
Vol.:(0123456789)

Energy Systems
https://doi.org/10.1007/s12667-020-00404-w

1 3

ORIGINAL PAPER

A two‑stage stochastic MILP model for generation 
and transmission expansion planning with high shares 
of renewables

Giovanni Micheli, et al. [full author details at the end of the article]

Received: 31 December 2019 / Accepted: 2 September 2020 
© The Author(s) 2020

Abstract
This paper is concerned with the generation and transmission expansion planning of 
large-scale energy systems with high penetration of renewable energy sources. Since 
expansion plans are usually provided for a long-term planning horizon, the system 
conditions are generally uncertain at the time the expansion plans are decided. In 
this work, we focus on the uncertainty of thermal power plants production costs, 
because of the important role they play in the generation and transmission expansion 
planning by affecting the merit order of thermal plants and the economic viability of 
renewable generation. To deal with this long-term uncertainty, we consider different 
scenarios and we define capacity expansion decisions using a two-stage stochastic 
programming model that aims at minimizing the sum of investment, decommission-
ing and fixed costs and the expected value of operational costs. To be computation-
ally tractable most of the existing expansion planning models employ a low level 
of temporal and technical detail. However, this approach is no more an appropriate 
approximation for power systems analysis, since it does not allow to accurately study 
all the challenges related to integrating high shares of intermittent energy sources, 
underestimating the need for flexible resources and the expected costs. To provide 
more accurate expansion plans for power systems with large penetration of renewa-
bles, in our analysis, we consider a high level of temporal detail and we include 
unit commitment constraints on a plant-by-plant level into the expansion planning 
framework. To maintain the problem computationally tractable, we use representa-
tive days and we implement a multi-cut Benders decomposition algorithm, decom-
posing the original problem both by year and by scenario. Results obtained with our 
methodology in the Italian energy system under a 21-year planning horizon show 
how the proposed model can offer professional guidance and support in strategic 
decisions to the different actors involved in electricity transmission and generation.

Keywords Generation and transmission expansion planning · Two-stage stochastic 
programming · Multi-cut Benders decomposition · Large-scale power systems · Unit 
commitment · Representative days
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1 Introduction

Generation and transmission expansion planning models aim at determining the 
least-cost investment schedule for constructing new power generation capacity, 
building new electrical interconnections and decommissioning thermal power 
plants. The definition of joint expansion plans is one of the most relevant prob-
lems in the field of power systems. Indeed, this kind of analysis provides a lot 
of useful information, allowing for instance to study the impact of some policy 
decisions and the possibility to achieve targets such as decarbonisation, integra-
tion of large shares of renewables or reduction of  CO2 emissions. Many differ-
ent agents are interested in the joint generation and transmission expansion plan-
ning. Indeed, in all countries where the unbundling of the energy sector is still 
ongoing, this problem is addressed by vertically integrated monopoly utilities to 
establish a strategic master plan, to secure long-term supply, promoting afford-
able and reliable electricity and reducing power outages. Instead, in an unbundled 
energy environment, expansion planning analysis is performed by transmission 
system operators (e.g. TSO) for what is called anticipative planning, in which 
those planners determine the expansion plan that is optimal for the energy system 
as a whole to identify the best network reinforcement and to set incentives that 
could induce generation companies to invest in a socially efficient manner [1–3].

Since generation and transmission expansion plans are usually provided for a 
long-term planning horizon, the system conditions are generally uncertain at the 
time the expansion plans are decided. Different sources of uncertainty may affect 
planning decisions and must be considered in the decision-making process. These 
uncertainties can be classified into short-term and long-term uncertainties. Spe-
cifically, short-term uncertainties include the stochastic production from intermit-
tent renewable energy sources and the demand variability throughout the hours 
of the day and the days of the week. These uncertainties are also known as ran-
dom uncertainties, since they have an underlying probability distribution, which 
can be approximated from historical data. Instead, long-term uncertainty refers 
to long-term dynamics, including future values of investment costs, fossil fuel 
prices and policy constraints such as carbon prices. These uncertainties are also 
known as non-random uncertainties, since they are not usually probability-based: 
their probabilities are generally obtained based on expert judgement.

To accurately represent the uncertainty framework in the planning decisions, 
several approaches have been developed in the literature, including a fuzzy 
decision approach, chance-constrained models, Monte Carlo simulation, robust 
optimization, adaptation programming, and stochastic programming. In par-
ticular, given the relevant penetration of intermittent renewable power sources, 
many recent studies focus on the influence of these uncertainties on generation 
and transmission planning. For instance, in [4] an algorithm is developed for 
multi-objective optimization transmission expansion planning considering wind 
farm generation and combining Monte Carlo simulation and Point Estimation 
Method to investigate the effects of network uncertainties. Reference [5] pro-
poses a chance-constrained formulation to tackle the uncertainties of load and 
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wind turbine generators in transmission network expansion planning. Load and 
wind power generation are considered the main sources of uncertainty also in [6], 
where authors propose an efficient approach for probabilistic transmission expan-
sion planning, dealt with by a Benders decomposition algorithm combined with a 
Monte Carlo method.

Other studies deal with long-term uncertainties. For instance, authors in [7] 
address the problem of transmission expansion planning under uncertainty in an 
electric energy system, considering future demand growth and the availability of 
generation facilities as main uncertainty sources. A robust optimization model is 
used to derive the investment decisions that minimize the system’s total costs by 
anticipating the worst-case realization of the uncertain parameters within an uncer-
tainty set. Instead, reference [8] proposes a robust generation and transmission 
expansion planning model, including flexible AC transmission systems (FACTS) 
devices and considering the uncertainty related to the annual net load duration 
curve. A robust optimization approach is also adopted in [9, 10] to address gen-
eration expansion and transmission expansion, respectively. Specifically, reference 
[9] introduces a multiyear robust methodology for expansion planning, modelling 
the uncertainties associated with forecasted electricity load demand, as well as esti-
mated investment and operation costs, through distribution-free bounded intervals 
producing polyhedral uncertainty sets. In [10] two optimization criteria for the trans-
mission expansion planning problem under the robust optimization paradigm are 
studied, where maximum cost and maximum regret of the expansion plan overall 
uncertainties are minimized, respectively.

Adaptation programming represents another method to cope with uncertainty. As 
described in [11], adaptation programming designs a flexible system by minimiz-
ing the sum of investment and operational cost and system future adaptation cost 
to the conditions of other identified scenarios. Reference [12] further explores the 
adaptation programming method by applying this kind of model to a small system 
over a 40-years planning horizon, considering wind and solar investment cost, car-
bon taxes, demand and peak demand growth, fuel prices and transmission costs as 
uncertainty sources.

Among all the techniques developed to include uncertainty in the expansion plan-
ning framework, the most widely used is stochastic programming [13], a methodol-
ogy introduced in the 1950s that uses a set of scenarios to model the future realiza-
tion of the uncertain parameters in the considered planning horizon. In recent years, 
several studies in the field of stochastic programming have been carried out, leading 
to the development of two classes of methods: two-stage and multi-stage models. In 
a typical two-stage stochastic model, the investment decisions represent first-stage 
decisions, which are made before any uncertainty is revealed. Operational decisions 
are instead second-stage decisions, made after the realization of parameter values. 
For instance, in [14] a two-stage stochastic programming model for joint generation 
and transmission expansion is presented, considering as random events the demand, 
the equivalent availability of the generating plants and the transmission capac-
ity factor of the transmission lines. Reference [15] presents a stochastic two-stage 
optimization model to evaluate interregional grid reinforcements in Great Britain. 
The same approach is also used in [16] to determine the type and quantity of power 
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plants to be constructed in each year of an extended planning horizon, considering 
the uncertainty regarding future demand and fuel prices. Authors in [17] propose a 
two-stage stochastic generation expansion model, where the long-term wind power 
uncertainty is represented by a set of scenarios.

The two-stage approach can be extended to a multi-stage method, constructing 
models that are both more flexible and complex. As explained in [18], in multi-stage 
approaches expansion decisions are made at different stages, i.e., different points in 
time of the planning horizon. The expansion decisions at each stage depend on the 
scenario realization of the previous periods, but they do not depend on the future 
scenario realizations. Examples of multi-stage models are represented by [19–21]. 
For instance, in [19] a multi-stage multi-scale linear stochastic model is presented 
to optimize electricity generation, storage and transmission investments over a long 
planning horizon. Both long-term uncertainties, such as investment and fuel-cost 
changes and long-run demand-growth rates, and short-term uncertainties, such as 
hour-to-hour demand and renewable-availability uncertainty, are considered in this 
analysis and the progressive hedging algorithm is applied to decompose the origi-
nal model by scenario. Reference [20] deals with wind power investments consid-
ering three major issues: the production variability and uncertainty of wind power 
facilities, the eventual future decline in wind power investment costs and the sig-
nificant financial risk involved in such investment decisions. Recognizing the previ-
ous important issues, this paper proposes a risk-constrained multi-stage stochastic 
programming model to make optimal investment decisions on wind power facili-
ties along a multi-stage horizon. Finally, in [21] authors study how uncertain future 
renewable penetration levels impact the electricity system and try to quantify effects 
for the Central European power market, by applying a multi-stage stochastic invest-
ment and dispatch model to analyse the effects on investment choices, electricity 
generation, and system costs. Although the multi-stage approach better represents 
long-term dynamics than the two-stage method, the complexity of the problem in 
multi-stage models is further increased. Finding the right balance between model-
ling accuracy and computation tractability remains an open research topic. Specifi-
cally, to limit computational costs most of the existing planning models employ a 
low level of temporal detail. However, as shown in [22], the low level of temporal 
detail can significantly affect the results, overestimating the renewable capacity and, 
thus, resulting not suited to accurately study all the challenges related to integrat-
ing high shares of intermittent energy sources. Moreover, most of the existing mod-
els for power generation and transmission expansion planning consider also a low 
level of technical detail, generally modelling thermal capacity expansion through 
continuous variables and, thus, without considering unit commitment constraints on 
a plant-by-plant level. However, as discussed in [23], this approach, although very 
common in the literature, is no more an appropriate approximation for expansion 
planning models. Indeed, due to the increasing penetration of intermittent renew-
able energy sources in power systems, the need is growing for flexible resources that 
could respond to the variability and uncertainty of stochastic generation. Ignoring 
unit commitment constraints leads to the impossibility of properly evaluating such 
flexibility and, consequently, to underestimate the required new generation capacity 
as well as the system costs.
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Table  1 reports a list of important features for expansion planning models, 
such as the modeling approach, the inclusion of investment decisions in new gen-
eration, storage and transmission facilities, the temporal detail in power system’s 
operation evaluation, the inclusion of unit commitment constraints, the long-
term policies considered in the expansion planning framework and the number of 
periods in which investment decisions can be made along the planning horizon. 
According to these characteristics, some relevant works in the literature and the 
model proposed in this paper are compared.

Specifically, to provide reliable expansion plans for large-scale energy systems 
with high shares of renewables, in this paper we propose a two-stage stochastic 
model for joint generation and transmission expansion planning, being decommis-
sioning of thermal power plants and investments in new generation, transmission 
and storage facilities first-stage variables and operating decisions second-stage 
variables. The distinct feature of the proposed model is a detailed representation 
of the short-term operation. The choice of a two-stage model rather than a multi-
stage approach is due to computational restrictions. Indeed, as can be noticed in 
Table 1, existing multi-stage models represent power systems short-term opera-
tion with a lower level of accuracy to the proposed model. For instance, no long-
term storage facilities or unit commitment constraints are included in references 
[19, 21], while the proposed model provides an accurate modeling of short-term 
dynamics by considering the unit commitment constraints on a plant-by-plant 
level to properly evaluate all the challenges related to integrating high shares of 
renewables. Moreover, to reduce the computational burden, existing multi-stage 
models consider only a limited number of periods in which investment decisions 
can be made along the planning horizon. Our approach differs from multi-stage 
models by allowing investment decisions in each year of the planning horizon.

Contributions of this paper are as follows:

• High level of temporal detail by applying a clustering analysis on different 
time series (i.e., load, wind capacity factors, and solar capacity factors) to 
identify a small number of representative days.

• High level of technical detail, including unit commitment constraints on a 
plant-by-plant level and providing an accurate representation of both short-
term and long-term storage.

• Modelling of long-term dynamics, determining the investment schedule along 
the planning horizon considering multiple investment periods and considering 
long-term policy goals and environmental targets.

• Modelling of long-term uncertainty, considering different scenarios for pro-
duction costs of thermal power plants.

• Application of Benders Decomposition, decomposing the original model both 
by year and by scenario to maintain the stochastic problem computationally 
tractable.

• Application to a real-case study related to the Italian energy system, to evalu-
ate the achievement of policy goals set by the European Commission.
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To the best of our knowledge, there are no other works with the same charac-
teristics in the literature. The remainder of the paper is organized as follows. In 
Sect. 2 we describe the clustering analysis performed to identify the representa-
tive days. The mathematical formulation of the expansion planning model as a 
two-stage stochastic mixed-integer linear programming problem is introduced in 
Sect. 3. Section 4 describes the decomposition algorithm. In Sect. 5 we present 
a real case study concerning the expansion of the Italian energy system. Finally, 
conclusions are drawn in Sect. 6.

2  Clustering analysis

To provide a better representation of the short-term operation while maintaining 
the problem computationally tractable, some energy planning models use a small 
number of representative days instead of considering every hour of the planning 
horizon. Different approaches have been proposed to identify the representative 
days. Some authors use simple heuristics, selecting the days that contain the min-
imum demand, the maximum demand or the largest daily demand spread [24]. 
Other works combine heuristic approaches with the random selection of some 
additional days [25, 26]. More advanced methods apply clustering algorithms to 
group days with similar load, wind production or solar production into clusters 
[27–29]. For each group either the cluster centroid or a specific historical day 
is then taken as the representative day. Finally, some works select representative 
days by minimizing the difference between the load duration curve and the one 
constructed by using the representative days [30, 31]. In this paper, we identify 
representative days through a hybrid approach based on the iterative applica-
tion of the k-medoids algorithm and on the selection of the most suited num-
ber of representative days to be used by considering load duration curves. We 
refer the reader to [32] for a full description of the proposed approach, hereafter 
summarized.

Specifically, this analysis aims to extract representative days from larger sets of 
days, consisting of multiple time series of electricity demand and renewables capac-
ity factors. Therefore, a very important feature to be considered in the selection pro-
cess is the correlation between different time series. In our approach, we apply the 
following procedure, designed to capture the spatial correlation between time series:

Vectors creation We consider the first year of the planning horizon and for each 
day d we define a vector Vd containing values of load, wind capacity factors and 
solar capacity factors for every zone and every hour of the day. Therefore, the 
dimension of each vector Vd equals 72 times the number of zones, while the num-
ber of vectors is equal to 365.
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Normalization Since wind and solar capacity factors are parameters in the range 
[0;1] , to properly evaluate the distance between vectors, hourly zonal load profiles 
are normalized, by subtracting the minimum load and dividing by the difference 
between maximum and minimum load.
k-medoids algorithm application The objective of the k-medoids algorithm is to 
compute k clusters to minimize the deviation between observations Vd and their rep-
resentative V∗

c
 , which it is also called quantization error or intracluster distance:

with c being the index for clusters, d the index for days and Dc the set of all days 
d within cluster c . While for k-means parameters V∗

c
 are computed as the mean of 

all the points within the cluster c , for k-medoids the representative of each cluster 
is a vector belonging to that group. As discussed in [29], since using as represent-
ative days specific historic days rather than clusters’ means usually provide better 
results, in our approach, we suggest applying k-medoids rather than k-means.
Representative days weighting In our approach, representative days are weighted 
using cluster sizes, which are the number of observations grouped within a specific 
cluster.
Selection of the number of representative days To define the best number of repre-
sentative days to be used we perform the k-medoids algorithm for increasing values 
of the parameter k (starting with k = 2 ), comparing the obtained results in terms 
of load duration curves. Specifically, for each partition, we compute for each zone 
the mean absolute percentage error (MAPE) between the original zonal load dura-
tion curve and the one obtained by using the representative days and their associated 
weights. We then compute the system average MAPE (i.e., the average between the 
MAPEs of zonal load duration curves) and we select the minimum number of rep-
resentative days that allows obtaining a system average MAPE lower than an input 
threshold.
Application of annual load growth factors Once the representative days for the first 
year of the planning horizon are determined, the representative days of the following 
years are derived by applying annual growth factors to load profiles.

The identification of representative days allows reducing computational time while 
maintaining a high level of temporal detail, but it introduces a strong limitation in stor-
age operation modelling. Indeed, as explained in [33], this approach allows providing a 
good representation of storage operation within a day, but since it does not preserve the 
chronology among representative days, any energy storage system with a cycle longer 
than 24 h cannot be modelled with the highest accuracy. To provide an accurate repre-
sentation of long-term storage, in this paper we follow the same approach described in 
[29] applying constraints that guarantee some continuity between representative days. 
These constraints, along with the other equations that allow identifying the expansion 
plans, are described in the following section.

min
�

c

�

d∈Dc

‖Vd − V∗
c
‖2
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3  Mathematical formulation

Investments in the new generation, transmission and storage facilities as well as 
decommissioning of thermal plants are defined using a mixed-integer linear pro-
gramming model. This section presents the modelling assumptions as well as the 
notation and the mathematical formulation of the optimization model.

3.1  Modelling assumptions

The mathematical model that defines investment and decommissioning deci-
sions is based on the system costs minimization formulation. Thus, adopting a 
centralized approach, the objective of the proposed model is to determine the 
expansion plan that is optimal for the whole energy system under study. Bid-
ding strategies and competition between generators are beyond the scope of this 
work. In developing countries, where the unbundling of the energy sector is 
still ongoing, the centralized approach reflects the decision making framework, 
since expansion decisions are taken by vertically integrated monopoly utilities. 
Instead, in an unbundled energy environment, generation expansion pertains to 
profit-seeking agents, while transmission expansion pertains to the transmission 
system operator, which is a welfare-focused agent. In this case, the centralized 
approach reflects the anticipative planning analysis performed by transmission 
system operators to identify the best network reinforcement and to set incentives 
that could induce generation companies to invest in a socially efficient manner.

As regards to investment decisions, in this paper we manage investments in 
new generating facilities differently. Specifically, while we use continuous vari-
ables to model wind and solar capacity expansion, investments in new thermal 
plants are managed through a set of candidate projects and binary variables 
describing whether the units are realized or not. Indeed, while it is possible 
to build wind and solar plants of any capacity, thermal units usually present a 
specified size, not allowing the modelling of thermal capacity expansion through 
continuous variables. Moreover, binary variables are needed to model some log-
ical conditions between investment decisions, such as the existence of optional, 
mandatory, mutually exclusive, associate or upgrade projects. For the same rea-
sons, binary variables model investments in new transmission lines. We intro-
duce binary variables to represent also the building of new hydropower plants, 
usually characterized by predefined sizes, while investments in batteries capac-
ity are modeled through continuous variables.

To represent the transmission network, we adopt a transportation model, 
imposing the fulfilment of nodal balance equations and transmission flow lim-
its constraints, without incorporating voltage variables and the relationship of 
real power transfers with the bus angle difference and line impedance. Finally, 
the proposed optimization model is based on a perfect knowledge of investment 
costs, while demand is supposed to be inelastic.
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3.2  Notation

To describe the two-stage mixed integer linear stochastic programming model for 
the power generation and transmission expansion problem, the following notation is 
introduced.

3.2.1  Sets

Y  Set of years
Z  Set of zones
M  Set of macro-areas
KE  Set of existing thermal power plants
KC  Set of candidate thermal power plants
K  Set of thermal power plants ( K = KE ∪KC)

Ωk
z
⊂ K  Set of thermal power plants located in zone z

KE1 ⊂ KE  Set of existing thermal power plants to be mandatorily 
decommissioned

KE2 ⊂ KE  Set of existing thermal power plants that may be optionally 
decommissioned

KC1 ⊂ KC  Set of candidate thermal power plants to be mandatorily constructed
KC2 ⊂ KC  Set of candidate thermal power plants that may be optionally 

constructed
AKj ⊂ KC  j-th group of associate candidate thermal power plants
JAK  Set of groups of associate candidate thermal power plants
MEKj ⊂ KC  j-th group of mutually exclusive candidate thermal power plants
JMEK  Set of groups of mutually exclusive candidate thermal power plants
LE  Set of existing transmission lines
LC  Set of candidate transmission lines
L  Set of transmission lines ( L = LE ∪ LC)

LC1 ⊂ LC  Set of candidate transmission lines to be mandatorily constructed
LC2 ⊂ LC  Set of candidate transmission lines that may be optionally 

constructed
ALj ⊂ LC  j-th group of associate candidate transmission lines
JAL  Set of groups of associate candidate transmission lines
MELj ⊂ LC  j-th group of mutually exclusive candidate transmission lines
JMEL  Set of groups of mutually exclusive candidate transmission lines
F   Set of fuels
Φz,f ⊂ Ωk

z
  Set of thermal power plants located in zone z using fuel f

HE  Set of existing hydropower plants
HC  Set of candidate hydropower plants
H  Set of hydropower plants ( H = HE ∪HC)
Ωh

z
⊂ H  Set of hydropower plants located in zone z

B  Set of batteries
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Ωb
z
⊂ B  Set of batteries located in zone Z

C  Set of representative days (from 1 to ncluster)
T   Set of hours (from 1 to 24 ⋅ ncluster)
Tin ⊂ T   First hours of representative days
OT   Set of all the hours in the planning horizon ( |OT| = 8760 ⋅ |Y|)
OTM ⊂ OT   Set of hours in the planning horizon multiple of parameter M
W  Set of scenarios
ma(z)  Macro-area that contains zone z
UP(k)  Upgrade project of existing thermal power plant k
r(l)  Receiving-end zone of transmission line l
s(l)  Sending-end zone of transmission line l
fuel(k)  Fuel used in thermal power plant k
year(c)  Year that contains representative day c
cl(t)  Representative day that contains hour t
yr(t)  Year that contains hour t
Mapot,t  Injective map of each hour ot to a representative hour t

3.2.2  Parameters

y0  Reference year to which all investment costs are discounted
r  Annual discount rate
cENP  Penalty for energy not provided, set to 104 €/MWh
cOG  Penalty for over-generation, set to 200 €/MWh
probw  Probability of scenario w
freqc  Weight of cluster c
DCk  Decommissioning cost of existing thermal power plant k ∈ KE

ICth
k

  Investment cost of candidate thermal power plant k ∈ KC

FCk  Annual fixed costs of thermal power plant k ∈ K

CMk,y,w  Marginal production cost of thermal power plant k in year y in scenario w
�
k
  Earliest date for construction/decommission of thermal power plant k

�k  Latest date for construction/decommission of thermal power plant k
P
k
  Minimum power output of thermal power plant k

Pk  Maximum power produced by thermal plant k
SUCk  Start-up cost of thermal power plant k
MUTk  Minimum uptime of thermal power plant k
MDTk  Minimum downtime of thermal power plant k
�k,c,w0  Initial state of thermal power plant k in cluster c in scenario w
hht  Hour of the day (from 1 to 24) related to hour t (e.g. hh�25� = 1, hh�48� = 24)

ICsol
z,y

  Investment cost of new solar power capacity in zone z in year y
solz,0  Solar power capacity installed in zone z at the beginning of the planning 

horizon
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PV
z,y

  Lower bound for solar power capacity in zone z in year y

PVz,y  Upper bound for solar power capacity in zone z in year y
ICwind

z,y
  Investment cost of new wind power capacity in zone z in year y

windz,0  Wind power capacity installed in zone z at the beginning of the planning 
horizon

W
z,y

  Lower bound for wind power capacity in zone z in year y

Wz,y  Upper bound for wind power capacity in zone z in year y
Dz,t  Load in zone z in hour t
Rz,t  Reserve requirement for zone z in hour t
�z,t  Solar power capacity factor for zone z in hour t
�z,t  Wind power capacity factor for zone z in hour t
IC

hydro

h,y
  Investment cost of candidate hydropower plant h∈ HC in year y

Cvarh  Operating cost of hydropower plant h
Eh,c0

  Initial energy content of hydropower plant h in cluster c
Fh,t  Hourly energy inflows for hydropower plant h at time t
�h  Loss coefficient for energy stored by hydropower plant h 

(
0≤ �h ≤ 1

)

�in
h

  Loss coefficient for hydro plant h pumping 
(
0 ≤ �in

h
≤ 1

)

�out
h

  Loss coefficient for hydro plant h power generation 
(
�out
h

≥ 1
)

−

E
in

h
  Upper bound on hydro plant h pumping power

−

E
out

h
  Upper bound on hydro plant h power output

EPRh  Maximum energy to power ratio (in h ) for hydropower plant h
Eh0  Energy content of hydropower plant h at the beginning of planning horizon
M  Size of the temporal window in long-term storage constraints, set to 168 h
ICbatt

b,y
  Investment cost for battery b in year b

Cvarb  Operating cost of battery b
−

CAPb  Upper bound on battery b installed capacity
Eb,c0

  Initial energy content of battery b in cluster c
�b  Loss coefficient for energy stored by battery b 

(
0≤ �b ≤ 1

)

�in
b

  Loss coefficient for battery b charge 
(
0 ≤ �in

b
≤ 1

)

�out
b

  Loss coefficient for battery b discharge 
(
�out
b

≥ 1
)

−

E
in

b
  Upper bound on battery b charge

−

E
out

b
  Upper bound on battery b discharge

EPRb  Maximum energy to power ratio (in hours) for battery b



1 3

A two-stage stochastic MILP model for generation and…

ICline
l

  Investment cost of candidate transmission line l ⊂ LC

�
l
  Earliest date for construction of candidate transmission line l

� l  Latest date for construction of candidate transmission line l
F
l
  Minimum capacity of transmission line l

Fl  Maximum capacity of transmission line l
HRk  Heat rate of thermal power plant k
ECntf   Energy content of fuel f
co2f   CO2 emission factor of fuel f
−

FAf ,m,y  Upper bound on availability of fuel f  for macro-area m in year y
−

CO2m,y  CO2 emission limit for macro-area m in year y

�m,y  Lower bound for renewables penetration in macro-area m in year y

3.2.3  Variables

1. First-stage variables

a. Continuous variables
  solz,y : New solar capacity installed in zone z in year y
  windz,y : New wind capacity installed in zone z in year y
  capb,y : Storage capacity of battery b installed in year y
b. Binary variables
  �−

k,y
 : 1 : thermal power plant k ∈ KE is decommissioned in year y ; 0 : other-

wise
  �+

k,y
: 1 : thermal power plant k ∈ KC is built in year y ; 0 : otherwise

  �h,y: 1 : hydro power plant h∈ HC is built in year y ; 0 : otherwise
  �l,y:1 : transmission line l ∈ LC is built in year y ; 0 : otherwise
  �−

k,y
 : 1 : thermal power plant k ∈ KE is decommissioned within year y ; 0 : 

otherwise
  �+

k,y
 : 1 : thermal power plant k ∈ KC is built within year y ; 0 : otherwise

  �h,y : 1 : hydro power plant h∈ HC is built within year y ; 0 : otherwise
  �l,y:1 : transmission line l ∈ LC is built within year y ; 0 : otherwise

2. Second-stage variables

a. Continuous variables
  pk,t,w : Power production of thermal power plant k in hour t above its mini-

mum output P
k
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  Ein
h,t,w

 : Pumping power of hydro reservoir h in hour t in scenario w
  Eout

h,t,w
: Power output of hydro reservoir h in hour t in scenario w

  Eh,t,w: Energy level of hydro reservoir h in hour t in scenario w
  slh,t,w : Spillage from hydro reservoir h in hour t in scenario w
  Êh,ot,w : Energy level of hydro reservoir h in hour ot in scenario w
  Ein

b,t,w
 : Charge of battery b in hour t in scenario w

  Eout
b,t,w

 : Discharge of battery b in hour t in scenario w
  Eb,t,w : Energy level of battery b in hour t in scenario w
  xl,t,w : Energy flow on transmission line l in hour t in scenario w
  ENPz,t,w : Energy not provided in zone z in hour t in scenario w
  OGz,t,w : Over-generation in zone z in hour t in scenario w
  RESz,t,w : Renewable generation in zone z in hour t in scenario w
b. Binary variables
  �k,t,w : 1 : thermal power plant k is ON in hour t in scenario w ; 0 : otherwise
  �k,t,w : 1 : thermal power plant k is started up in hour t  in scenario w ; 0 : 

otherwise
  �k,t,w : 1 : thermal power plant k is shut down in hour t  in scenario w ; 0 : 

otherwise

3.2.4  Mathematical model

The expansion planning model can be formulated as the following two-stage sto-
chastic mixed-integer linear programming problem:

subject to
(3.1)

minz =
∑

y∈Y

(
∑

k∈KE

DCk�
−
k,y

(1 + r)y−y0
+

∑

k∈KC

ICth
k
�+
k,y

(1 + r)y−y0

)

+
∑

y∈Y

(
∑

z∈Z

ICsol
z,y
solz,y

(1 + r)y−y0
+
∑

z∈Z

ICwind
z,y

windz,y

(1 + r)y−y0

)

+
∑

y∈Y

∑

h∈HC

IC
hydro

h,y
�h,y

(1 + r)y−y0

+
∑

y∈Y

∑

b∈B

ICbatt
b,y

capb,y

(1 + r)y−y0

+
∑

y∈Y

∑

l∈LC

ICline
l

�
l,y

(1 + r)y−y0

+
∑

y∈Y

[
∑

k∈KE

FCk

(
1 − �−

k,y

)
+

∑

k∈KC

FCk�
+
k,y

]
+

∑

w∈W

probw

[
∑

y∈Y

∑

c|year(c)=y
freqc

∑

t|cl(t)=c

(
∑

k∈K

CMk,y,w

(
P
k
�k,t,w + pk,t,w

)

+ SUCk

∑

k∈K

�k,t,w +
∑

h∈H

CvarhE
out
h,t,w

+
∑

b∈B

CvarbE
out
b,t,w

+ +cENP
∑

z∈Z

ENPz,t,w + cOG

∑

z∈Z

OGz,t,w

)]
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(3.2)�−
k,y

= 0 k ∈ KE, y ∉
[
�
k
, �k

]

(3.3)
∑

y∈Y

�−
k,y

= 1 k ∈ KE1

(3.4)
∑

y∈Y

�−
k,y

≤ 1 k ∈ KE2

(3.5)�+
k,y

= 0 k ∈ KC, y ∉
[
�
k
, �k

]

(3.6)
∑

y∈Y

�+
k,y

= 1 k ∈ KC1

(3.7)
∑

y∈Y

�+
k,y

≤ 1 k ∈ KC2

(3.8)
∑

y∈Y

�+
k,y

=
∑

y∈Y

�+
k1,y

k ∈ AKj, k1 ∈ AKj, j ∈ JAK

(3.9)
∑

k∈MEKj

∑

y∈Y

�+
k,y

≤ 1 j ∈ JMEK

(3.10)PV
z,y

≤ solz,0 +

y∑

i=1

solz,i ≤ PVz,y z ∈ Z, y ∈ Y

(3.11)W
z,y

≤ windz,0 +

y∑

i=1

windz,i ≤ Wz,y z ∈ Z, y ∈ Y

(3.12)
∑

y∈Y

�h,y ≤ 1 h ∈ HC

(3.13)
∑

y∈Y

capb,y ≤
−

CAPb b ∈ B

(3.14)�l,y = 0 l ∈ LC, y ∉
[
�
l
, � l

]

(3.15)
∑

y∈Y

�l,y = 1 l ∈ LC1
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(3.16)
∑

y∈Y

�l,y ≤ 1 l ∈ LC2

(3.17)
∑

y∈Y

�l,y =
∑

y∈Y

�l1,y l ∈ ALj, l1 ∈ ALj, j ∈ JAL

(3.18)
∑

l∈MELj

∑

y∈Y

�l,y ≤ 1 j ∈ JMEL

(3.19)�−
k,y

=

y∑

i=1

�−
k,i

k ∈ KE, y ∈ Y

(3.20)�+
k,y

=

y∑

i=1

�+
k,i

k ∈ KC, y ∈ Y

(3.21)�h,y =

y∑

i=1

�h,i h ∈ HC, y ∈ Y

(3.22)�l,y =

y∑

i=1

�l,i l ∈ LC, y ∈ Y

(3.23)�k,t,w ≤ 1 − �−
k,y

k ∈ KE, t ∈ T, y = yr(t),w ∈ W

(3.24)�k,t,w ≤ �+
k,y

k ∈ KC, t ∈ T, y = yr(t),w ∈ W

(3.25)�k,t,w ≤ 1 − �+
k1,y

k ∈ KE, k1 = UP(k), t ∈ T, y = yr(t),w ∈ W

(3.26)pk,t,w ≤

(
Pk − P

k

)
�k,t,w k ∈ K, t ∈ T,w ∈ W

(3.27)�k,t,w − �k,t−1,w = �k,t,w − �k,t,w k ∈ K, t ∈
(
T − Tin

)
,w ∈ W

(3.28)�k,t,w − �k,c,w0 = �k,t,w − �k,t,w k ∈ K, t ∈ Tin, c = cl(t),w ∈ W

(3.29)
t∑

i=t−MUTk+1

�k,i,w ≤ �k,t,w k ∈ K, t ∶ hht ≥ MUTk,w ∈ W
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(3.30)
t∑

i=t−MDTk+1

�k,i,w ≤ 1 − �k,t,w k ∈ K, t ∶ hht ≥ MDTk,w ∈ W

(3.31)Ein
h,t,w

≤
−

E
in

h
h ∈ HE, t ∈ T,w ∈ W

(3.32)Eout
h,t,w

≤
−

E
out

h
h ∈ HE, t ∈ T,w ∈ W

(3.33)Eh,t,w ≤ EPRh

−

E
in

h
h ∈ HE, t ∈ T,w ∈ W

(3.34)Ein
h,t,w

≤
−

E
in

h
�h,y h ∈ HC, t ∈ T, y = yr(t),w ∈ W

(3.35)Eout
h,t,w

≤
−

E
out

h
�h,y h ∈ HC, t ∈ T, y = yr(t),w ∈ W

(3.36)Eh,t,w ≤ EPRh

−

E
in

h
�h,y h ∈ HC, t ∈ T, y = yr(t),w ∈ W

(3.37)
Eh,t,w =

(
1 − �h

)
Eh,t−1,w + Fh,t + �in

h
Ein
h,t,w

− �out
h
Eout
h,t,w

− slh,t,w h ∈ H, t ∈
(
T − Tin

)
,w ∈ W

(3.38)
Eh,t,w =

(
1 − �h

)
Eh,c0

+ Fh,t + �in
h
Ein
h,t,w

− �out
h
Eout
h,t,w

− slh,t,w h ∈ H, t ∈ Tin, c = cl(t),w ∈ W

(3.39)

Êh,ot,w = Êh,ot−M,w + Eh0|ot=M +

ot∑

ot
�
=ot−M+1

∑

t∈Mapot,t

(
Fh,t + �in

h
E
in

h,t,w
− �out

h
E
out

h,t,w
− slh,t,w

)

h ∈ H, ot ∈ OTM ,w ∈ W

(3.40)Êh,ot,w ≤ EPRh

−

E
in

h
h ∈ H, ot ∈ OTM ,w ∈ W

(3.41)Êh,ot,w = Eh0 h ∈ H, ot = |OT|, w ∈ W

(3.42)Ein
b,t,w

≤

y∑

i=1

capb,i b ∈ B, t ∈ T, y = yr(t), w ∈ W

(3.43)Eout
b,t,w

≤

y∑

i=1

capb,i b ∈ B, t ∈ T, y = yr(t),w ∈ W
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(3.44)Eb,t,w ≤ EPRb

y∑

i=1

capb,i b ∈ B, t ∈ T, y = yr(t),w ∈ W

(3.45)
Eb,t,w =

(
1 − �b

)
Eb,t−1,w + �in

b
Ein
b,t,w

− �out
b
Eout
b,t,w

b ∈ B, t ∈
(
T − Tin

)
,w ∈ W

(3.46)
Eb,t,w =

(
1 − �b

)
Eb,c0

+ �in
b
Ein
b,t,w

− �out
b
Eout
b,t,w

b ∈ B, t ∈ Tin, c = cl(t),w ∈ W

(3.47)Eb,t,w = Eb,c0
b ∈ B, t ∶ hht = 24, c = cl(t),w ∈ W

(3.48)F
l
≤ xl,t,w ≤ Fl l ∈ LE, t ∈ T,w ∈ W

(3.49)�l,yFl
≤ x

l,t,w
≤ �l,yFl l ∈ LC, t ∈ T, y = yr(t),w ∈ W

(3.50)

∑

k�Ωk
z

(
P
k
�k,t,w + pk,t,w

)
+ �z,t

(
solz,0 +

y∑

i=1

solz,i

)

+ �z,t

(
windz,0 +

y∑

i=1

windz,i

)
+

∑

l|r(l)=z
xl,t,w

+
∑

h�Ωh
z

Eout
h,t,w

+
∑

b�Ωb
z

Eout
b,t,w

+ ENPz,t,w = Dz,t

+
∑

l|s(l)=z
xl,t,w+

∑

h�Ωh
z

Ein
h,t,w

+
∑

b�Ωb
z

Ein
b,t,w

+ OGz,t,w

z ∈ Z, t ∈ T, y = yr(t),w ∈ W

(3.51)

∑

k∈KE

[
Pk

(
1 − �−

k,y

)
− P

k
�k,t,w − pk,t,w

]

+
∑

k∈KC

(
Pk�

+
k,y

− P
k
�k,t,w − pk,t,w

)
≥ Rz,t z ∈ Z, t ∈ T,w ∈ W

(3.52)

∑

z|ma(z)=m

∑

k∈Φz,f

∑

c|year(c)=y
freqc

∑

t|cl(t)=c

HRk(Pk
�k,t,w + pk,t,w)

ECntf
≤

−

FAf ,m,y

f ∈ F,m ∈ M, y ∈ Y,w ∈ W

(3.53)

∑

z|ma(z)=m

∑

f∈F

∑

k∈Φz,f

∑

c|year(c)=y
freqc

∑

t|cl(t)=c
HRk(Pk

�k,t,w + pk,t,w)co2f ≤
−

CO2m,y

m ∈ M, y ∈ Y,w ∈ W
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The objective function (3.1) comprises the seven terms below:

(3.54)
RESz,t,w = �z,t

(
solz,0 +

yr(t)∑

i=1

solz,i

)
+ �z,t

(
windz,0 +

yr(t)∑

i=1

windz,i

)

+
∑

h�Ωh
z

Eout
h,t,w

z ∈ Z, t ∈ T,w ∈ W

(3.55)

∑
z�ma(z)=m

∑
c�year(c)=y freqc

∑
t�cl(t)=c RESz,t,w∑

z�ma(z)=m
∑

c�year(c)=y freqc
∑

t�cl(t)=c Dz,t

≥ �m,y m ∈ M, y ∈ Y,w ∈ W

(3.56)�−
k,y
, �−

k,y
∈ {0,1} k ∈ KE, y ∈ Y

(3.57)�+
k,y
, �+

k,y
∈ {0,1} k ∈ KC, y ∈ Y

(3.58)�h,y, �h,y ∈ {0,1} h ∈ HC, y ∈ Y

(3.59)�l,y, �l,y ∈ {0,1} l ∈ LC, y ∈ Y

(3.60)solz,y,windz,y ≥ 0 z ∈ Z, y ∈ Y

(3.61)capb,y ≥ 0 b ∈ B, y ∈ Y

(3.62)�k,t,w, �k,t,w, �k,t,w ∈ {0,1} k ∈ K, t ∈ T,w ∈ W

(3.63)pk,t,w ≥ 0 k ∈ K, t ∈ T,w ∈ W

(3.64)Eh,t,w,E
in
h,t,w

,Eout
h,t,w

, slh,t,w ≥ 0 h ∈ H, t ∈ T,w ∈ W

(3.65)Êh,ot,w ≥ 0 h ∈ H, ot ∈ OT,w ∈ W

(3.66)Eb,t,w,E
in
b,t,w

,Eout
b,t,w

≥ 0 b ∈ B, t ∈ T,w ∈ W

(3.67)ENPz,t,w,OGz,t,w,RESz,t,w ≥ 0 z ∈ Z, t ∈ T,w ∈ W

(3.68)xl,t,w free variable l ∈ L, t ∈ T,w ∈ W
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1. 
∑

y∈Y

�
∑

k∈KE

DCk�
−
k,y

(1+r)y−y0
+
∑

k∈KC

ICth
k
�+
k,y

(1+r)y−y0

�
 are the annualized decommissioning 

costs of existing thermal power plants and investment costs in new thermal power 
generation;

2. 
∑

y∈Y

�
∑

z∈Z

ICsol
z,y
solz,y

(1+r)y−y0
+
∑

z∈Z

ICwind
z,y

windz,y

(1+r)y−y0

�
 are the annualized investment costs in 

new solar and wind capacity;

3. 
∑

y∈Y

�
∑

h∈HC

IC
hydro

h,y
�h,y

(1+r)y−y0

�
 are the annualized investment costs in new hydropower 

plants;

4. 
∑

y∈Y

�
∑

b∈B

ICbatt
b,y

capb,y

(1+r)y−y0

�
 are the annualized investment costs in new batteries 

capacity;
5. 

∑
y∈Y

∑
l∈LC

ICline
l

�
l,y

(1+r)y−y0
 are the annualized investment costs in new transmission lines;

6. 
∑

y∈Y

�∑
k∈KE

FCk

�
1 − �−

k,y

�
+
∑

k∈KC
FCk�

+
k,y

�
 are the fixed costs for the available 

thermal power plants, i.e., not decommissioned existing plants and already con-
structed candidate plants;

7. 
∑

w∈W probw

�∑
y∈Y

∑
c�year(c)=y freqc

∑
t�cl(t)=c

�∑
k∈K CMk,y,w

�
P
k
�k,t,w + pk,t,w

�
    

+c
OG

∑
z∈Z OG

z,t,w

��
 are the second-stage costs, i.e., the operating costs.

Specifically, item 7 above considers for each representative day the sum of pro-
duction costs, start-up costs, hydro and batteries operational costs and penalties for 
energy not provided and over-generation. Production costs are supposed to be linear 
functions of the power output, being CMk,y,w the slopes of these linear relationships. 
In each scenario w , the marginal cost of thermal plant k in year y is computed as:

with O&Mk[€/MWh] being the operative and maintenance costs of plant k , HRk 
[Gcal∕MWh] the heat rate of thermal power plant k , Fuel.Pricefuel(k),y,w [€/Gcal] the 
price in year y under scenario w of fuel used by unit k , CO2fuel(k) [ton∕Gcal] the  CO2 
emission rate of fuel used by unit k and CO2.Pricey,w [€/ton] the emission cost in 
year y under scenario w.

In the proposed model there are three groups of constraints, namely investment 
constraints (3.2)−(3.22), operational constraints (3.23)−(3.51) and target constraints 
(3.52)−(3.55). Investment constraints model investment decisions, considering the 
project priorities and the existence of logical relations between some investment 
decisions. In particular, assignment constraints (3.2) impose earliest and latest dates 
for decommissioning of existing thermal power plants, equalities (3.3) enforce the 
decommissioning of mandatory thermal units and constraints (3.4) model decisions 
regarding optional decommissioning. The group of constraints (3.5)−(3.7) work 
similarly with investment decisions on candidate thermal power plants. Indeed, 
while Eqs. (3.5) impose earliest and latest dates for construction of new thermal 
power plants, constraints (3.6) and (3.7) model investment decisions on mandatory 

+
∑

k∈K SUC
k
�
k,t,w +

∑
h∈H Cvar

h
E
out

h,t,w
+
∑

b∈B CvarbE
out

b,t,w
+ c

ENP

∑
z∈Z ENP

z,t,w

CMk,y,w = O&Mk + HRk (Fuel.Pricefuel(k),y,w + co2fuel(k) CO2.Pricey,w)
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and optional projects, respectively. The associate project constraints (3.8) indicate 
that a group of projects is subject to a single investment decision, that is, either all 
projects in the group AKj are built, or none. Inequalities (3.9) are the mutually 
exclusive project’s constraints and they ensure that only one unit (or none) of the 
projects in each group ( MEKj ) is built. Inequalities (3.10) and (3.11) impose lower 
and upper bounds on solar and wind installed capacity, respectively. Constraints 
(3.12) model investments in new hydropower plants as optional decisions, while ine-
qualities (3.13) impose an upper bound on batteries installed capacity at the end of 
the planning horizon. The group of inequalities (3.14)−(3.18) model investment 
decisions on new transmission lines. Specifically, Eqs. (3.14) impose a temporal 
window for the introduction of a new transmission line, while constraints (3.15) and 
(3.16) model, respectively, mandatory and optional decisions. Equations (3.17) are 
the associate line constraints, indicating that a group of lines is subject to a single 
investment decision, while the mutually exclusive line constraints (3.18) ensure that 
only one interconnection (or none) of the transmission lines in a given group 
( MELj ) is built. Finally, Eqs. (3.19)−(3.22) determine the values of the binary vari-
ables �−

k,y
 , �+

k,y
 , �h,y and �l,y that express if decommissioning decisions for existing 

thermal power plants and investment decisions for new thermal power plants, new 
hydropower plants, and new transmission lines, respectively, have been made within 
every year y of the planning horizon.

Operational constraints model the technical conditions for operating thermal and 
hydropower plants, power transmission and storages and consider the flexibility pro-
vided to the energy system by the hydro-thermal dispatch and the storage units. In 
particular, the block of Eqs. (3.23)−(3.30) models the thermal component of the 
energy system. Constraints (3.23) ensure consistency between the binary variables 
representing the commitment status and those representing the decommissioning 
decisions, forcing the existing power plants decommissioned within year y ( �−

k,y
= 1 ) 

to be offline in all hours after decommission. Constraints (3.24) and (3.25) enforce 
the consistency between the binary variables representing the commitment status 
and those representing investment decisions. Indeed, inequalities (3.24) impose that 
projects built within year y ( �+

k,y
= 1 ) can be used to supply load, while thermal units 

not yet constructed ( �+
k,y

= 0 ) are forced to be offline ( �k,t,w = 0 ) in all hours of year 
y . Inequalities (3.25) model the reinforcements of existing thermal power plants. 
Specifically, let k1 = UP(k) denote the new project that replaces the existing unit k 
when it starts operating: building project k1 within year y ( �+

k1,y
= 1 ) implies the per-

manent offline status of unit k ( �k,t,w = 0 ). Inequalities (3.26) state that the power 
output pk,t,w above the minimum power output P

k
 is either bounded above by 

Pk − P
k
 , if unit k is online ( �k,t,w = 1 ), or zero if unit k is offline ( �k,t,w = 0 ). Con-

straints (3.27) enforce consistency between the binary variables �k,t,w , �k,t,w , �k,t−1,w 
and �k,t,w that represent start-up, shut down and status in adjacent hours, respectively, 
in all hours of the representative days, except the first hour of the day. Constraints 
(3.28) enforce consistency between �k,t,w , �k,t,w , �k,c,w0 and �k,t,w , for the first hour of 
every representative day, where the parameter �k,c,w0 represents the status of unit k at 
the beginning of representative day c under scenario w . In our numerical experi-
ments, the values assigned to �k,c,w0 are determined by applying a classification tree 
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trained on historical data. The description of this procedure is outside the scope of 
this work and we refer the reader to [32] for a detailed description of how the values 
of parameters �k,c,w0 are computed. The minimum uptime constraints (3.29) impose 
that unit k can be started-up at most once in an interval of MUTk consecutive time 
periods. For each representative day, the minimum uptime constraints are enforced 
on the hours in the range from MUTk to the final (the 24th) hour of the day, to keep 
the representative days separate in the description of future scenarios. The minimum 
downtime constraints (3.30) work similarly to the shut-down of thermal power 
plants.

Constraints (3.31)−(3.41) model the operation of hydro plants. Specifically, con-
straints (3.31)−(3.33) bound the pumping power, the power output and the energy 
level of the existing hydroelectric reservoirs below their respective upper limits. If 
candidate hydro plant h ∈ HC is built within year y, inequalities (3.34)−(3.36) define 
the upper bounds to pumping power, power output and energy level of new hydroe-
lectric reservoirs, otherwise set the corresponding variables to zero. Energy balances 
(3.37) apply to all hours but the first of the representative days: they ensure that the 
energy stored by hydro plant h at the end of hour t equals the energy stored at the 
end of hour t − 1 (reduced by the loss coefficient �h ≤ 1 ), plus the natural inflows, 
plus the energy injected in h (reduced by the coefficient �in

h
≤ 1 ), minus the energy 

released from the reservoir (reduced by the coefficient �out
h

≥ 1 ), minus the spillage. 
Equations (3.38) impose the energy balance for the first hour of each representa-
tive day. Equations (3.39)−(3.41) model the long-term operations of hydro plants. 
Specifically, constraints (3.39) and (3.40) create the continuity in storage across the 
entire time horizon: this is done by checking at regular intervals (every M hours) 
that all the energy charged and discharged since the previous check point plus the 
total energy at the previous check point are within bounds. This is possible because, 
as a result of the clustering procedure that determines the representative days, we 
know the representative hour associated with each hour of the planning horizon. 
This information is included in the model using the set Mapot,t . We refer the reader 
to [29] for a complete description of these long-term constraints. Equations (3.41) 
enforce the equality between energy levels of each reservoir h at the beginning and 
the end of the planning horizon.

Constraints (3.42)−(3.47) model the operation of batteries. Specifically, Inequali-
ties (3.42) −(3.44) impose upper bounds to charge, discharge and stored energy and 
enforce consistency between the values of the first-stage and second-stage variables. 
Energy balances (3.45) apply to all hours but the first of the representative days and 
they ensure that the energy stored by battery b at the end of hour t equals the energy 
stored at the end of hour t − 1 (reduced by the loss coefficient �b ≤ 1 ), plus the 
energy injected in b (reduced by the coefficient �in

b
≤ 1 ), minus the energy released 

from the battery (reduced by the coefficient �out
b

≥ 1 ). Equations (3.46) impose the 
energy balance for the first hour of each representative day, while constraints (3.47) 
state the equality for each battery b between energy levels at the beginning and the 
end of each representative day.

Inequalities (3.48) restrict the energy flows on the existing transmission lines. 
Constraints (3.49) impose lower and upper bounds to the power exchanges among 
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zones and enforce consistency between the energy flows on candidate transmission 
lines and the binary variables related to investment decisions, not allowing energy 
flows on candidate lines which have not been built ( �l,y = 0 ). The zonal balance Eqs. 
(3.50) impose equality between energy sources and use in every zone and every 
hour. Indeed, the left-hand side of these equations represents the hourly energy 
sources of zone z (given by thermal, solar and wind generation, incoming energy 
flows, hydro generation and energy released by batteries) and the right-hand sides 
describe the energy uses (represented by the load, outgoing energy flows, pumping 
power and energy absorbed by batteries). The variables ENPz,t,w and OGz,t,w allow 
detecting and evaluating problems in the simulated system that can cause a mis-
match between supply and demand. Inequalities (3.51) ensure the fulfilment of zonal 
reserve requirements provided by thermal power plants (either existing plants not 
yet decommissioned or newly constructed plants).

Target constraints (3.52)−(3.55) model conditions required to promote sustain-
able development of energy systems. Specifically, inequalities (3.52) impose lim-
its on thermal power generation employing fossil fuels whose availability could be 
limited in time. These constraints are imposed for each macro-area m , each year y , 
each fuel f , and each scenario w. In particular, they are computed by multiplying the 
daily consumption of fuel f  under scenario w in all the zones belonging to macro-
area m by the weight of each cluster, to take into account the different occurrences of 
representative days. Inequalities (3.53) impose limits for thermal energy production 
due to  CO2 emissions and they present a structure very similar to constraints (3.52), 
as also, in this case, the total daily emission in each representative day is multiplied 
by the cluster’s weight. Equation (3.54) compute the zonal hourly renewable pro-
duction, by considering solar, wind and hydroelectric generation. Constraints (3.55) 
control the renewables penetration, forcing the total renewable generation in macro-
area m in year y to cover at least ratio �m,y of the total yearly demand for electricity. 
Finally, constraints (3.56)−(3.68) define the optimization variables.

4  Decomposition algorithm

Given the long-term planning horizon and the high level of temporal and technical 
detail, the proposed two-stage stochastic programming model results computationally 
intractable even for a small number of scenarios. To obtain a solution, in this work, we 
apply a multi-cut Benders decomposition algorithm. Specifically, Benders decomposi-
tion is a method introduced in the 1960s [34] that allows solving a linear programming 
problem with complicating variables in a distributed manner at the cost of iterations 
[35]. In recent years, this algorithm has been widely applied to two-stage stochastic 
programming models [36–38]. Indeed, given their particular structure, two-stage sto-
chastic programming models are suited for Benders decomposition application, being 
the first-stage variables the complicating variables: fixing the first-stage variables, the 
stochastic model decomposes into a set of independent and easy to solve subproblems. 
In the literature, there are several examples of power systems planning models solved 
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through Benders decomposition. For instance, in [39] an enhanced Benders decompo-
sition algorithm for two-stage stochastic linear problems is presented and applied to 
a large-scale dynamic generation and transmission expansion planning model for the 
European power system. In [23], authors implement a Benders decomposition algo-
rithm to solve a two-stage stochastic generation expansion model, whose first stage 
determines the long-term expansion and short-term unit commitment decisions, while 
the second stage models the real-time operation. In [40] a Benders decomposition 
algorithm is used to solve a network-constrained AC unit commitment problem under 
uncertainty. Finally, references [41] and [42] apply Benders decomposition algorithm 
to solve large-scale transmission expansion planning problems.

In our model, the first-stage variables represent investment and decommissioning 
decisions and include �−

k,y
, �+

k,y
,windz,y, solz,y, �h,y, capb,y and �l,y . If these variables 

are fixed, the original problem decomposes into a set of independent subproblems, 
one per year and scenario, each representing the operation in the second stage. 
Benders decomposition replaces the two-stage stochastic problem with an iterative 
collection of smaller problems. At each iteration, the so-called master problem is 
solved first to determine suitable values for the first-stage variables. Once the invest-
ment schedule is determined, the subproblems are solved. The number of these sub-
problems equals the number of years of the planning horizon times the number of 
scenarios. Finally, the dual information of the subproblems is sent to the master 
problem employing a cut to update the master problem solution. The next para-
graphs provide the formulation of the master problem and the subproblems, as well 
as a more detailed description of the implemented algorithm.

4.1  Master problem

As previously mentioned, the master problem aims to provide values of the first-
stage variables by solving at each iteration j the following mixed-integer linear pro-
gramming model (referred to as master problem (4) in the sequel) whose optimiza-
tion variables are �−

k,y
 , �−

k,y
 , �+

k,y
 , �+

k,y
 , solz,y,windz,y , �h,y,�h,y , capb,y , �l,y , �l,y and �w.

 subject to
(4.1)

min zdown =
∑

y∈Y

(
∑

k∈KE

DCk�
−
k,y

(1 + r)y−y0
+

∑

k∈KC

ICth
k
�+
k,y

(1 + r)y−y0

)

+
∑

y∈Y

(
∑

z∈Z

ICsol
z,y
solz,y

(1 + r)y−y0
+
∑

z∈Z

ICwind
z,y

windz,y

(1 + r)y−y0

)

+
∑

y∈Y

∑

h∈HC

IC
hydro

h,y
�h,y

(1 + r)y−y0
+
∑

y∈Y

∑

b∈B

ICbatt
b,y

capb,y

(1 + r)y−y0

+
∑

y∈Y

∑

l∈LC

ICline
l

�
l,y

(1 + r)y−y0
+
∑

y∈Y

(
∑

k∈KC

FCk⋅�
+
k,y

+
∑

k∈KE

FCk

(
1 − �−

k,y

))
+
∑

w

probw ⋅ �w
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The objective function (4.1) includes investment, decommissioning and fixed 
costs and the auxiliary variables �w that lower-approximate the operation cost under 
scenario w . Therefore, the solution of this master problem represents a lower bound 
for the optimal solution of the original problem. At each iteration j , once the master 
problem is solved, the optimal values of the objective function and auxiliary varia-
bles �w are stored in the vectors z(j)

down
 and �(j)

w  , respectively. Besides, the optimal val-
ues of the first-stage variables are stored in the parameters �−(j)

k,y
 , �+(j)

k,y
,sol(j)

z,y
 , wind(j)

z,y

,�(j)
h,y

 , cap(j)
b,y

 and �(j)
l,y

 . These parameters will be used to build constraints (4.2) in subse-
quent iterations, along with the optimal value of subproblems objective function z(j)y,w 
(5.1) and dual variable vectors �(j)y,w , obtained from fixing constraints (5.3)–(5.9) in 
the subproblems at iteration j , as described in the next paragraph. Specifically, the 
constraints (4.2), referred to as Benders optimality cuts, tighten the feasible region 
of the master problem over iterations. While in the original Benders decomposition 
algorithm, a single cut is generated at each iteration [34], in our approach we imple-
ment a multi-cut strategy, generating at each iteration one cut per scenario. As 
observed in [23, 43] and [44], also in our application, the multi-cut Benders decom-
position showed a faster convergence than the mono-cut algorithm. Moreover, it is 
worth mentioning that in our analysis, the master problem contains only optimality 
cuts, while Benders feasibility cuts are not included. Indeed, due to the second-stage 
variables ENPz,t,w and OGz,t,w that model energy not provided and overgeneration 
(i.e., energy in excess), respectively, the subproblems are always feasible. Lower 
bound constraints (4.3) on variables �w avoid the master problem being unbounded 
in the first iteration. Constraints (4.4) control investment and decommissioning deci-
sions as in the original problem, while constraints (4.5) define optimization 
variables.

(4.2)

�w ≥

∑

y

z(�)
y,w

+
∑

y

∑

k∈KE

��
−(�)

k,y,w

(
�−
k,y

− �
−(�)

k,y

)

+
∑

y

∑

k∈KC

��
+(�)

k,y,w

(
�+
k,y

− �
+(�)

k,y

)
+
∑

y

∑

z

�sol
(�)

z,y,w

(
solz,y − sol(�)

z,y

)

+
∑

y

∑

z

�wind
(�)

z,y,w

(
windz,y − wind(�)

z,y

)

+
∑

y

∑

h∈HC

�
�h

(�)

h,y,w

(
�h,y − �

(�)

h,y

)
+
∑

y

∑

b∈B

�
cap(�)

b,y,w

(
capb,y − cap

(�)

b,y

)

+
∑

y

∑

l∈LC

�
�l

(�)

l,y,w

(
�l,y − �

(�)

l,y

)
w ∈ W, � = 1,… , j − 1

(4.3)�w ≥ �down w ∈ W

(4.4)(3.2)−(3.22)

(4.5)(3.56)−(3.61)
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4.2  Subproblems

At each iteration j , for given values of the first-stage variables �+(j)
k,y

 , �−(j)
k,y

 , �(j)
h,y

 , sol(j)
z,y

 , 
wind(j)

z,y
 , cap(j)

b,y
 and �(j)

l,y
 the subproblem associated with year y and scenario w (referred 

to as subproblem (5) in the sequel) is formulated as follows.

 subject to

Objective function (5.1) minimizes the operating cost of the system in year y 
under scenario w . Constraints (5.2) include all operating constraints in the original 
problem and are imposed for each hour t belonging to the considered year y . Equa-
tions (5.3)–(5.9) fix the complicating variables to values determined by the master 

(5.1)

minzy,w =
∑

c|year(c)=y
freqc

[
∑

t|cl(t)=c

(
∑

k∈K

(
�k,t,wPk

+ p
k,t,w

)
CM

k,y,w
+ SUCk

∑

k∈K

�k,t,w

+
∑

h∈H

Cvarh⋅E
out
h,t,w

+
∑

b∈B

Cvarb⋅E
out
b,t,w

+cENP
∑

z∈Z

ENPz,t,w + cOG

∑

z∈Z

OGz,t,w

)]

(5.2)(3.23) − (3.55) ∀t|year(t) = y

(5.3)�+
k,y

= �
+(j)

k,y
∶ ��

+

k,y,w
k ∈ KC

(5.4)�−
k,y

= �
−(j)

k,y
∶ ��

−

k,y,w
k ∈ KE

(5.5)�l,y = �
(j)

l,y
∶ �

�l
l,y,w

l ∈ LC

(5.6)windz,y = wind(j)
z,y

∶ �wind
z,y,w

z ∈ Z

(5.7)solz,y = sol(j)
z,y

∶ �sol
z,y,w

z ∈ Z

(5.8)capb,y = cap
(j)

b,y
∶ �

cap

b,y,w
b ∈ B

(5.9)�h,y = �
(j)

h,y
∶ �

�h
h,y,w

h ∈ HC

(5.10)0 ≤ �k,t,w, �k,t,w, �k,t,w ≤ 1 k ∈ K, t ∈ T,w ∈ W

(5.11)(3.63)−(3.68)
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problem, while variables ��+
k,y,w

 , ��−
k,y,w

 , ��l
l,y,w

 , �wind
z,y,w

 , �sol
z,y,w

 , �cap
b,y,w

 and ��h
h,y,w

 are the dual 
variables of fixing constraints. At each iteration j , the values of the objective func-
tion and dual variables of fixing constraints in the subproblem associated to year y 
and scenario w are stored in the parameters z(j)y,w and �(j)y,w , respectively. Both these 
parameters are needed to add Benders optimality cuts (4.2) to the master problem. 
Finally, constraints (5.10) and (5.11) define the optimization variables.

It is worth mentioning that constraints (5.10) replace the original definition (3.62) 
imposed on thermal commitment variables, i.e., in the subproblems the second-stage 
binary variables that describe thermal power plants activation patterns (i.e., 
�k,t,w, �k,t,w and�k,t,w ) are relaxed to be continuous variables in the interval [0, 1] . 
Indeed, one requirement for Benders algorithm convergence is the convexity of sub-
problems. Thus, to obtain convex subproblems, binary unit commitment variables 
are relaxed to be continuous. In this way, the Benders algorithm will converge to a 
solution z∗

LP
 , which is optimal for the relaxed problem (with continuous and binary 

investment decisions and continuous operation decisions), but that not necessarily 
feasible for the original investment problem. For this reason, once the algorithm 
reaches convergence, the investment decisions are fixed and the subproblems are 
solved as MILP models (i.e., by considering binary unit commitment variables) so 
as to obtain a “quasi-optimal” solution for the original problem zMILP . The solution 
obtained with this procedure is therefore feasible, but not necessarily optimal (i.e., 
z∗
LP

≤ z∗
MILP

≤ zMILP ). However, in this application, as common in the literature when 
solving real-scale power systems, it is impossible to solve the expansion planning 
problem up to optimality. We consider a reasonable optimality gap tolerance of 0.1% 
(i.e., zMILP−z

∗
LP

z∗
LP

≤ 0.001 ). Empirical results show how the two solutions z∗
LP

 and zMILP 
are very close, being the relative distance in the current application 0.02% and, thus, 
much smaller than the reasonable optimality gap tolerance. Indeed, in our approach, 
we are modelling thermal unit commitment decisions by using the equations 
described in [45] and [46], which tighten the original problem’s feasible region by 
reducing the distance between relaxed and integer solutions.

The solution of all subproblems allows computing the following upper bound to 
the optimal objective function value of the relaxed problem (with continuous and 
binary investment decisions and continuous operation decisions) at iteration j

4.3  Solution algorithm based on Benders decomposition

Given a small tolerance value ε to control convergence, the Benders decomposition 
works as follows:

1. Initialization Initialize the iteration counter, set j = 1 . Set z(j)up = ∞ and 
z
(j)

down
= −∞.

z(j)
up

= z
(j)

down
−
∑

w

probw ⋅ �(j)
w
+
∑

w

probw

∑

y

z(j)
y,w
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2. Master problem solution Solve the master problem (4). Update z(j)
down

 and the 
values of first-stage variables.

3. First year Consider the first year of the planning horizon, i.e., y = 1.
4. First scenario Consider the first scenario, i.e., w = 1.
5. Subproblem solution Solve subproblem (5) for year y and scenario w . Compute 

z
(j)
y,w and store the dual variables of the fixing constraints.

6. Scenario update Consider the next scenario and repeat step 4. If all scenarios have 
been considered go to step 6.

7. Year update Consider the next year of the planning horizon and repeat steps from 
3 to 5. If all years have been considered go to step 7.

8. Convergence checking Compute z(j)up . If 
||||
z
(j)
up−z

(j)

down

||||
z
(j)
up

< 𝜀 , the optimal solution has been 
obtained, go to step 8. Otherwise, update the iteration counter, set j = j + 1 and 
go back to step 1.

9. Subproblems final integer solution For each year y and each scenario w , solve 
subproblems (5) replacing constraints (5.10) with (3.62), i.e., considering mixed-
integer linear problems. The solution obtained is now feasible for the original 
problem.

5  Numerical study

In this section, we describe the analysis conducted with the proposed model on the 
Italian energy system to assess the achievement at 2040 of policy goals set by the 
European Commission. A period of 21 years (planning horizon from 2020 to 2040) 
is simulated on the system divided into seven market zones. The simulation assump-
tions hereafter summarized and described are based on public information provided 
by ENTSO-E, ENTSOG, Terna, GME and EERA [47–51]. Input data and numerical 
results of the case study are described in the following subsections.

5.1  Data for Italian energy system

The market analysis considers the Italian electric power system divided into seven 
interconnected market zones: North (ITn), Central-North (ITcn), Central-South 
(ITcs), South (ITs), Calabria (ITcal), Sicily (ITsic) and Sardinia (ITsar). The neigh-
bouring countries are modelled as four equivalent areas: Montenegro (ME), Greece 
(GR), Tunisia (TN) and one single zone named Europe (EU) that summarizes the 
power flow at the northern Italian border. Each of these equivalent areas is char-
acterized by a set of equivalent power units whose bidding can model a dynamic 
Import/Export with the Italian power system. Figure 1 shows the existing intercon-
nections as well as a set of candidate new interconnections among which the least 
cost generation and transmission expansion tool can choose.

For modelling short-term operation, we have applied the procedure described in 
Sect. 2 by fixing at 5% the threshold for the system average MAPE in load duration 
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curve approximation, obtaining five representative days for each year of the plan-
ning horizon. The value of 5% for the threshold has been chosen after several tests 
performed on the Italian scenario, which showed that this choice was a good balance 
between computational costs and approximation accuracy. By modifying the threshold, 
the number of representative days to be used changes as well, as shown in Table 2.

Figure  2 illustrates the five representative days in year 2020 for the North zone, 
which has the highest electricity demand. As can be noted, each of the representative 
days is characterized by 24 values for load, solar capacity factors, and wind capacity 
factors and by a specific weight.

Representative days for the following years of the planning horizon have been 
obtained by applying an annual average demand growth of 1%, as shown in Fig. 3.

As far as renewable installed capacity growth is concerned, a lower bound of 50% 
of RES penetration (calculated as the ratio between renewable production and expected 
demand) has been imposed for year 2040. Based on this lower bound set by the Italian 
Energy Plan [48], the tool can decide how much to install and what is the best genera-
tion mix; however, it has to respect the minimum and maximum targets of photovoltaic 
and wind capacity set for every expansion plan year, according to the Italian Energy 
Plan.

Regarding the thermal fleet, based on data provided by the Italian TSO, the exist-
ing set of power plants has been implemented together with all related technical 

Fig. 1  Existing and candidate interconnections in the Italian power system
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information and decommissioning details. The achievement of the challenging RES 
penetration targets requires the availability of an appropriate reserve margin that can 
be provided by thermal generation, therefore a set of candidate Combined Cycle Power 
Plants and Open Cycle Power Plants (both fuelled by natural gas) has been considered 
to analyse how the system needs in terms of generation capacity and flexibility can be 
satisfied. Table 3 resumes the above-mentioned assumptions.

Regarding fuel consumption, we have considered a  CO2 emission cap of 70 Mtons 
for each year of the planning horizon, according to levels set by the European Com-
mission, aimed at reducing the impact of the electricity sector on greenhouse gas emis-
sions. In terms of the storage system, we have considered the possibility of adding new 
pumping units in the southern regions of Italy to the existing hydro pumping fleet and/
or the possibility of including in the system Lithium-ion batteries (cheaper but with less 
storage capacity) or Sodium-ion batteries (a little more expensive but with higher stor-
age capacity). Table 4 resumes the technical data related to candidate storage projects.

The investment cost is assumed to decrease in the period 2020–2040, as stated in 
[50], with an exponentially decreasing trend as shown in Fig. 4.

For the economic factors, the values related to Investment Costs (IC), Fixed Costs 
and Decommissioning Costs are shown below, for both conventional thermal power 
plants and photovoltaic and wind power plants (see Table 5).

Both PV and wind investment costs are supposed to decrease along the planning 
horizon due to technology development. Specifically, while PV investment cost in 
the current analysis goes from 1000 €/kW in 2020 to 600 €/kW in 2030 to 450 €/kW 
in 2040, the wind investment cost is supposed to decrease from 1300 €/kW in 2020 
to 900 €/kW in 2030 to 690 €/kW in 2040.

Fuel prices, together with  CO2 price, play an important role in the generation 
expansion plan optimization because they affect the merit order of thermal power 
plants and the economic viability of renewable generation. Moreover, fuel and 
 CO2 prices are quite volatile, depending on market fluctuations, the government’s 
policy, and the political situation. For this reason, the stochastic analysis has been 
performed on prices, focusing on both the  CO2 and the fuel price. Indeed, we have 
used prices scenarios described in [47], which provides two scenarios for fuel prices 
(i.e., A and B scenario for fuel prices) and three different scenarios for emission 
costs (i.e., low, medium and high  CO2 prices). These scenarios are summarized in 
Tables 6 and 7. It is worth mentioning that codes Gas, Gasoil, and Coal in Table 7 
represent the fuels used by Italian thermal plants, while code EUmix refers to the 
expected fuel cost in the foreign countries interconnected with the Italian market 
zones. Specifically, this cost reflects the expected variation of the generation mix in 
foreign countries, considering several factors such as increasing renewable penetra-
tions and gas consumption, decreasing coal consumption and nuclear phase-out.

Table 2  Number of 
representative days for different 
threshold values

Input threshold 10% 5% 2.5% 1%

Number of representative days 3 5 9 18
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5.2  Results and discussion

We solved the proposed model on a computer with two 2.10 GHz Intel® Xeon® 
Platinum 8160 CPU Processors and 128 GB of RAM, using language exten-
sion GUSS [52] integrated with solver Gurobi under GAMS 24.7.4. We consid-
ered � = 10−4 as tolerance for Benders decomposition convergence, while in each 

ITcn ITcs ITn ITs ITcal ITsar ITsic
2020 34.4 48.2 185.8 22.8 5.8 8.5 18.6
2030 38.3 54.1 206.1 25.2 6.4 9.4 20.6
2040 42.8 62.0 229.9 28.2 7.1 10.7 23.1

0.0

50.0

100.0

150.0

200.0

250.0

TW
h/

y

Fig. 3  Zonal load [TWh/year]

Table 3  Installed, outgoing and 
incoming capacity [GW]

[GW] CCGT COAL GT TOT

Installed in 2020 37.75 8.15 2.57 48.47
Outgoing capacity 2025/2040 3.57 8.15 1.45 13.17
Incoming capacity 2025/2040 11.20 – 15.45 26.65

Table 4  Technical data of storage systems

Candidate pumping units Sodium-
ion bat-
teries

Lithium-
ion bat-
teriesCentral–South South Calabria Sardinia Sicily

Maximum energy to power 
ratio [h]

14 14 14 14 14 6 4

E
out

[MW] 1000 450 1250 800 480 600 600

E
in

[MW] 1000 450 1250 800 480 600 600

IC@2020 [€/kWh] 82 82 82 82 82 400 350
Variable Cost [€/MWh] 2 2 2 2 2 30 20
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iteration we solved the master problem up to optimality. Figure 5 illustrates the evo-
lution over iterations of the multi-cut Benders algorithm, which converges in 41 iter-
ations. Indeed, at iteration 41 the relative distance between upper and lower bound 
equals 0.95 ⋅ 10−4 , satisfying the predefined tolerance.

The total time needed to solve the problem is 19,032 s, corresponding to 5 h 17 min 
and 12 s. Table  8 provides more information about computational times, specifying 
the size and the solution time for the master problem and the subproblems at the last 
iteration of Benders decomposition algorithm. As can be noticed, two different types 
of subproblems are considered, namely the base case and the updated subproblem. 
Indeed, language extension GUSS works as follows. First, the base case, i.e., the model 
instance related to the first subproblem, is considered. After solving the base case, the 
update data for each subproblem is applied to the model. Then, GUSS communicates 
the changes from the previous model instance to the solver. This procedure not only 
reduces the amount of data communicated to the solver, but also, in the case of an LP 
model, allows the solver to restart from an advanced basis and its factorization, dra-
matically reducing computational times. Indeed, as can be observed in Table 8, while 
the base case solution requires almost two minutes, each of the updated subproblems is 

Fig. 4  Batteries investment cost 
trend
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Table 5  Economic factors for 
conventional power plants

CCGT COAL GT PV Wind

IC [€/kW] 800 2600 400 1000 1300
Fixed Cost [€/MW/year] 10 32 5 – –
Decommissioning [€/kW] 6 20 3 – –

Table 6  CO2 prices [€/ton] in 
different scenarios

Scenario 2020 2030 2040

Low 18 27 75
Medium 19 35 80
High 20 53 100
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solved in only 2.622 s on average. Since the number of subproblems equals 126, at each 
iteration, the average time required to solve all the subproblems is 440.242 s.

Moreover, it is worth mentioning that, although in this analysis we considered a 
small number of scenarios, thanks to Benders decomposition and language extension 
GUSS, the proposed model is scalable: a higher number of scenarios would not expo-
nentially increase computational times. Specifically, Table 9 provides the solution time 
observed by considering the same tolerance for Benders convergence (i.e., � = 10−4 ) 
and a different number of scenarios, randomly built. As can be noticed, the stochastic 
model with 30 scenarios is solved in about 20 h, a result compatible with time require-
ments in investment studies.

As explained in the previous section, since in each iteration subproblems are defined 
as linear problems, second-stage decisions �k,t,w, �k,t,w and �k,t,w , related to the commit-
ment of thermal power plants, could be infeasible for the original problem. For this 
reason, once convergence is reached, subproblems are solved as mixed-integer linear 

Table 7  Fuel prices [€/Gcal] in 
different scenarios

Fuel Scenario 2020 2030 2040

Gas [€/Gcal] A 23.43 28.881 27.63
B 23.43 36.84 30.56

Gasoil [€/Gcal] A 90.00 91.25 71.58
B 90.00 85.81 102.14

Coal [€/Gcal] A 9.50 10.47 10.47
B 9.50 13.40 10.47

EUmix [€/Gcal] A 19.68 29.72 39.76
B 19.68 38.04 39.76

Fig. 5  Upper and lower bounds values over iterations in multi-cut Benders algorithm
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problems, obtaining the final solution, characterized by total system costs higher than 
the convergence value of the Benders decomposition algorithm. However, thanks to 
the tight formulation of thermal unit commitment constraints, this difference is very 
small. Indeed, in this problem instance, the total system costs in the relaxed solution are 
403,729 M€, while the integer solution is only 0.02% more expensive, with the objec-
tive function value being 403,810 M€.

The system expected costs for the whole expansion planning period are shown in 
Table 10. As can be observed, there is a remarkable difference between the first-stage 
and second-stage costs: while the sum of investment, decommissioning and fixed costs 
represents 15% of total costs, operating costs account for 85% of total costs. Specifi-
cally, the most relevant cost for the system is related to the production costs of thermo-
electric power plants, which include O&M and fuel consumption, representing 99.6% 
of second-stage costs and 84.6% of total costs. On the contrary, start-up costs of ther-
moelectric power plants have a small impact, being 0.1% of total costs.

While investment, decommissioning and fixed costs are independent of the sce-
nario realization, operation costs, being second-stage costs, depend on the consid-
ered scenario for  CO2 and fuel prices. Specifically, Table 11 describes how system 
costs vary depending on stochastic prices.

As can be noticed, for each fuel price scenario A and B, the three  CO2 prices 
scenarios present similar values of start-up costs and operation costs of hydro plants, 
while batteries operational costs slightly differ between scenarios. As far as ther-
mal production costs are concerned, they significantly differ in the six scenarios. As 
expected, since  CO2 and fuel prices affect the thermal plants marginal production 
costs CMk,y,w , the higher these parameters, the greater the production costs, which 
vary from 307,024 M€ in the fuel price scenario A with low  CO2 prices to 382,048 
M€ in the fuel price scenario B with high  CO2 prices.

Table 12 shows the additional capacity of wind and PV installed to reach the RES 
penetration target in 2040. The RES installed capacity consists of 59.2 GW of PV 
and 17.97 GW of wind power: this unbalance may be explained by the lower costs 
of the PV technology with respect to the wind technology.

Table 8  Size and solution time of master problem and subproblems at the last iteration of Benders algo-
rithm

# Constraints # Decision variables # Discrete 
variables

CPU time [s]

Master problem 9665 12,859 5670 27.408
first subproblem (base case) 182,179 149,408 0 112.492
Updated subproblem 182,179 149,408 0 2.622

Table 9  Solution time for 
different number of scenarios

Number of scenarios 3 6 10 20 30

Solution time [h:min] 3:07 5:18 7:48 14:04 20:21
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As far as interconnection projects are concerned, new national and international 
cross border lines must be implemented in years 2025, 2029 and 2040 to better 
exploit the stochastic renewable energy sources and compensate for the decommis-
sioning of some Italian thermoelectric power plants. The selected interconnections 
are listed in Table 13.

Moreover, the tool couples the installed RES capacity with energy storage sys-
tems, installing throughout the planning period 5.9 GW of batteries and 3.98 GW of 
pumping units. A list that summarizes the installed capacity according to technology 
and zone is reported in Table 14. As can be noticed, as regards to batteries capacity, 
the model suggests installing both Lithium-Ion batteries and Sodium-Ion batteries in 
all market zones, diversifying capacity.

In the list of thermoelectric candidate projects, ten CCGT power plants have been 
selected as thermoelectric expansion capacity, starting operation in 2025. On the 
contrary, the decommissioning of one oil and three old CCGT power plants has been 
planned for 2027 in Sardinia, as a result of the forecasted increase of the natural gas 
price and of the high RES penetration in this zone. The new thermal power plants 
introduced in the system are located in the North, Central-South and South zones. 
These new thermal power plants ensure the availability of energy reserve margins.

Figure  6 reports the expected energy generation in 2040 divided by energy 
source, for each Italian zone. As can be noticed, since the RES production (i.e., 
from wind, solar and hydro sources) is 218 TWh/year while the load is 404 TWh/
year, the target of reaching 50% of renewable penetration by 2040 has been fully 
achieved. Half of the total solar expansion capacity, as well as most of the thermoe-
lectric expansion capacity, has been installed in the North, due to its high electricity 
demand, which is almost 60% of the Italian electricity demand. Even though genera-
tion exceeds demand in some market zones, in 2040 Italy will import 17 TWh from 
neighboring countries.

Table 10  Breakdown of system 
costs

Costs M€

Thermal capacity expansion 2988
Wind capacity expansion 14,128
Solar capacity expansion 33,832
Transmission capacity expansion 1627
Pump units capacity expansion 3480
Batteries capacity expansion 4554
Decommissioning costs 211
Thermal fixed costs 8
Expected thermal production cost 341,619
Expected start-up costs 399
Expected hydro operation costs 170
Expected batteries operation costs 766
Penalties for overgeneration 28
Penalties for energy not provided 0
Total system expected costs 403,810
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Figure 7 shows the installed capacity at the end of the planning period, grouped 
by source and zone. As can be noticed, the model suggests installing large shares 
of PV capacity in all Italian market zones and especially in the North, while the 

Table 11  Breakdown of system operation costs for different scenarios [M€]

Fuel price, Scenario A Fuel price, Scenario B

Scenarios for  CO2 prices Scenarios for  CO2 prices

Low Medium High Low Medium High

Thermal production 307,024 318,085 346,978 342,262 353,317 382,048
Start-Up 551 508 415 313 293 317
Penalties for overgeneration 28 28 28 28 28 28
Penalties for energy not provided 0 0 0 0 0 0
Batteries operation 696 726 789 711 741 933
Hydro operation 164 168 166 174 173 175
Total operation 308,463 319,154 348,376 343,487 354,551 383,501
Investment 60,828 60,828 60,828 60,828 60,828 60,828
Total cost 369,291 380,342 409,204 404,315 415,380 444,329

Table 12  Renewable 
generation capacity expansion 
[GW] divided by source and 
implementation year

Year Wind PV

2020 3.76 7.67
2021 0.77 8.31
2022 0.77 2.46
2023 0.78 2.46
2024 0.78 2.46
2025 0.78 2.46
2026 0.78 2.46
2027 0.78 2.46
2028 0.78 2.46
2029 0.78 2.46
2030 0.78 2.46
2031 0.78 2.46
2032 0.78 2.46
2033 0.78 2.46
2034 0.78 2.46
2035 0.78 2.46
2036 0.78 2.46
2037 0.78 2.46
2038 0.78 1.93
2039 0.26 1.93
Total 17.97 59.20
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wind expansion is mainly located in southern regions, which are characterized by 
the highest wind capacity factors.

6  Conclusions

In this paper, we have introduced a two-stage stochastic mixed-integer linear pro-
gramming model for power generation and transmission expansion planning. The 
main characteristics of the proposed model are:

Table 13  Candidate 
interconnections selected by the 
model

From To Transmission limits Year of 
interven-
tion

Montenegro South [–600 MW; 600 MW] 2025
Tunisia Sicily [–600 MW; 600 MW] 2025
Central-South Central-North [–150 MW; 150 MW] 2025
Central-South Central-North [–1000 MW; 1000 MW] 2029
South Central-South [0 MW; 900 MW] 2040
South Central-South [0 MW; 200 MW] 2040

Table 14  Installed capacity of 
energy storage systems [MW]

Zone Technology Installed 
capacity 
[MW]

North Lithium-ion batteries 355
North Sodium-ion batteries 252
Central-North Lithium-ion batteries 530
Central-North Sodium-ion batteries 200
Central-South Lithium-ion batteries 301
Central-South Sodium-ion batteries 370
Central-South Pumping unit 1000
South Lithium-ion batteries 600
South Sodium-ion batteries 584
South Pumping unit 450
Calabria Lithium-ion batteries 600
Calabria Sodium-ion batteries 600
Calabria Pumping unit 1250
Sicily Lithium-ion batteries 600
Sicily Sodium-ion batteries 231
Sicily Pumping unit 480
Sardinia Lithium-ion batteries 79
Sardinia Sodium-ion batteries 600
Sardinia Pumping unit 800
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• Identification of the least-cost investment schedule for investment in generating 
facilities, transmission lines, and storage systems and for decommissioning of 
existing thermal power plants.

• High level of temporal detail to accurately capture short-term volatility of inter-
mittent energy sources.

• High level of technical detail, integrating into the expansion model the unit com-
mitment constraints on a plant-by-plant level and accounting for both short-term 
and long-term storage to provide an accurate representation of the system’s oper-
ation.

• Modelling of long-term uncertainty, considering three scenarios for  CO2 prices 
combined with two scenarios for fuel prices, therefore considering six scenarios 
for production costs of thermal units.

• Consideration of policy goals such as  CO2 emission limits and renewable pen-
etration targets in expansion planning.

To be computationally tractable, the optimization model has been integrated 
with a clustering analysis to select representative days considering the correla-
tion between different time series (i.e., daily zonal electricity demands and renew-
able capacity factors). To further reduce computational costs, a multi-cut Benders 
decomposition algorithm has been implemented, decomposing the original two-
stage stochastic programming model by year and by scenario.

The proposed model presents many applications in power systems analysis, 
allowing in general to address what-if questions. For example, in this paper, we have 
applied the proposed model to evaluate the possibility for the Italian energy system 
to achieve by 2040 a 50% renewable penetration target and a sustainable reduction 
of  CO2 emissions, according to the goals set by the European Commission. Empiri-
cal results show how solar PV technology could play a key role in achieving these 
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policy targets, being the main technology installed in the solution provided by the 
model. The huge solar penetration would require installing new storage systems 
(pumping units, mainly in southern Italian regions, and batteries) and reinforcing the 
transmission network, by building new national and international cross border trans-
mission lines, so as to better exploit the intermittent renewable energy sources and 
compensate for the decommissioning of some Italian thermoelectric plants.
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