

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Potencia y Energía	
Código	DEA-GITT-423	
Título	Grado en Ingeniería en Tecnologías de Telecomunicación por la Universidad Pontificia Comillas	
Impartido en	Grado en Ingeniería en Tecnologías de Telecom. y Grado en Análisis de Negocios/Business Analytics [Cuarto Curso]	
Nivel	Reglada Grado Europeo	
Cuatrimestre	Semestral	
Créditos	4,5 ECTS	
Carácter	Obligatoria (Grado)	
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones	
Responsable	Jaime de la Peña Llerandi	
Horario de tutorías	Previa petición de cita	

Datos del profesorado			
Profesor			
Nombre	Jaime de la Peña Llerandi		
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones		
Despacho	Despacho Departamento Electrónica, Automática y Comunicaciones		
Correo electrónico	jpllerandi@icai.comillas.edu		
Profesores de laboratorio			
Profesor			
Nombre	Johel Jose Rodriguez D'Derlee		
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones		
Correo electrónico	jjrodriguez@icai.comillas.edu		

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado, esta asignatura pretende explicar la importancia de la energía eléctrica en las tecnologías de la información y presentar las tecnologías básicas que se utilizan para la generación de esta energía y, sobre todo, su transformación para los modernos circuitos electrónicos. Dado el papel de la electrónica de potencia en todo el proceso, este curso gira en torno a los fundamentos de esta tecnología para dotar a los futuros graduados de herramientas para entender y evaluar su contribución en los aparatos y procesos con los pueden encontrarse en su vida profesional. La exposición teórica de la materia se completará con experimentos de laboratorio. Con ellos también se pretende familiarizar al alumno con la instrumentación fundamental y los procedimientos que comportan un uso seguro de los distintos elementos.

Prerrequisitos

Un curso elemental en circuitos eléctricos CC y CA

Competencias - Objetivos

Competencias

FΝ	\neg \wedge		FC
	 . •	1	

	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, y de comunicar y transmitir
CG04	conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética y profesional de la actividad del
	ingeniero técnico de telecomunicación.

ESPECÍFICAS

CRT11

Capacidad de utilizar distintas fuentes de energía y en especial la solar fotovoltaica y térmica, así como los fundamentos de la electrotecnia y de la electrónica de potencia.

Resultados de Aprendizaje		
RA1	Entender la importancia de la energía eléctrica en los sistemas de comunicaciones	
RA2	Entender las herramientas principales para el análisis y descripción de los sistemas eléctricos de corriente alterna.	
RA3	Entender los principios de funcionamiento de los convertidores electrónicos de potencia (CA-CC, CC-CC y CC-CA).	
RA4	Entender los elementos y los principios de funcionamiento de las fuentes de alimentación en los dispositivos electrónicos	
RA5	Entender las alternativas para la alimentación de los equipos electrónicos que se utilizan en las tecnologías de la información, incluyendo en instalaciones remotas.	
RA6	Analizar la compatibilidad electromagnética de los convertidores electrónicos en ambientes relacionados con las comunicaciones y otras tecnologías de la información.	

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

El programa de la asignatura se articula en torno a la generación y uso de la energía eléctrica con la ayuda de la electrónica de potencia, con especial hincapié en la alimentación de los dispositivos de comunicación y tratamiento de la información

1: Introducción

Tema 1: INTRODUCCIÓN.

- 1.1 La importancia de la energía en la sociedad de la información.
- 1.2 ¿Qué es la electrónica de potencia?
- 1.3 Aplicaciones: CC-CC, CA-CC, CC-CA, CA-CA

2: Convertidores electrónicos de potencia

TEMA 2: CONVERTIDORES CA-CC

- 2.1 Introducción a los circuitos rectificadores. Factor de potencia y THD. Armónicos en sistemas eléctricos.
- 2.2 Rectificador monofásico de doble onda sin controlar: Análisis y dimensionamiento. Filtro LC y filtro C.
- 2.3 Rectificadores monofásicos controlados.
- 2.4 Corrección del factor de potencia.
- 2.5 Rectificadores trifásicos.

TEMA 3: CONVERTIDORES CC-CC

- 3.1 Principios. El transistor de potencia. Valor medio y eficaz. Convertidor CC-CC reductor en régimen permanente: Formas de Onda.
- **3.2** CC-CC reductor: Cálculo de las magnitudes fundamentales. Conducción ininterrumpida vs conducción interrumpida. Dimensionamiento. Pérdidas.
- **3.3** CC-CC elevador y elevador reductor: Formas de onda y cálculo de las magnitudes fundamentales. Procedimiento general de análisis del régimen permanente. Convertidor CC-CC de cuatro cuadrantes.
- 3.4 Modelo en variables medias de un convertidor CC-CC reductor. Introducción al problema del control de un convertidor CC-CC.

TEMA 4: CONVERTIDORES CC-CC CON AISLAMIENTO GALVÁNICO

- **4.1** Principios de circuitos magnéticos.
- **4.2** Convertidor Flyback: análisis en régimen permanente, formas de onda y dimensionamiento.
- 4.3 Convertidor CC-CC forward: análisis en régimen permanente, formas de onda y dimensionamiento

TEMA 5: CONVERTIDORES CC-CA. INVERSORES

- 5.1 Principios de conversión CC-CA: fuentes de intensidad y fuentes de tensión.
- **5.2** Convertidores CC-CA fuente de tensión monofásicos y trifásicos: Análisis y dimensionamiento. PWM. Fuentes de alimentación ininterrumpida.

3: La energía eléctrica

TEMA 6: ENERGÍA ELÉCTRICA Y MEDIO AMBIENTE

- 6.1 Introducción a los sistemas eléctricos.
- **6.2** Generación eléctrica convencional.

- **6.3** Generación eléctrica no convencional: fotovoltaica, eólica y con pilas de combustible.
- 6.4 Generación convencional vs generación distribuida. El papel de la electrónica de potencia

4: Temas complementarios

TEMA 7: COMPATIBILIDAD ELECTROMAGNÉTICA

- 7.1 Perturbaciones electromagnéticas debidas a la electrónica de potencia. Clasificación.
- **7.2** Perturbaciones conducidas de modo común y de modo diferencial. Fundamentos y medida. Señales de banda ancha y de banda estrecha.
- 7.3 Normativas de compatibilidad electromagnética: principios y ejemplos
- 7.4 Generación convencional vs generación distribuida. El papel de la electrónica de potencia.

TEMA 8: MODELADO Y CONTROL DE CONVERTIDORES CC-CC

- **8.1** Modelo en variables medias de un convertidor CC-CC reductor.
- 8.2 Introducción al problema del control de un convertidor CC-CC.
- 8.3 Alternativas para el control de fuentes de alimentación.
- 8.4 Circuitos electrónicos para el control de fuentes de alimentación.

PROGRAMA DE LABORATORIO

Laboratorio

Estudio de convertidores CA-CC en régimen permanente

Estudio de un convertidor CC-CC en régimen permanente

Estudio de un convertidor CC-CC en régimen transitorio

Estudio de una fuente de alimentación conmutada.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

Clase magistral y presentaciones generales: El profesor explicará los conceptos fundamentales de cada tema incidiendo en lo más importante y a continuación se explicarán una serie de problemas tipo, gracias a los cuáles se aprenderá a identificar los elementos esenciales del planteamiento y la resolución de problemas del tema.

Resolución en clase de problemas propuestos: En estas sesiones se explicarán, corregirán y analizarán problemas análogos y de mayor complejidad de cada tema previamente propuestos por el profesor y trabajados por el alumno.

Prácticas de laboratorio. Se realizará en grupos y en ellas los alumnos ejercitarán los conceptos y técnicas estudiadas, familiarizándose con el entorno material y humano del trabajo en el laboratorio. También se trabajarán ejemplos de simulación de circuitos electrónicos de potencia.

Metodología No presencial: Actividades

Estudio de conceptos teóricos fuera del horario de clase por parte del alumno.

Resolución de problemas prácticos que se corregirán en clase.

Preparación de las prácticas de laboratorio y análisis posterior de los resultados.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES			
Clase magistral y presentaciones generales	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio	
25.00	10.00	10.00	
HORAS NO PRESENCIALES			
Estudio de conceptos teóricos fuera del horario de clase por parte del alumno	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio	
50.00	20.00	20.00	
	CRÉDITOS ECTS:	4,5 (135,00 horas)	

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

El uso de IA para crear trabajos completos o partes relevantes, sin citar la fuente o la herramienta o sin estar permitido expresamente en la descripción del trabajo, será considerado plagio y regulado conforme al Reglamento General de la Universidad.

Actividades de evaluación	Criterios de evaluación	Peso
	Comprensión de conceptos.	
Examen Final	 Aplicación de conceptos a la resolución de problemas prácticos. 	60
	Análisis e interpretación de resultados	00
	Presentación y comunicación escrita.	
	Comprensión de conceptos.	
	Aplicación de conceptos a la resolución de	

Pruebas tipo problema o caso, de seguimiento	 problemas prácticos. Análisis e interpretación de resultados Presentación y comunicación escrita. 	20
Evaluación del trabajo de laboratorio y preguntas sobre el mismo en el examen final.	 Presentación y comunicación oral y escrita. Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos y a la realización de prácticas en el laboratorio. Análisis e interpretación de los resultados obtenidos en la resolución de problemas y en las prácticas de laboratorio. Iniciativa. 	20

Calificaciones

Convocatoria ordinaria

Para aprobar la asignatura es necesario obtener 5 puntos o más según el siguiente cálculo:

60% examen teórico global de la asignatura.

10% evaluación del trabajo en el laboratorio y el cuaderno correspondiente

10% Pregunta/s individual sobre el laboratorio, en el examen final

20% Pruebas de seguimiento

Nota: Para poder llevar a cabo el cálculo anterior, es necesario obtener 4 puntos o más en el examen teórico global de la asignatura. En caso contrario, la nota de la asignatura será la obtenida en el examen.

Nota Importante:

La asistencia a clase es obligatoria, según las Normas Académicas de la Escuela Técnica Superior de Ingeniería (ICAI). Los requisitos de asistencia se aplicarán de forma independiente para las sesiones de teoría y de laboratorio.

En el caso de las sesiones de teoría, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria.

En el caso de las sesiones de laboratorio, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria y en la extraordinaria. En cualquier caso, las faltas no justificadas a sesiones de laboratorio serán penalizadas en la evaluación.

Convocatoria extraordinaria

Para aprobar la asignatura es necesario obtener 5 puntos o más según el siguiente cálculo:

- 60% exámen teórico global de la asignatura
- 10% evaluación del trabajo en el laboratorio durante el curso y el cuaderno correspondiente

- 10% Pregunta/s individual sobre el laboratorio, en el examen final
- 20% Pruebas de seguimiento realizadas durante el curso.
- Nota: Para poder llevar a cabo el cálculo anterior, es necesario obtener 4 puntos o más en el examen teórico global de la asignatura. En caso contrario, la nota de la asignatura será la obtenida en el examen.

Normas de asistencia

La asistencia a clase es obligatoria, según las Normas Académicas de la Escuela Técnica Superior de Ingeniería (ICAI). Los requisitos de asistencia se aplicarán de forma independiente para las sesiones de teoría y de laboratorio.

En el caso de las sesiones de teoría, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria.

En el caso de las sesiones de laboratorio, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria y en la extraordinaria. En cualquier caso, las faltas no justificadas a sesiones de laboratorio serán penalizadas en la evaluación.

Normas de Uso de la IA

En las actividades de laboratorío (incluido la preparación de los informes) se permite el uso de la IA con las siguientes condiciones:

- La IA puede utilizarse para actividades previas a la tarea, como la lluvia de ideas, la descripción y la investigación inicial. Este nivel se centra en el uso de la IA para la planificación, las síntesis y la generación de ideas, pero las evaluaciones deben hacer hincapié en la capacidad de desarrollar y refinar estas ideas de forma independiente.
- La IA puede utilizarse para ayudar a completar la tarea, incluida la generación de ideas, la redacción, la retroalimentación y la evaluación. Los estudiantes deben evaluar y modificar críticamente los resultados sugeridos por la IA, demostrando su comprensión.
- En todo caso, el uso de la IA tiene que estar citado y las fuentes verificadas de forma independiente por el alumno.

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Lectura y estudio de los contendidos teóricos en el libro de texto	Después de cada clase	
Resolución de los problemas propuestos	Cada semana	
Prueba I	Semana 4 (aprox.)	
Prueba II	Semana 9 (aprox.)	
Prueba III	Semana 14 (aprox.), si procede	
Elaboración del cuaderno de laboratorio e informes	En cada sesión de laboratorio	Fecha examen final

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

• D.H. Hart. Power Electronics. McGraw-Hill, 2010

Bibliografía Complementaria

- Mohan, N.; Undeland, T.M. And Robbins, W.P. Power Electronics: Converters, Applications and Design. 3Rd edition. Wiley, 2003
- Mohan, N. Power Electronics. A first course. Wiley. 2011.
- Mohan, N. Electric Power Systems: A first course. Wiley. 2012
- Erickson, R.W; Maksimovic, D. Fundamentals of Power Electronics. Springer. 2001.
- Tihanyi, L. "EMC in Power Electronics". IEEE Press, 1995.
- Patel, M.R. "Spacecraft Power Systems" CRC Press.2004.

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792