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ABSTRACT Currently, the most popular health indicator used to assess the degradation of lithium-ion 

batteries (LIBs) is the State of Health (SoH). This indicator is necessary to ensure the safety, degradation 

management, and good operation of the battery, for example, the correct estimate of the State of Charge 

(SoC). In this paper, a new health indicator is proposed as an alternative to the use of the SoH because it has 

a high correlation and similarity with the SoH and has the advantage that it can be calculated and/or 

estimated very easily. The new health indicator, named “Degradation Speed Ratio (DSR)” is calculated 

with variables directly measured (voltage and time), and it is not necessary to spend any time on the total 

charging cycle, therefore reducing waiting times about 84%. In addition, due to its high correlation with 

capacity, it is a significant marker of battery end-of-life (EoL). In this study, the obtained DSR and a 

Gaussian process regression (GPR) model were used to estimate the lost capacity and to compare it with 

existing models in the literature. The accuracy achieved using the DSR indicator as input is very high. 

Similarly, the results of a multilayer perceptron neural network (MLPNN) model are shown using the new 

indicator (DSR) as input to estimate the degradation. The sensitivity and precision of this NN model with 

unknown data are also very high. 

INDEX TERMS Battery energy storage systems, data-driven estimation, degradation speed ratio, electric 

vehicles, lithium-ion batteries, model based estimation, state of health, battery energy storage systems.  

I. INTRODUCTION 

There are more and more devices using  Lithium-ion cells 

in our lifestyle: laptops, electric vehicles (EV), Battery 

Energy Storage Systems (BESS) [1]. 

BESS are booming owing to climate change, the increase 

in renewable energy (e.g., wind farm, solar power plant, etc.), 

to provide stability to the electricity grids (micro-grid [2]), 

and the need for this kind of energy to store its surplus. 

In the lithium-ion battery (LIB) market, different types of 

cells are manufactured, some of which are indicated to store 

energy (BESS), and others are used to make high-power 

energy systems, such as electric vehicles and sccotters. 

Therefore, each cell is unique owing to the manufacturing 

and battery chemistry. 

In addition, there are different operating and 

environmental conditions (e.g., C-Rate, deep discharge,  

operating temperature, etc.). Therefore, the battery ageing 

process for Li-ion cells is different for each one, and 

knowing the battery aging is key to their operation to prevent 

failures. There is an attempt to solve this problem by 

implementing a precise State of Health (SoH) estimation 

method in the battery management system (BMS). 

The SoH estimation is necessary for the correct operation 

of these batteries to determine the current energy storage and 

power supply in relation to the initial one for which it was 

designed.  

Due to the relevance of having a good SoH estimation in 

order to know its health condition, in scientific literature 

several SoH methods can be found based on different 
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strategies and algorithms. Some of these are carried out 

through offline processes [3] [4], and others can be 

developed as online estimation methods [5] [6] [7].  

The internal parameters of battery cells (e.g., impedance, 

internal resistance, etc.) are difficult to monitor by any BMS 

because of their difficult access during operation. However, 

the temperature, current, and voltage are external variables of 

the battery that can be directly measured, and their 

characteristics can be analyzed to use them in the battery 

aging process estimation. For this reason, the internal 

parameters of the LIB cannot be used in online processes to 

estimate the battery capacity.  

Thus, in the literature, many different methods focus on 

estimating the SoH of batteries with increased precision. 

They can be classified into three categories:  

(1) Direct measurements based on internal resistance 

measurement [3], the impedance measurement 

method [8], and the Coulomb counting method [9] are 

the most frequently applied. 

(2) Model-based methods. They consider the battery as 

an electrochemical, electrical, or empirical model: e.g. 

equivalent circuit model (ECM) or electrochemical 

impedance model (EIM). 

(3) Data-driven methods.  They are based on features 

extraction approaches from observed values of 

variables able to be measured. They are flexible and 

use machine learning approaches. 

Typically, data-driven methods use data from cell 

temperatures, currents, voltages, etc., obtained through 

several charging/discharging cycles. However, not all of 

these methods can extract data when the battery is in 

operation. Liu et al. [10] proposed a health indicator (HI) 

using data voltage ranges during charging and discharging 

processes. 

Chen et al. [11] analyzed the constant current discharge 

voltage curve to describe the degradation of a battery, and 

they used a least-square-supported vector machine (LS-

SVM) model to estimate the SoH.  

Feng et al. [6] used a charging voltage profile interval of 

15 min and a support vector machine (SVM) model. This 

model was trained using incremental capacity analysis (ICA) 

and open-circuit voltage (OCV) model-based data.  

More complex methods have been proposed by He et al. 

[12] and Bien et al. [13], who obtained new features of 

interest (FOIs) through ICA, dQ/dV curves, and their voltage 

peaks. Finally, they estimated the SoH using a linear model. 

Many papers have proposed HI, which have high 

correlations with the SoH [14], and are carried out through 

the characteristics of battery discharge [15][16]. These 

methods are difficult to implement in real-life applications 

because they are developed for optimal laboratory 

conditions, and these features only occur in constant-current 

discharges; the actual battery operation does not occur under 

these conditions. 

Wang et al. [17] proposed a new HI based on a high 

correlation with the capacity; later on, this HI was estimated 

using an equivalent circuit model (ECM). A constant-voltage 

charging curve was used to estimate this HI, for which the 

battery must first reach the maximum voltage (4.2V). 

Zhang et al. [18] extracted the charging times between two 

specific voltages to estimate the SoH through a Gaussian 

method: the GPR model. Thus, a comparison of some 

intervals of charging times between voltages is made, and 

even of the entire CC charging cycle (from the minimum to 

the maximum voltage), for which the method also requires 

reaching the maximum voltage of the battery to be estimated. 

Tan et al. [19] proposed nine different FOIs based on CC 

charging curves and their gray relational coefficients vs. 

SoH. The best value was 0.98, but it required a full charge to 

reach this goal. Subsequently, the method applies a long 

short-term memory (LSTM) network to predict the SoH.  

Meng et al. [20] used the charging voltage profile 

optimized by the NSGA-II algorithm to estimate the SoH. 

However, to do this, it is necessary to know the SoC for these 

voltages. 

Tian et al. [21] proposed measuring the temperature 

differences in a specific voltage interval during constant 

charging using a support vector regression model to estimate 

the SoH. The results were compared with those obtained 

using the ICA method. 

This paper proposes a new HI based on charging voltage 

profiles to solve some of the problems mentioned before and 

to cover some of the gaps detected in the state-of-the-art 

methods. In real-life applications, the battery charge, carried 

out under constant current, is always performed by the BMS 

under controlled conditions and, therefore, meets the 

convenient requirements to be measured to estimate the new 

HI described in this paper. 

In addition, the proposed method does not require a 

complete charge/discharge cycle or a complete charge, not 

even when the battery is completely discharged at the 

beginning of the new charge cycle. This method is valid for 

all lithium-ion battery models and their different charging 

conditions due to the voltage range duration is measured with 

the same charging current. 

Thus, battery operation can be performed according to the 

control signal. A constant charging current (for a short time 

period) is the only requirement for measuring time and 

voltage. Furthermore, this constant current can be supplied 

from the BMS for any short period during battery operation. 

Therefore, the HI can be obtained at all times with a small 

interval of the charging voltage curve, e.g., in Electric 

Vehicles with the “braking” recharge. This new HI uses only 

one FOI; therefore, it is easier to implement, and its 

computational effort will be lower. 

This paper is structured as follows: Section II presents the 

battery datasets used in this study and the CC charging 

curves. Section III includes an explanation of a novel battery 

health indicator, the correlations between this new HI and 
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capacity degradation, and the advantages of using this new 

HI. Section IV describes the validation of the proposed 

method using two datasets collected from different cells 

under different conditions, and the results are compared with 

those of the other methods. Finally, the conclusions are 

presented in Section V. 

 
II. BATTERY DATASET AND DATA ANALYTICS 

A. BATTERY DATASETS 

Three datasets of LIBs were selected to analyze the behavior 

of the battery charging voltages and test the new HI proposed 

in this study. The first group from the NASA  Ames 

Prognostics Center of Excellence are: B0005, B0006, and 

B0007 dataset battery [22]. Charging was carried out in a CC 

mode at 1.5A until the battery voltage reached 4,2V. 

Discharge was carried out at a CC level of 2A until the 

battery voltage fell to 2.7V, 2.5V and 2.2V for batteries 5, 6, 

and 7, respectively. The experiments were stopped when the 

batteries reached a 30% fade in rated capacity. 

The second group from the Center for Advanced Life 

Cycle Engineering (CALCE) of the University of Maryland 

includes CS2-35, CS2-36, and CS2-37 [23]. In this case, 

charging was carried out in CC mode at 0.5A until the 

battery voltage reached 4,2V.  Discharge was performed at a 

CC level of 1A, and the discharge cut-off voltage was 

2.7V. The accelerated aging process was tested at an ambient 

temperature of 24 °C. 

The last battery dataset from the Oxford University 

Research Archive (ORA) of the University of Oxford was 

BMP-cell2.  For the profit-maximizing bucket model (BMP), 

the voltage limits were set to 3.42 V and 4.08 V, 

corresponding to 10 % and 90 % state of charge, and the 

charging current profile has variations from 2A until 17A. 

 

B. VOLTAGE CURVE DATA ANALYTICS 

The SoH is the most popular indicator reflecting the 

degradation of LIBs. The most widespread formula for this 

health indicator is shown in (1). 

 

 SoH (%) =(Ccurrent/CBOL)        (1) 

where Ccurrent and CBOL are the current and BOL capacity, 

respectively. The value for BOL capacity, the first cycle of 

use, is 100%. In the same way, the value for the EOL is 

globally established at 20%, i.e., fade capacity is 80%. 

Thus, the relationship between SoH and the fade capacity 

(FC) is: 

 Fade Capacity (%) = 1 – SoH (%)       (2) 

 

In this study, a new HI is proposed based on observing the 

constant of certain characteristics of the current charging 

curves. The voltage curves for the different cycles are shown 

in Fig. 1. 

Thus, it can be seen how, through the charging/discharging 

cycles (battery aging), the charging times needed to reach the 

target voltage (4.2 V generally) are reduced, i.e., they 

decrease throughout their life. Meanwhile, the battery 

degrades, and the SoH decreases. This behavior can be 

observed in all LIBs. 

 
III. NEW PROPOSED BATTERY DEGRADATION 
INDICATOR 

A. HEALTH INDICATOR DEFINITION  

In this section, according to the analysis in the previous one, 

the development of a new degradation indicator shaped by 

data (voltages and times) from the CC charging voltage 

profile is exposed. 

Thus, the aging features, only based on the voltage curve 

during the CC charging phase, were extracted. 

As a result of the decrease in the charging times (due to 

battery aging), the slopes (calculated between any two 

points) of the charging voltage curves throughout the 

charging/discharging cycles also have variation, although it is 

increasing. 

Thus, the slope for cycle 1 between points P1 and P2 is 

shown in Fig. 2 and is defined in (3). 

 

 m = (V4.1 - V4.0) / (t2 - t1)        (3) 

 

and for the cycle EOL in (4) 

 

m’= (V4.1 - V4.0) / (t’2 – t’1)        (4) 

 

If the slopes of all the charging cycles (from cycle 1 to 

cycle EOL) of a battery are calculated between two voltage 

levels (for example, 3.8 V to 3.9 V), the trend is obtained as 

shown in Fig. 3. 

The x-axis indicates the number of battery 

charging/discharging cycles and the y-axis shows the 

calculation of the slopes previously mentioned. 

Thus, using these slopes a new proposed indicator called 

“degradation speed ratio” (DSR) is defined, which expresses 

the degradation speed of the battery measured in this voltage 

range [3.8-3.9V] throughout all its charging cycles (from 

cycle 1 to cycle EOL). V/s was used to measure the DSR. 

For the example shown in Fig. 3, this speed increases from 

0.2 mV/s to 1.4 mV/s throughout the 168 charging cycles. 

This indicator expresses for each voltage range (e.g. [3.8-

3.9V]) what increase in the degradation speed (mV/s) a 

battery has, and the higher than speed, the greater the fade 

capacity is. 

It is important to note that it is possible that the DSR 

slope decreases temporally in some of these calculations. 

This is due to the fact that the capacity at this moment 

increases. However, this effect is mitigated in successive 

charging cycles of the following DSR´s. 
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B. DEGRADATION SPEED RATIO. METHOD 

Once the DSR has been defined and the first speed between 

two voltage points has been calculated (e.g. [3.8-3.9V]), the 

remainder can be calculated for successive intervals of the 

same charging voltage curve. Thus, e.g., the speeds for the 

NASA B0005 battery calculated in the intervals [3.8-3.9V], 

[3.9-4.0V], [4.0-4.1V], and [4.1-4.2V] are shown in Fig. 4. 

After obtaining the speeds of the different voltage ranges, 

it is necessary to analyze the correlation between each DSR 

and the capacity indicator, 1-SoH (%) and 1/Cap (%), 

respectively. 

In this study, the inverse of the capacity (%) and the fade 

capacity 1-SoH (%) were used because their correlation with 

the DSR can be better visualized, as can be observed in Fig. 

5, that shows the four trends:  two degradation rates [3.8-

3.9V] and [3.9-4.0V], the capacity fade (%), and the inverse 

of capacity (1/Cap.(%)). 

Fig. 6 shows the relationship observed between the SOH 

and DSR, and the possibility of using it when only one of 

these two variables is available in real time. In a very 

simplistic approach, based on a linear regression model, it is 

possible to conclude that the knowledge of DSR can provide 

a close idea of the SOH dynamic, even when it is not 

observed, and the similarity of both dynamics is within 

confidence bands at level of  95% in both cases. 

These correlations must be calculated for the DSR ranges 

that need to be analyzed. Thus, Table I shows in the first four 

rows the correlation between the DSR Ranges [3.8-3.9V], 

[3.9-4.0V], [4.0-4.1V] and [4.1-4.2V] vs. 1 / Cap (%) and 

Fade Capacity (%) respectively. 

The DSRs can be measured in whatever charging voltage 

range is deemed appropriate. In this study, DSR R1 [3.8-

3.9V] was selected since it has the best correlation 

coefficient, as is shown in Table I. 

To reduce the measurement times of the DSRs and have 

more DSR ranges available for the method, the best 

correlation range ([3.8-3.9V]) was split into four subranges, 

and their correlation coefficients were subsequently 

calculated. Thereby, if a cell in an instant does not need to 

charge in that voltage range, it will be performed in another 

chosen one. For example, DSR R8 is the first option and 

DSR R7 is the second option, [3.850-3.875] and [3.875-3.9], 

because they have the highest correlation coefficient. 

In this study, four subranges were deepened, i.e., a voltage 

increase of 0.25V, but the voltage range can continue to be 

reduced according to needs and correlation analysis can be 

performed with the capacity variable to be corroborated.  

Thus, the choice of the voltage range is made with the 

maximum correlation index because all data are available.  

However, in real life, when the entire dataset is not available, 

the choice of voltage range can be made according to several 

criteria due to the versatility of the indicator.  

For example, it is possible to look at the charging profiles 

(observed during a week, e.g., ) when a battery begins its life 

(during its first charge cycle) and see which voltage ranges 

are the most used or have the highest frequency. Thus, it is 

possible to select (to estimate the battery fade capacity) one, 

two, three, or several of these voltage ranges. Hence, a real 

and optimal dataset will be built (to be used for this indicator) 

because a higher frequency of use area in battery operation 

will be covered.  

In case of limited resources, a unique voltage range will be 

chosen, the one with the highest frequency of use. Once this 

range has been chosen, and due to the fact that the voltages 

and the time are always available, the DSR can be easily 

calculated. 

Another example is the behavior of the DSR on the 

lithium-ion battery “BMP-cell2” working with different 

charging currents has also been analyzed, as shown in Fig. 7. 

This battery operation is carried out with different 

charge/discharge current levels, and it is possible to measure 

(as Fig. 7 shows) the DSR in a voltage range [3.75-3.8V] 

using different charging currents on the same “BMP-cell2.” 

C. ADVANTAGES OF USING DSR 

The main motivation of this work, are the advantages of 

using the DSR indicator. They are multiple, but the most 

important is its efficiency, especially when considering its 

simplicity of calculation versus its relevance (sensitivity to 

capacity). Other remarkable advantages are listed below: 

(1) DSR is an indicator with a high correlation coefficient 

of battery fade capacity since it relates and allows for 

not only the charging times ([17], [18]) but also  

charging voltage. 

(2) The aforementioned time measurement reduction, 

e.g., a full charging/discharging cycle of the NASA 

B0005 battery spends approximately 7000 s (4000 

charges + 3000 discharges). It is not needed to wait 

for the full charge and discharge battery cycle using 

this method, the time used to measure the predictive 

variables is reduced to 500 s, the time spent to 

calculate the DSR in the range [3.8-3.9V] in the BOL 

of the LIB. Therefore, it is obtained a reduction time 

in the measurement of 93% for the charging/discharge 

cycle and 84% with respect to the charging cycle. 

This data of 500 s was used as a reference example 

in this paper, but these measurement times depend on 

the level of charging current used and the amplitude 

of the voltage range chosen (e.g.,0.1 V, 0.05V, 

0.025V). The higher the intensity, the shorter the 

charging and measurement times used; similarly,  the 

smaller the amplitude of the voltage range, the shorter 

the measurement time used. 

(3) This new DSR indicator allows to see the trend of 

battery degradation at any time without having to 

estimate the SoH.  If two DSRs are compared, in the 

same voltage range but measured at different times, it 

can be observed if this degradation remains constant 

over time (within confidence bounds) or if, by 

contrast, it is accelerating and how much, in order to 
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carry out any preventive operation or maintenance 

measures thereon.  

(4) DSR can be measured in different voltage ranges, 

resulting in different DSRs that can advance the 

battery degradation process. For example, when will 

the battery reach its EOL, since as shown in Fig. 8, 

beginning with cycle 800, the fade capacity goes from 

being 25% to 100% in only 200 cycles, just like DSR, 

which goes from 0.07 mV/s to 0.81 mV/s in those 200 

cycles.  

(5) It can be used as an independent indicator and an 

alyternative option to substitute the traditional SoH, as 

explained later, since in real life, the SoH verification 

can only be carried out under laboratory conditions 

(capacity test), and this does not occur with the new 

DSR, which can be measured at any time. 

(6) The implementation in a real BMS should be easy, 

because once the voltage range to be measured has 

been chosen, it is only necessary to calculate the slope 

of that piece of "voltage segment", and that is 

instantaneous. 

D. DSR AS A HI 

Keeping in mind the advantage number five mentioned 

above, for the validation of the DSR [3.875-3.9V] as an HI, 

the capacity estimation was performed with a single DSR 

range [3.875-3.9V] as input to a GPR model [24] for the six 

cells of the chosen datasets. 

Table II illustrates the accuracy of the GRP model using 

DSR [3.875-3.9V] as input with the batteries B0005 and 

CS2_37.  

Once the DSR indicator [3.875-3.9V] is certified as a valid 

instrument to evaluate battery degradation, it is possible to 

use a simple linear regression (LR) with the two previous 

DSR ranges: [3.825-3.850V] and [3.850- 3.875V] as model 

inputs to estimate the mentioned DSR [3.875-3.9V]. 

 Table III shows the results obtained with the LR model 

[25]:  

One of the advantages of using this DSR indicator [3.875-

3.9V] is that the real measurement of the output variable can 

be obtained much more frequently and easily than the 

capacity, and thus be able to correct our model of real-time 

estimation. 

As the output variable DSR [3.875-3.9V] has a very high 

SoH correlation (R2 (AVR) = 0.99, for the six batteries in Table 

II), the DSR works as a very reliable estimator of the 

degradation capacity that can be measured in a more direct 

and simple way. 

Although, in case of preferring the traditional indicator 

(the capacity as HI (SoH)), the data in Table II also show a 

high accuracy in the capacity estimation with a single input 

variable: DSR [3.875-3.9V]. 

There are other studies (e.g.[6] and [10]) that use a voltage 

segment to develop an HI, but on the one hand, e.g. Liu et al. 

[10] uses this "voltage segment" measured in a constant time 

interval (T), from a chosen voltage. Thus, this HI is a V 

(voltage increase). In our method, the HI (DSR) considers 

voltage and time; therefore, the HI is sensitive to these two 

parameters. On the other hand, the Feng et al. [6] method 

needs "voltage segments" vs. SOC of the charging curve for 

different levels of SOHs and the Incremental Capacity 

Analysis (ICA), in order to train an SVM model. The online 

estimated SOH is calculated by comparing a "voltage 

segment" vs. SOC curve measured during 15 min, with the 

"voltage segment" curve calculated by the SVM model. 

In our method, DSR only requires a small charging 

"voltage segment", which simplifies the method and makes it 

different from existing ones, because none (of the current 

methods proposed in scientific literature) uses the slopes 

calculated in a "voltage segment" of  the charging curve 

profiles to analyze its variation and relationship with battery 

degradation. 

 
IV. VALIDATION OF THE PROPOSED METHOD 

Two different model methods were proposed to validate the 

DSR HI as a degradation indicator. First, the DSR indicator 

was used as an input variable of a GRP model [24] to 

estimate the degraded capacity and compare the results. This 

GPR model was used because it has been observed that the 

distribution of the data fits well with regions of Gaussian 

distribution. 

Second, a similar experiment was performed using a neural 

network type multilayer perceptron with  8+4+2 layers. This 

will allow for modeling the possible non-linear 

characteristics underlying the relationships analyzed. Since, 

as is known, an MLPNN is a universal functional 

approximator able to model non-linear relationships with a 

good performance. 

Later on, the behavior of this model was testing using an 

unknown dataset. Both of the approaches are described in the 

following subsections. 

A. MODEL 1.GPR 

In this sub-section, to test the new DSR indicator, it was 

used as an input of two GPR models to predict the SoH and 

to compare the proposed method with other studies.  

 In this way, the NASA battery dataset (cells B0005, 

B0006, and B0007) was used to train a GPR model in order 

to compare the results with studies that use the same datasets. 

Similarly, another GPR model trained with the CALCE 

dataset (cells CS2_35, CS2_36, and CS2_37) was developed 

for the same purpose to compare the results with similar 

models. 

Once the models were trained, they were tested with 

values set aside (not used in the training process) for this 

purpose. Table IV lists the error indicators, and Fig. 9 shows 

the trends of the estimated and real values from the B0005 

and CS2_35 batteries tested with each of their models. 

Table V was created using the results of the models from 

the papers mentioned above in the state-of-the-art 
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introduction section to compare these results with the results 

obtained by the proposed method. 

 
TABLE V    

   

 

[21] 

 

[18] [17] [26] This study 
 

[10] [27] 
  

B5 

RMSE 0.0249 0.0077 0.0111 0.0084 0.0106 0.0095 0.015   RMSE 

CS2_35 MAE 0.049 0.0064 0.0088 0.0053 0.0071 0.0065     MAE 

R^2 0.94   0.98 0.98 0.99 0.99     R^2 

B6 

RMSE 0.0196 0.0163 0.0180 0.0180 0.0186 0.0140 0.017 0.0067 RMSE 

CS2_36 MAE 0.0597 0.0143 0.146 0.146 0.0132 0.0079     MAE 

R^2 0.97   0.96 0.96 0.98 0.99     R^2 

B7 

RMSE 0.0158   0.014  0.0117 0.0107 0.0124   RMSE 

CS2_37 MAE 0.0629   0.0098  0.0095 0.0074     MAE 

R^2 0.96   0.97  0.98 0.99     R^2 

 

Furthermore, in order to analyze the DSR behavior using 

the GPR model to estimate the 1-SoH, for this study, another 

model has been trained using battery data sets B0005, B0006, 

B0007, CS2_35 and CS2_37, to be tested with the battery 

data set CS2_36, later on. In the same way, Fig. 10 shows the 

errors and the actual and estimated values trends.  

The data used in the manuscript and in the papers cited in 

the "state of the art" of the introduction section are from a 

laboratory setting (NASA, CLACE, and OXFORD).  

In real life, BMS systems implement integrated circuits 

(ICs) for the battery monitoring process to achieve errors 

below 0.25% of the voltage. Consequently, they will not 

contain any noise, and the GPR model will not be affected. 

Furthermore, sensor fault diagnosis models such as those 

proposed in [28] can be applied if necessary. Implementing 

both solutions, the measures used in the model in real life 

would not be compromised without corresponding detection. 

The use of this new health indicator has another 

advantage: it depends only on the measurement of the 

voltage for its use; it is more robust against failures and 

greater ease of detection, not needing sensors of temperature, 

currents, resistors, etc., and other measures or calculations 

used as input in other prediction models. 

B. MODEL 2.MLPNN 

In addition, as an added value to this study, an MLPNN 

model was trained [29], which is the basic core of the major 

neural network designs used in deep learning. By using the 

new DSR indicator (DSR[3.825-3.850V], DSR[3.850-

3.875V], and DSR[3.875-3.9V]) as the input of the basic core 

(MLPNN, 8+4+2 layers) of the neural network model, to 

estimate the battery degradation and analyze how it responds 

with other battery datasets not used in the training process 

model. Thus, the battery dataset used for training was formed 

by batteries B0005, B0006, CS2_35, and CS2_37, and later 

on, it was tested with B0007 and CS2_36 battery datasets. 

The results are shown in Fig. 11 (test B0007 and test 

CS2_36) and Fig. 12 (test B0007+CS2_36), where good 

behavior with an unknown battery dataset can be seen as well 

as accuracy in the same order of magnitude as the models 

used in other studies, but with a “real” battery dataset.  

As has been proved, in both models (GPR and MLPNN), 

the results are very good, tested with unknown data, 

validating the indicator proposed within the "research 

framework" defined in this paper. 

Thus, the method and indicator provide speed in 

estimating the "fade capacity" and simplicity. It is expected 

that if more complex neural networks (deep learning) with 

this new indicator were used, the results would be even 

better, but that may be a motivation for future work. 

 
V. CONCLUSIONS AND FUTURE RESEARCH WORK 

In this paper, a new HI (DSR) of the degradation state of 

LIBs is presented, which is sensitive to aging and can even 

anticipate total failure (EOL). Both the sensitivity and 

accuracy are due to the fact that the DSR is calculated with 

the charging voltage and the charging times in determined 

voltage ranges (excluding the total charging/discharging 

process, temperatures, resistances, impedances, etc.), so the 

use of this DSR indicator is much faster to measure and 

estimate than traditional SoH. 

In the same way, these two variables (voltage and time) 

can be measured directly during battery operation and very 

quickly, making it possible to determine the battery 

degradation level at all times (online), with the advantage 

that this entails for SoC calculating and battery maintenance. 

This makes it very easy to implement in any BMS system.  

Using these two variables (voltage and time), the newly 

proposed DSR indicator can be calculated easily (no 

regression model is needed) and quickly (measuring these 

variables and performing two operations (subtraction and 

division). In addition, this new HI (DSR) can be obtained at 

any time during battery operation and being able to choose 

between any voltage range and different currents.  

As has been shown, the DSR indicator has very accurate 

results when used as input models owing to its high 

sensitivity and similarity in the battery capacity evolution, 

which makes the computational effort, for model 

development, very low and makes high-accuracy prediction 

models. 

In this paper, the empirical results of the developed models 

are presented and compared with other data-driven methods. 

In addition, the results of three GPR and MLPNN models 

trained with data from four batteries and validated with 

different battery datasets are presented. The results have high 

accuracy (R2 = 0.98) for unknown data in both models. 

Therefore, in conclusion, the method used can be 

replicated in other scenarios, since both the GPR and 

MLPNN models were tested with "real" unknown datasets. 

The authors consider that these tests suggest that the 

indicator and model can be replicated for any lithium-ion 

battery. 

Future research work related to this study may focus on 

the development and implementation of this new method of 

evaluating battery degradation in a real BESS. Thus, the new 

indicator (DSR) can be evaluated and compared with a 

traditional SoH.  

 

https://www.linguee.es/ingles-espanol/traduccion/added+value.html


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3143107, IEEE Access

 

VOLUME XX, 2017 9 

 

ACKNOWLEDGMENT 

The authors would like to thank the CALCE Battery 

Research Group, University of Maryland, NASA for 

providing valuable battery degradation datasets and the 

Oxford University Research Archive (ORA) of the 

University of OXFORD. 

 
REFERENCES 

[1] N. Li, F. Gao, T. Hao, Z. Ma, and C. Zhang, “SOH 

Balancing Control Method for the MMC Battery 

Energy Storage System,” IEEE Trans. Ind. 

Electron., vol. 65, no. 8, pp. 6581–6591, 2018. 

[2] D. Tran and A. M. Khambadkone, “Energy 

management for lifetime extension of energy 

storage system in micro-grid applications,” IEEE 

Trans. Smart Grid, vol. 4, no. 3, pp. 1289–1296, 

2013. 

[3] H. G. Schweiger et al., “Comparison of several 

methods for determining the internal resistance of 

lithium ion cells,” Sensors, vol. 10, no. 6, pp. 5604–

5625, 2010. 

[4] L. Chen, Z. Lü, W. Lin, J. Li, and H. Pan, “A new 

state-of-health estimation method for lithium-ion 

batteries through the intrinsic relationship between 

ohmic internal resistance and capacity,” 

Measurement, vol. 116, pp. 586–595, Feb. 2018. 

[5] L. Wang, C. Pan, L. Liu, Y. Cheng, and X. Zhao, 

“On-board state of health estimation of LiFePO4 

battery pack through differential voltage analysis,” 

Appl. Energy, vol. 168, pp. 465–472, 2016. 

[6] X. Feng et al., “Online State-of-Health Estimation 

for Li-Ion Battery Using Partial Charging Segment 

Based on Support Vector Machine,” IEEE Trans. 

Veh. Technol., vol. 68, no. 9, pp. 8583–8592, 2019. 

[7] C. Weng, Y. Cui, J. Sun, and H. Peng, “On-board 

state of health monitoring of lithium-ion batteries 

using incremental capacity analysis with support 

vector regression q,” J. Power Sources, vol. 235, 

pp. 36–44, 2013. 

[8] A. Guha and A. Patra, “State of Health Estimation 

of Lithium-Ion Batteries Using Capacity Fade and 

Internal Resistance Growth Models,” IEEE Trans. 

Transp. Electrif., 2017. 

[9] K. Soon Ng, C.-S. Moo, Y.-P. Chen, and Y.-C. 

Hsieh, “Enhanced coulomb counting method for 

estimating state-of-charge and state-of-health of 

lithium-ion batteries,” Appl. Energy, vol. 86, pp. 

1506–1511, 2009. 

[10] W. Liu, Y. Xu, and X. Feng, “A Hierarchical and 

Flexible Data-Driven Method for Online State-Of-

Health Estimation of Li-ion Battery,” IEEE Trans. 

Veh. Technol., vol. 9545, no. c, 2020. 

[11] Z. Chen, X. Xia, M. Sun, J. Shen, and R. Xiao, 

“State of health estimation of lithium-ion batteries 

based on fixed size LS-SVM,” 2018 IEEE Veh. 

Power Propuls. Conf. VPPC 2018 - Proc., 2019. 

[12] J. He, Z. Wei, X. Bian, and F. Yan, “State-of-

Health Estimation of Lithium-Ion Batteries Using 

Incremental Capacity Analysis Based on Voltage-

Capacity Model,” IEEE Trans. Transp. Electrif., 

vol. 6, no. 2, pp. 417–426, 2020. 

[13] X. Bian, Z. Wei, J. He, and F. Yan, “A Novel 

Model-based Voltage Construction Method for 

Robust State-of-health Estimation of Lithium-ion 

Batteries,” IEEE Trans. Ind. Electron., vol. 0046, 

no. c, pp. 1–1, 2020. 

[14] D. Liu, X. Yin, Y. Song, W. Liu, and Y. Peng, “An 

on-line state of health estimation of lithium-ion 

battery using unscented particle filter,” IEEE 

Access, vol. 6, pp. 40990–41001, 2018. 

[15] J. Li, L. Wang, C. Lyu, L. Zhang, and H. Wang, 

“Discharge capacity estimation for Li-ion batteries 

based on particle filter under multi-operating 

conditions,” Energy, vol. 86, pp. 638–648, 2015. 

[16] Z. Deng, X. Hu, X. Lin, L. Xu, Y. Che, and L. Hu, 

“General Discharge Voltage Information Enabled 

Health Evaluation for Lithium-Ion Batteries,” 

IEEE/ASME Trans. Mechatronics, vol. 4435, no. 

2019, pp. 1–1, 2020. 

[17] Z. Wang, S. Zeng, J. Guo, and T. Qin, “State of 

health estimation of lithium-ion batteries based on 

the constant voltage charging curve,” Energy, vol. 

167, pp. 661–669, 2019. 

[18] Y. Zhang and Z. Tian, “State of health of lithium 

ion battery estimation based on charging process,” 

Proc. 2019 IEEE 3rd Adv. Inf. Manag. Commun. 

Electron. Autom. Control Conf. IMCEC 2019, no. 

Imcec, pp. 688–692, 2019. 

[19] Y. Tan and G. Zhao, “Transfer Learning with Long 

Short - Term Memory Network for State - of - 

Health Prediction of Lithium - ion Batteries,” IEEE 

Trans. Ind. Electron., vol. 67, no. 10, pp. 8723–

8731, 2020. 

[20] J. Meng, L. Cai, D. I. Stroe, G. Luo, X. Sui, and R. 

Teodorescu, “Lithium-ion battery state-of-health 

estimation in electric vehicle using optimized 

partial charging voltage profiles,” Energy, vol. 185, 

pp. 1054–1062, 2019. 

[21] J. Tian, R. Xiong, and W. Shen, “State-of-Health 

Estimation Based on Differential Temperature for 

Lithium Ion Batteries,” IEEE Trans. Power 

Electron., vol. 35, no. 10, pp. 10363–10373, 2020. 

[22] B. Saha and K. Goebel., “Battery Data Set,” NASA 

Ames Prognostics Data Repository.2007. [Online]. 

Available: 

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/progn

ostic-data-repository/#battery. 

[23] Pecht M., “Battery Data Set. CALCE,” CALCE 

Battery Research Group, Maryland, MD, 2017. 

[Online]. Available: 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3143107, IEEE Access

 

VOLUME XX, 2017 9 

 

https://web.calce.umd.edu/batteries/data.htm. 

[24] C. E. and C. K. I. W. Rasmussen, Gaussian 

processes for machine learning., vol. 14, no. 2. 

2006 Massachusetts Institute of Technology, 2006. 

[25] P. D. Grünwald, “Linear Regression,” in The 

Minimum Description Length Principle, MIT Press, 

2007, pp. 335–368. 

[26] Y. Li, S. Zhong, Q. Zhong, and K. Shi, “Lithium-

ion battery state of health monitoring based on 

ensemble learning,” IEEE Access, vol. 7, pp. 8754–

8762, 2019. 

[27] T. Bak and S. Lee, “Accurate estimation of battery 

SOH and RUL based on a progressive lstm with a 

time compensated entropy index,” Proc. Annu. 

Conf. Progn. Heal. Manag. Soc. PHM, vol. 11, no. 

1, pp. 1–10, 2019. 

[28] Q. Yu, C. Wan, J. Li, R. Xiong, and Z. Chen, “A 

model-based sensor fault diagnosis scheme for 

batteries in electric vehicles,” Energies, vol. 14, no. 

4, 2021. 

[29] J. M. Keller, D. Liu, and D. B. Fogel, “Multilayer 

Neural Networks and Backpropagation,” in 

Fundamentals of Computational Intelligence: 

Neural Networks, Fuzzy Systems, and Evolutionary 

Computation, IEEE, 2016, pp. 35–60. 

 

IGNACIO.ALVAREZ-MONTESERIN. received 

the B.S. degree in Electronic and Control 
Engineering and later on the M.S. degree in 

Industrial Engineering from the University of 

Salamanca, Spain in 2000. He is currently a 
member of the Heat rate and BESS monitoring 

Center, since 2018, of Enel SPA, International 

Energy Italian Company. He worked for 10 years 
in control systems and operation, developing 

energy efficiency and monitoring control systems. 

He is currently collaborating with the Technological Research Institute 
(IIT) through Miguel A Sanz, to develop this research in the lithium-ion 

batteries field, and pursuing the Ph.D. degree in Engineering Systems 

Modeling at the Engineering School of the Comillas Pontifical University, 
Madrid, Spain. 

 

 
MIGUEL Á. SANZ-BOBI (Senior Member, 

IEEE) is currently a Professor with the Telematic 

and Computer Science Department, and also a 
Researcher with the Institute for Research and 

Technology (IIT), both within the Engineering 

School, Comillas Pontifical University, Madrid, 

Spain. He divides his time between teaching and 

research in the artificial intelligence field applied 

to diagnosis and maintenance of industrial 
processes. He has been the main researcher in 

more than 40 industrial projects over the last 25 years, related to the 

diagnosis in real time of industrial processes, incipient detection of 
anomalies based on models, knowledge acquisition and representation, and 

reliability and predictive maintenance. All these projects have been based 

on a combination of artificial intelligence, new information technologies, 

and data mining techniques. 
  

 

FIGURE 1.  Charging voltage profiles from cycle 1 until cycle end of life. 

 

 

FIGURE 2.  Slope variation calculation from cycle 1 (points P1 and P2) 
until cycle end of life points (P’1 and P’2). 

 

FIGURE 3.  Voltage range measured [3.8-3.9 V] for NASA B0005 battery. 
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FIGURE 4.  Degradation Speed Ratio for NASA B0005 battery. (a) DSR 
range [3.8-3.9 V]. (b)  DSR range [3.9-4.0 V]. (c) DSR range [4.0-4.1 V]. (d) 
DSR range [4.1-4.2 V]. 

 

 

FIGURE 5.  DSR [3.850-3.9 V] and DSR range [3.875-3.9 V] vs. 1-SOH 
and 1/Capacity.  

 

FIGURE 6.  Relationship observed that exists between the SOH and the 
DSR. (a) 1/Capacity vs. DSR [3.8-3.9 V]. (b) 1-SOH vs. DSR [3.8-3.9 V].  

 

 

FIGURE 7.  Degradation Speed Ratio for OXFORD BMP-Cell2 battery. 
DSR range [3.75-3.8 V] and 4A and 5A of current measure. 

 

 

FIGURE 8.  Degradation Speed Ratio for CALCE CS2_37 battery. (a) 
DSR range [3.8-3.9 V]. (b)  DSR range [3.9-4.0 V]. 

 

FIGURE 9.  GPR model trend. (a) Tested with B0005 battery dataset. (b) 
Tested with CS2_35 battery dataset. 

 

FIGURE 10.  GPR model trend. Tested with CS2_36 battery dataset. 
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FIGURE 11.  MLPNN model trend. (a) Tested with B0007 battery dataset. 
(b) Tested with CS2_36 battery dataset. 

 

 

FIGURE 12.  MLPNN model trend tested with test B0007+CS2_36 
batteries dataset. 

 

TABLE I.  Correlation between the DSR Ranges [3.8-3.9V], [3.9-4.0V], 
[4.0-4.1V] and [4.1-4.2V] vs. 1 / Cap (%) and Fade Capacity (%) 
respectively.  

 

 

TABLE II.  GRP errors model using DSR [3.875-3.9V] as input vs. 1/Cap  
with NASA and CALCE batteries dataset.  

 

 

TABLE III.  LR errors model using DSR [3.825-3.850V] and DSR [3.850-
3.75V] as input vs. DSR [3.875-3.9V] with NASA and CALCE batteries 
dataset. 

 

 

TABLE IV.  GPR errors model using DSR[3.825-3.850V], DSR[3.850-
3.875V] and DSR[3.875-3.9V] as input vs. 1-SoH with NASA and CALCE 
batteries dataset.  

 

   

 

[21] 

 

[18] [17] [26] This study 
 

[10] [27] 
  

B5 

RMSE 0.0249 0.0077 0.0111 0.0084 0.0106 0.0095 0.015   RMSE 

CS2_35 MAE 0.049 0.0064 0.0088 0.0053 0.0071 0.0065     MAE 

R^2 0.94   0.98 0.98 0.99 0.99     R^2 

B6 

RMSE 0.0196 0.0163 0.0180 0.0180 0.0186 0.0140 0.017 0.0067 RMSE 

CS2_36 MAE 0.0597 0.0143 0.146 0.146 0.0132 0.0079     MAE 

R^2 0.97   0.96 0.96 0.98 0.99     R^2 

B7 

RMSE 0.0158   0.014  0.0117 0.0107 0.0124   RMSE 

CS2_37 MAE 0.0629   0.0098  0.0095 0.0074     MAE 

R^2 0.96   0.97  0.98 0.99     R^2 

TABLE V. Comparative results of this study and the state of the art. 

 


