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Abstract: Battery Energy Storage Systems (BESS) (1) are emerging as a cornerstone of modern power sys-8 
tems, particularly in markets with high renewable penetration and extreme price volatility. In the Electric 9 
Reliability Council of Texas (ERCOT) (2), the absence of a capacity market, limited interconnection, and rapid 10 
growth of solar and wind capacity have created both challenges for reliability and opportunities for storage. 11 
This study develops and applies a techno-economic model (3) to evaluate the feasibility of utility-scale BESS 12 
across ERCOT’s 17,000+ pricing nodes. The model integrates SQL-based nodal price datasets, a VBA-Python 13 
dispatch algorithm, and a project finance layer incorporating degradation dynamics, efficiency losses, capital 14 
and operating expenditures, tax incentives, and financing structures. 15 

Results from two representative nodes, Pamplona in the Houston Hub and Santa Monica in the North Hub, 16 
illustrate how locational differences drive divergent investment outcomes. Pamplona achieved higher arbi-17 
trage revenues and stronger IRRs due to greater volatility, while Santa Monica underperformed despite fa-18 
vorable solar pricing, emphasizing the necessity of nodal-level analysis. System-wide benchmarking con-19 
firmed West ERCOT as the most profitable hub, though constrained by curtailment and congestion, whereas 20 
North and South hubs offer stability and lower risk over profitability. Sensitivity testing revealed that dispatch 21 
strategy and capital costs dominate financial viability, with an idealized Day-Ahead/Real-Time strategy tri-22 
pling shareholder IRR and optimistic CAPEX scenarios lifting returns above 15%. 23 

Beyond academic insights, the model has provided Solea Power Corp. with a cost-effective screening tool to 24 
prioritize nodes before committing resources to costly interconnection studies. By combining technical real-25 
ism with practical usability, this model supports both investors and developers in navigating ERCOT’s rapidly 26 
evolving storage market. 27 

Keywords: BESS; ERCOT; Techno-economic model 28 
 29 

1. Introduction 30 

1.1 Background and Context 31 

The Electric Reliability Council of Texas (ERCOT) operates the power grid for over 26 million 32 
customers, accounting for nearly 90% of the state’s electricity demand [1]. As an independent 33 
system operator (ISO), ERCOT runs a unique energy-only market, where generators are compen-34 
sated solely for the electricity they sell rather than for maintaining reserve capacity. This design 35 
amplifies reliance on price signals to balance supply and demand, making ERCOT especially prone 36 
to volatility during stress events, like extreme weather events, with increasing occurrence these 37 
recent decades due to factors such as climate change [1]. 38 
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Figure 1. ERCOT fuel mix in 2025, highlighting the growing role of BESS 40 

Over the past decade, renewable deployment has expanded rapidly. By early 2025, installed 41 
wind capacity had surpassed 40 GW, while solar exceeded 30 GW [2]. At the same time, utility-42 
scale battery energy storage systems (BESS) have scaled quickly, with more than 13GW already 43 
integrated into the ERCOT system [1]. These developments have deepened intraday price spreads 44 
in both the Day-Ahead Market (DAM) and the Real-Time Market (RTM), where the system has 45 
seen exponentially driven prices spikes occurrences above $100/MWh [3]. 46 

 47 

Figure 2. Hourly price spikes in the Houston Hub (2019–2022), showing volatility extremes 48 

ERCOT’s short term market design, which will the focus of BESS dispatch processes for this 49 
study, relies on three co-optimized mechanisms: DAM, RTM, and ancillary services. The DAM pro-50 
vides day-ahead schedules and price certainty, while the RTM settles deviations in 5-minute in-51 
tervals, reflecting short-term variability in demand, renewable output, or outages. Ancillary ser-52 
vices, including regulation up and down, reserves, and the 2023 Contingency Reserve Service 53 
(ECRS), the latter known to have increased recent BESS revenues significantly in the past year, are 54 
increasingly supplied by BESS due to their rapid response [3]. Because ERCOT lacks interconnec-55 
tion with other U.S. grids, imbalances must be managed internally, further heightening market 56 
volatility and arbitrage potential for BESS operators. 57 

Against this backdrop, BESS have emerged as critical assets to ERCOT. They can store energy 58 
during low-price periods and discharge during peaks, provide frequency regulation, and mitigate 59 
renewable curtailment when co-located with solar or wind plants [6]. As renewable penetration 60 
grows, these capabilities position BESS as indispensable tools for both grid stability and project 61 
profitability in the next decade. 62 
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Figure 3. ERCOT’s BESS interconnection queue by location and capacity (ERCOT, 2024) 64 

1.2 Motivation 65 

The economic case for battery storage in ERCOT has strengthened significantly in recent 66 
years. With ancillary services markets approaching saturation, energy arbitrage has become the 67 
primary revenue source for BESS projects. At the same time, the increasing penetration of renew-68 
ables continues to amplify intraday volatility, reinforcing the value of flexible storage assets capa-69 
ble of shifting energy from low-price to high-price periods. 70 

For developers, quantifying nodal profitability is essential. ERCOT’s 17,000+ nodes exhibit 71 
substantial variability in price spreads, curtailment exposure, and grid infrastructure, meaning 72 
hub-level averages alone are insufficient for investment decisions. A robust techno-economic 73 
model can therefore provide actionable insights by identifying the most attractive nodes for BESS 74 
deployment, while also clarifying the trade-offs between standalone and co-located projects. 75 

Beyond direct profitability, BESS deployment supports ERCOT’s operational resilience. By re-76 
ducing curtailment of renewable energy, alleviating price spikes during stress events, and contrib-77 
uting to ancillary services provision, storage systems enhance overall grid reliability, something 78 
which is much needed in ERCOT, according to ERCOT itself. This dual role, economic opportunity 79 
for developers and systemic reliability for ERCOT, underpins the motivation for this research. 80 

On another note, the work also reflects an industrial need: enabling developers such as Solea 81 
Power Corp. to expand from a solar-focused portfolio into storage. By integrating techno-eco-82 
nomic modeling of BESS into project evaluation, firms can diversify revenue streams and 83 
strengthen their positioning in an increasingly storage-driven market. 84 

1.3 Project Objectives 85 

This study aims to develop a techno-economic model to evaluate the feasibility of utility-86 
scale 2-hour lithium-ion BESS in ERCOT. The model is designed to operate at nodal resolution, 87 
leveraging Day-Ahead Market (DAM) price data from March 2021 to September 2024. By simulat-88 
ing the dispatch of a 2-hour, 100 MW/200 MWh battery, the model integrates both technical and 89 
financial dimensions, including degradation dynamics, round-trip efficiency, HVAC auxiliary loads, 90 
CAPEX, OPEX, tax incentives, and debt-equity structures. 91 

The objectives of this research are fivefold: 92 
 Optimize dispatch strategies: Identify charge and discharge schedules that maxim-93 

ize profitability under DAM conditions, while also testing an idealized DAM–RT 94 
strategy to illustrate the potential upside of predictive algorithms. 95 

 Deliver a scalable nodal model: Provide a flexible framework capable of assessing 96 
BESS revenues across ERCOT’s 17,000+ nodes, highlighting location-specific oppor-97 
tunities and risks. 98 

 Assess lithium-ion viability: Benchmark the performance of 1-, 2-, and 4-hour bat-99 
tery configurations, focusing on 2-hour systems as representative of ERCOT’s cur-100 
rent deployment. 101 

 Evaluate sensitivity to volatility: Quantify the financial implications of intraday 102 
price variability, testing how spreads and forecasting uncertainty impact long-term 103 
outcomes. 104 
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 Support renewable integration: Examine how co-located BESS can mitigate solar 105 
curtailment and enhance ERCOT’s system reliability by shifting excess renewable 106 
output into peak periods. 107 

Taken together, these objectives provide a structured framework for developers and inves-108 
tors, ensuring that nodal differences, technical performance, and financial feasibility are jointly 109 
considered in decision-making. 110 

2. State of the Art 111 

2.1 ERCOT Market Operations 112 

The Electric Reliability Council of Texas (ERCOT) operates independently from the Eastern 113 
and Western interconnections, making it a self-contained electricity market with over 17,000 pric-114 
ing nodes. Prices are set through locational marginal pricing (LMP), which captures real-time sup-115 
ply-demand conditions and congestion at each settlement point. This nodal structure incentivizes 116 
geographically optimized development, as generators and increasingly BESS developers can site 117 
projects where volatility is greatest, to correct part of that volatility through a financially lucrative 118 
project. 119 

Short-term trading in ERCOT is structured around two core markets. The Day-Ahead Market 120 
(DAM) establishes hourly schedules one day in advance, providing hedging value and early visibil-121 
ity into system conditions. The Real-Time Market (RTM), by contrast, settles every five minutes, 122 
reflecting the most immediate supply–demand imbalances. For BESS operators, the DAM offers 123 
predictable arbitrage opportunities, while the RTM provides exposure to extreme spreads that 124 
can reach hundreds of dollars per MWh in a single day. Long-term trading in ERCOT includes the 125 
Congestion Revenue Rights (CRR) Auction and bilateral trades, where financial energy contracts 126 
such as Power Purchase Agreements (PPAs) are negotiated. 127 

 128 

Figure 4. ERCOT market structure across timeframes, including DAM, RTM, and ancillary services [1] 129 

These markets are complemented by the Ancillary Services Market, which ensures opera-130 
tional stability. Services include Regulation Up, Regulation Down, Responsive Reserve, Non-Spin 131 
Reserve, and the Contingency Reserve Service (ECRS), introduced in 2023. BESS participation has 132 
been particularly strong in these fast-response products. In the first half of 2023, ancillary services 133 
accounted for 87% of storage revenues, highlighting their role as an early anchor for the technol-134 
ogy [3]. However, market data suggests this segment is nearing saturation, and long-term viability 135 
will depend more on energy arbitrage. 136 
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Figure 5. BESS revenue breakdown in ERCOT, January–June 2023, showing dominance of ancillary services 138 
[3] 139 

Beyond short-term operations, ERCOT also supports longer-horizon mechanisms such as bi-140 
lateral trading, Congestion Revenue Rights (CRR), and the Reliability Unit Commitment (RUC). 141 
While these play a role in overall system balance, the absence of a centralized capacity market 142 
distinguishes ERCOT from most other U.S. ISOs and places even greater weight on price signals. 143 

Volatility has been reinforced by renewable integration. Wind and solar now account for 144 
more than 40% of ERCOT’s generation mix, creating frequent curtailment and negative pricing 145 
events during oversupply, and sharp evening ramps as solar output fades. Extreme events, such 146 
as the 2021 Uri winter storm, underscored the risks of thermal outages and the value of dispatch-147 
able capacity; wholesale prices reached the $9,000/MWh cap for 77 consecutive hours during the 148 
crisis [4]. 149 

These dynamics make ERCOT one of the most favorable U.S. markets for BESS. Batteries can 150 
absorb energy during negative-priced hours, discharge into evening peaks, and provide rapid sys-151 
tem reserves, turning volatility into revenue while enhancing grid resilience. 152 

2.2 Utility-Scale Battery Energy Storage Technologies 153 

BESS have emerged as a cornerstone of modern grid infrastructure, driven by rapid cost de-154 
clines and performance improvements in electrochemical technologies. Global installations sur-155 
passed expectations in 2024, reaching 205 GWh, a 53% year-on-year increase, of which nearly 156 
98% relied on lithium-ion chemistries [5]. In the United States, growth has been equally striking, 157 
exceeding 30% annually, with ERCOT representing one of the most dynamic markets thanks to its 158 
high share of variable renewables and reliance on price volatility to balance supply and demand. 159 
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Figure 6. Standalone and co-located BESS facilities in the ERCOT market (S&P Global, 2024) 161 

Operating principle and architecture 162 
At their core, BESS operate by storing electricity in electrochemical form during low-price or 163 

low-demand periods and releasing it later when demand or system stress is high. This capability 164 
enables them to smooth renewable variability, provide fast-response ancillary services, and sup-165 
port grid reliability during extreme events. While multiple chemistries have been explored for 166 
utility-scale applications, including lead-acid, sodium-sulfur, and redox-flow systems, lithium-ion 167 
has emerged as the dominant technology due to its superior energy density, declining costs, and 168 
established manufacturing base. 169 

Utility-scale BESS are built as integrated systems combining several subsystems. At the cell 170 
level, thousands of lithium-ion units are assembled into modules, racks, and finally containerized 171 
systems designed for outdoor operation. These are coupled with a Battery Management System 172 
(BMS), which continuously monitors temperature, voltage, and State of Charge (SoC) to ensure 173 
safe operation. The Power Conversion System (PCS) enables bidirectional flows of electricity by 174 
converting the battery’s direct current (DC) to alternating current (AC), typically via an inverter 175 
and step-up transformer. To integrate the asset into grid operations, an Energy Management Sys-176 
tem (EMS) and SCADA platform optimize charging and discharging according to market signals 177 
and technical constraints. 178 

 179 

 180 

Figure 7. Key components of BESS interconnected at the transmission substation level (TESLA, 2025) 181 

Beyond these core elements, several auxiliary subsystems are required for reliable utility-182 
scale operation. Dedicated control rooms host SCADA servers and monitoring platforms, while 183 
metering cabinets ensure compliance with ERCOT’s import/export requirements. High-Voltage 184 
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Customer (HVC) kiosks act as safety interfaces with the grid, isolating the system during mainte-185 
nance or contingencies. Battery containers also house fire suppression systems and environmen-186 
tal controls, with HVAC units playing a particularly important role in hot climates such as West 187 
Texas, where ambient conditions can otherwise accelerate degradation and reduce battery life-188 
time. 189 

Duration classes and applications of Lithium-Ion batteries 190 
Within ERCOT, lithium-ion storage projects are generally categorized by their discharge du-191 

ration, with distinct roles for each class. One-hour batteries remain focused on ancillary service 192 
provision, particularly frequency regulation, where rapid response is critical. Two-hour systems, 193 
the main focus of this study, are increasingly deployed for energy arbitrage, capturing spreads 194 
between midday low-price periods and evening peaks, though they also compete effectively in 195 
ancillary services. Four-hour systems are emerging as solutions for peak shaving and capacity firm-196 
ing, while eight-hour projects remain largely pre-commercial but are attracting interest as poten-197 
tial replacements for mid-merit gas generation. This spectrum of durations reflects not only tech-198 
nical maturity but also the evolving needs of ERCOT’s energy-only market. 199 

 200 

Figure 8. Lithium-ion cell composition [6] 201 

Advantages of lithium-ion systems 202 
Lithium-ion has become the dominant chemistry in utility-scale storage due to a combination 203 

of technical and economic factors. Its high energy density minimizes land use: for example, a 100 204 
MW two-hour BESS may require roughly 5 acres, compared to more than 250 acres for an equiv-205 
alent solar facility, underscoring the compactness and lower environmental footprint of storage. 206 
The modular architecture of containerized units also allows flexible scaling, from tens of mega-207 
watts in distribution-connected projects to several hundred megawatts at transmission-con-208 
nected hubs. 209 

From an operational perspective, lithium-ion BESS respond within milliseconds, making 210 
them well-suited for fast-frequency services and congestion management. Round-trip efficiencies 211 
between 85% and 93% ensure that most of the stored energy can be used and monetized, while 212 
lifetime expectations of 4,000 to 6,000 full equivalent cycles translate into calendar lifespans of 213 
10-15 years under typical conditions. These attributes, coupled with cost declines of nearly 90% 214 
since 2010, have consolidated lithium-ion’s role as the benchmark technology for grid-scale stor-215 
age. 216 

Limitations and challenges 217 
Despite their advantages, lithium-ion batteries face several constraints. Performance de-218 

grades under thermal stress: high temperatures accelerate chemical ageing and risk thermal run-219 
away, while very low temperatures increase internal resistance and raise the likelihood of lithium 220 
plating. Their duration is also limited, typically between one and four hours, which restricts suita-221 
bility for long-duration applications such as seasonal shifting. Material supply chains for lithium, 222 
cobalt, and nickel present further risks, both in terms of cost volatility and ethical sourcing. Safety 223 
concerns remain as well, since most lithium-ion chemistries use flammable electrolytes. Incidents 224 
such as the 2019 Arizona facility fire highlight the importance of robust fire suppression and emer-225 
gency protocols [12]. 226 

 227 
 228 
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Degradation mechanisms and operational parameters 229 
Understanding degradation is critical to assessing both technical and economic perfor-230 

mance. Calendar ageing occurs even when the battery is idle, accelerated by high SoC and ele-231 
vated temperatures, while cycle ageing is driven by repetitive charging and discharging at high 232 
Depth of Discharge (DoD) or high C-rates (charge rates). These processes gradually reduce usable 233 
capacity and efficiency, with annual fade rates typically between 1.8% and 2.5% [7]. 234 

Key operational levers include [7]: 235 
 State of Charge (SoC): Operating between 20-80% mitigates accelerated ageing 236 

compared to consistently high SoC. 237 
 Depth of Discharge (DoD): Shallower cycling extends lifetime; reducing DoD from 238 

100% to 50% can nearly double the number of full cycle equivalents (FCEs). 239 
 Temperature: Maintaining container environments around 20-30°C is essential, 240 

with HVAC systems consuming non-negligible energy in hot climates. 241 
 Round-trip efficiency (RTE): High RTE improves arbitrage economics and Internal 242 

Rate of Return (IRR), though it declines gradually as internal resistance builds. 243 
 State of Health (SoH): A measure of remaining capacity and efficiency relative to 244 

nominal values, with 70-75% commonly used as end-of-life thresholds. 245 
Auxiliary consumption, primarily HVAC loads, further influences net system efficiency and 246 

OPEX, particularly in ERCOT’s hot summers. Nevertheless, modern utility-scale systems achieve 247 
availabilities above 95%, with some approaching 99% thanks to predictive maintenance and ad-248 
vanced monitoring. 249 

 250 
Table 1. Summary of key operational parameters in utility-scale BESS 251 

Parameter Optimal Range Impact on Performance 

State of Charge (SoC) 20–80% (≈50% mid-SoC) Limits accelerated ageing, extends lifetime. 

Depth of Discharge 
(DoD) 

≤70% per cycle 
Lower DoD improves longevity, higher DoD increases throughput but ac-

celerates degradation. 

Temperature 20–30 °C 
Optimal thermal window; deviations cause resistance buildup, plating, or 

accelerated degradation. 
Round-Trip Efficiency 

(RTE) 
85–93% Higher RTE improves economic returns and usable output. 

State of Health (SoH) ≥70–75% Below threshold signals end-of-life; typical fade 1.8–2.5% per year. 
Auxiliary Consump-

tion 
Minimized via efficient 

HVAC 
Excessive loads reduce net efficiency and raise OPEX. 

Availability 
>95% (up to 99% in modern 

systems) 
Ensures revenue stability and investor confidence. 

 252 
Together, these technical characteristics determine the lifetime energy throughput, Lev-253 

elized Cost of Storage (LCOS), and ultimately the financial viability of storage projects in ERCOT. 254 
As shown in the following sections, degradation-aware dispatch and accurate techno-economic 255 
modeling are essential to align technical constraints with market opportunities. 256 

2.3 Economics and Market Viability of BESS in ERCOT 257 

Lithium-ion technology currently dominates the utility-scale storage sector, representing ap-258 
proximately 98% of global deployments. Its position has been secured by a favorable combination 259 
of high energy density, declining costs, and a well-established manufacturing base. According to 260 
the International Energy Agency (IEA), lithium-ion battery pack prices have fallen from nearly 261 
$1,100/kWh in 2010 to below $150/kWh in 2024, a reduction of over 85% [5]. Alternative chem-262 
istries such as sodium-ion, solid-state, flow batteries, and iron-air systems are emerging as com-263 
petitors, offering potential improvements in safety, longevity, or long-duration capabilities. Nev-264 
ertheless, lithium-ion remains the standard for BESS projects due to its proven performance and 265 
mature supply chain. 266 

Ongoing technological innovation is expected to reinforce this dominance while gradually 267 
opening the door to complementary chemistries. Advances in grid-forming inverters, AI-assisted 268 
dispatch optimization, and long-duration energy storage systems (LDES) are likely to expand the 269 
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operational value of storage. In particular, iron-air and liquid-metal batteries, capable of discharg-270 
ing for more than ten hours, could eventually provide alternatives to conventional thermal re-271 
sources in ancillary service markets. For the near term, however, lithium-ion’s versatility in short- 272 
and medium-duration applications ensures its continued market leadership. 273 

The financial viability of BESS projects depends on a balance between capital costs, opera-274 
tional expenses, and the ability to access multiple revenue streams. NREL projections estimate 275 
capital expenditures for utility-scale storage will average around $750,000 per MW by 2027 under 276 
moderate cost assumptions [8]. Figure 6 illustrates cost trajectories across conservative, moder-277 
ate, and advanced scenarios. 278 

 279 

Figure 9. Utility-Scale Battery Storage costs projections based on 3 scenarios: Conservative, moderate, and 280 
advanced. (NREL, 2024) [8] 281 

The ERCOT market structure provides an especially favorable environment for BESS devel-282 
opment. Unlike other U.S. regions, ERCOT operates without a centralized capacity market, instead 283 
relying entirely on nodal energy pricing and ancillary services. This fully deregulated framework 284 
allows storage operators to monetize volatility directly, capturing spreads between the Day-285 
Ahead and Real-Time markets while also providing ancillary services. The Inflation Reduction Act 286 
has further strengthened the investment case by introducing a 30% Investment Tax Credit (ITC) 287 
for standalone storage beginning in 2023, substantially improving bankability for BESS projects 288 
[9]. 289 

Developer interest is reflected in ERCOT’s interconnection queue, which surpassed 90 GW 290 
of battery projects by early 2025. While only a fraction (less than 30%) of these projects are ex-291 
pected to reach operation, the scale of proposed capacity highlights growing confidence in stor-292 
age economics. Many of the largest projects, developed by firms such as ENGIE, Iberdrola, and 293 
NextEra, are designed to operate BESS, without long-term Power Purchase Agreements, relying 294 
instead on flexible trading and nodal optimization. Table 2 summarizes the main categories of 295 
developers currently active in ERCOT’s storage queue. 296 

 297 
Table 2. Developers with BESS projects in ERCOT’s interconnection queue by late 2024 298 

Type of Developer Companies Sum of MW Min Project size 

Big ENGIE, Iberdrola, NextEra, 

etc 

> 500 MW 150 MW 

Medium Gransolar, PineGate, Abei > 500 MW < 150 MW 

Small Terra-Gen, Ignis Group, 

Redeux Energy 

< 500 MW 10MW 

 299 
Despite this momentum, BESS projects face risks that must be carefully managed. Histori-300 

cally, ancillary services have provided a large share of BESS revenues, particularly through Regu-301 
lation Up, Regulation Down, and more recently the Enhanced Contingency Reserve Service (ECRS). 302 
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Since its launch in June 2023, ECRS has delivered some of the highest per-MW revenues for stor-303 
age assets, with batteries comprising 20-30% of awarded capacity. However, Modo Energy data 304 
indicate that ancillary service markets are approaching saturation, with full capacity expected by 305 
late 2024. As competition increases, clearing prices are likely to decline, particularly for one-hour 306 
systems, raising concerns about long-term revenue cannibalization [3]. 307 

 308 

Figure 10. Projected saturation of ancillary service capacity in ERCOT by end of 2024 [3] 309 

In this context, energy arbitrage emerges as the most sustainable revenue stream for two-310 
hour systems, complemented by ancillary services when available. Yet real-time volatility also in-311 
troduces uncertainty, especially at nodes with limited congestion relief. These dynamics highlight 312 
the importance of location-specific modeling, degradation-aware dispatch, and financial structur-313 
ing to ensure that projects remain viable in ERCOT’s evolving landscape. 314 

2.4 Limitations of Current Practices in ERCOT 315 

Despite ERCOT’s rapid uptake of battery energy storage systems, current operational prac-316 
tices remain limited, constraining the ability of storage to fully capture value. One key shortcom-317 
ing is the lack of nodal-level optimization. While ERCOT prices are settled across more than 17,000 318 
nodes, many projects are sited and operated based on hub-level averages, neglecting significant 319 
locational variability. This results in suboptimal siting, missed arbitrage opportunities, and dimin-320 
ished economic returns. 321 

Curtailment awareness is another underutilized strategy, particularly for co-located solar-322 
plus-storage in West and South Texas, where midday negative prices frequently occur. Many sys-323 
tems fail to systematically exploit these charging windows, leaving potential revenues untapped. 324 

From a technology perspective, alternative long-duration storage (e.g., flow batteries) offers 325 
promising advantages such as longer lifetimes and reduced degradation risks [11]. However, 326 
higher upfront costs, lower energy density, and greater mechanical complexity currently limit 327 
their competitiveness relative to lithium-ion solutions. However, according to several sources, 328 
flow batteries market growth will increase the next years, increasing lithium-ion’s competitive 329 
landscape, thus developing storage technologies further, which although a limitation as of now, 330 
might be a source of opportunity to make projects more feasible in the future. 331 
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 332 

Figure 11. Global flow battery market growth outlook, 2024–2029 (BCC Research) [10] 333 

Finally, most commercial BESS projects still rely on simple dispatch algorithms that ignore 334 
degradation dynamics. The absence of degradation-aware strategies leads to unnecessarily ag-335 
gressive cycling, accelerating capacity fade and reducing system lifetimes. Addressing these limi-336 
tations will require more granular nodal modeling, curtailment integration, and advanced control 337 
strategies to ensure long-term market and technical viability, all of which will be mentioned in 338 
chapter 3. 339 

3. Model Development (Methodology) 340 

This chapter describes the methodology used to develop a techno-economic model for eval-341 
uating utility-scale BESS within ERCOT. Building on the research objectives outlined earlier, the 342 
model simulates the daily operation of a 2-hour lithium-ion battery installation under realistic 343 
market conditions, leveraging Day-Ahead Market (DAM) price data across ERCOT’s 17,000+ nodes 344 
from March 2021 to September 2024. The model integrates technical dispatch logic, battery deg-345 
radation mechanisms, and financial assumptions, providing a decision-support tool for developers 346 
and investors, which in turn translated into reduced external studies’ costs needed to analyze a 347 
specific node. 348 

3.1 Data Architecture 349 

The model is designed as a nodal-level techno-economic simulator that captures both oper-350 
ational and financial performance of BESS in different locations in ERCOT. At its core, the model 351 
evaluates DAM price spreads and calculates optimal charging and discharging schedules under 352 
realistic technical constraints, including State of Charge (SoC), Depth of Discharge (DoD), RTE, and 353 
auxiliary HVAC consumption or inner cooling systems consumption, if the battery architecture 354 
bought comprises of integrated inner cooling systems. These technical layers are linked to finan-355 
cial metrics such as CAPEX, OPEX, tax credits, and debt-equity structures, ensuring that results 356 
reflect both engineering feasibility and project bankability. 357 

 358 
𝐵𝑢𝑡𝑡𝑜𝑛 𝑝𝑟𝑒𝑠𝑠 → 𝑃𝑦𝑡ℎ𝑜𝑛 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝐸𝑥𝑐𝑒𝑙 𝑀𝑎𝑐𝑟𝑜 →359 
𝑆𝑄𝐿 𝐷𝑎𝑡𝑎 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑝𝑦𝑡ℎ𝑜𝑛 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 →360 
𝐷𝑎𝑡𝑎 𝑙𝑜𝑎𝑑 𝑖𝑛𝑡𝑜 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 → 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 →361 
𝑁𝑒𝑤 𝐸𝑥𝑐𝑒𝑙 𝑠𝑎𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑎𝑚𝑒 ′"𝑁𝑜𝑑𝑒"_𝐵𝐸𝑆𝑆′ (1) 362 
 363 

A robust data architecture was necessary to handle ERCOT’s large dataset. DAM locational 364 
marginal price (LMP) data from March 2021–September 2024, spanning over 17,000 nodes and 365 
3.9 million hourly values, was initially collected in CSV format from ERCOT’s public archive [1]. 366 
Early testing employed a Python–Excel interface, where a script extracted nodal price histories 367 
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into a centralized spreadsheet. This enabled preliminary dispatch simulations at the node level, 368 
but scalability was limited, as processing times grew rapidly with larger datasets. 369 

To improve efficiency, a structured SQL database was implemented. LMP data were orga-370 
nized into yearly databases (e.g., LMP_2022, LMP_2023), with tables indexed by node, date, and 371 
hour. The Python code was adapted to query SQL directly, retrieving nodal prices in real time and 372 
feeding them into the Excel-based dispatch engine. A macro-enabled button in Excel allowed us-373 
ers to select a node and run simulations seamlessly, with results automatically saved as node-374 
specific files. 375 

Figures 21 and 22 illustrate the evolution of this pipeline: from CSV-based collection to SQL-376 
driven databases, culminating in an automated Excel–Python–SQL integration that reduces 377 
runtime to approximately one minute per node. 378 

 379 

 380 

Figure 12. Initial CSV-based data collection for ERCOT DAM nodal prices 381 

 382 

Figure 13. SQL database structure showing yearly LMP datasets (LMP_2022, LMP_2023, etc.) 383 

This modular architecture ensures transparency and scalability. While the financial model 384 
itself operates within Excel for accessibility, the back-end SQL and Python integration enables 385 
high-resolution simulations across ERCOT’s 17,000+ nodes. The combination balances computa-386 
tional efficiency with usability, supporting both academic analysis and practical application by de-387 
velopers and stakeholders involved. 388 

 389 
 390 
 391 
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3.2 Modeling Assumptions 392 

To ensure scalable simulations of BESS performance under ERCOT market conditions, the 393 
model incorporates a structured set of technical, operational, and financial assumptions. These 394 
assumptions reflect both current industry standards for utility-scale lithium-ion systems and the 395 
unique dynamics of ERCOT’s nodal market. Together, they establish the foundation for dispatch 396 
simulations and financial outputs. 397 

The baseline system modeled is a 100 MW / 200 MWh lithium-ion BESS, a representative 398 
configuration for current ERCOT projects. This size can be adjusted flexibly within the model to 399 
reflect site-specific constraints or developer preferences, without altering the underlying degra-400 
dation or operational logic. The system is assumed to operate at an initial RTE, measured at the 401 
inverter, of 93%, consistent with present technology performance, with an annual efficiency de-402 
cline of 1% to capture aging effects [7]. Depth of Discharge (DoD) is set at 95% in the base case, 403 
reflecting aggressive cycling that maximizes short-term energy throughput, while alternative con-404 
figurations (80%, 65%, 50%) are available to assess trade-offs between lifetime extension and rev-405 
enue generation. Capacity fade is modeled at 1.95% per year under 95% DoD, in line with empir-406 
ical studies investigated. 407 

Temperature conditions are held constant at 25°C, representing optimal thermal manage-408 
ment for lithium-ion installations. While real-world auxiliary consumptions fluctuate seasonally 409 
(more consumption in summer and less in winter), HVAC/inner cooling and balance-of-plant con-410 
sumption are conservatively modeled as a flat 6% of annual potential revenues. This simplification 411 
captures the steady cost burden of thermal control, SCADA, and operational support. SoC is im-412 
plicitly balanced: the system is modeled to charge and discharge symmetrically, maintaining an 413 
average SoC of roughly 50%, consistent with long-term stability strategies. 414 

 415 

Figure 14. Input sheet in Excel showing core technical parameters and degradation assumptions imple-416 
mented in the model 417 

Battery lifetime is linked to cycling assumptions. Under a 1.5 cycles/day regime, the system 418 
operates over a 15-year horizon, while reducing cycling to 1 cycle/day extends the modeled life 419 
to 20 years. Seasonal patterns in ERCOT price data are embedded into the dispatch logic. During 420 
summer months (May–September), when prices typically peak once daily in the late evening, the 421 
model dispatches 1 cycle per day. In winter months (January–April, November–December), when 422 
two price peaks are observed, 2 cycles/day are simulated. Charging and discharging hours are 423 
dynamically assigned based on daily DAM price profiles, ensuring alignment with observed sea-424 
sonal behavior. 425 

 426 

Figure 15. Average hourly DAM prices at a representative ERCOT node during summer (single daily peak) 427 
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428 

Figure 16. Average hourly DAM prices during winter months, showing two daily peaks 429 

In addition to DAM-only strategies, the model includes an optional hybrid DAM–RT configu-430 
ration. In this case, charging occurs in DAM’s lowest-price hours, while discharging is assigned to 431 
the highest-price intervals in RTM for the same day [13]. Although this assumes perfect foresight 432 
and is therefore not realistic in practice, it functions as an upper-bound benchmark of the poten-433 
tial gains achievable with predictive algorithms or AI-based dispatch, where future work studies 434 
could be addressed. 435 

 436 

Figure 17. Model interface showing the DAM–RT hybrid dispatch column, used for sensitivity testing 437 

To assess solar co-location opportunities, the model integrates a simplified curtailment 438 
model. Using ERCOT’s historical curtailment hour counts and hourly DAM prices, the model esti-439 
mates the “economic loss” of curtailed solar generation, known as solar hours where the DAM 440 
price is below zero, by summing curtailed MWh with the average nodal price at the relevant hour 441 
and month. This quantifies the baseline value lost in standalone solar projects. A co-located BESS, 442 
by storing this otherwise curtailed energy and shifting it to evening peaks, could recover additional 443 
revenues beyond this conservative baseline. 444 
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 445 

Figure 18. Curtailment heatmap combining curtailed hours with average nodal DAM prices by month and 446 
hour 447 

For benchmarking purposes, the curtailment analysis is paired with a standard hourly gen-448 
eration profile of a 100 MW solar plant in ERCOT’s North Hub, reflecting the region’s significant 449 
development pipeline and frequent exposure to midday congestion. 450 

 451 

Figure 19. Representative 100 MW solar generation profile in ERCOT’s North Hub 452 

All modeling assumptions are summarized in the following concise table, providing clarity 453 
and reproducibility for subsequent simulations. 454 

 455 
Table 3. Executive summary of technical, operational, and financial modeling assumptions 456 

Category Parameter Value / Assumption 
System size Battery capacity User-defined; 100 MW / 200 MWh base case 

Lifetime Project horizon 15 years (1.5 cycles/day) or 20 years (1 cycle/day) 
Efficiency Initial RTE 93%, declining 1% annually 

Losses HVAC & auxiliaries 6% of annual revenues 

Degradation 
DoD 95% (options: 80%, 65%, 50%) 

Capacity fade 1.95%/year (at 95% DoD) 
SoH threshold 70% 

Dispatch 
Seasonal cycles 1/day summer, 1.5/day winter 

Rule Charge at 2 cheapest hours, discharge at 2 peak hours 
Hybrid mode DAM charging + RT discharging (upper-bound) 

Financials 
CAPEX & OPEX Based on NREL cost curves; OPEX = 3.5% CAPEX 

Incentives 30% ITC; MACRS-style depreciation 

Co-location 
Curtailment value Lost MWh × average nodal DAM price 
Solar benchmark 100 MW North Hub profile 

 457 

 3.3 Algorithmic Logic 458 

The central component of the techno-economic model is the dispatch algorithm, designed 459 
to emulate real-world battery behavior under ERCOT’s nodal price dynamics. The logic is built to 460 
balance computational efficiency with technical realism, capturing how a two-hour BESS would 461 
perform when exposed to historical locational marginal pricing (LMPs). By applying deterministic 462 
rules for charging and discharging while embedding seasonal cycles and degradation effects, the 463 
algorithm ensures transparent and repeatable outputs. 464 
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The core operation begins with hourly DAM price data, organized as 24 rows per day from 465 
March 2021 through September 2024. For each day, the algorithm identifies two consecutive 466 
hours with the lowest LMPs, designating them as the charging window. Similarly, the two consec-467 
utive hours with the highest LMPs are chosen as the discharging window. This rule-based ap-468 
proach reflects a value-maximizing arbitrage strategy, ensuring symmetry and avoiding simulta-469 
neous charge-discharge actions. Each cycle maintains an average SoC of 50% approximately, con-470 
sistent with the assumptions defined in Section 3.2. 471 

 472 

 473 

Figure 20. Average daily identification of cheapest (charge) and most expensive (discharge) hours per 474 
month 475 

To operationalize this process, the simulation proceeds as follows: 476 
 477 

For each day, scan 24 hourly DAM prices 478 
 479 
Identify two lowest consecutive hours → charge cycle 480 
 481 
Identify two highest consecutive hours → discharge cycle 482 
 483 
If in a winter month (January–April, November–December), repeat steps 2–3 for a sec-484 

ond daily cycle (1.5 cycles/day) 485 
 486 
Calculate daily energy arbitrage revenue from price spreads 487 
 488 
Aggregate daily results into monthly and annual averages 489 
 490 
Apply annual degradation adjustments to reflect reduced capacity and round-trip effi-491 

ciency 492 

Figure 21. Simplified pseudocode of the daily BESS dispatch algorithm 493 

After each node’s daily cycles are simulated, the algorithm aggregates performance indica-494 
tors, or KPIs, into a dedicated Excel output file. These outputs include monthly averages, annual 495 
revenues, energy throughput, degradation-adjusted KPIs, and hub-level comparisons. The process 496 
is triggered via an Excel macro button, which first activates a Python script to retrieve nodal LMPs 497 
directly from the SQL database. Once prices are loaded, the VBA logic executes the cycle assign-498 
ment, calculates revenues, and exports results. Output files are automatically named according 499 
to the node under analysis (e.g., HoustonWestNode_BESS.xlsx), streamlining node-by-node eval-500 
uations. 501 
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 502 

Figure 22. Workflow for aggregating dispatch results and exporting nodal KPIs 503 

Seasonality is explicitly embedded into the algorithm. Empirical ERCOT price patterns show 504 
that summer months (May–September) are characterized by single evening peaks, whereas win-505 
ter months typically exhibit dual peaks, midday and evening. This seasonal adjustment is critical, 506 
as it directly influences the profitability and long-term feasibility of storage projects, which will be 507 
discussed in the sensitivity analysis. 508 

The model further incorporates degradation logic, applied annually to revenues and capacity 509 
factors. RTE declines by 1% per year, while usable capacity decreases according to DoD assump-510 
tions (1.95% per year at 95% DoD) [7]. By applying these adjustments externally, the algorithm 511 
maintains a modular structure in which dispatch behavior and performance decay remain distinct, 512 
facilitating sensitivity analyses. 513 

In addition, Co-location opportunities are evaluated through a parallel curtailment simula-514 
tion module. Using historical data on curtailment frequency and nodal DAM prices, the model 515 
estimates the baseline economic value of curtailed solar generation. These values are not used as 516 
charging inputs for BESS but rather as an indication of the opportunity cost solar projects incur 517 
during oversupply or congestion periods. By comparing this with BESS arbitrage revenues, devel-518 
opers can assess whether co-located projects are financially attractive relative to standalone in-519 
stallations. 520 

 521 

Figure 23. Workflow diagram of curtailment estimation module, operating independently from BESS dis-522 
patch 523 

In summary, the algorithmic logic combines simplicity and scalability with enough technical 524 
depth to reflect ERCOT’s complex price dynamics. By anchoring simulations in deterministic 525 
charge-discharge windows, integrating seasonal cycle patterns, and layering degradation and fi-526 
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nancial post-processing, the model achieves a balance between accuracy, transparency, and usa-527 
bility. These attributes make it suitable both for granular nodal analysis and for broader hub-level 528 
benchmarking. 529 

3.4 Tech Stack 530 

The developed techno-economic model is built on an integrated architecture combining Ex-531 
cel/VBA, Python, and SQL, with each environment performing a distinct yet complementary role. 532 
This configuration was reached through trial and error, balancing runtime efficiency, simplicity and 533 
accessibility for non-technical users. While Python and SQL handle large-scale data processing and 534 
retrieval, Excel and VBA remain the central interface where dispatch simulations, parameter ad-535 
justments, and financial evaluations are conducted. This hybrid structure ensures computational 536 
robustness without sacrificing usability for developers and decision-makers. 537 

 538 
Excel and VBA - Core Model Environment 539 
Excel serves as the primary user interface, hosting parameter input sheets, results dash-540 

boards, and graphical summaries of key performance indicators. The dispatch simulation engine is 541 
implemented in VBA, chosen for its transparency and direct link to financial outputs. Annual reve-542 
nues, derived from arbitrage strategies, are calculated by VBA macros and automatically fed into 543 
embedded financial formulas to generate metrics such as internal rate of return (IRR), net present 544 
value (NPV), and payback period. The interface design prioritizes simplicity: the user selects a node, 545 
presses a single “Run Model” button, and results populate dynamically, including updated tables 546 
and figures. 547 

 548 

Figure 24. Excel interface with node selector and macro button, enabling full automation of dispatch simu-549 
lation 550 

Python - Data Retrieval and Validation Layer 551 
Python operates as an intermediary between SQL and Excel. Using packages such as pandas, 552 

pyodbc, and openpyxl, it queries the SQL database, retrieves the full hourly DAM price profile for 553 
the selected node, and transfers it directly into the Excel model. To safeguard data integrity, vali-554 
dation routines verify that the node exists and that the expected number of hourly records (8,760 555 
per year) is present. If either condition fails, the process halts before dispatch begins. This modular 556 
design ensures separation of responsibilities: Python focuses exclusively on reliable data transfer 557 
and updating the SQL database if need be, leaving simulation logic to VBA and storage manage-558 
ment to SQL. 559 
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 560 

Figure 25. Battery Valuation Python Script Extract 561 

SQL - Large-Scale Data Management 562 
The SQL Server database hosts more than 16GB of ERCOT LMP data, encompassing over 563 

17,000 nodes across 3.5 years approximately. Data is structured into annual tables (e.g., 564 
LMP_2022, LMP_2023) with indexing by node, date, and hour, enabling rapid retrieval of node-565 
specific time series. Before SQL integration, node-level runs required 5-10 minutes via CSV pro-566 
cessing in Python, often saturating system RAM. SQL reduced retrieval times to <1 minute per 567 
node while lowering memory overhead, representing close to a 90% decrease in runtime. This 568 
efficiency gain enabled systematic benchmarking across ERCOT, which would have been compu-569 
tationally prohibitive with a CSV-based approach. 570 

 571 

Figure 26. Comparison of average runtime before (CSV pipeline) and after SQL integration, showing around 572 
90% efficiency gain 573 

Scalability, Reproducibility, and Adaptability 574 
The modular architecture was deliberately designed for scalability. Adding a new year of 575 

price data requires only importing it into SQL under a new table and updating a single line in the 576 
Python script, with no changes to VBA dispatch logic. The same model could be adapted to Real-577 
Time Market (RTM) data or to incorporate machine-learning-assisted dispatch optimization. Re-578 
producibility is also central: any analyst can operate the model by opening the master Excel file, 579 
selecting a node, and pressing a single button. Output files follow a consistent naming convention, 580 
ensuring traceability and comparability across nodes and hubs. 581 
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 582 

Figure 27. Extract of VBA automation code showing dispatch loop integration with SQL–Python pipeline 583 

3.5 Financial Modeling 584 

The financial model developed in this study translates the technical and market perfor-585 
mance outputs of the dispatch model into an investment-grade cash flow projection. It goes be-586 
yond simple revenue estimation, integrating capital expenditure (CAPEX), operating expenditure 587 
(OPEX), tax incentives, depreciation, financing terms, and degradation into a unified analytical en-588 
vironment. The model is structured as a project finance special purpose vehicle (SPV), reflecting 589 
standard practice in Texas where each large-scale renewable or storage project is developed under 590 
a dedicated limited liability company (LLC). This ensures the analysis aligns with real-world financ-591 
ing conditions, where lenders evaluate projects on a stand-alone basis. 592 

 593 
The objective of this layer is to determine the financial viability of 2-hour lithium-ion BESS 594 

deployment under different ERCOT locational conditions. Both unlevered project IRR (100% eq-595 
uity) and levered shareholder IRR (with debt service obligations) are calculated, providing insight 596 
for different investor perspectives. The model also incorporates the 30% standalone Investment 597 
Tax Credit (ITC) and accelerated MACRS five-year depreciation [15], both of which are critical to 598 
improving early cash flows and reducing payback times. 599 

 600 

Figure 28. Extract of financial model showing CAPEX/OPEX inputs and IRR outputs 601 

 602 
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System Costs and OPEX 603 
The base case assumes a 100 MW / 200 MWh BESS. CAPEX is drawn from NREL’s Annual 604 

Technology Baseline, under three scenarios: Conservative, Moderate, and Optimistic, with Mod-605 
erate as the default. To reflect market conditions, costs were adjusted from 2026 onwards to ac-606 
count for tariffs on Chinese imports of lithium-ion batteries announced in May 2024. The CAPEX 607 
breakdown highlights that battery modules remain the largest cost driver, though electrical BOS, 608 
EPC labor, and soft costs are also material. 609 

OPEX is modeled at 3.5% of CAPEX annually, divided into 2.5% maintenance and 1% insur-610 
ance. Augmentation is not pre-scheduled; instead, the system is run until capacity fade approaches 611 
end-of-life, consistent with BESS storage practice. This approach prioritizes early-year equity re-612 
turns by avoiding cash outflows on mid-life reinvestments. 613 

 614 

Figure 29. CAPEX cost trajectory under conservative, moderate, and optimistic scenarios (NREL ATB, 2024) 615 
[8] 616 

 617 

Figure 30. U.S. tariff modifications affecting lithium-ion batteries (2024) [14] 618 

Policy and Tax Structure 619 
The ITC, available since the Inflation Reduction Act of 2022, [9] is applied directly to eligible 620 

CAPEX, reducing upfront capital requirements by 30%. Accelerated depreciation follows the U.S. 621 
MACRS five-year schedule (20%, 32%, 19.2%, 11.52%, 11.52%, 5.76%), significantly front-loading 622 
tax benefits and boosting after-tax IRR in early years. 623 

Federal corporate tax is fixed at 28%, applied on EBIT. Property tax is modeled in two cases: 624 
high-tax (2.25%) without abatements and low-tax (1.5%) with abatements, reflecting county-level 625 
practices in Texas. These policy levers collectively shape the bankability of ERCOT storage projects. 626 

 627 
Financing Assumptions 628 
The project is modeled under a 65% debt / 35% equity structure, consistent with ERCOT 629 

utility-scale renewable projects. Debt tenor is capped at 10 years, shorter than the 15–20 year 630 
project lifetime, reflecting lender caution in ERCOT’s BESS market. Debt service is set at a fixed 631 
5.5% interest rate with straight-line amortization, although this number might decrease the up-632 
coming years, due to recent news reflecting Powell’s willingness to decrease interest rates. No 633 
explicit reserve accounts are modeled, but their cost is embedded in CAPEX. 634 

 635 
 636 
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Revenue Structure 637 
Revenues are sourced directly from the dispatch model outputs. The base case assumes 638 

DAM-only arbitrage, charging during the two cheapest consecutive hours and discharging during 639 
the two most expensive consecutive hours. An optional DAM-RT hybrid mode is also included to 640 
represent upside potential if predictive algorithms enable optimal switching between DAM and 641 
RTM. 642 

Ancillary service revenues are excluded from the base case, reflecting increasing saturation 643 
in ERCOT’s ancillary markets. Instead, the model applies a conservative assumption of energy ar-644 
bitrage as the main driver, with ancillary services treated as optional upside. Inflation is modeled 645 
at 1.5% annually, applied equally to revenues and OPEX. 646 

 647 

Figure 31. Example of revenue uplift /MW/yr from base DAM case to RT-DAM case 648 

Performance and Degradation 649 
The model incorporates annual performance losses to account for technical degradation. 650 

Initial RTE is 93%, declining by 1% per year, while capacity fade is set at 1.95% annually at 95% 651 
DoD. HVAC and auxiliary consumption are represented as a flat 6% of gross revenue, while system 652 
availability is set at 99%. Together, these parameters reduce long-term cash flows, particularly 653 
after Year 10, and underscore the importance of maximizing early equity returns. 654 

 655 

Figure 32. Impact of degradation and auxiliary loads on annual revenue per MW 656 

Outputs and KPIs 657 
The model generates a consolidated KPI dashboard including: 658 
 659 

 Unlevered Project IRR (base case: ~4–5%) 660 
 Levered Shareholder IRR (base case: ~6–7%) 661 
 Net Present Value (NPV) at a market-consistent WACC 662 
 Payback period for both project and equity cash flows 663 

 664 
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Outputs are visualized via a waterfall chart (gross revenues to equity cash flows), a cumula-665 
tive cash flow curve (payback year), and a sensitivity tornado chart (showing IRR sensitivity to 666 
CAPEX, degradation, and property tax). These outputs make financial risks and opportunities trans-667 
parent, supporting investment decision-making at nodal level. 668 

 669 

Figure 33. Example of cumulative equity cash flow over project lifetime 670 

By embedding ERCOT’s nodal pricing directly into a full project finance framework, this 671 
model bridges the gap between technical feasibility and investor decision-making. It enables rapid 672 
testing of multiple scenarios, from conservative CAPEX to DAM-RT arbitrage, while ensuring that 673 
degradation, policy, and financing realities are captured. The result is a flexible decision-support 674 
tool that balances technical accuracy with investor-grade financial outputs. 675 

4. Results and Discussion 676 

The results chapter applies the techno-economic model to real ERCOT nodes, illustrating 677 
how nodal conditions, solar resources, and price volatility shape the financial viability of BESS 678 
projects. Two representative case studies are presented: Pamplona (Houston Hub) and Santa 679 
Monica (North Hub). These were selected because they align with ongoing project development 680 
interests while providing contrasting market conditions. Houston is characterized by higher vola-681 
tility and stronger solar resources, though with land and interconnection constraints, whereas the 682 
North Hub reflects a more stable grid region with lower volatility and modest solar yields. 683 

 684 

Figure 34. Location of the Pamplona node west of Houston 685 

Together, these case studies demonstrate how identical BESS configurations can produce 686 
markedly different financial outcomes depending on nodal context. Section 4.2 expands this anal-687 
ysis to a hub-wide benchmarking, while Section 4.3 introduces sensitivity testing to explore ro-688 
bustness under various assumptions. 689 

4.1 Base Case Node Analysis 690 

This section evaluates the model’s financial outputs at the node level. For each site, annual 691 
revenues, internal rates of return (IRRs), and payback periods are reported, followed by a direct 692 
comparison highlighting the role of location in project feasibility. 693 

 694 
 695 
 696 
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4.1.1 Pamplona (Houston Hub) 697 
Pamplona ranks among the stronger nodes in ERCOT due to its high price spreads and vola-698 

tility, which directly enhance arbitrage revenues. Under base case assumptions, the model esti-699 
mates annual revenues of $89,412 per MW system, corresponding to a project IRR of 4.93% (un-700 
levered) and shareholder IRR of 6.0% (levered). Payback periods are 10 years at the project level 701 
and 12 years at the equity level. While modest by absolute standards, these figures are attractive 702 
for a DAM-only strategy, especially relative to ERCOT averages. 703 

 704 

Figure 35. Pamplona Node (GEB_138A) Summary Sheet Results 705 

From a solar perspective, Pamplona’s average solar price was $49.71/MWh, just below the 706 
Houston Hub average ($50.06/MWh). Curtailment is negligible (2 hours per year), which means 707 
co-location is not driven by curtailment avoidance. However, if sufficient land is available, EPC and 708 
interconnection synergies may still make solar-plus-storage development viable. 709 

 710 

Figure 36. Curtailment incidence at Pamplona, showing only two curtailed hours in a representative day 711 
[23] 712 

4.1.2 Santa Monica (North Hub) 713 
Santa Monica provides a useful counterpoint. Annual revenues were $85,247 per MW sys-714 

tem, nearly $4,200 less than Pamplona per MW-year, leading to weaker economics: project IRR 715 
of 3.95% and shareholder IRR of 3.9%. Payback periods extend to 11 years (project) and 13 years 716 
(shareholders), reflecting thinner margins. 717 

 718 

Figure 37. Summary sheet of financial results for the Santa Monica node [23] 719 

Interestingly, Santa Monica’s average solar price of $45.84/MWh slightly exceeded the North 720 
Hub average ($45.49/MWh), making it attractive for solar development even if BESS economics 721 
underperform. Indeed, the node ultimately hosted a solar-only project, illustrating how nodal dy-722 
namics may favor different technologies. Curtailment is virtually zero, meaning co-location would 723 
provide little incremental value beyond EPC or interconnection synergies. 724 

 725 
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4.1.3 Comparative Insights 728 
The comparison highlights the centrality of nodal volatility. Pamplona’s higher spreads un-729 

derpin stronger BESS revenues and returns, while Santa Monica’s thinner spreads produce weaker 730 
economics despite comparable solar attractiveness. 731 

 732 

Figure 38. Monthly average daily revenues at Pamplona vs. Santa Monica, showing consistently higher 733 
spreads in Pamplona 734 

In both nodes, curtailment is negligible, so co-location benefits hinge more on synergies than 735 
avoided losses. This differs markedly from West Texas, where curtailment can reach hundreds of 736 
hours annually due to congestion, making co-location a primary driver of value. 737 

 738 

Figure 39. Curtailment example in a representative West Texas node (DUBLIN_8), showing significantly 739 
higher lost hours 740 

Table 4 consolidates financial and technical metrics, reinforcing that Pamplona outperforms 741 
Santa Monica for standalone storage under DAM-only dispatch. 742 

 743 
Table 4. Comparative summary of Pamplona vs. Santa Monica BESS results 744 

Metric Pamplona (Houston Hub) 
Santa Monica (North 

Hub) 
Annual Revenues Y1 ($/yr, 100 MW / 200 
MWh) 

$894,127 $852,470 

Project IRR (Unlevered) 4.93% 3.95% 
Shareholder IRR (Levered) 6.0% 3.9% 
Payback Period (Project) 10 years 11 years 
Payback Period (Shareholders) 12 years 13 years 
Average Solar Price ($/MWh) 49.71 (< Hub avg. 50.06) 45.84 (> Hub avg. 45.49) 
Curtailment Hours (per year) 2 0 

Solar Feasibility 
Strong but secondary (EPC/interconnection syner-

gies) 
Attractive solar-only 

Co-location Potential Conditional (excess land) Minimal 

Volatility Profile High, strong spreads 
Moderate, thinner 

spreads 
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4.2 ERCOT-Wide Benchmarking and Nodal Competitiveness 747 

The comparative analysis between Pamplona and Santa Monica underscores the decisive 748 
role of nodal conditions in shaping BESS outcomes. While both sites displayed low curtailment, 749 
their revenue and IRR profiles diverged due to volatility and hub-specific dynamics. To move be-750 
yond case studies, this section benchmarks revenues across ERCOT’s 17,000+ nodes, providing a 751 
system-wide perspective on storage economics and identifying where opportunities are concen-752 
trated. 753 

 754 
4.2.1 Hub-Level Benchmarking 755 
ERCOT is organized into six hubs: North, South, Houston, West, Coastal, and Panhandle. This 756 

analysis focuses on the first four, where most BESS development occurs. Each hub exhibits distinct 757 
price seasonality, with West tending to outperform in winter months and Houston and North 758 
showing stronger revenues in summer. 759 

At the ERCOT-wide level, the average revenue benchmark is $84,971/MW-year, which serves 760 
as a reference point for above- and below-average hubs. 761 

 762 

Figure 40. Average annual revenues across ERCOT Main Hubs, excluding Coastal and Panhandle 763 

The West Hub leads with $90,497/MW-year, more than 6% above the ERCOT average. This 764 
reflects strong volatility and arbitrage spreads, driven by high solar penetration and frequent con-765 
gestion. However, West also suffers from severe curtailment due to wind penetration and trans-766 
mission bottlenecks. Co-located storage offers clear value in this hub, enabling curtailed energy 767 
to be absorbed and later sold into evening peaks. 768 

The Houston Hub follows with $87,505/MW-year. Its revenues are supported by high de-769 
mand density, scarcity pricing events, and frequent weather-driven volatility. However, develop-770 
ment here is constrained by limited land availability and interconnection bottlenecks. For projects 771 
that overcome these barriers, Houston remains one of ERCOT’s strongest arbitrage opportunities. 772 

The North Hub averages $85,290/MW-year, close to the ERCOT-wide mean. While spreads 773 
are thinner than in Houston or West, lower volatility also reduces downside risk. This stability may 774 
appeal to risk-averse investors seeking predictable returns, making high-performing nodes in the 775 
North Hub particularly attractive. 776 

The South Hub trails at $81,906/MW-year, about 3.6% below the ERCOT mean. With lower 777 
demand concentration and growing congestion, standalone storage is less attractive here. In-778 
stead, co-location with solar provides a more compelling case, enabling capture of curtailed en-779 
ergy that would otherwise be lost. 780 

Taken together, hub-level results confirm that location is decisive for feasibility. West and 781 
Houston offer the highest standalone economics, albeit constrained by curtailment and siting 782 
challenges, while North and South trade profitability for greater predictability or co-location po-783 
tential. 784 

 785 
4.2.2 Node Ranking and Relative KPIs 786 
To complement hub averages, node-level KPIs provide a more granular view. Two indicators 787 

are applied: 788 
 Marginal Hub Revenue: deviation of the hub from the ERCOT-wide benchmark. 789 
 Marginal Node Revenue: deviation of a given node from its hub average. 790 

This dual KPI model distinguishes whether competitiveness is hub-driven, node-driven, or 791 
both. 792 
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 793 

Figure 41. Comparative KPI premiums for Pamplona and Santa Monica nodes relative to hub and ERCOT 794 
benchmarks 795 

Pamplona generates $89,412/MW-year, which is 2.2% above the Houston Hub average and 796 
5.2% above the ERCOT-wide mean. This reinforces Houston’s appeal for arbitrage and positions 797 
Pamplona as a standout location despite local land and interconnection constraints. 798 

By contrast, Santa Monica earns $85,247/MW-year, almost exactly at the North Hub average 799 
(-0.05%) and only marginally above the ERCOT mean (+0.4%). While not a top arbitrage performer, 800 
its relatively strong solar price compared to the hub average makes it attractive for solar-only or 801 
hybrid development. 802 

Three insights emerge: 803 
 Node-level differences matter - even within the same hub, spreads can shift project 804 

economics by several percentage points. 805 
 Hub averages conceal dispersion - standout nodes like Pamplona outperform their 806 

peers, while others barely reach average levels. 807 
 ERCOT-wide benchmarking is critical - a node’s competitiveness must be measured 808 

against the system-wide mean to establish a consistent feasibility baseline. 809 
These KPIs allow developers to rank nodes directly against proven projects. If a candidate 810 

node consistently outperforms known viable locations, it represents a strong development lead. 811 
This reinforces the need for granular nodal modeling, rather than reliance on hub-level averages, 812 
to guide site selection. 813 

4.3 Sensitivity Analysis (Pamplona Case Study) 814 

To assess the robustness of the developed techno-economic model, a sensitivity analysis was 815 
conducted on the Pamplona node in the Houston Hub. Pamplona was chosen as the reference 816 
point given its strong base-case performance and representativeness of volatile ERCOT condi-817 
tions. By varying one parameter at a time while holding all others constant, the analysis identifies 818 
the operational and financial assumptions with the greatest influence on project feasibility. Re-819 
sults are expressed as changes in annual revenues, project IRR, shareholder IRR, and payback pe-820 
riod relative to the base case. 821 

 822 
4.3.1 Day-Ahead vs. DAM–RT Dispatch 823 
Dispatch strategy emerged as the most influential factor. In the Day-Ahead Market (DAM) 824 

only case, Year 1 revenues for a 100 MW / 200 MWh installation reached $8.94 million, yielding a 825 
project IRR of 4.9% and shareholder IRR of 6.0%. When shifting to an idealized DAM–RT strategy, 826 
revenues rose to $14.68 million, a 64% uplift. 827 
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Figure 42. Pamplona simulated DAM–RT dispatch scenario 829 

This increase lifted project IRR to 16.1% and shareholder IRR to 31.7%, while halving payback 830 
periods to 3–5 years. Although the DAM-RT scenario assumes perfect foresight of real-time peaks, 831 
being technically not possible, it highlights the transformative potential of predictive dispatch 832 
tools such as machine learning-enabled forecasting. Even partial capture of this upside would ma-833 
terially strengthen BESS economics in ERCOT. 834 

 835 
4.3.2 CAPEX Scenarios 836 
Capital expenditure assumptions are another decisive factor. Using NREL’s cost projections, 837 

three CAPEX tiers were tested for a 2027 commissioning date: 838 
Optimistic case (473 $/kW): IRR rose to 15.5% (project) and 30.1% (shareholders), with pay-839 

back shortened to six and three years, respectively. 840 
Moderate case (756 $/kW): Base case reference, yielding IRRs of 4.9% and 6.0%. 841 
Conservative case (844 $/kW): IRRs fell sharply to 2.7% and 1.3%, extending payback periods 842 

beyond 12 years. 843 

 844 

Figure 43. IRR shifts under Optimistic, Moderate, and Conservative NREL CAPEX scenarios 845 

These results show that CAPEX reductions remain a structural enabler for ERCOT BESS pro-846 
jects, much like the early solar PV industry. Without continued cost declines or federal incentives 847 
such as the 30% ITC, standalone arbitrage projects risk falling into negative NPV territory. 848 

 849 
4.3.3 Technical Parameters 850 
While less decisive than market strategy or CAPEX, technical parameters significantly shape 851 

financial performance: 852 
 Cycle count: Reducing cycling from 1.5 to 1 cycle per day (extending lifetime from 853 

15 to 20 years) lowered Year 1 revenues from $8.94m to $7.07m (-21%). Although 854 
lifetime is extended, investors generally prefer the higher near-term cash flows of 855 
1.5 cycles/day, which mitigate risk through faster payback. 856 

 Depth of discharge (DoD): At 95% DoD, IRRs are maximized. Reducing to 80% cut 857 
revenues by 15.8% ($7.53m), lowering IRRs to 3.8% approximately. At 65%, reve-858 
nues dropped by 31.7% ($6.11m), with IRRs below 3%. While shallower cycling 859 
slows degradation, the economic penalty outweighs the technical gain. 860 

 Round-trip efficiency (RTE): Raising efficiency from 93% to 95% increased revenues 861 
modestly to $9.15m (+2.3%), lifting IRRs to 5.4% and 7.0%. Reducing RTE to 91% 862 
had the opposite effect, reducing revenues to $8.74m. 863 
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 864 

Figure 44. Year 1 revenues under varying technical parameters 865 

Overall, technical refinements act as value optimizers, improving margins but not fundamen-866 
tally altering feasibility. Their impact is most effective when paired with stronger levers like DAM–867 
RT dispatch or lower CAPEX. 868 

 869 
4.3.4 Synthesis 870 
The sensitivity analysis confirms that location and dispatch strategy dominate BESS viability 871 

in ERCOT, with capital costs and ITC support as structural enablers. Technical parameters such as 872 
DoD and RTE refine outcomes but do not transform unviable projects into viable ones. In particu-873 
lar, the transition from DAM-only to DAM-RT dispatch can more than triple shareholder IRR, un-874 
derscoring the importance of predictive trading strategies for the next generation of ERCOT stor-875 
age projects. 876 

 877 
Table 5. Sensitivity results for Pamplona node under alternative assumptions 878 

Scenario Year 1 Revenue 
($m) 

Project IRR 
(%) 

Shareholder IRR 
(%) 

Payback 
(Years) 

Base Case (DAM, 93% RTE, 95% DoD, Mid CAPEX 
$756/kW) 

8.94 4.9 6.0 10 

DAM–RT Dispatch 14.68 16.1 31.7 3–5 
Optimistic CAPEX ($473/kW) 8.94 15.5 30.1 3–6 
Conservative CAPEX ($844/kW) 8.94 2.7 1.3 12+ 
1 Cycle/Day 7.07 3.8 3.8 12 
80% DoD 7.53 3.8 3.6 13 
65% DoD 6.11 2.7 2.0 16 
95% RTE 9.15 5.4 7.0 10 
91% RTE 8.74 4.5 5.0 11 

 879 

5. Conclusions 880 

Battery Energy Storage Systems (BESS) have emerged as a cornerstone technology for en-881 
suring reliability in renewable-heavy power systems. In ERCOT, where volatility is amplified by the 882 
absence of a capacity market and limited interconnection with neighboring grids, storage provides 883 
a clear pathway to stability and profitability. Cost declines, regulatory incentives such as the Infla-884 
tion Reduction Act (IRA), and advances in dispatch optimization position storage for accelerated 885 
growth over the next decade, growth that will also be seen in ERCOT demand peaks, further in-886 
creasing BESS’ possibilities to be viable in many locations within Texas. 887 

The methodology developed in this thesis integrated SQL, Python, and Excel/VBA into a scal-888 
able techno-economic model, enabling nodal analysis across ERCOT’s 17,000+ settlement points. 889 
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By combining technical realism, degradation, efficiency losses, and seasonal cycling, with financial 890 
modeling, the model bridges the gap between granular price signals and investment decision-891 
making. Its modular design makes it both rigorous and accessible, providing actionable insights 892 
for developers and investors involved. 893 

Results confirm that location and market strategy are decisive for project feasibility. Hub-894 
level benchmarking shows West ERCOT as the most profitable region for arbitrage, but con-895 
strained by congestion and curtailment. Houston follows closely, offering high volatility and strong 896 
arbitrage opportunities, while North and South hubs trade profitability for stability, being the lat-897 
ter even less profitable. At the nodal scale, Pamplona (Houston Hub) outperformed Santa Monica 898 
(North Hub), highlighting how small locational differences drive divergence in IRR and payback. 899 
This reinforces the necessity of site-specific modeling rather than relying solely on hub averages. 900 

The sensitivity analysis further demonstrated that dispatch strategy and CAPEX assumptions 901 
dominate BESS viability. Transitioning from DAM-only to an idealized DAM-RT strategy tripled 902 
shareholder IRRs, cutting payback from over 10 years to as few as 3. Similarly, optimistic CAPEX 903 
scenarios lifted IRRs above 15%, while conservative costs pushed projects toward unviability. 904 
Technical parameters such as depth of discharge (DoD) or round-trip efficiency (RTE) acted more 905 
as fine-tuning levers, shaping margins but not fundamentally altering outcomes. 906 

Despite the promise, limitations remain. Ancillary services, real-time participation, and sto-907 
chastic elements such as weather events were excluded from the base case, making the analysis 908 
deliberately conservative. Assumptions on fixed HVAC or inner cooling loads, average degradation 909 
rates, and static tax treatments also simplified reality, though without obscuring the key dynamics 910 
at play. These boundaries mark natural points for future work: integrating predictive DAM-RT dis-911 
patch, incorporating ancillary services revenues, and dynamically modeling ERCOT’s interconnec-912 
tion queue to anticipate cannibalization effects. 913 

In summary, BESS in ERCOT stand at a critical juncture. Properly sited, competitively built, 914 
and strategically dispatched, storage projects can deliver meaningful investor returns while sim-915 
ultaneously stabilizing one of the most volatile power markets in the world. This thesis demon-916 
strates that nodal-level modeling is not only possible but essential, offering a decision-support 917 
tool that balances technical fidelity with financial realism. Beyond its academic contribution, the 918 
model has already delivered tangible value to Solea Power Corp., where it has been applied as a 919 
low-cost preliminary screening tool to prioritize nodes before investing in costly interconnection 920 
studies. By saving both time and resources, the model has become a practical enabler for a startup 921 
environment with limited capacity but ambitious stakeholders. Future work should focus on pre-922 
dictive analytics and expanded revenue stacking, but the results here already provide a founda-923 
tion for both project developers and policymakers. Storage in ERCOT is no longer a peripheral 924 
opportunity, it’s central to the market and grid’s evolution. 925 

6. Patents 926 

No patent is associated to this work, though it could be solicited in the future if need be. 927 
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Appendix A – BESS and Summary Sheet and Financial Sheet 946 

 947 

Figure A1. BESS Model Summary Sheet 948 

 949 

Figure A2. BESS Model Financial Sheet 950 
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Appendix B - Curtailment Model 960 

 961 

Figure B1. Curtailment Model Summary Sheet 962 
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