GUÍA DOCENTE CURSO 2016-2017

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura								
Nombre	Termodinámica							
Código	AIM03							
Titulación	Grado en Ingeniería en Tecnologías Industriales							
Curso	20							
Cuatrimestre	10							
Créditos ECTS	7,5 ECTS							
Carácter	Obligatoria							
Departamento	Ingeniería Mecánica							
Área	Energía							
Coordinador	José Ignacio Linares Hurtado							

Datos del profesorado								
Profesor								
Nombre	José Ignacio Linares Hurtado							
Departamento	Ingeniería Mecánica							
Área	Energía							
Despacho	D-017							
e-mail	linares@comillas.edu							
Teléfono	91 542 28 00 Ext. 2368							
Horario de	A definir al comenzar el curso							
Tutorías								

Datos del prof	Datos del profesorado								
Profesor									
Nombre	Eva Arenas Pinilla								
Departamento	Ingeniería Mecánica								
Área	Energía								
Despacho	D-318								
e-mail	earenas@comillas.edu								
Teléfono	91 542 28 00 Ext. 4213								
Horario de	A definir al comenzar el curso								
Tutorías									

Datos del prof	Datos del profesorado								
Profesor									
Nombre	María del Mar Cledera Castro								
Departamento	Ingeniería Mecánica								
Área	Energía								
Despacho	D-310								
e-mail	mcledera@comillas.edu								
Teléfono	91 542 28 00 Ext. 2372								
Horario de	A definir al comenzar el curso								
Tutorías									

Datos del profesorado								
Profesor								
Nombre	Yolanda Moratilla Soria							
Departamento	Ingeniería Mecánica							
Área	Energía							
Despacho	D-306							
e-mail	ymoratilla@comillas.edu							
Teléfono	91 542 28 00 Ext. 2363							
Horario de	A definir al comenzar el curso							
Tutorías								

Datos del pro	Datos del profesorado								
Profesor									
Nombre	José Luis Becerra García								
Departamento	Ingeniería Mecánica								
Área	Energía								
Despacho	D-314								
e-mail	jlbecerra@comillas.edu								
Horario de	Previa cita con el profesor								
Tutorías									

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado en Ingeniería en Tecnologías Industriales esta asignatura pretende dotar al alumno de los conocimientos básicos para poder entender la energía y sus procesos de transformación, así como su aplicación a los principales sistemas energéticos.

Al finalizar el curso los alumnos serán capaces de determinar propiedades termodinámicas de cualquier sustancia; sabrán aplicar el balance másico, energético y entrópico a cualquier dispositivo térmico o hidráulico para valorar sus prestaciones, tanto desde un punto de vista cuantitativo como cualitativo; sabrán resolver cualquier configuración de centrales térmicas basadas en ciclos Rankine, Brayton o combinados; sabrán calcular las prestaciones de máquinas térmicas volumétricas (compresores y motores de combustión interna) y sabrán determinar las propiedades del aire húmedo, siendo capaces de resolver procesos psicrométricos básicos. Los conceptos aquí adquiridos sentarán las bases para el aprendizaje de asignaturas que estudiarán en los cursos posteriores relacionadas con los sistemas térmicos e hidráulicos.

Además, esta asignatura tiene un carácter mixto teórico-práctico por lo que a los componentes teóricos se les añaden los de carácter práctico orientados a la resolución de cuestiones numéricas en las que se ejercitaran los conceptos estudiados.

Prerrequisitos

No existen prerrequisitos que de manera formal impidan cursar la asignatura. Sin embargo, por estar inmersa en un plan de estudios sí se apoya en conceptos vistos con anterioridad en asignaturas precedentes:

Física

- Cinemática y dinámica de la partícula
- Trabajo y energía.
- Variación de la energía mecánica

Cálculo

Resolución de ecuaciones implícitas

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

BLOQUE 1: Fundamentos

Las líneas básicas contenidas en el programa se articulan alrededor de los conceptos fundamentales de la Termodinámica Técnica.

Tema 1: INTRODUCCIÓN

- 1.1 Antecedentes y objeto.
- **1.2** Sistemas termodinámicos.
- 1.3 Formas de energía.
- 1.4 Propiedades termodinámicas.
- **1.5** Estado y equilibrio.
- 1.6 Procesos y ciclos.
- 1.7 El postulado de estado.
- 1.8 Variables de estado habituales.

Tema 2: PROPIEDADES DE LAS SUSTANCIAS PURAS

- 2.1 Introducción.
- 2.2 Fase y sustancia pura.
- 2.3 La superficie p-v-T.
- 2.4 Tablas de propiedades.
- 2.5 Aproximaciones y modelos.

Tema 3: EL PRIMER PRINCIPIO EN SISTEMAS CERRADOS

- 3.1 Introducción.
- 3.2 Transferencia de calor.
- 3.3 Transferencia de trabajo.
- 3.4 El Primer Principio.
- 3.5 Calores específicos.

Tema 4: EL PRIMER PRINCIPIO EN SISTEMAS ABIERTOS

- 4.1 Introducción.
- 4.2 Balance másico.
- **4.3** Balance energético.
- 4.4 Sistemas en régimen permanente.

Tema 5: EL SEGUNDO PRINCIPIO

- 5.1 Introducción.
- 5.2 Focos y máquinas térmicas.
- 5.3 Enunciados del Segundo Principio.
- 5.4 Máquinas de movimiento perpetuo.
- **5.5** Procesos reversibles e irreversibles.
- 5.6 El ciclo de Carnot.
- 5.7 Los teoremas de Carnot.
- **5.8** Escala Termodinámica de temperaturas.
- 5.9 Prestaciones máximas de las máquinas térmicas.

Tema 6: ENTROPÍA.

- 6.1 Introducción.
- 6.2 La desigualdad de Clausis.
- 6.3 Entropía.
- 6.4 Balance de entropía en sistemas cerrados.
- **6.5** Balance de entropía en sistemas abiertos.
- 6.6 Determinación de la entropía.
- **6.7** Representación de procesos cuasiestáticos.

- **6.8** Rendimientos isentrópicos.
- 6.9 Exergía

BLOQUE 2: Aplicaciones

Tema 7. CENTRALES TÉRMICAS

- 7.1 Introducción.
- 7.2 Ciclo de Rankine básico.
- 7.3 Procedimientos para mejorar el rendimiento en el ciclo de Rankine.
- 7.4 Ciclos de Rankine reales.
- 7.5 Ciclos de Brayton simple.
- 7.6 Ciclo combinado

TEMA 8. MÁQUINAS TÉRMICAS VOLUMÉTRICAS

- 8.1 Introducción.
- 8.2 Motores alternativos de combustión interna
- 8.2.1 Introducción
- 8.2.2 Modelo termodinámico
- 8.2.3 Diagrama indicado
- 8.2.4 Parámetros fundamentales
- 8.2.5 Ciclos termodinámicos
- 8.3 Compresores alternativos
- 8.3.1 Introducción
- 8.3.2 Modelo termodinámico
- 8.3.3 Rendimiento volumétrico
- 8.3.4 Compresión multietapa
- 8.3.5 Diagrama indicado
- 8.3.6 Trabajos, potencias y rendimientos

Tema 9. MEZCLAS DE GASES Y PSICROMETRÍA

- 9.1 Introducción.
- 9.2 Descripción de la composición de una mezcla.
- 9.3 Propiedades termodinámicas de las mezclas.
- 9.4 Psicrometría.
- 9.4.1 Composición del aire húmedo
- 9.4.2 Propiedades psicrométricas
- 9.4.3 Ábaco psicrométrico
- 9.4.4 Procesos psicrométricos

Competencias – Resultados de aprendizaje

Competencias

Básicas y Generales

- CG01. Capacidad para el desarrollo de proyectos en el ámbito de la Ingeniería Industrial.
- CG03. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- CG04. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería industrial.

Competencias Específicas

- CEM3. Conocimientos aplicados de ingeniería térmica.
- CRI1. Conocimientos de termodinámica aplicada y transmisión de calor. Principios básicos y su aplicación a la resolución de problemas de ingeniería.

Resultados de Aprendizaje

Al final de curso los alumnos deben ser capaces de:

- RA1. Determinar propiedades termodinámicas de cualquier sustancia según el modelo de comportamiento elegido.
- RA2. Aplicar el balance másico y energético a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cuantitativa de sus prestaciones.
- RA3. Aplicar el balance de entropía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cualitativa de sus prestaciones.
- RA4. Aplicar el balance de exergía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de identificar las oportunidades de mejora de la eficiencia.
- RA5. Resolver cualquier configuración de central térmica basadas en ciclo Rankine, Brayton o combinados.
- RA6. Conocer los fundamentos tecnológicos de los motores alternativos de combustión interna, siendo capaz de calcular los parámetros de funcionamiento y de resolver los ciclos de aire equivalentes.
- RA7. Conocer los fundamentos tecnológicos de los compresores alternativos, siendo capaz de calcular los parámetros de funcionamiento.
- RA8. Entender la metodología para el tratamiento de las mezclas de gases y en particular del aire húmedo, siendo capaz de resolver procesos básicos de psicrometría.

METODOLOGÍA DOCENTE

	METODOLOGIA DOCENTE								
As	pectos metodológicos generales de la asignatura								
Me	todología Presencial: Actividades	Competencias							
1.	Clase magistral y presentaciones generales. El profesor explicará los conceptos fundamentales de cada tema incidiendo en lo más importante. Se hará especial hincapié en el significado de las ecuaciones y su aplicación. Seguidamente se resolverán diversos ejemplos prácticos. (40 horas).	CG01, CG03, CEM3							
2.	Resolución en clase de problemas propuestos. En estas sesiones se explicarán, resolverán y analizarán problemas de un nivel similar al encontrado en los exámenes de cada tema previamente propuestos por el profesor y trabajados por el alumno. (23 horas).	CG04, CRI1							
3.	Evaluación. Al finalizar los temas 2 y 6 se realizará, en una de las sesiones de clase (50 minutos), una prueba de seguimiento. A la mitad aproximada del semestre se realizará un examen intersemestral de 90 minutos de duración (en calendario fijado por la Jefatura de Estudios). Al finalizar el curso se realizará un examen final de la asignatura de 3 horas de duración (en calendario fijado por la Jefatura de Estudios). (2 horas en horario ordinario + 4,5 horas en horario específico).	CG03, CG04, CEM3, CRI1							
4.	Tutorías. Se realizarán en grupo o individualmente para resolver las dudas que se les planteen a los alumnos después de haber trabajado los distintos temas.								
Me	todología No presencial: Actividades	Competencias							
1									

El objetivo principal del trabajo no presencial es llegar a entender y comprender los conceptos teóricos de la asignatura, así como ser capaz de poner en práctica estos conocimientos para resolver los diferentes tipos de problemas.

- Estudio de los conceptos teóricos. El alumno debe realizar un trabajo personal posterior a las clases teóricas para comprender e interiorizar los conocimientos aportados en la materia. Se empleará para ello el material presentado en transparencias y los apuntes (material complementario) de la asignatura. (40 horas).
- 2. Trabajo autónomo sobre los problemas. El alumno analizará la resolución de los problemas llevada a cabo en clase principalmente por el profesor, para pasar luego a enfrentarse a los problemas propuestos y no resueltos en clase, de los que dispondrá de la resolución posteriormente, preguntando las dudas en las sesiones de tutoría. Esta actividad también se aplicará sobre exámenes resueltos de cursos anteriores disponibles para los alumnos en Moodle.

CG01, CG03, CEM3

CG04, CRI1

	(69 horas).			
3.	Preparación de exámenes. Los alumnos prepararán los exámenes a partir del material facilitado y los conocimientos adquiridos. Podrán acudir a las sesiones de tutorías para resolver dudas. (51 horas).	CRI1	CG04,	CEM3,

	ACTIVIDADES PRESENCIALES				ACTIVIDADES NO PRESENCIALES				Resultados de aprendizaje		
Semana	h/s	Clase teoría	Problemas	Evaluación	h/s	Estudio de los conceptos teóricos	Trabajo autónomo sobre problemas	Preparación de exámenes	Resultados de aprendizaje	Descripción	
1	5	Presentación (1 hora) Tema 1 (3 horas) Tema 2 (1 hora)			5	Tema 1 (5 horas)			RA1	Determinar propiedades termodinámicas de cualquier sustancia según el modelo de comportamiento elegido.	
2	5	Tema 2 (4 horas)	Tema 2 (1 hora)		7	Tema 2 (4 horas)	Tema 2 (3 horas)		RA1	Determinar propiedades termodinámicas de cualquier sustancia según el modelo de comportamiento elegido.	
									RA1	Determinar propiedades termodinámicas de cualquier sustancia según el modelo de comportamiento elegido.	
3	5	Tema 3 (4 horas)	Tema 2 (1 hora)		12	Tema 3 (4 horas)	Tema 2 (3 horas)	Tema 2 (5 horas)	RA2	Aplicar el balance másico y energético a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cuantitativa de sus prestaciones.	
									RA1	Determinar propiedades termodinámicas de cualquier sustancia según el modelo de comportamiento elegido.	
4	5		Tema 3 (4 horas)	Tema 2 (1 hora)	13		Tema 3 (12 horas)	Tema 2 (1 horas)	RA2	Aplicar el balance másico y energético a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cuantitativa de sus prestaciones.	
5	5	Tema 4 (4 horas)	Tema 4 (1 hora)		7	Tema 4 (4 horas)	Tema 4 (3 horas)		RA2	Aplicar el balance másico y energético a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cuantitativa de sus prestaciones.	
		Toma 5 (3 horas)					Tema 4 (3 horas)		RA2	Aplicar el balance másico y energético a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cuantitativa de sus prestaciones.	
6	5	Tema 5 (3 horas) Tema 6 (1 hora)	Tema 4 (1 hora)		9	Tema 5 (3 horas)	Recapitulación (3 horas)		RA3	Aplicar el balance de entropía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cualitativa de sus prestaciones.	

7	5	Tema 6 (4 horas)	Recapitulación (1 hora)		11	Tema 6 (5 horas)		Intersemestral (6 horas)	RA2	Aplicar el balance másico y energético a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cuantitativa de sus prestaciones. Aplicar el balance de entropía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cualitativa de sus prestaciones.							
									RA4	Aplicar el balance de exergía entropía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de identificar las oportunidades de mejora de la eficiencia.							
				Intersemestral				Intersemestral	RA1	Determinar propiedades termodinámicas de cualquier sustancia según el modelo de comportamiento elegido.							
8				(1,5 horas)	6			(6 horas)	RA2	Aplicar el balance másico y energético a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cuantitativa de sus prestaciones.							
9		T C (0 h)	T ((0 h)			T 0 (0 h)	Tarras ((O haara)		RA3	Aplicar el balance de entropía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cualitativa de sus prestaciones.							
9	5	Tema 6 (2 horas)	Tema 6 (3 horas)		11	Tema 6 (2 horas)	Tema 6 (9 horas)		RA4	Aplicar el balance de exergía entropía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de identificar las oportunidades de mejora de la eficiencia.							
									RA3	Aplicar el balance de entropía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cualitativa de sus prestaciones.							
10	5	Tema 7 (4 horas)	Tema 6 (1 horas)		12	Tema 7 (4 horas)	Tema 6 (3 horas)	Tema 6 (5 horas)	RA4	Aplicar el balance de exergía entropía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de identificar las oportunidades de mejora de la eficiencia.							
									RA3	Aplicar el balance de entropía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de realizar una evaluación cualitativa de sus prestaciones.							
11	5	Tema 8 (1 hora)	Tema 7 (3 horas)	Tema 6 (1 hora)	11	Tema 8 (1 hora)	Tema 7 (9 horas)	Tema 6 (1 horas)	RA4	Aplicar el balance de exergía entropía a cualquier dispositivo térmico o hidráulico de interés industrial con objeto de identificar las oportunidades de mejora de la eficiencia.							
									RA5	Resolver cualquier configuración de central térmica basadas en ciclo Rankine, Brayton o combinados.							

									RA5	Resolver cualquier configuración de central térmica basadas en ciclo Rankine, Brayton o combinados.
12	5	Tema 8 (5 horas)			5	Tema 8 (5 horas)			KAO	Conocer los fundamentos tecnológicos de los motores alternativos de combustión interna, siendo capaz de calcular los parámetros de funcionamiento y de resolver los ciclos de aire equivalentes.
									RA7	Conocer los fundamentos tecnológicos de los compresores alternativos, siendo capaz de calcular los parámetros de funcionamiento.
									RA5	Resolver cualquier configuración de central térmica basadas en ciclo Rankine, Brayton o combinados.
13	5	Tema 9 (1 hora)	Tema 8 (4 horas)		13	Tema 8 (1 hora)	Tema 8 (12 horas)		RA6	Conocer los fundamentos tecnológicos de los motores alternativos de combustión interna, siendo capaz de calcular los parámetros de funcionamiento y de resolver los ciclos de aire equivalentes.
									RA7	Conocer los fundamentos tecnológicos de los compresores alternativos, siendo capaz de calcular los parámetros de funcionamiento.
									RA6	Conocer los fundamentos tecnológicos de los motores alternativos de combustión interna, siendo capaz de calcular los parámetros de funcionamiento y de resolver los ciclos de aire equivalentes.
14	5	Tema 9 (2 horas)	Tema 9 (2 horas) Recapitulación (1 hora)		8	Tema 9 (2 horas)	Tema 9 (6 horas)		RA7	Conocer los fundamentos tecnológicos de los compresores alternativos, siendo capaz de calcular los parámetros de funcionamiento.
									RA8	Entender la metodología para el tratamiento de las mezclas de gases y en particular del aire húmedo, siendo capaz de resolver procesos básicos de psicrometría.
15				Final (3 horas)	30		Recapitulación (3 horas)	Final (27 horas)	RA1 a RA8	

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	PESO
Realización de exámenes: Examen Intersemestral Examen Final	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. 	90%
Realización de pruebas de seguimiento Pruebas realizadas en clase al finalizar algunos temas (2 pruebas)	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. 	10%

Criterios de Calificación

La calificación en la **convocatoria ordinaria** de la asignatura se obtendrá como:

- Un 90% la calificación de los exámenes. La calificación del examen final supondrá un 70% de la calificación final en la asignatura mientras que la calificación del intersemestral supondrá un 20%.
- Un 10% será la calificación de las pruebas de seguimiento. Habrá 2 pruebas, después de los temas 2 y 6, que se realizarán en clase.
- En caso de que la media ponderada anterior resulte mayor de 5 la calificación de la asignatura será dicha media; en caso contrario será la nota mínima de dicha media y el examen final.

La calificación en la **convocatoria extraordinaria** de la asignatura se obtendrá exclusivamente a partir del examen final realizado en la citada convocatoria.

La inasistencia a más del 15% de las horas presenciales de esta asignatura puede tener como consecuencia la imposibilidad de presentarse a la convocatoria ordinaria.

RESUMEN PLAN DE TRABAJO Y CRONOGRAMA

Actividades Presenciales y No presenciales		Fecha de	Fecha de
•	Lectura de las transparencias que se exponen en clase	Antes de la clase	entrega
•	Estudio de las transparencias expuestas en clase	Después de la clase	
•	Complemento del estudio de las transparencias con el material contenido en los apuntes	Después de la clase	
•	Intento de resolución de los problemas a realizar en clase	Antes de la clase	
•	Revisión y estudio de los problemas resueltos en clase	Después de la clase	
•	Intento de resolución de los problemas no realizados en clase. Consulta de la solución publicada en el Portal de Recursos y solicitud de tutoría si es preciso.	Al finalizar cada tema	
•	Preparación de las pruebas que se realizarán durante las horas de clase	Al finalizar los temas 2 y 6	
•	Preparación de Examen intersemestral y final. Se trabajará especialmente sobre la recapitulación de los temas correspondientes realizado por el profesor en clase.	Principios de octubre y finales de Noviembre	

RESUMEN HORAS DE TRABAJO DEL ALUMNO HORAS PRESENCIALES						
HURAS PRESENCIALES						
Lección magistral	Resolución de problemas	Recapitulación (Intersemestral y Final)	Evaluación			
40	21	2	2			
HORAS NO PRESENCIALES						
Trabajo autónomo sobre contenidos teóricos	Trabajo autónomo sobre problemas	Preparación de pruebas de seguimiento	Preparación de exámenes (Intersemestral y Final)			
40	69	12	39			
CRÉDITOS ECTS: 7,5 (225 horas)						

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

Apuntes y Transparencias

- Transparencias de cada tema (disponibles en Moodle).
- Apuntes de la mayoría de los temas (disponibles en Moodle).
- Problemas resueltos (disponibles en Moodle).
- Exámenes resueltos (disponibles en Moodle).

Bibliografía Complementaria

Libros de texto

- Y.A. Çengel, M.A. Boles. Termodinámica. (8^aed.). Mc Graw-Hill (2015).
- M.J. Moran, H.N. Shapiro. Fundamentos de Termodinámica Técnica (2ªed.). Reverté. Barcelona (2004).