

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura						
Nombre completo	Electrónica de Potencia					
Código	DEA-GITI-441					
Título	Grado en Ingeniería en Tecnologías Industriales por la Universidad Pontificia Comillas					
Impartido en	Grado en Ingeniería en Tecnologías Industriales [Cuarto Curso]					
Nivel	Reglada Grado Europeo					
Cuatrimestre	Semestral					
Créditos	6,0 ECTS					
Carácter	Optativa (Grado)					
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones					
Responsable	Aurelio Garcia Cerrada					
Horario de tutorías	Solicitar cita previa					

Datos del profesorado	Datos del profesorado						
Profesor							
Nombre	Aurelio García Cerrada						
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones						
Despacho	Alberto Aguilera 25 [D-218]						
Correo electrónico	Aurelio.Garcia@iit.comillas.edu						
Teléfono	2421						

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

Los campos de aplicación de la electrónica de potencia son muy diversos y van desde pequeños dispositivos de uso doméstico hasta grandes aplicaciones industriales. Esta asignatura aporta una visión de los principales convertidores electrónicos de potencia y de sus aplicaciones. Al finalizar el curso los estudiantes conocerán

- Qué tipo de circuitos se engloban dentro de esta disciplina.
- Las características principales de los dispositivos semiconductores que se usan en los circuitos mencionados antes.
- El funcionamiento y diseño de las topologías básicas de convertidores electrónicos de potencia
- Los fundamentos de algunas aplicaciones de los convertidores estudiados.

Dado que éste es un curso de introducción a la electrónica de potencia, no se tratarán muchos aspectos tecnológicos importantes, pero al final del curso el alumno sí debe ser consciente de esas limitaciones.

Prerrequisitos

Un curso de circuitos eléctricos (CC y CA)

Un curso básico de electrotecnia

Conocimientos de series de Fourier

Competencias - Objetivos

Competencias

	-		D /		
G	71	NΕ	R/	٩L	138

CG03	Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.

transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.

Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y

ESPECÍFICAS

CG04

CEN04	Conocimiento aplicado de electrónica de potencia						
CEN06	Capacidad para diseñar sistemas electrónicos analógicos, digitales y de potencia.						

Resultados (Resultados de Aprendizaje						
RA1	Analizar circuitos con señales periódicas						
RA2	Calcular variables eléctricas con señales periódicas (potencia, energía, valor eficaz, etc.)						
RA3	Caracterizar convertidores electrónicos y su impacto en los puntos de conexión (factor de potencia, THD, etc.)						
RA4	Analizar convertidores electrónicos básicos y extender la metodología a otros convertidores						
RA5	Conocer las principales aplicaciones de los convertidores electrónicos						
RA6	Analizar convertidores electrónicos para aplicaciones concretas						
RA7	Analizar circuitos con varios convertidores electrónicos						
RA8	Diseñar convertidores electrónicos para aplicaciones concretas						
RA9	Diseñar circuitos con varios convertidores electrónicos						

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

Introducción

- 1.1 ¿Qué es la electrónica de potencia? Ejemplos de aplicación
- 1.2 Principios de funcionamiento de un convertidor
- 1.3 Resolución de circuitos con fuentes periódicas
- 1.4 Definición de magnitudes eléctricas para señales periódicas: potencia, energía, valor eficaz, factor de potencia y THD

Convertidores Electrónicos de Potencia

(El orden de presentación de los tipos de convertidores en el curso podría variar)

- 2. CONVERTIDORES CA-CC RECTIFICADORES
- 2.1 Introducción: diodo ideal/real y principios de conmutación
- 2.2 Rectificador monofásico de doble onda sin controlar: Análisis y dimensionamiento. Filtro LC y filtro C.
- 2.3 Rectificadores monofásicos controlados.
- 2.4 Rectificadores trifásicos controlados y sin controlar
- 2.5 Aplicación: HVDC-LCC
- 3 CONVERTIDORES CC-CC
- 3.1 Introducción: transistor ideal/real y principios de conmutación
- **3.2** CC-CC reductor. Análisis del funcionamiento y formas de onda. Cálculo de las ecuaciones fundamentales. Diseño. Dimensionamiento y pérdidas.
- 3.3 CC-CC elevador. Análisis del funcionamiento y formas de onda. Cálculo de las ecuaciones fundamentales.
- **3.4** CC-CC elevador-reductor. Análisis del funcionamiento y formas de onda.
- 3.5 Generalización del método de análisis de un convertidor CC-CC. Ejemplos y convertidores con aislamiento galvánico
- 3.6 Aplicación: Fuentes de alimentación conmutadas
- **3.7** Compatibilidad electromagnética. Perturbaciones conducidas y radiadas. Corrientes de modo común y de modo diferencial. Medida y filtros
- 4 CONVERTIDORES CC-CA. INVERSORES
- 4.1 Convertidor monofásico con tensión de salida cuadrada. Principios de funcionamiento. Interruptores ideales y reales.
- **4.2** Convertidor monofásico controlado mediante PWM bipolar y unipolar
- **4.3** Convertidor trifásico con interruptores y tensión de salida cuadrada.

4.4 Convertidor trifásico controlado mediante PWM

4.5 Aplicación: STATCOM y HVDC-VSC

Laboratorio

El orden de las prácticas que siguen podría variar

Practica 1: Convertidores CC-CC

Práctica 2: Convertidores CA-CC

Párctica 3: Convertidores CC-CA

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Con el fin de conseguir el desarrollo de competencias propuesto, la materia se desarrollará teniendo en cuenta la actividad del alumno como factor prioritario. Ello implicará que tanto las sesiones presenciales como las no presenciales promoverán la implicación activa de los alumnos en las actividades de aprendizaje.

Metodología Presencial: Actividades

- 1. Clase magistral y presentaciones generales: El profesor explicará los conceptos fundamentales de cada tema incidiendo en lo más importante y a continuación se explicarán una serie de problemas tipo, gracias a los cuáles se aprenderá a identificar los elementos esenciales del planteamiento y la resolución de problemas del tema.
- 2. **Resolución de problemas de carácter práctico o aplicado**: En estas sesiones se explicarán, corregirán y analizarán problemas análogos y de mayor complejidad de cada tema previamente propuestos por el profesor y trabajados por el alumno.
- 3. **Prácticas de laboratorio**. Se realizará en grupos y en ellas los alumnos ejercitarán los conceptos y técnicas estudiadas, familiarizándose con el entorno material y humano del trabajo en el laboratorio.

Metodología No presencial: Actividades

- 1. Estudio individual y personal por parte del alumno de los conceptos expuestos en las lecciones expositivas.
- Resolución de problemas de carácter práctico o aplicado, algunos de los cuales se corregirán en clase, de forma individual o grupal.
- 3. **Profundización de los conceptos** vistos en clase, por medio de material proporcionado y selecciones de los libros de texto u otro material.
- 4. **Preparación y planificación de las prácticas de laboratorio**, de forma individual o grupal y mediante cálculo analítico y/o simulación
- 5. **Análisis de los resultados de laboratorio**, para sacar conclusiones y completar el cuaderno de laboratorio.

El objetivo principal del trabajo no presencial es llegar a entender y comprender los conceptos teóricos de la asignatura, así como ser capaz de poner en práctica estos conocimientos para resolver los diferentes tipos de problemas.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES								
Clase magistral y presentaciones generales	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio						
30.00	20.00	10.00						
HORAS NO	PRESENCIALES							
Estudio de conceptos teóricos fuera del horario de clase por parte del alumno	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio						
60.00	40.00	20.00						
CRÉDITOS ECTS: 6,0 (180,00 horas)								

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

El uso de lA para crear trabajos completos o partes relevantes, sin citar la fuente o la herramienta o sin estar permitido expresamente en la descripción del trabajo, será considerado plagio y regulado conforme al Reglamento General de la Universidad.

Actividades de evaluación	Criterios de evaluación	Peso
	Comprensión de conceptos.	
Examen Final	 Aplicación de conceptos a la resolución de problemas prácticos. 	
	 Análisis e interpretación de los resultados obtenidos en la resolución de problemas. 	70
	Presentación y comunicación escrita.	
	Comprensión de conceptos.	
Pruebas de seguimiento, tipo problema o caso	 Aplicación de conceptos a la resolución de problemas prácticos. 	
práctico	 Análisis e interpretación de los resultados obtenidos en la resolución de problemas. 	10
	Presentación y comunicación escrita.	
	Compresión de conceptos.	
	 Aplicación de conceptos a la resolución de problemas prácticos y a la realización de 	

Seguimiento del trabajo en el laboratorio y examen de laboratorio

prácticas en el laboratorio.

- Análisis e interpretación de los resultados obtenidos en las prácticas de laboratorio.
- Capacidad de trabajo en grupo.
- Presentación y comunicación escrita.

20

Calificaciones

Ordinaria

70% la nota del examen final (EF).

10% las pruebas de seguimiento que podrán ser de dos tipos: pruebas en clase vigiladas que luego corregirá el profesor, y pruebas/ejercicios de autoevaluación que no corregirá el profesor, pero de las que los alumnos dispondrán de la solución. El alumno deberá realizar todas las pruebas de autoevaluación propuestas en tiempo y forma porque si no lo hace se penalizará su nota en este apartado. La nota de este apartado (NS) podrá estar entre 0 y 10 y se calculará restando a la media de las pruebas de seguimiento corregidas por el profesor (MP) el resultado de multiplicar por 10 el número de pruebas de autoevaluación no presentadas por el alumno (ΣΑΕΝΡ) dividido por en número total de pruebas de autoevaluación (ΣΑΕΤ). Es decir:

NS= MP- 10 * (∑AENP/∑AET) si el resultado de la fórmula ≥0

NS=0 si el resultado de la fórmula < 0

Si, por cualquier motivo, no se hubieran hecho pruebas corregidas, se usará MP=10, en la fórmula anterior.

20% la nota de laboratorio, que se obtiene teniendo en cuenta la del examen de laboratorio, NEL, (75%, [15% del total]) y la valoración del profesor sobre la realización de las prácticas, NCL (25% [5% del total])

La nota final (NF) será

NF = 0.7*EF + 0.1*NS + 0.15*NEL + 0.05*NCL

Nota Importante:

La asistencia a clase es obligatoria, según las Normas Académicas de la Escuela Técnica Superior de Ingeniería (ICAI). Los requisitos de asistencia se aplicarán de forma independiente para las sesiones de teoría y de laboratorio.

En el caso de las sesiones de teoría, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria.

En el caso de las sesiones de laboratorio, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria y en la extraordinaria. En cualquier caso las faltas no justificadas a sesiones de laboratorio serán penalizadas en la evaluación.

Extraordinaria

70% la nota del examen final en convocatoria extraordinaria.

10% la nota de las pruebas de seguimiento (podrán ser de autoevalación) durante el curso. Se usará para el cálculo la misma fórmula que en la convocatoria ordinaria, pero el alumno podrá completar las pruebas de autoevaluación que no hubiera hecho durante el curso antes del examen de la convocatoria extraordinaria, y así mejorar esta nota.

20% la nota del laboratorio. Los estudiantes que hayan suspendido la asignatura y obtenido una nota inferior a 4 en el laboratorio deberán examinarse del mismo en convocatoria extraordinaria. Si el alumno tuviera que hacer examen de laboratorio en la convocatoria extraordinaria, el reparto de la calificación de laboratorio se haría: 15% del global correspondería a la nota del examen extraordinario de laboratorio y un 5% de la evaluación del trabajo del alumno en el laboratorio durante el curso.

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Estudio individual y personal por parte del alumno de los conceptos expuestos en las lecciones expositivas.	Después de cada clase	
Resolución de los problemas propuestos	Semanalmente	
Preparación de pruebas intermedias	Al finalizar cada tema	
Pruebas tipo problema/caso, realización	Semanas 2, 6 y 9 (aprox.)	
Cuaderno de Laboratorio	Antes, durante y después de cada sesión	
Examen de Laboratorio	Semana 14 (aprox.)	

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- 1. D.H. Hart. Power Electronics. McGraw-Hill, 2010
- 2. Mohan, N.; Undeland, T.M. and Robbins, W.P. Power Electronics: Converters, Applications and Design. 3Rd edition. Wiley, 2003 (o posteriores ediciones)

(Según disponibilidad)

Bibliografía Complementaria

Mohan, N. Power Electronics. A first course. Wiley. 2011.

Erickson, R.W; Maksimovic, D. Fundamentals of Power Electronics. Springer. 2001.

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792

			PLANIFICACIÓN ELECTRÓNICA DE POTENCIA 4º GITI. CURSO 2025-26.					
T e m a	S e m ·	S e s .	Descripción	Clase [h]	Extra [h]	Total [h]	FECHA	ACTIVIDADES. Ejemplos
Intro.	1	1	Motivación: ¿Electrónica de potencia? Ejemplos de aplicación	1	0	1	???	
Intro.	1	2	Ejemplo de un convertidor ideal. Presentación de la asignatura	1	2	3	???	
Intro.	1	3	Circuitos con señales periódicas: Repaso de Series de Fourier	1	2	3	???	
Intro.	1	4	Ejemplo	1	2	3	???	
Intro.	2	5	Potencia media, Pérdidas en Semiconductores de potencia	1	2	3	???	Propuestos: 1, 2 y 3 de transparencias. Entrega el viernes 3 de febrero
Intro.	2	6	Valores medios y eficaces. Problemas	1	2	3	???	
Intro.	2	7	Problemas	1	2	3	???	
CC-CC	2	8	Intro.: transistor ideal/real y principios de conmutación. Reductor	1	2	3	???	
CC-CC	3	9	Reductor	1	2	3	???	

CC-CC	3	10	Ejemplo	1	2	3	???	
CC-CC	3	11	Elevador	1	2	3	???	Proponer 1.1.4 y 1.1.5 (Elevador e industageia grítica)
CC-CC	3	12	Elevador y elevador/reductor	1	2	3	???	(SEPIC) y el 1.2.1 (Flyback)
cc-cc	4	13	Problemas	1	2	3	???	
CC-CC	4	14	Método de análisis de otros convertidores y aislamiento galvánico.	1	2	3	???	
CC-CC	4	15	Fuentes de alimentación conmutadas y problemas	1	2	3	???	
CC-CC	4		Prueba de auto-evaluación	1	3	4	???	
OTROS	5	17	Compatibilidad electromagnética: problemas y soluciones	1	2	3	???	
SIM	5	18	Sobre Simulación en Electrónica de Pot.	1	2	3	???	Aula Ordenadores
SIM	5	19	Problema Simulación	1	0	1	???	Aula Ordenadores
CA-CC	5	20	El diodo ideal. Puente completo con filtro LC	1	2	3	???	
CA-CC	6	21	Puente completo con filtro LC	1	2	3	???	
CA-CC	6	22	Ejemplo	1	2	3	???	Proponer P 2.1.5 y 2.1.6
CA-CC	6	23	Tiristor y rectificador controlado	1	2	3	???	
3, (30	6	1	Rectificador controlado	0	0	0	???	

CA-CC	7	24	Ejemplos	1	2	3	???	Proponer 2.1.8 y 2.1.11 (salvo último apartado, 6) Todos deben hacer el 2.1.13 . Proponer 2.1.17 (HVDC). Todos 2.1.18. En clase 2.1.19
LAB	7	25	Lab: Convertidor CC-CC lazo abierto	1	2	3	???	
LAB	7	26	Lab: Convertidor CC-CC lazo abierto	1	2	3	???	
CA-CC	7	27	Ejemplos	1	1	2	???	
CA-CC	8	28	Rectificador trifásico	1	1	2	???	
LAB	8	29	Lab: Convertidor CC-CC lazo cerrado	1	2	3	???	
LAB	8	30	Lab: Convertidor CC-CC lazo cerrado	1	2	3	???	
CA-CC	8	31	Rectificador trifásico	1	2	3	???	Proponer 2.2.2. Todos 2.2.3 y 2.2.5. Más Avanzado: 2.2.10 y 2.2.17. Proponer 2.2.18
CA-CC	9	32	Rectificador trifásico	1	2	3	???	
CA-CC	9	33	Aplicaciones Rectificadores: HVDC-LCC y control	1	2	3	???	
CA-CC	9		Problemas	1	2	3	???	

CA-CC	9	35	Prueba de auto-evaluación	1	3	4	???	
CC-CA	10	36	CC/CA monofásico con onda cuadrada: interruptores ideales	1	2	3	???	
LAB	10	37	Lab: Rectilicador LC	1	2	3	???	
LAB	10	38	Lab: Rectilicador LC	1	2	3	???	
CC-CA	10	39	Monofásico PWM	1	2	3	???	
CC-CA	11	40	Monofásico PWM + ejemplos					
LAB	11	41	Lab: Rect. C	1	2	3	???	
LAB	11	42	Lab: Rect. C	1	2	3	???	
CC-CA	11	43	Trifásico PWM+ejemplos	1	2	3	???	
CC-CA	12	44	Problemas	1	2	3	???	
CC-CA	12	45	Problemas	1	2	3	???	
CC-CA	12	46	Inv. Trifásico y PWM	1	2	3	???	
CC-CA	12	47	Aplicaciones : Control P y Q, STATCOM	1	2	3	???	
CC-CA	13	48	Aplicaciones : Control P y Q, STATCOM	1	2	3	???	
LAB	13	49	Lab. Conv. CC-CA.	1	2	3	???	
LAB	13	50	Lab. Conv CC-CA.	1	2	3	???	

CC-CA	13	51	Prueba de auto-evaluación	1	3	4	???	
CC-CA	14	52	Problemas	1	2	3	???	
LAB	14	53	Lab: Examen Lab	1	2	3	???	
LAB	14	54	Lab: Examen Lab	1	3	4	???	
CC-CA	14	55	Problemas	1	4	5		Para acabar: 6.1.1, 6.1.2, 1.2.20, 1.2.18, 2.2.11, 3.2.4
			EXAMEN FINAL	3	11	14		
			TOTAL HORAS	56	119	175		