias en un cuaderno de laboratorio **(6 horas)**.
- **4. Evaluación.** A la mitad aproximada del semestre se realizará un examen intersemestral de 90 minutos de duración, en calendario fijado por la Jefatura de Estudios, de los temas 1 y 2. Al finalizar el tema 3 se realizará, en una de las sesiones de clase (50 minutos), una prueba de seguimiento. Al finalizar el curso se realizará un examen final de la asignatura de 3 horas de duración, en calendario fijado por la Jefatura de Estudios **(1 hora en horario ordinario + 4,5 horas en horario específico).**
- **5. Tutorías.** Se realizarán en grupo o individualmente para resolver las dudas que se les planteen a los alumnos después de haber trabajado los distintos temas.

Metodología No presencial: Actividades

El objetivo principal del trabajo no presencial es llegar a entender y comprender los conceptos teóricos de la asignatura, así como ser capaz de poner en práctica estos conocimientos para resolver los diferentes tipos de problemas.

- 1. Estudio de los conceptos teóricos. El alumno debe realizar un trabajo personal posterior a las clases teóricas para comprender e interiorizar los conocimientos aportados en la materia. Para ello se empleará para el material presentado en transparencias y apuntes (material complementario) de la asignatura (25 horas).
- **2. Trabajo autónomo sobre los problemas.** El alumno analizará la resolución de los problemas llevada a cabo en clase principalmente por el profesor, para pasar luego a enfrentarse a los problemas propuestos y no resueltos en clase, de los que dispondrá de la solución (no resolución) a priori. Las dudas se podrán consultar en las sesiones de tutoría. Esta actividad también se aplicará sobre exámenes de cursos anteriores, resueltos y disponibles en Moodle **(40 horas).**
- **3. Preparación de exámenes.** Los alumnos prepararán los exámenes a partir del material facilitado y los conocimientos adquiridos. Podrán acudir a las sesiones de tutorías para resolver dudas **(30 horas).**

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES			
Clase magistral y presentaciones generales	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio	
30.00	9.00	6.00	
HORAS NO PRESENCIALES			
Prácticas de laboratorio	Resolución de problemas de carácter práctico o aplicado	Estudio de conceptos teóricos fuera del horario de clase por parte del alumno	
6.00	54.00	30.00	
		CRÉDITOS ECTS: 4,5 (135,00 horas)	

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso
	Comprensión de conceptos.	
Pruebas intermedias	Aplicación de conceptos a la resolución	
Examen Final	de problemas prácticos.	75

	Análisis e interpretación de los resultados obtenidos en la resolución de problemas	
Prácticas de laboratorio	Compresión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos y a la realización de prácticas en el laboratorio. Análisis e interpretación de los resultados obtenidos en las prácticas de laboratorio. Capacidad de trabajo en grupo. Presentación y comunicación escrita.	25

Calificaciones

Convocatoria ordinaria:

- Exámenes (teoría y problemas):
 - 25% Exámenes parciales
 - 50% Examen final
- Evaluación del rendimiento:
 - 5% Participación activa en la preparación de las prácticas de laboratorio
 - 20% Informes o cuadernos de laboratorio

Convocatoria extraordinaria: el alumno se examinará de la parte o partes suspensas, conservándose la calificación de la parte aprobada:

- 25% Evaluación de rendimiento (durante el curso)
- 75% Examen (de la convocatoria extraordinaria)

En ambas convocatorias, la media ponderada se efectuará sólo cuando tanto en los exámenes como en la evaluación de rendimiento, la nota sea igual o superior a 5.

La inasistencia a más del 15% de las horas presenciales, puede tener como consecuencia la imposibilidad de presentarse a la convocatoria ordinaria.

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Examen intersemestral	Tras los temas 1 y 2	Según planificación Jefatura Estudios

Examen de radiación	Tras el tema 3	

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

Documentación Moodle.

Frank P. Incropera; David P. DeWitt. Fundamentos de Transferencia de Calor. Ed. Pearson.

Yunus A. Çengel; Afshin J. Ghajar. Transferencia de calor y masa. Mc Graw Hill.

Heat Transfer, Gregory Nellis, Sanford Klein. Cambridge University Press.

Bibliografía Complementaria

Incluir web-grafia

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

 $\underline{https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792}$