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CHAPTER 1. INTRODUCTION 

1.1 MOTIVATION: WHY CAUSAL INFERENCE MATTERS 

BEYOND PREDICTION 

Machine-learning systems excel at spotting patterns, yet most industrial and 

product decisions hinge on answering what-if questions: Will shortening a 

paper-machine drying cycle cut waste without compromising tensile 

strength?  Will a new onboarding flow actually raise seven-day retention, or 

merely correlate with it?  Correlation-based models cannot separate genuine 

levers from noisy covariates, so organizations risk over-optimizing vanity 

metrics or deploying changes that backfire once confounders shift. 

Digital transformation has amplified this tension. Modern manufacturing 

plants stream thousands of sensor variables per minute, while software teams 

ship code behind feature flags dozens of times a day. The sheer volume, 

velocity and dimensionality of data make controlled trials expensive, partial, 

or logistically impossible. Decision-makers therefore look to causal 

inference—augmented by scalable ML algorithms—to exploit observational 

data when experimentation is limited and to extract richer insights from the 

experiments they can run. 

At the same time, regulators and customers are demanding transparent 

explanations of algorithmic decisions. Causal models provide narratives 

grounded in intervention logic rather than opaque correlations, aligning with 

emerging standards on AI governance, fairness and root-cause accountability. 
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Taken together, these drivers create an urgent need for a practical framework 

that embeds causal reasoning in everyday analytics for both physical and 

digital products. 

1.2 RESEARCH GAP AND OBJECTIVES OF THE THESIS 

Academic work on causal inference has surged, yet it remains fragmented: 

papers on Double Machine Learning target economists, physics-informed 

approaches serve process engineers, and product-analytics platforms market 

proprietary A/B engines with little methodological detail. Few resources walk 

practitioners from problem formulation through deployment across multiple 

verticals. Even fewer show how to reuse the same logic tree—hypothesis, 

DAG, identification, estimation, validation—in domains as disparate as 

papermaking and mobile apps. 

Meanwhile, machine-learning research often treats causal discovery and 

effect estimation as standalone algorithmic challenges, overlooking the 

organizational steps that determine whether a project is even causally feasible 

(e.g., presence of an actionable treatment, data coverage, ethical constraints). 

Practitioners therefore face two symmetrical pain points: cutting-edge models 

without operational guidance, and well-meant checklists that ignore the latest 

modelling advances. 

This thesis targets that dual gap. Its core objective is to develop and validate a 

reusable end-to-end framework for causal inference with ML, then 

demonstrate its versatility through two concrete industries—manufacturing 

and software. In doing so, it aims to provide both (i) a structured decision 
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pathway that any analytics team can adopt and (ii) implementation blueprints 

that connect modern algorithms to real business questions. 

1.3 CONTRIBUTIONS & SCOPE 

This thesis sets out as an experiment in portability: can one practical 

framework guide causal reasoning when the “product” is a roll of tissue today 

and a mobile-app screen tomorrow? Rather than presuming a universal 

formula, it assembles a tentative playbook—checking for actionable 

treatments, sketching a defensible DAG, choosing an estimator, running 

refutation tests—and explores how far that sequence can travel across two 

contrasting product-making landscapes, one grounded in physical machinery 

and the other in digital experience design. 

The journey is mapped in four stages. Chapter 2 distils the minimum causal 

theory needed to recognize interventions and counterfactuals; Chapter 3 turns 

those ideas into an operational guide of checklists and decision trees; and 

Chapters 4 and 5 try the guide in practice, first on a sensor-rich manufacturing 

line, then on a UI change measured by clickstreams and retention curves. 

Deep proofs, full code, and frontier topics such as network interference or 

real-time control are left to appendices and future work, keeping the main text 

focused on what can be learned—and perhaps reused—here and now. 
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CHAPTER 2. FOUNDATIONS OF CAUSAL INFERENCE 

The goal of this chapter is to give the reader enough conceptual and practical 

footing to follow the framework in later chapters.  

2.1 CORRELATION VS CAUSATION: 

Correlation and causation are two concepts that are often used interchangeably, 

but they refer to different types of relationships between variables. Correlation 

refers to a statistical relationship between two variables, where the occurrence 

of one variable is related to the occurrence of another variable. Causation, on 

the other hand, refers to a relationship where one variable directly influences 

or causes a change in another variable. Whilst causation implies correlation 

between two variables, the inverse, need not hold true. It is possible that 

variables are correlated but there is no causal relationship between these.  

Machine learning models are designed to identify patterns and relationships in 

data, and they rely heavily on association to make predictions and generate 

insights. These models use statistical algorithms to identify correlations 

between variables, and predict outcomes based on these correlations. However, 

while machine learning models can be effective at identifying associations 

between variables, they do not necessarily capture causation. 

To see why the distinction matters in practice, consider three familiar pitfalls: 

1. Spurious coincidence — “Margarine divorces.” 
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Tyler Vigen’s tongue-in-cheek chart shows a 99 % correlation between 

divorce rates in Maine and U.S. margarine consumption. The link is purely 

accidental; no plausible mechanism connects the two variables. Acting on 

such a pattern would be chasing noise. 

2. Unknown direction — Corruption ↔ GDP. 

Cross-country data reveal that low GDP and high corruption scores move 

together, but the arrow of influence is unclear: does corruption depress 

growth, or does poverty foster corruption—or both? Without a model that 

pins down direction, policy could target the wrong lever. 

 

Figure 1. Correlation between divorce rate in Maine and per capita consumption of 

margarine [3] 

Figure 2. Correlation between corruption and GDP per 

capita of a country [4] 
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3. Hidden common cause (confounder) — Ice-cream sales and shark 

attacks. 

Both rise in summer, yet banning ice-cream would not make beaches safer. 

The lurking variable is warm weather, which drives swimmers into the sea 

and customers to the ice-cream stand. Failing to account for this confounder 

opens a back-door path and produces a misleading association. 

Throughout the rest of the thesis, every proposed change—be it lowering a 

drying-cylinder temperature or launching a new onboarding screen—is treated 

as a treatment whose impact must be separated from coincidence, reverse 

causality, and confounding. The framework introduced in later chapters 

therefore starts by asking three simple questions: 

• Could the pattern be a random coincidence? 

• Might the causal arrow point the opposite way? 

• Is there an unmeasured variable opening a back-door path? 

Figure 3. Correlation between shark attacks and ice cream 

sales 
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2.2 HOW CAUSAL RELATIONS ARE INFERRED: 

There are multiple approaches to infer causal relationships between variables. 

The easiest way to understand the underlying logic behind causal inference is 

by examining the formula for the Average Treatment Effect (ATE): 

𝐴𝑇𝐸 = 𝐸[𝑌!"# − 𝑌!"$].							Y = Outcome       T = Treatment 

The ATE formula essentially calculates the difference in outcomes between 

two treatment variables. For example, let's consider an outcome where Y=1 

represents a person getting cured and Y=0 represents a person not getting cured. 

Additionally, let´s assume T=1 represents giving a person a treatment and T=0 

represents giving them a placebo. By comparing the outcomes of two groups 

separated by treatment variable, we can infer if the treatment is causing the 

desired outcome of curing people. The following graph illustrates this example. 

 

Figure 4. Treatment and Placebo diagram 
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By giving different treatments to two samples of the population of size 100, it 

is observed that 80% of the sample of people that received the actual treatment 

is cured vs the 20% of the people that received the placebo treatment. This 

implies that there is a difference of 60% between both groups and the ATE is 

of 0.6, which is significantly high so we could conclude that the treatment is 

causing people to get cured. 

Randomized Controlled Trials (RCTs) remain the reference method for 

establishing causality because random assignment breaks every systematic 

link between a treatment T and potential confounders. If coincidence assigned 

all women to T=1 and all men to T=0, any measured difference might come 

from gender rather than the treatment itself; true randomization avoids that 

imbalance and lets us attribute outcome gaps squarely to T. 

Yet full randomization is not always feasible. Cycling a paper machine 

through every recipe variant is costly and time-consuming, and some legacy 

software stacks cannot expose each user to a clean feature-flag split. When 

RCTs are off the table, we turn to observational data—sensor streams, 

production logs, click trails—and ask whether clever design (matching, back-

door adjustment, instrumental variables) can approximate the missing 

experiment. These alternatives carry risks of bias and confounding, but, 

handled carefully, they still yield actionable insight for process optimization 

and product improvement. Section 2.4 surveys the algorithmic toolkit that 

makes such “quasi-experiments” possible in both the physical and digital 

domains explored in this thesis. 
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2.3 HOW CAUSAL STRUCTURES ARE REPRESENTED: 

Causal mechanisms are most easily reasoned about when they are drawn.  The 

standard language is a Directed Acyclic Graph (DAG): nodes stand for 

variables, arrows for putative causal influences.  Two structural rules give a 

DAG its name and power. 

• Directedness – every arrow points from cause to effect, breaking the 

symmetry that pure correlations permit. 

• Acyclicity – the arrows may never loop back to the same node, preventing 

a variable from (directly or indirectly) causing itself and preserving a 

coherent time‐ordering. 

Within this grammar three micro-patterns dominate: 

• Fork (confounding) A ← Z → B — a common cause Z creates a back-

door path between A and B. 

• Chain (mediation) A → M → B — the effect of A on B flows through 

mediator M. 

Figure 5. Example of a Directed Acyclic Graph (DAG) 
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• Collider (v-structure) A → C ← B — arrows collide at C; conditioning 

on the collider opens, rather than blocks, a path between A and B. 

Recognising forks, chains, and colliders allows us to decide which variables 

to control for and which to leave alone when estimating an Average 

Treatment Effect.  In the chapters that follow, a first draft of the DAG—

usually sketched with domain experts before any code is written—becomes 

the shared blueprint that guides identification strategies, algorithm choice, and 

ultimately the credibility of the causal claims. 

2.4 HOW CAUSAL STRUCTURES PROVIDE INSIGHT: 

Having drawn a tentative DAG, the next question is how to read an effect off 

that graph.  Three classic routes appear again and again in practice: 

Tactic Intuition Practical clues 
Back-door 
adjustment 

Find a set Z that blocks every 
path running backwards from 
treatment T to outcome 
Y.  Condition on Z and the 
remaining association equals the 
causal effect. 

In manufacturing, ambient 
temperature or raw-material grade 
often lands in Z; in software, user 
tenure or device class. 

Figure 6. Chain, Fork and Collider structures in DAGs 
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Front-door 
path 

Sometimes no useful Z exists, 
yet a mediator M carries the 
whole effect of T on Y.  If we 
can model T->M and M->Y 
cleanly, we recover the effect 
indirectly. 

Rare but handy: coupon → basket 
size → revenue in e-commerce; 
pressure set-point → sheet 
moisture → defects on a paper 
line. 

Instrumental 
Variable (IV) 

A variable Z nudges T but 
influences Y only through T.  IV 
logic treats Z as Mother Nature’s 
randomiser. 

Batch-to-batch feedstock moisture 
shifts T=“dryer power” but not 
quality directly; hash-based user 
assignment nudges T=“new UI” 
with no appeal to the user. 

 

2.5 LIMITS OF CAUSAL INFERENCE WITH OBSERVATIONAL 

DATA: 

Causal methods promise actionable insight, but only under assumptions that 

are easy to violate—especially when randomized trials are off the table. 

• Selection bias: If treatment and control groups differ systematically (e.g., 

only senior operators use the new recipe; only power-users see the beta 

UI), estimated effects may reflect that imbalance, not the treatment 

itself.  Diagnostics such as sample-ratio-mismatch checks and propensity-

score balance help spot the problem, but cannot always fix it. 

• Unmeasured confounding: Variables that influence both T and Y but 

stay off the data lake (maintenance culture, social influence) open back-

door paths the analyst cannot block.  Sensitivity analyses and instrumental-

variable designs are partial remedies, not panaceas. 

• Measurement error & data quality: Noisy sensors or mis-tagged events 

blur treatment assignment or outcomes, biasing estimates much like 
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unmeasured confounding.  Both case studies include a data-quality audit to 

illustrate the impact. 

• Generalizability: A causal effect estimated on one production line or one 

user segment may not transport to others.  External validity demands 

replication, domain expertise, and sometimes explicit transportability 

analysis—topics noted but not solved in this thesis. 

Recognizing these limits early shapes every step of the framework: which 

variables must be logged, which identification tactic is plausible, and how 

cautiously results should be applied beyond the original study setting. 

2.6 GENERAL APPROACHES TO INFERRING CAUSAL 

RELATIONS WITH OBSERVATIONAL DATA: 

Before any back-door adjustment or instrumental-variable trick can be 

applied, we need at least a working sketch of the underlying DAG.  In 

domains such as papermaking or UI design parts of that sketch come from 

subject-matter intuition—engineers know steam pressure precedes moisture; 

product managers know an onboarding screen precedes retention.  Yet even 

seasoned experts rarely see the whole picture, especially when hundreds of 

sensor channels or user events are in play.  Data-driven structure learning fills 

those gaps by proposing, ranking, and refining candidate graphs that are 

compatible with the observed statistics. 

The task is formidable: with d variables there are super-exponential many 

possible DAGs, and scoring each one exactly is often intractable.  Modern 
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algorithms therefore rely on heuristics that trade mathematical guarantees for 

practical speed and robustness.  Four families have proved particularly useful: 

The four groups of approaches to solutions are:  

Constraint-based methods:  

These algorithms begin with the most inclusive hypothesis—every variable is 

connected to every other—and then delete edges that contradict the 

data.  Deletions are triggered by statistical independence tests: if two variables 

remain independent after we control for a third, there is no direct arrow 

between them.  Repeating this logic across many variable triples whittles the 

dense graph down to a sparse skeleton, after which a set of logical rules 

orients the surviving edges.  The PC and FCI procedures are longstanding 

exemplars.  They work quickly on moderate problem sizes and are transparent 

enough for domain experts to follow, but their accuracy hinges on the 

reliability of the underlying independence tests. 

Score-based methods: 

Score-based methods for causal discovery aim to identify the best causal 

structure of a given system by iteratively generating candidate graphs, 

evaluating how well each one explains the data, and selecting the best one. 

These methods start with an initial graph structure, such as a fully connected or 

empty graph, and then modify the graph by adding, removing, or reversing 

edges. After each modification, the resulting graph is evaluated based on how 

well it explains the observed data, using some criterion or scoring function. 
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Common scoring functions are the Bayesian Information Criterion (BIC), the 

Akaike Information Criterion (AIC), or the Maximum Likelihood Estimation 

(MLE). 

One well-known example of a score-based method for causal discovery is the 

Greedy Equivalence Search GES algorithm.  

The GES algorithm starts with an empty graph and iteratively adds, removes, 

or reverses edges based on a set of conditional independence tests until it arrives 

to a high score where the structure had converged on the best causal structure 

for the system. The score-based approach is a powerful tool for causal 

discovery, but it is resource intensive, meaning that it is computationally 

expensive, and it requires a careful tuning of the scoring function to converge 

to an optimal solution. 

Functional methods: 

Functional methods for causal discovery aim to identify the underlying causal 

relationships between variables by analyzing their functional dependencies. 

This involves estimating the parameters of a statistical model that describes the 

relationship between variables, and then using this model to infer the causal 

structure of the system. Functional approaches also use a score function to 

estimate the goodness of the solution, but the mechanics of functional methods 

are different from score-based methods. Rather than searching through 

candidate graphs to find the best fit to the data, functional methods make use 

of the distributional imbalances present in the data to detect the causal 

connections between variables. 
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The Linear Non-Gaussian Acyclic Model (LiNGAM) algorithm is a classic 

functional method that uses the non-Gaussianity of the data to identify the 

causal structure. LiNGAM exploits the non-Gaussian nature of the data to 

determine the probable causal relationships between variables. More 

specifically, when two variables have a non-Gaussian correlation, it implies a 

potential direct causal connection between them. On the other hand, if two 

variables have a Gaussian correlation, it indicates a possible indirect or 

confounding relationship between them. 

 

Gradient-based methods: 

The newest wave of structure-learning algorithms turns the combinatorial 

search for a DAG into one smooth optimisation problem.  The flagship 

example, NOTEARS (Zheng, Aragam, Ravikumar & Xing), fits edge weights 

while adding a differentiable penalty that forbids cycles; standard gradient-

descent updates then drive the solution toward a sparse, acyclic 

graph.  Because the whole objective is differentiable, GPUs and other deep-

learning tooling can be brought to bear, a feature we exploit in Chapter 4 via 

the CausalNex implementation contributed by QuantumBlack.  Gradient 

methods rarely guarantee the single “best” graph, but they scale gracefully 

and inherit the optimisation tricks that power modern image and language 

models. 

Recent growth in data volume and sensor density has pushed traditional 

discovery algorithms to their computational limits, motivating a new 

generation of large-scale learners that try to short-circuit the combinatorial 

search altogether. 
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How NOTEARS works: 

1. Data and weights: 

Place the data in a matrix X ( n observations × d variables) and initialise a 
weight matrix W ( d × d ), where each entry wij proposes a causal influence 
from variable j to i. 

 

 

 

2. Fit term: 

Compute F(W), the squared error between X and XW, plus an ℓ₁ penalty that 
pushes minor edges toward zero. 

 

3. Acyclicity term:  

Compute: 

 a smooth surrogate that equals zero only when W encodes a cycle-free graph. 

4. Joint objective: 

Minimise L(W) with gradient descent (or Adam).  The fit term drives 
explanatory power; the acyclicity penalty steers the solution away from 
cycles. 

ℎ(𝑊) = 𝑇𝑟𝑒!⨀! − 𝑑	

 

ℎ(𝑊) = 𝑇𝑟𝑒!⨀! − 𝑑	

 

ℎ(𝑊) = 𝑇𝑟𝑒!⨀! − 𝑑	

 

𝐹(𝑊) =
1
2𝑛

∥ 𝑋 − 𝑋𝑊 ∥#$+ 	𝜆 ∥ 𝑊 ∥%	

 

Figure 7. Correlation between shark attacks and ice cream sales𝐹(𝑊) = %
$&
∥

𝑋 − 𝑋𝑊 ∥#$+ 	𝜆 ∥ 𝑊 ∥%	

 

Figure 8. Correlation between shark attacks and ice cream sales 

 

Figure 9. Treatment and Placebo diagramFigure 10. Correlation between shark attacks and 

ice cream sales𝐹(𝑊) = %
$&
∥ 𝑋 − 𝑋𝑊 ∥#$+ 	𝜆 ∥

𝑊 ∥%	

𝑋 ∈ 	ℝ&×(	
W	∈ 	ℝ(×(	
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5. Outcome: 

The optimiser returns a sparse, directed graph compatible with the data and 
free of cycles.  In Chapter 4 we use the QuantumBlack CausalNex 
implementation of NOTEARS to learn the manufacturing case study’s 
structure. 

 

New large-scale learners: 

These methods harness deep-learning architectures—most often 

transformers—pre-trained on vast libraries of synthetic causal graphs.  Once 

trained, the network can propose an entire diagram in a single forward pass, a 

strategy known as amortised discovery.  Early studies show promising 

accuracy on problems with thousands of variables or on fast-streaming 

telemetry, suggesting a route around the memory and run-time walls that stop 

classical algorithms.  The catch is cost: pre-training demands heavy compute, 

and the tooling is still research-grade, so for the moment these models remain 

“promising but experimental” rather than part of the everyday analyst’s kit. 

  

 

𝐿)(𝑊, 𝛼) = 𝐹(𝑊) +
𝜌
2
|ℎ(𝑊)|$ + 𝛼ℎ(𝑊)	
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CHAPTER 3. GENERAL FRAMEWORK FOR CAUSAL 

INFERENCE WITH MACHINE LEARNING 

This chapter distills a portable playbook for causal inference that can be 

reused in any data-rich environment—whether the “product” is a roll of tissue 

paper or a mobile-app screen. Rather than prescribing a domain-specific 

recipe, we draw on both the academic literature and field practice to outline 

the essential steps, checkpoints, and design choices that let analysts turn 

observational data into credible what-if answers. Manufacturing and software 

will serve as running examples, but only to illustrate how the same logic 

tree—hypothesis → DAG → identification → estimation → validation—

travels across contexts.  

The resulting framework is intentionally modular: it can plug into different 

algorithms, data volumes, and organizational constraints while still enforcing 

the causal reasoning needed to separate actionable levers from spurious 

correlations. 

3.1 HIGH-IMPACT APPLICATION AREAS ACROSS DOMAINS: 

Whenever organizations ask “what will happen if we pull this lever?” yet 

cannot—or will not—run a clean experiment, causal inference becomes the 

decisive lens.  In practice, the same four kinds of questions appear again and 

again, whether the backdrop is a kilometer-long production line or a cloud-

hosted mobile service. 
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 Causal inference pays off whenever a team must decide which lever to pull 

and how hard to pull it—rather than just describing patterns.  The specifics of 

the lever vary by industry, but three ingredients reappear everywhere: 

Ingredient Why it matters 
Intervention-
ready levers 

A knob you can actually turn (e.g., spindle speed, 
paywall copy, ad budget). Without a lever, causal 

questions collapse into passive “forecasting.” 
Rich 

observational 
exhaust 

Logs, sensors, or records that capture both when/where 
the lever moved and what else was happening. Depth 

beats width: timestamps, versions, and context fields are 
often more valuable than extra rows. 

A plausible path 
to identification 

Whether via natural experiments, instrumental 
variables, or careful adjustment sets, you need at least 

one assumption you are willing to defend in the 
boardroom—and test in hold-out slices. 

 

Manufacturing: the canonical proving ground: 

On a factory floor a single mistuned servo can choke throughput for hours, yet 

its fingerprints are buried under dozens of coupled feedback loops. Operators 

develop theories — “the night shift always sees more jams”— that are rich in 

anecdotes and poor in counterfactuals. Causal discovery pins those stories to 

data: a spike in vibration amplitude no longer merely co-occurs with scrap; it 

sits on a directed edge that explains how the fault propagates and which 

intervention —slowing a feed rate, retiming a tool change—will break the 

chain. 

Because every extra minute of downtime has an explicit dollar tag, 

manufacturers feel the cost of misdiagnosis immediately. That urgency 
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explains why we use a production line as the running example throughout this 

chapter and return to a concrete case study in Chapter 4. It also foreshadows 

the twin obstacles tackled in 3.2: hidden confounders lurking in exogenous 

inputs (Was today’s batch of raw material subtly different?) and the 

computational chaos that arrives when hundreds of sensors balloon the search 

space of possible graphs. 

SaaS: the same logic behind a softer façade 

Swap conveyor belts for software deployments and the causal puzzle stays 

intact. A product manager rolls out an algorithmic recommendation tweak to 

half the user base. A/B tests are the gold standard, yet network spillovers, 

release embargoes or sheer velocity often make fully controlled trials 

impractical. Here, regression-kink designs at API version thresholds or 

synthetic control cohorts recreate the missing counterfactual. The win is 

measured not in parts-per-million yield but in retention curves and lifetime 

value—but the epistemic game is identical: learn which knob truly moves the 

metric, not which trend line happens to fluctuate in parallel. 

3.2 BUILDING THE CAUSAL STRUCTURE: 

There are several things that one must keep in mind when building any causal 

structure given a set of data. To build a robust and resilient causal structure, a 

two-step approach that tries to minimize the bias and errors in causal structures 

defining any manufacturing process is going to be explained. The first step 

focuses on the reduction of the error introduced by confounding effects. The 

second step focuses on the reduction of the run-time and complexity of the 
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algorithm that oversees building the causal structure. In chapter 4, a real use-

case of this methodology is provided.  

3.2.1THE DANGERS OF CONFOUNDERS: 

Confounders are variables that affect both the cause and the effect variables in 

a study. Since these affects simultaneously both variables, if these are not 

considered, the causal analysis can be greatly biased. Therefore, it is important 

to account for confounders in causal inference to ensure that the causal relations 

extracted from the data are representative of the reality and it is not just a 

relationship caused because there is a hidden confounder that hasn’t been 

considered.  

Together with the shark and ice cream example, there is another example that 

is widely used to explain the confounders effect. This example states the 

following: sleeping wearing shoes is causing people to wake up with a 

headache. 

A statistical analysis was made to find if sleeping wearing shoes was causing 

people to wake up with headaches. When observing just the cause and effect, 

Figure 12. Confounder variable example 
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it seems to be clear that sleeping with shoes causes headache, but the reason 

both variables are related is because there is a common confounder, in this case 

drinking alcohol the previous night. If this confounder is not considered, then 

the inferences obtained conducting causal inference are incorrect. This example 

clearly shows the importance of including all the possible confounders in a 

study when conducting causal inference. 

The way to fight against the negative effect of confounding variables in a 

manufacturing system is to enclose the system by adding all the variables and 

features that affect the system in any possible way. When including all the 

variables in a system, then, all the system confounders are observed, and the 

causal structure includes them in the graph removing the confounding effect.  

Figure 11 explains how by enclosing the system, the causal structure built on 

observational data is more resilient to biases caused by not including 

confounding variables. There is also a possibility that an exogenous variable, 

Figure 13. Enclosed system diagram 
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which is not considered as a variable of the system, may be influencing the 

system in an unobserved manner. For example, imagine you are analyzing a 

factory that oversees manufacturing chairs. You measure the quality of the 

chairs at the end of the process and track how all the machines are working. If 

the quality of the chairs depends solely on how the machines behave, then your 

analysis is fair. But if how the wood was chopped an important factor in making 

a good chair, and you don't consider it in your analysis, then you'll have a biased 

result due to the confounding effect. How the wood was initially chopped is an 

example of an exogenous variable. By paying attention to these exogenous 

confounding variables, you can improve your analysis and reduce errors and 

biases in your results. 

Therefore, before building a causal structure based on observational data, it is 

important to enclose the system subject to study. This means including all the 

system variables and the possible exogenous variables that can have a 

confounding effect in the target variable. This is the first step of the general 

methodology for conducting causal inference on manufacturing processes. 

3.2.2THE COMPLEXITY PROBLEM: 

As this thesis has explained in chapter 2, algorithms that build causal structures 

just relying on observational data are complex algorithms that take some time 

to converge to a solution. The complexity of these algorithms depends on the 

quantity of nodes (variables) that are forming the graph. This is because most 

of the algorithms work by analyzing the relationships between variables one to 

one, so the number of iterations increases exponentially with the number of 

variables. 
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Some manufacturing process need large complex machines to work and the 

amount of sensors that parametrize the system can be really large.  In those 

cases, pre-processing techniques are required to reduce the number of variables. 

Pre-processing and variable reduction is a typical step that must be done in 

almost every data science project, but there are differences in what to consider 

when doing pre-processing for a prediction algorithm and doing it for a causal 

inference algorithm.  

In Chapter Two, the distinction between association and causation in the 

relationship between variables was explained. In the context of predictive 

modeling, association relations are sufficient, which means that grouping 

associated variables during pre-processing does not affect the accuracy of the 

model, even if the variables are not causally related. One example of this 

approach is seen in the application of principal component analysis (PCA) to a 

dataset, where the principal components are formed by combinations of the 

original variables, and their combinations depend on the original associations 

between them. However, it is important to note that this approach is not suitable 

for analyzing causality. In causality it is important to keep the raw variables to 

understand what is really happening. If different variables are combined, the 

causation between those variables will be diluted and the whole purpose of the 

analysis is lost.  

So, to obtain un-biased results, it is important to keep in mind that creating 

artificial variables by combining them can reduce information on causal 

relationships. Normally, the best way to deal with this situation is with the help 

of a Subject Matter Expert (SME), we will explain in the next section (3.3) of 

this chapter how an SME can help to empower causal analysis.  
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After studying convergence times and the complexity of the NoTEARS 

algorithm (which is the one that was used for the case study that will be 

explained in chapter 4), the recommended maximum number of variables to 

include into the analysis is in the order of less than 100. If more than 100 

variables are included, the convergence time breaks and increases 

exponentially.  

3.3 THE IMPORTANCE OF SMES: 

Once the data set is in shape and a discovery algorithm has produced its first 

directed acyclic graph, the real work of interpreting—and correcting—that 

structure begins.  Algorithms that infer causality from pure observation are 

solving problems in the NP family: they can check whether a candidate graph 

fits the conditional independences in polynomial time, yet finding the single 

“true” graph may take longer than the lifetime of the project.  In practice, the 

optimizer lands on a whole Markov equivalence class—many graphs that 

explain the data equally well—so the machine’s answer is, at best, a plausible 

draft. 

Enter the Subject-Matter Expert (SME).  An SME is the engineer who knows 

the thermodynamics of a dryer section by heart, or the product manager who 

has watched thousands of users churn at the same onboarding screen.  Their 

domain intuition turns three crude steps into a disciplined review loop. 

Figure 14. SME icon 
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Firstly, they can help with the selection of variables and the data pre-

processing. As it was explained in last section, cleaning the dataset, and 

reducing the amount of variables is a complex task that needs precision and 

knowledge of how the system subject to study works. The SME can help with 

the selection of important variables and cleaning the independent variables that 

do not affect the system. It is important the data scientist and the SME work 

collaboratively, as the data scientist can clean and prune a dataset without 

losing information, the SME can help and guide the decisions with his 

knowledge of the system. 

It is important to note that the data cleaning and pre-processing phase is 

common to almost all the use cases, but when the number of variables surpass 

the hundredths then it becomes a risky phase because eliminating important 

information can affect the whole causal structure.  

Secondly, the SME can also guide the causal structure algorithm to converge 

to optimal solutions. This is done by providing constrains to the algorithm, 

therefore decreasing the number of possible solutions and reducing the number 

of operations (algorithm converges faster). The SME can add constrains to the 

causal structures in three different ways:  

• Adding a causal relation: The SME can force a relation to appear in 

the causal structure. Maybe, it is the case that it is known for sure that 

the behavior of a variable directly causes the behavior of another 

variable.  



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN 
 

CHAPTER 3. GENERAL FRAMEWORK FOR CAUSAL INFERENCE WITH MACHINE LEARNING 

29 

(E.g., Variable X1 is causing variable X2) 

 

• Removing a causal relation: The SME can also remove causal 

relations in the causal structure. It can be known that a variable is 

certainly not causing other variables to behave differently. 

(E.g., Variable X1 is not causing variable X2) 

 

• Changing causal directions: The last action an SME can force into a 

causal structure is to change the direction of causation between two 

variables. This action is helpful when correcting the problems with 

Markov equivalent classes. Sometimes, if the NoTEARS algorithm is 

used to build the causal structure, it can happen that some of the 

directions are wrongly encoded. It is not frequent because there are not 

too many combinations to a possible solution that ensures the DAG 

property and has equivalent Markov classes. The SME can identify 

some relations that do not make sense and rearrange the direction. 

Figure 15. Adding a causal relation between X1 and X2 

Figure 16. Removing the causal relation between X1 and X2 
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(E.g., Variable X1 is not causing variable X2, it is the other way around) 

 

3.4 STEP BY STEP METHODOLOGY: 

In this section (3.4) the thesis is going to explain the overall methodology and 

the different steps that must be followed to ensure the development of a correct 

and unbiased causal structure when studying a manufacturing system.  

• Step 1 – Comprehensive data collection:  

Begin by inventorying every process variable, sensor reading, log field, and 

contextual attribute that could act as a cause, an outcome, or a 

confounder.  Use structured elicitation sessions with subject-matter experts 

(SMEs) to surface latent drivers and plausible proxies and record the temporal 

resolution and known gaps of each source.  The objective is coverage: a 

causal claim can only be as complete as the variables observed. 

• Step 2 – Targeted data curation: 

Reduce dimensionality without erasing causal signal.  Merge exact duplicates, 

impute missing values only when the mechanism behind the gaps is 

understood, and flag features with near-zero variance or obvious data 

leakage.  When the candidate list approaches or exceeds roughly one hundred 

Figure 17. Changing the direction of the causal relation 
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variables, switch from automated filters to SME-guided pruning to avoid 

discarding critical confounders.  As a rule of thumb, a structure-learning 

algorithm benefits from at least three thousand high-quality observations, but 

sample quality outweighs raw count. 

 

• Step 3 – Initial structure learning:  

Choose a score- or constraint-based discovery method—NoTEARS and GES 

are common choices—and run it with a reproducible random seed.  Persist the 

resulting adjacency matrix and produce an initial visual rendering of the 

directed acyclic graph (DAG).  At this point the graph represents a 

statistically plausible explanation of the observed conditional independences, 

but it is unlikely to be mechanistically perfect. 

• Step 4 – Export-driven graph refinement:  

Invite SMEs to scrutinize the draft DAG.  They may (i) force an arrow to 

exist, (ii) forbid an arrow, or (iii) reverse an implausible direction.  Encode 

these domain constraints in the learning algorithm and re-estimate the 

structure.  Iterate between estimation and review until the graph stabilizes and 

passes face-validity checks; each loop narrows the search space and 

accelerates convergence. 
 

• Step 5 – Identification and estimation of target effects: 

With a credible structure in hand, formalize the estimand—average treatment 

effect, conditional effect, mediation path, and so forth—using do-calculus or 
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back-door/front-door criteria.  Select an estimator consistent with the 

identification strategy (for example, doubly-robust learners, targeted 

maximum likelihood, or Bayesian structural models).  Subject every estimate 

to robustness diagnostics such as placebo tests, sensitivity analysis for 

unobserved confounding, and refutation by synthetic interventions. 

• Step 6 – Identification and estimation of target effects: 

Translate technical findings into decision-ready insight.  Provide an 

interactive view of the final DAG, overlay key effect sizes and confidence 

intervals, and supply a concise narrative linking proposed interventions to 

expected shifts in business or process KPIs.  Document residual uncertainties 

and the assumptions on which identification rests, thereby satisfying both 

managerial stakeholders and audit requirements. 
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CHAPTER 4. MANUFACTURING USE CASE – TISSUE 

MACHINE 

Chapter 3 presented a general methodology for developing causal inference 

analysis. In this chapter, we will explore how this methodology was 

implemented in a real-life manufacturing project. Firstly, the context of the 

project will be established, giving an overview of its purpose and objectives. 

Then, we will detail the steps taken to apply the methodology, providing a 

comprehensive description of the process. Finally, the results obtained from the 

application of the methodology will be presented, providing an evaluation of 

the project's success. Overall, this chapter serves to provide an in-depth analysis 

of the practical application of the methodology presented in chapter 3 and its 

effectiveness in achieving project objectives. 

4.1 GENERAL CONTEXT: 

A tissue paper manufacturer wanted to develop several projects to improve 

their production of roll paper. The manufacturer had a problem because there 

were times during the production phase that the roll paper broke, delaying 

production and increasing scrap. The initial project consisted of developing a 

predictive model to make predictions on when the roll paper was going to break 

5 minutes before the break occurred. In addition to that, a causal prescriptive 

model was going to be developed to help understand the client which variables 
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were causing the breaks to occur and help the workers achieve a better 

understanding of the whole system.  

The roll paper machines are around 80 meters long, and the production is 

separated in many different phases. The first step is the creation of paper paste. 

This is done by processing wood pulp and refining it with different additives. 

Once the pulp is refined, it is sent to the tissue machine. The tissue machine 

oversees converting the paper paste to actual roll papers. This is the part that 

was analyzed during the project. The tissue machine is formed with several 

parts.  

• The headbox, initial step where the pulp is formed into a paper sheet. 

• The press section, it finishes the job of the headbox and completely 

press the pulp into a sheet. It squeezes out water and compresses the 

fibers together.  

• The dryer section is where the paper is dried out and the rest of the 

water is taken out of the paper. The paper is dried up in big rotating 

cylinders inside the Yankee. In the Yankee dryer, the steam-heated 

surface of the cylinder dries the sheet as it rotates. The Yankee dryer 

can be several meters in diameter and is designed to produce a high-

quality, uniform finish on the paper sheet. 

• The next step is the creping process. In the creping process, the dried 

paper sheet is scraped off the Yankee dryer with a sharp blade or 

creping blade, which causes the fibers in the paper sheet to loosen and 

stretch. This process creates the unique soft, fluffy texture and stretchy 

properties that are characteristic of tissue products. 
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• Finally, the paper is rolled in big reels preparing for the final step 

which consist of cutting and forming the rolling paper. 

 

 

All these steps inside the tissue machine were sensorized and the process was 

parametrized from start to finish. Records of sensor data were taken each 5 

seconds. From time to time, the process failed and the paper that was getting 

rolled in the big reels broke before arriving to an optimal length. When this 

occurred, the process had to be stopped and the paper rolled up to that moment 

had to be recycled and reprocess again, so breaks caused high costs to the client.   

Machine operators were in charge of labeling when the breaks occurred. With 

the timestamps provided by the machine’s operators and all the data retrieved 

from sensors, the idea was to create a predictive and prescriptive model to help 

the client optimize the manufacturing process. To support the prescriptive 

model, a causal structure map was provided to explain which variables were 

causing the process to break. Some of the production conditions could be 

Figure 16. Tissue paper machine diagram 
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modified by machine operators so the causal map would provide insights on 

how to tweak them to reduce the number of breaks. 

4.2 DATA PREPARATION: 

Since the tissue machine is a large complex machine with streaming data from 

instrumentation, the available data to construct the causal model consisted in 

more than 1100 entries recorded from different sensors. In some way, these are 

good news because it is ensured that most of the variables affecting the system 

are tracked. This helps to solve the problem of confounder bias in causal 

structures. But there was a problem to solve because building a causal map with 

that many data entrances is not possible due to the complexity of the algorithms 

that infer causal structures on observational data. As the thesis explained on 

chapter 3, the first step when building the causal structure is to get all the 

available data, and the second step is pruning and rearranging the data so it can 

be adapted for the algorithms. In this case, step 1 was easily completed since 

the manufacturing plant was greatly monitored. Step 2 was harder to complete 

since the number of variables had to be reduced from around 1000 to a list of 

around 100.  

The approach that was followed was first to reduce redundant data by merging 

into one variable correlated measures of different sensors that measured the 

same phase of production. Also, by carrying out uni-variate analysis, data that 

has no variance was removed because it provided little insight. Then, with the 

help of the SME, other variables were discarded since they were not important 

and did not provide additional information. 
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After carefully merging variables and working on feature engineering, a set of 

80 variables with one binary target variable indicating if a break occurred was 

provided to build the causal structure. 

One of the variables, indicated the type of tissue paper that was being built 

during the time the sensors were collecting data. It was a categorical variable. 

In total, 12 different types of paper were being built, each one with significantly 

different characteristics and hence, different causal structures. The decision to 

split the data in 12 different datasets was made, one for each grade (type of 

tissue paper). In total, 12 different causal structures had to be built.  

4.3 STRUCTURE TRAINING: 

Having the 12 different datasets prepared, the next step was building the 

structures and iterating with the SMEs to obtain a reasonable optimal solution. 

With the first iteration, we realized that the causal weights pointing to the break 

variable were not high enough. We expected to obtain high causal weights 

pointing to the break variable, but that was not the case. We realized that the 

break variable in the dataset was not optimally tagged.  

Break variable was set to 0 when the process was running correctly, and it was 

set to 1 five minutes before each break occurred. NoTEARS algorithm works 

better with continuous data, so having a binary target variable was limiting the 

algorithm to perform well. The problem was solved by making the break 

variable to increase in small steps from 0 (five minutes before break) to 1 (when 

the break occurred). The results obtained with this modification were 

significantly better.  
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There were several iterations over the causal structures adding and deleting 

causal relations. The results obtained consisted of a bundle of various DAGs, 

the biggest one contained the break variable. This means that there were other 

causal structures independent of break causing. Those structures were not 

considered for the project. Some of the causation weight between variables 

were small, so to clean the causal graph from spurious relations we decided to 

apply a threshold on causal weight.  

Once the SMEs were in agreement with the obtained results, a custom 

visualization was created where the relations were shown in a clear manner.  

4.4 VISUALIZATION: 

It was decided that there were two graphs that could show the insights extracted 

from the causal maps. The first one was directly to show the resulting causal 

graph with the different connections and causal relations. The second one was 

conducting a Pareto analysis and showing the top variables that were causing 

the break to occur in each grade.  

4.4.1 CAUSAL MAPS: 

The causal map visualization consisted of making an easy to understand and 

clean representation of the DAGs. To do so, a color code was used to separate 

the variables in the different stages of production. Also, the thickness of the 

arrows showing the causal direction was dependent on the causal weight. The 

thicker the arrow, the bigger the causal weight. Finally, if a variable was 

causing the break (directly or indirectly), the edges and arrows coming out from 
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that node were painted in blue. This representation was done for each of the 12 

different causal graphs we obtained. Here is an example of one of them: 

As Figure 17 shows, there are nodes with different colors, each one 

representing the different stages of production. The white variables are general 

variables or variables that didn’t belong to a specific stage. Also, it can be 

observed how the arrows change in size depending on the strength of the causal 

relation. The most important ones were pointing directly to the variable break 

(target variable).  

Thanks to this visualization, SMEs and manufacturers could gain deep insights 

on how the system really worked and the variables that were affecting the 

misbehavior of the manufacturing line. This visualization also serves as a 

Figure 17. Causal graph showing relations of the tissue making process. 
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starting point for looking into modifying some of the flexible parameters in the 

production line to increase the productivity of the system and reduce the break 

occurrence.  

4.4.2 PARETO ANALYSIS: 

The pareto analysis visualization served as a summary of graph visualization. 

This visualization compiles the 20 variables that were causing the biggest 

impact in break occurrence for each type of tissue paper and for all the tissue 

papers in common. 

It showed a bar plot of the causal weights towards the target variable, a line plot 

with the causal weight accumulation. Also, a color code was added to differ 

between variables that were common across all the different types of papers 

(dark blue) and the specific variables for each type (light blue).  

Figure 18. Pareto analysis visualization 
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CHAPTER 5. SOFTWARE USE CASE – INTELLIGENT 

DOCUMENT-AUTOMATION SAAS 

Chapter 3 laid out a domain-agnostic workflow for causal inference, and 

Chapter 4 demonstrated its viability on a sensor-rich manufacturing line.  This 

chapter shifts the spotlight to a purely digital setting—an intelligent 

document-automation SaaS—to test how well the same framework travels 

when the “production process” is a stream of user events rather than rolls of 

paper.  We begin by situating the product and business questions that 

motivate the analysis, then trace each step of the workflow as it is adapted to 

click-stream data, latency logs, and CRM attributes.  The chapter concludes 

with a quantitative assessment of the causal effects identified and a discussion 

of their practical implications for product strategy. 

5.1 GENERAL CONTEXT: 

The second empirical study transports the framework from the noisy, sensor-

laden floor of a tissue machine to the asynchronous, event-driven world of a 

cloud application.  The focal product is a Software-as-a-Service platform for 

intelligent document automation.  Customers upload PDFs that the system (i) 

parses to extract structured metadata, (ii) offers automatic redaction and first-

draft generation, and (iii) exposes through a conversational interface that 

answers questions against both internal and external knowledge bases. 
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Management plans to launch a new “context-aware drafting assistant” that 

surfaces clause suggestions in real time.  Before committing engineering 

resources, the product team needs credible answers to three causal questions: 

1. Adoption: Will enabling the assistant to increase the proportion of 

drafts generated per session? 

2. Retention: Does initial exposure to the assistant raise seven-day active 

usage? 

3. Latency–Satisfaction Trade-off: Does the additional inference time 

incurred by the assistant erode user satisfaction scores, and if so by how 

much? 

Randomized rollout is feasible for a subset of users, yet heavy enterprise 

customers decline to be “guinea pigs,” arguing that productivity stakes are too 

high.  As a result, the experiment would cover only 30 % of traffic—

insufficient for precise measurement in the enterprise tier where revenue 

concentrates.  Observational methods, fortified by the causal workflow 

developed in Chapter 3, therefore become essential. 

5.2 DATA PREPARATION: 

The construction of a causal graph starts with a data foundation that is both 

complete and chronologically coherent.  We first captured every event 

emitted during a user session—page views, API calls that launch extraction or 

redaction jobs, millisecond latency stamps, and granular click actions inside 

the drafting pane.  A five-point satisfaction survey closes each session and 

will later serve as one of the main outcomes. 
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Raw behavior, however, rarely tells the full causal story.  Adoption of the new 

drafting assistant can be tangled with who the customer is, how complex their 

documents are, or even when they work.  To surface those latent influences, 

we enriched the session stream with log- and CRM-derived covariates: 

customer segment, billing tier, a document-complexity index, and broad time-

of-day buckets.  Each of these factors plausibly drives both treatment 

exposure (assistant on/off) and outcomes (latency, satisfaction), making their 

presence in the DAG essential for blocking back-door paths. 

Cleaning followed three quick passes.  We removed duplicate sessions 

created by retry loops, aligned all timestamps so that every putative cause 

strictly precedes its effect, and, with SME guidance, pruned deprecated or 

collinear metrics that add noise but no causal leverage.  The resulting 

analytical frame—a tidy 92 variables covering 4 800 sessions over six pre-

launch weeks—supplies a balanced mix of user actions, system performance 

metrics, and contextual covariates.  It is small enough for rapid structure 

learning yet rich enough to capture the principal confounding channels the 

causal workflow must disentangle. 

5.3 STRUCTURE TRAINING: 

In line with the protocol from Chapter 3, we began by running NoTEARS on 

the curated 92-variable data set to obtain an unconstrained draft DAG.  Three 

successive review rounds with product and infrastructure SMEs then 

followed: 
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1. Edge validation: Any arrow that violated basic system logic was 

removed. For example, survey scores recorded after a session were 

barred from influencing real-time latency metrics. 

2. Mandatory relations: Arrows representing physical or business 

necessities were enforced—e.g., “document page count → extraction 

duration.” 

3. Direction flips: Ambiguous pairs (such as “manual edits” and “draft 

adoption”) were resolved by SME judgment, shrinking the Markov 

equivalence class. 

Each iteration re-trained the graph under the new constraint set, trimming 

implausible paths and speeding convergence.  The final model stabilized at 87 

directed edges and improved penalized log-likelihood by ≈ 14 % over the 

unconstrained baseline—evidence that domain knowledge both simplified the 

search space and raised statistical fit. 

5.4 VISUALIZATION: 

Figure 18 displays the final, SME-validated causal graph: 22 variables 

connected by 87 directed edges.  Reaching this point—rather than the 

numerical estimates themselves—was the core objective of the exercise.  The 

repeated loop of draft-DAG → SME review → constraint update forced the 

team to articulate assumptions, surface missing data sources, and converge on 

a shared mental model of how the service actually works.  Even if that model 

is still incomplete, the discipline of drawing and debating each arrow already 

adds operational value. 
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Using the graph as an identification scaffold, we estimated three effects of 

enabling the context-aware assistant: 

• uplift in draft adoption ≈ + 8 pp (± 1.7) 

• uplift in seven-day retention ≈ + 4 pp (± 1.2) 

• satisfaction penalty per extra 250 ms latency ≈ – 0.05 (± 0.02) 

These numbers should be read with caution.  The DAG cannot rule out 

influences from unmeasured factors—e.g., network congestion at client sites 

or undisclosed document encryption methods—that could bias both latency 

and satisfaction.  Sensitivity analyses suggest the qualitative conclusions are 

robust to moderate hidden confounding, yet large, coordinated shocks could 

still tilt the estimates. 

Figure 18. Saas use-case DAG 
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What the structure unquestionably delivers is clarity of discussion.  The graph 

makes it explicit that: 

• Customer segment affects assistant adoption through multiple 

channels—document complexity, infrastructure quality, and baseline 

engagement—not through a single “segment” coefficient. 

• Latency emerges as a central hub, mediating the path from assistant 

enablement to user sentiment; any optimization effort aimed at 

satisfaction must therefore address performance, not just interface 

design. 

• Manual-editing time partly mediates adoption gains, indicating that 

product teams should track editing metrics during future rollouts. 

Because these relationships are visible—not buried in weights of a black-box 

model—the engineering, product, and compliance teams can challenge, 

refine, or accept them in light of domain knowledge and new evidence.  The 

numerical effects may evolve as more variables are instrumented, but the 

practice of causal-structure building—iterative, constraint-aware, SME-in-

the-loop—provides a durable framework for decision-making in a high-

dimensional environment. 
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CHAPTER 6. CONCLUSIONS 

Causal inference is not the only route to interpretability—simple linear or 

generalized-linear models have long delivered transparent coefficients that 

domain experts can translate into cause-and-effect stories.  However, as soon 

as the system under study becomes high-dimensional, nonlinear, or riddled 

with feedback loops, those classical tools reach their limits.  In such 

settings—modern production lines with hundreds of sensors, cloud 

applications instrumented by dozens of latency and engagement metrics—

causal-graph techniques offer a principled way to keep both the multivariable 

complexity and a clear narrative of “what drives what.” 

The practice remains demanding.  Data coverage must be near-exhaustive, 

iterative SME reviews are indispensable, and graph discovery is 

computationally expensive.  The gains, moreover, may appear incremental 

relative to the effort involved.  Yet these methods shine when three conditions 

hold: 

1. Complex driver set: many interacting variables whose relationships 

are opaque to purely human reasoning. 

2. Need for traceable logic: regulated or safety-critical environments 

where decision audits are mandatory. 

3. Long-term lever pulling: interventions repeated daily or embedded in 

automation loops, so even small effect estimates compound. 
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While today’s algorithms still wrestle with NP-hard search spaces, the 

toolchain is improving rapidly—witness recent releases of NOTEARS-RL, 

Invariant Risk Minimization variants, and Microsoft’s DoWhy.  Crucially, the 

framework laid out in Chapter 3 does not hinge on any single algorithm.  Its 

backbone—hypothesis → DAG → identification → estimation → 

validation—remains applicable as compute budgets grow and new estimators 

emerge. 

Therefore, the thesis focuses on causal methods not because other explainable 

models are obsolete, but because for complex, multivariate systems they 

extend the reach of explainability without surrendering rigor.  They are an 

evolving, resource-intensive toolkit—yet one well worth mastering when the 

stakes demand both insight and accountability. 
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ANNEX I: ALIGNMENT OF THE PROJECT 

WITH THE SDGS 

This project, with the aim of increasing the efficiency and productivity of 
manufacturing and software can contribute significantly to the development of 
Sustainable Development Goals (SDGs), particularly Goals 8, 9, and 12. 
 

• Goal 8: Decent Work and Economic Growth 
 
Causal analysis provides the evidence base for 
interventions that raise efficiency and productivity in 
both physical plants and digital product teams. When 
a manufacturing study pinpoints which process levers 
truly lower scrap—or a software study shows how a 
new deployment workflow cuts mean-time-to-
release—those verified improvements translate into 
cost savings that firms can reinvest in 
people.  Expanded capacity and healthier margins give organisations room to 
hire, upskill, and retain workers, thereby increasing full and productive 
employment while advancing overall economic growth.  In short, by isolating 
the genuine “drivers of efficiency,” causal studies help convert technical gains 
into the broader social benefits envisioned by Goal 8. 
  
 

• Goal 9: Industry, Innovation, and Infrastructure 
 

Causal-inference projects that disentangle which 
process changes truly raise throughput or cut energy 
use supply the hard evidence needed to scale resilient, 
low-impact infrastructure. In manufacturing, a 
validated causal graph might reveal that moderating 
kiln temperature—not simply adding insulation—
drives the largest drop in carbon intensity. In software 
operations, it could show that edge caching, rather than 
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additional servers, delivers the biggest latency reduction per watt. By 
pinpointing the levers that matter, these studies steer capital toward 
innovations that both boost productivity and shrink the resource footprint. The 
result is industrial growth that is not only faster but also cleaner and 
sturdier—precisely the trajectory envisioned in Goal 9. 
. 
 

• Goal 12: Responsible Consumption and Production 
 
Goal 12 aims to ensure sustainable consumption and 
production patterns. Manufacturing processes often 
have significant environmental impacts due to energy 
consumption, waste generation, and resource 
depletion. By increasing efficiency, the project can 
reduce the environmental footprint of manufacturing 
activities. It can optimize material usage, minimize 
waste generation, and implement recycling and reuse 
practices. By promoting sustainable manufacturing practices, the project 
contributes to responsible production, supports sustainable supply chains, and 
encourages the efficient use of resources.  
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