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1.  Introduction 

Over seventy years ago, Nobel laureate Markowitz (1952) published his pioneering 

work on portfolio optimisation, giving rise to Modern Portfolio Theory (MPT). The 

predicted return and investment risk of a portfolio could then be quantified thanks to this 

idea, which completely changed the field of portfolio management. The biggest 

innovation was the change in emphasis from the risk of individual assets to the overall 

risk of a portfolio. By combining risky assets, Markowitz showed that it was possible to 

produce a portfolio with an expected return that was similar to that of its constituent parts 

but with significantly less risk. In other words, he introduced the idea that a portfolio can 

be built with a risk that is lower than the total of all of its parts. 

The ultimate purpose of portfolio management theory is to optimally allocate 

investments among the range of available assets. By considering the trade-off between a 

portfolio's risk and return, mean-variance optimisation is a quantitative approach that 

makes this allocation easier. When deciding how to distribute their wealth, investors can 

consider their preferences for risk and projected return thanks to the so-called mean-

variance portfolio optimization. The method—which gave rise to the fundamental ideas 

of modern portfolio theory—involves choosing portfolios that, while adhering to a 

specified level of risk, maximize the portfolio's expected return or, alternatively, that, 

while adhering to a specified level of expected return, minimise variance. 

In the financial industry, Markowitz mean-variance analysis is a crucial tool for both 

practitioners and scholars. Markowitz mean-variance (MV) optimization has been the de 

facto norm for efficient portfolio construction for the past few decades. The Markowitz 

approach is the foundation of almost all commercial portfolio optimizers for asset 

allocation and equity portfolio management. Because it is simple to execute and directly 

presents a tool for measuring risk and return, the MV model has gained wide acceptance 

among academics and practitioners. However, it has also received criticism from sceptics 

in both academia and financial institutions. Although MPT remains as the main 

theoretical framework for portfolio construction in the modern era, its adoption by 

investment professionals is less common than one might expect. 
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Practitioners' main criticism of MPT is that the optimal portfolios generated by the 

mean-variance approach are usually illogical, counterintuitive, and very sensitive to input 

parameters. The model does not account for variables like the investor's subjective 

understanding or particular market behaviour. As a result, the investor obtains portfolios 

that place too much emphasis on overvalued assets and less on cheap assets (Britten-

Jones, 1999). Moreover, asset weights are particularly sensitive to estimation error, with 

small changes in the values of return and risk estimators leading to significant changes in 

portfolio values (Black and Litterman, 1992). 

Many academics have examined this mean-variance model issue, analysing the 

portfolios' sensitivity to changes in expected return estimations (Best and Grauer, 1991; 

Broadie, 1993). The term "error maximisation" has been used to describe portfolio 

optimisation because of the detrimental consequences of estimation errors on ideal 

portfolios (Michaud, 1989). According to Michaud, the assets that are overweighted by 

mean-variance optimisation are precisely those that have a high ratio of expected return 

to estimated variance and may have significant estimation errors. The majority of the 

estimation bias in optimum portfolios is believed to be caused by errors in expected return 

estimations rather than errors in risk estimates. As shown by Chopra and Ziemba (1993), 

even small changes to estimates of expected returns or risk can lead to optimal portfolios 

with noticeably different mean variances. As a result, recent developments in the portfolio 

optimization problem have highlighted the need for upgrading the mean estimation 

technique. 

Alternative risk estimators that perform better when employed within the framework 

of the Mean Variance model have been explored in an effort to produce better and more 

stable mean-variance optimal portfolios in order to address the acknowledged 

shortcomings of the Markowitz model. Since the 1990s, a large number of risk indicators 

have been put forth, many of which are computationally appealing since they lead to 

linear programming (LP) issues for discrete random variables. The mean absolute 

deviation (MAD) model, introduced in 1991 by Konno and Yamazaki, received a great 

deal of interest about thirty years ago, accelerating the creation of other LP models and 

giving rise to a great deal of research. The introduction of CVaR models by Rockafellar 

and Uryasev in 2000 significantly influenced new developments in risk measurement in 

finance throughout the first decade of the twenty-first century. In order to choose the 
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optimum portfolio, portfolio management also involves optimisation strategies. Over 

time, portfolio optimization techniques have also advanced from simpler approaches 

based on heuristics and metaheuristics, such as mean-variance (MV) by Markowitz 

(1952), mean-absolute deviation (MAD) by Konno and Yamazaki (1991), value-at-risk 

(VaR) by Jorion (1996), conditional VaR by Rockafellar and Uryasev (2000), and 

Minimax (MM) by Park et al. (1998). In recent years, techniques based on Machine 

Learning (ML) by Alpaydin (2014) have gained popularity and have been applied to the 

field of portfolio optimisation. Bayesian, support vector machine-based, robust, neural 

network and quantum approaches have been proposed, among others, by Bai et al. (2020), 

Lee and Yoo (2020), Choi (2018) and Goel et al. (2020) respectively. 

This paper provides an in-depth look into the behaviour and limitations of the 

traditional Markowitz model as well as its classical alternatives. We then present two of 

the most novel optimisation models that are currently available, Bayesian and Robust 

optimisation, and apply them to the field of portfolio optimisation. The ultimate goal of 

this research is to demonstrate how the new techniques could help to overcome the 

traditional problems of optimal portfolio selection. 

2. Methodology 

As indicated above, the aim of this research is to analyse in depth the Modern 

Portfolio Theory, whose cornerstone is the Markowitz Mean-Variance (MV) Model, and 

to discuss to what extent the application of two state-of-the-art Machine Learning 

approaches can overcome the limitations that the model has presented so far. To this end, 

a review of the existing literature on the classical framework, as well as the application 

of Bayesian Optimisation and Robust Optimisation to these traditional models, is carried 

out beforehand.  Section three provides an overview of the fundamentals of portfolio 

management and section four analyses the classical theory of portfolio management, 

explaining the traditional Markowitz model. This section also includes a discussion of the 

main limitations that the classical theory has encountered over the years, as well as a 

review of the most widespread alternative models developed to address these 

shortcomings. The section concludes with a discussion of the relevant market factors that 

are not covered by the traditional framework. Section five focuses on the study of modern 
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portfolio optimisation, exposing Robust and Bayesian optimisation. Section six shows 

our experimental implementation of the classical Markowitz model as well as BO and 

RO to the selection of optimal portfolios for five stocks of the S&P 500 and in section 

seven we discuss the results obtained and compare the three methods. Finally, in section 

eight the advantages that our two techniques offer to the classical model are reviewed and 

suggestions for future areas of research are presented. 

3. Portfolio management 

From a financial perspective, a portfolio is a pool of individual stocks or investments. 

By definition, a portfolio is a collection of financial investments in the form of securities, 

bonds, cash, assets, and other types of commodities that are meant to provide a future 

return of some kind. At a given time t, a portfolio can be depicted as 

𝑃(𝑡) =  ∑ 𝑤𝑗(𝑡)𝑠𝑗

𝑛

𝑗=1

 

Where 𝑠1, … , 𝑠𝑗  describe the securities that compose our portfolio and 𝑤1, … , 𝑤𝑗 , the 

share of the total amount of money invested in our portfolio, assigned to each of the assets 

at a time t. Markets are dynamic and prices and risks vary constantly, so it is likely that 

we will need to expand existing investment or withdraw existing stocks. The choice 

involves the allocation or reallocation of own resources and requires dynamic timing, 

multiple goals and objective consideration. Successful portfolio management must take 

into account, among many other things, future events and opportunities, dynamic 

decision-making capacity and the limitations of allocated resources. 

In their daily lives, entities and individuals face choices among two or more alterna-

tives. The idea of utility functions is used in the economic choice theory to show how 

agents choose among possibilities. All of the options that are offered to the subject are 

given a numerical value via a utility function. The utility gained from a certain decision 

increases as its value rises. In terms of the limits the entity must work within, the option 

chosen offers the most utility. Similar choices exist for institutions when it comes to port-

folio management strategies. For each portfolio, the expected return and risk are different. 

(1) 
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Generally speaking, risk rises as expected return rises. In cases where the return is favour-

able but the risk is not, entities must choose which portfolio to invest in. Institutions ben-

efit in variable degrees from different risk-return combinations. The preferences of the 

institutions' utility function over the combinations of expected return and perceived risk 

represent the value obtained from any conceivable risk-return combination. Maximizing 

the value of the portfolio and reducing the risk to which he or she is exposed are typically 

the two goals of a portfolio manager. According to Markowitz (1952), diversification of 

investments is a key technique to lower investment risk because of shifting market dy-

namics. 

As explained by Kim et al. (2018), portfolios can be categorized as defensive, 

income, speculative, hybrid, or aggressive based on how much risk they are willing to 

take on. In order to get higher returns, the aggressive portfolio usually takes on bigger 

risks. On the other side, the conservative portfolio seeks out minimum risk. An income 

portfolio prioritizes dividend income or other recurring income, much like a defensive 

portfolio does. The speculative portfolio, which is sometimes equated to gambling, is 

designed to take very high risks. With the best amount of risk, the hybrid portfolio aims 

to provide the best return. It uses a combination of several asset kinds depending on the 

risk and reward levels. As a result, utility functions differ depending on each investor's 

profile. 

4. Classical approach to portfolio optimization 

Since the birth of Markowitz's Mean Variance in the mid twentieth century, 

numerous authors have proposed alternative models that fall under the umbrella of 

Modern Portfolio Theory. The conventional model measures risk by variance and 

optimizes the trade-off between risk and expected return to produce the best possible 

portfolios. However, the performance of the Markowitz model has been widely 

challenged due to its sensitivity to input estimation errors. Meanwhile, several authors 

have proposed alternative approaches to obtain more stable and robust portfolios against 

the errors generated in the estimation of the risk and return of the assets considered. 
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(2 𝑔, ℎ) 

 

4.1. The Mean Variance Model  

The original mean-variance model proposed by Markowitz (1952) is a unique 

objective model whose purpose is to minimize risk for the desired level of return or vice 

versa. It takes into account a portfolio of m assets with a covariance matrix 𝐶 = (𝜎𝑖𝑗)  and 

uncertain future returns 𝑟′ = (𝑟1, … , 𝑟𝑛) with expected values 𝜇′ = (𝜇1, … , 𝜇𝑛). The 

investor must choose a portfolio depicted by 𝑋′ = (𝑋1, … , 𝑋𝑛) . The anticipated value E 

and variance V of the portfolio's return, 𝑅 =  𝑟′𝑋, can be respectively:  

𝐸 =  𝜇′𝑋                        𝑉 = 𝑋′𝐶𝑋 

The portfolio should be chosen in compliance with the following restriction: 

𝐴𝑋 = 𝑏,         𝑋 ≥ 0,  

Where 𝐴, the matrix designating the weight for each of the possible holdings, has a 

dimension of m x n and b, the resulting pool of assets whose chosen weight is higher than 

0, is m x 1. Therefore, non-negative 𝑋𝑖 should be chosen subject to m ≥ 1 linear inequal-

ities, avoiding asset short selling. An EV combination is possible if it falls under the E 

and V of a feasible portfolio, whereas a portfolio is feasible if it satisfies (2c) and (2d). To 

put it another way, a viable EV combination is any one that is created by the combination 

of all of those feasible portfolios. A feasible portfolio is any portfolio that an investor can 

establish given the assets that are accessible. Given a set of assets, the feasible set of 

portfolios is a collection of all feasible portfolios that graphically depicts the risk and 

expected return combinations that can be obtained by constructing portfolios from all 

feasible combinations of those assets. 

A viable EV combination (𝐸0, 𝑉0) is inefficient if another feasible EV combination 

(𝐸1, 𝑉1) already exists, so that either: 

(𝑖)     𝐸1 >  𝐸0    𝑎𝑛𝑑    𝑉1  ≤  𝑉0 

𝑜𝑟 

(𝑖𝑖)     𝑉1 <  𝑉0    𝑎𝑛𝑑    𝐸1  ≥  𝐸0 

Among all possible portfolios, an efficient portfolio is the one that offers the highest 

anticipated return for a particular amount of risk. For each level of risk, there is thus an 

(2 𝑎, 𝑏) 

 

(2 𝑒, 𝑓) 

 

(2 𝑐, 𝑑) 
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efficient portfolio. The collection of all efficient portfolios is known as the efficient set. 

The set of efficient portfolios is sometimes referred to as the efficient frontier because all 

efficient portfolios, as depicted graphically in image 1, stand on the edge of the set of 

possible portfolios that have the best return for a specific level of risk. The efficient 

frontier's risk-return combinations overwhelm those below it, and there is no way to 

obtain a risk-return combination above it.  

 

 

 

According to the classical MV model proposed by Markowitz (1952), in order to find 

an efficient portfolio, it is necessary to preselect the level of risk that the investor can 

bear, or the desired return of the portfolio. This, in fact, may not be entirely possible in 

real world cases. Thus, to find the efficient portfolio among various combinations of as-

sets in the solution space, instead of considering a single objective, investors must con-

sider all objectives at once. Therefore, the researchers transformed the single-objective 

model into a multi-objective model. According to Zitzler (1999), the multi-objective 

mathematical model can be rewritten as follows: 

min 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥) … 𝑓𝑝(𝑥)) 

Picture 1: Efficient frontier for the Mean Variance Model applied to a portfolio consisting of 

Apple, Meta, Tesla, Amazon and Google stocks in the year 2021. 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      𝑒(𝑥) =  (𝑒1(𝑥), 𝑒2(𝑥) … 𝑒𝑚(𝑥)) ≤ 0 

𝑤ℎ𝑒𝑟𝑒:    𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)  ∈ 𝑋 

Where the constraints 𝑒(𝑥) ≤ 0 determine the set of feasible solutions, 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛) is the vector of decision variables (parameters) and X is the decision space, 

p is equal to 1 in single-objective models and p is greater than one in multi-objective 

models. 

Because tackling MV problem optimization using a single-objective problem-solv-

ing structure presents several difficulties due to real-world conditions, multi-objective 

approaches have been applied. When solving a single-objective maximisation model, it 

is possible to find a single global optimal solution. As an alternative, the multi-objective 

approach offers a collection of Pareto optimum solutions, which are the best possible 

options.  The single objective model can be defined in two different ways, as risk mini-

misation or profit maximisation. Multi-objective models, on the other hand, are based on 

the idea of simultaneously optimising conflicting objectives, resulting in more authentic 

depiction of the real market, but computationally more complex. 

4.2. Limitations of the Mean Variance Model 

The classic MV optimization states that investors favour a portfolio of securities that 

gives the highest predicted return for a specific level of risk, as measured by the return-

variance relationship. The MV optimization approach determines the number of shares 

of equity portfolio wealth to allocate to each stock based on the estimated means, standard 

deviations, and return correlations of N stocks. The set of specified portfolio weights that 

is produced describes ideal solutions. The efficient MV frontier is the collection of ideal 

portfolios for all conceivable degrees of portfolio risk. 

The MV model offers significant benefits. Among them, arguably the most 

substantial one is its application as a means of controlling the portfolio's exposure to 

various components of risk. It is however well known that Markowitz's optimisation does 

not work well in practice. This is known as the Markowitz optimisation conundrum 

(Michaud, 1989). According to Zhang et al. (2018), many of the myriad studies on 

Markowitz optimisation suggest reasons for this conundrum, such as skewness, kurtosis, 

(3) 
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time series effects, estimation error and estimation risk, and inadequate optimization 

problems, all of which undeniably have an effect. Had we known accurately the mean 

and covariance matrix of a set of asset returns, Markowitz optimization would correctly 

select an optimal portfolio. But we never know them precisely. Hence, we are forced to 

introduce estimates (Kan and Zhou, 2007). Noise encompasses uncertainty in the real 

values of the variables on which we want to optimize, such as the mean and variance. 

And it is complicated by the fact that real assets have time series effects and are not 

normally distributed. 

The traditional MV approach frequently produces asset allocations and portfolios that 

are erroneously optimum or financially inefficient. The term error-maximization is used 

by Michaud (1989) to describe the influence of mean error. Due to the fact that MV 

optimisers are, at their core, estimation error maximisers, many optimized portfolios are 

often counterintuitive. Estimation error will always be included in risk and return 

estimates. Stocks with low expected returns, high correlations and small variances are 

underweighted by Markowitz optimisation. Conversely, those with high expected returns, 

lower correlations and big variances are largely overweighted. Of course, the likelihood 

of these overweighted stocks having significant estimation mistakes is highest. Best and 

Grauer (1991) look at how sensitive optimal portfolios are to changes in expected return 

estimates. The anticipated efficient frontier overestimates the expected returns of 

portfolios with varying degrees of estimation adequacy, as demonstrated by Broadie 

(1993). 

Errors in means are almost ten times more significant than errors in variances and 

covariances combined, according to Kallberg and Ziemba (1984). It has also been 

demonstrated that equal weighting occasionally performs better than MV optimization. 

Investors who divide their wealth among individual stocks using the MV framework 

occasionally set all anticipated returns to zero. Due to the fact that it is often very difficult 

to generate accurate estimates of expected returns, this can result in a better portfolio 

allocation. The performance of the VM can be significantly diminished if projections are 

used that do not accurately reflect the relative expected returns of particular securities. By 

addressing some of the drawbacks of traditional MV optimizers, novel methods increase 

the effectiveness of portfolio optimization as an investment. 
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4.3. Alternative measures of risk 

Following the birth of portfolio management theory, a large number of authors have 

proposed different units of measurement to quantify the risk of a portfolio. As already 

mentioned, Markowitz used the well-known statistical measures of variance and standard 

deviation to quantify the idea of risk. The majority of probability density function 

results—roughly 95% of them—fall within the range of two standard deviations above 

and below the mean, making the first hypothesis the most logical one. Since the variance 

is derived using the square of the standard deviation, it is easy to ascertain the variance 

of a portfolio before calculating its square root to obtain the standard deviation. However, 

due to the high sensitivity of this model to return, variance and covariance estimation 

errors, many authors have proposed alternative models for selecting optimal portfolios. 

The mean-absolute deviation model (MAD) has been proposed by Konno and 

Yamazaki (1991) and Konno and Koshizuka (2005) for large-scale, highly diversified 

portfolio selection challenges.  Mathematically, this model can be represented as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤(𝑥) = 𝐸 ∣  ∑ 𝑅𝑗𝑥𝑗 − 𝐸 ∑ 𝑅𝑗𝑥𝑗

𝑛

𝑗=1

 ∣

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝐸 ∣  𝑅𝑗 ∣  𝑥𝑗

𝑛

𝑗=1

 ≥  𝜌𝑀0, 

∑ 𝑥𝑗 =  𝑀0

𝑛

𝑗=1

, 

0 ≤ 𝑥𝑗  ≤  𝑢𝑗 ,     𝑗 = 1, … , 𝑛, 

Where 𝑅𝑗 is the variable depicting the rate of return per period of asset 𝑆𝑗 and 𝑥𝑗 

refers to the share of the total fund 𝑀0 to be invested in the same asset. E is a proxy for 

the expected value of the variable held within the brackets whereas 𝜌 refers to the minimal 

rate of return set by the investor. Finally, the maximum share of the funds that can be 

invested on a certain asset is depicted by 𝑢𝑗 . Essentially, the goal of the MAD model 

consists of minimizing the expected spread between the real return of our portfolio and 

the forecasted value 

(4) 
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Portfolio selection with shortfall limitations was created in 1952 as a result of Roy's 

safety theory research. In order to restrict the likelihood that the portfolio value will go 

below a given threshold of catastrophe, this author established the shortfall constraint for 

the first time. The objective of modeling portfolio selection using shortfall risk criteria is 

to maximize the probability that the portfolio return will surpass a predetermined 

minimum threshold level. Maximizing the probability that the portfolio return will exceed 

a predetermined minimum threshold level is the goal of modeling portfolio selection 

using shortfall risk metrics. Value-at-Risk, also known as VaR, was first presented by 

Jorion in 1996 and is likely the most well-known downside risk metric. The VaR of a 

portfolio can be modelled mathematically as 

𝑉𝑎𝑅(𝑀) =  Ε(𝑀) −  𝑄𝛼(𝑀) 

Where M refers to the return of the portfolio, E(M), to the expected return of the 

portfolio and 𝑄𝛼(𝑀) is the 𝛼- quantile of return: 

𝑄𝛼(𝑀) = inf{𝜐 ∶ 𝐹(𝜐) >  𝛼} 

This formulation depicts the largest return underperformance regarding the expected 

return of the portfolio with a confidence level of 1 − 𝛼.  Despite VaR is a very effective 

tool for measuring risk in the financial industry, it has several drawbacks. The VaR 

optimisation problem is non-convex and not sub additive, thus it does not account for the 

benefits of diversification. Sub-additivity is one of the key desired properties that define 

a coherent risk measure for downside risk measures, and for dispersion measures 

(Serraino & Uryasev, 2013). One of the most well-known coherent risk metrics is the 

conditional value-at-risk (CVaR), which is the expected value of losses exceeding VaR.  

It was developed by Rockafellar 13 and Uryasev in 2000. The LP issue that corresponds 

to the CVaR portfolio optimization model is as follows: 

min
𝜉, 𝑧𝑗, 𝑥𝑖

𝜉 +  ∑ 𝜐𝑗𝑧𝑗

𝐽

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑧𝑗 +  ∑ 𝑟𝑖𝑗𝑥𝑖 +  𝜉 ≥ 0   𝑓𝑜𝑟 𝑗 = 1, … , 𝐽

𝑛

𝑖=1

 

(5𝑎) 

 

(5𝑏) 

 

(6) 
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∑ 𝑥𝑖 = 1,          𝑥𝑖  ≥ 0 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛,            𝑧𝑗  ≥ 0 𝑓𝑜𝑟 𝑗 = 1, … , 𝐽 

𝑛

𝑖=1

 

where coefficients 𝑟𝑖𝑗 stand for the return reimbursements, under scenario j (j = 1, 

2,..., J), for security i (i = 1, 2,..., n). The unbounded variable in the portfolio is ξ, and the 

variables 𝑥𝑖 stand for shares of various assets. Coefficients υj are expressed as amounts 

𝑝𝑗/(1 − α ), where 𝑝𝑗 represents the likelihood of scenario j and α represents the level of 

confidence (CVaR parameter). 

A few years later another model based on shortfall constraints was developed; the 

Minimax model (MM), proposed by Cai et al. (2004),  which employs the minimal return 

as a risk indicator. In situations when asset returns are multivariate and regularly 

distributed, this strategy, which is based on the work of Park et al. (1998), achieves the 

same outcome as the Markowitz MV, but it offers certain advantages when returns are 

not normally distributed, which is the most likely scenario under real worl conditions. 

Due to its linear programming property, Minimax is quick and can handle more 

complicated models and restrictions. The model cannot be utilized when there is a lack 

of historical data, which is a pretty typical occurrence in the actual world, because it is 

highly sensitive to outliers. The model can be represented mathematically as follows: 

max 𝑀𝑝 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑗𝑦𝑗 − 𝑀𝑝  ≥

𝑁

𝑗=1

 0, 𝑡 = 1,2, … , 𝑇, 

∑ 𝑤𝑗𝑦�̅�  ≥𝑁
𝑗=1  𝐺, 

∑ 𝑤𝑗

𝑁

𝑗=1

 ≤ 𝑊, 

𝑤𝑗  ≥ 0, 𝑗 = 1,2, … , 𝑁 

Where 𝑤𝑗 is the allocation to asset j, 𝑦𝑗 refers to the return of security j during the 

period of time t and 𝑦�̅�, the average return of the same security. W accounts for the total 

allocation, 𝐺 is the minimum level of return of the portfolio and 𝑀𝑝, the minimum return 

on portfolio. 

(7) 
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The Lower Partial Model (LPM) was created more subsequently, in 1992, when 

Nawrocki advocated using a set of moments to calculate downside risk in a portfolio. 

Based on a continuous study, Brogan and Stidham (2008) claim that there could be several 

types of moments. Therefore, as part of Nawrocki's (1992) LPM, multiple N types of 

lower moments are analysed. The model can be defined as 

𝐿𝑃𝑀∝(𝜏, 𝑅𝑖) =  ∫ (𝜏 − 𝑅)𝛼𝜕𝐹(𝑅)
𝜏

−∞

 

Where 𝜏 is the desired return, R is the actual return, 𝛼, the degree of LPM and 𝜕𝐹(𝑅), 

the cumulative distribution function of the return of the security. 

The Mean Variance model is still the one that scholars and practitioners most 

frequently employ, despite the enormous amount of study that has been done in the area 

of Modern Portfolio Theory since the introduction of Markowitz's work. While its 

limitations are widely known, none of the alternative models proposed overcome such 

problems. Earlier, we identified estimation errors in the model's inputs as the trigger for 

optimisation errors. Out of the three inputs that the Markowitz model requires, it is the 

errors in the expected return on assets that account for most of the error. The models 

discussed so far have proposed alternative measures of risk quantification, but each and 

every one of them requires return estimation as the fundamental measure for portfolio 

optimisation. Consequently, classical approaches to portfolio optimisation contain a 

common limitation: their high sensitivity to return estimation errors in the portfolio to be 

optimised. 

4.4. Additional factors 

Additionally, we would like to point out that it is often difficult to implement the 

solutions to the basic portfolio selection problems of the models discussed above in the 

real world. For example, the optimal MV portfolio of the suggested models can be 

repeatedly inverted with significant transaction costs. Consequently, although the 

Markowitz MV model offers a sophisticated theoretical solution to the portfolio selection 

problem, its effective extensions to real-life applications are hampered by disregard for 

(8) 
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real-world circumstances. Although many of these elements are not accounted for by 

portfolio management theory, they have a significant impact on portfolio performance. 

In addressing transaction costs, reasonable investors will not trade continuously in 

the market at all times. The transaction costs related to purchasing and selling assets are 

disregarded in the original MV model for the sake of simplicity. However, the absence of 

transaction costs will result in exaggerated portfolio performance. To achieve a portfolio 

with a specific level of diversification, investors may seek to simultaneously impose high 

or low limits on the value weighting of each asset in a number of different situations. In 

addition to these limit restrictions, the building of the portfolio may also be subject to so-

called cardinality requirements, which specify the minimum or maximum number of 

securities to be included in the portfolio and may also call for a specific range. However, 

some market regulations impose certain real restrictions that an investor cannot ignore. 

The minimum transaction lot suggests that, in order to trade, you must make an 

investment in excess of this amount. 

These are just a few examples of additional restrictions that must be taken into 

account in practice. Finally, these are quantitative tools whose results, as we have seen 

above, can be counter-intuitive. Traditional models are unable to incorporate the 

investor's prior knowledge or macroeconomic variables. Although the models described 

above provide a general explanation of the concept of risk-return trade-offs and the 

possibility of creating optimal portfolios for these variables, the market is much more 

complex, with noise and other variables that make the initial problem a more complicated 

task. 

5. Modern approach to portfolio optimization 

As previously mentioned, it is challenging to gather precise estimates of the data 

required to determine an optimal portfolio, and estimated mistakes in the forecasts have 

a major impact on the final portfolio weights. As a result, mean-variance analysis-

generated optimal portfolios frequently have high or illogical weights for some assets. 

However, Fabozzi et al. (2012) point out that in practice, the mean- variance analysis 

proposed by Markowitz must be modified to achieve reliability, stability, and robustness 
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to model and estimation errors. This is because these examples do not necessarily prove 

that the theory of portfolio selection is incorrect. 

Several scholars have long focused on optimisation under parameter uncertainty 

(Bertsimas et al. 2011). The two most commonly used methods to solve this problem are 

stochastic optimisation and resilient optimisation. The foundation of the former is the idea 

that uncertainty has a probabilistic description, while the latter is a more creative approach 

in which model uncertainty is joint and determin 

istic rather than stochastic. In our study, we present both methods as possible 

solutions to estimation errors and analyse the suitability of each to the portfolio 

optimisation problem. 

5.1. Robust Optimization  

When it comes to robust optimization, the approach is based on a min-regret 

modelling technique that aims to lessen the effects of impending events in situations 

where the values of model variables are unknown, fluctuating, and their distributions are 

inherently unpredictable (Gregory et al., 2011). To properly understand the basis of this 

model, it is useful to clarify the difference between variability and uncertainty. Vose 

(2008) explains that variability, usually expressed as a statistical indicator such as 

variance or standard deviation, refers to an inevitable and unanticipated change in a 

parameter that cannot be corrected for by data collection. In other words, the performance 

of the parameter will not change no matter how much information is collected about it. 

On the contrary, uncertainty can be reduced by collecting more data, as it reflects the lack 

of prior knowledge about a potential outcome. The difference between variability and 

uncertainty can be better understood by taking a look at a stock price's random walk, 

which symbolizes its natural and unpredictable variation. One cannot change the random 

walk, i.e. make it less volatile, no matter how much information you learn or how well 

you understand its previous behaviour. This is referred to as variability. However, if we 

estimate a random walk's distribution, learning more about the walk's past actions 

improves the forecast's accuracy, which is referred to as uncertainty. 
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In light of the above, we can draw the conclusion that robust optimization entails 

factoring into the model the uncertainty caused by the estimation errors of the 

optimisation's parameters (Fabozzi et al., 2012). Gregory et al. (2011) note that by doing 

this, even if the assumed distributions and parameter estimates are incorrect, the model 

will guarantee, with a high degree of probability, that, for a given set of uncertainties, the 

solution will hold for all conceivable results of each unknown variable and that the 

optimal objective will be achieved or exceeded. According to Pflug & Wozabal (2007) 

and Fabozzi et al. (2012), the benefit of resilient optimization is that changes to the 

mathematical model do not alter the fact that the issue is still a quadratic programming 

one.  

Historical data can be used to estimate the uncertainty set when parameter values are 

unknown. This uncertainty set's definition is largely dependent on subjective opinion and 

need not include all possible parameter realizations but rather only the most likely values 

(Gregory et al., 2011). Creating an asset allocation strategy whose performance is 

optimised under worst-case unknown variables such as returns and covariances is the 

focus of robust portfolio optimisation when it comes to portfolio management. The robust 

technique deviates from the traditional approach in that it treats the estimated input 

parameters for a portfolio allocation problem as reliable and uncertain (Xidonas et al., 

2020). 

 As we have already mentioned, the optimiser's maximization impact causes our 

portfolio's predicted return to be typically larger than its actual return. As a result, the 

question of how big this difference can be emerges. Let's think about the biggest 

discrepancy between �̃� predicted expected return and its real expected return to get the 

answer. Ceria and Stubbs (2006) depict this difference as 

�̅�𝑇�̃� −  𝛼∗𝑇�̃� 

Where �̅�𝑇�̃� stands for the estimate expected return of the portfolio in period T and 

𝛼∗𝑇�̃� is the true return of such portfolio. The largest discrepancy between the projected 

returns on the estimated efficient frontier and the real efficient frontier is determined by 

solving for the highest difference between equation 9b within a confidence region of 𝛼. 

max �̅�𝑇�̃� −  𝛼∗𝑇�̃�  

(9𝑎) 

 

(9𝑏) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝛼 −  �̅�)𝑇∑−1(𝛼 − �̅�)  ≤  𝐾2 

where 𝐾2 =  𝜒𝑛
2 (1 −  𝜂) and 𝜒𝑛

2  is the chi-squared distribution's inverse cumulative 

distribution function with n degrees of freedom. Logically, it is desirable to keep this gap 

as small as possible. A strategy like this would bring the estimated and actual borders 

closer to the real efficient frontier while reducing the error-maximization effect. How-

ever, the optimal portfolio will be pushed towards a portfolio that would minimize the 

estimate risk by simply reducing the distance between the two frontiers. That is obviously 

not the direction we want to go in. Without estimates, it serves no purpose to think about 

estimating inaccuracy. Instead, we want to maximize portfolio anticipated return while 

simultaneously reducing estimation risk for a specific amount of expected return. In order 

to achieve this, we solve an optimization problem where we maximize the lowest feasible 

value of the portfolio's real expected return. By solving the previously mentioned max-

min function optimization problem, we will bring the actual and estimated boundaries 

closer together.  

Most traditional portfolio optimization methods have robust alternatives that share a 

similar level of computational complexity and need about as much time to solve as the 

standard alternative issue (Goldfarb and Iyengar, 2003). Fabozzi et al. (2012) claim that 

resilient Markowitz portfolios outperform conventional mean-variance portfolios outside 

of samples and are more stable than other portfolios as inputs change. The most common 

application of robust optimization in finance is portfolio allocation since the mean-

variance framework's ideal portfolio weights are very dependent on the estimated input 

values. As a result, robust optimization has gained popularity as a method for including 

uncertainty in financial models in the field of portfolio management. The creation of 

equity portfolios and asset allocation were the early applications. Since robust portfolio 

optimisation gained prominence as a technique of enhancing traditional portfolio 

optimisation models approximately two decades ago, significant advancements in the 

field have taken place. Recent studies have been published in the literature that apply the 

worst-case approach to bond portfolio construction, currency hedging, and option pricing 

(Kim et al., 2018). 

Yam et al. (2016) recently presented a variant of this resilient model that permits 

short positions. They examine various reliable formulations of mean-variance problems 
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and discover that the influence of expected return uncertainty has a greater impact on 

sensitivity control than does uncertainty in the covariance matrix. Asl and Etula (2012) 

illustrate the usefulness of using robust models to allocate strategic assets. They use a 

multi-factor model that is appropriate for evaluating expected returns and risk across asset 

classes to undertake robust optimization as part of their robust asset allocation method. 

Their empirical studies show that robust portfolios comprised of 15 asset classes exhibit 

less dispersion, making them more suitable for asset allocation than conventional 

methods. 

The notion that resilient portfolio optimisation outperforms traditional mean-

variance optimisation on a large proportion of occasions is supported by several research 

utilizing both real and simulated market data (Kim et al. 2018). The way in which 

uncertainty sets are modelled may be the primary area where robust formulations of the 

portfolio optimization issue diverge (Bertsimas et al. 2011). Finding the ideal mix 

between robustness and a useful description of uncertainty sets will therefore probably 

have a big impact on portfolio performance. Furthermore, it appears that robust 

optimization generally leads to more stable portfolio weights (Xidonas et al., 2020) based 

on evidence from both simulated and real-world data. Fabozzi et al. (2012) noted that 

robust optimization typically steers clear of corner solutions. This is due to the fact that 

in a corner solution, new value is either added or subtracted from the portfolio. 

Consequently, robust mean-variance optimization leads to smoother and more predictable 

portfolio returns because it tends to enhance worst-case portfolio performance. 

Indeed, the ability of robust efficient portfolios to maintain a relatively constant value 

over extended periods of time is a key characteristic. Furthermore, applying sound asset 

allocation procedures can dramatically enhance the worst-case performance of portfolios 

of various assets, frequently with very minor performance losses in more probable 

circumstances (Tütüncü and Koenig 2004). Particularly, both the advantages of robust 

portfolios in worst-case situations and their underperformance in more probable 

circumstances appear to increase as the size of uncertainty sets increases. This trade-off 

indicates that it is required to conduct a cost-benefit analysis of the size of uncertainty 

sets. 
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5.2. Bayesian Optimization 

On the other hand, Bayesian optimisation is a class of machine learning-based 

optimization techniques focusing on problem solving: 

max
𝑥 ∈ 𝐴

𝑓(𝑥) 

in which the feasible bundle and the objective function usually have, among others, 

a number of particular properties.  The entry 𝑥 is in ℝ𝑑for a value of 𝑑 that is not 

excessively large being able to work for less than twenty. The target function 𝑓(𝑥), to be 

optimized, is continuous. This is typically required for modelling any function by 

Gaussian process regression. The specified function is, in a sense, expensive to evaluate, 

which limits the number of evaluations that may be conducted, frequently to a few 

hundred. This limitation typically results from the fact that each evaluation requires a 

sizable amount of time, but it can also occur because each evaluation has a financial or 

opportunity cost. One of the most important properties of the objective function is the 

absence of a well-known unique pattern, such as concavity or linearity, which would 

make it easier to optimize it using techniques that leverage this pattern to boost efficiency. 

Since we only observe 𝑓(𝑥) and neither first nor second-order derivatives when we 

evaluate the function, it is referred to as a "black box" in mathematics. This makes it 

impossible to use first- and second-order methods like Newton's method, gradient 

descent, or quasi-Newton methods.  

The aim of this method is to find a global rather than a local optimum. Summarising 

these features of the problem, we say that BO is designed for global optimisation without 

black-box derivatives. This method is very adaptable since it can optimize pricey black-

box functions without derivatives. Although it has historically been extensively used for 

engineering system design, as well as for selecting laboratory experiments in materials 

and drug design or reinforcement learning (Brochu et al., 2010), it has recently gained a 

lot of popularity for fitting hyperparameters in machine learning algorithms, especially 

deep neural networks, as proposed by Snoek et al. (2012). BO was created by Kushner in 

1964, but it gained much more popularity after Jones (1998) popularized it. In addition to 

BayesOpt, it is possible to optimize expensive derivative-free black-box functions using 

alternative techniques. This broader class of procedures is usually referred to as 

(10 𝑎) 
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"surrogate methods". Bayesian optimization distinguishes itself from other surrogate 

approaches by making use of surrogates produced using Bayesian statistics and selecting 

where to evaluate the objective using a Bayesian interpretation of these surrogates. 

A Bayesian statistical model to describe the objective function and an acquisition 

function to determine where to sample next constitute the two primary parts of Bayesian 

optimization. Iteratively, they are used to distribute the remaining funds from a budget of 

N evaluations of the function after the target has been evaluated in accordance with an 

initial space-filling experimental design, which frequently consists of points chosen 

uniformly at random. A Bayesian posterior probability distribution is provided by the 

statistical model, which is always a Gaussian process, and it describes the possible values 

of 𝑓(𝑥) at a candidate point x. This posterior distribution is changed each time we observe 

the function at a new point, as seen in figure 2. 

 

According to the current posterior distribution over the initial function, the 

acquisition function calculates the value that would be produced by the evaluation of the 

objective function at a new point x (see Figure 3). A posterior probability distribution for 

each 𝑓(𝑥) that is normally distributed and has a mean 𝜇𝑛(𝑥)  and variance of 𝜎𝑛
2(𝑥) is 

produced by the Gaussian regression. One interpretation of the mean is as a point estimate 

of 𝑓(𝑥). In frequentist statistics, the credible interval serves as a confidence interval and, 

according to the posterior distribution, contains 𝑓(𝑥) with a 95% percent probability. The 

previously assessed points are interpolated using the mean. In these locations, the credible 

interval is at width 0, and as we go away from them, it becomes wider. 

 

Picture 2: Posterior distribution of an objective function after applying a Gaussian process 
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The predicted improvement is the acquisition function that is most frequently 

employed. Now imagine that at any time we need to carry out a different assessment. We 

will obtain 𝑓(𝑥)  if we evaluate x. The value of the best point we have seen after this 

additional examination will be 𝑓(𝑥) (if 𝑓(𝑥)  ≥  𝑓𝑛
∗) or 𝑓𝑛

∗∗ (if 𝑓(𝑥)  ≤  𝑓𝑛
∗). Therefore, 

if this number is bigger than zero, 𝑓(𝑥) −  𝑓𝑛
∗  is the improvement of the value of the best 

observed point, and 0 otherwise. This improvement can be expressed more succinctly as 

[𝑓(𝑥) −  𝑓𝑛
∗]+ +, where 𝑎+ = max(𝑎, 0) denotes the positive part. Despite the fact that 

we should choose the option with the greatest improvement, 𝑓(𝑥)  is not known until after 

evaluation. However, we can choose x to maximize the expected value of this 

improvement by calculating it. The anticipated development is described as 

𝐸𝐼𝑛(𝑥) =  𝐸𝑛[[𝑓(𝑥) −  𝑓𝑛
∗]+] 

 Where 𝐸𝑛[·] denotes the expectation assigned to the posterior distribution of the 

function 𝑓(𝑥) at 𝑥1, … , 𝑥𝑛 and is normally distributed, with mean 𝜇𝑛(𝑥) and variance 

𝜎𝑛
2(𝑥). 

Four benefits of using Bayesian methods over traditional ones can be summed up. 

First off, long-term investment decisions do take estimation risk into consideration, but 

the one-period scenario essentially does not. According to Barberis (2000), a long-term 

investor who disregards it can significantly over-allocate funds to equities. Second, 

because it may take into account the noise that these parameters experience, the 

distribution of future returns conditional on the model parameters no longer follows a 

well-known distribution shape even when the predictors evolve stochastically. The third 

and fourth benefits are related to the Bayesian investor's capacity to take into account 

Picture 3: Acquisition function for best-candidate search in Bayesian Optimization 

(10 𝑏) 
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model uncertainty as well as prior perceptions of the level of predictability covered by 

asset pricing models. We also point out that this method makes it possible to model 

complex economic magnitudes using quick, simple, and easy-to-use numerical 

techniques. This strategy's benefits have been proven both conceptually and 

experimentally. The constructed Bayesian efficient frontier allows us to develop an 

intelligent technique by performing interval forecasting of the impending updates of the 

optimal portfolio returns obtained by using the stochastic representation derived from the 

posterior predictive distribution, according to Bauder et al. (2021), who discuss how to 

build an optimal portfolio based on the posterior predictive distribution. 

The fact that optimal portfolios are quite sensitive to the expected level of returns, 

which we have explored in prior parts, was noted by Best and Grauer (1991), among other 

experts. Therefore, enhancing the mean estimation method has recently emerged as a 

major problem in the portfolio optimisation conundrum. Due to the usage of the 

acquisition function, Bayesian optimisation techniques are among the most effective 

methods in terms of the quantity of function evaluations needed. In the 1970s, the earliest 

portfolio analysis using Bayesian statistics relied solely on non-training or data-driven 

priors. Comparable to traditional methods of portfolio selection are typically Bayesian 

approaches based on diffusion a priori. However, Bayesian methods based on the 

diffusion prior produce different outcomes if certain risky assets have longer histories 

than others (Stambaugh, 1997). In the spirit of Bayes-Stein contraction priority, Jorion 

(1996) presented the hyperparametric priority approach,.Contrarily, Black and Litterman 

(1992) advocated a loosely-defined Bayesian approach supported by equilibrium 

correlations and economic arguments. Instead of only applying mean-variance 

optimization, they were able to generate more stable and diversified portfolios by using 

the Black-Litterman model. 

The majority of the cited research used particular a priori model parameter values 

that were then numerically evaluated in order to assess posterior distributions or asset 

allocation choices. Posterior beliefs about the values implicit in asset pricing theories 

were the focus of recent studies Pástor and Stambaugh (2000). These authors specifically 

looked into investors' portfolio decisions that minimize mean variance and update 

preconceived notions about risk- or characteristics-based pricing models using sample 

data. According to Tu and Zhou (2010), who argued that the investment objective 
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provides a useful presumption for portfolio selection, the naive equal-weighted portfolio 

rule and one of the four sophisticated strategies—the Markowitz (1952) rule, the Jorion 

(1996) rule, the MacKinlay and Pástor (2000) rule, or the Kan and Zhou (2007) rule—

could be combined optimally to improve performance. 

The Bayesian environment is similar to how people use information and make 

decisions in the market. Similar to this, investors base their decisions on their past 

experiences and recollection, such as historical events or trends. The problem outlined 

above is the inevitable consequence of the greatest strength of the Bayesian approach: its 

ability to include the human behaviour of the investor in decision-making. While the 

Markowitz model is highly theoretical and rather naïve when applied in practice, 

Bayesian optimisation solves this dilemma and provides us with a radically different view 

of portfolio optimisation, tailored to the individual investor and able to capture the 

multitude of factors that affect this process in praxis.  According to Avramov and Zhou 

(2010), the Bayesian framework in portfolio theory may be more appealing from this 

perspective. 

6. Experimental implementation of classical and modern models 

Previously, we have explained the benefits that both Robust and Bayesian 

Optimisation have to offer to the classical Markowitz model. In order to provide a 

practical example, we have conducted a simple experimental implementation of both 

methods on a real portfolio optimisation problem, using the traditional Mean-Variance 

model as a benchmark. Our purpose is to explain how the two proposed methods work in 

practice as well as the assumed improvement with respect to the classical approach. 

6.1. Formulation of the problem 

Our objective is to optimise a portfolio composed of stocks listed on the S&P 500. 

Specifically, our portfolio will include stocks of Apple, Amazon, Google, Tesla and Meta; 

for the sake of simplicity, we have chosen only five stocks, but our models allow the 

imputation of as many stocks as desired. Our models will optimise the weights that these 

five stocks will have in our portfolio based on the evolution of these stocks over the year 
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2021, having extracted their prices from Yahoo Finance. Once we have obtained the 

optimal weights for each stock, according to our three models, we create three different 

portfolios and compare their performance over the year 2022, using the cumulative return 

as the unit of comparison. The return of our portfolio can be explained by the following 

mathematical representation: 

𝑅𝑝 = ∑ 𝑤𝑖𝑟𝑖 

where 𝑤𝑖 refers to the weight of stock i in our portfolio and 𝑟𝑖 , its return. In the same 

way, the volatility of our portfolio can be explained with the following mathematical 

expression: 

𝜎𝑝 = √∑ ∑ 𝑤𝑖𝑤𝑗 𝐶𝑜𝑣(𝑟𝑖𝑟𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

The objective of our models will be to optimise the Sharpe Ratio obtained by our 

portfolio, measuring the risk-adjusted return of the portfolio: 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑅𝑝

𝜎𝑝
⁄  

In this way, our models will find different optimal weights for our stocks, designing 

three optimal portfolios based on the return and volatility shown by our five stocks during 

year 2021 (figure 4). 

 

(11 𝑏) 

 

(11 𝑐) 

 

Picture 4: Price evolution for Apple, Amazon, Tesla, Google and Meta stocks in 2021. 

(11 𝑎) 
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6.2. Experimental set up and implementation details 

Our Mean-Variance, Robust and Bayesian models have been developed using 

Python. The Markowitz model is the most straightforward; we define a classical mean-

variance optimisation method as the described in section 4. This method is used to 

optimise a portfolio of stocks by finding the set of weights that minimises the volatility 

of the portfolio relative to its expected return, in other words, we try to maximise the 

Sharpe Ratio of our portfolio. Our code initialises the method by setting the number of 

stocks in the portfolio and the limits of the weights of each stock (between 0 and 1). It 

then sets the initial estimate of the weights to be the same for all stocks, i.e. we start from 

a naïve model. The objective function is then defined, which takes the weights as input 

and calculates the return and volatility of the portfolio based on the input weights. We 

calculate the deviation between the expected volatility and the actual volatility of the 

portfolio. Finally, optimisation is performed using the minimise function of the SciPy 

library, which finds the weights that minimise the objective function while satisfying the 

constraints given by the bounds. The optimised weights are returned as output. 

The Robust Optimisation method, on the other hand, aims to minimise the impact of 

outliers on asset returns over the final portfolio. It achieves this objective by using a Huber 

loss function instead of the traditional quadratic loss function. The Huber loss function is 

a combination of the quadratic loss function for small deviations and the linear loss 

function for large deviations. This function is less sensitive to extreme values and results 

in a more robust and stable optimisation process. In our implementation, the function first 

initialises the variables needed for optimisation, including the number of shares, the 

bounds for optimisation, which are the same as for the Markowitz model, and the initial 

assignment of weights. It then defines the objective function, which calculates the return 

and volatility of the portfolio as a function of the input weights and returns the Sharpe 

ratio. Finally, the Huber loss function is defined to take the input weights and a Huber 

constant as a parameter. The Huber loss function returns a loss value based on the 

difference between the Sharpe ratio and the Huber constant, which is minimised using the 

L-BFGS-B optimisation method. The resulting weight assignment is returned as a loss 

value, which we minimise. The resulting weight allocation is returned as the optimal 

portfolio. 
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Our Bayesian model will also try to find the optimal weights of a portfolio of stocks. 

First, we input the number of stocks contained in our portfolio and assign the range of 

stocks that each weight can take, between zero and one, as in the previous models. Next, 

we define an objective function that takes the weights as input, calculates the expected 

return and volatility of the portfolio, and returns the Sharpe ratio (i.e. the return over 

volatility). We then initialise the Bayesian optimiser by inputting the objective function 

and the bounds on the weights. The optimiser is set to maximise the objective function 

and is initialised with a random seed. Finally, we run our optimiser for a certain number 

of iterations (50 in this case) with a certain number of random initialisations (10 in this 

case), and the optimal set of weights is returned. Finally, with the weights returned by our 

three models, we construct our optimal portfolios and contrast their cumulative return 

over the year 2022. 

7.  Discussion of the results 

The performance of the stocks selected for our portfolio during the test year is shown 

in Figure 5. Compared to the train values in Figure 4, corresponding to the year 2021, we 

see that they follow a very different trend. This difference is a fundamental characteristic 

of the real market and allows us to realistically compare the performance of these three 

models in a real scenario, with noise, volatility and uncertain patterns. 

 

 
Picture 5: Price evolution for Apple, Amazon, Tesla, Google and Meta stocks in 2022. 
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Based on the returns for our stocks in the year 2021, our three different methods 

have designed three different optimal portfolios whose weights for each stock are 

shown in Figure 6. 

 Mean Variance Model Robust Model Bayesian Model 

AAPL 0.00 0.00 1.000000e-14 

AMZN 8.956761e-01 0.00 9.985640e-01 

GOOG 6.955954e-02 0.114224 7.862607e-02 

META 2.785404e-17 8.969980e-01 1.000000e-14 

TSLA 0.00 0.026479 1.000000e-14 

 

Accordingly, we have constructed our optimal portfolios with the weights provided 

above and in Figure 7 we show the evolution of the cumulative return of our portfolios 

over the year 2022. 

 

During 2022, the price of our five stocks followed a negative line. The return of our 

three portfolios consequently followed this trend, but their returns were different. Overall, 

the Bayesian portfolio was the best performer and the robust portfolio yielded the largest 

losses. The traditional Markowitz portfolio remained broadly in the middle ground 

between the two. In periods when returns are positive, the MV portfolio performs 

Picture 6: Optimal weights for Mean-Variance, Robust and Bayes based portfolios. 

Picture 7: Cumulative return of Mean-Variance, Robust and Bayesian optimal portfolios for 2022. 
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similarly to the Bayesian portfolio, but in declining periods, its returns are much lower 

and even match the Bayesian portfolio. 

Analysis of the return of our portfolios 

 
Mean Variance 

Model 
Robust Model Bayesian Model 

Maximum 0.092928 0.139409 0.083273 

Mean -0.002273 -0.002693 -0.001908 

Median -0.001439 -0.004905 -0.002702 

Minimum -0.082233 -0.142050 -0.095565 

Volatility 0.026527 0.035176 0.026321 

Final cumulative return -0.483147 -0.564106 -0.432446 

 

 

In image number eight, we take a closer look at the statistics of our portfolios. The 

robust model yields the highest volatility and the most negative returns; both its mean and 

median are noticeably below the other two. The most stable portfolio turns out to be the 

Bayesian one, which also provides the highest cumulative return and the highest mean. 

The median of the MV portfolio is slightly higher than the Bayesian one and it is precisely 

the Markowitz portfolio that offers the highest return. However, it is a more volatile 

portfolio whose performance over the annual period analysed is below our Bayesian 

approach. From the results we can conclude that the performance of the Bayesian 

portfolio is the most stable and positive as a rule. In the worst cases when stock prices 

fall, its return remains above its two alternatives and, in the medium and long term, its 

low volatility makes it the most profitable portfolio on average. 

8. Conclusions and further areas of research 

Since the birth of Modern Portfolio Theory in 1952, the science of portfolio 

optimisation has evolved dramatically. In the wake of Markowitz's Mean-Variance 

model, numerous alternatives have emerged, providing tools for investors to analyse the 

Picture 8: Statistics of the returns of our Mean-Variance, Robust and Bayesian portfolios. 
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behaviour of portfolios as a whole. However, the market in which these portfolios move 

is subject to supply and demand and follows irrational patterns that, to date, cannot be 

explained by any model. Portfolio optimisation is therefore a complex and continuously 

evolving science and a field of application for all state-of-the-art tools focused on the 

optimisation of functions that follow unknown patterns but for which a massive amount 

of noisy data is available. 

It is precisely the irrational behaviour of the components of a portfolio that creates 

the need to estimate values such as return and risk in order to establish an optimisation 

strategy. Naturally, any estimation is subject to error. Thus, the models of classical theory, 

whose basis is the optimisation of the risk-return trade-off from estimates obtained by 

regression and other traditional methods, show high estimation errors that in many cases 

can be highly detrimental to the investor. In order to avoid precisely the most damaging 

cases, the Robust Model tries to impute this uncertainty present in all estimation by means 

of the inclusion of uncertainty sets. In this way, it tries to avoid those cases in which the 

portfolio can provide disastrous results for the investor, i.e. it avoids the riskiest scenarios, 

which can generally also be the most profitable ones, eliminating the outliers and reducing 

the risk to which the investor is exposed. In our experimental implementation we have 

found that the Robust Model is the worst performing model. While it is true that our 

model is simple in order to describe how each method works, the Robust Model errs in 

excluding precisely those portfolios with a high risk-return ratio. This model creates 

precisely robust portfolios that avoid both best- and worst-case scenarios, making it more 

suitable for conservative investors who wish to avoid catastrophic downturns at all costs 

to the detriment of higher returns when the market is on the upside. 

The Bayesian Model, on the other hand, includes the investor's prior knowledge, 

being able to incorporate that subjectivity present in the market. It is a method that is 

somehow close to the subjective thinking behind the investment and capable of modelling 

functions that follow an irrational pattern and hardly explainable by a classical function. 

In our experimental implementation, this model is the one that shows the best 

performance, outperforming our benchmark model, the traditional Mean-Variance 

Model. We have explained above that the major limitation of the Markowitz model lies 

in the estimation of its inputs. In fact, Markowitz's approach is not flawed, but is limited 

by the error in the estimates of the securities he analyses, as are his alternative models 



 

 

32 
 

such as MAD, VaR, CVar, Minimax or Lower Partial Moment, discussed in section 4. 

These tools changed the investment world, providing for the first-time units of 

measurement for the risk and return of a portfolio as a whole. The emergence of intelligent 

tools, such as Bayesian Optimization, does not imply their elimination. On the contrary, 

we propose this approach as the solution to limit classical estimation errors and provide 

investors with a tool that allows them to analyse the performance of a portfolio in an 

accurate way, incorporating the investor's expertise and making use of the massive 

amount of information they have at their disposal nowadays. 
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