

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura			
Nombre completo	Ingeniería de Materiales		
Código	DIM-GITI-341		
Título	Grado en Ingeniería en Tecnologías Industriales por la Universidad Pontificia Comillas		
Impartido en	Grado en Ingeniería en Tecnologías Industriales [Tercer Curso]		
Nivel	Reglada Grado Europeo		
Cuatrimestre	Semestral		
Créditos	6,0 ECTS		
Carácter	Obligatoria (Grado)		
Departamento / Área	Departamento de Ingeniería Mecánica		
Responsable	Juan Carlos del Real Romero		
Horario	Tarde		
Horario de tutorías	Previa petición mediante correo electrónico a cada profesor		
Descriptor	Metalurgia física, Tratamientos térmicos. Comportamientos en servicio de materiales. Selección de materiales.		

Datos del profesorado		
Profesor		
Juan Carlos del Real Romero		
Departamento de Ingeniería Mecánica		
Alberto Aguilera 25 [Dirección]		
delreal@iit.comillas.edu		
Marcos Benedicto Córdoba		
Departamento de Ingeniería Mecánica		
D-314		
mbcordoba@icai.comillas.edu		
María Yolanda Ballesteros Iglesias		
Departamento de Ingeniería Mecánica		
D-320		
yballesteros@iit.comillas.edu		
Profesor		
Carlos José Hernando López de Toledo		
Departamento de Ingeniería Mecánica		

Correo electrónico	cjhernando@comillas.edu	
Profesor		
Nombre	Juan Manuel Asensio Gil	
Departamento / Área	Instituto de Investigación Tecnológica (IIT)	
Despacho	Laboratorio	
Correo electrónico	jasensio@comillas.edu	
Profesores de laboratorio		
Profesor		
Nombre	Inés Urbina Gallego	
Departamento / Área	Departamento de Ingeniería Mecánica	
Despacho	Laboratorio	
Correo electrónico	iurbina@icai.comillas.edu	
Profesor		
Nombre	José Miguel García Iglesias	
Departamento / Área	Departamento de Ingeniería Mecánica	
Despacho	Laboratorio	
Correo electrónico	jmgiglesias@comillas.edu	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

La asignatura de Ingeniería de Materiales es una asignatura optativa de carácter semestral que se imparte en el tercer curso del Grado en Ingeniería en Tecnologías Industriales. En el plan de estudios en vigor, consta de un total de 6 créditos. Con esta asignatura se pretende que el alumno profundice en aquellos conocimientos de materiales adquiridos en los cursos de Ciencia de Materiales y que les permita tener una visión más aplicada. Estos conocimientos y aptitudes establecerán los cimientos imprescindibles para que el estudiante pueda abordar posteriormente el estudio de las asignaturas como la Tecnologías de Fabricación o el Cálculo de Estructuras, en las que interviene el conocimiento de los materiales. La asignatura tiene un carácter mixto teóricoexperimental, por lo que a los componentes teóricos se le añaden los de carácter práctico, tanto de resolución de cuestiones numéricas como la realización de trabajos prácticos de laboratorio en los que se ejercitarán los conceptos y técnicas estudiadas, familiarizando al alumno con el entorno material y humano de trabajo en el laboratorio.

Prerrequisitos

Los alumnos que vayan a cursar Ingeniería de Materiales, habrán cursado previamente Química y Ciencia de Materiales, lo que les confiere los conocimientos básicos de la Ciencia e Ingeniería de Materiales.

Competencias - Objetivos

Competencias

GENERALES		
CG03	Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.	
CG04	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.	
ESPECÍFICAS		
СЕМ07	Conocimientos y capacidades para la aplicación de la ingeniería de materiales	

Resultados de Aprendizaje	
RA1	Entender los principios del endurecimiento de metales y aleaciones.
RA2	Conocer los fundamentos básicos del tratamiento térmico de las aleaciones metálicas
RA3	Capacidad para diseñar el tratamiento térmico necesario en aleaciones metálicas.
RA4	Conocer los principales tipos de aleaciones metálicas.
RA5	Entender los fundamentos de la mecánica de fractura en el diseño de componentes
RA6	Entender los efectos de la fatiga y la fluencia en los materiales.
RA7	Entender comportamiento mecánico de polímeros y compuestos
RA8	Conocer y aplicar las distintas metodologías y herramientas para la selección de materiales.
RA9	Conocer y aplicar las principales técnicas de caracterización de materiales

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

Tema 1: Mecanismos de endurecimiento

- 1. Endurecimiento por solución sólida.
- 2. Efecto de los elementos de aleación.
- 3. Endurecimiento por tamaño de grano.
- 4. Determinación del tamaño de grano. Ley de Hall-Petch.
- 5. Endurecimiento por deformación plástica. Ecuaciones de Hollomon.
- 6. Endurecimiento por precipitación. Precipitados coherentes e incoherentes. Zonas de GuinierPreston. Tensión de Orowan.

Tema 2: Transformaciones fuera del equilibrio

- 1. Transformaciones de la austenita.
- 2. Transformaciones eutectoide.
- 3. Efecto de la temperatura en la transformación austenítica.

- 4. Efecto del tamaño de grano austenítico.
- 5. Transformación martensítica. Transformación bainítica.
- 6. Diagramas TTT: Diagramas isotérmicos y de enfriamiento continuo.
- 7. Influencia de los elementos de aleación.

Tema 3: Recristalización

- 1. Recristalización estática y dinámica.
- 2. Recristalización de un metal forjado en frío. Influencia del tiempo y la temperatura.
- 3. Recristalización en el curso de una deformación en caliente. Restauración. Crecimiento de tamaño de grano.
- 4. Recocido.

Tema 4: Aleaciones metálicas

- 1. Aceros y Fundiciones.
- 2. Fundiciones blancas, grises, maleables, dúctiles.
- 3. Aceros al carbono. Aceros de baja aleación. Aceros alto límite elástico. Aceros fuertemente aleados. Aceros Maraging, Hadfield. Aceros Inoxidables. Aceros rápidos.
- 4. Aleaciones de aluminio, titanio y magnesio.
- 5. Aleaciones base cobre.
- 6. Superaleaciones.

Tema 5: Tratamientos térmicos I

- 1. Templabilidad. Curvas de penetración de temple. Severidad de temple. Diámetro crítico ideal y real.
- 2. Factores que influyen sobre la templabilidad.
- 3. Ensayo Jominy. Bandas de templabilidad.
- 4. Tratamientos de temple.
- 5. Revenido. Influencia en las propiedades mecánicas

Tema 6: Tratamientos térmicos II

- 1. Recocidos. Normalizado. Austempering. Martempering.
- 2. Tratamientos superficiales. Tratamientos termoquímicos. Cementación y nitruración. Temple por inducción.
- 3. Defectos inducidos por el tratamiento térmico

Tema 7: Mecánica de la fractura

- 1. Mecánica de la fractura lineal elástica. Criterio energético y tensional. Tenacidad a la fractura.
- 2. Determinación de la tasa de liberación de energía (G_c). Determinación del factor de intensidad de tensiones (K_c).
- 3. Ensayos CT y SENB.

Tema 8: Fatiga y fluencia

- 1. Fatiga. Curvas S-N, ε-N y da/dN.
- 2. Crecimiento de grietas por fatiga. Ley de Paris.
- 3. Fractografía de fractura por fatiga.
- 4. Termofluencia. Parámetro de Larson-Miller

Tema 9: Comportamiento mecánico de polímeros y compuestos

- 1. Diagramas esfuerzo deformación. Comportamiento viscoelástico de polímeros.
- 2. Esfuerzos y deformaciones en sólidos poliméricos. Modelos de Maxwell. Modelo de Kelvin-Voight.
- 3. Micromecánica de los materiales compuestos. Resistencia mecánica.
- 4. Macromecánica de materiales compuestos. Comportamiento mecánico de laminados

Tema 10: Selección de materiales

- 1. Criterios de selección de materiales.
- 2. Diagramas Ashby.

Prácticas

- 1. Deformación plástica Recristalización.
- 2. Selección de materiales II
- 3. Influencia tratamientos térmicos propiedades mecánicas I
- 4. Endurecimiento por precipitación
- 5. Selección de materiales III
- 6. Influencia tratamientos térmicos propiedades mecánicas II
- 7. Fractura
- 8. Caracterización no destructiva de materiales

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

Actividades - Clase magistral y presentaciones generales: Exposición de los principales conceptos y procedimientos mediante la explicación por parte del profesor. Resolución de problemas. - Estudio individual del material a discutir en clases posteriores: Actividad realizada individualmente por el estudiante cuando analiza, busca e interioriza la información que aporta la materia y que será discutida con sus compañeros y el profesor en clases posteriores. - Resolución grupal de casos prácticos y problemas. El profesor planteará pequeños casos prácticos y problemas que los alumnos resolverán en pequeños grupos en clase y cuya solución discutirán con el resto de grupos. - Prácticas de laboratorio. Se formarán grupos de trabajo (3 o 4 personas) que tendrán que realizar prácticas de laboratorio regladas.

Metodología No presencial: Actividades

Realización de ejercicios prácticos y de aplicación fuera del aula disponibles en Moodle. - Lecturas de textos científico-técnicos sobre caracterización, selección y aplicación de materiales disponibles en Moodle. - Preparación de las prácticas de laboratorio - Búsqueda de información sobre los temas a tratar en el aula o para los trabajos de investigación por grupo. - Estudio por parte del alumno de los temas tratados

RESUMEN HORAS DE TRABAJO DEL ALUMNO

Clase magistral y presentaciones generales	Prácticas de laboratorio	Resolución de problemas de carácter práctico o aplicado	Seminarios técnicos y visitas a empresas
22.00	16.00	20.00	2.00
HORAS NO PRESENCIALES			
Prácticas de laboratorio	Estudio de conceptos teóricos fuera del horario de clase por parte del alumno	Resolución de problemas de carácter práctico o aplicado	
32.00	48.00	40.00	

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

El uso de IA para crear trabajos completos o partes relevantes, sin citar la fuente o la herramienta o sin estar permitido expresamente en la descripción del trabajo, será considerado plagio y regulado conforme al Reglamento General de la Universidad.

Actividades de evaluación	Criterios de evaluación	Peso
• Examen Final	Cuestiones teóricas y/o teórico práctica. Estas cuestiones se orientan a conceptos, definiciones, etc). Se evalúan principalmente los conocimientos teóricos. Problemas de media o larga extensión. Se evalúa principalmente la capacidad de aplicar conocimientos a la práctica y la capacidad de análisis Preguntas tipo test	60
Evaluación continua del rendimiento. Pruebas parciales	Realización de problemas similares a los resueltos en clase y casos prácticos. Una prueba a mitad del cuatrimestre	20
Prácticas de laboratorio	Se evalúan las ejecuciones y el trabajo en equipo, así como las destrezas y habilidades para el Manejo de instalaciones, equipos y programas informáticos. Se deberá redactar un informe técnico y presentar los aspectos más relevantes del trabajo	20

Calificaciones

La inasistencia al 15% de las horas presenciales en la parte teórica de esta asignatura puede tener como consecuencia la imposibilidad de presentarse a las convocatorias ordinaria y extraordinaria de esta asignatura.

La inasistencia al 15% de las horas presenciales en los laboratorios de esta asignatura puede tener como consecuencia la imposibilidad de

presentarse a las convocatorias ordinaria y extraordinaria de esta asignatura.

La falta a alguna de las sesiones de laboratorio se calificará con cero, al igual que la falta de entrega del informe de prácticas correspondiente. Así mismo la impuntualidad en la asistencia al laboratorio como en la entrega de los informes de prácticas tendrá influencia en la nota de laboratorio.

Durante los exámenes:

- No se permitirá el uso de calculadora programable, libros, apuntes o formulario alguno que pueda falsear los resultados del examen.
- Los teléfonos móviles deberán permanecer apagados, dentro de la mochila, bolso o carpeta y lejos del alumno en todo momento, debajo de la silla o al final de la clase.
- No se permite asistir al examen con un smartwacht o cualquier otro dispositivo que permita la conexión o el almacenaje de datos.

Normas uso de la IA

Se permite usar la IA para la parte de documentación, estudio y presentación de los temas elegidos por los alumnos, así como para el trabajo de laboratorio, en la medida prevista en los niveles 2 y 3 de la guía https://aiassessmentscale.com/:

Nivel 2: "La IA puede utilizarse para actividades previas a la tarea, como la lluvia de ideas, la descripción y la investigación inicial. Este nivel se centra en el uso de la IA para la planificación, las síntesis y la generación de ideas, pero las evaluaciones deben hacer hincapié en la capacidad de desarrollar y refinar estas ideas de forma independiente."

Nivel 3: "La IA puede utilizarse para ayudar a completar la tarea, incluida la generación de ideas, la redacción, la retroalimentación y la evaluación. Los estudiantes deben evaluar y modificar críticamente los resultados sugeridos por la IA, demostrando su comprensión." En todo caso, el uso de la IA tiene que estar citado y las fuentes verificadas de forma independiente por el alumno.

No se permite el uso de la IA en ninguna de las pruebas de examen, ni en los test de evaluación del rendimiento.

Convocatoria ordinaria

La calificación en la convocatoria ordinaria de la asignatura se obtendrá como:

- La calificación del examen final supondrá un 60% de la calificación final en la asignatura
- Un 20 % será la calificación de las pruebas de seguimiento. Realización de problemas similares a los resueltos en clase y casos prácticos. Una prueba a mitad del cuatrimestre
- Un 20 % será la calificación del laboratorio.

Para poder realizar esta suma ponderada es necesario obtener una nota mínima de **4,0 puntos en el examen final**; en caso contrario la nota de la convocatoria ordinaria será la nota del examen final. Además, es necesario tener una nota mínima de **4.0 puntos en** la **parte teórica** (media examen final y pruebas de seguimiento), como la de **laboratorio con al menos un 5,0**, en caso contrario la nota de la convocatoria ordinaria será la menor del **examen final** o de la **parte teórica**.

Convocatoria extraordinaria

La calificación en la **convocatoria extraordinaria** de la asignatura se obtendrá como:

- La calificación del examen final supondrá un 80% de la calificación final en la asignatura
- Un 10 % será la calificación de las pruebas de seguimiento.
- Un 10 % será la calificación del laboratorio.

Para poder realizar esta suma ponderada es necesario obtener una nota mínima de 4,0 puntos en el **examen de la convocatoria extraordinaria**; en caso contrario será la nota del examen. En caso de haber suspendido solo la parte de laboratorio se hará un examen sobre los contenidos de las 8 prácticas realizadas.

Si la asignatura queda suspensa en la convocatoria extraordinaria se ha de repetir en su totalidad, incluido el laboratorio.

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Pruebas de evaluación del rendimiento	Entre las semanas 6 y 8	
Examen Final	Periodo de exámenes ordinarios	
Prácticas de laboratorio	A lo largo del semestres,, entre la semana 4,y la 13.	
Lectura y estudio de los contendidos teóricos en el libro de texto	Después de cada clase	
Resolución de los problemas propuestos	Semanalmente	Se indicara en clase
Elaboración de los informes de laboratorio	En las semanas indicadas en el calendario de laboratorio	A la semana siguiente

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- 1. William D. Callister: Introducción a la Ciencia e Ingeniería de los Materiales. Ed. Reverté S.A.
- 2. Ciencia de materiales. Selección y diseño. Pat L. Mangonon, Primera edición, 2001. Ed.: Prentice Hall

Páginas web

Matweb: http://www.matweb.com/

Apuntes

- Transparencias de cada tema en MOODLE ROOMS
- Apuntes sobre algunos de los temas elaborados por el profesor en MOODLE ROOMS

Otros materiales

- Normativa UNE EN, ISO y ASTM.
- Hojas técnicas de materiales
- Guiones de las prácticas de laboratorio

Bibliografía Complementaria

- 1. Sidney H. Avner. Metalurgia Física. McGraw Hill, (1985)
- 2. R. E. Smallman, R J Bishop. Modern Physical Metallurgy and Materials Engineering. Butterworth-Heinemann. (1999)
- 3. Michael F. Ashby, Materiales para Ingeniería Vol. 1 y 2. Reverte, (2008).
- 4. ASM Handbook. Volúmenes 1 al 21. ASM International (Varios años).
- 5. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, (1988).
- 6. N. E. Dowling. Mechanical Behavior of Materials, Prentice Hall (2006)
- 7. D. Broek. Elementary Engineering Fracture Mechanics. Kluwer Academic Publisher (1991).
- 8. I.M. Ward, D.W. Hadley, An introduction to the mechanical properties of solid polymers. Wiley (2000).
- 9. A. Miravete, Materiales compuestos. Vol. 1 y 2. Reverte (2007)
- 10. D. Hull, T. W. Clyne. An Introduction to Composite Materials. Cambridge University Press. (1996)
- 11. Michael F. Ashby, Materials Selection in Mechanical Design. Butterworth-Heinemann, Burlington, (2011).

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792