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RESUMEN DEL PROYECTO  
En un contexto de creciente complejidad operativa de las redes de distribución eléctrica, se 
ha llevado a cabo una evaluación del uso del análisis de multicentralidad (MCA) para la 
identificación de vulnerabilidades en redes de distribución. El trabajo se centra tanto en 
métricas de centralidad puramente topológicas como en métricas híbridas que incorporan 
determinadas propiedades eléctricas. Los resultados muestran que las métricas basadas en la 
centralidad de intermediación (betweenness) tienen una alta correlación con los nudos más 
críticos de la red. Además, reduce significativamente el tiempo de cálculo frente a métodos 
tradicionales.  

Palabras clave: Análisis de centralidad múltiple, Evaluación de vulnerabilidades, Redes 
eléctricas de distribución  

1. Introducción 

Las redes de distribución eléctrica están evolucionando rápidamente para dar respuesta 
a nuevas necesidades operativas y de planificación debido a factores como la 
electrificación de la demanda y el rápido crecimiento de la generación distribuida. Estos 
cambios aumentan la complejidad de la gestión de la red y refuerzan la necesidad, por 
parte de los operadores de redes de distribución, de garantizar la continuidad del 
suministro y su resiliencia. Los métodos tradicionales de evaluación de vulnerabilidades, 
como el análisis de contingencias, ofrecen una alta precisión, pero requieren un esfuerzo 
computacional muy elevado. Por ello, en muchos casos resultan poco prácticos para su 
aplicación rutinaria. 

Aunque las métricas de centralidad han sido ampliamente estudiadas en la literatura 
académica, su uso se ha concentrado principalmente en sistemas de prueba estándar 
IEEE y en redes de transmisión más malladas, en lugar de aplicarse a grandes redes de 
distribución con topologías radiales o débilmente malladas. Este proyecto aborda este 
reto mediante la evaluación del potencial del Multi‑Centrality Analysis (MCA) como 
una alternativa rápida y escalable para la identificación de nudos críticos en sistemas de 
distribución. 

2. Definición del proyecto 

Se han evaluado tanto métricas de centralidad puramente topológicas como métricas 
híbridas que incorporan propiedades eléctricas con el fin de determinar su capacidad para 
identificar los nudos más vulnerables de la red.  

El alcance se centra en redes de distribución reales del Reino Unido. Se han analizado 
cuatro casos de estudio bajo condiciones de máxima demanda, facilitados por Scottish 
Power Ltd. (en adelante SPEN). Estos casos han sido seleccionados para cubrir un rango 



variado de tamaños y configuraciones topológicas que garantice la relevancia práctica 
de los resultados. 

El objetivo principal del proyecto es evaluar la eficacia de las distintas métricas de 
centralidad para identificar nudos críticos en redes de distribución eléctrica. Asimismo, 
se busca cuantificar los posibles ahorros computacionales que se pueden lograr mediante 
el uso de MCA frente a métodos tradicionales y explorar cómo estos resultados podrían 
aplicarse de forma práctica para apoyar los procesos de planificación y operación en 
SPEN. 

3. Descripción del modelo 

Para determinar la efectividad del análisis de multicentralidad en la evaluación de 
vulnerabilidades en redes de distribución, es fundamental no solo desarrollar el marco 
MCA, sino también establecer un método de referencia sólido con el cual comparar sus 
resultados. 

El modelo MCA desarrollado calcula métricas de vulnerabilidad tanto puramente 
topológicas, por ejemplo el grado o la centralidad de intermediación (betweenness), 
como métricas híbridas que incorporan propiedades eléctricas, tales como las 
impedancias de línea. Las primeras se obtuvieron mediante la biblioteca NetworkX, 
mientras que las segundas se calcularon implementando directamente las fórmulas 
correspondientes. El sistema procesa el grafo de la red, asocia los valores a cada nodo y 
permite una comparación directa entre métricas de distinta naturaleza. 

 

Ilustración 1: Flujo de trabajo del análisis de contingencias utilizado como método de referencia para 

evaluar la vulnerabilidad de la red.  



Para la evaluación comparativa, se realiza un análisis de contingencias utilizando 
OpenDSS, que simula el impacto de la caída de cada nodo bajo condiciones de máxima 
demanda. El escenario de demanda se genera con el modelo CREST, que ofrece perfiles 
residenciales realistas. Se ha seleccionado la ENS como métrica principal para 
cuantificar el impacto operativo de las contingencias, ya que mide la cantidad de energía 
que no puede ser entregada a los clientes debido al fallo de nudos individuales durante 
las simulaciones. La Ilustración 1 representa el flujo de trabajo del análisis de 
contingencias usado como método de referencia. 

4. Resultados 

La Ilustración 2 muestra la comparación entre las cinco métricas de centralidad 
puramente topológicas y los valores de ENS calculados para cada nodo al simular su 
fallo en la red. 

  

   
Ilustración 2: Gráficos de dispersión comparativos entre cinco métricas de centralidad puramente 

topológicas y la ENS para cada nodo 

Aunque algunas métricas presentan poca o ninguna correlación con la ENS, las basadas 
en centralidad de intermediación (betweenness) destacan por su buen alineamiento con 
el método de referencia. En la Ilustración 3 se aprecia que identifican de manera bastante 
fiable los nodos más críticos, aunque tiende a sobreestimar algunos con baja criticidad. 
Además, presenta varios agrupamientos verticales en los gráficos, consecuencia de que 
la estructura por sí sola no discrimina suficientemente entre nodos. 

La centralidad de intermediación híbrida corrige en gran medida estas sobreestimaciones 
y mejora la precisión al incorporar parámetros eléctricos como las impedancias y otra 
información asociada a cada nodo. Sobre todo, sobresale en la identificación de los nodos 
más críticos, localizados en la parte inferior izquierda de la figura, que son la principal 
prioridad para un DSO, mientras que las desviaciones en nodos menos críticos tienen 
una relevancia secundaria. 



  

Ilustración 3: Comparación de rangos Spearman entre ambas centralidades de intermediación y la ENS 

5. Conclusiones 

La metodología desarrollada ha logrado ahorros computacionales significativos en 
comparación con el análisis de contingencias completo. Esto permite realizar un cribado 
rápido de vulnerabilidades en la red manteniendo una alta precisión en la identificación 
de los elementos más críticos. 

El análisis comparativo de las métricas de centralidad ha tenido diferencias notables en 
su efectividad para evaluar la vulnerabilidad en redes de distribución. La centralidad de 
intermediación (betweenness) ha mostrado un rendimiento sorprendentemente sólido, 
especialmente considerando que se basa únicamente en información topológica. Por su 
parte, la centralidad de intermediación híbrida, que integra tanto las propiedades 
eléctricas como la posición estructural de cada nodo, resultó ser generalmente la métrica 
más eficaz para identificar nodos vulnerables en todos los casos de estudio. 

SPEN podría implementar el MCA como una herramienta de cribado inicial para filtrar 
y priorizar rápidamente los nodos más críticos de la red, dejando únicamente un 
subconjunto reducido para su evaluación con estudios más detallados y costosos. Más 
allá del ahorro de tiempo, este enfoque permitiría responder con mayor rapidez a 
problemas emergentes en la red y optimizar la priorización de proyectos de refuerzo. 
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ABSTRACT  
In the context of increasing operational complexity in electrical distribution networks, an 
evaluation has been conducted on the use of multicentrality analysis (MCA) for identifying 
network vulnerabilities. The study focuses on both purely topological centrality metrics and 
hybrid metrics that incorporate specific electrical properties. The results show that metrics 
based on betweenness centrality exhibit a high correlation with the most critical nodes in the 
network and that the MCA approach significantly reduces computation time compared to 
traditional methods.  
Keywords: Multiple centrality analysis, Vulnerability assessment, Electrical distribution 
networks 

1. Context and motivation 

Electrical distribution networks are rapidly evolving to accommodate the electrification of 
demand, the rapid growth of distributed generation and Net Zero ambitions. These changes 
increase the complexity of network operation and emphasize the importance of ensuring 
resilience and reliable supply for DNOs. Traditional vulnerability assessment methods, such 
as contingency analysis, provide high accuracy, but are very computationally intensive [1] 
and often impractical for usual applicability.  

While centrality metrics have been widely studied within academic literature, their 
application has predominantly focused on standard IEEE test systems [2] and more meshed 
transmission networks rather than on large distribution grids with radial or weakly meshed 
topologies. This project addresses this challenge by evaluating the potential of MCA as a 
fast and scalable alternative for identifying critical nodes in distribution systems.  

2. Project definition 

By evaluating both purely topological and hybrid centrality metrics, the project seeks to 
determine their ability to identify the most vulnerable nodes. This could provide a basis for 
faster and more targeted decision making in network operation, maintenance and 
reinforcement planning.  

The scope focuses on real UK distribution networks. 4 case studies, provided by Scottish 
Power Ltd., are analyzed under peak demand conditions. They have been selected so that 
they cover a range of sizes and topological configurations, to ensure practical relevance. The 
main objective is to evaluate how effectively different centrality metrics can identify critical 
nodes within electrical distribution networks. Also, to quantify the potential computational 
savings achieved by using MCA compared to traditional approaches and to explore how 
these findings could be practically applied to support processes at SPEN.  

 



3. Model description 

In order to assess the effectiveness of MCA for vulnerability assessment in distribution 
networks, it is essential not only to develop the MCA framework itself, but also to establish 
a robust benchmarking method against which its results can be evaluated. 

The MCA model developed calculates both topological vulnerability metrics, like degree or 
betweenness centrality, and hybrid metrics that incorporate electrical properties such as line 
impedances. The former were obtained with NetworkX and the latter through direct 
implementation of formulas. The system processes the network graph, associates values with 
each node and allows for the comparison of metrics of different types.  

For benchmarking purposes, contingency analysis is performed using OpenDSS. The 
benchmark involves simulating the impact of the outage of each node on the network under 
peak demand conditions. The demand scenario is generated with the CREST demand model, 
which provides realistic residential load profiles. Illustration 1 illustrates the contingency 
analysis workflow. 

ENS is chosen as the primary metric to quantify the operational impact of these 
contingencies, as it measures the amount of energy that cannot be delivered to customers 
due to the outage of individual nodes during the contingency simulations. This metric serves 
as an intuitive and widely accepted indicator of network vulnerability, enabling a meaningful 
comparison between the detailed electrical simulation results and the MCA centrality 
metrics.  

 

Illustration 1: Contingency analysis workflow for evaluating network vulnerability using ENS 



4. Results 

Illustration 2 shows comparisons between the five purely topological centrality metrics and 
the calculated ENS values of the respective node when simulating its failure in the network. 

  

   
Illustration 2: Comparative scatter plots of five topological centrality metrics against ENS 

Although some metrics show little or no correlation with the ENS, those based on 
betweenness stand out for their good alignment with the benchmark. Topological 
betweenness offers a reliable screening of the most critical nodes, although it tends to 
overestimate some lightly critical nodes. It also shows several vertical clusters, due to the 
fact that structure does not sufficiently discriminate between nodes. 

Current-flow betweenness largely corrects these overestimations and improves overall 
accuracy, as it incorporates electrical parameters like impedances and further node 
information. Most importantly it excels in identifying the most critical nodes, situated at the 
bottom left corner, which remains the key priority for a DNO, while deviations in less critical 
or peripheral nodes are of secondary relevance. 

  
Illustration 3: Spearman rank comparison between topological betweenness and CF line betweenness 



5. Conclusions 

The methodology achieved significant computational savings compared to full contingency 
analysis, enabling rapid screening of network vulnerabilities while maintaining high 
accuracy for the most critical elements. 

The comparative analysis of centrality metrics revealed remarkably different levels of 
effectiveness in assessing vulnerability across different distribution network topologies. 
Betweenness centrality demonstrated a surprisingly robust performance taking into account 
it only relied on topological information. Furthermore, the CF line betweenness centrality, 
which integrates both the electrical properties and the structural position of each node, was 
generally found to be the most effective metric for identifying vulnerable nodes across all 
case study networks. 

Scottish Power could therefore implement MCA as a first stage screening tool to quickly 
filter and prioritise the most critical nodes in the network. This allows only a small subset to 
be passed on to slower or more expensive detailed studies. Beyond the raw time saving, such 
an approach would enable faster responses to emerging network issues or a better 
prioritisation of reinforcement projects. 
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NOMENCLATURE 

Relevant nomenclature is listed below in alphabetical order. 
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• NREL – US National Renewable Energy Laboratory 

• SAIDI – System Average Interruption Duration Index 
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Chapter 1.  INTRODUCTION 

1.1 PROJECT OVERVIEW 

In recent years, the resilience of electricity distribution networks has become an increasingly 

critical concern as the UK electricity system evolves toward greater decentralization and 

decarbonization. Distribution grids are facing unprecedented challenges from the electrification 

of heat and transport, the integration of DG and a corresponding increase in network 

complexity. Ensuring the continued reliability of supply in this changing context requires robust 

tools for identifying vulnerable elements within the network, to correctly prioritize investments 

and operational interventions. 

Traditional methods for vulnerability assessment are very computationally intensive and may 

be impractical for large distribution systems. As an alternative, centrality metrics offer a means 

of rapidly estimating node vulnerability based solely on network structure. However, the actual 

effectiveness of these metrics in accurately identifying critical nodes within real power 

distribution grids is not ensured. 

This project aims to explore the potential of Multicentrality Analysis (MCA) for vulnerability 

assessment in electrical distribution networks. Both purely topological and hybrid centrality 

metrics are included in this study. Several issues exist regarding the practical deployment of 

such an approach. The goal of this study is to assess whether MCA methods can provide a 

computationally efficient yet sufficiently accurate alternative for identifying the most critical 

nodes in electrical distribution networks. Thereby, supporting more informed and timely 

decision making by DNOs. 
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1.2 MOTIVATION 

The idea for this project originated from a proposal by Scottish Power Energy Networks 

(SPEN), who identified significant potential for the application of centrality based vulnerability 

analysis in electrical distribution grids. As distribution networks face increasing complexity, 

there is a strong need for rapid and efficient tools to support asset management and planning.  

SPEN recognized that centrality metrics, widely discussed in academic literature, are starting 

to be adopted in various sectors. Yet, their application in real world distribution networks 

remains limited. While most research to date has focused on relatively small, highly 

interconnected systems such as IEEE test systems or HV transmission grids, SPEN saw an 

opportunity to extend these techniques to large-scale, radial distribution systems typical of UK 

networks. 

The project was therefore designed to investigate how these centrality metrics and hybrid 

approaches perform in more realistic distribution grids. This would enable to enhance 

vulnerability assessment and permit more targeted network reinforcement or reconfiguration 

strategies. The abundance of existing studies on the topic provided a solid foundation but also 

highlighted the gap in practical application for DSOs and DNOs. This research seeks to bridge 

that gap and deliver insights of direct relevance to SPEN and the wider industry. 

1.3 OBJECTIVES AND HIGH LEVEL METHODOLOGY 

Given the motivation and context outlined above, the following key research questions were 

formulated to guide this project: 

• How well do these metrics predict critical nodes according to the selected criteria? Is 

there any significant correlation between centrality metrics and node vulnerability? 

• How accurately can purely topological centrality metrics identify critical nodes in real 

UK distribution networks? 
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• To what extent do hybrid centrality metrics that incorporate electrical properties 

improve vulnerability assessment compared to topological metrics? 

• What are the computational savings achieved by the MCA method when compared to 

traditional approaches? 

• How could MCA be applied in practice by a DNO? 

To address these questions, a structured methodology was designed. The approach involved 

calculating a range of centrality metrics on selected SPEN networks, developing benchmark 

results from traditional approaches and comparing their ability to identify vulnerable nodes. 

Computational efficiency was also measured to assess the practical feasibility of the MCA 

approach at scale. The overall process can be summarised in the following main stages: 

1. Conduct a thorough literature review of centrality metrics and vulnerability assessment 

approaches applied to electrical distribution networks.  

2. Define the concept of vulnerability in the context of SPEN’s operational and planning 

needs. Based on this definition, choose a network performance metric that best 

represents this concept for the purposes of the study. 

3. Implement an MCA framework to compute and compare centrality metrics and design 

a benchmark for vulnerability assessment using the chosen performance metric to 

evaluate MCA results against it. 

4. Analyse and compare the performance of different metrics across distinct network 

topologies. 

5. Evaluate the potential for computational savings and practical applicability of MCA for 

DNOs.   
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Chapter 2.  BACKGROUND AND LITERATURE REVIEW 

Electricity distribution networks are rapidly evolving towards smart grids, driven by the 

integration of DERs, electric vehicles and advanced metering technologies. This transformation 

has significantly increased the complexity of these networks, presenting operational and 

computational challenges for distribution network operators. ScottishPower, the second largest 

distribution network operator in the UK, is allocating approximately £360 million to the 

resilience of its network [1]. This investment is part of its RIIO-ED2 regulatory plan, in which 

many preventive measures have been taken, including asset adaptation or emergency response 

enhancement.  

Electricity supply is an essential service in modern societies. Failures at the LV level usually 

directly disconnect users. This can not only cause inconvenience for dwellings, but even 

important economic losses for businesses. It is difficult to measure these social costs, however, 

many institutions try to estimate the VoLL, which basically quantifies the maximum value that 

customers are willing to pay in order to avoid an outage and ensure the security of supply [2]. 

For instance, a Value of Lost Load of £16/kWh was established by Ofgem for RIIO ED1 [3]. 

With policies setting very demanding targets to achieve the Net Zero transition, significant 

pressure is put on LV networks. The drive towards electrification of transport and domestic 

heating, will cause relevant increases in electricity demand, which will stress the electrical 

infrastructure [4]. Furthermore, DER penetration at the distribution level is also introducing 

new operational challenges, such as reverse power flows or localized congestions.   

In this rapidly evolving context, DNOs face the challenge of conducting an extensive 

vulnerability assessment across all the networks that they manage, which are also becoming 

increasingly more complex. However, traditional methods are very computationally intensive 

when applied to entire distribution systems [5]. Because of that, there is a critical need for 

computationally efficient methodologies that can rapidly identify the most vulnerable elements 

in the network without requiring an exhaustive analysis.   
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Therefore, network planning and vulnerability assessment tools that can efficiently prioritize 

critical assets and optimize performance are essential to deploy a safe, secure and resilient 

network.  

2.1 VULNERABILITY ASSESSMENT 

As already mentioned, the reliable and secure operation of power networks is of paramount 

importance, as its efficiency and availability have significant economic and societal 

consequences [6]. It is therefore essential to analyze the vulnerabilities of the power grid, which 

are usually understood as those elements whose failure can cause relevant consequences for the 

stability of the system [7]. They are also known as critical points.  

 

Figure 1. Enel's group strategy and risk management scheme [8] 

Utilities use vulnerability frameworks to identify critical infrastructure and prioritize mitigation 

measures in those assets [9]. Vulnerability Assessment (VA) specifically focuses on 

determining the susceptibility of the network by analysing its components, their structure and 

their operational state. By this means, the impact of a failure on system stability or continuity 

of supply can be quantified and its management can be planned. These failures can be caused 

by internal disturbances (equipment failures) or external disturbances (extreme weather).  
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Many companies use it to prioritize investments in assets whose failures causes the greatest 

impact or optimize network design, by evaluating different topologies (e.g. ring or radial) to 

reduce vulnerabilities. They also need to comply with regulatory resilience standards imposed 

by EU directives, OFGEM (UK) or CNMC (Spain).    

Large utilities have teams specializing in resilience or risk analysis, where they model networks, 

simulate contingencies and analyze many data to draw relevant conclusions. For instance, Enel 

applies a digital vulnerability index to optimize investments [8] and Con Edison models floods 

and simulates element failures to prevent massive outages [10].  

2.2 TRADITIONAL APPROACHES 

VA has changed since its beginnings and has adapted to the needs of the electrical era, according 

to the development of technologies and the characteristics of the grid. Below is an overview of 

the most widespread methods that have been deployed historically to carry out VA with key 

points and relevance to this study.  

2.2.1 CLASSICAL DETERMINISTIC METHODS 

During the 1980s and the 1990s, the electrical sector’s main focus was N-1 and N-2 contingency 

analysis (CA). N-k contingency analysis simulates the failure of k components to test security 

of supply and system stability. CA requires running a power flow for each simulated 

contingency. This is a computationally intensive process, especially in large networks.  

Currently, the N-1 security standard is required for European TSOs [11]. It is very 

computationally demanding for distribution networks and regulation does not state it as 

mandatory.  

Additionally, CA requires iterative power flows through methods such as Newton Raphson or 

Gauss Seidel. A power flow consists in the calculation of the steady-state values of some 

parameters of the system. Power flows are very useful to identify overloadings or not desired 

voltage profiles. There are two types of power flows, AC and DC. The former is more accurate 
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and calculates active (P) and reactive (Q) power, voltages and angles at each node. However, 

AC is more complex and more computationally intensive. Alternatively, the latter assumes a 

flat voltage profile (node voltages at 1 p.u.), negligible losses and small angle differences [12]. 

Therefore, DC only calculates active power and voltage angles, making it much faster than the 

AC power flow, although its results are a simplification and less accurate.  

The objective of CA is to ensure that system can maintain normal operation under N-k 

conditions. Normally, the safety criterion is that the system remains within certain operating 

limits after the simulated contingency. Those limits are usually ± 10 % in voltage values [13] 

and that flows do not exceed the thermal capacity of the conductors [14].   

CA is a great method which is still used to this date however, it has several key limitations. It 

ignores correlations between faults, so it does not capture cascading faults. Apart from that, 

other factors such as event probability or economic impacts are not considered. Consequently, 

it needs to be complemented with other approaches to ensure that it contemplates all the desired 

aspects.  

2.2.2 PROBABILISTIC APPROACHES 

Introduced between the 1990s and the 2000s, Probabilistic Risk Assessment (PRA) marked a 

major step forward by incorporating uncertainty into risk models through methods such as: 

• Fault Tree Analysis (FTA): Top-down deductive method that models causes of failures 

using logic gates, AND or OR. It starts with a complex “top event” for instance, a power 

outage. Then, breaks it down into root causes decomposing each immediate cause into 

basic causes. Each cause has assigned their respective probabilities based on historical 

data and the probability of the top event is calculated with the following equations [15]. 

• Monte Carlo Simulation: Estimates indexes such as SAIDI by simulating the actual 

process and random behaviour of the system [16]. This method approximates numerical 

solutions through repeated random sampling, in which it models many aspects of the 

network such as component states (operational or failed) or random variables (e.g. 

demand or weather).  
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This probabilistic era transformed metrics like SAIDI and EENS from descriptive indices to 

predictive and economic tools. SAIDI passed from simply measuring the average interruption 

time to a probabilistic indicator through the use of probabilistic distribution and Monte Carlo 

simulation. In contrast, EENS was linked to economic by multiplying it by the VoLL.  

Nevertheless, although these metrics are very helpful, they require complementary analyses due 

to inherent limitations. SAIDI ignores any kind of social criticality, as one minute of 

interruption in a hospital has more severe consequences than in a residential area. Similarly, 

economic assessments via EENS depend on VoLL values. These exhibit significant disparities 

for instance, between countries even for identical industrial sectors.  

Furthermore, there are other practices such as short circuit analyses [17], in which fault currents 

are simulated to size protective devices and ensure relay coordination, however this is beyond 

the scope of this project.   
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2.3 FUTURE TRENDS AND EMERGING CHALLENGES 

Electrical distribution networks have evolved from passive radial systems to complex active 

systems with bidirectional flows. Traditionally, distribution networks have always had a 

hierarchical radial structure. Their design was characterized by radial systems with 

unidirectional energy flows [18]. Generation, which was heavily centralized, was generated in 

large plants such as thermal or hydroelectric power stations. Then, transmitted via HV lines to 

substations, where voltage levels were reduced for distribution to consumers, via MV and LV 

networks. As can be appreciated in Figure 2, the radial configuration had a feeder or main line 

that branched out to end consumers. 

This model was efficient for predictable and practically static load patterns, as residential 

demand used to be. This hierarchical topology presented several persistent problems [19], such 

as voltage drops higher than 10 % at network extremes due to high R/X ratio, thermal overloads 

and phase imbalances that fostered high losses.  

 

Figure 2. Radial distribution network [18] 
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Over the course of time distribution grids have gradually progressed to lightly more 

interconnected networks, although they still conserve a rather radial structure. They have also 

undergone a significant transformation due to technological advances, decarbonization, 

digitization and the decentralization of the energy sector [20].  

2.3.1 DISTRIBUTED GENERATION AND DISTRIBUTED ENERGY RESOURCES 

Distributed Generation (DG) refers to the production of electricity using small scale systems 

located nearby the end consumer. For example, PV solar panels or small wind turbines. DERs, 

on the other hand, expand this concept to include not only generation, but also energy storage 

systems, such as BESS, or EVs.  

Recent DER growth stems mainly from government decarbonisation policies. Distributed PVs, 

heat pumps and EVs account for much of the recent DER expansion. The IEA estimates that 

167 GW of distributed PV were added globally from 2019 to 2021, electric car registrations 

increased 41% in 2020 and almost 180 million heat pumps were used for heating in 2020, as 

the global stock had increased nearly 10% per year in the previous 5 years [21].  

Both concepts challenge the traditional model of centralized generation and long distance 

transmission, promoting a more decentralized and flexible energy system. These technologies 

offer significant advantages and can provide some solutions to the challenges faced by the 

decarbonization of the electrical grid, such as: 

• Emissions reduction: Many DERs use renewable sources (e.g. solar, wind), which do 

not emit greenhouse gases during operation.  

• Greater resilience: DERs can operate independently or connected to the grid, serving as 

a backup during power outages. NREL confirms the reliability of DERs for backup and 

estimates, for example, that PV systems can maintain critical loads from 1 hour to 2 

weeks depending on configuration, storage and demand [22]. 

• Energy efficiency: By generating close to the point of consumption, transmission losses 

are reduced. The authors of [23] state that a 2.8% losses reduction could be achieved. 
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However, DERs also imply a more complex operation and can provoke issues in the 

management of distribution networks. Reverse flows usually occur in high DER penetration 

networks, when DER production exceeds local demand, and energy flows from the user to the 

upstream grid [24]. This is a phenomenon for which many distribution systems are not designed. 

The flow of energy from DERs to the grid can raise the network’s voltage profile, especially 

under low load conditions, causing overvoltages [25]. Additionally, the presence of DERs can 

cause traditional overcurrent relays to false tripping or even to fail to detect faults, leading to 

system disconnection failures and potential safety risks [26].  

Nowadays, the objective is that distribution networks are active and intelligent structures that 

integrate advanced technologies and distributed energy resources (DERs). The following 

analysis brings on further detail on the aforementioned technologies and their challenges for 

DNOs and network operation. 

 

 

Figure 3: Evolution of the power system architecture [27] 
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2.3.2 EVS 

EVs are cars powered by electric motors, fuelled by rechargeable batteries, which significantly 

reduce carbon emissions compared to internal combustion vehicles. As per Bloomberg NEF’s 

report, EVs will account for 30% of all new car sales by 2030 [28].  

However, the rapid growth and integration of electric vehicles also present significant 

challenges for electricity distribution networks. The following explores how EVs affect these 

networks, the challenges they introduce and how they relate to vulnerability assessment.  

Network overloading 

The rapid increase in the number of electric vehicles can cause the existing distribution 

networks to overload. A recent study of the California grid, in which more than 5,000 feeders 

were examined, concludes that 67% of the feeders will be overloaded by 2045 if EV growth 

continues. This would require a substantial need for infrastructure upgrades, estimated as more 

than 25 GW of reinforcement, which would cost between $6 billion and $20 billion [29].  

Unpredictable peaks and load profiles 

Simultaneous charging of EVs, as many consumers follow similar daily routines, can 

significantly impact the power system. Demand can spike, exceeding the capacity of 

infrastructure in residential areas. This temporal clustering of charging in the same residential 

area intensifies the stress on the grid. France expects from 7 to 16 million EVs by 2035, 

consuming between 40 and 65 TWh annually, reaching 8 GW during peak hours [30].  

Voltage fluctuations, harmonics and supply quality 

Massive and rapid charging can cause undervoltages at the ends of the distribution power lines. 

Uncontrolled charging can also result in power quality problems due to harmonics introduced 

by electronic chargers [31].  

Given these factors, EVs can increase vulnerability causing for example localized overloads, 

especially in radial networks. Consequently, it is essential to consider peak demand scenarios, 

such as simultaneous charging in residential areas, to ensure stability.  



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 
 

13 

 

2.3.3 HEAT PUMP WATER HEATERS (HPWHS) 

HPWHs are devices that use electricity to extract heat from the surrounding air and transfer it 

to domestic water, remarkably reducing energy consumption and associated carbon emissions 

compared to conventional electric or gas water heaters. According to the IEA, HPWHs can 

deliver 2 to 4 times more thermal energy than the electrical energy they consume, and global 

stock is expected to surpass 150 million units by 2030 as governments push for building 

decarbonisation [32]. 

While they are primarily designed to provide hot water for residential use, modern HPWHs are 

recognized as DERs thanks to their operational flexibility and ability to shift demand in 

response to grid signals [33]. However, the rising deployment of HPWHs also brings new 

challenges for distribution networks, notably in terms of peak load management, voltage 

stability and local infrastructure adequacy. 

Increased Peak Load and Demand Patterns 

Similarly to EVs, the electrification of end use devices can place an additional burden on the 

grid and peak coincidence is a key risk. HPWHs shift significant domestic heating demand from 

gas to electricity, increasing peak demand loads, especially during cold periods where hot water 

use spikes. Studies estimate that high penetration rates of HPWHs (along with other heat 

pumps) could raise annual electric demand by 35%, and peak loads by up to 70% in strongly 

electrified scenarios, defying distribution grids previously sized for lower loads [34]. 

Voltage Issues  

When many HPWHs operate at once, especially in rural or older low voltage feeders with 

limited reserve capacity, voltage sags may occur. Also, load spikes related to HPWH 

compressor starts and coincident running can foster undervoltages and increase losses at 

network edges. Sometimes even at relatively modest penetration rates, between 5 and 20%, 

depending on feeder design [35]. Induction motor-driven compressors in HPWHs can consume 

reactive power, further increasing current flow and voltage drops. 
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These combined effects highlight that distribution networks will increasingly be stressed and 

substantial reinforcement will be necessary to maintain reliable and efficient operation. It is 

thus essential to assess vulnerability under peak demand scenarios, such as during periods of 

extreme cold, in order to identify and mitigate weak points in the network.   

2.4 ALTERNATIVE METHODS 

As detailed in Section 2.3.1, the growth of DERs and the increase of energy demand, mainly 

caused by the electrification of transport and heating are provoking difficulties in the 

management of the networks. The electrical grid needs flexibility to be able to adapt to relevant 

variations in demand and integrate new renewable resources and DG.  For instance, high DG 

penetration in traditionally radial LV networks results in reverse power flows and overvoltages, 

which cause numerical instability in iterative methods like power flows [36].  

These computational issues are forcing utilities to advance and upgrade their vulnerability 

assessment methods towards faster and more scalable approaches. To address the limitations of 

traditional methods, utilities and researchers are exploring other faster, non-iterative and 

scalable approaches.  

In response to this increasing complexity within modern distribution networks, the limitations 

of traditional vulnerability assessment tools have urged both industry and research to develop 

new, faster and more scalable methods. As distribution grids evolve to accommodate high 

penetration of DERs, rapid and robust VA becomes even more critical to ensure reliability and 

resilience.   

In this context, several innovative methodologies have emerged, each offering distinct 

advantages in speed, scalability, and adaptability: 

• Machine Learning (ML) and AI-Driven methods: The deployment of advanced 

metering infrastructure (AMI) and sensors in the electrical network has enabled data 

driven assessment techniques. Some ML supervised models such as graph attention 
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neural networks, which integrate real network data and Monte Carlo simulations, are 

used to train explainable models capable of predicting vulnerabilities [37]. 

• Graph-based or topological analysis: Use of centrality metrics such as degree, 

betweenness, and closeness, adjusted or combined in what is called “multicentrality 

analysis” [38], to quickly identify critical nodes and lines from the perspective of 

network structure. 

• Hybrid methods: They combine physical grid models with topological analysis and 

classification algorithms, enabling efficient screening of vulnerabilities to focus detailed 

analyses only on vulnerable parts, achieving a balance between accuracy and speed [39]. 

Among these, centrality-based approaches are particularly appealing for vulnerability analysis 

in future grids, since they use purely topological data and scale well as network size and 

complexity grow. The integration of graph-based and multicentrality approaches presents a 

promising direction for fast, non-iterative and scalable VA, that could adequately complement 

those more computationally intensive traditional methodologies. This progression supports the 

motivation for the multicentrality analysis framework presented in this work. 

2.5 MCA 

Multiple Centrality Analysis (MCA) is a general mathematical process that can be implemented 

in any network structure, regardless of what it represents. The main concept is that the centrality 

of a node within a network is a fundamental trait for understanding its structure and function. 

However, “being central” [40] can have different meanings. Therefore, a single measure of 

centrality cannot capture all the important dimensions of the network. 

The objective of MCA is to assess the spatial distribution of centrality in geographic systems. 

This requires the translation of the spatial system into a primal graph [41], where intersections 

become nodes and streets or connections become edges. Through a set of distinct centrality 

measures such as betweenness or eigenvector centrality, the graph is analysed.  

MCA has shown promise in various domains. Urban design is a very common field, where it 

was first developed and used to analyse public spaces and pedestrian routes of the University 
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Campus in Parma [41]. Another example of its versatility is the maritime transport sector, where 

vulnerable ports in supply chains have been identified by combining multiple centrality metrics 

using the Borda Count method [42].  

However, more limited research exists on this application specifically to electrical distribution 

networks. Among some of the few examples in electrical networks, Forsberg et al. applied 

weighted MCA with respect to the transmission line’s reactance to evaluate the Nordic 

transmission network, where 5 out of 12 critical substations were successfully identified [43]. 

In addition, Hines and Blumsack developed a metric called “electrical centrality” for the IEEE 

300-bus network, revealing highly electrically connected hub nodes that were not evident in the 

topological analysis [44]. 

Nonetheless, it is important to highlight that distribution networks possess unique structural 

characteristics very distinct from transmission grids and from IEEE test networks. While the 

latter are usually highly meshed and display substantial redundancy, distribution networks tend 

to feature predominantly radial or weakly meshed topologies, as already mentioned in section 

2.3. This structural difference could affect the efficacy of centrality metrics for distribution 

networks.  

Despite the fact that the amount of literature applying MCA directly to distribution grids 

remains limited, there are notable recent contributions bridging this gap. The authors of [7] 

emphasize how topological metrics enable a first screening of critical elements and how their 

variation under simulated failures reflects the criticality of that node. However, their results 

also state that such metrics alone may not capture fully operational vulnerability, especially in 

the presence of electrical constraints or power flow limitations. In contrast, [38] introduces and 

validates hybrid centrality metrics, that combine topological information with some electrical 

parameters, such as line impedances or node characteristics. However, both of this works use 

IEEE bus systems, but are not tested in actual distribution networks.  

These recent methodological developments, together with the aforementioned limitations of 

traditional vulnerability assessment tools, underscore the motivation for this project. 

Specifically, there is a need to critically evaluate MCA frameworks to real world distribution 
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networks, such as those operated by SPEN, that exhibit lightly meshed structures and complex 

electrical behaviour.  

2.5.1 THEORETICAL FRAMEWORK 

A network can be represented as a graph  𝐺 =  (𝑉, 𝐸), where V is the set of nodes (e.g. buses, 

substations, loads), also called vertices, and E is the set of edges, illustrated as links between 

the nodes. A is the adjacency matrix of G, where 𝐴𝑖𝑗 =  1  if there is an edge between nodes i 

and j [45]. Otherwise, 𝐴𝑖𝑗 = 0. 

A graph is the foundation for the systematic application of centrality metrics to quantify 

structural properties. The metrics presented and discussed below, are precisely those calculated 

and analysed as part of this project, following the approaches established in the aforementioned 

literature. These include both the classical topological metrics, such as degree, betweenness and 

closeness centrality, as well as physically-adapted measures like current-flow centrality, which 

has been shown to provide deeper insights into the vulnerability and resilience of electrical 

networks. The explicit definitions, calculation methods, and interpretative context for each 

metric are presented below. 

The first group of metrics considered in this project are the classical topological centrality 

measures, which evaluate node importance based solely on the structure of the network. These 

metrics rely purely on the configuration of connections, without any reference to electrical 

properties of the system.  

2.5.1.1 Degree Centrality 

Degree Centrality is one of the simplest metrics and it is defined by the number of direct 

connections a node has. Nodes with high degree act as hubs and are often crucial for local 

connectivity.  

𝐷𝐶(𝑖) =
∑ 𝐴𝑖𝑗 𝑗 ∈ 𝑉

𝑛 − 1  (1) 
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Where 𝐴𝑖𝑗 represents the connectivity between nodes i and j in the adjacency matrix, 𝐴, and n 

is the total number of nodes in the network.  

2.5.1.2 Betweenness Centrality 

Betweenness centrality quantifies how often a node appears on the shortest paths between other 

pairs of nodes: 

𝐵𝐶(𝑖) = ∑
𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡𝑠≠𝑖≠𝑡

 
(2) 

Where 𝜎𝑠𝑡 is the total number of shortest paths from node s to node t, and 𝜎𝑠𝑡(𝑖) only includes 

those paths that pass through node i. High betweenness nodes usually act as bridges or 

bottlenecks and are usually essential for global power flow by measuring how frequently they 

appear on shortest paths between random pair of nodes.  

2.5.1.3 Closeness Centrality 

Closeness centrality measures how close a node is to all others, in terms of shortest path lengths: 

𝐶𝐶(𝑖) =
1

∑ 𝑑(𝑖, 𝑗)𝑗 ∈ 𝑉
 

(3) 

Where 𝑑(𝑖, 𝑗) is the shortest path distance between nodes i and j.  

2.5.1.4 Eigenvector Centrality 

Eigenvector centrality assigns relative scores based on connections to highly connected 

neighbours: 

𝐸𝐶(𝑖) =
1
𝜆 ∑ 𝐴𝑖𝑗 · 𝐸𝐶(𝑗)

 𝑗 ∈ 𝑉

 
(4) 

with 𝜆 being the respective eigenvalue of the adjacency matrix, 𝐴. Node influence is based on 

the importance of its neighbours. This metric identifies nodes that are not just locally well 

connected, but also part of influential subnetworks.  
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2.5.1.5 Clustering Coefficient 

The clustering coefficient is a fundamental metric in network theory that quantifies the degree 

to which nodes tend to cluster or group together:  

𝐶𝐶(𝑖) =
2 · 𝑇(𝑖)

𝐷𝐶(𝑖) · (𝐷𝐶(𝑖) − 1) (5) 

A high value indicates a strong tendency to form dense communities or groups, while a low 

value would suggest that the network is dispersed and local clusters rarely form.  

Complementing the topological approach, the second family of metrics integrates electrical 

characteristics into the analysis, providing a more physically relevant understanding of 

criticality and vulnerability. The mathematical basis of this approach is the weighted Laplacian 

matrix of the network, which not only includes the connectivity between nodes, but also uses 

the admittance or the inverse of the impedance of each line as an electrical weight.  

The Laplacian matrix, L, is constructed by subtracting the weighted adjacency matrix from the 

degree matrix. However, in order to correctly analyse electrical transmission, it is necessary to 

calculate the pseudo-inverse of the Laplacian, L+. It is also called reactance matrix or effective 

resistance distance (ERD) matrix.  

2.5.1.6 Current-flow Closeness Centrality 

This metric is based on the concept of ERD between nodes and it measures the mean distance 

of from a node to the other nodes [38], which is defined as: 

𝑑𝑖 =
∑ 𝑍𝑖𝑘

𝑛
𝑘=1

𝑛
 (6) 

Therefore, the metric is expressed as: 

𝐶𝐹 𝐶𝐶𝑖 =
𝑛 − 1

∑ 𝑍𝑖𝑘
𝑛
𝑘=1

 (7) 
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A central node for CF CC is a node that is joined to others by the shortest mean ERD. The 

shorter the total electrical distance, the greater its centrality.  

2.5.1.7 Current-flow Line Betweenness Centrality 

CF Line BC quantifies the importance of a line in terms of the power flow in each line, based 

on the shortest resistance paths. To formulate this, it takes into account which nodes are source 

nodes and which ones are target nodes. In the case of distribution networks, a source node 

would be a transformer, while a target node is a load. The power flow [38] between a source-

target pair (s,t) passing through a transmission line (i,k) is given by:  

𝑃𝑖𝑘
𝑠𝑡 = ∑ 𝐴𝑖𝑘 · |𝛿𝑖

𝑠𝑡 − 𝛿𝑘
𝑠𝑡|

𝑛

𝑘=1

= ∑ 𝐴𝑖𝑘 · |𝐿𝑖𝑠
+ − 𝐿𝑖𝑡

+ − 𝐿𝑘𝑠
+ + 𝐿𝑘𝑡

+ |
𝑛

𝑘=1

 (8) 

Where 𝛿𝑖
𝑠𝑡 = 𝐿𝑖𝑠

+ − 𝐿𝑖𝑡
+  and 𝛿𝑘

𝑠𝑡 = 𝐿𝑘𝑠
+ − 𝐿𝑘𝑡

+  are the phase angle nodes of nodes i and k with the 

respective pseudo-inverse of L. After simplifying, applying it to every possible source and 

target pair and normalizing it:  

𝐶𝐹 𝐿𝑖𝑛𝑒 𝐵𝐶𝑖 =
2 · ∑ 𝑃𝑖𝑘

𝑠𝑡
𝑠<𝑡

𝑛 · (𝑛 − 1)  (9) 

Where n is the total number of nodes in the system. It is a physically coherent way to identify 

potential “bottlenecks” or overloads. This metric is the only one in this project that evaluates 

lines, instead of nodes. 
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Chapter 3.  PROJECT MODELLING 

In order to assess whether MCA can effectively identify vulnerabilities in distribution networks, 

a model was designed, which enables the systematic computation of centrality metrics and their 

validation against an objective performance indicator. This requires not only the 

implementation of algorithms to calculate both topological and hybrid centralities, but also the 

construction of a meaningful benchmark to serve as a basis for comparison and evaluation.  

Accordingly, this section explains: 

• The methodology development process, including design considerations, 

methodological decisions and iterative improvements made during the research process. 

• The final vulnerability assessment framework, detailing the model setup, implemented 

algorithms for both topological and hybrid centrality measures, testing and validation.  

• The design of the benchmark model, including the selection of the operational scenario, 

metric choices and detailed development. 

3.1 FRAMEWORK DEVELOPMENT PROCESS 

The development of an effective methodology for assessing network vulnerability through 

centrality measures involved research and several iterative stages, where different approaches 

were considered. This section documents the methodological evolution, design decisions and 

alternative approaches that were considered, but ultimately abandoned in favour of the final 

framework. 

3.1.1 INITIAL DEVELOPMENT AND METHODOLOGICAL EVOLUTION 

The project initially began with the hypothesis that purely topological centrality measures 

would provide sufficient insight into distribution network vulnerability patterns. Hence, early 

research focused solely on standard graph theory metrics (e.g. degree, closeness or 
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betweenness). The initial approach was to develop a composite criticality index that would 

combine multiple centrality metrics into a single indicator. This approach was motivated by 

existing literature which suggested that different metrics capture complementary aspects of the 

network structure. For this reason, authors in [46] or [47] proposed that their combination would 

provide a better performance in vulnerability assessment.  

This methodology involved using a weighting scheme to calculate the final index. In this way, 

each metric is assigned a relative importance and the index could be adjusted to SPEN’s 

distribution network characteristics. Several combination methods were considered, such as 

equal weighting or entropy weighting methods. However, this composite approach varied 

between studies, so it proved to be more subjective and network dependent, with different 

networks probably requiring different weighting schemes.   

Furthermore, other findings like [48] or [49] explained that some specific metrics, particularly 

betweenness centrality, had a great performance in vulnerability assessment. Thus, it was 

decided to evaluate the centrality measures individually in order to assess the significance and 

explanatory power of each one. As in much of the existing literature, metrics are often analysed 

separately rather than in combination. 

Additionally, more recent research recognized that topological information alone could be 

insufficient to capture the nuances of vulnerabilities in electrical networks [48]. So rather than 

combining multiple topological metrics, hybrid centrality measures were proposed. This was 

proposed as a way to integrate both structural and electrical network characteristics within a 

single framework.  

Therefore, it was decided to incorporate both types of metrics, purely topological and hybrid, 

into the analysis. The objective was to evaluate the individual performance and practical 

relevance of each metric across a range of realistic distribution networks and also, to evaluate 

whether hybrid centrality measures result in a notable improvement in identifying vulnerable 

nodes. Ultimately, the study aims to provide a clearer understanding of how effective these 

metrics truly are at identifying vulnerabilities and whether their level of accuracy justifies their 

use as a computationally efficient alternative. 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 
 

23 

 

3.1.2 SELECTION OF THE BENCHMARK’S VULNERABILITY METRIC 

A fundamental prerequisite for developing a substantial benchmark in this project was the clear 

definition of what constitutes vulnerability in the context of a DNO, such as SPEN, with regards 

to distribution networks. For a utility, vulnerability is intrinsically linked to the network’s 

ability to reliably supply all customers under both normal operating conditions and during 

disturbances. Therefore, an objective measure of vulnerability should directly reflect the degree 

to which customer supply is threatened or interrupted as a consequence of failures, overloads 

or other adverse scenarios. Establishing such a definition is essential to provide a baseline for 

assessing, comparing and validating the performance of MCA.  

In recent literature, vulnerability and its quantification take different methodological directions. 

The authors of [38] evaluate it indirectly through the concept of network efficiency, which is 

computed as the average inverse of the ERD between all node pairs. However, this metric has 

a has a key limitation in the distribution context, despite its ability to reflect the ease of power 

transfer across the network. It does not provide direct information on whether specific 

customers remain supplied after a disturbance.  

In [7], vulnerability is assessed directly simulating network operation through a power flow 

analysis and subsequently monitoring for critical issues such as voltage variations, overloads 

or other violations of operational limits. This method essentially involves observing whether 

the removal of certain nodes causes power quality or supply issues somewhere in the system. 

Nevertheless, this approach typically encompasses qualitative or visual assessments rather than 

a single, quantitative vulnerability score.  

Given these limitations in the literature, it was decided in this project to adopt Energy Not 

Served (ENS) as the main indicator of vulnerability. ENS quantifies vulnerability through the 

total amount of energy that fails to be delivered to end users during specific fault scenarios, 

typically due to disconnection, voltage variation or line saturation. It offers a clear, objective 

and physically meaningful measure of the extent to which the distribution network fails to fulfil 

its fundamental purpose, which is supplying electricity to all connected customers. 
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In this framework, a contingency analysis has been carried out. Each simulated failure 

disconnects a node of the network, executes a power flow and calculates the ENS produced. 

When a contingency caused parts from the network to become isolated, each unsupplied 

demand in every load was calculated and added to the ENS.  

This metric enables a direct and quantitative comparison between contingencies, as it assigns a 

specific ENS value to each node or scenario within the network. Moreover, ENS accurately 

captures the actual impact of network failures in terms that are directly relevant for utility 

operators, as it expresses vulnerability as the concrete loss of service experienced by consumers. 

As such, it offers both technical relevance and operational clarity, enabling an effective 

validation of MCA and facilitating objective comparisons of vulnerability across different 

nodes.  

3.2 VULNERABILITY ASSESSMENT FRAMEWORK 

The MCA model implemented in this project calculates the set of vulnerability metrics 

introduced in the Theoretical framework, encompassing both purely topological and hybrid 

centralities. 

For the purely topological metrics, such as degree or betweenness centrality, the model uses the 

network’s adjacency structure to quantify the relative importance of nodes and connections 

based solely on their connectivity patterns. These metrics reveal structural vulnerabilities and 

provide insight into the network’s resilience without incorporating electrical parameters. 

Complementing this, the hybrid metrics integrate electrical characteristics by leveraging the 

weighted Laplacian matrix and its pseudo-inverse. Metrics such as current-flow closeness or 

current-flow betweenness are computed using electrical weights assigned to network elements, 

capturing nuances of power flow and resistance that pure topology overlooks. 

The MCA computation is performed using a dedicated computational framework that processes 

the network graph, calculates each metric and associates the results with corresponding nodes. 
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This enables a direct comparison of vulnerability indicators derived from different theoretical 

perspectives. 

The purely topological centrality metrics were computed using the NetworkX [50] library, 

which offers a comprehensive set of graph algorithms specifically designed for analysing the 

structural properties of complex networks. In contrast, the hybrid physically-informed metrics 

were calculated by directly implementing the mathematical formulas detailed in the Theoretical 

framework. 

To support interpretation of results, network visualizations were developed using Plotly [51], 

enabling dynamic exploration of the network’s topology, node characteristics, and loading 

patterns. Additionally, static plots illustrating metric distributions, vulnerability rankings, and 

comparative analyses were created with widely used Python libraries such as Matplotlib [52] 

and Seaborn [53].  

3.2.1 MODEL VALIDATION 

The MCA computation code was initially developed and thoroughly tested on the IEEE 30-bus 

benchmark network. To ensure fidelity with the network model used in the comparative 

literature, specifically in [7], the exact system data file was downloaded from the Pandapower 

[54] repository, following the same methodology as the referenced paper. This dataset was then 

converted into the model’s structured format, allowing seamless integration of the network 

information into the analysis environment. 

Applying the complete set of centrality metrics to the IEEE 30-bus system enabled the 

reproduction of the key results reported in the literature, thereby confirming that the code 

accurately computes the range of topological centralities. The corresponding table of results 

from this implementation is presented below in Figure 4. This validation step was essential for 

building confidence in the reliability of our approach before moving on to analyse the more 

complex and realistic SPEN distribution networks. 
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Figure 4: Centrality metric results computed using the MCA model on the IEEE 30 bus test network 

To further validate the model, a power flow simulation was also executed and compared to the 

one reported in [7]. Figure 5 displays the power flow results generated by our model. While 

some minor differences were observed, it is worth noting that there are variations in the 

underlying power flow solvers, the overall results were found to be highly consistent with those 

obtained in the published work. 

 

Figure 5: Line loading simulation output for the IEEE 30 bus network 

The successful replication of the results in [7] demonstrated that the MCA implementation is 

consistent, robust, and ready to be deployed for practical vulnerability assessment and 

comparison with contingency analysis in real-world power distribution systems. 
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3.3 CASE STUDIES, OPERATIONAL CONDITIONS AND BENCHMARKING 

APPROACH 

This section explains the final implementation of the benchmarking methodology used to 

validate the effectiveness of centrality measures in identifying network vulnerabilities. 

Accordingly, network case studies and their characteristics are presented, the operational 

scenario is defined and the benchmarking procedure is described.  

3.3.1 SPEN CASE STUDY NETWORKS 

To ensure the robustness and general applicability of the proposed vulnerability assessment 

framework, 4 distribution networks with diverse topological and operational characteristics 

were selected as test cases.  

Given that centrality measures were originally developed for highly interconnected networks, 

it was expected that these metrics would perform better in networks with multiple pathways 

rather than purely radial configurations. Therefore, an effort was made to include some of the 

most meshed topologies available within typical distribution system constraints. 

SPEN provided the information on the case studies and they were chosen based on topological 

diversity and size. The aim was to test networks representing different structural characteristics, 

including varying degrees of radiality and meshing levels to test MCA performance across 

different distribution network archetypes. Also, from small distribution feeders to larger urban 

networks, to ensure the methodology’s applicability across different system scales. All case 

studies are 230 V LV distribution networks. 
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Figure 6: Representation of the Greasby distribution network within SP MANWEB area 

 

The network in Figure 6 is located in Greasby, a village within the Wirral Peninsula, which 

forms part of the greater Liverpool area. This region is served by SP MANWEB, the regional 

electricity DNO responsible for Merseyside, North Wales, Cheshire and surrounding areas [55]. 

The SP MANWEB network is characterised by its meshed operation in urban locations such as 

Wirral, as can be seen in Figure 6, providing enhanced reliability and capacity for its customers. 

This distribution network comprises 4 transformers, 1,127 lines and 1,126 nodes, of which 480 

are loads. It is one of the biggest networks in the study and has a more complex topology, with 

multiple feeders and considerably meshed structure for a distribution grid.  

Furthermore, the Lanark network in Figure 7 is managed by SP Distribution, which oversees 

central and southern Scotland. The areas where the project’s case studies from SP Distribution 

belong to are Lanarkshire and Glasgow. It represents a medium distribution network with 

mainly radial structure, although it has some localized interconnections. The grid features 5 

transformers distributed across the network, 847 lines and 847 nodes, of which 356 are loads.  
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Figure 7: Representation of the Lanark distribution network within SP Distribution area 
 

On the other hand, this Whifflet subnetwork in Glasgow shows a much smaller grid that is 

solely supplied by one transformer. Figure 8 shows that it has a predominantly radial structure, 

although it presents a few very valuable interconnections.  

This configuration provides interesting insights into vulnerability patterns in less complex 

systems, where single points of failure can significantly affect customer supply.  It has 220 lines 

and 221 nodes, of which 70 are loads, and it has one transformer.  

 

Figure 8: Representation of the Whifflet distribution network within SP Distribution area 
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Lastly, the distribution network shown in Figure 9 is also operated by SP MANWEB. As part 

of the MANWEB area, this grid benefits from its typical characteristics, as it exhibits a lightly 

more meshed topology. The system has 4 transformers, 1235 lines and nodes, of which 460 are 

loads. It can be appreciated that it is more radial than Greasby’s network, although it still 

presents some relevant redundancy and meshing.  

 

Figure 9: Representation of the Moreton distribution network within SP MANWEB area 

3.3.2 OPERATIONAL SCENARIOS 

Distribution network vulnerability is not a static characteristic, so it requires careful analysis of 

the different operating scenarios that can expose weaknesses in the network. Each scenario can 

reveal specific vulnerabilities related to network topology, the integration of DERs and new 

loads such as EVs and heat pumps.  

Therefore, two main scenarios were considered, each characterized by different challenges:  

• Peak demand: This usually occurs during periods of high simultaneous electricity 

consumption. For instance, during winter evenings or summer afternoons, when 

heating, cooling and typical electric loads usually reach their maximum values. Under 

these conditions, network components tend to operate close to their maximum capacity 

or their thermal limits resulting in line overloading and supply interruptions.  



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 
 

31 

 

• Low demand: When customer demand is minimal, networks present very different 

issues. Voltage problems are very common, for example, overvoltages could also arise 

due to significant DG penetration.  

This project focuses specifically on peak demand scenarios. While this represents a critical 

operational condition, it should be acknowledged that distribution networks may exhibit 

different vulnerability patterns under other operational states. Hence, it is important to 

recognize the limitations of this approach, as other scenarios may introduce additional 

vulnerabilities that are not fully addressed in this study. However, this case was chosen due to 

several methodological and practical considerations.  

Peak demand scenarios align naturally with the contingency analysis framework. As it is a 

node-based methodology, this enables to compare the nodes in the network with the centrality 

metrics from the MCA, which are mainly nodal too. In that way, the failure of each node can 

be simulated and its impact can be quantified for a later comparison. 

On the contrary, in low demand scenarios vulnerabilities are not related to overloads, but rather 

to control issues, voltage stability or reverse power flows. Under low load conditions, 

simulating individual node failures loses its meaning, as it is more focused on evaluating load 

loss or disconnections. Consequently, as vulnerabilities in these scenarios are often related to 

dynamic problems, such as voltage oscillations or instability in control systems, it is more 

difficult to quantify them using traditional nodal metrics. 

Furthermore, peaks in demand have traditionally represented the most stressful conditions for 

the grid. Especially with the growing electrification of transportation and heating, which will 

amplify loads and general demand on LV networks. The results directly support traditional 

network planning activities such as capacity upgrades, contingency planning and thermal 

constraint management, which remain core responsibilities for a DNO such as SPEN. 
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3.3.3 BENCHMARK MODEL IMPLEMENTATION 

The project aimed to create a realistic and operationally meaningful benchmark for assessing 

vulnerability in SPEN’s distribution networks. Given that SPEN provided network datasets in 

the .dss format, OpenDSS [56] was chosen for its native compatibility and recognized reliability 

in electrical network studies. To enhance flexibility and facilitate integration with modern data 

analysis and visualization tools, the model was implemented using OpenDSSDirect [57] within 

a Python environment.  

This approach made it possible to efficiently process large volumes of power flow results and 

use additional Python libraries for subsequent processing and graphical representation of 

outcomes.  

A list of the input variables in the benchmark model and a descriptive flowchart are provided 

in this section for clarity. The detailed functioning of the model will be explained later. 

Further details on the execution of contingency scenarios and ENS calculation, as well as the 

specific use of power flow and data handling, are detailed below.  

Power flow analysis 

In this project, power flow analysis was employed as a fundamental tool for assessing network 

performance and identifying vulnerability to thermal overloads in SPEN’s distribution network. 

A workflow was developed through OpenDSSDirect to simulate AC power flows, enabling 

systematic determination of branch loading throughout the network. 

Therefore, to provide a clear view of network stress, the model includes a visualization module 

that highlights according to a colour map the overloading tendence of the network. This 

approach closely follows practices seen in [7], where graphical representation of the line 

loading is used as a main decision tool.  
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As illustrated in Figure 10, an example grid from a neighbourhood in Glasgow is shown, where 

the loading of each network element is denoted by colour coding along the branches. This 

visualisation enables immediate identification of more loaded or heavily used components.  

 
Figure 10: Power flow analysis visualization for a distribution network in Glasgow 

It should be noted that the original network data provided by SPEN did not include any 

customer load information, primarily due to privacy policies and regulatory restrictions on the 

use of client consumption data. To address this limitation and ensure realistic demand 

allocation, the CREST demand model [58] was employed to generate demand profiles for 100 

distinct dwellings, reflecting diverse residential consumption patterns. The CREST demand 

tool is an established open-source model developed by the University of Loughborough, 

specifically designed to produce demand profiles for UK households under a wide range of 

occupancy and appliance scenarios.  

Each dwelling’s demand at the time of the system’s peak was extracted, in other words, at the 

hour when the total aggregate demand across all dwellings reached it maximum value. This 

approach aligns with the project’s vulnerability framework, which prioritises the system’s 

performance at peak load as the most critical operational scenario. For the purposes of the 

benchmark design, the peak demand value from each simulated dwelling was randomly 

assigned to each load in the network, thereby introducing realistic variation and heterogeneity 
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into the allocation. For full transparency and reproducibility, the detailed peak demand values 

used for the 100 simulated dwellings are provided in Appendix C. 

This method provides a more credible representation of stresses that might be observed during 

actual peak conditions, compared to uniform load assumptions. Consequently, the resulting 

power flow simulations and overload visualizations better reflect credible network behaviour 

under realistic operational conditions, enhancing the robustness and interpretability of the 

vulnerability assessment in the absence of customer data.  

Contingency analysis 

To systematically assess the vulnerability of the distribution network under failure conditions, 

a contingency analysis model was developed also using OpenDSSDirect within Python. The 

contingency analysis conducted in this project focuses exclusively on single contingencies, 

where each scenario simulates the outage of a node at a time. This approach, often referred to 

as an “N-1” analysis, was deliberately chosen both for its practical relevance in distribution 

network operation and to ensure direct comparability with the results obtained from the MCA.  

By isolating the impact of individual element failures, it becomes possible to assign a distinct, 

quantitative vulnerability value to each node in the network. This is essential, just as MCA 

produces a centrality score for every node, the single contingency analysis yields a clear metric 

associated with the loss of each node, that can be directly compared. This methodological 

consistency supports the core objective of the benchmark framework, which is to enable a 

robust, node by node comparison between centrality-based values and ENS outcomes derived 

from simulated outage scenarios. 

The core workflow comprises several stages, from data input to demand assignment, network 

setup and final contingency simulation. The key logic and inputs are summarised below. For 

transparency and reproducibility, the demand assignments are randomly allocated but can be 

fixed and recorded for repeated executions. 

The flowchart in Figure 11 details the data preparation and initial simulation workflow, 

illustrating the key steps from network and input data loading and up to the stage where the 
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model is ready for contingency simulation or power flow analysis. This process ensures all 

relevant network and demand information is correctly structured prior to conducting any 

advanced analyses, such as contingency studies.  

  

Figure 11: Data preparation and initial simulation workflow 

The input data in the model, as illustrated in Figure 11, are summarised in the list below: 

• Network topology and parameters: The distribution network is provided in OpenDSS 

(.dss) format by SPEN, containing real asset and connectivity data, such as line ID, their 

capacities, resistance and reactance, the buses that they are formed by and their length.  

• Coordinates: SPEN also provided in a .json format the geospatial coordinates for each 

node.  

• Demand profiles: A list of peak load values in W for 100 residential dwellings, extracted 

from CREST, is used as a pool for random assignment to the loads in the network. Each 

assigned load is paired with a power factor, which has been assumed to be 0.95 by 

default, to compute VAR values. 
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In the flowchart, a red asterisk is used to highlight that at that stage there is flexibility in the 

analysis pathway. The model is at that point fully configured and ready for simulations, which 

means the user can choose to proceed directly with a conventional power flow analysis of a 

given scenario, or alternatively, advance to the contingency analysis module described below.  

For completeness, Figure 11 depicts the full process including the power flow analysis, 

illustrating the end-to-end simulation and visualisation of network loading. However, it should 

be emphasised that the red asterisk denotes a methodological branching point, after which any 

other process can be undertaken depending on the objectives of the analysis. This framework 

was mainly used with the objective of executing a contingency analysis to identify which are 

the most vulnerable nodes in the studied network. Therefore, the decision variable that 

quantifies and enables the node ordering by criticality is, as already explained earlier, ENS. 

Below is a more detailed explanation of the full contingency analysis workflow. 

 

Figure 12: Contingency analysis workflow for evaluating network vulnerability using ENS 
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Figure 12 facilitates understanding of the analytical workflow for the contingency analysis 

model, detailing the sequential processes of scenario simulation, power flow computation and 

ENS calculation. This diagram complements the previous flowchart in Figure 11 by illustrating 

the systematic steps undertaken to evaluate network vulnerability under single contingency 

events.  

The contingency analysis process is designed to systematically assess the impact of the failure 

of each node on the overall network performance. Starting from a baseline network 

configuration, the model calculates the baseline ENS to establish a reference point for 

subsequent comparisons. Calculating this baseline value is critical, as it reveals whether the 

initial network state already experiences overloads or other issues that prevent full supply of 

demand. 

Each bus in the network is then iteratively taken out of service along with its connected 

elements, simulating a realistic contingency scenario. Loads that become electrically isolated 

from power sources due to these outages are explicitly identified and disabled in the model. 

The demand of these disabled loads is directly added to the contingency’s ENS to ensure the 

metric accurately reflects all unserved energy. This step is necessary because OpenDSS alone 

does not automatically account for disconnected loads during contingency analysis. Failure to 

manually disable these loads often causes power flow non-convergence, leading to unreliable 

or missing ENS results. 

Following each contingency event, a power flow simulation recalculates the network state, 

allowing for updated computation of the ENS, which quantifies the additional unserved energy 

caused by the component outage. The difference between the post-contingency ENS and the 

baseline serves as a direct measure of the vulnerability contribution of the removed element. 

For clarity, the increase in ENS associated with each contingency is calculated as: 

 

𝐸𝑁𝑆𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝐸𝑁𝑆𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦 − 𝐸𝑁𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝐸𝑁𝑆𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑜𝑎𝑑𝑠 + 𝐸𝑁𝑆𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑁𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 
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After processing each scenario, the system automatically restores the network to its baseline 

state to ensure independence of analyses. Results from all contingency scenarios are 

systematically collected, summarized, and prepared for evaluation and comparison against 

MCA metrics.  
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Chapter 4.  RESULTS AND ANALYSIS 

This chapter presents the results and analysis derived from the modelling and simulation 

framework developed in this project. The outputs of the centrality metrics across the distribution 

network are examined, providing a comprehensive overview of both purely topological and 

hybrid centrality measures. These results are compared with the ENS values obtained from the 

contingency analysis, enabling a direct evaluation of the extent to which MCA can predict the 

vulnerability of each node to supply disruptions. The aim is to investigate potential correlations 

and insights into network vulnerability. 

The core findings focus on a primary case study for illustrative clarity, while additional 

scenarios and extended results are documented in Appendix C for reference and completeness.  

 

4.1 TOPOLOGICAL METRICS 

The main case will analyse the distribution network located in Greasby, which SP MANWEB 

manages. Further details of each analysed network are given in section 3.3.1.  

As observed in Figure 13, most nodes exhibit low degree values, which reflects the limited 

connectivity that is characteristic of distribution networks. This degree distribution, where 

average node degree is 2.002, totally suits with the inherently radial and hierarchical structure 

typical of power distribution networks, where most nodes serve as simple endpoints and only a 

few act as main feeders or connection hubs. 
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Figure 13: Distribution of node degree in the Greasby distribution network 

Figure 14 shows comparisons between the five purely topological centrality metrics and the 

calculated ENS values of the respective nodes when simulating its failure in the network. 

For the clustering coefficient analysis, the scatter plot shows that the vast majority of nodes 

have clustering coefficient values of zero. Only a small number of nodes have non-zero values 

and they do not show any meaningful correlation with ENS.  

This pattern reflects the inherently radial topology of distribution networks, which implies little 

local redundancy and high vulnerability to the disconnection of key nodes. This strongly 

contrasts with the meshed configurations typical of transmission networks. In radial systems, 

nodes are connected in a tree-like structure where each load point typically has only one path 

to the source. This fundamentally prevents the formation of triangles, which is what the 

clustering coefficient equation (5) is based on.  

On the other hand, transmission networks have significantly more connections and meshed 

topologies, which are specifically designed to provide multiple power flow paths and system 

redundancy. Consequently, these networks have naturally higher clustering coefficients. This 

leads to diverse values that could serve as meaningful indicators of structural vulnerability and 

operational flexibility, as proved in the IEEE 30 bus validation.  
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Figure 14: Comparative scatter plots of five topological centrality metrics against ENS in the Greasby 

network 

 

Eigenvector centrality also reveals another fundamental limitation when applied to distribution 

networks. It can be appreciated that most nodes are grouped near zero, with only a few nodes 

displaying higher values. However, these nodes with values different to zero, do not show any 

meaningful correlation with ENS outcomes.  

This tendency to null values stems from several factors typical of large distribution networks. 

In general, network size plays a crucial role in centrality metrics. Specifically in eigenvector 

centrality, it tends to decrease its robustness with increasing network size [59]. For this type of 

distribution networks, where there are hundreds or even thousands of components, this relation 

could lead to many centrality values becoming insignificantly small.  
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Additionally, eigenvector centrality of a node strongly depends on being connected to other 

important nodes, as mentioned in equation (4). Therefore, in large and disperse networks with 

a low average degree, the probability of a node being peripheral increases, which fosters the 

appearance of small eigenvalues.  

Moreover, the degree centrality plot presents vertical bands, which reflect the fact that node 

degree values are discrete. Nodes with the same degree value create these distinctive vertical 

lines on the plot, because degree centrality is determined by dividing the node’s total number 

of connections by the number of nodes in the network minus one.  

There is not a clear correlation with ENS, although it is worth mentioning that every node with 

degree 1 has very low ENS. This stands to reason, as loads will typically always have degree 

one and when disconnected, they only affect one customer. However, on the whole, nodes 

exhibit a broad range of ENS values regardless of their degree, suggesting there is no significant 

relationship.  

This discrepancy between ENS and degree centrality makes sense, because for example a node 

that serves low-demand areas, may have a high degree centrality due to its numerous 

connections but, it will only make a small contribution to system vulnerability. Nevertheless, if 

a node is connected to high-demand clients or is near a transformer, nodes with lower degree 

centrality can produce a sizable amount of ENS, proving that structural connectivity is not 

enough to assess distribution system vulnerabilities. 

Finally, it is worth looking more closely at both betweenness and closeness centrality since they 

both show at least some predictive potential for finding vulnerable nodes. A distinct positive 

trend can be seen in the betweenness plot, as nodes with higher betweenness centrality typically 

have bigger ENS values.  

In comparison, more noise can be appreciated in the analysis for closeness centrality. A 

significant number of nodes with high closeness scores cause little ENS when they fail, despite 

the fact that many other high closeness nodes correlate with heightened ENS. This suggests that 

closeness may occasionally overestimate criticality for well connected, but low demand nodes. 
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Figure 14 shows that betweenness centrality has a more robust linear correlation with ENS, 

indicated by a coefficient of determination of 0.793. Whereas closeness centrality has a notably 

lower R2 of 0.121, which is due to the overestimation mentioned earlier that causes many nodes 

to be considered as topologically relevant, but do not correspond with a high ENS.  

This outstanding performance of betweenness centrality suggests that the concept of 

intermediary importance, or more simply nodes that lie on shortest paths between other node 

pairs, translates meaningfully to operational vulnerability. Hence, further study has 

concentrated on the correlation of betweenness centrality and network vulnerability.  

A Spearman rank correlation was carried out in order to provide a more nuanced evaluation 

than linear correlation. By using the ranking of the values of two variables instead of their actual 

magnitudes, the Spearman ranking compares how good the order is, not focusing so much 

linearity, but on if the nodes are consistently ordered. In that way, Spearman correlation can 

reveal whether nodes identified as most critical by betweenness centrality are also those that 

yield the highest ENS.  

 
Figure 15: Spearman rank correlation plot comparing node rankings by betweenness centrality and ENS in 

the Greasby network 
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It can be appreciated that the most significant nodes congregate along the diagonal, which 

shows that the metric is able to reflect the actual criticality of the node. A Spearman’s 𝜌 score 

of 0.741 demonstrates a significant correlation between betweenness centrality and ENS, 

regarding their order. This indicates that nodes identified as critical by betweenness centrality 

generally correspond with those that yield higher ENS when eliminated. Thereby, validating its 

efficacy as a vulnerability indicator in distribution networks.  

However, a thorough examination of Figure 15 reveals that betweenness centrality 

overestimates the criticality of a sizable group of nodes. Notably, many other nodes attain high 

betweenness rankings, yet they are associated with lower ENS ranks. This appears as a large 

number of dots dispersed well above the diagonal. Additionally, two vertical bands at the right 

side of the plot can be observed, which happen due to the fact that the network is very large and 

not so interconnected. This causes nodes with less structural relevance to not be differentiated 

by betweenness, resulting in the metric assigning all of them the same value.  

To gain a clearer understanding of this overestimation phenomenon, we have highlighted the 

most critical nodes and the overestimated nodes directly on the network plot. This visualization 

in Figure 16 allows to spatially examine whether there is a structural basis for the 

overestimation by betweenness centrality. From this, it appears that some of the nodes identified 

as overestimated correspond to key connecting lines or main streets. In that way, structurally, 

they represent important links and redundancy within the network topology.  

 

Figure 16: Highlighted Whifflet’s network representation showing critical nodes and overestimated nodes 
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But, despite this structural significance, these connections may not be as electrically essential 

in terms of maintaining customer supply. In other words, while these nodes serve important 

topological roles by linking different areas, their failure does not necessarily translate into large 

scale supply interruptions reflected by the ENS metric. This divergence shows a fundamental 

limitation of purely topological metrics like betweenness centrality in distribution networks. 

They capture structural importance, but do not fully reflect the electrical operational impact of 

node failures. 

These drawbacks highlight the need for a more sophisticated vulnerability assessment. 

Although betweenness centrality has shown impressive results in identifying electrically 

vulnerable nodes, as all critical nodes are identified correctly. Nonetheless, examining hybrid 

centrality metrics could enhance those results, as they incorporate electrical data into the model. 

4.2 HYBRID METRICS 

Current-flow (CF) centrality metrics are a class of hybrid centrality indicators that incorporate 

electrical properties of the network. As already mentioned in the Theoretical framework section, 

these hybrid formulations provide a more physically grounded view of structural vulnerability. 

They are therefore expected to produce results that outperform the purely topological 

centralities. The first hybrid centrality analysed is CF closeness centrality, which adds line 

impedances into the original concept of the topological metric.  

The behaviour of the relation in Figure 17 is very similar to the closeness centrality plot in 

Figure 14. Although they both look alike, CF closeness has improved the coefficient of 

determination from 0.121 to 0.187. However, this overall gain remains limited compared to 

expectations. 

This modest increase in the R2 suggests that impedance information alone may not be enough 

for the relation to improve significantly. One possible explanation is that in distribution 

networks lines could have similar characteristics. Therefore, the difference in impedance values 

is not enough for the weighted methodology to provide more accurate results.  
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Figure 17: Scatter plot of ENS against current-flow closeness centrality in the Greasby network 

Although this type of behaviour represents the general trend across the analysed networks, there 

is an exception for Whifflet’s network where the improvement is considerably more notable. It 

can be appreciated in Figure 33 that there is a more visible relation between ENS and the metric, 

with not so many nodes being incorrectly overestimated and the R2 is 0.547. Figure 34 shows 

that it has in effect a very strong correlation, with a Spearman’s 𝜌 of 0.745.  

Nevertheless, it is worth mentioning that topological betweenness for Whifflet’s distribution 

network has a coefficient of determination R2 = 0.876 and a Spearman’s 𝜌 of 0.860. So, there 

is general improvement in this network regarding the correlation between vulnerability and 

centrality metrics. This outstanding performance may be partly explained by the smaller size 

and lower complexity of this network compared to the others in the study. With fewer nodes 

and less topological diversity, the relation between electrical distance and node criticality 

remains cleaner. Therefore, there are less paths or redundancies that introduce noise into the 

correlation like in larger networks and the metric is able to reflect more clearly the most 

vulnerable nodes of the network.   
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CF line betweenness was studied next. Figure 18 shows the centrality values directly mapped 

in Greasby’s distribution network following a colour scale. This metric takes into account which 

nodes are generators or loads, as it calculates a centrality value for every possible generator and 

load pair, which are also referred to as source and target pair in equation (9).  

It can be appreciated how the lines located close to source nodes, usually score a much higher 

value than other end lines. It is also worth noting how lines that serve as main connectors 

between different areas are consistently assigned high values, such as the yellow-coloured line 

that goes until the connection with the bottom part of the network. When compared to where 

real critical nodes are located in Figure 16, there is evidence that the metric captures very 

satisfactorily the vulnerabilities in the electric grid.   

 

Figure 18: Visualization of current-flow line betweenness centrality values in the Greasby network 
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Given that CF line betweenness is, by nature, a metric defined for lines and the authors of [38] 

did not provide an equivalent node metric, it has been necessary to convert values into a node-

based version. To accomplish this, the values of all adjacent lines to each node were summed 

and assigned to that node as its aggregated score. This methodology enables the comparison of 

this metric with other nodal scores and with the ENS benchmark.  

The resulting scatter plot in Figure 19 shows a coefficient of determination of 0.699, which is 

lower than the purely topological betweenness metric, that had an R2 of 0.793. However, nodes 

with higher CF betweenness score tend to have a higher ENS value, which indicates that this 

metric is good at assessing electrical vulnerability. Although there is an outlier group located 

towards the bottom right, which means that the metric overestimates vulnerability, it has not 

been assigned values as large as those of the truly most vulnerable nodes. Thus, even if the plot 

is slightly deviated, the metric seems to distinguish well among the most critical nodes. 

Therefore, a Spearman rank was also conducted to confirm this assumption.  

 

Figure 19: Scatter plot of ENS against current-flow line betweenness centrality in the Greasby network 
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In effect, Figure 20 shows excellent results at the identification of the most vulnerable nodes in 

the network. No nodes have been overestimated and compared to the most critical ones, in other 

words, the metric has not assigned similar values to electrically not so vulnerable nodes, as 

occurred with betweenness centrality in Figure 15.  

 

Figure 20: Spearman rank correlation plot comparing node rankings by CF line betweenness centrality and 

ENS in the Greasby network 

Furthermore, as criticality decreases, nodes start to disperse above and below the diagonal and 

accuracy worsens. However, the vertical bands that appeared in Figure 15 are not present in 

this plot. This means that this metric is also able to distinguish between not so critical nodes, 

although it is clearly much better at assessing the most critical nodes in the network.  

The Spearman’s 𝜌 has improved from 0.741 in the purely topological betweenness centrality to 

0.777 in this metric. Most importantly, all critical nodes are correctly identified, and there is no 

overestimation of non-critical nodes relative to truly vulnerable ones. 
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As already mentioned, it is logical that results become more imprecise as vulnerability 

decreases, as in distribution networks it is difficult to differentiate between peripheral lines, 

where most loads are connected to. Nevertheless, CF line betweenness performs excellently for 

the most vulnerable nodes in the distribution grid, which is a great achievement. This strong 

performance demonstrates its potential as an effective screening tool for distribution network 

vulnerability assessment.  

4.3 COMPUTATIONAL EFFICIENCY AND PRACTICAL APPLICATIONS 

The table below summarizes the computation times required for both traditional contingency 

analysis and the proposed MCA method, including the hybrid metrics, across the four 

distribution networks analysed in this study. 

 

Table 1: Computation time comparison between traditional approach and MCA 

Distribution 

network 
Contingency Analysis (s) MCA (s) Speed-up factor 

Greasby 95.5 7 13.64 

Moreton 103.2 6.1 16.92 

Glasgow 3.7 0.2 18.5 

Lanark 43.9 2.7 16.26 

Across all cases, MCA delivers substantial computational savings compared to conventional 

contingency analysis. For example, in the Moreton and Greasby networks, traditional analysis 

required over 1.5 minutes per run, while MCA completed the equivalent assessment in no more 

than 7 and 6 seconds, respectively. This represents a speed-up factor of approximately 16 times 

or even more in some cases.  
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From the case studies, it is observed that each distribution network typically includes multiple 

transformers. For a network the size of SPEN, with approximately 30,000 substations [60] and 

159,084 stored files corresponding to LV distribution circuits, the potential computational 

savings are considerable. They were estimated using the processing times measured for the 

Greasby network as a reference case: 

1 −
7

95.5 = 0.927 

This corresponds to an estimated computational saving of around 92% compared with 

conducting a full contingency analysis. 

Such computational efficiency directly benefits DNOs when screening large scale distribution 

areas. If the entire SPEN network, covering thousands of feeders, were to be analysed using 

traditional methods, the cumulative computation time could run into many hours or even days, 

becoming a bottleneck for planning and real-time decision-making. By contrast, MCA reduces 

this to a few seconds per network.  

This method could be used as a first stage screening tool to quickly filter and prioritise the most 

critical nodes in the network. The time saved could then be invested in carrying out more 

detailed and accurate analyses on this reduced set of priority nodes, ensuring that engineering 

and computational resources are focused where they deliver the greatest value. 
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Chapter 5.  CONCLUSIONS 

The project conducted a comprehensive review of the state of the art of different vulnerability 

assessment approaches, as well as centrality metrics applied to electrical distribution networks. 

In which both purely topological indicators and more recent hybrid formulations that 

incorporate electrical properties were covered. The open source OpenDSS was used to perform 

the contingency analysis benchmark, while NetworkX python library was employed to 

calculate most of the centrality metrics. The objective was to evaluate how effectively the MCA 

approach, based on these metrics, can identify vulnerabilities in electrical distribution networks.  

4 real UK distribution network models were selected as case studies, representing a range of 

sizes and meshing levels, and simulated under peak demand conditions using a contingency 

analysis approach. Both topological and hybrid metrics were evaluated individually to assess 

their effectiveness in identifying critical nodes. The methodology achieved significant 

computational savings compared to full contingency analysis, enabling rapid screening of 

network vulnerabilities while maintaining high accuracy for the most critical elements. 

The comparative analysis of centrality metrics reveals remarkably different levels of 

effectiveness in assessing vulnerability across different distribution network topologies. 

Betweenness centrality demonstrated a surprisingly robust performance taking into account it 

only relied on topological information. However, it tended to overestimate the criticality of 

certain nodes, giving similar values to genuinely vulnerable and less vulnerable nodes. 

Nevertheless, this metric has proved useful results as a rapid screening tool to identify a subset 

of potentially critical nodes. In this way, allowing DNOs to focus more detailed computational 

resources and further studies on this reduced set. 

Other standard topological metrics showed more limited applicability. Clustering coefficient 

and eigenvector centrality both provided insufficient discrimination between nodes in all the 

analysed networks. This reflects the fact that distribution grids, by their nature, have a low level 

of local clustering and tend to be weakly connected. These metrics fail to capture meaningful 
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differences in node vulnerability, as they need a level of meshing and a considerable number of 

interconnections that are not typical in distribution systems. Degree centrality is a potentially 

informative metric that can serve as a global indication of network connectivity. However, it 

showed no clear relationship with vulnerability to supply interruptions. This is logical as the 

number of direct connections does not equate to operational criticality. 

However, it is worth noting that in MV networks, which tend to be more meshed and have a 

greater degree of interconnection, metrics such as clustering coefficient and eigenvector 

centrality could prove more promising. The increased complexity and redundancy in these 

networks provide a richer topological structure where these metrics can better differentiate node 

importance and vulnerability.  

Hybrid current-flow centrality metrics usually outperformed their purely topological 

counterparts. The CF line betweenness centrality, which integrates both the electrical properties 

and the structural position of each node, was generally found to be the most effective metric for 

identifying vulnerable nodes across all case study networks. 

However, it is worth noting that both betweenness-based metrics, the best topological and the 

best hybrid approach, delivered very strong results in identifying the most critical nodes. 

Ultimately, this is the primary concern for operational planning. While the detailed ranking for 

less critical or more peripheral nodes may show greater dispersion, this is of secondary 

importance for practical applications.  

The metric could be employed as a first filter to rapidly identify the subset of nodes that need 

more detailed analysis. This would allow DNOs to focus computational resources and further 

studies on these most critical elements. Therefore, a new approach with a two stage 

methodology could be developed, where CF line betweenness could provide an initial ranking 

and more sophisticated and computationally expensive analysis techniques would be then 

applied to the identified critical nodes.  

In conclusion, the study demonstrates that while some standard centrality measures offer only 

limited insight in the context of real distribution networks, betweenness-based approaches can 
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identify the most vulnerable parts of the grid. Especially when extended into hybrid 

formulations, where line impedances are included.  

Scottish Power could therefore implement MCA as a routine screening tool across the entire 

network. In this way, critical nodes can be identified for investment purposes or robustness 

planning in minutes. This would allow only a small subset to be passed on to slower or more 

expensive detailed studies. Beyond the raw time saving, such an approach would enable faster 

responses to emerging network issues or a better prioritisation of reinforcement projects. 
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Chapter 6.  FUTURE WORK 

The main improvement that could be made to this project’s analysis would be to include more 

operational scenarios to better capture the variability and complexity of modern distribution 

networks. Due to time constraints, the study focused primarily on peak demand conditions 

without considering other important scenarios such as low demand periods, which can 

significantly affect network vulnerability patterns. Incorporating scenarios with varying load 

levels, especially low demand combined with high or moderate DG penetration, would allow 

assessment of how the metrics perform under other conditions. 

Additionally, including variations in network configuration, such as different switching states 

or the presence of energy storage, could provide deeper insights into the robustness of MCA 

vulnerability assessments. Evaluating the influence of distributed generation on vulnerabilities 

is particularly important as DG alters power flows, potentially reducing the effectiveness of 

purely topological metrics and increasing the value of hybrid metrics. 

In this project, ENS was used as the vulnerability benchmark for evaluating the effectiveness 

of different centrality metrics in identifying critical nodes. While ENS is a widely accepted and 

intuitive indicator for assessing the operational impact of node failures under peak demand 

conditions, other vulnerability metrics could offer additional or complementary insights. For 

example, loss of load probability or number of affected customers, especially when considering 

different network priorities or regulatory requirements. Therefore, it could also be valuable to 

investigate how centrality metrics correlate with other alternative vulnerability measures.  

Moreover, in low demand scenarios or high DG penetration, ENS does not capture the relevant 

vulnerabilities. In such cases, specific indicators reflecting issues like voltage deviations, 

reverse power flows, or local generation curtailment are more appropriate. 

Another valuable extension of this work would be to apply the analysis to MV networks, as 

their more meshed and interconnected structure could enhance the performance of certain 

purely topological metrics, such as clustering coefficient and eigenvector centrality. In such 
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networks, the richer connectivity and higher level of redundancy provide a topology in which 

these metrics may better capture meaningful differences in node criticality. 

Regarding potential future work, a promising direction would be to use the betweenness-based 

centrality metrics, which were identified in this study as having the strongest correlation with 

network vulnerability, to give network reconfiguration or reinforcement proposals. A future 

project could develop an optimization framework that proposes new network configurations or 

identifies strategic locations for reinforcement based on these metrics. Such an approach would 

use the most effective centrality metrics to suggest topology changes or new line investments 

aimed at improving overall network resilience and reliability. This would build on the current 

work by moving from vulnerability assessment to actionable network design recommendations. 
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APPENDIX A 

While the primary focus of this project is technical, its outcomes are broadly aligned with 

several SDGs. By improving the efficiency, resilience, and flexibility of power distribution 

systems, the approach explored in this study can facilitate the integration of renewable 

generation, support reliable energy access, and encourage smarter infrastructure investment. 

These impacts, although indirect, contribute towards global sustainability objectives by 

enabling electricity networks to operate more efficiently and adapt to future decarbonisation 

challenges:  

Table 2: Relevant SDGs and this project contribution 

SDG Project contribution 

7 - Affordable and Clean 

Energy 

Enhances the resilience and efficiency of grids, supporting 

energy access and seamless integration of renewable generation. 

9 - Industry, Innovation 

and Infrastructure 

Encourages the adoption of advanced analytical tools for smarter, 

more sustainable network management and investment planning. 

11 - Sustainable Cities and 

Communities 

Enhances electricity supply reliability in urban and rural areas, 

supporting community resilience and service continuity. 
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APPENDIX B 

Table 3: CREST generated peak demand data

Dwelling Demand (W) 

1 3696 

2 503 

3 2368 

4 744 

5 617 

6 51 

7 4085 

8 1376 

9 920 

10 1013 

11 458 

12 1022 

13 724 

14 818 

15 973 

16 430 

17 74 

18 57 

19 1334 

20 575 

21 75 

22 61 

23 395 

24 2333 

25 505 

26 397 

Dwelling Demand (W) 

27 593 

28 262 

29 309 

30 2787 

31 782 

32 1006 

33 3180 

34 3685 

35 964 

36 2777 

37 298 

38 65 

39 515 

40 247 

41 3125 

42 706 

43 806 

44 563 

45 280 

46 77 

47 185 

48 950 

49 168 

50 452 

51 3646 

52 886 
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Dwelling Demand (W) 

53 1034 

54 9988 

55 462 

56 887 

57 2854 

58 230 

59 844 

60 61 

61 524 

62 385 

63 77 

64 788 

65 217 

66 3292 

67 843 

68 774 

69 322 

70 1041 

71 388 

72 2727 

73 377 

74 719 

75 585 

76 830 

77 2555 

78 544 

79 576 

80 912 

81 71 

82 481 

83 743 

Dwelling Demand (W) 

84 847 

85 546 

86 931 

87 639 

88 412 

89 274 

90 60 

91 402 

92 452 

93 781 

94 197 

95 683 

96 741 

97 71 

98 267 

99 926 

100 63 
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APPENDIX C 

  
Figure 21: Distribution of node degree in the Moreton distribution network 

 

  

   

Figure 22: Comparative scatter plots of five topological centrality metrics against ENS in the Moreton 

network 
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Figure 23: Spearman rank correlation plot comparing node rankings by betweenness centrality and ENS 

in the Moreton network 

 

 

Figure 24: Moreton’s network representation showing critical nodes and overestimated nodes 
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Figure 25: Scatter plot of ENS against current-flow closeness centrality in the Moreton network 

 

 

Figure 26: Visualization of current-flow line betweenness centrality values in the Moreton network 

 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 
 

70 

 

Figure 27: Scatter plot of ENS against current-flow line betweenness centrality in the Moreton network 

 

 

Figure 28: Spearman rank correlation plot comparing node rankings by CF line betweenness centrality 

and ENS in the Moreton network 
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Figure 29: Distribution of node degree in the Whifflet distribution network 
 

  

   

Figure 30: Comparative scatter plots of five topological centrality metrics against ENS in the Whifflet 

network 
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Figure 31: Spearman rank correlation plot comparing node rankings by betweenness centrality and ENS 

in the Whifflet network 

 

 

Figure 32: Highlighted Whifflet’s network representation showing critical nodes and overestimated nodes 

 

 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 
 

73 

 
Figure 33: Scatter plot of ENS against current-flow closeness centrality in the Whifflet network 

 

 
Figure 34: Spearman rank correlation plot comparing node rankings by CF closeness centrality and ENS 

in the Whifflet network 
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Figure 35: Visualization of current-flow line betweenness centrality values in the Whifflet network 

 

 
Figure 36: Scatter plot of ENS against current-flow line betweenness centrality in the Whifflet network 
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Figure 37: Spearman rank correlation plot comparing node rankings by CF line betweenness centrality 

and ENS in the Whifflet network 

 

 

 

 
 

Figure 38: Distribution of node degree in the Lanark distribution network 
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Figure 39: Comparative scatter plots of five topological centrality metrics against ENS in the Lanark 

network 
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Figure 40: Spearman rank correlation plot comparing node rankings by betweenness centrality and ENS 

in the Lanark network 

 

 

Figure 41: Highlighted Lanark’s network representation showing critical nodes and overestimated nodes 
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Figure 42: Scatter plot of ENS against current-flow closeness centrality in the Lanark network 

 

 

Figure 43: Visualization of current-flow line betweenness centrality values in the Lanark network 
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Figure 44: Scatter plot of ENS against current-flow line betweenness centrality in the Lanark network 

 

 
Figure 45: Spearman rank correlation plot comparing node rankings by CF line betweenness centrality 

and ENS in the Lanark network 
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