

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura			
Nombre completo	Bases de datos		
Código	DTC-IMAT-222		
Título	Grado en Ingeniería Matemática e Inteligencia Artificial		
Impartido en	Grado en Ingeniería Matemática e Inteligencia Artificial [Segundo Curso]		
Nivel	Reglada Grado Europeo		
Cuatrimestre Semestral			
Créditos 7,5 ECTS			
Carácter Obligatoria (Grado)			
Departamento / Área Departamento de Telemática y Computación			
Responsable Pablo Sánchez Pérez			
Horario	Mañana		
Horario de tutorías	A concertar directamente con el profesor		

Datos del profesorado			
Profesor			
Nombre	Israel Alonso Martínez		
Departamento / Área	Departamento de Telemática y Computación		
Despacho	Alberto Aguilera 25. D-407		
Correo electrónico	ialonso@icai.comillas.edu		
Profesor			
Nombre	Pablo Sánchez Pérez		
Departamento / Área	Departamento de Telemática y Computación		
Despacho	Alberto Aguilera 25, D-419		
Correo electrónico	psperez@icai.comillas.edu		
Profesores de laboratorio			
Profesor			
Nombre	Juan Luis Paz Rojas		
Departamento / Área	Departamento de Telemática y Computación		
Correo electrónico jlpaz@icai.comillas.edu			

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

El objetivo principal de la asignatura es proporcionar al alumno de los conocimientos fundamentales acerca de las bases de datos relacionales, incluyendo una base sólida en el lenguaje de consulta SQL, así como conceptos de normalización, álgebra y cálculo relacional. Además, se abordará el estudio de las bases de datos no relacionales, con un enfoque especial en MongoDB y sus operadores más importantes. Los alumnos también tendrán la oportunidad de explorar otras bases de datos no relacionales.

Al finalizar el curso, los alumnos habrán adquirido los conocimientos necesarios para diseñar y gestionar bases de datos relacionales, así como para realizar consultas empleando el lenguaje de consulta SQL. También conocerán ventajas e inconvenientes tanto de las bases de datos relacionales como de las no relacionales. Además, habrán aprendido a manejar bases de datos documentales y a crear programas en Python que puedan comunicarse con las diferentes tipos de bases de datos exploradas.

Prerrequisitos

Programación en Python.

Manejo de un ordenador a nivel básico.

Álgebra (teoría de conjuntos).

Competencias - Objetivos

Competencias			
GENERALES			
CG04	Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería.		
CG05	Conocimiento de la estructura, organización, funcionamiento e interconexión de los sistemas informáticos, los fundamentos de su programación, y su aplicación para la resolución de problemas propios de la ingeniería		
CG08	Capacidad para identificar, analizar y definir los elementos significativos que constituyen un problema vinculado a la explotación de datos e inteligencia artificial aplicada a las actividades empresariales para resolverlo con criterio y de forma efectiva		
ESPECÍFICAS			
CE14	Dominio de los conceptos y técnicas más utilizadas de adquisición y transformación de la información localizada en local o en remoto en el ámbito del análisis de datos y la inteligencia artificial		
CE15	Capacidad para diseñar y gestionar sistemas de almacenamiento de información estructurado, semi-estructurado y no estructurado para el desarrollo de aplicaciones en el ámbito de la inteligencia artificial		

Resultados de Aprendizaje		
RA1	Comprender la aplicación y diferencia entre datos estructurados y no estructurados.	
RA2	Entender las diferencias entre modelo relacional y no relacional	
RA3	Comprender los requisitos de la normalización y el diseño relacional de bases de datos	
RA4	Conocer los principales sistemas gestores de almacenamiento SQL y las tendencias tecnológicas	

RA5 Dominar el lenguaje de definición y manipulación de datos relacionales SQL		
RA6	Conocer y diferenciar los distintos tipos de bases de datos noSQL y saber aplicarlos a problemas concretos	
RA7	Saber desarrollar operaciones de creación, lectura, actualización y borrado sobre bases de datos basadas en documentos	

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

El temario del curso está dividido en 6 bloques: Introducción a las bases de datos, Bases de datos relacionales, Introducción a las bases de datos no relacionales, Bases de datos basadas en documentos (MongoDB), Bases de datos basadas en grafos y en memoria y por último, introducción a bases de datos cloud.

Bloque 1. Introducción a las bases de datos

Introducción a las bases de datos

Información estructurada y no estructurada.

Adquisición y recuperación de la información. Adquisición, Ingesta, ETL.

Introducción a las bases de datos. Tipos de bases de datos.

Arquitecturas data: data lakes, data warehouse, data marts.

Bloque 2. Bases de datos relacionales

Bases de datos relacionales

Introducción al modelo entidad-relación, relacional. Diseño y normalización.

Bases de datos relacionales.

Gestión de bases de datos, SQL, álgebra y cálculo relacional.

Optimización y benchmarking de consultas.

Bloque 3. Introducción a las bases de datos no relacionales (noSQL)

Introducción a las bases de datos no relacionales (noSQL)

Tipos de bases de datos no relacionales (noSQL)

Escalabilidad

Bloque 4. Bases de datos basadas en documentos. MongoDB

Bases de datos basadas en documentos. MongoDB

MongoDB. Características, uso y gestión.

CRUD. Consultas. Operadores.

Índices y benchmarking

Bloque 5. Bases de datos basadas en grafos y en memoria

Bases de datos basadas en grafos y en memoria

Introducción a Neo4J.

Consultas y funciones básicas Neo4J.

Introducción a Redis.

Bloque 6. Introducción a las bases de datos cloud

Introducción a las bases de datos cloud

Introducción y ejemplos de bases de datos cloud

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Con el fin de conseguir el desarrollo de competencias propuesto, la materia se desarrollará teniendo en cuenta la actividad del alumno como factor prioritario. Tanto las sesiones presenciales como las no presenciales promoverán la implicación activa de los alumnos en las actividades de aprendizaje. Por lo tanto, las metodologías en las que se hará mas énfasis serán las siguientes:

- · Lección magistral
- Aprendizaje práctico
- Aprendizaje basado en proyectos

En todos los casos se fomentará la participación activa de los estudiantes y se explorarán actividades/retos colaborativos (aprendizaje colaborativo) y clases invertidas. También se realizarán clases de live-coding donde el profesor enseñará a los alumnos cómo hacer uso de diferentes programas/herramientas en clase y cómo emplear los diferentes lenguajes de consulta.

Metodología Presencial: Actividades

1. Lección expositiva (magistral): El profesor desarrolla el tema que previamente los alumnos deben de haber leído, explicándolo en la pizarra y en el ordenador mediante diapositivas. Se realizarán ejercicios intermedios en las clases y se fomentará la participación de los alumnos en los ejercicios propuestos. Se fomentará también los debates y la participación activa de los alumnos sobre el material que hayan leído para aplicar la metodología docente de clases invertidas.

CG04, CG05, CG08, CE14, CE15

2. Clases live-coding, aprendizaje colaborativo: el profesor indicará y enseñará a los alumnos programas para poner en práctica lo aprendido en las clases de teoría. El profesor proporcionará a los alumnos manuales sobre distintos contenidos que los alumnos deben de haber leído antes de las clases de live-coding. En caso de que se haga uso de alguna herramienta en particular, los estudiantes deberán traerla instalada previamente (se proporcionará el manual de instalación). En algunas clases, se pedirá a los alumnos realizar

CG04, CG05, CG08, CE14, CE15

actividades en grupos que deberán entregar posteriormente al profesor.

3. Prácticas de laboratorio (aprendizaje práctico) y aprendizaje basado en proyectos. A lo largo del curso los alumnos realizarán prácticas individuales de cada uno de los temas expuestos. Empezarán a trabajar en casa sobre la práctica y en el laboratorio resolverán las dudas que puedan tener finalizando la práctica. Además, los alumnos deberán realizar un proyecto que consistirá en aplicar todos los conceptos vistos a lo largo de toda la asignatura. El profesor explicará los detalles fundamentales de dicho proyecto, pero este deberá realizarse mayoritariamente en horas no presenciales.

CG04, CG05, CG08, CE14, CE15

Metodología No presencial: Actividades

1. Estudio teórico:

- a. Estudio y preparación de los temas o conceptos que vayan a ser expuestos por el profesor.
- b. Estudio individual y personal por parte del alumno de los conceptos ya expuestos en las lecciones expositivas.

CG04, CG05, CG08, CE14, CE15

El objetivo principal del estudio teórico no presencial es alcanzar una comprensión más profunda de los conceptos teóricos de la asignatura que han sido explicados previamente por los profesores durante las clases.

2. Casos prácticos:

Preparación y comienzo del desarrollo de las prácticas de laboratorio propuestas semanalmente por el profesor.

CG04, CG05, CG08, CE14, CE15

El objetivo principal del trabajo no presencial de los casos prácticos es ser capaz de dar respuesta a las prácticas propuestas por los profesores incidiendo no sólo en la funcionalidad sino también en el estilo de código (cuando sea necesario).

3. Aprendizaje basado en proyectos:

Los alumnos además realizarán en las horas no lectivas, un proyecto aplicando los conocimientos adquiridos a lo largo del curso explorando el uso de los diferentes gestores de bases de datos vistos en el curso.

CG04, CG05, CG08, CE14, CE15

El objetivo del proyecto es que los alumnos puedan aplicar los conocimientos adquiridos en la asignatura en un trabajo más completo, considerando un mayor número de requerimientos.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES				
'	Tutorías para solución de dudas	Ejercicios prácticos y resolución de problemas	Actividades de evaluación continua del rendimiento	Clases magistrales expositivas y participativas

20.00	5.00	2.00	3.00	50.00
HORAS NO PRESENCIALES				
Sesiones prácticas con uso de software	Proyectos	Estudio personal	Ejercicios prácticos y resolución de problemas	
60.00	50.00	32.00	3.00	
			CRÉDITOS	ECTS: 7,5 (225,00 horas)

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

El uso de lA para crear trabajos completos o partes relevantes, sin citar la fuente o la herramienta o sin estar permitido expresamente en la descripción del trabajo, será considerado plagio y regulado conforme al Reglamento General de la Universidad.

Actividades de evaluación	Criterios de evaluación	Peso
	Prueba Intersemestral (20%): examen orientado a	
	comprender de los conceptos teóricos de las bases	
	de datos, incluyendo arquitecturas data, los	
	diferentes tipos de datos estructurados, no	
	estructurados y semi-estructurados, las bases de	
	datos relacionales, incluyendo modelo relacional (y	
	diseño de bases de datos relacionales), álgebra y	
	cálculo relacional, SQL (consultas) y algunas	
	definiciones de las bases de datos no relacionales (si	
	da tiempo).	
	Prueba Final (50%): examen conteniendo el temario	
	de la prueba intersemestral ampliándolo con	
	conceptos adicionales (y consultas) relacionadas con	
ntersemestral: 20%	las bases de datos no relacionales.	
		70 %
Final: 50%	NO IA:	70 70
	La evaluación se completa completamente sin	
	asistencia de IA en un entorno controlado, lo	
	que garantiza que los estudiantes confíen	
	únicamente en sus conocimientos,	
	comprensión y habilidades existentes.	
	No debe utilizar IA en ningún momento de la	
	evaluación. Debe demostrar sus habilidades y	
	conocimientos básicos.	
	concennentes busices.	
	El alumno que la utilice será calificado con Suspenso	
	(0) en dicha prueba y se le iniciará un proceso	
	sancionador de acuerdo con el Reglamento General	
	de la Universidad.	

Prácticas semanales: 15%

GUÍA DOCENTE 2025 - 2026

Prácticas semanales (15%): prácticas en las que se plantearán ejercicios de consultas y de código para que los alumnos apliquen los conocimientos adquiridos en las asignaturas de teoría. Se evaluará además de la funcionalidad y los resultados obtenidos, el estilo de código empleado en las prácticas y la calidad de los informes solicitados.

COLABORACIÓN CON IA (solo URLS gratuitas):

- La IA puede utilizarse para ayudar a completar la tarea, incluida la generación de ideas, la redacción, la retroalimentación y la evaluación.
 Los estudiantes deben evaluar y modificar críticamente los resultados sugeridos por la IA, demostrando su comprensión.
- Puede utilizar la IA para realizar tareas específicas, como redactar textos, perfeccionar y evaluar su trabajo. Debe evaluar y modificar críticamente cualquier contenido generado por IA que utilice.

En cualquier caso, el contenido generado con la asistencia de la IA deberá ser sometido a una evaluación crítica por parte del estudiante. El resultado final debe ser, en todo momento, producto del propio estudiante.

El uso inapropiado de herramientas de IA podrá afectar a la evaluación global de los trabajos entregados. Asimismo, el profesorado se reserva el derecho a consultar a los alumnos sobre aspectos concretos de sus trabajos para verificar su comprensión; el resultado de estas consultas también podrá influir en la evaluación global de los trabajos correspondientes.

Los alumnos deberán documentar de forma clara en sus entregas las tareas concretas para las que hayan utilizado herramientas de IA. Esto no exime al estudiante de su responsabilidad sobre el contenido entregado, ni de la posibilidad de ser consultado al respecto

Proyecto (15%): proyecto que englobará el uso de los diferentes gestores de bases de datos explorados durante el curso en una aplicación completa. Se evaluará además de la funcionalidad, el diseño empleado en el proyecto y la aplicación del temario de la asignatura.

COLABORACIÓN CON IA (solo URLS gratuitas):

15 %

- La IA puede utilizarse para ayudar a completar la tarea, incluida la generación de ideas, la redacción, la retroalimentación y la evaluación. Los estudiantes deben evaluar y modificar críticamente los resultados sugeridos por la IA, demostrando su comprensión.
- Puede utilizar la IA para realizar tareas específicas, como redactar textos, perfeccionar y evaluar su trabajo. Debe evaluar y modificar críticamente cualquier contenido generado por IA que utilice.

En cualquier caso, el contenido generado con la asistencia de la IA deberá ser sometido a una evaluación crítica por parte del estudiante. El resultado final debe ser, en todo momento, producto del propio estudiante.

El uso inapropiado de herramientas de IA podrá afectar a la evaluación global de los trabajos entregados. Asimismo, el profesorado se reserva el derecho a consultar a los alumnos sobre aspectos concretos de sus trabajos para verificar su comprensión; el resultado de estas consultas también podrá influir en la evaluación global de los trabajos correspondientes.

Los alumnos deberán documentar de forma clara en sus entregas las tareas concretas para las que hayan utilizado herramientas de IA. Esto no exime al estudiante de su responsabilidad sobre el contenido entregado, ni de la posibilidad de ser consultado al respecto 15 %

Calificaciones

Proyecto: 15%

Calificación convocatoria ordinaria

La calificación de la convocatoria ordinaria (CO) será la siguiente:

- Un 50% el examen final de la asignatura (EX_F)
- Un 20% la prueba intersemestral (EX_I)
- Un 15% el proyecto (PROY)
- Un 15% las prácticas semanales (PRACT)

Es decir:

 $CO = 0.5 * EX_F + 0.2 * EX_I + 0.15 * PROY + 0.15 * PRACT$

Será necesario que CO ≥ 5 para aprobar la asignatura y se deben cumplir las siguientes restricciones:

- Será obligatorio que EX_F ≥5. Es decir, la nota del examen final de la asignatura debe ser igual o superior a 5. En caso contrario, CO
 EX F.
- Será obligatorio que (PROY + PRACT)/ 2 ≥ 5. Es decir, se debe obtener una nota mayor o igual a 5 en la media obtenida entre el proyecto y las prácticas semanales tanto en convocatoria extraordinaria como en ordinaria para aprobar la asignatura. En caso de no llegar a esa nota mínima en convocatoria ordinaria, podrán entregarse de nuevo tanto el proyecto como las prácticas en convocatoria extraordinaria y CO = (PROY + PRACT)/ 2. La nota del examen en la convocatoria ordinaria se guarda para la convocatoria extraordinaria en caso de estar aprobado.
- Será necesario obtener una nota de al menos un 4 tanto en el proyecto como en las prácticas para aprobar la asignatura. Es decir, PROY ≥ 4 y PRACT ≥ 4. En caso de no cumplir esta restricción, CO = MIN(PRACT, PROY). La nota del examen en la convocatoria ordinaria se guarda para la convocatoria extraordinaria en caso de estar aprobado. Si se cumple PROY ≥ 4 y PRACT ≥ 4, se guardan las notas de PROY y PRACT para la convocatoria extraordinaria, siempre y cuando se cumpla que (PROY + PRACT)/ 2 ≥ 5. Si no se cumple que PROY ≥ 4 y PRACT ≥ 4, podrán entregarse de nuevo el proyecto y/o las prácticas en convocatoria extraordinaria.

NORMAS GENERALES:

- La inasistencia al 15% o más de las horas presenciales de esta asignatura puede tener como consecuencia la imposibilidad de presentarse a las convocatorias ordinaria y extraordinaria.
- Las prácticas/proyecto entregadas con un límite de 24h después de su fecha límite tendrán una penalización del 50% en la nota. Pasadas 24h de la fecha límite, la calificación de la práctica/proyecto será de 0.

Calificación convocatoria extraordinaria

La calificación de la convocatoria extraordinaria (CE) será la siguiente:

- Un 70% el examen final de la asignatura (EX_F, no se tiene en cuenta el examen intersemestral)
- Un 15% el proyecto (PROY)
- Un 15% las prácticas semanales (PRACT)

Es decir:

 $CE = 0.7 * EX_F + 0.15 * PROY + 0.15 * PRACT$

Será necesario que CE ≥ 5 para aprobar la asignatura y se deben cumplir las siguientes restricciones:

- Será obligatorio que EX_F ≥5. Es decir, la nota del examen final de la asignatura debe ser igual o superior a 5. En caso contrario, CE = EX_F.
- Será obligatorio que (PROY + PRACT)/ 2 ≥ 5. Es decir, se debe obtener una nota mayor o igual a 5 en la media obtenida entre el proyecto y las prácticas semanales en convocatoria extraordinaria. En caso de no llegar a esa nota mínima, CE = (PROY + PRACT)/ 2.
- Será necesario obtener una nota de al menos un 4 tanto en el proyecto como en las prácticas para aprobar la asignatura. Es decir, PROY ≥ 4 y PRACT ≥ 4. En caso de no cumplir esta restricción, CE = MIN(PRACT, PROY).

NORMAS GENERALES:

- La inasistencia al 15% o más de las horas presenciales de esta asignatura puede tener como consecuencia la imposibilidad de presentarse a las convocatorias ordinaria y extraordinaria.
- Las prácticas/proyecto entregadas con un límite de 24h después de su fecha límite tendrán una penalización del 50% en la nota. Pasadas 24h de la fecha límite, la calificación de la práctica/proyecto será de 0.

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Lectura y estudio de los contendidos teóricos, apuntes y código facilitado proporcionado por el profesor.	Después y antes de cada clase	
Proyecto final	Se abrirá la entrega antes de Semana Santa	Previo a los exámenes finales
Realización de los exámenes	Marzo, Mayo, Junio	
Realización de las prácticas semanales	Antes, durante y después de la clase de prácticas	Aproximadamente 1 semana después de su publicación en moodle
Desarrollo del bloque 1. Introducción a las bases de datos	Al inicio del curso (Enero)	1 semana aproximadamente
Desarrollo del bloque 2. Bases de datos relacionales	Después del bloque 1. Enero	Aproximadamente 4,5 semanas
Desarrollo del bloque 3. Introducción a las bases de datos no relacionales (noSQL)	Al finalizar el bloque 2. Febrero	Aproximadamente 1,5 semanas
Desarrollo del bloque 4. Bases de datos documentales	Al finalizar el bloque 3. Marzo	Aproximadamente 2 semanas
Desarrollo del bloque 5. Bases de datos basadas en grafos y en memoria	Al finalizar el bloque 4. Finales de marzo y principios de abril	Aproximadamente 2 semanas
Desarrollo del bloque 6. Introducción a las bases de datos cloud y ejercicios finales.	Al finalizar el bloque 5. Abril	Hasta el final del curso

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

Moodle (manuales, transparencias y ejercicios del profesor)

Bibliografía Complementaria

 $\hbox{-}FUNDAMENTOS \ DE \ BASES \ DE \ DATOS: Abraham \ Silberschatz, \ Henry \ F. \ Korth, \ S. \ Sudarshan. \ MGraw Hill.$

- -Fundamentos de Sistemas de Bases de Datos: Ramez Elmasri, Shamkant B. Navanthe. Pearson Addison Wesley.
- -SQL & NoSQL Databases: Andreas Meier, Michael Kaufmann. Springer.
- -Proffessional NOSQL: Shashank Tiwari. John Wiley & Sons.
- -Redis-in-Action. Josiah L. Carlson. Salvatore Sanfilippo. Manning Publications.

Se recomienda consultar la página web de la documentación de las distintas herramientas que se van a utilizar:

<u>https://www.mysql.com/</u> → Para MySQL y las bases de datos relacionales.

<u>https://www.mongodb.com/</u> → Para MongoDB y las bases de datos documentales.

https://redis.io/docs/manual/ → Para Redis.

https://neo4j.com/docs/getting-started/appendix/tutorials/tutorials-overview/
Para Neo4J

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792