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Abstract

This study presents an operational and robust method for detecting and dating cereal

harvest events using temporal stacks of Copernicus Sentinel-2 imagery and crop and fields

border information from ancillary records. The proposed approach is exempt from training

data, thereby enabling its application across diverse geographical contexts. The method

was used to generate 10 m resolution maps of harvest dates for all wheat and barley fields in

2021, 2022, and 2023 in Castilla y León, a major cereal-producing region of Spain. This work

also investigates the use of a reference dataset derived from real time kinematic records

(RTK) in agricultural machinery as an alternative source of large-scale in situ data reference

as for Earth observation-based agricultural products. The initial comparison of annual

harvest date maps with the RTK-based reference datasets revealed that the temporal lag

in the detection of harvest events between Earth observation-derived maps and reference

harvest dates was less than 10 days for 65.7% of fields, while the temporal lag was between

10 and 30 days for 26.1% of the fields. The 3-year average root mean square error of the

lag between harvest dates in the reference dataset and maps was 16.1 days. An in-depth

visual analysis of the Sentinel-2 temporal series was carried out to understand and evaluate

the potential and limitations of the RTK-based reference dataset. The visual inspection

of a representative sample of 668 fields with large temporal lags revealed that the date

of harvest of 41.11% of these fields had been correctly identified in the Sentinel-2 based

maps and 16.43% of them had been incorrectly identified. The visual inspection could

not find evidence of harvest in 10.52% of the analyzed fields. Monte Carlo simulations

were parameterized using the findings of the visual inspection to build a series of synthetic

reference datasets. Accuracy metrics calculated from synthetic datasets revealed that the

quality of the harvest maps was higher than what the initial comparison against the RTK-

based reference dataset suggested. The date of harvest was registered within 10 days in

both the maps and the synthetic reference datasets for 90.5% of the fields, the root mean

squared error of the comparison was 9.5 days, and harvest dates were registered in the

Sentinel-2 based maps 2 days (median) after the dates registered in the reference dataset.

These results highlight the feasibility of mapping harvest dates in cereal fields with time

series of high-resolution satellite imagery and expose the potential use of alternative sources

of calibration and validation datasets for Earth observation products. More generally, these

results contribute to defining plausible targets for monitoring of agricultural practices with

Earth observation data.
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1. Introduction

The continuous acquisition of information in agricultural ecosystems is crucial to

enhance crop management, food security, and environmental sustainability. Since the 1980s,

Earth observation (EO) has become an integral source of information for agricultural moni-

toring over large extents. EO based initiatives have demonstrated their value to provide

information to assess essential agriculture characteristics including crop area [1–4], irriga-

tion and drought management [5], disease and pest control, phenology monitoring [6–8],

and ultimately yield and production assessment [9]. For a more detailed description, Weiss

et al. [10] produced a comprehensive review of remote sensing initiatives for agriculture

applications. The combination of satellite imagery and crop growth models has also been

instrumental in generating more precise forecasts of yields [11–13] and other relevant agro-

nomic variables such as crop phenology [14], carbon budget [15,16], nutrient content [17],

and water use [14]. More comprehensive reviews of the integration of remote sensing and

crop modelling are available in dedicated manuscripts [18–20].

Traditionally, agricultural monitoring of management practices has been constrained to

moderate-resolution sensors that allowed high frequency of observations. Therefore, most

research has focused on regions with large agricultural fields and where the requirement

for high spatial granularity was not a limitation [2,4,21–24]. Today, several international

initiatives operationally collect and analyze moderate resolution remote sensing data on

a regular basis to provide global and regional crop production projections. Some exam-

ples include the Group on Earth Observations Global Agricultural Monitoring Initiative

(GEOGLAM) [25], the JRC-EC Monitoring of Agricultural Resources (MARS) [26], and the

Famine Early Warning Systems Network and the Anomaly Hotspot of Agricultural Produc-

tion (ASAP) [27] or the Famine Early Warning System Network [28,29]. Over the years, the

gradual increase in high-resolution sensors (10–30 m) and the subsequent higher temporal

frequency of observations are enabling large scale EO-based agriculture monitoring in

regions with more granular and heterogeneous agricultural landscapes [30–36].

Crucial to all these applications is the near real-time monitoring of agricultural

practices. Indeed, there is a growing recognition of the role of agricultural manage-

ment practices for the provision of ecosystem services, soil protection, and biodiversity

conservation [37–40]. However, monitoring these practices using Earth Observation (EO)

presents unique challenges. While annually stable variables like crop type can potentially

be detected with images from multiple acquisition windows, events associated with man-

agement practices such as mowing and harvest operations often have short-lived spectral

impacts on land surfaces, making their detection more difficult, as images at the right

acquisition period are required.

Since 2014, the Copernicus program, the EO component of the European Union Space

Programme, has provided high-resolution optical (Sentinel-2) and radar (Sentinel-1) data

with five- to six-day revisit periods. This increased availability of EO data has stimulated

research into crop monitoring and agricultural management applications. Initial efforts

centred on crop mapping and the detection of various agricultural practices (e.g., mowing,

green cover, etc.). Examples include early-season mapping of winter crops using Sentinel-2

optical imagery [41], crop type mapping with multitemporal optical imagery [42,43], or

the combination of both Sentinel 1 and Sentinel 2 [44]; mowing and mowing intensity in

grassland using Sentinel-2 imagery [45], Sentinel-1 C-band SAR [46], and the combination

of Sentinel-1 and Sentinel-2 [47]; or cover crop detection [48]. The advancement of Earth
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Observation (EO) techniques in agricultural monitoring requires substantial quantities of

accurate and current in situ data for calibration and validation purposes. Yet, in situ data

are often scarce, limiting the scope of studies to relatively small geographical areas, and

preventing scalability and deployment of local results. Some studies have successfully

exploited existing large-scale in situ data sources for calibration and validation of EO

products. For example, the Land Use and Land Cover Survey (LUCAS) [49,50] has been

used as training data to create high-resolution pan-European crop type maps from Sentinel

1 [51] and Sentinel 2 [52] imagery. However, surveys like LUCAS do not take place on an

annual basis, which limits their use or calibration and validation of annual features. At the

national level, several programs have established frameworks to monitor crop development

in situ over the season on a regular basis, such as the Germany National Meteorological

Service [53] and Cere’Obs in France. Furthermore, several studies have explored alternative

data sources such as phenocams as a potentially valuable tool for monitoring plant growth

and health across Europe [54–56]. This study focuses on the identification of harvest

dates in cereal fields. Cereals are a predominant crop type in numerous global regions

and their cultivation significantly influences agricultural landscapes. Determining the

harvest date of cereal fields is critical for several reasons. Traditionally, it was assumed

that all sown land would be harvested at the end of the season. However, this assumption

may be weakening due to factors such as geopolitical conflicts, climate change-induced

droughts and extreme weather events [57], and market instability, which may result in

some cultivated areas not being harvested. This uncertainty may cause bottlenecks in

agricultural supply chains. Furthermore, the progression of harvest activities in cereal-

dominated regions can significantly influence landscape configuration and associated

ecosystem services. This study introduces a consistent approach to mapping cereal (wheat

and barley) harvest dates in operational settings using dense Sentinel 2 image stacks. The

method does not require training data and can be easily calibrated with existing data

sources. Due to its simplicity, this approach is suitable for scaling up, and since agricultural

operations in cereal fields exhibit high homogeneity across different latitudes, the method

can be adapted to various geographical contexts. This work has three main objectives:

(1) propose a robust, scalable, and traceable approach for detection of date of harvest in

cereal fields; (2) explore the potential and limitations of alternative reference datasets for

the validation of EO-based products on agricultural management practices; (3) improve our

understanding of capabilities and the limitations of the analysis of dense stacks of Sentinel

2 data to monitor agricultural practices.

2. Materials and Methods

2.1. Study Area and Data

The area of the study is the region of Castilla y Leon (Spain). Castilla y Leon covers

94,222 km2 in the northern plateau of the Iberian Peninsula, with latitudinal and longitudi-

nal ranges of 3.1 and 4 degrees, respectively. The average altitude over the sea level of the

region is approximately 830 m, with the lowest elevation at 183 m and the highest peak at

2649 m above mean sea level (Figure 1). Castilla y León is a major agricultural region in

Spain, and cereals like wheat, barley, rye, oats, and sunflowers are among the most common

crops in the region. Cereals in Castilla y Leon cover on average an area of 16,750 km2 every

year distributed across 1,149,829 fields. The study focused on winter wheat and winter

barley fields, which account for 992,917 fields and comprise 86% of the cereal fields in the

study area. The median field size of these two crops is 0.61 ha. The location and perimeters

of the cereal fields were obtained from the geospatial applications (GSA) for 2021, 2022

and 2023. GSAs are part of the declarations farmers must submit to qualify for agricultural
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subsidies under the European Common Agricultural Policy (CAP) and include, among

others, information about cultivated crops, field perimeters, and location.

Figure 1. Map of the spatial distribution of wheat, barley and other cereals in Castilla y Leon obtained

from the GSA for year 2022. Inset map shows the location of Castilla y Leon (dark grey) in the

European Union (light grey).

For each year of study, stacks of Sentinel-2 images were created for the period from

1 June to 30 August and Copernicus Sentinel-2 L2A imagery was obtained from Google

Earth Engine Harmonized Sentinel-2 MSI collection [58]. The Google Earth Engine ‘Cloud

Score+ S2_HARMONIZED’ dataset was used to mask out clouds and cloud shadows in the

L2A Sentinel-2 images. Cloud Score+ is a quality assessment processor for medium-to-high

resolution optical satellite imagery [59]. This dataset provides a cloud score that grades the

usability of individual pixels based on a spectral distance between the observed pixel and a

theoretical clear reference observation (e.g., 0 to 1). For this study, the cloud score value was

set at 0.6. While the threshold selection may depend on the specific application, a value of

0.60 has been demonstrated a reasonable choice for most analyses [59]. Real-time kinematic

positioning (RTK) coordinates were acquired by the Technical Agrarian Institute of Castilla

y Leon (ITACyL). Real-time kinematic positioning (RTK) is a satellite navigation technique

used to enhance the precision of position data derived from satellite-based positioning

systems. For this, ITACyL relies on a network of fifty reference stations strategically located

across the territory to provide corrections to signals from the Global Positioning System

(GPS), the European GALILEO system, and the Russian GLONASS system. Based on these

data, and to protect farmers’ privacy, ITACyL provided information in the form of single

daily binary rasters with a spatial resolution of 10 m. These rasters indicated the presence

or absence of agricultural machinery and encompassed the entire territory of Castilla y

León for the months of June, July, and August in the years 2021, 2022, and 2023. RTK

records are not exhaustive, as not all the agricultural machines operating in the region

provide RTK records.
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2.2. Methods

This study developed a method to detect harvest dates in cereal fields using dense

stacks of Sentinel-2 imagery. The approach exploits changes in reflectance in the Sentinel-

2 red wavelength (664.6–664.9 nm) throughout the cereal growing season. Vegetation

indices, such as the Normalized Difference Vegetation Index (NDVI), have been widely

employed in remote sensing for monitoring vegetation dynamics. However, the analysis

of their temporal profiles encounters certain limitations when applied to crop monitoring.

Distinguishing between senescence and harvest-related events based solely on vegetation

indices can be challenging, as both processes may lead to similar changes in the vegetation

index values. The temporal fluctuations in the spectral response of cereal fields in the red

wavelength, however, provide valuable information to identify and date harvest events.

Red reflectance, typically low during the growing season, gradually increases as chlorophyll

content drops (senescence) and reaches a maximum immediately after harvesting due to

the high reflectance of cereal stubble left by the harvester (Figures 2 and 3).

A specific spectral index (harvest date index) was proposed to take advantage of this

behaviour. This index calculates the normalized difference in the red wavelength at any

given time and a pre-established reference period. The formula is as follows:

HDI =
(B4 − B4re f )

(B4 + B4re f )
(1)

where HDI is the harvest date index; B4 is the surface reflectance in Sentinel 2 band 4 at a

given point in time; B4ref is the surface reflectance in Sentinel 2 band 4 during the reference

period. The reference period was defined as the median value composite of cloud-free

observations during a predefined period at the peak of the vegetative season (a 30-day

temporal window between April and May was adopted in this study).

Figure 2. Graphic description of the basis for the detection of harvest events with dense stacks of

Sentinel 2 imagery. Harvested surfaces in cereal parcels have higher reflectance in the red wavelength

(Sentinel 2A: 664.6, Sentinel 2B: 664.9 nm) than cereal parcels at senescence stage or parcels at different

phenological stages (Top series of images). In the series of images in the middle the distinction is also

apparent in the sequence of true colour images (blue bands: 492.4/492.1 nm, green bands: 559.8/559.0

nm, red bands: 664.6/664.9 nm), but not in the sequence of normalized difference vegetation (NDVI)

images. The blue arrow in the image identifies an already harvested part of a cereal field. The green

arrow marks the part of the same field that has not been harvested yet.
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Figure 3. Temporal profiles of normalized difference vegetation index (NDVI) and harvest date index

for a field in 2022 cultivated with cereal in the study area. The vertical dashed black line represents

the date of harvest as registered in the RTK records for the parcel. The NDVI profile displays the

phenological cycle of the crop, with a peak value around May (DOY 120–150) and a subsequent

senescence. The harvest date index profile shows a gradual increase after crop senescence, and a

peak between mid-July and August (DOY 190–240), corresponding to the higher reflectance in the

red wavelength associated with the presence of stalks in harvested fields.

The harvest date index was calculated for all cloud-free observations after the reference

period. The date of harvest at pixel level was assigned to the acquisition date of the image

with the highest harvest date index value. To eliminate local maxima due to undetected

clouds, the maximum harvest date index value was defined as the 95th percentile of the

index values during the growing season. The harvest date was assigned to the acquisition

date of the first cloud-free observation equal to or greater than the seasonal maximum

harvest date index value for a given pixel, according to the following formulas.

HDIt ≥ HDImax × P95 (2)

HDIt ≥ HDImean − HDISTD (3)

Let (T = {t_1, t_2, t_3. . ., t_n}) be an ordered sequence of image acquisition dates {i},

for i ∈ {1, 2, . . ., n}

doh = argmin {i: C1(t_i) ∧ C2(t_i), for i ∈ {1, 2, . . ., n}} (4)

where HDIt is the harvest date index at a given point in time; P95 is the 95th percentile of

the harvest index values registered during the season; HDImax is the maximum harvest

index registered during the season; HDImean and HDISTD are, respectively, the multiannual

mean and standard deviation of the harvest date index during the summer months (June to

August). These parameters were calibrated from the values of the index for cereal pixels in

the crop maps of previous years [60]. Alternatively, additional tests indicated that historical

calibration parameters could also be replaced by HDI mean and standard deviation values

obtained from the population of wheat and barley fields in the year of analysis; doh is the

date of harvest at pixel level; C1 is condition in formula [2]; C2 is condition in formula [3].

Finally, the harvest date for each field was estimated as the mode of the pixel values within

the field (Figure 4).
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Figure 4. Flowchart illustrating Sentinel-2 based date of harvest monitoring approach.

3. Results

The proposed method was employed to generate 10 m spatial resolution maps with

harvest date information for each wheat and barley field in the study area for years 2021,

2022, and 2023. These maps, hereafter “DoH maps”, allowed the generation of a calendar

of harvest operations in Castilla y Leon for the three study seasons (Figure 5). The annual

curves indicate that harvest of cereal fields begins around DOY 140 and finishes around

DOY 230. The seasonal distribution of the operations follows a bimodal curve, with a

first lower peak at DOY 160 and a second main peak around DOY 200. The inter-annual

variations between the curves can be attributed to the specific climatic conditions of each

year. For instance, the curve for year 2022 results in an earlier peak, related to the drier

conditions of that season (Figure 5).

Figure 5. Density histograms of the harvest calendar for years 2021, 2022, and 2023.

The DoH maps also exposed the spatial and temporal heterogeneity of harvest opera-

tions across the study area (Figure 6), with some locations in which harvest is concentrated

within a few days, and others where harvest operations can span several weeks. These

local patterns are also discernible at the regional level, where values aggregated on a 1 km

grid illustrate a pattern in which cereal fields are first harvested in the warmer and lower

altitude center, before gradually moving to the cooler high-altitude locations of the pe-

riphery (Figure 7). This general trend is subject to annual variations related to the specific

meteorological conditions of each season. The annual DoH maps show that the length

of the harvest campaign varies from year to year, without a clear spatial pattern, lasting
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between 5 and 15 days in more than 82% of the cultivated area (Figure 7), and more than

20 days in less than 8% of the cultivated area, often located in the less productive locations.

Figure 6. Example date of harvest 10 m spatial resolution map at five locations. Each cereal parcel is

assigned a single date.

Figure 7. Median date (day of year) of harvest maps (1 km grid) of study area in three consecutive

years (left column) and time span of detected harvest dates (right column). Time span was defined

as the number of days between the 95th and 5th percentiles of the dates of harvest detected for the

parcels in a grid cell.
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Figure 8 delineates the spatial distribution of Growing Degree Days (GDD) and their

interannual variability within the designated study region. The GDD spatial distribution is

primarily influenced by topographical variables, such as elevation and relief, manifesting

discernible interannual differences consequent to the variability in annual meteorological

conditions. Visual comparative analysis reveals that spatial patterns analogous to those

observed in the progression of harvest campaigns, as depicted in Figure 7, can be tenta-

tively recognized. Moreover, the temporal discrepancies in the initiation of harvest across

consecutive years demonstrate a concomitant relationship with the fluctuations presented

in the annual GDD charts. While operational and regulatory factors may contribute to

some extent, it is predominantly the annual climatic patterns that govern the chronology of

the harvesting period within the study area, as well as its interannual variations.

Figure 8. Growing degree-day (GDD) estimated in July (DOY 210) for 2021, 2022, and 2023 in

Castilla y Leon. GDD was computed from temperature of air at 2 m above the surface (11,132 m

resolution) extracted from ERA5-Land reanalysis dataset of the European Centre for Medium Weather

Forecast [61]. Calculations were carried out in Google Earth Engine.

Comparison with Reference Dataset

RTK positions of agricultural machinery recorded in the field were used to generate

a reference dataset of cereal harvest dates. This dataset was developed under the initial

working assumption that RTK positions recorded within cereal fields during the summer

months (June, July, and August) were likely associated with harvest activities. The RTK

records were organized in daily binary rasters covering the entire study area. Each raster

contained the locations where the RTK positions had been recorded on that day. For

each year, the daily rasters were consolidated into monthly single-band images. Fields

with records in less than 30% of their area were excluded from the analysis to eliminate

fields potentially contaminated with RTK readings along neighbouring roads or machinery

movements within the field. The harvest date for each field was determined as the day

with the highest number of RTK records within its boundaries (Figure 9). The resulting

reference dataset comprised 167,589 fields (46,220 for 2021, 61,939 for 2022, and 59,430 for

2023), representing an average sampling of 5.5% for the three years.

Figures 10 and 11 illustrate the histograms depicting the temporal lags, hereafter

“deltas”, between the harvest dates in the reference dataset and those derived from the

DoH maps. On average, the harvest dates for the fields in the DoH maps were within a

10-day difference for 65.72% of the fields. For 26.1% of the fields, the deltas between the

two sources ranged from 10 to 30 days, while for 8.2% of the fields, the disagreement was

larger than 30 days. A right-skewed distribution was observed in the three-year histogram,

indicating that the DoH maps generally detected the date of harvest with a delay compared

to the reference dataset. The median delta for the three years was a 2-day delay, with

the 25th and 75th percentiles corresponding to 4-day and 1-day delays, respectively. The

average root mean square error (RMSE) of the delta for the three years was 16.10 days.
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Figure 9. Top panel: location of cereal fields in the reference dataset for year 2021 (46,220). Bottom

panels: Sequence of steps for the generation of a reference dataset from Real Time Kinematic position-

ing data. Left panel: 10 m raster image of locations with RTK records; Centre panel: share of pixels

with RTK records per parcel; Right panel: image of cereal parcels with dates of harvest assigned as

the day with the higher number of RTK records within the field.

Figure 10. Three-year histograms of time lags (Delta) between dates of harvest in reference dataset

and Sentinel 2 based analysis for cereal parcels.
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Figure 11. Annual histograms of time lags (Delta) between dates of harvest in reference dataset and

Sentinel 2 based analysis for cereal parcels.

A subset of fields was selected for visual inspection of the time series of Sentinel-

2 images. The analysis aimed to better understand the reasons behind large deltas and

ultimately evaluate the quality of the reference dataset. This subset included fields with

deltas between the reference dataset and DoH maps larger than 10 days. These fields were

drawn using a stratified random sampling, wherein four strata were established according

to the magnitude of the deltas: fields with delta less than −30 days; fields with delta between

−30 and 10 days; fields with delta between 10 and 30 days; and fields with delta larger

than 30 days. A total of 668 fields were inspected, representing a sampling intensity of 1%

per stratum and year of analysis. Copernicus Sentinel-2 L2A imagery from Google Earth

Engine Harmonized Sentinel-2 MSI collection [58] was employed to construct the temporal

image stacks for the scrutinized fields. However, unlike the automatic detection, cloud-

contaminated observations were not filtered out from the analysis. The visual analyst sought

evidence of the harvest event within the Sentinel-2 image stacks for the selected fields.

The results of the visual analysis showed a considerable heterogeneity across strata

(Table 1). Agreement, defined as evidence of a harvest event found in the visual analysis of

the Sentinel-2 images within five days of the date defined in the DoH maps, was observed

for an average of 41.11% of cases. For 22.9% of the fields, visual evidence of harvest events

was found beyond five days of the dates registered in the DoH maps. Visual inspection

failed to yield conclusive evidence for 30.7% of the inspected fields. These inconclusive

cases encompassed fields lacking cloud-free observations, those with irregular geometries

or were very small in size, fields with several subdivisions, and fields displaying atypical

seasonal phenological patterns. This analysis underscored that the initial assumption

underpinning the construction of the RTK-based dataset was not universally applicable

across all fields under examination. The substantial number of fields for which harvest

dates in the visual inspection and the DoH maps agreed suggested that the RTK records

used to generate the reference dataset may not always represent harvest events, and they

could, instead, correspond to different agricultural operations. It also highlighted that

the quality of the harvest maps was higher than what the initial comparison against the

RTK-based reference dataset suggested.

Table 1. Results of the visual analysis of Sentinel-2 imagery for a sample of cereal parcels with large

discrepancies in date of harvest for cereal parcels for 2021, 2022, and 2023.

Number of Days of Difference
Average (10, 30] [−30, 10) ≧30 ≦−30

22.91 42.34 13.19 17.47 18.63 Incorrect detections
8.67 19.19 7.92 4.04 3.52 No cloud free observations
14.27 11.34 8.61 17.47 19.67 Irregular shape/small size
12.7 14.33 8.80 14.09 14.63 No evidence of cultivation
41.11 12.48 61.49 46.92 43.56 Correct detections
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Monte Carlo simulations [62] were used to create synthetic reference datasets that

incorporated the insights from the visual analysis, minimized the uncertainties associated

with the original reference dataset, and isolated the contribution of the algorithm to the

accuracy metrics. For each synthetic dataset, a subset of fields with large deltas was

replaced with a random sample of fields extracted from those with low deltas of the same

size. The size of this subset was established based on the percentage of fields with large

deltas correctly mapped in the DoH maps identified during the visual inspection. Similarly,

a subset of fields with large deltas, the size of the percentage of inconclusive fields in the

visual inspection analysis, was removed from the analysis. This process was replicated to

create 10,000 synthetic datasets, and the revised accuracy metrics were computed as the

average of the resulting replicas (Figure 12). Based on these metrics, the median delta for

the three years was a 3-day delay, and 95% of the fields were detected within 10 days of

difference between the DoH maps and the synthetic reference datasets. The average RMSE

of the delta for the three years was 9.5 days.

Figure 12. Three-year histograms of time lags (Delta) between dates of harvest in adjusted reference

dataset and Sentinel 2 based analysis for cereal parcels.

4. Discussion

This work presents a reliable method for post-season detection of harvest dates in

cereal fields using dense Sentinel-2 satellite imagery. The approach examines variations in

reflectance within the red wavelength during the growing season and identifies changes

associated with harvesting events. This method does not require training data and can

potentially be extended to other geographical contexts with minimal recalibration, given

the uniformity of cereal harvest practices across different production regions. Advances

in the automated detection of agricultural practices at the parcel level over large areas,

as demonstrated in this study, hold value for diverse applications. This is relevant in

the specific context of harvest detection. As climate change is expected to result in more

frequent extreme events, harvest operations may exhibit yearly fluctuations and spatial

variability contingent upon specific environmental conditions. Agricultural management

will have to adapt to this evolving reality. A precise characterization of the harvest calendar

across large cereal production regions will be key to identify and mitigate critical bottlenecks

within agricultural supply chains and ultimately enhance the resilience of food systems.

Furthermore, detailed monitoring of harvest season progression could inform the design

and evaluation of targeted strategies to enhance and preserve environmental services within
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agricultural ecosystems, as pursued by initiatives under the Common Agricultural Policy or

the Nature Restoration Law within the European framework. In the context of the European

Union, where highly precise annual information on crop type and field limits exists, the

primary benefit of Earth observation-based analysis lies in in-season analysis and practice

detection. In-season assessments can provide additional information for control and

verification of practices, as well as contribute to the development of precision agriculture,

offering decision tools for adaptive planning of agricultural operations in response to

short- and medium-term weather forecasts. Moreover, in-season assessments can help in

planning harvest operations to maintain landscape structure within certain parameters that

protect ecosystem service provision. The proposed method could potentially be adapted

for in-season analyses with minor modifications. However, in-season assessments would

require robust calibration based on historical EO and crop data, as well as the incorporation

of the inherent uncertainties associated with in-season assessments. Continuous revision

and update of estimates would be necessary as more data become available along the

agricultural season.

Agricultural landscapes are highly dynamic systems, with large inter and intra annual

variations driven by crop phenological cycles and management decisions. The organization

of the harvest operations is particularly relevant at the local level, because, in regions where

cereal cultivation is predominant, it can temporally shape the complexity of the landscape

structure. These rapid transformations of the structure of agricultural landscapes may

potentially impact the capacity of the ecosystem to supply food, shelter and passage to

highly dependent fauna [63]. This connection is reflected, for instance, in the increasing

environmental requirements of the European Common Agricultural Policy. The DoH

maps effectively captured these dynamics, emphasizing the considerable variability in

the progression of harvest activities over time across the study area and the changes in

these patterns from year to year. Specifically, the maps were able to reveal a pattern that

moves from lower altitude and warmer central locations towards higher altitude and cooler

peripheral areas of the study area. This general centrifugal trend is also influenced by

annual variations in the harvest calendar, likely linked to annual weather conditions and

regulatory frameworks. At the local level, the maps reflect the progression of the harvest

campaign throughout the landscape. In some locations, the harvest campaign is completed

within a brief timeframe, while in others, cereal fields are harvested during a period that

can extend several weeks.

Over the past decade, several studies have harnessed dense stacks of high-resolution

satellite imagery to monitor agricultural practices. For instance, grassland management

including mowing, mowing frequency detection, and mowing event timing has been

explored using various sensors such as sensors SPOT [64], Sentinel-1 [65], Sentinel 2 [45]

or a combination of optical sensors [66,67], or optical and radar [46,47,68]. These studies

demonstrate that mowing events could be detected with temporal series of high-resolution

satellite data in 60 to 88% of cases. Similarly, harvest events in cereal fields have been

studied with Sentinel-1 [69–71], and Sentinel-1 and Sentinel-2 [72], with accuracies in the

range of 4 to 7 days of RMSE. However, the scarcity of reference data for training, calibration

and validation poses a challenge for the development of monitoring capabilities [67].

Consequently, most research has often been confined to relatively small study areas and

their potential use beyond the initial extents has not been evaluated. Recent research has

shown promising results exploring alternative in situ data sources, such as large expert-

based networks of phenological observations, for the validation of several phenological

stages in wheat fields [73]. The present work contributes to the expanding literature on

the potential and limitations of dense stacks of high-resolution Earth observation (EO)

imagery in the monitoring of agricultural practices. The reported accuracies align with
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those documented in the literature, and the size and geographical scope of the validation

dataset provide additional certainties about the robustness of the results. However, while

confirming the robustness of the detection methodology, the accuracy assessment also

revealed limitations in resolving certain fields due to various reasons (e.g., field size and

shape, lack of evidence of management, etc.). These limitations should also be considered

to establish realistic expectations and set feasible targets for the monitoring of agricultural

practices with time series of high-resolution EO data.

Historically, the validation of EO-based products monitoring agricultural practices has

been hindered by the scarcity of adequate in situ data. This study utilized RTK positioning

records from agricultural machinery for the evaluation of the generated maps. The RTK

records enabled the creation of a large reference dataset, ensuring robust accuracy metrics

across the study area. To the best of our knowledge, this is the first instance of using such

information for the validation of an EO-based product. However, while RTK records hold

promise as a source of validation data, their use is not without limitations. A detailed

examination of the validation results through visual interpretation of Sentinel-2 imagery

stacks revealed that the assigned harvest date for a substantial number of fields in the

reference dataset did not correspond to actual harvest events but rather other activities such

as straw collection and field preparations. Despite this, RTK records emerge as a promising

source of reference dataset for training, calibration, and validation of EO-based agricultural

monitoring activities. The RTK information used in this study provided daily information

on machinery presence in a field and lacked details on the specific activities carried out in

the fields. In addition to geographic location, RTK records contain valuable information that

could potentially be used to derive additional characteristics of the agricultural activities

conducted in the field (e.g., machinery speed). More detailed RTK information should lead

to more robust reference datasets.

5. Conclusions

This study presents a robust, scalable, and traceable methodology for the detection of

harvest dates in cereal crops employing temporal series of Sentinel-2 imagery. The approach

hinges on the recognition of established temporal signatures within the Sentinel-2 spectral

profiles, obviating the need for extensive training datasets. Furthermore, this research

investigated the use of Real-Time Kinematic positioning records as alternative validation

datasets. RTK positioning records constitute a potentially vast source of calibration and

validation data for Earth observation analyses. Although not entirely devoid of noise, these

records offer extremely valuable information that facilitates the scaling of analyses from

local to extensive geographic extents. The findings of this study contribute significantly

to the understanding of the potential and limitations inherent in the analysis of Sentinel-2

temporal series imagery, specifically in relation to the identification of harvest dates and,

more broadly, to the monitoring of agricultural management practices. Notably, while

this study demonstrates a post-season assessment, the findings of this study hint the

feasibility of in-season detection of specific agricultural practices. This capability enables

the implementation of more adaptive and responsive agricultural management strategies,

which can accommodate environmental and logistical uncertainties, thereby enhancing the

potential for climate-resilient and sustainable agricultural systems.
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