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RESUMEN DEL PROYECTO

El objetivo final del proyecto es la aplicacion de técnicas de IA (Inteligencia Artificial) para
el control del posicionamiento dinamico de un nuevo buque de mantenimiento de un parque
de edlica flotante. El foco de este trabajo sera principalmente el montaje y configuracion de
un entorno de simulacion apropiado para el entrenamiento de agentes de 1A basados en
aprendizaje por refuerzo. Dichos agentes se encargaran del control del posicionamiento
dindmico del buque mediante el control de los propulsores de la embarcacion en funcién al
estado del entorno.

Palabras clave: DP, Python, Reinforcement Learning, Control, Environment, Framework

1.

Introduccion

El posicionamiento dindmico (DP) es un sistema controlado por ordenador utilizado
para mantener automaticamente la posicién y el rumbo de una embarcacion utilizando
sus propias hélices y propulsores. En especifico, los sistemas DP se utilizan para
controlas los tres grados de libertad el buque, correspondientes al control de navegacion
(seakeeping): el balanceo, el avance (surge), desplazamiento lateral (sway) y giro en
torno al eje vertical (yaw). [MEHR20]

Al ser una tecnologia involucrada en misiones en alta mar, operaciones de rescate y
muchas otras aplicaciones criticas [ERRV], es, y ha sido desde su primera utilizacion en
la década de 1960 objeto de numerosos estudios y desarrollos en términos de técnicas de
control, con el fin de lograr una mayor precision y reducir el movimiento del barco.

El enfoque més convencional a estos sistemas es el empleo de controladores PID
(Proporcional Integral Derivativo) que mediante funciones de transferencia ajustan los
propulsores basandose en la retroalimentacion del error entre la posicion actual y la
deseada. Con el tiempo estos modelos se han perfeccionado y han evolucionado para
incorporar modelos matematicos muy proximos a la realidad de las embarcaciones y las
condiciones medioambientales. Estos modelos ayudan al sistema a predecir la respuesta
para un rango de condiciones mas variado.

Mas recientemente, hay un interés creciente en la aplicacion de aprendizaje
automatico, especificamente de aprendizaje por refuerzo a los sistemas de DP
[OVER21]. En aprendizaje por refuerzo un agente aprende a tomar decisiones a base de
tomar acciones en un entorno y recibir una recompensa basada en el resultado de esas
acciones. Este enfoque podia potencialmente lleva a sistemas de DP mas adaptables y
eficientes, y es el origen de este proyecto, en especifico el desarrollo de dicho framework
de RL (Reinforcement Learning) para el entrenamiento de agentes de IA.



2. Definicion del proyecto

El problema que plantea afrontar este proyecto es la falta de ese entono para el
entrenamiento de los agentes, en especial de un entorno open-source, realista y
representativo para aplicaciones de RL en el contexto de DP. Los objetivos son el
desarrollo de un entorno simulado de entrenamiento que cumpla los siguientes criterios:

e Open Source: el entorno estara disponible abiertamente para su uso
modificacion y distribucion. Este aspecto es crucial para acelerar la investigacion
y desarrollo de esta area.

e Actualizado y realista: el entorno reflejard con precision los Gltimos avances en
tecnologias de aprendizaje por refuerzo y ofrecerd ajustes de entrenamiento
considerando observaciones realistas de un entorno real como son el viento, las
olas, asi como caracteristicas propias del buque.

e Representativo y configurable: el entorno podréa representar muchos escenarios
ofreciendo la posibilidad de configurar aspectos de la simulacion ofreciendo una
herramienta versatil para investigacion.

e Compatible con Gym y API (Apliccation Programming Interface) de
Python: el desarrollo del entorno se realizara con el objetivo de controlarse a
través de Python dado que es el lenguaje mas estandarizado y de mayor
integracion para el aprendizaje por refuerzo, en especial con el paquete de Gym
de OpenAl el cual seré base de nuestro entorno.

3. Descripcion del sistema

El sistema considerado se ha construido sobre el framework de simulacion
proporcionado por la competicion Virtual RobotX (VRX) [VRXC23], un evento
internacional a nivel de universidad que se centra en el desarrollo de sistemas maritimos
auténomos.

La plataforma de VRX es un entorno simulado en Gazebo, un simulador de robética
3D open-source, con el Sistema Operativo de Robots (ROS2) para la comunicacion y
programacion de robots. Permite la experimentacién de diversos comportamientos
roboticos maritimos, como el mantenimiento de la posicién, la navegacion por puntos de
referencia y la evasion de obstaculos entre otros, empleando como vehiculo el WAM-V
[WAMV] una embarcacion estandar en experimentacion maritima no tripulada.

lustracion 1: Comparacion entorno real vs simulado VRX



VRX aparte de por ser open-source y contar con facil interaccion con Python, fue elegida
pilar del proyecto también por contar con el patrocinio y la orientacion de varias entidades
destacadas en las industrias de la robdtica y la maritima, incluyendo Open Robotics, la
Oficina de Investigacion Naval (ONR) y la Escuela de Posgrado Naval (NPS) entre otros.

La infraestructura de ROS2 actia como la columna vertebral del sistema,
proporcionando las herramientas necesarias para la programacion y control de los
comportamientos del robot en la simulacion. Permite una comunicacién eficiente entre los
nodos de software a través de una arquitectura de publicacion y suscripcion mediante topicos
y peticiones y respuestas mediante servicios lo que facilita la integracion de varios
componentes y funcionalidades del sistema robdtico.

Gazebo, por otro lado, proporciona el entorno virtual en 3D en el que los robots operan.
Se integra sin problemas con ROS2, permitiendo que los robots simulados reciban comandos
e informen datos sensoriales al sistema de ROS2. EI motor de fisica de Gazebo simula las
interacciones del robot con su entorno, proporciona una representacion precisa del
comportamiento de un robot en un entorno maritimo. Ademéas, ROS2 y Gazebo juntos
facilitan la visualizacion y el anéalisis de los comportamientos del robot en tiempo real
mediante la GUI de Gazebo.
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lustracion 2: Esquema de alto nivel del ciclo de aprendizaje por refuerzo

Sobre esta plataforma, se desarrollara el codigo en Python requerido para ser capaz de
actuar como entorno de aprendizaje por refuerzo y se realizaran ligeras modificaciones en
su codigo base en C++. El objetivo principal serd desarrollar un entorno para un
entrenamiento basico de agentes segun una condicion de la mar fijay un viento variable, con
la posibilidad a futuro de modificar estas condiciones de oleaje fijas.

Lo que buscamos es realizar una primera demostracion preliminar de la capacidad del
aprendizaje por refuerzo y de nuestro entorno de resolver condiciones maritimas de alto
nivel, para a futuro y desarrollo realizar un entrenamiento mas extenso y elaborado para
adaptarla a cualquier combinacion de condiciones meta oceanicas.



4. Resultados

Se han logrado los siguientes objetivos:

Open Source: el entorno final se ha desarrollado empleando Unicamente
tecnologias open-source disponibles al publico.

Actualizado y realista: al estar basado en la competicion VRX, celebrada afio a
afio y con una creciente atencion en el sector, el simulador cuenta con una
comunidad con la cual interactuar y brindar soporte. A parte se ha conseguido
interaccionar sin problema con los sensores propios de un DP en una embarcacion
como pueden ser el GPS o la unidad inercial (IMU), modificar las condiciones
meta oceanicas (viento y oleaje) y recibir lecturas de estas y controlar segun
convenga los propulsores del vehiculo.

Representativo y configurable: al contar de base con la plataforma de VRX,
nos asegura una representacion fidedigna y contrastada de la realidad contando
con modelado del oleaje basado en el espectro de Pierson-Moskowitz o0 modelado
del vehiculo siguiendo los seis grados de libertad de Fossen [BBIN19]. Dicha
representacion permite tanto una sencilla configuracion de las condiciones
ambientales deseadas como de la propia geometria y caracteristicas fisicas del
vehiculo.

Compatible con Gym y API de Python: unas sencillas modificaciones sobre el
cddigo base han habilitado el control a través de Python y el servicio de
/world_control de las funciones clave de un entorno Gym en especial del pausado,
reanudado y avance por ‘steps’ o pasos de simulacion de duracion fija. El resto
del codigo para la ejecucion de un episodio se ha desarrollado en Python.

Aparte, se ha logrado la ejecucidon en remoto del sistema dockerizado y con

aceleracion por GPU (Graphical Processing Unit) en Linux OS con un entrenamiento
de forma centralizada obteniendo velocidades de simulacion de 3 veces el tiempo
real con solo un 30% de uso de GPU. EIl usuario especificaria las condiciones de
entrenamiento que desea y los parametros necesarios deseados a través de un archivo
de configuracion y se levantarian multiples instancias de entrenamiento cada una con
su propio agente basadas en nuestro sistema. El esquema final de nuestro sistema ha
seguido la siguiente estructura:
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5. Conclusiones

La necesidad de entornos simulados realistas y open-source para el entrenamiento de
agentes de aprendizaje por refuerzo es cada vez mas evidente. Estos entornos permiten
la experimentacion y optimizacion de algoritmos en condiciones seguras y reproducibles,
aportando un gran valor a la investigacion y desarrollo en este campo.

Nuestro sistema, aunque presenta desafios como la necesidad de reinicio de Gazebo
para efectuar cambios en el entorno maritimo, es una solucion efectiva para entrenar
agentes en condiciones de mar predefinidas. Aun con estos desafios, esta limitacion
puede abordarse siguiendo el ejemplo de desarrolladores de la comunidad que han
logrado la actualizacion dindmica del entorno sin interrupcion de la simulacion.

En cuanto a los objetivos de nuestro sistema, reitero hemos logrado con éxito
proporcionar un entorno de entrenamiento para condiciones de mar fijas y predefinidas.
Ademas, se ha explorado la capacidad de introducir nuevos vehiculos en la simulacion,
ampliando asi la capacidad del simulador. Por ultimo, se ha explorado la posibilidad de
mejorar aln mas la eficiencia, restringiendo la complejidad de los mundos simulados.

En resumen, a pesar de algunos desafios nuestro sistema aspira a ser un recurso
valioso para el entrenamiento de agentes por refuerzo en la robética maritima y
confiamos en su contribucion al avance en tecnologias de posicionamiento dindmico y
seguridad de operaciones maritimas.
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ABSTRACT

The goal of the project is the application of Al techniques for the dynamic positioning control
of a new maintenance vessel for a floating wind farm. The focus of this work will be
primarily the assembly and configuration of a proper simulation environment for training
reinforcement learning-based Al agents. These agents will oversee the dynamic positioning
control of the vessel by controlling the vessel's thrusters according to the state of the
environment.

Keywords: Dynamic Positioning, Python, Reinforcement Learning, Environment.

1.

Introduction

Dynamic Positioning (DP) is a computer-controlled system used to automatically
keep the position and heading of a vessel using its own propellers and thrusters.
Specifically, DP systems are used to control the three degrees of freedom of the vessel,
corresponding to seakeeping control: surge, sway, and yaw [MEHR20].

Since it is a technology involved in offshore missions, rescue operations, and many
other critical applications [ERRV], it is, and has been since its first use in the 1960s, the
subject of many studies and developments in terms of control techniques, to achieve
greater precision and reduce ship movement.

The most conventional approach to these systems is the use of PID controllers that
adjust the thrusters based on the feedback of the error between the current and desired
position through transfer functions. Over time, these models have been refined and have
evolved to incorporate mathematical models close to the reality of the vessels and
environmental conditions. These models help the system predict the response for a wider
range of conditions.

More recently, there is growing interest in applying machine learning, specifically
reinforcement learning, to DP systems [OVER21]. In reinforcement learning, an agent
learns to make decisions based on taking actions in an environment and receiving a
reward based on the outcome of those actions. This approach could potentially lead to
more adaptable and efficient DP systems, and is the origin of this project, specifically
the development of such a simulated training environment.



2. Project definition

The problem this project aims to address is the lack of an environment for training
agents, particularly an open-source, realistic, and representative environment for RL
applications in the context of DP. The goals are to develop a simulated training
environment that meets the following criteria:

Open Source: The environment will be openly available for use, modification,
and distribution. This aspect is crucial to accelerate the research and development
in this area.

Up-to-date and realistic: The environment will accurately reflect the latest
advances in reinforcement learning technologies and will offer training
adjustments considering realistic observations from a real environment such as
wind, waves, as well as the ship's own characteristics.

Representative and configurable: The environment will be capable of standing
for a wide variety of scenarios offering the possibility of configuring various
aspects of the simulation, thus supplying a versatile tool for research.
Compatible with Gym and Python API: The development of the environment
will be carried out with the aim of being controlled through Python, as it is the
most standardized language and has the greatest integration for reinforcement
learning, especially with OpenAl's Gym package, which will be the basis of our
environment.

3. System description

The system under consideration has been built on the simulation framework provided
by the Virtual RobotX (VRX) competition [VRXC23], an international university-level
event that focuses on the development of autonomous maritime systems.

The VRX platform is a simulated environment in Gazebo, an open-source 3D
robotics simulator, with the Robot Operating System (ROS2) for robot communication
and programming. It allows the experimentation of various maritime robotic behaviors,
such as keeping position, navigation through waypoints, and obstacle avoidance among
others, using the WAM-V [WAMV] as the vehicle, a standard vessel in unmanned
maritime experimentation.

Fig. 1: Real vs Simulated environment VRX



VRX was chosen as the cornerstone of the project not only because it is open-source
and has easy interaction with Python, but also because it has the sponsorship and
guidance of several entities prominent in the robotics and maritime industries, including
Open Robotics, the Office of Naval Research (ONR), and the Naval Postgraduate School
(NPS) among others.

The ROS2 infrastructure acts as the backbone of the system, supplying the necessary
tools for programming and controlling the robot's behaviors in the simulation. It allows
efficient communication between software nodes through a publish-subscribe
architecture using topics and request-response through services, facilitating the
integration of various components and functionalities of the robotic system.

Gazebo supplies the 3D virtual environment in which the robots operate. It integrates
seamlessly with ROS2, allowing the simulated robots to receive commands and report
sensory data to the ROS2 system. Gazebo's physics engine simulates the robot's
interactions with its environment, supplying an accurate representation of a robot's
behavior in a maritime environment. Furthermore, ROS2 and Gazebo together help the
visualization and analysis of robot behaviors in real time through the Gazebo GUI.
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Fig. 2: High level scheme of the cycle of reinforcement learning

On this platform, the required Python code will be developed to be able to act as a
reinforcement learning environment, and slight modifications will be made to its base
code in C++. The main aim for now will be the development of an environment for basic
training of agents based on a fixed sea condition and variable wind, with the possibility
in the future of changing these fixed wave conditions.

What we are looking for with this, is to make a preliminary demonstration of the
capability of reinforcement learning and our environment to solve high-level maritime
conditions, so that in the future, with further development, we can conduct more
extensive and elaborate training that allows full adaptability to any combination of
target oceanic conditions.



4. Results

The following goals have been achieved:

Open Source: the final environment has been developed using only open-source
technologies available to the public.

Updated and realistic: being based on the VRX competition, which is held
annually and is receiving growing attention in the sector, the simulator has a
community with which to interact and supply support. Moreover, it has been
possible to interact without problem with the sensors typical of a DP on a vessel
such as the GPS or the inertial unit (IMU), change the target oceanic conditions
(wind and waves) and receive readings from these and control the vehicle's
thrusters, as necessary.

Representative and configurable: having the VRX platform as a base ensures
a faithful and contrasted representation of reality, with wave modeling based on
the Pierson-Moskowitz spectrum or vehicle modeling following Fossen's six
degrees of freedom [BBIN19]. This representation allows both an easy
configuration of the desired environmental conditions and of the vehicle's own
geometry and physical characteristics.

Compatible with Gym and Python API: a few simple modifications to the base
code have enabled control through Python and the /world_control service of the
key functions of a Gym environment, especially pausing, resuming, and
advancing by 'steps' or fixed duration simulation steps. The rest of the code for
running an episode has been developed in Python.

In addition, it has been possible to run the system remotely in a dockerized form and
with GPU acceleration on Linux OS training agents in a centralized manner, achieving
simulation speeds of 3 times real time with only 30% GPU usage. The user would specify
the training conditions they want and the necessary desired parameters through a
configuration file and multiple training instances would be launched, each with its own agent
based on our system. The final scheme of our system has followed the following structure:
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Fig. 3: Final system schema




5. Conclusions

The need for realistic and open-source simulated environments for training
reinforcement learning agents is becoming increasingly clear. These environments allow
for the experimentation and optimization of algorithms under safe and reproducible
conditions, supplyinh excellent value to research and development in this field.

Our system, while presenting challenges such as the need for a Gazebo restart to
make changes in the maritime environment, is an effective solution for training agents
under predefined sea conditions. Even with these challenges, this limitation can be
addressed by following the example of community developers who have achieved
dynamic environment updating without simulation interruption.

Regarding the goals of our system, I reiterate that we have successfully managed to
supply a training environment for fixed and predefined sea conditions. In addition, the
capability to introduce new vehicles into the simulation has been explored, thus
expanding the simulator's ability. Finally, we have investigated the possibility of further
enhancing efficiency by restricting the complexity of the simulated worlds.

In summary, despite some challenges, our system aspires to be a valuable resource
for training reinforcement agents in maritime robotics, and we trust in its contribution to
advances in dynamic positioning technologies and maritime operation safety.
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1.1 PROBLEM STATEMENT

Dynamic positioning (DP) is a critical aspect of maritime navigation, particularly
vital in situations where precise control of the vehicle’s movement is crucial. In maritime
environments, such as offshore operations, rescue missions, and maintenance activities in
locations such as wind farms, keeping a vessel in a stable position despite the motion of

waves, wind, and currents is of utmost importance.

Figure 1: eco-SOV vessel accessing an offshore wind farm.

The movements of a maritime vessel can be described using its six degrees of
freedom (6 DoF), which are further divided into maneuverability movements referring to the
vessel's capability to perform maneuvers (roll, pitch, and heave), and seakeeping movements
related to the horizontal motions caused by waves and currents (surge, sway, and yaw). DP
refers to the computer-controlled system that automatically keeps the position and
orientation of a vessel using its own propellers and thrusters, primarily focusing on keeping

control over the seakeeping degrees of freedom: surge, sway, and yaw.
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While maneuverability is also important in navigation, it is not the primary goal of
DP. DP is primarily used in scenarios that require stability and the ability to remain static in
a position with high precision. Maneuverability, on the other hand, refers more to the vessel's

responsiveness and its ability to make quick and agile changes in direction.

Figure 2: Horizontal Movements controlled by the DP

It is this demand of maximum accuracy what makes DP a field in constant
development and evolution, looking to apply new advances in technology to reduce risks,

ensure the well-being of the crew and the maximize the success of maritime operations.
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Figure 3: Summary of a conventional DP system
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A conventional (DP) system consists of several key components [DPWM] that work
together to achieve this precise control of a ship’s position and orientation at sea. These

components include:

- Sensors: Sensors play a crucial role in the system as they supply real-time
information about the position, velocity, orientation, and environmental conditions.
Commonly used sensors include GPS receivers, inertial measurement units (IMUSs),
wind speed sensors, lidar sensors, and cameras.

- Control computer: The control computer is the brain of the system. It receives data
from the sensors and uses control algorithms to make real-time decisions and
calculate the necessary corrections in the propellers and thrusters.

- Propellers and thrusters: Propellers and thrusters are the actuators used to control
movement. They are continuously adjusted by the DP to generate the required force
and direction to counteract the effects of waves.

- Reference system: The reference system is essential for DP as it supplies a reference
coordinate basis for calculating the position and orientation. It can be based on global
positioning systems (GPS), inertial navigation systems (INS), or other specific

reference systems.
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DP has come a long way since it was first used in the decade of 1960s for offshore

drilling operations. Today it is a fundamental technology for certain ships and operations.

There is one key area that represent the state of the art in DP and it is the control system and
the techniques behind it [WLQW19]:

Proportional Integral Derivative Algorithm: PID controllers are the most
known, enhancing the control system’s adaptability and robustness. However,
although it is simple and easy to use, the control on complex nonlinear systems
is still poor.

Fuzzy Logic Control: the essential thing is to achieve adaptive control with
inaccurate mathematical models. It is often used in combination with PID to
improve adaptability.

Model Prediction Control: it is widely used due to its ability to deal with
multivariate, non-linear features and its robustness. It is a predictive model,
feedback correction and rolling optimization.

Avrtificial Intelligence: it is a modern technology for researching and developing
theories, methods, and application systems for simulating, extending, and
expanding human intelligence. The most advanced techniques are based on the

application of deep leaning and reinforcement learning [OVER21].
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Figure 4: Fuzzy control combined with other algorithms.
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These are some of the most common techniques still used to this day, in terms of the
first three, they are usually applied in combination with each other or other control
algorithms. On the other hand, the latter has been rapidly growing in popularity due to the

recent boom of artificial intelligence.

RL is a type of machine learning paradigm where an agent learns to make decisions
by interacting with its environment. It is inspired by the process of learning from trial and

error, like how a human’s or animal’s learning process would go.

The fundamental components of RL include the agent, environment, actions,
observations (also known as state most of the time), policy, and rewards. The agent is the
entity that makes decisions and performs actions. The environment is where the agent works.
Actions are the set of possible choices the agent can make, and observations are the perceived
states of the environment. The policy is a strategy of possible choices the agent can make,
and observations are the agent’s perceived states. The reward is the feedback signal that the

agent receives after performing an action. The goal of the agent is to maximize the reward.

The goal of this project is to supply an open-source, representative, configurable and
realistic environment for the training of agents specialized in the dynamic positioning of

maritime vessels.

\
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Figure 5: RL control loop VS example DP loop with neural network
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To tackle the creation of our desired environment we first set up to find a framework

or simulator that could act as the pillar for further development and adaptation to our needs.

Given the complexity, time, and resource constraints of the project the development of our

own simulator was considered unfeasible and out of the question.

3.1 SIMULATOR CHOICE

In search of this first base simulator, we set some guidelines on key characteristics

we were looking for which were tightly related to the goals we had in mind for our

environment. These characteristics were the following:

Open Source: we are looking to avoid any license trouble at the time of
parallelizing work and aiming to make the environment fully publicly available
for the community to keep a continuous use, testing and development of it.
Updated and realistic: the environment and therefore the simulator must
accurately reflect the latest technological advancements and not be outdated or
abandoned. It will allow for realistic observations supplying all the necessary
features to recreate the scenario at hand.

Representative and configurable: the environment must be standing for a vast
variety of cases representative of offshore sea states, offering the possibility of
configuring several simulation parameters allowing for a versatile tool for
research.

Python API: we are looking to build our environment upon the standard toolkit
of Open AI’s Gym package which commonly runs on Python, therefore an

interactive and easy to control Python API would greatly benefit this cause.
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With all these guidelines in mind and after careful consideration of many simulators,
the conclusion we arrived at was that the simulator of choice was Virtual RobotX

competition simulator.

Figure 6: VRX real vs simulation comparison

3.2 SIMULATOR DESCRIPTION

VRX is an innovative, high-fidelity marine robotics simulator. VRX is based on the
Gazebo Garden simulation software and uses the Robot Operating System (ROS2) for
communication and control, thus receiving help from the wide array of tools and libraries in
the ROS ecosystem which will be key in stablishing communication between our
environment setup and the simulator. This combination of technologies enables VRX to
accurately simulate complex marine environments and the physical characteristics of marine

robots.

VRX provides a realistic and dynamic environment with capabilities for simulating and
configuring winds and waves and supplies a set of standard tasks often met in marine
robotics applications such as station keeping (like DP) waypoint navigation and object
detection. VRX also supplies realistic feedback of the vehicle from a variety of sensors like
GPS, IMU, Lidar or cameras.

Finally, another reason behind its choice was the sponsorship and support behind the
project by renown entities in the maritime and robotics industry such as the Office of Naval
Research (ONR), the Naval Postgraduate School (NPS) and Open robotics among others.
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3.2.1 ROS2 ECOSYSTEM

Although ROS stands for Robot Operating System, it is not actually an OS, but a set

of common libraries and tools on which to build more complex robotic systems. ROS has

many distributions, and, in this project, we will be working with ROS2 Humble Python API.

Let us do a brief overview on the basics of the ROS ecosystem:

Nodes: they are the fundamental block of the system; they are smaller programs
that all run at once and talk to each other. We will use these nodes to define our
classes inside the program, some example usage in our system will be a thruster
control node for each, a vehicle control node, or a simulation node, among others.
Topics and Messages: it is the way nodes communicate with each other. A topic
is a named location that one (or multiple) nodes can publish a message to, these
are called publishers. To these topics one (or multiple) nodes can subscribe to
receive the messages (subscribers). A node can be both a subscriber of one topic
and a publisher of another. We will use these topics to communicate information
like the desired angle on a specific thruster, receive the GPS input or the wind’s
speed.

Services: unlike topics which allow sharing many messages to anyone, services
offer a single request/reply communication from one node to another. They
supply a way for nodes to perform remote procedure calls (RPCs) and request
specific tasks or actions from other nodes. They ease synchronous
communication which in the context of RL will be key, for topics we will have
to do a little workaround to avoid their asynchronous nature.

Launch files: it is a Python-based system to configure and launch all nodes we
need together. We will be using the provided launch scripts by the competition

with little adjustments.

11
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Service

Request

Response

Figure 7: Topics and Services in ROS2

e Packages and Workspace: packages are the first level of organization in ROS2, it
is how we group closely related files together. All the packages of your project are
stored inside the workspace which is the centralized location for organizing and
managing them. Developing the whole code as a ROS2 package was considered,

however for our purposes it was better to have it stand as a separated Python module.

VIX_WS
e vrx ros_gz
\—-’—\ [ VrX_gz ] [ ros_gz_bridge ]
R
build [ vrx_ros ] [ros_gz_interfaces]
: vrx_urdf l ros_ign_bridge |
install l vrx_gazebo I l ros_ign_gazebo I
— l AT | lros_ign_interfacesl
logs l wamv_gazebo I E
R —

Figure 8: VRX Workspace and main packages

12



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)

COMILLAS MASTER EN BIG DATA Y ANALITICA AVANZADA

UNIVERSIDAD PONTIFICIA

|_ical____iCADE ] CHAPTER 3. DESCRIPTION OF THE SYSTEM

Additionally, ROS supplies a system called tf2 (TransForm version 2), to handle
transformations for us. Transformations refer to the mathematical operations and data
structures used to represent and manipulate the position and orientation of entities in a 3D

space. It allows us to describe relative positions and orientations of various parts of a robot.

To define the structure, geometry, physics, and visual appearance of the robot. It is a
standardized way in XML code to describe the physical properties of a robot, such as its
links, joints, sensors, and visuals. This file is then read by a ROS node called
robot_state publisher that broadcasts all the transforms, a static value for ‘fixed’ joints and
a new value based on external information for dynamic transforms. It then publishes its

contents to the topic /robot_description.

This information in this topic is then shared to Gazebo via the launch file we
previously described to allow the robot to be spawned in the simulation and interact with it.
Then the information about the robot state in the simulation is broadcasted outside of gazebo
through a plugin that publishes the updates to /joint_states which is read by the
robot_state_publisher to update the dynamic transforms and repeat the cycle.

@ LRDF Fila
‘ L d_---"?

Cupy ol URDM
= ket _description

i L8] punlshar
Arobot_descel
o~
- J

Gazebo

Spawnar script

loint state
publisher plugin

Figure 9: ROS-Gazebo integration
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3.2.2 INPUTS

The main inputs available for definition and configuration within VRX that need to
be defined and configured beforehand are:

Input variables

Variable Type Dimension Range Units
Timestep Continuous Scalar - S

Wave Direction Continuous Vector [0,1] -

Wave Gain Continuous Scalar - -

Wave Peak Period Continuous Scalar - S

Wave Steepness Continuous Scalar [0,1] -

Wind Direction Discrete Scalar [0,360] Degrees
Wind Mean Speed Continuous Scalar - m/s

Wind Var. Gain Continuous Scalar - m/s

Wind Time Constant Discrete Scalar - 1/s

Added Mass Continuous Scalar - Kg

Linear Drag Continuous Scalar - Nm/(rad/s)
Quadratic Drag Continuous Scalar - Nm/(rad/s)
Yaw Damping Continuous Vector - N/(m/s)
Max Velocity Continuous Scalar - m/s

Table 1: VRX main inputs
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The above mentioned are only a few considered the most relevant of the many
configurable parameters in the simulation. They are main parameters of the own simulation

(timestep), sea state (wave and wind) or the vehicle (mass, drag and max velocity).

Besides those pre-configurable parameters, we need to highlight the update rates of
the several sensors and topics and the control inputs our agent will be interacting with to

drive the vehicle, that are:

Control variables

Variable Type Dimension Range Units
Thruster Thrust Continuous Vector [-1, 1] N
Thruster Angle Continuous Scalar [-PI, PI] rad

Table 2: control variables
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3.2.3 OUTPUTS

The main outputs available from the simulation that we are going to be reading and

working with are:

Output variables

Variable Type Dimension Range Units
Latitude Continuous Scalar [-90, 90] Degrees
Longitude Continuous Scalar [-180, 180] Degrees
Altitude Continuous Scalar - m
Orientation Continuous Quaternion [-1,1]

Angular velocity Continuous Vector - rad/s

Linear Acceleration Continuous Vector - m/s?

Wind Speed Continuous Scalar - m/s

Table 3: VRX main outputs

3.2.4 REPRESENTATION AND REALISM

In this section, we will briefly cover how the simulator models the different key
components of the environment. This is just going to be a summary, for the explicit details
and full explanation please check VRX official paper [BBIN19].

3.2.4.1 Waves

To summarize, waves are modelled using Gerstner waves model. After the wave
input parameters described in the Inputs section are set (direction, gain, peak period, and
steepness), the directional two-parameter Pierson-Moskowitz spectrum is defined and used
to figure out the remaining parameters through sampling a linear deep water dispersion

relation.
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Figure 10: Two parameter Pierson-Moskowitz wave spectrum
3.2.4.2 Wind

Total wind speed consists of the sum of the constant mean wind speed and the

temporally varying, zero-mean, variable wind speed:
V() = v + 1y (t)

Equation 2: Wind formulation

The variable part of the wind speed is modeled as a first-order, linear approximation
of the Harris Spectrum with its time constant defined by the user as shown in the Inputs

table. The spectrum is expressed as the following transfer function:

Ky

h(s) = ———
(8) 14+ 7ys

Equation 3: Harris Spectrum transfer function
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3.2.4.3 Vehicle

e Wave forces
To approximate the motion of a vehicle in an ocean environment, Fossen’s six

degee-of-freedom robot-like vectorial model for marine craft is adapted:

MRBV 1 CRB{V:]V } MAI)'{' } CA {VT'JVT' } D(V'J':]V'J' t Q('ﬁ‘} - Tp-rnpuf.sion t Twind + Twaves
~~ ~~ ¥
rigid body forces hydrodynamic forces hydrostatic forces

Equation 4: Fossen's 6 DoF model

Added mass and Non-linear terms added in the maneuvering model but neglected
for complexity in the seakeeping, a simplified model is used preserving the right type

of vessel response.

LINK LINK LINK

JOINT j

H—\{ LINK LINK LINK
LH I

Algorithm 1 Wave Forcing
1: pose = GetWorldPose()
2: vel = GetWorldVelocity()

3: for i = 0 to 2 do > For each WAM-V hull.
4 for j =0to N do - For each grid point.
5 x = GridPosition(pose.position,i,j)

6: z = GridHeight(pose.position,

7 pose.orientation, i,7)

8: z = GridVelocity(vel.linear, vel.angular, ,5)
9: ( = WaveHeight(x.t)

10: C = WaveVelocity(x.,t)

11: f = WaveForce(z — ¢, 2 — ()

12: ApplyForceAtPosition( f,x)

13: end for

14: end for

Equation 5: Wave Forcing Algorithm
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Wind Forces
The forcing terms are expressed as follows, where ¢, ¢,and ¢, are the
dimensional wind coefficients and the remaining terms ae the simulated (apparent)
wind velocities:
Xwing = Cxlpw|Upwl
Ywina = C_yvrwlvrwl

Nyina = —2.0C,Upy Uy
Equation 6: Wind forcing terms

Propulsion forces
The characteristics of an individual thruster are specified by a user-defined
relationship between commanded effort and the resulting thrust force. Two static
mappings are included. The resulting max thrust command (F) from a thruster is
calculated using max speed term (v) defined by the user and linear (C:) and quadratic
(C>) drag terms:
F=05%((C;+Cy*v) *v)

Equation 7: Max thrust command
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The resulting environment was thought for a distributed use case where many
training instances are raised each with their own agent based on a copy of our system with

the following schema:

DOCKERIZED ENVIRONMENT

simulation parameters

Figure 11: Final distributed system schema

4.1 VRX

Minor tweaks needed to be done to the base code of the simulator to allow RL
training, however by far the most important one was the activation of the world control
functions. We needed to be able to pause, resume, reset and advance the simulation by steps
at a constant rate and despite gazebo coming with world control service requests, these

functions were unavailable at the beginning.

The problem was that the world control function was displayed when listing gazebo
services, but it was uncallable from ROS2 and therefore its Python API, making it
unreachable for our purposes. The solution was obvious, if we managed to set up a bridge
between ROS2 and Gazebo we would be able to access the controls. A bridge is a software
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layer that allows ROS2 nodes to communicate with Gazebo’s environment. In this case we

bridged the world plugins to world service.

Gazebo ROS
[ Sensor plugins ] [ Data Topics ]
ROS .
[ Vehicle plugins ] s [ Control Topics ]
[ World plugins ] [ World Services ]

Figure 12: ROS bridges

After bridging the world control, we must add it to the launch file and then it is ready
to use by service requests. After some testing it was noticed that the reset function was not
working properly, debugging this could take a long time since it would require digging
deeper in the source code. Fortunately, for our purposes we could make a workaround the
reset function, which we will comment further below, by enabling another of gazebo’s
function: set pose. So, we bridged this one too. To do these modifications, we had to install

ros_gz package by directly cloning its GitHub instead of by apt.

The latest modification to the source code made had to do with the wind plugin
(USVWind.cc), It was causing the simulator to crash when we interacted more than once
with the world control service giving out a division by zero. The problem lied in the lack of
an escape route in the plugin in case the simulation was stopped, since the plugin used delta
time in many of its calculations and when the simulation was stopped it was drawing nan

value (zero).

In terms of the world used for training, we used the default sydney_regatta.sdf file,
however, we removed unnecessary elements like the land, buoys, tents, or antennas to name
a few. Further acceleration could be achieved by removing sensors we are not planning on

using (which are not for DP) like lidar or cameras.
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Finally, we had to edit the simulation parameters related to the step, specifically the
world max step size which was set to 0.005s and the topics update rate which refers to the
publishing frequency. The final values of the update rate changed to match the step size and

considering sensor’s limitations were:

Topic Update Rate (Hz)
lgps 20

/imu 100

/wind 20

Table 4: Topic's update rates

4.2 USE_CASE_RL

Before digging deep into the environment definition, let us review this block which
covers mainly the setting of the RL parameters and training, it is in an early stage and thus
only covers a simple example, training locally with a set PPO algorithm using GPU in a
centralized way. It consists basically of a main file which pulls the parameters from a

config.json and sets up the training and environment with those parameters.

In terms of the definition of the RL parameters our environment the main

characteristics are:

e Actions:

o Thruster Angle: To try to ease the neural network’s job we are going to do

some encoding to try and solve the discontinuity issue in the angles. The issue

is mainly that independently of the way you define the limits, the net will
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always find two angles equivalent despite them being utterly different
numbers, with no continuity (0 and 2PI or Pl and -PI depending how you
define the action space) which could presumably cause issues in the neural

network reasoning. We will be defining its action space from -Pl to PI.

A
an
n

I

0 2Pland 0

-Pl/2 P1/2 3Pl/4 Pl/2

e >

Figure 13: Discontinuity issue representation in 1D

To work around this, the angle’s action is going to be split in two, its sine and
cosine; however, this might lead to impossible combinations, giving us
results that invalidate cos? + sen? = 1. To prevent this, when decoding the
angle using the arctan function, we are going to first transform them by
dividing by the module of the vector (sen, cos) thus supplying a combination
that fulfills the condition. Another alternative would be to use Euler angles
[CZZC20], or combine the capabilities of reverse thrust with only a half the
angle circle, forcing the neural net to interpret that to use the missing half it
needs to change from forward to reverse.

Thruster Thruster: since neural networks work better with small, scaled input

variables, we are going to limit its action space from -1 (full reverse thrust)
to 1 (full forward thrust) and then decode it by multiplying by the max thrust
command available. [BJHU20]

Observations: as for the observations we are going to start by using the goal position
we aim to keep (lat_init, lon_init), GPS data (lat, lon), the IMU data (orientation
quaternion, linear acceleration, angular velocity) and the wind speed and direction.

We add the goal pose because, although the agent in training could infer the
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relationship with its current position from the reward when it is deployed it will not
count with a reward. Wind direction could help us in the future if we add an
anemometer sensor to measure wind relative direction to the vessel direction. We
have not added altitude not anything related to the z axis since it escapes the scope
of the DP control.

Reward: as for the reward we are simply going to be converting both the goal pose
and the current pose to local cartesian and calculating the module of each of their
vectors, then the difference between their values will be the negative reward. We will
try to scale this reward to make it representative of the separation with the goal.
Done Condition: for now, we will only consider an episode done when it reaches its

maximum number of steps.

4.3 VRX_ENV

vrx_env is the core of the system, it sets up the interactions with the environment

supplying the Python code to take all actions necessary in a RL experiment. Let us go over

its components from bottom to up:

thruster.py: this module creates a class defining the behavior of a thruster. It inherits
the node class and publishes to the thrust and angle right topics. It uses class
decorators to avoid unnecessary latency in the simulation when a thruster state does
not change, a new value of thrust or angle will be published only when it differs from
the earlier one. This module will be inherited by the wamv.py and initialized for each
thruster in the ship.

wamv.py: the wamv module defines the behavior and data inputs of the vehicle. It
inherits the node class, initializes left and right thrusters using the above defined
thruster class and subscribes to the gps, imu, wind speed and wind direction topics.
A spin_until_callbacks method is defined to fight the asynchronous nature in ROS2
message passing which generated latency in between a step is executed and the new
data is published to the topic causing discrepancies. The function keeps the node
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spinning thus preventing the advance to the next step until all callback’s flags are
marked done showing the new data has been successfully received. A
_check_topics_started method is defined to block the advance of the program in the
initialization until the topics needed have been raised. This fixed a recurrent bug
where the code would enter the spin_until_callbacks_done method and would not
escape it.

e gazebo_connection.py: this module inherits the node class and sets up the
connection with the gazebo simulator to enable its control. It creates a client to the
world control and set pose services with a timeout limit of 10 seconds which will
cause the program to be stopped in case these services are not found, be it because
the launch is faulty, or the program hasn’t been run at all. Once the connection to
world control is made, the first thing done is pausing the simulation. Three methods
are defined, one to use the three functionalities available of world control (pause,
step and multistep, resume would be just sending a false pause), another for set pose
which will then be used in the third and last method to reset the wamv’s pose.

e env.py: the most important script out of four, it encapsulates the three already
defined and aims to achieve our goal of turning the vrx into a trainable Open Al’s
gym environment. It inherits the node class, and we defined an added node for
logging and debugging purposes. It has the typical Gym methods, reset, step, and
close (render is not truly defined as a method since it would only involve running the
simulation with headless parameter). The input parameters are:

o max_steps: max number of steps per episode.

o start _pose: first position and orientation of our vehicle.

o dt: the timestep of the simulation, if adjusted we must remember to adjust the
sensor’s update rate accordingly to match it and always have at least one read
at the end of each step, if not a warning will be raised.

o world: name of the world to run.

o headless: Boolean value that controls if the simulation is run without or with
gui, a false value would be equivalent to rendering the environment, however,

keep in mind that doing so would slow the simulation down greatly.
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o

Wave parameters: direction, gain, peak period, and steepness, already

described in the inputs table.

Wind parameters: direction, mean velocity, variable gain, and time constant,

described in the inputs table.
thruster_path: file path where the thruster configuration file is kept, it will
help us pull thruster parameters and calculate max thrust command.

scale: scale to apply to the reward

After storing these inputs in attributes, using an auxiliar method to pull the

thruster max thruster command, we run the launch method, initialize the gazebo

connection and wamv nodes and take an initial step (gazebo_connection step not the

proper method of the env class, so a ‘simulation’ step not a ‘training’ one) that will

load a position value in the gps topic to help us track the initial position of the wamv

and thus the goal pose.

Let us briefly cover the main methods of the environment class and how they

have been implemented:

o

launch: first it kills any existing simulation by finding its process id, then it
sets the different input parameters (timestep, wave and wind) and finally
starts a new simulation running a subprocess (a gnome terminal was the first
approach however given the lack of gui working remotely with docker it was
later removed). The setting of the parameters is done by directly changing the
world file found at the install folder parsing its xml content.

step: this method runs one timestep of the environment dynamics. First, it
takes the action to be performed as input, and sets the action by performing
the already explained decoding of the sine and cosine. Then it takes one
gazebo step and obtains the resulting observation, checks if the episode is
done, calculates the reward and returns the necessary variables of a gym step

(observation, reward, done and info).
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o reset: as it stands right now the reset method only reinitializes variables and
returns the WAMV to its original position. Ideally, in the long run the idea
would be to figure out the reason behind the world control reset malfunction,
fix it, and use it. Soon, a better approach would be to use a world consisting
of only water, defining a grid of coordinates of where the wamv can spawn
and pulling a random value from this grid each time the simulation is

restarted.

4.4 HARDWARE AND DEPLOYMENT

In terms of hardware, the VRX simulator is designed to be run under the following

minimum system requirements:

e Modern multi-core CPU, e.g., Intel Core i5
e« 8Gbof RAM

« Nuvidia Graphics Card, e.g., Nvidia GTX 650
e Ubuntu Desktop 22.04 Jammy (64-bit)

For MacOS we did not go ahead with any installation. As for Windows OS the
installation was done successfully using WSL and Docker, but we did not to achieve
hardware acceleration through the GPU thus getting a simulation speed way below real time.
The assumption was that the issue was lying in compatibility issues between d3d12 mesa
driver used for hardware acceleration in WSLg does not implement a base GL function used

by the Ogre engine of Gazebo, thus development in this front was stopped.

As for the setup for the training, we have gone ahead with a basic core training in our
host machine, however the idea would be to run distributed training running multiple
instances of the container each with its own agent therefore using distributed learning. Each
agent learns independently from its own observation, but the overall policy would receive

help from the experiences of each other [WGDR99].
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Another valid approach to be considered would be centralized learning, having only one
agent receiving multiple observations from multiples training instances raised and learning

from all of these, however, it can be harder to set up and more computationally expensive.

DOCKERIZED ENVIRONMENT

simulation parameters

VRX

reward
usa_cas
EES = E==
Y
> algorithm
licy update

| policy
action

Figure 14: Central system proposal
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CHAPTER 5. CONCLUSIONS

Overall, 1 would qualify the results achieved as a success. We managed to achieve
the most important thing which was generating a trainable environment based on the VRX
simulator which is open-source, configurable, realistic, representative, and most important

of all compatible with OpenAI’s Gym wrapper.

We successfully migrated the simulator control to our Python API, supplying the
possibility of editing oceanic parameters, simulation time step and update rates. We
presented the possibilities of the simulator to handle the input of both new vessels defined

through the several URDF and configuration files and new worlds.

There is still much room for improvement; the simulation could be sped up beyond
the real-time factor of 3 we achieved by removing unnecessary elements in the world files
or optimizing GPU usage. We only considered the most basic use case having the wavefield
parameters fixed for a given training and we did not have the time to explore and dig deeper

into different training setups.

Despite the above, the most relevant achievement was still carried out, which was
the proposal and development of an early-stage platform to carry out reinforcement learning

training of agents for the task of maritime dynamic positioning.
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