

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Tecnologías para la Digitalización	
Código	DTC-IMAT-423	
Título	Grado en Ingeniería Matemática e Inteligencia Artificial	
Impartido en	Grado en Ingeniería Matemática e Inteligencia Artificial [Cuarto Curso]	
Nivel	Reglada Grado Europeo	
Cuatrimestre	Semestral	
Créditos	6,0 ECTS	
Carácter	Obligatoria (Grado)	
Departamento / Área	Departamento de Telemática y Computación	
Responsable	Rogelio Martinez Perea	
Horario	Lunes y Martes de 8:00 a 10:00	

Datos del profesorado		
Profesor		
Nombre	Rogelio Martínez Perea	
Departamento / Área	Departamento de Telemática y Computación	
Correo electrónico	rmperea@icai.comillas.edu	
Profesor		
Nombre	Juan Vicente Herrera Ruiz de Alejo	
Departamento / Área	Departamento de Telemática y Computación	
Correo electrónico	jvherrera@icai.comillas.edu	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

Esta asignatura tiene como objetivo introducir a los alumnos en una serie de tecnologias fundamentales en la transformación digital de la empresa, como son: Cloud Computing, Augmented Reality y Blockchain. El peso de los aspectos Cloud es muy relevante en la asignatura al tratarse de una tecnología fundamental para la implementación practica de soluciones de inteligencia artificial y aprendizaje automatico en entornos profesionales. La asignatura tiene un enfoque eminentemente práctico con el objectivo de que los alumnos aprendan a aplicar estas tecnologias utilizando soluciones comerciales en estado del arte (Google Cloud, Unity, etc)

Prerrequisitos

- Nociones generales de sistemas operativos
- Nociones generales de redes
- Nociones generales sobre aplicaciones y sistemas distribuidos

Competencias - Objetivos		
Competencias		
GENERALES		
CG08	Capacidad para identificar, analizar y definir los elementos significativos que constituyen un problema vinculado a la explotación de datos e inteligencia artificial aplicada a las actividades empresariales para resolverlo con criterio y de forma efectiva	
CG13	Capacidad para la gestión de la investigación, desarrollo e innovación tecnológica.	
ESPECÍFICAS		
CE18	Conocimiento de tecnologías habilitadoras de la transformación digital para el desarrollo de soluciones innovadoras en las organizaciones.	
CE26	Capacidad para aplicar técnicas de inteligencia artificial adecuadas para la realización de trabajos y proyectos de ingeniería.	

Resultados de Aprendizaje		
RA1	Conocer las plataformas que ofrece el Cloud Computing para el despliegue de infraestructura IT desde el punto de vista económico y operacional	
RA2	Conocer las tecnologías y soluciones Cloud Computing existentes para el despliegue de soluciones de software de analítica de datos	
RA3	Conocer las características de la tecnología Blockchain para proponer nuevos modelos de negocio a partir de ella	
RA4	Conocer las ventajas que proporciona la realidad virtual y aumentada para el desarrollo de nuevos modelos de negocio	

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

- 1. Introducción a la asignatura
- 2. Infraestructura como Servicio (laaS)
 - 1. Introducción a Cloud Computing
 - 2. Capacitadores tecnológicos para el Cloud Computing
 - 3. Plataformas Cloud
 - 4. Automatización y Orquestación en el Cloud
 - 5. Seguridad en el Cloud
- 3. laaS en Google Cloud
 - 1. Introduccion a Google Cloud
 - 2. Google Cloud: recursos y IAM
 - 3. Como interaccionar con Google Cloud
 - 4. Google Compute Engine y Google VPC

5. Google storage solutions

4. Contenedores como Servicio (CaaS)

- 1. Concepto de microservicios
- 2. Contenedores
- 3. Orquestación de contenedores
- 4. Arquitectura kubernetes
- 5. Principales recursos de Kubernetes
- 6. Google Kubernetes Engine
- 7. Best practices para el uso de GKE

5. Infraestructura como Código (laaC)

- 1. Introducción a la Infraestructura como Código
- 2. Herramientas Populares de IaC
 - 1. Terraform
 - 2. Ansible
- 3. Automatización con Contenedores
 - 1. Podman/Docker
 - 2. Kubernetes
- 4. Ciclo de Vida de IaC y Buenas Prácticas
- 5. Terraform
- 6. Ansible

6. DevOps

- 1. Introducción a DevOps.
- 2. Cultura DevOps
- 3. Herramientas DevOps
- 4. DevOps en contenedores y orquestadores (Docker, Kubernetes, OpenShift).
- 5. Evaluación y Medición
- 6. Futuro y tendencias de DevOps (DevSecOps, MLOps y AlOps)
- 7. Control de versiones (Git, GitHub, GitLab).
- 8. CI/CD (Jenkins, GitHub Actions, ArgoCD).
- 9. Indicadores clave de rendimiento (KPIs) en DevOps: MTTR, Lead Time, Deployment Frequency. Grafana y Prometheus.
- 10. Métodos para evaluar el impacto de DevOps en proyectos.

7. Plataforma como Servicio (PaaS)

- 1. Introducción al PaaS:
 - Definición de PaaS y su papel en el desarrollo de aplicaciones.
 - Ejemplos destacados de plataformas (Kubernetes, Google App Engine, Heroku, AWS Elastic Beanstalk).
- 2. Ventajas de PaaS:
 - Simplificación del desarrollo y despliegue.
 - Escalabilidad automática.
 - Menor gestión operativa.
- 3. Google Cloud como plataforma de PaaS:
 - Servicios de Google Cloud enfocados en PaaS: App Engine, GKE.
 - Casos de uso y beneficios.
- 4. Desafíos y consideraciones de PaaS:
 - Restricciones del entorno gestionado.
 - Costos y control limitado sobre la infraestructura.
- 5. Prácticas recomendadas para el uso de PaaS:
 - Monitorización activa.

- Gestión eficiente de costes.
- Optimización del rendimiento.
- 8. Funciones como Servicio (FaaS)
 - 1. Introducción a FaaS
 - 2. Principios y Arquitectura de FaaS (AWS Lambda, Google Cloud Functions, Azure Functions)
 - 3. Caso Práctico con Google Cloud Functions
- 9. Servicios cognitivos en Cloud
 - 1. Vertex AI concept
 - 2. Colab and Workbench
 - 3. AutoML, Custom models
- 10. Realidad Aumentada
- 11 Blockchain

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

Clase magistral y presentaciones generales (30 horas presenciales). Exposición de los principales conceptos y procedimientos mediante la explicación por parte del profesor. Incluirá presentaciones dinámicas, pequeños ejemplos prácticos y la participación reglada o espontánea de los estudiantes.

CG08, CG13, CE18, CE26

Realización de prácticas en laboratorio (30 horas presenciales). Realización de las actividades planteadas en el laboratorio. Exposición de los resultados

CG08, CG13, CE18, CE26

Tutorías. Se realizarán en grupo e individualmente para resolver las dudas que se les planteen a los alumnos después de haber trabajado los distintos temas. Y también para orientar al alumno en su proceso de aprendizaje.

CG08, CG13, CE18, CE26

Metodología No presencial: Actividades

Estudio individual del material (50 **horas no presenciales**). Actividad realizada individualmente por el estudiante cuando analiza, busca e interioriza la información que aporta la materia y que será discutida con sus compañeros y el profesor en clases posteriores.

CG08, CG13, CE18, CE26

Resolución de problemas y proyectos prácticos a resolver fuera del horario de clase por parte del alumno (60 horas no presenciales). El alumno debe utilizar e interiorizar los conocimientos aportados en la materia. La corrección a la clase se realizará por parte de alguno de los alumnos o el profesor según los casos. La corrección individualizada de cada ejercicio la realizará el propio alumno u otro compañero según los casos (método de intercambio).

CG08, CG13, CE18, CE26

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES				
Clases magistrales expositivas y participativas	Sesiones prácticas con uso de software	Tutorías para resolución de dudas		
30.00	30.00	5.00		
HORAS NO PRESENCIALES				
Estudio personal	Sesiones prácticas con uso de software			
50.00	60.00			
CRÉDITOS ECTS: 6,0 (175,00 horas)				

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

El uso de IA para crear trabajos completos o partes relevantes, sin citar la fuente o la herramienta o sin estar permitido expresamente en la descripción del trabajo, será considerado plagio y regulado conforme al Reglamento General de la Universidad.

Actividades de evaluación	Criterios de evaluación	Peso
Exámenes: • Examen Final	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos en el laboratorio Análisis e interpretación de los resultados obtenidos en la resolución de problemas. 	60
Trabajos de carácter práctico individual o en grupo. Tareas practicas de laboratorio o ejercicios resueltos de manera individual o en grupo.	 Comprensión de conceptos. Aplicación de conceptos a la realización de proyectos , actividades de laboratorio y resolución de problemas. Análisis e interpretación de los resultados obtenidos en la realización de proyectos y resolución de problemas. 	30
Proyecto final de naturaleza práctica a realizar utilizando a plataforma de Google Cloud	 Comprensión de conceptos. Aplicación de conceptos a la realización de proyectos , actividades de laboratorio y resolución de problemas. Análisis e interpretación de los resultados obtenidos en la realización de proyectos y resolución de problemas. 	10

Calificaciones

La asignatura consta de un bloque temático, correspondientes a los contenidos impartidos en el segundo cuatrimestre. Todas la notas que

siguen son notas entre 0 y 10 puntos.

A lo largo del bloque se obtendrán las siguientes notas:

- Nota de evaluación continua del rendimiento: EC
- Nota de evaluación del proyecto final: PF
- Nota del examen final: EF (fin de cuatrimestre)

La Nota de Clase (EC) tambien reflejara la actitud, proactividad y paticipacion del alumno durante las clases

La nota final de la asignatura (NA) será:

NA=MAX(0,6*EF+0,3*EC+0,1*PF ; EF) (si EF>=4) NA=EF (si EF<4)

Examen extraordinario

Si no se ha aprobado la asignatura mediante los procedimientos anteriores, se deberá realizar un examen extraordinario . En este caso, la nota final sera:

NA=MAX(0,8*EF+0,2*EC; EF) (si EF>=4) NA=EF (si EF<4)

Asistencia:

La inasistencia al 15% o más de las horas presenciales de esta asignatura puede tener como consecuencia la imposibilidad de presentarse a las convocatorias ordinaria y extraordinaria.

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Examen final	Periodo de examenes ordinarios	
Estudio de los contenidos teoricos	Antes y despues de cada clase	
Realizacion de las practicas	Semanalmente	

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- Overview of Cloud Computing de Michael Wufka y Massimo Canonico
- The Cloud Computing Book de Douglas E. Comer
- Google Cloud for Developers de Ted Hunter y Steven Porter.
- Google Cloud Skills Boost
 - o Develop and Deploy Applications on Google Cloud
- The Phoenix Project de Gene Kim, Kevin Behr, George Spafford
- Kubernetes Up & Running: Dive into the Future of Infrastructure de Kelsey Hightower, Brendan Burns, Joe Beda

Bibliografía Complementaria

- Team Topologies de Matthew Skelton, Manuel Pais
- The Unicorn Project de Gene Kim
- Open Practice Library
- Terraform: Up and Running de Yevgeniy Brikman
- Cloud Native Patterns de Cornelia Davis

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792