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Abstract: Optimizing the schedule of thermal generators is probably the most important task when
the operation of power systems is managed. This issue is known as the unit commitment problem
in operational research. It has been profoundly studied in the literature, where several techniques
have been proposed to address a computationally tractable solution. In turn, the ongoing changes of
paradigms in energy markets focus the attention on the unit commitment problem as a powerful tool
to handle new trends, such as the high renewable energy sources penetration or widespread use of
non-conventional energy-storage technologies. A review on the unit commitment problem is propo-
sed in this paper. The easy understanding of the diverse techniques applied in the literature for new
researchers is the main goal of this state-of-art as well as identifying the research gaps that could be
susceptible to further developments. Moreover, an overview of the evolution of the Mixed Integer
Linear Programming formulation regarding the improvements of commercial solvers is presented,
according to its prevailing hegemony when the unit commitment problem is addressed. Finally, an
accurate analysis of modeling detail, power system representation, and computational performance
of the case studies is presented. This characterization entails a significant development against the
conventional reviews, which only offer a broad vision of the modeling scope of their citations at most.

Keywords: unit commitment; optimal thermal generation; numerical optimization; evolutionary
optimization; optimization techniques; decomposition techniques; uncertainty management

1. Introduction

The unit commitment problem (UC) is a traditional optimization problem where the
best schedule for a group of thermal units is obtained. Optimizing the electrical generation
entails many advantages for market players and final customers. However, that is not an
easy task according to the big size of the problem and the computational limitations.

For that reason, there are many works in the literature where different approaches are
proposed to find an optimal solution to this problem, constituting an essential target for
the advances in operational research. This paper presents a new review of the state-of-art
of the unit commitment problem, where the distinctions between optimization techniques,
problem formulations, and resolution algorithms are exposed in order to facilitate their
understanding.

This section provides a brief description of the main issues that are frequently con-
sidered in the unit commitment problem. Several mathematical approaches have been
proposed over the years. The principal modeling ideas are gathered in this paper and
referenced for more detailed explanations. There are multiple techniques that have been
applied to solve the unit commitment problem, being the most popular its presentation as
a conventional optimization problem:

min(Production cost + SU cost + SD cost + Emission cost + Maintenance cost) (1)
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subject to: Technical and economical constraints. (2)

The different terms of the objective function (OF) are described below:

• Production cost: This cost is related to the fuel consumption of the thermal units when
electricity is generated. Its behavior is usually described through a linear or quadratic
function, where there are a fixed term, a linear term concerning the power production,
and a quadratic term that multiplies the squared power generation of the unit. The last
term can be omitted to work with linear objective functions. Moreover, a piecewise
approximation can also be used to linearize the quadratic function. The utilization of
integer variables is mandatory for correctly modeling this cost.

• Start-up (SU) cost: This cost is related to the fuel consumption of the starting-up
process before a thermal unit is totally committed. It has an exponential behavior
according to the number of hours that the unit had been offline. Nevertheless, it is
commonly linearized through a stairwise function. Integer variables are also employed
for achieving an accurate representation.

• Shut-down (SD) cost: This cost is applied when a thermal unit is shut-down. It is
usually modeled as a fixed cost where integer variables are used to define its treatment.
Sometimes, this cost is not considered.

• Emission cost: This cost is related to the polluting compounds or the greenhouse
gases generated as a consequence of electricity production. It is not linked to the
fuel prices, such as those mentioned above, but it is related to fuel consumption and
technological efficiency. Its value depends on the local regulation and the emission
allowance trading market scheme if it exists. Within the European Union, it relies on
CO2 prices.

• Maintenance cost: This cost represents the increase of the maintenance operations
when the thermal unit is running for a longer time. It is modeled as a linear function
with respect to power generation, and it is often internalized in the production cost
for the sake of simplicity. Integer variables are also associated with this cost.

Fuel consumption is the main cost of the unit commitment problem. The importance
of a proper representation of these costs is pointed out in [1], where it is mentioned that
saving 0.5% of fuel in electricity generation represents a yearly benefit of millions of
euros for a utility. Accordingly, research is focused on improving the modeling detail
to increase profitability. In past decades, coal plants were generally the thermal basis of
power systems. Meanwhile, combined cycles gas turbines were relegated for high-demand
periods, and fast-ramping gas turbines were used to cover demand peaks. This operation
was steady over time and did not demand great modeling developments to achieve an
efficient asset management.

Nowadays, the trend is changing. The dismantling process of coal plants accounted
by many power systems according to greenhouse policies and the loss of their competi-
tiveness due to the implementation of emission-allowance trading markets has brought a
paradigm shift. Moreover, the higher renewable-energy source penetration has increased
the frequency of the start-up and shut-down processes of the thermal units. Hence, the
proper representation of the fuel consumption during these operations is gaining force in
current formulations. With regard to the technical constraints used in the unit commitment
problem, the following considerations are often assumed:

• Demand constraint: This is a balance equation to assure that the electricity generation
meets the load demand for every represented time period. An energy storage term
can be added if more accurate management is desired. In turn, it is also possible
to introduce a spillage term in the equation to represent situations of production
surpluses. It is a linear equation with continuous variables.

• Reserve constraint: This inequality guarantees a technical necessity of power systems,
which is the availability of an extra generation capacity reserved for compromising
situations, such as a failure in a committed thermal unit, to keep the security of supply.
It is a linear inequality that also employs continuous variables.
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• Capacity limits: This inequality is used to assure that the electricity generation of each
thermal unit respects the minimum and maximum power output according to their
technical limits. This inequality is linear and uses integer variables.

• Ramping limits: This inequality assures that the difference between the power genera-
tion of a thermal unit during the previous and the current time step does not exceed
the ramping rates. It is a linear inequality that uses continuous variables.

• Logic constraint: It establishes logic in the commitment decisions at every time step,
indicating the relationships between start-ups, shut-downs, and commitment status
along the whole time span. This equation is linear and utilizes integer variables.

• Minimum time up (TU) and time down (TD): This inequality is used to guarantee
that the unit is online for a minimum period of time since it is started-up or that it is
offline for a minimum time since it is shut-down, in order to accomplish with technical
limitations that reduce the risk of failure. It is linear and employs integer variables.

• Operating constraints: This group gathers the constraints that are utilized for a more
accurate representation of the operation of the thermal units from a technical point of
view. Some examples are situations where some units must run or have a fixed power
output, an outage of a unit due to maintenance tasks, or unforeseen problems, etc.

• Emission constraints: They are imposed to bound specific emissions along a time span.
• Network constraints: These constraints are implemented with the aim of representing

technical limitations regarding the consideration of the power grid. They increase the
accuracy of the unit commitment problem but also the complexity of its resolution.
For that reason, the network is frequently disregarded unless a more secure generation
schedule is desired. In that case, the capacity of the optimal schedule to overcome
an unexpected failure safely is sought. It is known as the Security Constrained Unit
Commitment problem (SCUC).

The unit commitment problem is frequently addressed as a minimization problem,
where the sum of the total costs constitutes the objective function, and the demand con-
straint is an equation where the generation meets the power consumption. Sometimes, a
non-served energy term is added to the balance equation. If the associated cost is high, there
will only be non-served energy situations if the demand exceeds the generation limit. On
the contrary, if it is not high enough, there could appear situations in which the electricity
production is not profitable.

This representation was suitable before the liberalization of energy markets accom-
plished in many power systems. Nowadays, the objective function of the unit commitment
problem is also represented through the difference between benefits and costs of producing
electricity, which is sought to be maximized. In turn, price forecasts are implemented
to evaluate profitability, and the demand constraint is transformed into an inequality or
omitted. The production of a market player will be based on profitability, which is known
as the Price-Based Unit Commitment problem (PBUC). The representation of the competi-
tiveness behavior of market players has also been studied in this problem. Nevertheless,
this research topic is out of the scope of this survey.

The following section describes the techniques that can be applied to solve the unit
commitment problem further than the optimization problem presentation. However,
according to its importance, this methodology is predominantly studied in this paper. The
programming options with relation to the formulation are exposed in Section 3.1. In turn,
the consideration of uncertainty is addressed in Section 3.2. The decomposition techniques
that can be applied to facilitate its resolution are mentioned in Section 3.3. On the other hand,
the resolution algorithms that can be applied to find the optimal solution to the optimization
problem are exposed in Section 3.4. Section 4.1 describes the modeling trends when the unit
commitment problem is formulated as a Mixed Integer Linear Programming (MILP), which
is currently the most widespread approach. Meanwhile, Section 4.2 presents an accurate
analysis of modeling detail, power system representation, and computational performance
of the case studies described in all the references. Finally, Section 5 concludes the article
with a brief contribution summary, identifying research gaps for further developments.
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Figure 1. Optimization methodologies applied to the unit commitment problem. At the first level, the
optimization techniques are exposed. Later, the most widely used is visually described, underlying
the two choices of addressing the optimization problem and its stages. The formulating option and
the resolution algorithm that are needed to solve the problem are presented. In turn, the uncertainty
representation and the utilization of decomposition techniques are introduced as possible alternatives
to enhance the accuracy of the representation of the problem and the performance of its resolution.
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2. Optimization Techniques and Unit Commitment

In order to achieve an optimal solution to the unit commitment problem, several
optimization techniques have been applied in the literature. These methodologies require
a set of input data and return the best thermal schedule obtained after their applications.
Figure 1 presents an illustrative diagram where these optimization techniques are classified.
In contrast with many other arrangements made in the literature, this layout can help to
clarify the differences between optimization techniques, problem formulations, decom-
position techniques, and resolution methods, as well as different options of uncertainty
management inside the proposed scheme.

Popular optimization methods are described in this section. They constitute different
approaches to face the unit commitment problem, whose complexity has often evolved
together with the advances in computation. Furthermore, it is also possible to combine
them in hybrid methodologies to exploit some of their advantages at once. Regarding the
literature, the following classification is made:

• Exhaustive Enumeration (EE): It consists of the evaluation of all the feasible solutions
in order to identify the best value as the optimal solution. Exhaustive enumeration is a
brute force method that is not computationally affordable. Its scope is very limited [2].

• Expert System (ES): The underlying idea of this method resides in the creation of
an algorithm where the good practices and knowledge of proceedings in the reso-
lution of the unit commitment problem are computed. It was employed to save in
computational costs [3], but it fell into disuse because of its sub-optimal solutions.

• Priority List (PL): This technique is based on ordering elements of target sets according
to their contribution to the objective function. The decisions taken on these target
elements during the resolution process will conclude in a better or worse approach
to the optimal solution. For that reason, it usually has a mathematical background
behind it. Despite returning a sub-optimal solution, it is an attractive optimization
technique from a computational perspective due to the obtaining of near-optimal
solutions in reasonable run times [4–7].

• Fuzzy Logic (FL): This method allows the application of abstract reasoning into the
computational logic to solve a mathematical problem. It utilizes if–then rules in order to
generalize some input data. This information is treated according to a background (if
conditions) and output data are obtained consequently (then reactions). The utilization
of fuzzy logic techniques helps accelerate the resolution of the unit commitment
problems but returns a less accurate solution. They are usually applied at a beginning
step and combined with other optimization techniques in hybrid proceedings [8–10].

• Neural Networks (NN): This artificial intelligence technique is based on establishing
patterns that transform some input data into a near-optimal solution. Its structure
consists of a group of interconnected nodes where some mathematical functions are
applied to process the information. In order to achieve good results, these processes are
trained with a benchmark database. However, it provides sub-optimal solutions, and
its implementation and adjustment are quite difficult [11,12]. This machine-learning
approach is still being used to solve the unit commitment problem nowadays. For
further information about the application of machine learning techniques in the unit
commitment, the reader is referred to [13].

• Optimization Problem (OP): The unit commitment problem is frequently addressed as
a classical optimization problem, where an objective function is proposed, subject to a
set of constraints. This methodology entails the most widespread approach used to
solve the unit commitment problem, and it is described in depth in Section 3.

• Hybrid Methodologies (HM): These optimization techniques are sometimes combined
in hybrid methodologies in order to improve their performance. Some approaches
made in the literature of the unit commitment problem are [14–21].

A comparison of these optimization techniques is presented in Table 1. References are
focused on the thermal UC. For representations where the optimization of power systems
adds hydro valleys or energy storage facilities, the reader is referred to [22,23], respectively.
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Table 1. Comparison of optimization techniques to solve the unit commitment problem.

Technique Advantages Disadvantages

EE Optimal solution Computationally intractable

ES
Fast resolution

Handles a lot of information
Combines theoretical–practical knowledge

Non-optimal solution
Difficult implementation

Problems if schedules are unexpected in database

PL
Fast resolution

Mathematical background
Generally easy to implement

Non-optimal solution
Difficult identification of new cost-saving trends
Solution can be very far from the optimum value

FL
Qualitative interpretation

Effective solution to complex problems
Handles any type of unit characteristic data

Non-optimal solution
Fuzzy rules are difficult to implement

Results are difficult to analyze in-depth

NN

Handles complex systems efficiently
Hidden relationships can be identified

Flexible utilization of non linear functions
Flexible treatment of noisy data

Non-optimal solution
Intricate network structure

New additions require a retraining
Exponential computation-time/problem-size rate

OP

Optimal solution
Generally easy to implement

Advances in commercial solvers
Much information in the literature

Exponential computation-time/problem-size rate
Modeling simplifications are sometimes needed
Function linearizations are sometimes needed

Unable to work with noisy data

3. Unit Commitment as an Optimization Problem

As mentioned, the resolution of the unit commitment problem is frequently addressed
as an optimization problem. Two approaches can be differentiated within this technique.
Conventional optimization (CO) exposes the objective function and its constraints as
is. On the other hand, dynamic programming (DP) utilizes the principle of optimal-
ity proposed by Bellman [24], dividing the problem into overlapping subproblems and
optimal substructures [25–27]. However, the curse of dimensionality forces the imple-
mentation of heuristic rules to deal with real-size problems, providing near-optimal solu-
tions. Although nowadays, DP is not as relevant as it was before, it is sometimes used to
manage uncertainty [28–30]. Furthermore, other distinctions in OP can be made according
to their formulation, uncertainty consideration, utilization of decomposition techniques, or
the optimization algorithm that is employed to determine an optimal solution.

3.1. Formulating Options

There are different classifications depending on how an OP can be formulated. Ac-
cording to the variables, a distinction can be made between discrete or continuous vari-
ables, as well as the utilization of a mix of them. In contrast, the nature of the objective
function and constraints can be discriminated into linear, quadratic, or non-linear func-
tions. Combinations of these programming techniques lead to the classification made
in Appendix A. In the unit commitment problem, the most popular formulating option
is Mixed Integer Linear Programming. In turn, it can also be faced by Mixed Integer
Quadratic Programming (MIQP), Mixed Integer Quadratically Constrained Prog. (MIQCP),
Mixed Integer Second-Order Cone Programming (MISOCP), and Mixed Integer Non-Linear
Programming (MINLP).

3.2. Uncertainty Representation

The operation of real power systems is implicitly subject to uncertainty. The demand
forecasts are exposed to inaccuracy or sudden changes according to unexpected situations.
Furthermore, the penetration of renewable energy sources in current power markets in-
creases the uncertainty. Wind and solar generation entail the risk of altering the thermal
demand at any time. For those reasons, the consideration of uncertainty in the unit com-
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mitment problem enhances the reliability of the optimal schedule that is obtained. If the
election of representing uncertainty is made, there are several alternatives to transform a
deterministic problem into a probabilistic one. The most popular techniques applied to the
unit commitment problem are briefly described below and compared in Table 2.

• Stochastic Optimization (SO): This methodology manages the representation of un-
certainty through the utilization of probability distributions that are connected to
risk variables. These distributions can be directly included in constraints that require
some statistical parameters. Nonetheless, the most common practice is to consider
different scenarios. These scenarios are obtained through probability-distribution
discretizations. Each scenario has an associated weight according to its frequency of
occurrence.

– Two-Stage (TS) Stochastic Programming: This technique is based on dividing the
problem into two steps, distributing decision variables and constraints in these
stages. When the first step is accomplished, the first-stage choices are made. Later,
these decisions are considered fixed, and the second stage is solved. The two-
stage stochastic programming utilizes scenarios to consider uncertainty. When all
the scenarios are solved, a solution to the problem is calculated according to the
weight of each scenario. It has been widely applied in the UC literature [31–39].
It is widespread to decide which thermal units will be online along the time span
in the first stage. Thereafter, the optimal schedule is set in the second stage. Each
dispatch obtained in this stage corresponds to a scenario.

– Multi-Stage (MS) Stochastic Programming: This technique uses a combinatorial
tree where every combination of scenarios is represented. The tree is divided
into successive nodes that are linked. A branch represents the path between the
initial node and a final solution. The weights of scenarios are set in the linking
connection between nodes. Thus, it is easy to determine the probability of each
solution obtained when each branch is solved, which corresponds to a scenario.
Some of its applications to the unit commitment problem are [40–42]. Robust
solutions are provided, since decisions are taken dynamically. However, the
associated computational burden requires an excellent scenario sampling and
reduction to reach acceptable run times.

– Risk Consideration (RC) Stochastic Programming: This method is based on the ad-
dition of some constraints in order to respect the risk exposure of some decisions
when the problem is solved. These equations require statistical information of
the probability distributions as input and the significant value desired to respect.
Thus, a solution is obtained according to the confidence interval that is introduced
in the problem. This technique has been applied to the unit commitment problem
in order to represent situations such as the expected non served load, loss of load
probability, or the variance of the total profit [43–45].

– Chance Constrained (CCO) Stochastic Programming: It is considered a particular-
ization of two-stage stochastic programming. This technique allows the solution
to violate a set of constraints according to a predefined confidence level. As with
the risk consideration stochastic programming, it works with probability distribu-
tions instead of scenarios. However, the solution has a probabilistic touch. It will
be the optimal solution with a confidence interval, not according to a confidence
interval associated with risk variables [46–48].

• Robust Optimization (RO): The underlying idea of this methodology is to reach an
optimal solution avoiding the worst possible combination of circumstances that can
happen according to the uncertainty associated with the presence of risk variables.
Robust optimization does not work with probability distributions. It employs a
bounded range from which a risk variable can take its value. The bounds imposed on
the risk variables are applied in two ways. They are directly used as upper and lower
bounds in an inequality that is defined for each dimension in which the variables
are formulated and indirectly through the establishment of an uncertainty set. This
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uncertainty budget is linked to the deviation of the forecasted value associated with
each risk variable from their bounds along the evaluated horizon. It can not exceed
a predefined value. The more restrictive the uncertainty set is, the more robust the
obtained solution. The load demand is used as the target of RO in the unit commitment
problem [49–51].

• Interval Optimization (IO): This technique handles the uncertainty representation
through the creation of bounds according to a predefined confidence interval. Firstly,
a forecasted value is provided for each considered risk variable. Later, the confidence
interval is used to generate an envelope around the expected value. The higher
the value of the confidence interval, the tighter the bounding to the risk variable.
Afterwards, the problem is optimized at the expected central value of the interval,
being also capable of providing a feasible solution for those deviations from the
forecast that are contained inside the interval [52–54].

• Monte Carlo Simulation (MCS): The Monte Carlo methodology is frequently employed
to achieve an accurate sampling from a set of probabilistic distributions. However, it
can be extended to manage a complete uncertainty representation. In that case, the
obtained scenarios are optimized as deterministic problems. Later, the output data are
processed, and a probabilistic distribution is associated with each result [55–57].

• Hybrid Uncertainty Implementation (HUI): These techniques can be combined to
improve their performances. Some examples in the unit commitment literature
are [58–60].

Table 2. Comparison of uncertainty representation techniques used in the unit commitment problem.

Technique Advantages Disadvantages

SO-TS

Less conservative solution
Generally easy to implement

Working with discretized scenarios
Easy weight-assignment to each solution

Static assumption of uncertainty
Necessity of scenario-generation techniques
Necessity of scenario-reduction techniques

Information of probability distributions

SO-MS

Dynamic assumption of uncertainty
Accurate decision-making modeling
Working with discretized scenarios

Easy-traceable paths in the scenario tree
Easy weight-assignment to each solution

Curse of dimmensionality
Necessity of scenario-generation techniques
Necessity of scenario-reduction techniques

Information of probability distributions
Difficult construction of scenario trees

SO-RC
Flexible interval confidence for input data

Risk variables define robustness
Generally easy to implement

Necessity of statistical information
Working with probabilistic distributions

Solution according to a interval confidence

SO-CCO
Less conservative solution

Solution with a probabilistic touch
Flexible setting of violable constraints

Solution is not valid in some situations
Working with probabilistic distributions

Modeling demands extra binary variables

RO

Optimization over the whole horizon
Do not need probabilistic distributions

Flexible protection from adverse situations
Useful if forecasting deviations are bounded

Over-conservative solutions
Tight optimality/uncertainty set relation
Expertise to construct the uncertainty set

Difficult to incorporate uncertainty dynamics

IO

Easier to incorporate uncertainty dynamics
Do not need probabilistic distributions

Flexible protection from adverse situations
Useful if forecasting deviations are bounded

Over-conservative solutions
Tight optimality/forecasting bounds relation
Expertise to establish forecasting deviations
Optimization over particular central values

MCS

Computational efficiency
High-efficient sampling process

Working with discretized scenarios
Resolution process can be parallelized

Results have a probabilistic distribution

Implementation can be difficult
Necessity of scenario-generation techniques
Necessity of scenario-reduction techniques

Information of probability distributions
Solutions are not valid in some situations



Energies 2022, 15, 1296 9 of 40

3.3. Decomposition Techniques

Once the formulation of the unit commitment problem is chosen and the decision
of considering uncertainty or not is taken, it is time to evaluate if the application of
decomposition techniques to the problem is desirable. These techniques can be a powerful
tool to solve the unit commitment problem with reasonable run times. Although they
were frequently employed when the performance of numerical optimization solvers was
computationally limited, particularly the Lagrangian Relaxation, their use has drastically
decreased currently because of the advances in commercial solvers and disadvantages such
as its difficult implementation and convergence toward an optimal solution. However, the
application of decomposition techniques in the unit commitment problem is sometimes
addressed nowadays:

• Dantzig-Wolfe Decomposition (DWD): [33,40,61].
• Benders Decomposition (BD): [35,39,48].
• Lagrangian Relaxation (LR): [31,37,62].

3.4. Optimization Algorithms

Finally, when an optimization problem is completely defined, optimization algorithms
are applied to find an optimal or near-optimal solution to the problem. The resolution
techniques can be classified into numerical methods or meta-heuristic methods.

Numerical optimization (NO) is preferably used to solve the unit commitment problem.
In a first step, the improvements in these iterative algorithms were implemented directly by
researchers looking to enhance the resolution processes. Currently, commercial solvers have
advanced notoriously, and the research is focused on exploiting their properties as best as
possible. In order to solve MILP, MIQP, and MIQCP problems, two of the most renowned
commercial solvers are Gurobi [63] and CPLEX [64]. In addition, for MISOCP or MINLP
problems, MOSEK [65] and BARON [66] respectively offer one of the best performances.
For further information about NO, the reader is referred to [67].

On the other hand, evolutionary optimization (EO) is also applied to solve the unit
commitment problem. Although these methodologies can not guarantee finding an optimal
solution, they can handle more complex formulations without the necessity of utilizing too
many simplifications. These meta-heuristic algorithms are based on simulating behaviors
that are observed in nature to map the feasible region of an optimization problem looking
for the optimal solution. Many of these approaches have been employed to solve the unit
commitment problem:

• Genetic Algorithm (GA): [68].
• Simulated Annealing (SA): [69].
• Tabu Search Algorithm (TSA): [70].
• Evolutionary Programming (EP): [71].
• Particle Swarm Optimization (PSO): [72].
• Ant Colony Optimization (ACO): [73].
• Ant Lion Optimizer (ALO): [74].
• Artificial Bee Colony Algorithm (ABCA): [75].
• Artificial Fish Swarm Algorithm (AFSA): [76].
• Artificial Immune System Algorithm (AISA): [77].
• Artificial Sheep Algorithm (ASA): [78].
• Bacterial Foraging Algorithm (BFA): [79].
• Cuckoo Search Algorithm (CSA): [80].
• Differential Evolution Algorithm (DEA): [81].
• Exchange Market Algorithm (EMA): [82].
• Firefly Algorithm (FFA): [83].
• Fireworks Algorithm (FWA): [84].
• Gravitational Search Algorithm (GSA): [85].
• Grey Wolf Optimizer (GWO): [86].
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• Imperialist Competitive Algorithm (ICA): [87].
• Intensify Harris Hawks Optimizer (IHHO): [88].
• Memory Management Algorithm (MMA): [89].
• Quantum-Inspired Evolutionary Algorithm (QIEA): [90].
• Quasi-Oppositional Teaching Learning Based Algorithm (QOTLBA): [91].
• Shuffled Frog Leaping Algorithm (SFLA): [92].
• Sine–Cosine Algorithm (SCA): [93].
• Whale Optimization Algorithm (WOA): [94].

In turn, these algorithms can be combined with each other to achieve a better perfor-
mance, or even with commercial solvers if the problem is divided into multiple resolution
stages. Some examples in the unit commitment literature are in [95–99]. Furthermore, an
excellent state-of-art on EO is presented in [100].

4. Trends in Computational Efficiency to Solve the Unit Commitment Problem
4.1. Evolution of Unit Commitment Modeling Trends and Current Situation

In spite of the application of advanced evolutionary algorithms to the resolution of the
unit commitment problem, the mainstream research trend is the utilization of numerical
optimization algorithms to find the global optimum. As it was mentioned in Section 3, the
implicit computational burden of this problem limited the scope of numerical optimization.

In the beginning, research was mainly focused on improving optimization algorithms.
In turn, decomposition techniques were also deeply studied in order to accelerate the reso-
lution processes. Despite their computational advantages, the utilization of decomposition
techniques introduces complexity in the problem, such as difficulties in the implementation
or the oscillations in the iterative convergence to the optimal solution.

For that reason, when commercial solvers gained competitiveness, the research in the
UC problem started to change its direction. The advances in computation and the huge
developments in numerical optimization promoted an exponential enhancement of MIP
solvers [101]. Commercial solvers were able to address the unit commitment problem
in reasonable run times even if decomposition techniques were not utilized. Then, the
research began to focus on the formulation, instead of the decomposition, in order to exploit
the properties of the solvers efficiently.

Suddenly, it was possible to think about improving the detail representation in the
unit commitment problem. In turn, these advances needed to be in accordance with the
solver trends. The performance of MILPs was more developed than MIQPs or MIQCPs
and much more than MINLPs. For that reason, even quadratic formulations that were able
to be solved as is were linearized in order to achieve a faster resolution.

The foundations of the UC modeling were laid. The detailed representation of the
quadratic production costs was assumed through a piecewise linearization. Moreover, the
dependence between start-up costs and the offline time steps accounted by the thermal units
was modeled by a stairwise function [102]. The importance of convexity was manifested,
both for thermal units and hydro generators [103]. Regarding the reserves [104] and
power trajectories, efficient formulations were proposed to deal with them [105]. In these
formulations, it was usual to employ three binary variables for each thermal unit and time
step: one to define the commitment status and the others to represent a start-up or shut-
down process. Despite that, binary variables were also utilized for piecewise linearizations,
whose performance has been studied as well [106], and for stairwise representations [107].

Nevertheless, despite the improvements accomplished by the commercial solvers, the
UC remains a strongly NP-hard problem [108]. For that reason, if greater horizons, thermal
portfolios, or technical representations are desired, a trade-off between the modeling detail
and the size of the corresponding problem must be chosen.

Modeling simplifications are mandatory when bidding processes are included in the
representation [109], even more, if congestion in transmission lines is also desired to be
included [110]. In turn, disaggregation methods are studied as an alternative for extending
the scope of the representation. Ref. [111] breaks the horizons and solves shorter time
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spans sequentially. Ref. [112] decomposes the problem according to power market stages
to increase the detail and links them heuristically later. Ref. [113] links longer-term with
day-ahead decisions. Ref. [114] also uses multiple stages to simulate the competitive
behavior of the market players, and in [115], a sequential resolution is proposed, too.

Additionally, the efficiency of the formulations is continuously studied. The opti-
mization of the number of constraints and variables, especially binary variables, to model
the same operation is addressed in depth in order to gain accuracy without a high com-
putational cost. Ref. [116] points out the importance of reducing the number of binary
variables that are employed per thermal unit and time step. Meanwhile, Ref. [117] analyzes
the response of the same thermal portfolio when the optimization is addressed as a cost
minimization problem and as a PBUC. On the other hand, Ref. [118] studies how to increase
the flexibility in the operation efficiently, especially regarding fuel consumption.

According to the apparent complications introduced by binary variables, Ref. [119]
proposed to work with them as relaxed variables and penalize the non-integrality in the OF.
On the other hand, Ref. [120] uses a formulation with only one bin and imposes constraints
to achieve their integrality behavior after a more efficient resolution. This approach reduces
the number of branches that are created by the resolution algorithm because of the lower
binary variables defined. This philosophy is also adopted in [121], where bidding processes
are considered. Despite the defense of their utilization, the results of [121] show that the
conventional three-bin formulations achieve practically the same performances.

This issue was further studied in [122,123] where the tightness of a UC formulation
was defined as the proximity of the relaxed solution and the integer solution. These
solutions are desired to be close in order to enhance the performance of the solver. For that
reason, some additional constraints are proposed to tighten the feasible region when the
problem is relaxed in the iterations of the Branch & Cut. Moreover, Ref. [123] concludes that
the advances in commercial solvers cause the obsolescence of the formulation proposed
in [120], since the solver can manage the branch creation properly and utilizes integer
variables to generate cuts as well. If the integrability is not defined, the cuts will ignore
these continuous variables that should be integer ones, hindering the performance of the
solver. The Tight formulation proposed in [123] is quite renowned in the literature.

Tight formulations improve the performance of the solver by approximating the gap
in the resolution process. However, it is also important for the tightened relaxed problem
to be easy to solve. In that way, if many constraints are added, the computational cost of
this step will be notably increased. Ref. [124] defines the concept of compactness according
to the necessity of the lower number of variables, constraints, and non-zero elements in the
problem matrix. For that reason, it is mandatory to evaluate a trade-off between Tightness
and Compactness. Ref. [124] proposes a Tight and Compact (T&C) formulation where the
importance of power trajectories is exposed, as it is reiterated later in [125]. In [126], the
T&C formulation is extended to a thermal portfolio and, in [127], it is analyzed in depth and
improved. The T&C formulation with power trajectories is exploited to achieve a proper
evaluation of the reserve management in real operations of real power systems, Ref. [128]
and their properties are deeply studied in [129]. T&C remains a powerful and renowned
formulation nowadays.

Since that moment, UC formulations have tried to be as tight and compact as possible.
For this reason, the proposition made in [130] to apply perspective functions in the UC
problem was retaken. Perspective reformulations can be utilized to replace quadratic
constraints by linear or second-order cone programming [131], enhancing the resolution
process. The computational advances of [131] are exploited in [132] to develop an efficient
tight formulation. Moreover, this technique is evolved in [133–135] towards the proposition
of a two-bin formulation. Ref. [135] is a renowned formulation that projects the thermal
production in continuous variables that are bounded in [0, 1], and it does not need the
utilization of the shut-down binary variables.

On the other hand, the detail representation takes advantage of the computationally
advanced formulations, choosing their equations as efficient ways to model technical
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operations. In turn, they are complemented with aspects that are desired to be submitted
to study. That is the case of emission targets. The inclusion of emission targets in the
UC problem supposes its transformation to a multi-objective problem, which has to be
solved through heuristics [136–138]. However, it can be addressed as an MIP problem
by giving a penalty to the emissions in the OF, such as [139]. Moreover, non-convex
functions that represent emissions targets can be linearized, and the problem can rely
on some emission parameters that are introduced as input data [140]. In turn, modeling
transmission constraints is also gaining importance in detailed models [141,142] , as well as
considering non-conventional energy-storage options [143].

Meanwhile, important issues for solving the UC problem are also studied, such as
the presence of symmetry [144]. This phenomenon occurs when there are several identical
generation units. In that case, the resolution process is slower because the solver does
not cut branches that offer the same solution with a different combination of scheduled
units. Symmetric-breaking constraints are added to avoid these situations [145], and their
performances are compared against the developments in commercial solvers to handle
with symmetry [146]. There is not a clear consensus. Apparently, current solvers can deal
with symmetry properly, although the constraints seem to be useful in small size problems
[147]. Furthermore, this symmetry can be exploited; Ref. [148] solves aggregated units and
later decomposes the results after the optimization.

In turn, the current trends of renewable-energy-sources penetration in modern power
systems point out an increment in the amount of start-up and shut-down processes ac-
counted by thermal generators [149]. These ongoing changes highlight the necessity of
extending the horizon of the UC problem [150] for considering medium-term technical
constraints, such as maintenance schedule [151]. This could be achieved through clustering
techniques such as [152]. The reduction of variables due to the aggregation of identical
generators can be harmonized with an extension of the time span, keeping the run times as-
sumed before the clustering. According to the research gap for enhancing the start-up costs
[153], a more accurate stairwise function representation is presented in [154], and a new
efficient formulation is proposed in [155]. Furthermore, more detailed generation sched-
ules can be obtained by considering the possible turbine configurations of a power plant.
With this purpose, a tight and compact formulation to represent this accurate operation is
presented in [156].

The more efficient modeling techniques are translated into more accurate models
with a higher scope. Ref. [157] is focused on a more detailed representation of thermal
units, hydro generators, and pumped storage with a clear differentiation between turbine-
production and pumping processes, as well as upper and lower reservoirs with their
respective inflows. Ref. [158] models these issues and a simplified transmission network,
too. The transmission representation was enhanced in [159] and later complemented with a
simplified natural gas network in [160], where fluctuating natural gas flows in the pipelines
toward the thermal unit that consume this fuel are considered.

Finally, it is important to highlight that new efficient formulations have been proposed
during the last years. Ref. [161] is specially designed for fast-ramping thermal units.
In [162], the commitment status binary variables are replaced by transition state variables,
achieving great computational results. These renowned formulations [126,135,162] are
compared in [163], manifesting the good performance of [126] despite being proposed a
few years earlier than the others. Another comparison and new formulations are exposed
in [164], pointing out the importance of this research field nowadays. Additionally, a
standardized method to test formulations is employed, and an excellent explanation of the
unit commitment evolution since a formulating point of view is described.

4.2. Precise Description of the Modeling Detail Adopted in the Literature

As it was manifested in [164], it is essential to establish a standardized benchmark to
compare the efficiency of the unit commitment formulations. Despite traditional thermal
portfolios [165] and power systems such as the IEEE 118-bus [166,167], or the IEEE RTS-96
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[168] are frequently employed in the literature, it is also desirable to set other relevant issues.
These concerns are different modeling details, algorithm performances, solver options, and
computational resources to handle the optimization process.

The unit commitment is a widely studied optimization problem, and, as a consequence,
there are several good reviews on this topic. Recent publications are [100,169–175]. There,
comparisons about optimization techniques [169,170], uncertainty representation [171,172],
and resolution techniques [100,173,174] are presented. However, advantages and disadvan-
tages are usually exposed from a general perspective, as shown in Tables 1 and 2.

The literature reviews proposed in [100,173,174] gathered hardware specifications
(if given), case study systems, run times, and a general explanation about the UC constraints
that were employed in their references. Nevertheless, a more exhaustive analysis on
modeling detail is necessary if a clear vision of the scope of the citations is required. On
the other hand, an intensive description of UC modeling is made in [175], but a literature
benchmark with the modeling properties of a set of different case studies and methodologies
is not presented.

For that reason, bringing out a structured presentation of the modeling detail achieved
through the different techniques referenced in this paper satisfies one of the most urgent
requirements of the literature reviews. A general description of the technical and economic
aspects represented in the unit commitment problem is made in Section 1. Although the
theoretical scope of the representation is practically unlimited, reality demands a tight trade-
off between modeling detail, system size, and computational resources to find an optimal
or near-optimal solution. Considering that, Table 3 exposes a meticulous characterization
of these features.

This summary provides the reader with a precise vision of the trade-off decisions
assumed by the different authors when presenting their methodologies. An exact idea
about the accuracy of the represented power system (detail, size, and horizon) and the
corresponding computational tractability (run time and optimality of the solution) is given.
In this way, the reader can discern between the scopes of the optimization proceedings pre-
sented in this paper, keeping in mind that it is a small collection of the most representative
techniques applied to solve the unit commitment problem.

According to the information gathered in Table 3, the following clarifications are done:

• The number of segments in piecewise linearizations is specified when they are re-
ported. If they are not given in the table, it means that quadratic coefficients were
presented in the paper, and the author just said that the function was linearized.

• Hourly granularity is considered unless another specification is shown in the time
span column. Additionally, time period chronology is also supposed to be respected
except if a disaggregation technique is mentioned in that column.

• The symbol (r) means replication. It is shown when the number of units that compose
a generation portfolio is repeated to deal with bigger systems in the case study or
when the data presented for a shorter time span (typically a day) are imitated to
make it longer. It entails computational conditions such as symmetry or identifiable
patterns.

• The information presented in the demand constraint column denotes the elements
that participate in the balance equation. If it is described as equal or greater, the unit
commitment problem is addressed as a cost minimization problem where the load
demand has to be matched or exceeded, respectively. In the case of PBUC, it is assumed
that the maximization has no generation limits unless a (lower) term is added to show
that total generation must not exceed the load demand.

• The information presented in the reserve constraints column is not always consistent.
Some systems include spinning reserve in primary, secondary, or tertiary reserves.
However, other systems establish different distinctions. The reserve dependence on
the regulatory framework is out of the scope of this review. For that reason, reserves
are shown as they are specified in each paper.
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• The operative constraints column is sometimes used to show miscellaneous informa-
tion, such as hydro representation, market specifications, etc., for the sake of clarity.
Thus, the whole case study information is presented in the same row and table, despite
space limitations.

• The optimal column determines the capability of the proposed methodology to assure
finding the global optimum. In turn, when the paper reports the value of the relative
optimality criterion, which is imposed on MIP solvers, it is also exposed in this column.
This optimality gap is the quotient of the difference between primal and dual bound,
in absolute value, and the maximum of both. This feature can be specified before
solving an MIP problem. It should not be confused with the dual gap (defined when
decomposition techniques are applied) or the integrality gap (calculated when the
optimization ends). It clarifies the scope of the methodologies, providing a significant
idea about their efficiency and the trade-off between modeling detail, run time, and
computational performance.

• Executions are made in regular computing machines up to the date of the publications
to whom any researcher could have access. If they are run in high efficient clusters,
whose affordability is limited to generation companies or universities, it will be
specified in the run time column.

• The data used in each case study are supposed to be given or properly cited. If
some technical or economic aspect is modeled, but any input data are provided, it is
specified with a (*). Moreover, if these data are apparently given, but the link is offline
by the date that this review is sent to the publisher or the referenced article does not
provide the information, it is specified with a (**).

• The generation limits of the thermal units are always considered to be given, except if
the rest of the information is also missing.

• If there is at least one start-up cost represented in the methodology, the logic constraint
that establishes commitments, start-ups, and shut-downs is formulated.
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Table 3. Technical and economic modeling detail accomplished in the literature to represent power systems and computational performance of the methodologies.

Ref Method Production
Cost

Start-up
Cost

Shut-down
Cost

Emission
Cost

Mainten.
Cost

Demand
Constraint

Reserve
Constraints

Ramp
Limits

TU/TD
Constraints

Emission
Constraints

Operative
Constraints

Network
Constraints Optimal Problem

Size
Time
Span

CPU
Time

[2] EE quadratic 1 SU - - yes
equal
NSE
OE

- - - - - - near-opt. 10 units
1 year

through 6
time steps

-

[3] ES linear 1 SU - - -
base level
mid. level
peak level

- - - - - - near-opt. 26 units 24 h ∼20 min

[4] PL quadratic 2 SU - - - equal primary - yes - - - near-opt.

10 units

100 units (r)

100 units (r)

24 h

24 h

120 h

0.01 s

0.06 s

<1 s

[5] PL quadratic 2 SU - - - equal spinning yes yes - - - near-opt.
10 units

100 units (r)
24 h

2 s

174 s

[6] PL quadratic 2 SU - - - equal spinning yes * yes - - - near-opt.
10 units

100 units (r)
24 h

0.154 s

0.275 s

[7] PL quadratic 2 SU - - -
equal

ND-RES
EVs

spinning - yes -
battery capacity limits

charge/discharge limits
charge/discharge efficiency

- near-opt.

10 units
1 wind gen.
1 solar gen.
50000 PEVs

24 h -

[8]
FL

OP(CO)
PSO

quadratic 2 SU - - - equal spinning - yes - - - near-opt.
10 units

100 units (r)
24 h

18.34 s

1734.67 s

[9]
FL

OP(CO)
heur. alg.

quadratic 1 SU - - - PBUC - yes yes - - - near-opt.
5 units

36 units
24 h -

[10]
FL

OP(CO)
PSO

quadratic 2 SU - - -

equal
dem. response

ND-RES
ND-RES-C

EVs

spinning - yes
calculated

after
resolution

demand response—curtailment
demand response—shifting

battery capacity limits
charge/discharge limits
quadratic charging cost

quadratic discharging cost

- near-opt.
10 units

1 wind gen.
EVs

24 h -

[11] NN quadratic * - - - - equal - - - - - - near-opt.
26 units

11 units

24 h

168 h
-

[12] NN quadratic 2 SU - - - equal spinning * yes * yes - prohibited operating zones - near-opt. 10 units 24 h <0.02 s

[14]
HM
ES &

OP(DP)
quadratic exponential - - - PBUC

lower - - yes - - - near-opt. 110 units 24 h 15 min

[15]
HM

NN &
OP(DP)

quadratic exponential - - - equal spinning - yes -
must run units

prohibited operating zones
quadratic generation losses

- near-opt. 7 units 24 h 4.5 s

[16]

HM
NN &
PL &

OP(CO)

quadratic
exponential

1 SU
- - - equal spinning yes yes - - - near-opt.

26 units

45 units
24 h

2.17 s

1.84 s
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Table 3. Cont.

Ref Method Production
Cost

Start-up
Cost

Shut-down
Cost

Emission
Cost

Mainten.
Cost

Demand
Constraint

Reserve
Constraints

Ramp
Limits

TU/TD
Constraints

Emission
Constraints

Operative
Constraints

Network
Constraints Optimal Problem

Size
Time
Span

CPU
Time

[17]
HM
PL &

OP(CO)
quadratic 2 SU - - - equal spinning - yes - - - near-opt.

10 units

100 units (r)
24 h

10 s

73 s

[18]

HM
PL &
FL &

OP(DP)
SA

quadratic 2 SU - - - equal spinning yes yes - - - near-opt.
10 units

100 units (r)
24 h -

[19]

HM
PL &

OP(CO)
ACO

quadratic 2 SU - - - equal spinning - yes - - - near-opt.
10 units

40 units (r)
24 h

252 s

2578 s

[20]

HM
ES &

OP(CO)
PSO

quadratic 2 SU - - - equal spinning yes yes - must run units* - near-opt.

10 units

100 units (r)

40 units

24 h

24 h

168 h

3 s

143 s

1661 s

[21]

HM
PL &

OP(CO)
PSO

quadratic

2 SU

2 SU

-

- - - equal spinning

-

-

yes

yes - - - near-opt.

10 units

100 units (r)

26 units

24 h

20 s

1700 s

906 s

[25]
OP(DP)

heuristics
heur. alg.

quadratic 1 SU - - - equal - yes * yes - - - near-opt. 1 unit

24 h

96 h

168 h

<1 s

[26]
OP(DP)

heuristics
heur. alg.

quadratic ** 1 SU ** - - - equal ** - yes ** yes ** - - - near-opt. 200 unit (r) 24 h 134 s

[27]

OP(DP)

OP(DP)
heuristics

OP(DP)
heuristics

quadratic 2 SU - - - equal spinning * - yes - - -

yes

near-opt.

near-opt.

10 unit 24 h

458 s

12 s

63 s

[28]

OP(DP)
heuristics

SO-MS
MILP solver

linear 1 SU 1 SD - - equal - yes yes - - flow limits near-opt.
24 buses
38 lines
33 units

24 h -
225 scen.

[29]

OP(DP)
heuristics

SO-MS
MIP solver

non specified
function 1 SU 1 SD - -

equal
NSE
OE
TL

spinning yes yes - SU/SD capacity limits flow limits
shift factor near-opt.

118 buses
181 lines
54 units

24 h
∼1.25 h
50 scen.
16 cores
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Table 3. Cont.

Ref Method Production
Cost

Start-up
Cost

Shut-down
Cost

Emission
Cost

Mainten.
Cost

Demand
Constraint

Reserve
Constraints

Ramp
Limits

TU/TD
Constraints

Emission
Constraints

Operative
Constraints

Network
Constraints Optimal Problem

Size
Time
Span

CPU
Time

[30]

OP(DP)
heuristics

SO-MS
MIP solver

quadratic ** 1 SU ** 1 SD ** - -

equal **
ND-RES **

ND-RES-C **
TL **

spinning **
operative ** yes ** yes ** -

SU/SD capacity limits **
CCGT configuration modes

capacity limits per mode
ramp rates per mode
ramp rates per edge
TU/TD per mode

SU/SD cost per mode
mode transition costs
gas fuel rates for gens.
pipelines—cap. limits

gas sources—cap. limits
compressors—comp. ratios

flow limits **
shift factor ** near-opt.

24 buses
38 lines
33 units
6 CCGTs

2 wind gen.

24 h
by 30 min
time steps

∼28.3 min
200 scen.

[31]
OP(CO)
SO-TS

MILP solver
linear ** 1 SU ** - - -

equal
ND-RES

TL
- - yes ** - -

flow limits **
reactances **

phase angles **
yes

225 buses
375 lines
130 units
wind gen.

24 h

∼5.7 h
10 scen.
10 cores

∼7.4 h
50 scen.
50 cores

[32]
OP(CO)
SO-TS

MILP solver

stepwise
marginal cost

function
1 SU - - -

equal
NSE

ND-RES
ND-RES-C

non-spinning yes * yes * -
interval ramp capabilities *

SU/SD durations *
SU/SD power outputs *

- yes
0.1% gap

29 thermal
17 hydro

1 wind gen.

1 year
by 15 min
time steps
and 36 h

look ahead
horizons

177 h
9 scen.

[33]
OP(CO)
SO-TS

MILP solver
linear ** 1 SU ** - - -

equal
ND-RES

ESS
spinning ** yes ** yes ** -

reservoir energy limits **
turb. and pump. limits **

pumping efficiency **
flow limits ** yes

0.1% gap

27 lines
130 units
16 PSUs

24 h ∼375 min
50 scen.

[34]
OP(CO)
SO-TS

MILP solver
marginal cost 1 SU - - -

equal
NSE
TL

reserve yes -

hourly max.
gen-emiss.

(2-block
piecewise)

max. reserve per unit

flow limits
voltage limits

reactances
phase angles

yes
0.0001%

gap

118 bus
186 lines

25 coal plants
24 h 1.7 h

30 scen.

[35]
OP(CO)
SO-TS

MILP solver
linear 1 SU 1 SD - -

equal
NSE
HS

ND-RES
ND-RES-C

TL

spinning 1&2
tertiary spin.
non-spinning

yes yes -

spinning 1&2 r. cost
tertiary spin. r. cost
non-spinning r. cost

reservoir inflows
reservoir spillage

reservoir volume limits
reservoir discharge limits

flow limits
shift factor yes

9 bus
9 lines

3 thermal
1 hydro

2 wind gen.

118 bus
179 lines

54 thermal
8 hydro

168 h

10 min
5 scen.

1 h 55 min
1 scen.

[36]
OP(CO)
SO-TS

heur. alg.
piecewise ** stairwise ** - - -

equal
ND-RES

ND-RES-C
spinning ** yes ** yes ** - - - near-opt.

240 bus
448 lines

85 thermal
wind gen.

24 h

∼200 s
50 scen.

∼800 s
100 scen.
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Table 3. Cont.

Ref Method Production
Cost

Start-up
Cost

Shut-down
Cost

Emission
Cost

Mainten.
Cost

Demand
Constraint

Reserve
Constraints

Ramp
Limits

TU/TD
Constraints

Emission
Constraints

Operative
Constraints

Network
Constraints Optimal Problem

Size
Time
Span

CPU
Time

[37]
OP(CO)
SO-TS

MILP solver
linear 1 SU - - -

equal
HS
TL

spinning yes yes -

reservoir inflows
reservoir spillage

reservoir final volume
reservoir volume limits

reservoir discharge limits

flow limits
shift factor yes

83 bus
143 lines

15 thermal
28 hydro

24 h

15 min
4 scen.

69 min
9 scen.

149 min
15 scen.

326 min
25 scen.

[38]
OP(CO)
SO-TS

MILP solver
linear ** 1 SU ** - - - equal

NSE reserve ** yes ** yes ** -

flexible line rating recourse
(off, normal, high)

line min. hours normal **
line max. hours high **

flow limits **
reactances **

phase angles **
yes

364 bus
594 lines

113 slow units
26 fast units

24 h 18 h
10 scen.

[39]
OP(CO)
SO-TS

MIP solver
piecewise ** 1 SU ** - - -

equal
NSE

ND-RES
ND-RES-C

ESS
TL

- yes ** yes ** -
expected unserved energy

ESS charge ramp rates
ESS discharge ramp rates

flow limits **
shift factor ** yes

39 bus
46 lines
10 units

1 wind gen.
1 ESS

24 h 551 s
4 scen.

[40]
OP(DP)
SO-MS

MIP solver
quadratic 1 SU - - - greater - - yes - - - yes

10 units

20 units (r)

10 units

20 units (r)

24 h

24 h

48 h (r)

48 h (r)

79 s
2 scen.

379 s
2 scen.

7117 s
4 scen.

8962 s
4 scen.

[41]
OP(DP)
SO-MS

MILP solver
linear ** - - - yes **

piecewise
residual

demand and
revenue curves
10-20 blocks **

- yes ** yes ** -

generation company offers
self-consumption in units
reservoir energy inflows
reservoir energy limits
reservoir energy splits
turb. and pump. limits

pumping efficiency

- yes
Spanish market
company with

20 units

168 h
with 24 h

look ahead
capacity

∼1500 s
8 scen.

[42]
OP(DP)
SO-MS

MILP solver
linear 1 SU - - - equal - yes yes -

spinning reserve costs
payments for possible
being committed for a

particular hour

- yes
5% gap 32 units

24 h
(discrete)

24 h
5 min data
continuous
cubic spline

40 min
24 scen.

67 h
24 scen.

[43]
OP(CO)
SO-RC

MILP solver

piecewise
(3 blocks) 1 SU - - -

equal
NSE
TL

spinning yes yes -
expected energy not served

loss of load probability
unit outage probability

flow limits
reactances

phase angles
yes

73 bus
147 lines

96 units (r)
24 <1 h

[44]
OP(CO)
SO-RC

MILP solver

piecewise
(3 blocks) 1 SU - - - equal

NSE spinning yes yes -
expected energy not served

loss of load probability
unit outage scenarios

- yes
0.5% gap 96 units (r) 24 <1200 s
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Table 3. Cont.

Ref Method Production
Cost

Start-up
Cost

Shut-down
Cost

Emission
Cost

Mainten.
Cost

Demand
Constraint

Reserve
Constraints

Ramp
Limits

TU/TD
Constraints

Emission
Constraints

Operative
Constraints

Network
Constraints Optimal Problem

Size
Time
Span

CPU
Time

[45]
OP(CO)
SO-RC

MILP solver
linear 1 SU - linear -

equal
NSE

ND-RES
ND-RES-C

ESS

spinning yes yes -

expected energy not served
loss of load probability
reservoir energy limits
turb. and pump. limits

pumping efficiency

- yes
0.5% gap

71 slow units
35 fast units

1 PSU

24 h
by 15 min
time steps

5.5 h to
6.9 h

[46]
OP(CO)
SO-CCO

MIP solver
quadratic 1 SU - - -

equal
ND-RES

TL

spinning
non-spinning yes yes -

reserve ramp limits
spinning reserve costs
non-spin. reserve costs

wind farm outages

flow limits
shift factor yes

30 bus
41 lines
6 units

2 wind gen.

24 h tens of
minutes

[47]

OP(CO)
heuristics
SO-CCO

MILP solver

linear 1 SU - - -

equal
NSE

ND-RES
ND-RES-C

TL

spinning yes yes -

reserve costs
loss of wind probability
loss of load probability
trans. line overloading

trans. line overload. prob.

flow limits
shift factor near-opt.

118 bus
186 lines

15 fast units
3 wind gen.

24 h 432.6 s

[48]
OP(CO)
SO-CCO

MILP solver
linear 2 SU 1 SD - -

equal
NSE

ND-RES
ND-RES-C

TL

spinning yes yes - spinning reserve costs
SU/SD capacity limits

flow limits
shift factor

yes
0.5% gap

118 bus
186 lines
54 units

10 wind gen.

24 h 1092 s
500 scen.

[49]
OP(CO)

RO
MILP solver

piecewise
(3 blocks) 2 SU - - -

equal
ND-RES

ND-RES-C
TL

reserve yes yes -

1 EIE is composed by
· Electricity generators
· EFs (batch operation)

· EAs (always on)

flow limits
shift factor yes

24 bus
40 lines

32 units (r)
1 wind gen.

1 EIE =
4 gen. units

12 EFs
1 EA

24 h 175.74 s

[50]
OP(CO)

RO
MILP solver

linear 2 SU 1 SD - -

equal
NSE

ND-RES
ND-RES-C

TL

spinning yes yes -

power trajectories
SU/SD durations

SU/SD power trajectories
wind generation bids

flow-limit violation penalties

flow limits
shift factor yes

118 bus
186 lines
54 units

3 wind gen.

24 h 13.8 s

[51]
OP(CO)

RO
MILP solver

piecewise 1 SU - - - greater - yes yes -

prohibited operating zones
SU/SD capacity limits

dynamic ramp rates
reservoir inflows
reservoir spillage
cascade reservoirs

reservoir volume limits
reservoir discharge limits

- yes 54 thermal
8 hydro 24 h -

[52]
OP(CO)

IO
MILP solver

piecewise 2 SU - - -

equal
ND-RES

ND-RES-C
TL

spinning
operative yes yes

horizon max.
gen-emiss. **
SU emiss. **
SD emiss. **

- flow limits
shift factor yes

118 bus
186 lines
54 units

3 wind gen.

24 h 73 s

[53]
OP(CO)

IO
MILP solver

piecewise 1 SU - - -

equal
ND-RES

ND-RES-C
TL

spinning yes yes - max. spin. reserve per unit flow limits
shift factor yes

118 bus
186 lines
54 units

4 wind gen.

24 h 246.39 s
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[54]
OP(CO)

IO
MILP solver

piecewise 1 SU - - -

equal
ND-RES

ND-RES-C
TL

- yes yes - -
flow limits
reactances

phase angles

yes
1% gap

73 bus
147 lines

96 units (r)
4 wind gen.

24 h <2500 s

[55]
OP(CO)

MCS
MIP solver

non specified
function 1 SU - - -

equal
ND-RES

TL

spinning
operative yes yes - -

flow limits
reactances

phase angles
yes

118 bus
186 lines
76 units

1 wind gen.

24 h <30 min
10 scen.

[56]
OP(CO)

MCS
rMIP solver

linear * 1 SU * 1 SD * linear * yes *

equal *
NSE *
OE *
HS *

ND-RES *
ND-RES-C *

ESS *
imports
exports

spinning * yes * yes * -

competitive gen. companies *
unplanned unavailabilities *

programmed mainten. *
hydro condition profiles *
reservoir energy inflows *
reservoir energy limits *
turb. and pump. limits *

pumping efficiency *
cascade reservoirs *

run-of-river generation *
wind generation profiles *
solar generation profiles *
regulatory framework *

flow limits
at system
interconn.
facilities *

yes

Spanish system
800,000 variables

350,000 const.
after presolve?

1–2 month
through
≤40 time

steps

<2 min
(relaxed)
per scen.

[57]
OP(CO)

MCS
rMIP solver

linear * 1 SU * 1 SD * linear * yes *

equal *
NSE *
OE *
HS *

ND-RES *
ND-RES-C *

ESS *
imports
exports

spinning * yes * yes * -

competitive gen. companies *
unplanned unavailabilities *

programmed mainten. *
hydro condition profiles *
reservoir energy inflows *
reservoir energy limits *
turb. and pump. limits *

pumping efficiency *
cascade reservoirs *

run-of-river generation *
wind generation profiles *
solar generation profiles *

grid-stability commitments *
regulatory framework *

flow limits
at system
interconn.
facilities *

yes

Spanish system
French system

Portuguese system
1120000 variables

720000 const.
after presolve

3 year
through
940 time

steps

∼2000 s
(relaxed)
per scen.

[58]

OP(CO)
HUI

SO-TS &
SO-RC

MILP solver

piecewise 1 SU - - -

equal
NSE

ND-RES
ESS
TL

spinning * yes yes -

electricity price elasticity
max. spin. reserve per unit
ESS generation capacities

ESS storage capacities
loss of load probability

flow limits
reactances

phase angles
yes

118 bus
186 lines
54 units

1 wind gen.
4 ESSs

24 h ∼60 min
100 scen.
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[59]

OP(CO)
HUI

SO-TS &
IO

MILP solver

piecewise
(3 blocks) 2 SU - - -

equal
NSE

ND-RES
ND-RES-C

TL

- yes yes - -
flow limits
reactances

phase angles

yes
0.1% gap

24 bus
40 lines

32 units (r)
1 win gen.

24 h

∼800 s
10 scen.
hour 1
switch

SO→IO

∼15,000 s
10 scen.
hour 24
switch

SO→IO

[60]

OP(CO)
HUI

SO-TS &
RO

MILP solver

linear 1 SU - - -

equal
NSE

ND-RES
ND-RES-C

TL

- yes yes - SU/SD capacity limits **
flow limits
reactances

phase angles

yes
0.03% gap

73 bus
147 lines

96 units (r)
15 win gen.

24 h 1322.7 s
50 scen.

[61]
OP(DP)

heuristics
MIP solver

quadratic 1 SU - - - greater - - yes - - - near-opt. 20 units (r) 24 h 137 s

[62] OP(CO)
heur. alg. quadratic 2 SU - - - equal spinning - yes - - - near-opt. 29 units (r) 24 h ∼37 s

[68] OP(CO)
GA quadratic 2 SU - - - equal spinning yes * yes - - - near-opt.

10 units

100 units (r)
24 h

3.4 s

21.6 s

[69] OP(CO)
SA quadratic exponential - - - equal spinning - yes - - - near-opt. 12 units 24 h 2 h 25 min

[70] OP(CO)
TSA quadratic 1 SU - - - greater spinning - yes - bounded spinning reserve - near-opt. 40 units 24 h 187 s

[71] OP(CO)
EP quadratic 2 SU - - - equal spinning - yes - - - near-opt. 100 units (r) 24 h 1 h 42 min

[72] OP(CO)
PSO quadratic 2 SU - - - equal spinning yes yes - - - near-opt. 10 units 24 h ∼9 s

[73] OP(CO)
ACO quadratic 2 SU - - - equal spinning yes * yes - - - near-opt.

10 units

100 units (r)
24 h

39 s

1535 s

[74] OP(CO)
ALO quadratic 2 SU - - - equal spinning - yes - - - near-opt. 10 units 24 h ∼4 min
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[75] OP(CO)
ABCA quadratic 2 SU - - - PBUC

lower - - yes - - - near-opt.

10 units

100 units (r)

1000 units (r)

10 units

100 units (r)

1000 units (r)

24 h

135.23 s
(1 core)

1216.08 s
(1 core)

8456.52 s
(1 core)

14.87 s
(20 cores)

109.16 s
(20 cores)

457.24 s
(20 cores)

[76] OP(CO)
AFSA quadratic 1 SU - - - PBUC

lower spinning yes yes - - - near-opt.
10 units

100 units (r)
24 h

∼13.25 s

∼664.52 s

[77] OP(CO)
AISA quadratic 2 SU - - - PBUC

lower spinning * - yes - - - near-opt. 10 units 24 h 81 s

[78] OP(CO)
ASA quadratic 2 SU - - -

equal
ND-RES

ESS
spinning - yes - reservoir energy limits

turb. and pump. limits - near-opt.

10 units
1 PSU

1 wind gen.
1 solar gen.

24 h -

[79] OP(CO)
BFA quadratic 2 SU - - - equal spinning * yes * yes - - - near-opt.

10 units

100 units (r)
24 h

110 s

5800 s

[80] OP(CO)
CSA quadratic 2 SU - - - equal spinning - yes - - - near-opt. 4 units 8 h 1.91 s

[81] OP(CO)
DEA quadratic 2 SU - - - equal spinning - yes - - - near-opt.

10 units

100 units (r)
24 h

27.4 s

663.9 s

[82] OP(CO)
EMA quadratic - - - - equal - yes - - prohibited operating zones

generation losses - near-opt. 15 units 1 time step <1 s

[83] OP(CO)
FFA quadratic 2 SU - - - equal spinning yes * yes - - - near-opt. 100 units (r) 24 h 113 s

[84] OP(CO)
FWA quadratic 2 SU - - -

equal

PBUC
lower

spinning yes yes - - - near-opt.

10 units

100 units (r)

10 units

100 units (r)

24 h

61.57 s
(equal)

1039.80 s
(equal)

58.77 s
(PBUC)

1124.87 s
(PBUC)

[85] OP(CO)
GSA quadratic - - - - equal - - - - fuel cost of valve points

(sinusoidal function) - near-opt. 13 units 1 time step 150.32 s

[86] OP(CO)
GWO quadratic 2 SU - - -

equal
ND-RES

ND-RES-C
- yes yes - - - near-opt. 10 units

1 wind gen. 24 h -
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[87] OP(CO)
ICA quadratic 2 SU - - - equal

TL - yes yes
horizon max.

gen-emiss.
(quadratic)

reactive generation limits flow limits
voltage limits near-opt.

118 bus
186 lines
54 units

24 h 71.2 s

[88] OP(CO)
IHHO quadratic * 1 SU * - - - equal * spinning * - yes * - - - near-opt. 10 units 24 h -

[89] OP(CO)
MMA quadratic 1 SU - - - PBUC

lower spinning - - - - - near-opt. 10 units 24 h -

[90] OP(CO)
QEIA quadratic 2 SU - - - equal spinning - yes - - - near-opt.

10 units

100 units (r)
24 h

∼30 s

∼300 s

[91] OP(CO)
QOTLBA quadratic 2 SU - - - equal spinning yes * yes - - - near-opt. 100 units (r) 24 h 61.4 s

[92] OP(CO)
SFLA quadratic 2 SU - - - equal spinning - yes - - - near-opt. 10 units 24 h -

[93] OP(CO)
SCA quadratic 2 SU - - - PBUC

lower spinning yes * yes - - - near-opt. 10 units 24 h 34.86 s

[94] OP(CO)
WOA quadratic 2 SU - - - PBUC

lower spinning yes * yes - - - near-opt. 10 units 24 h 37.86 s

[95] OP(CO)
BFA & GA quadratic

1 SU

2 SU

2 SU

- - - equal spinning yes yes - - - near-opt.

38 units

10 units

100 units (r)

24 h

459 s

41 s

4503 s

[96] OP(CO)
EP & PSO quadratic 2 SU - - - PBUC spinning yes yes - bilateral contracts - near-opt. 10 units 24 h -

[97] OP(CO)
DE & SM quadratic 1 SU - - - PBUC

lower spinning - yes - - - near-opt. 10 units 24 h 116 s

[98] OP(CO)
DE & PSO quadratic 1 SU 1 SD - - equal

TL - yes yes - TSO-DSO coordination
1 DSs bus ∼5 generators

flow limits
reactances

phase angles
near-opt.

118 bus
186 lines
54 units

2 DSs

118 bus
186 lines
54 units
32 DSs

24 h
2.53 s

279.13 s

[99] OP(CO)
SA & PSO quadratic 2 SU - - - equal spinning - yes - - - near-opt. 10 units 24 h -

[102] OP(CO)
MILP solver

piecewise
(3 blocks) 11 SU 1 SD - - PBUC spinning yes yes - SU/SD capacity limits - yes 1 unit 24 h slight



Energies 2022, 15, 1296 24 of 40

Table 3. Cont.

Ref Method Production
Cost

Start-up
Cost

Shut-down
Cost

Emission
Cost

Mainten.
Cost

Demand
Constraint

Reserve
Constraints

Ramp
Limits

TU/TD
Constraints

Emission
Constraints

Operative
Constraints

Network
Constraints Optimal Problem

Size
Time
Span

CPU
Time

[103] OP(CO)
MIP solver

piecewise *
(3 blocks) 1 SU 1 SD - -

equal
HS

imports
exports

spinning * - yes -

spinning reserve bounds
reservoir inflows *
reservoir spillage *
cascade reservoirs *

reservoir volume limits *
reservoir discharge limits
HR function (piecewise) *

reservoir SU/SD costs
reservoir TU/TD

import/export limits
import loss coefficient *
export loss coefficient *
system loss coefficient *

- yes
13 thermal
16 hydro

1 intercon.
24 h ∼69 s

[104] OP(CO)
MILP solver

piecewise
(10 blocks) 11 SU 1 SD - - PBUC

10 min spinning
10 min non-spin.
30 min operative

yes - -
power trajectories

SU/SD capacity limits
AGC representation

- yes 1 unit 24 h 51.51 s

[105] OP(CO)
MILP solver linear 1 SU 1 SD - - PBUC - yes yes -

power trajectories
SU/SD durations

SU/SD power trajectories
- yes 1 unit

24 h

48 h (r)

96 h (r)

168 h (r)

0.66 s

4.10 s

14.35 s

153.01 s

[107]
OP(DP)
SO-MS

MILP solver
piecewise * stairwise * - - - greater

ESS spinning * - yes * -
reservoir energy limits
turb. and pump. limits

pumping efficiency
- yes 25 thermal

7 PSUs 192 h

97.61 s
3 scen.

305.43 s
9 scen.

569.18 s
15 scen.

794.93 s
22 scen.

[109] OP(CO)
MILP solver

piecewise
(4 blocks) 1 SU - - -

residual
demand and
price-quota

curves

- yes yes - - - yes

40 units in
portfolio
120 units
in market

24 h ∼15 min

[110] OP(CO)
heur. alg. quadratic - - - -

piecewise
supply
curve

TL

- - - - -
flow limits
reactances

phase angles
near-opt.

8 bus
11 lines
6 units

24 h -

[111] OP(CO)
heur. alg. quadratic exponential - - - equal primary

secondary yes yes - - - near-opt. 10 units 24 h 19 s

[112]
OP(CO)

heuristics
MILP solver

linear * 2 SU * 1 SD * - -

equal *
NSE
HS
ESS

spinning * yes * - -

reservoir inflows
reservoir spillage

reservoir final volume
reservoir volume limits

reservoir discharge limits
HR func. (3-block piecewise)

pumping capacity limits
pumping efficiency

- near-opt.
44 thermal
102 hydro

6 PSUs

168 h
by ≤4 h

time steps
∼40 min
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[113] OP(CO)
MILP solver linear * - - - - equal *

NSE spinning * yes * - -

dispatch-deviation penalties
reserve-deviation penalties

non-smooth power profile pen.
power trajectories

AGC representation

- yes
20 thermal

6 hydro
5 PSUs

28 h
by 20 min
time steps

<10 s

[114] OP(CO)
heur. alg. quadratic 1 SU - - - PBUC

lower spinning - yes - - - near-opt.
10 units

100 units (r)
24 h

6 s

27 s

[115]
OP(CO)

heuristics
MILP solver

piecewise
(10 blocks) 1 SU - - - equal spinning yes yes - - - near-opt. 54 units 24 h 6.57 s

[116] OP(CO)
MILP solver piecewise 1 SU - - - PBUC spinning

non-spinning yes yes -
bilateral contracts

CCGT configuration modes
mode transition fuel

- yes 54 thermal
12 CCGTs 24 h ∼90 s

[117] OP(CO)
MILP solver

piecewise *
(2 blocks) 1 SU * 1 SD * - -

PBUC *

equal *
spinning * yes * yes * - - - yes 27 units 24 h -

[118] OP(DP)
heur. alg. quadratic 1 SU - - -

equal
ESS
TL

spinning
operative yes yes

horizon max.
ho. unit max.

gen-emiss.
(linear)

SU emiss.
(1 step)

reactive generation limits
max. sustained ramp rate

CCGT configuration modes
TU per configuration

fuel blending operation
fuel switching operation
unit fuel consump. limits

horizon fuel consump. limits

flow limits
voltage limits near-opt.

118 bus
186 lines

54 thermal
12 CCGTs

2 FBUs
2 FSUs
7 hydro
3 PSUs

24 h ∼100 s

[119]
OP(CO)

heuristics
rMIP solver

quadratic * 1 SU * - - -

equal
HS
ESS

imports

operative - yes -

reservoir energy inflows
reservoir energy limits
reservoir energy splits
turb. and pump. limits

pumping efficiency
import facilities

max. LNG consumption

- near-opt.

2 bus
2 lines

21 thermal
8 gas-units

4 hydro
2 PSUs

3 intercon.

24 h -

[120] OP(CO)
MILP solver

piecewise
(4 blocks) 2 SU - - - equal spinning yes * yes - SU/SD capacity limits * - yes

0.5% gap
10 units

100 units (r)
24 h

1 s

123 s

[121] OP(CO)
MILP solver

piecewise
(3 blocks) 10 SU 1 SD - - PBUC - yes yes - bilateral contracts

SU/SD capacity limits -
yes

0.0001%
gap

15 units 24 h ∼300 s

[122] OP(CO)
MILP solver piecewise - - - - PBUC - yes yes - SU/SD capacity limits - yes

1 unit
(8 type

of units)
24 h ∼20 s

[123] OP(CO)
MILP solver

piecewise
(2 blocks) 2 SU - - - greater spinning yes yes - SU/SD capacity limits - yes

1% gap 187 units (r) 24 h 3556.6 s

[124] OP(CO)
MILP solver linear 5 SU 1 SD - - PBUC - yes yes -

power trajectories
SU/SD durations

SU/SD power trajectories
-

yes
0.0001%

gap
1 unit

96 h (r)

6144 h (r)

0.109 s

53.181 s
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[125]
OP(CO)
SO-TS

MILP solver
linear 2 SU 1 SD - -

equal **
NSE

ND-RES **
ND-RES-C

TL

reserve yes yes -

power trajectories
SU/SD durations

SU/SD power trajectories
flow-limit violation penalties

flow limits
shift factor

yes
0.05% gap

118 bus
186 lines

54 slow units
10 fast units **

3 wind gen.

24 h
by 5 min

time steps

<2 h
20 scen.

[126] OP(CO)
MILP solver linear 2 SU 1 SD - - equal

NSE spinning yes yes - SU/SD capacity limits - yes
280–1870 units (r)

28–187 units (r)

24 h

168 h (r)

1% gap
or 10 h

0.1% gap
or 1 h

[127] OP(CO)
MILP solver linear 1 SU - - - PBUC - - yes - SU/SD capacity limits -

yes
0.0001%

gap
10 units

1536 h (r)

12288 h (r)

0.57 s

8.08 s

[128] OP(CO)
MILP solver linear 3 SU - - - equal

secondary
tertiary

offline tertiary
yes yes -

power trajectories
SU/SD durations

SU/SD power trajectories
interval ramp capabilities

-
yes

0.0001%
gap

10 units

100 units (r)
24 h

9.1 s

1001 s

[129] OP(CO)
MILP solver linear 2 SU 1 SD - -

equal
ND-RES

ND-RES-C
TL

reserve yes yes -

power trajectories
SU/SD capacity limits

SU/SD durations
SU/SD power trajectories

flow limits
shift factor

yes
0.0001%

gap

118 bus
186 lines
54 units

3 wind gen.

24 h

60 h

27.61 s

267.23 s

[130] OP(CO)
MILP solver piecewise 1 SU - - - equal

HS - yes ** yes -

reservoir inflows **
reservoir spillage **
cascade reservoirs **

reservoir volume limits **
reservoir discharge limits **

- yes
0.5% gap

200 thermal (r)
100 hydro (r) 24 h 314 s

[131] OP(CO)
MILP solver quadratic ** 1 SU ** - - - equal ** reserve ** yes ** yes ** - SU/SD capacity limits ** -

yes
0.5% gap

yes
0.01% gap

200 units (r)

50 units (r)
24 h

1243 s

4877 s

[132]
OP(CO)

heuristics
rMISOCP solver

quadratic 2 SU - - - equal spinning yes yes - SU/SD capacity limits - near-opt.
10 units

100 units (r)
24 h

1.58 s

29.09 s

[133] OP(CO)
MILP solver quadratic ** 2 SU ** - - - equal ** spinning ** yes ** yes ** - SU/SD capacity limits ** -

yes
0.1% gap

yes
0.1% gap

yes
0.01% gap

yes
0.01% gap

10 units

200 units (r)

10 units

200 units (r)

24 h

4.25 s

104.87 s

11.12 s

3553.05 s

[134]
OP(CO)

heuristics
rMISOCP solver

quadratic ** 2 SU ** - - - equal ** spinning ** yes ** yes ** - SU/SD capacity limits ** - near-opt.
10 units

200 units (r)
24 h

1.05 s

21.33 s
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[135] OP(CO)
MILP solver quadratic 2 SU - - - equal spinning yes yes - SU/SD capacity limits -

yes
0.5% gap

yes
0.5% gap

yes
0.1% gap

yes
0.1% gap

yes
0.5% gap

yes
0.5% gap

10 units

200 units (r)

10 units

200 units (r)

28 units (r)

1080 units (r)

24 h

0.21 s

19.28 s

0.84 s

51.37 s

1.87 s

3775.95 s

[136] OP(CO)
Pareto optimz. quadratic 1 SU - - - PBUC

lower - yes * yes

horizon max.
prod-emiss

(quadratic &
exponential)

trade-off curve (201 runs) - near-opt. 6 units 168 h 0.05 s
per run

[137] OP(CO)
Pareto optimz. quadratic 2 SU - - - PBUC

lower - yes yes

horizon max.
prod-emiss

(quadratic &
exponential)

trade-off curve (201 runs) - near-opt. 15 units 168 h 0.12 s
per run

[138] OP(CO)
heur. alg. quadratic 2 SU - quadratic - equal

TL spinning yes yes - -
flow limits
reactances

phase angles
near-opt.

118 bus
186 lines
54 units

24 h 208 s

[139]
OP(CO)

heuristics
MILP solver

piecewise
(5 blocks) 1 SU 1 SD linear - PBUC

HS spinning yes yes -

bilateral contracts
SU/SD capacity limits

max. sustained ramp rate
reservoir inflows
reservoir spillage
cascade reservoirs

reservoir volume limits
reservoir discharge limits

HR func. (3-block piecewise)
reservoir SU/SD costs

reservoir TU/TD

- near-opt.
5% gap

13 thermal
5 hydro 24 h reasonab.

[140] OP(CO)
MILP solver

piecewise
(5 blocks) 1 SU - piecewise - PBUC

lower - yes yes - - - yes 20 units (r)
24 h

168 h (r)

9.06 s

652.78 s

[141] OP(CO)
MILP solver piecewise 1 SU - - -

equal
HS
TL

spinning *
operative * yes yes -

prohibited operating zones
max. sustained ramp rate

reservoir inflows
reservoir spillage

reservoir volume limits
reservoir discharge limits
HR function (piecewise)

reservoir SU cost
reservoir TU/TD

flow limits
voltage limits

reactances
phase angles

yes

8 bus
10 lines

5 thermal
1 hydro

24 h -
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[142] OP(CO)
MIQCP solver quadratic * 2 SU * - - -

equal *
NSE
TL

spinning * yes * yes * -
fuel consumption limits *
gas consumption limits *

load losses limits *

flow limits *
shift factor * yes

194 thermal
9 CCGTs
1 HCCP
4 IPPs

2 gas sector
Mexican

transmission
network

24 h 15.12 min

[143] OP(CO)
MILP solver piecewise 1 SU - - -

equal
ND-RES

ND-RES-C
ESS
TL

spinning
non-spinning yes yes

horizon max.
gen-emiss.
(piecewise)

fuel consump. limits
reactive generation limits

CAES volume limits
CAES inject limits

CAES release limits
inject efficiency

release efficiency

flow limits
voltage limits yes

118 bus
186 lines
54 units
1 CAES

3 wind gen.

24 h -

[144] OP(CO)
MILP solver - - - - - - - - - - branching symmetry exploitting - yes

0.2% gap

118 bus
186 lines

(9 parallel)
54 units

4 h 875 s

[145] OP(CO)
MILP solver piecewise 2 SU - - - equal spinning yes yes - symmetry breaking constraints - yes

0.0% gap 100 units (r) 24 h 115.64 s

[146] OP(CO)
MILP solver

piecewise
(2 blocks) 2 SU - - - greater spinning yes yes - SU/SD capacity limits - yes 46-72 units (r) 24 h ∼73.09 s

[147] OP(CO)
MILP solver piecewise 2 SU - - - equal spinning yes * yes - symmetry breaking constraints

SU/SD capacity limits * -
yes

<0.03%
gap

100 units (r) 24 h ∼7200 s

[148] OP(CO)
MILP solver

piecewise
(2 blocks) 2 SU - - - equal spinning yes yes - SU/SD capacity limits - yes

0.01% gap
≤8 agg. units

(28–187 units r) 24 h ∼38.03 s

[149] OP(CO)
MILP solver

piecewise
(3 blocks) 3 SU 1 SD - -

equal
NSE

ND-RES

secondary
tertiary spinning
tertiary non-spin.

yes yes
calculated

after
resolution

AGC representation
ramp rates under AGC - yes

45 units (r)
1 wind gen.
1 solar gen.

336 h
daily runs
with 38 h

look ahead
capacity

∼1 h

[151] OP(CO)
MILP solver linear 1 SU - linear yes

equal
NSE

ND-RES
ND-RES-C

- yes yes -

must run units
mayor overhaul costs
relation with increases

of SU in slow&fast units

- yes
0.1% gap 301 units (r) 336 h -

[152] OP(CO)
MILP solver linear 1 SU - - -

equal
NSE

ND-RES
ND-RES-C

TL

secondary yes yes - SU/SD capacity limits flow limits
shift factor

yes
0.01% gap

118 bus
186 lines

54 agg. units
(540 units r)
3 wind gen.

24 h 406 s
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Table 3. Cont.

Ref Method Production
Cost

Start-up
Cost

Shut-down
Cost

Emission
Cost

Mainten.
Cost

Demand
Constraint

Reserve
Constraints

Ramp
Limits

TU/TD
Constraints

Emission
Constraints

Operative
Constraints

Network
Constraints Optimal Problem

Size
Time
Span

CPU
Time

[155] OP(CO)
MILP solver

piecewise
(1 to 10
blocks)

≤2 SU - - -
equal

ND-RES
ND-RES-C

spinning yes yes - SU/SD capacity limits - yes
0.1% gap

PJM
Inteconnection 48 h

136 s
2% wind

185 s
30% wind

[156] OP(CO)
MILP solver linear ** 1 SU ** - - - - spinning ** yes ** yes ** -

CCGT configuration modes **
capacity limits per mode **

ramp rates per mode **
transition ramp rates **
mode transition costs **
prod. costs per mode **

SU cost per mode **
TU/TD per mode **

- yes
0.1% gap

4 units (r)

10 units (r)

16 units (r)

24 h

2.4 s

4.8 s

124.9 s

[157] OP(CO)
MILP solver piecewise ** 1 SU ** - - - equal

ESS - - - -

reservoir inflows
cascade reservoirs

reservoir volume limits
reservoir discharge limits

HR func. (s-block piecewise)
pumping capacity limits

pumping efficiency

- yes
0.5% gap

198 thermal
72 hydro
34 IPPs
10 PSUs

168 h

<10 s
1 HR

3 blocks

4549.14 s
3 HR

3 blocks

39304.84 s
3 HR

6 blocks

[158] OP(CO)
MILP solver piecewise * 2 SU - - -

greater
ESS
TL

spinning yes yes -

reservoir inflows
cascade reservoirs

reservoir volume limits
reservoir discharge limits
HR function (piecewise)
pumping capacity limits

pumping efficiency

flow limits
reactances

phase angles

yes
0.0% gap

31 bus
43 lines

16 thermal
2 PSUs

24 h 116.9 s

[159] OP(CO)
MILP solver linear 2 SU - - - greater

TL spinning yes yes - SU/SD capacity limits *
flow limits
reactances

phase angles

yes
0.0% gap

31 bus
43 lines
16 units

118 bus
186 lines
54 units

24 h
104.5 s

37.2 s
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Table 3. Cont.

Ref Method Production
Cost

Start-up
Cost

Shut-down
Cost

Emission
Cost

Mainten.
Cost

Demand
Constraint

Reserve
Constraints

Ramp
Limits

TU/TD
Constraints

Emission
Constraints

Operative
Constraints

Network
Constraints Optimal Problem

Size
Time
Span

CPU
Time

[160] OP(CO)
MILP solver linear 2 SU - - -

greater
ESS
TL

- yes yes -

reservoir inflows
cascade reservoirs

reservoir volume limits
reservoir discharge limits
HR function (piecewise)
pumping capacity limits

pumping efficiency
gas-unit consump. piecewise f.

gas network representation
gas pressure linearizations:
· node piecewise function
· pipeline piecewise funct.

· compressor piecewise funct.

flow limits
reactances

phase angles

yes
1% gap

31 bus
43 lines

13 no-gas units
3 gas units
7 gas nodes
5 gas loads
5 pipelines

1 compressor
2 supply nodes

2 PSUs

24 h 480.5 s

[161] OP(CO)
MILP solver linear 1 SU 1 SD - - equal

TL - yes yes - - flow limits
shift factor

yes
0.01% gap

118 bus
186 lines
54 units

24 h ∼296 s

[162] OP(CO)
MILP solver

piecewise
(2 blocks)

(2 blocks)

(1–10 blo.)

(1–10 blo.)

2 SU

2 SU

≤2 SU

≤2 SU

- - - equal spinning yes yes - - - yes
0.01% gap

280–1870 units (r)

28–187 units (r)

PJM
Interconnection

PJM
Interconnection

24 h

168 h

24 h

168 h

∼367.8 s

∼286.3 s

∼34.3 s

∼664.7 s

[163] OP(CO)
MILP solver linear 1 SU 1 SD - - equal spinning yes yes - SU/SD capacity limits - yes

0.1% gap 800 units (r) 24 h ∼285 s

[164] OP(CO)
MILP solver

piecewise
(1 to 10
blocks)

≤2 SU - - -

equal
NSE
OE

ND-RES
ND-RES-C

TL

spinning yes yes - reserve-deviation penalties
SU/SD capacity limits

flow limits
reactances

phase angles

yes
0.01% gap

PJM
Interconnection 48 h ∼300 s

* The constraint is formulated, but the corresponding input data for the case study are not provided. ** The constraint is formulated, but the corresponding input data for the case study
are missing due to an offline link or the lack of information in a reference.
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5. Conclusions

This article presents a literature review on the different available alternatives to set out
and solve the unit commitment problem. One of the main goals is establishing a hierarchical
classification of the computational techniques that could be applied to each stage of the
problem. This proposal differs from other surveys, which mix identification principles
and describe several modeling techniques, resolution algorithms, etc., without any more
profound distinction.

The exposed layout allows to quickly acquire a general idea of the different options to
represent and optimize the operation of power systems. Furthermore, their advantages and
disadvantages are elaborately described, allowing an easy recognition of the research gaps
for further developments and introducing a solid basis to implement new improvements.

Some examples of research necessities in this field are enhancing the computational
efficiency when handling uncertainty; improving modeling detail, such as a more precise
characterization of the start-up processes, or going in-depth with the operational flexibility
representation; extending the unit commitment horizon to facilitate coordination with
markedly medium-term tasks, such as hydro management, fuel purchases, or financial
contracting; representing the real demand variability for thermal generators in current
and future electricity markets with high penetration of non-dispatchable energy sources;
or studying the most efficient procedure for achieving widespread integration of non-
conventional energy-storage technologies in modern power systems.

In order to not provide an immeasurable amount of references, the most popular and
recent unit commitment approaches have been cited throughout the different sections. To
conclude this review, the historical events and ongoing trends in the most widespread
technique applied to the unit commitment problem are introduced. Hence, the current
state is presented, focusing on the thermal generation of electricity markets which is
optimized through commercial solvers. The reader is referred to recent surveys if interested
in obtaining a deeper knowledge of specific problems, such as the hydro unit commitment
problem, the operational representation of energy-storage technologies, and evolutionary
optimization.

Moreover, the scope of the different methodologies described in the paper is clearly
identified through a comparison table, where the modeling detail adopted in the references
is analyzed in depth. In turn, the problem sizes are also precisely presented, providing the
elements that compound the power systems represented in the case studies. Furthermore,
the computational performance of each proceeding can be discerned, too, according to the
corresponding run times and optimality of the solutions.

This characterization entails a significant development against the conventional re-
views on the unit commitment problem, which only offer a broad vision of the modeling
scope of their cites at most. Additionally, this accurate description can also be used as
a benchmark to look for different options to model a specific technical or economic as-
pect, choosing the formulation that apparently offers a greater computational efficiency
according to the desired methodology.
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Abbreviations
The following abbreviations are used in this manuscript:

ACO Ant Colony Optimization
AGC Automatic Generation Control
ALO Ant Lion Optimizer
ABCA Artificial Bee Colony Algorithm
AFSA Artificial Fish Swarm Algorithm
AISA Artificial Immune System Algorithm
ASA Artificial Sheep Algorithm
BD Benders Decomposition
BFA Bacterial Foraging Algorithm
CAES Compressed Air Energy Storage
CCGT Combined Cycle Gas Turbine
CO Conventional Optimization
CCO Chance Constrained Optimization
CSA Cuckoo Search Algorithm
DEA Differential Evolution Algorithm
DS Distribution System
DSO Distribution System Operator
DP Dynamic Programming
DWD Dantzig-Wolfe Decomposition
EA Electrolytic Aluminium series
EE Exhaustive Enumeration
EF Electrolytic arc Furnance
EIE Energy Intensive Enterprise
EMA Exchange Market Algorithm
EO Evolutionary Optimization
EP Evolutionary Programming
ES Expert System
ESS Energy Storage System
EV Electric Vehicle
FBU Fuel Blending Unit
FFA Firefly Algorithm
FL Fuzzy Logic
FSU Fuel Switching Unit
FWA Fireworks Algorithm
GA Genetic Algorithm
GSA Gravitational Search Algorithm
GWO Grey Wolf Optimizer
HCCP Hybrid Combined Cycle Plants
HM Hybrid Methodologies
HS Hydro Spillage
HR Head Range
HUI Hybrid Uncertainty Implementation
ICA Imperialist Competitive Algorithm
IHHO Intensify Harris Hawks Optimizer
IO Interval Optimization
IP Integer Programming
IPP Independent Power Producer
LNG Liquefied Natural Gas
LP Linear Programming
LR Lagrangian Relaxation
MCS Monte Carlo Simulation
MILP Mixed Integer Linear Programming
MIQP Mixed Integer Quadratic Programming
MIQCP Mixed Integer Quadratically Constrained Programming
MINLP Mixed Integer Non Linear Programming
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MIP Mixed Integer Programming
MISOCP Mixed Integer Second Order Cone Programming
MMA Memory Management Algorithm
MS Multi Stage
ND-RES Non-Dispatchable Renewable Energy Sources
ND-RES-C Non-Dispatchable Renewable Energy Sources Curtailment
NLP Non Linear Programming
NN Neural Network
NO Numerical Optimization
NSE Non-Served Energy
OE Oversupplied Energy
OF Objective Function
OP Optimization Problem
QIEA Quantum-Inspired Evolutionary Algorithm
QOTLBA Quasi-Oppositional Teaching Learning Based Algorithm
PBUC Price-Based Unit Commitment
PJM Pennsylvania, New Jersey, and Maryland
PL Priority List
PSO Particle Swarm Optimization
PSU Pumping Storage Unit
QP Quadratic Programming
QCP Quadratically Constrained Programming
RC Risk Consideration
rMILP Relaxed Mixed Integer Linear Programming
rMIQP Relaxed Mixed Integer Quadratic Programming
rMIQCP Relaxed Mixed Integer Quadratically Constrained Programming
rMINLP Relaxed Mixed Integer Non Linear Programming
rMISOCP Relaxed Mixed Integer Second Order Cone Programming
RES Renewable Energy Sources
RO Robust Optimization
SA Simulated Annealing
SCA Sine–Cosine Algorithm
SCUC Security Constrained Unit Commitment
SD Shut-Down
SFLA Shuffled Frog Leaping Algorithm
SO Stochastic Optimization
SOCP Second Order Cone Programming
SU Start-Up
TD Time Down
TL Transmission Losses
TS Two Stage
TSA Tabu Search Algorithm
TSO Transmission System Operator
TU Time Up
UC Unit Commitment
WOA Whale Optimization Algorithm

Appendix A. Formulating Options

• Integer Programming (IP): The formulation employs only discrete variables. A discrete
variable, that is commonly called an integer variable, accomplishes an integer value
after the problem resolution (xI ∈ Z). According to the numerical methods utilized by
computers to solve the problem, the integrality of these variables is related to a toler-
ance. Formulating exclusive-integer problems is not common. The habitual practice
is to utilize continuous variables as well. For that reason, the integer programming
term is usually employed as a reference to the usage of integer variables in the unit
commitment problem and energy models.
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• Mixed Integer Programming (MIP): The formulation uses a mix of integer and continu-
ous variables (xC ∈ R). The MIP has several subgroups attending to the mathematical
formulation of the OF and constraints. If the OF and all the constraints are linear, the
problem is called MILP. If the constraints are linear but the OF is quadratic, it is called
MIQP. On the other hand, if there are some quadratic constraints and a linear OF, the
problem is an MIQCP. This quadratic constraints can be represented as second-order
cones in a MISOCP problem. Finally, if there is any non-linear constraint or OF, that
will be an MINLP problem.

• Linear Programming (LP): The formulation only employs continuous variables. In
turn, both their objective function and constraints are linear. LP can be a result of
relaxing the discrete variables of a MIP. When the integer variables of MILP are relaxed
(considered as continuous in order to facilitate the resolution of the problem), the new
problem is known as an rMILP and there is not any difference with an LP.

• Non-Linear Programming (NLP): The formulation utilizes continuous variables; mean-
while, the objective function or some constraint is a non-linear function. As well as in
LP, the relaxation of an MINLP turns out into a problem which it is solved as an NLP,
an rMINLP. Quadratic Programming (QP), Quadratically Constrained Programming
(QCP), and Second-Order Cone Programming (SOCP) are non-linear techniques. Nev-
ertheless, they are not frequently included in this group in the literature because their
convexity properties allow them to be solved easier than NLP used to be. Relaxing
MIQP, MIQCP, or MISOCP converts the problem in an rMIQP, rMIQCP, or rMISOCP
that is also solved such as a QP, QCP, or SOCP problem.
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