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Abstract: This paper investigates the use of high resolution (~100 m) surface soil moisture (SSM)
maps to detect irrigation occurrences, in time and space. The SSM maps have been derived from
time series of Copernicus Sentinel-1 (S-1) and Sentinel-2 (S-2) observations. The analysis focused
on the Riaza irrigation district in the Castilla y Leén region (Spain), where detailed information on
land use, irrigation scheduling, water withdrawal, meteorology and parcel borders is available from
2017 to 2021. The well-documented data basis has supported a solid characterization of the sources
of uncertainties affecting the use of SSM to map and monitor irrigation events. The main factors
affecting the irrigation detection are meteo-climatic condition, crop type, water supply and spatial and
temporal resolution of Earth observation data. Results indicate that approximately three-quarters of
the fields irrigated within three days of the S-1 acquisition can be detected. The specific contribution
of SSM to irrigation monitoring consists of (i) an early detection, well before vegetation indexes can
even detect the presence of a crop, and (ii) the identification of the irrigation event in time, which
remains unfeasible for vegetation indexes. Therefore, SSM can integrate vegetation indexes to resolve
the irrigation occurrences in time and space.

Keywords: Sentinel-1; Sentinel-2; high resolution soil moisture; irrigation event detection; uncertainties

1. Introduction

Irrigated agriculture absorbs large volumes of freshwater and highly influences crop
production and quality, especially in arid and semi-arid regions, such as the Mediterranean
basin, where irrigated agriculture represents 65% of total water taken [1,2]. The increase in
evaporative demand due to climate change projected over these areas [3] will likely lead
to a significant reduction in water availability, heightened by the consequent increase in
irrigation needed to preserve crop yield volumes [4,5]. The result may not be sustainable
and suggests a vicious cycle from water scarcity to food insecurity and social fragility [6].
Specific responses to mitigate, adapt and cope with the effects of such a scenario include
integrated water resources management and increased monitoring [7,8]. For instance, the
space and time distribution of irrigated areas is a necessary input to simulate the water
withdrawal that is crucial information for effective water management [9]. Moreover, a
recent study [10] demonstrated a strong and linear relationship between the extent of
irrigated areas and irrigation water withdrawal, evaluated at continental and national
scales over Europe, Africa, the Americas and Asia. Under these circumstances, a reliable
estimate of irrigated areas can be the key to more informed management of water resources.
However, current estimates of the extent of irrigated croplands at global and regional scales
are highly uncertain [11]. In addition, significant differences between statistics and model
predictions exist (e.g., [12]). The implication is hampering an effective water governance
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and understanding of the impact of irrigation on the hydrologic cycle. Puy et al. [13]
argued that a step forward would be acknowledging and characterizing the sources of
uncertainties and their impact. The envisaged perspective is integrating uncertainties into
advanced models of water management that may serve credible and effective governance
of water resources.

This study embraces such a vision and aims at further characterizing uncertainties in
estimating irrigated areas. The adopted method combines Synthetic Aperture Radar (SAR)
and optical Earth observation (EO) data.

In past studies, a great deal of work has been carried out demonstrating the potential
of optical, thermal and microwave data to detect irrigated areas (for recent reviews, see,
e.g., [14-17]). Historically, the most used approach exploits vegetation indexes, such as
the Normalized Difference Vegetation Index (NDVI), derived solely from optical data
(e.g., [18]). Its main limitation is that reliable observations require clear sky conditions.
Additionally, vegetation indices are generally sensitive to the greenness of the canopy
and, therefore, there is an indirect dependence on the water supply. As a consequence,
irrigation maps derived from optical data usually come late in the growing season and
only for crops with high water requirements. For instance, it is very challenging for EO
optical data to identify fields for which irrigation remains supplemental (e.g., wheat). In
terms of uncertainties, the approach is affected by the threshold levels adopted for the
vegetation indexes [18], by the spatial resolution of the EO products (generally, the coarser
the resolution the higher the uncertainty [19,20]) and by meteorology, e.g., temperature and
precipitation [21].

More recently, the contribution of microwave EO data for irrigation detection has also
been investigated. The rationale is that microwave EO data show a high sensitivity to
surface soil moisture (SSM) content and there exists a correlation between SSM and the
application of irrigation water. In this vein, the availability of operational SSM products
derived from spaceborne radiometers and/or scatterometers (e.g., Soil Moisture and Ocean
Salinity (SMOS) mission of the European Space Agency (ESA), the Soil Moisture Active
Passive (SMAP) mission of the National Aeronautics and Space Administration (NASA)
and the Advanced SCATterometer (ASCAT) system aboard the Meteorological Operational
(MetOp) platform of the European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT)) has stimulated their use to assess the potential to detect irrigated
areas [22-24]. An outcome of these studies is that the coarse resolution of ASCAT, SMOS
and SMAP SSM products (~25 km) is a major limitation to monitoring soil moisture changes
due to irrigation management that often take place at scales of a few hundred meters [9].

The launch of the Sentinel-1 (S-1) constellation of the European Union (EU) Copernicus
program, performing C-band SAR high space (~10 m) and time (six-day exact revisit)
resolution observations with a sustained and systematic acquisition plan, has mobilized
new energies towards the use of SAR data for SSM retrieval at high resolution (100-1000 m).
Various SSM products covering large areas have been proposed and assessed by several
teams, e.g., [25-27]. Subsequently, the same products or their evolutions have been used
to understand the potential of SAR data to map irrigated areas (e.g., [28-32]). Promising
results have been obtained in segmenting or classifying irrigated areas. However, the
causes contributing to the uncertainty of the results are less investigated.

This study leverages extensive information on irrigation management in the irrigation
district of Riaza, in the Castilla y Ledn region (Spain). Parcel borders, irrigation scheduling,
irrigation water withdrawal, planted crops, meteorology, etc. are the data made available
for more than 700 fields monitored over five years (2017-2021) by ITACyL, part of Castilla y
Leon (Spain) Common Agricultural Policy Paying Agency. The ground information serves
to assess the impact of spatial and temporal resolution of time series of SAR and multi-
spectral data, acquired by S-1 and Sentinel-2 (S-2) systems, on the detection of irrigated
agricultural fields. Moreover, the role of precipitation and vegetation cover is investigated.
The overarching objective is to trace the causes of incertitude in mapping irrigated areas
using EO SSM data at high resolution and determine their impact on the retrieval of the
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spatial and temporal extent of the irrigation occurrences. The occurrence of irrigation is
called an irrigation event. Indeed, the integrative use of high resolution microwave and
optical data enables the estimation of the location and extent of irrigated fields, but also
the time interval in which the events took place. This can be valuable information for
irrigation management in various instances. It can, for example, support the detection of
supplemental irrigation that is expected to significantly increase for rain-fed crops, such as
wheat, to better cope with water scarcity [11,33]. To date, tracking supplemental irrigation
at a large scale solely using optical data is quite challenging. A second possible benefit is
the detection of irrigated areas early in the season, i.e., before the emergence of the plants.
Such information can enable timely estimates of irrigated areas’ extent.

In the next section, the method adopted in the study is described. In addition, the data
basis analyzed is illustrated. Then, the obtained results are presented and discussed.

2. Materials and Methods

The value of the high resolution (~100 m) SSM maps to identify irrigated areas relies
on the observation that, in a time interval, irrigated fields show an SSM level higher
than non-irrigated fields. The “Soil MOisture retrieval from multi-temporal SAR data”
(SMOSAR) code, developed in the European Space Agency (ESA) SEOM Exploit-S-1 project
(https:/ /seom.esa.int/page_project034.php, accessed on 26 September 2022) and further
improved within the EU SARAGRI project (http:/ /sensagri.eu, accessed on 26 September
2022), is used to obtain the SSM fields at a regional scale (e.g., [34,35]). Currently, SMOSAR
SSM output can be either at ~1000 m or ~100 m resolution every 6-12 days. The input for
the first case consists of time series of S-1 alone. Conversely, both S-1 and S-2 time series
are required to obtain SSM maps at the highest resolution.

In the next subsections, first, the data basis of the study is illustrated. The study
area, ground and EO data are introduced. Subsequently, SMOSAR is described and the
properties of SSM for detecting irrigated areas with respect to NDVI are discussed. The
issue of the spatial resolution is also addressed. Finally, the SSM contrast, i.e., the ratio
between the SSM of irrigated and non-irrigated fields, is defined and adopted in the
analysis. Indeed, a relative measure of SSM is needed because the absolute SSM value is
highly influenced by the characteristics of the site, e.g., climate, orography, soil properties,
agriculture management, etc. For these reasons, the contrast between the SSM levels of
irrigated and non-irrigated fields is a more robust metric, indicating whether or not a field
is significantly dryer/wetter than the surrounding area.

2.1. Test Site and Ground Data

The Riaza irrigation district in the Castilla y Le6n region (Spain) comprises 5232 ha
along an approximately 45 km canal that flows parallel to the Duero River. The Riaza
area is composed of 991 fields, with a size ranging from 0.04 ha to 65.0 ha (2.6 ha on
average). Meteorological data over the area are acquired by the station VAO7 of the
national agrometeorological network included in the Inforiego irrigation advice service
(https:/ /www.inforiego.org/opencms/opencms, accessed on 26 September 2022). The
meteorological station measures air temperature and humidity, wind speed and direction,
solar radiation and reference evapotranspiration.

The irrigation district is fully automated and scheduled. A central database records all
the irrigation events from all the hydrants connected to the system. Over the Riaza area,
the irrigation technique is mostly based on sprinklers and the consumption of water is
well documented. From 2017 to 2021 and for each agricultural field, in situ data include
information on crop type, the start and the end time of each scheduled water supply and
the amount of water consumption. In order to translate information from hydrant level to
field level, a geographic information system (GIS), based on the Land Parcel Identification
System, has been built.

Figure 1 shows the location of the Riaza irrigation district and the parcel borders
overlayered on the S-2 NDVI map on 30 April 2019, where the winter crops are visible in
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medium-dark green. The red point represents the VA07 meteorological station. Winter
(e.g., wheat and barley) and summer (e.g., sugar beet and maize) crops, together with some
permanent crops, are cultivated.

Castillay Leén r
RORR S o P

Figure 1. Top panel: Castilla y Ledn region in Spain and the Riaza irrigation district location. Middle
panel: zoomed-in view of the black rectangle with parcel borders overlayered on the S-2 NDVI
on 30 April 2019. Red point indicates the VA0O7 Inforiego meteorological station. Bottom panel:
zoomed-in view of the red rectangle with crop type information. Geographic coordinates of the
corners are reported.

In the data analysis, fields larger than 2 ha and with homogeneous cover for more
than 50% of their size have been considered. For the scope of this paper, a field is defined as
irrigated if and only if it received a water supply 5 to 0 days before the corresponding S-1
passage. Six days is the exact revisit time of the S-1 constellation. From 2017 to 2021, 5270
irrigation events were registered over 751 fields cultivated with the main seasonal crops,
i.e., wheat, barley, maize, sugar beet, sunflower, potatoes, alfalfa and garlic. Figure 2 (left
panel) reports the percentages of crop types cultivated. In the right panel, the percentage
of irrigation events, according to the above definition, is reported. The percentage is with
respect to the total number of events recorded in the farm log.

The seasonal crops selected for the statistical analysis are wheat, barley and maize, as
they are the main crops in terms of the number of fields and irrigation events. Indeed, they
represent 68% of the total fields with 62% of the total irrigation events. This selection is also
supported by the fact that wheat/barley and maize present a different canopy structure
which affects their response to the radar signal at the C-band. In fact, for agricultural areas,
the interaction between the radar signal and the crop canopy is dominated by scattering
mechanisms that significantly change with plant architecture and fresh biomass. The latter
is in turn strongly related to the phenological cycle and ultimately to the period in the
growing season (i.e., the day of the year, DoY). At the C-band, two extreme classes of
seasonal crops can be identified based on their radar response [36]. The first class includes
crops for which the volume scattering mechanism is dominant (e.g., sugar beet, potatoes
and maize). In these cases, at the mature stage, the radar backscatter is poorly correlated
with the in situ SSM observations. Conversely, the second class includes crops, such as
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wheat, barley and oat, for which a good sensitivity of the C-band radar signal to SSM exists
throughout the growing season. Indeed, they are dominated by surface scattering [37].

B wheat 2017-2021 CROPS B wheat 2017-2021 IRRIGATION
M barley M barley EVENTS
 maize B maize
sugarbeet sugarbeet
m sunflower m sunflower
m alfalfa | alfalfa
M potatoes M potatoes
M garlic M garlic

Figure 2. Left panel: percentage of main crops with an extent larger than 2 ha irrigated from 2017 to
2021. Right panel: percentage of irrigation events per crop (right panel).

The selected crops also differ in their growing season. Figure 3 (top panel) shows
the temporal behavior of the S-2 NDVI averaged over all the fields of the Riaza district,
cultivated with wheat and maize in 2019. Wheat is a winter crop, which reaches its peak at
the end of April or the beginning of May, while maize is a summer crop. Its mature phase is
between the beginning of July and the end of August. For wheat, the senescence begins in
June, while for maize in September. Regarding the inter-annual variability in the growing
season, Figure 3 (bottom panel) shows, as an example, the temporal behavior of the S5-2
NDVI averaged over all wheat and barley crops from 2017 to 2021. The shaded area refers
to the related standard deviation. As the inter-annual variability is less than 0.16 over the
growing season, it is evident that the crop growth follows a fairly similar behavior from
year to year. Therefore, the multi-year data set has been considered as unique per crop.

1
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Figure 3. Top panel: NDVI derived from S-2 data over all the wheat and maize fields of the Riaza
district in 2019. The shaded area represents the inter-field variability. Bottom panel: NDVI derived
from S-2 data and averaged over all the winter wheat and barley fields of the Riaza district from 2017
to 2021. The shaded area represents the inter-annual variability. DoY stands for day of the year.
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Concerning the irrigation practices, both winter and summer crops are irrigated,
though with different strategies. Figure 4 shows the temporal series of the irrigation events
registered over the wheat and barley (red) and maize (green) fields irrigated 5 to 0 days
before the S-1 passages from 2017 to 2021. The red and green shaded areas represent the
corresponding total extent of the irrigated fields. The monthly precipitation rate is also
reported in light blue. In general, wheat and barley are mostly irrigated from early April to
June and maize from June to September. For maize, irrigation is quasi-continuous, while for
winter wheat/barley, the irrigation, in most cases, is supplemental. Moreover, the number
of irrigated fields significantly differs from 2017 to 2021. This is due to the largely variable
meteorological conditions, which drive the irrigation scheduling. For example, April 2017
was unusually dry, therefore winter and barley fields were abundantly irrigated, while, on
the other extreme, the whole spring of 2018 was very wet and winter crops were sparsely
irrigated. This means that the number of irrigated events and irrigated area, in the case of
supplemental irrigation, are extremely variable from year to year and month to month. It
may also happen to observe only one event for some wheat/barley fields. Conversely, the
number of maize irrigated fields and related irrigated area are more stable per year and
month. A quantitative analysis of the temporal trend of irrigation areas will be addressed
in a future study.
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Figure 4. Number of irrigation events registered over the wheat and barley (red) and maize (green)
fields irrigated 5 to 0 days before the S-1 passages from 2017 to 2021. Red and green shaded areas
represent the extent of the irrigated fields. The monthly precipitation rate is also reported.
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2.2. Sentinel-1 and Sentinel-2 Data

S-1A and S-1B time series, covering the Riaza district and acquired on the ascending
orbit of Relative Orbit Number (RON) 001 from 2017 to 2021, have been analyzed. The S-1
Interferometric Wide (IW) Level-1 Ground Range Detected (GRD) High Resolution (HR)
product has been selected. For pre-processing, they have been calibrated, multi-looked
(i.e., 4 x 4), geocoded and temporally filtered [38]. The final product is characterized by
an equivalent number of looks (ENL) equal to or larger than ~80, a radiometric accuracy
of ~1 dB, a pixel size of 40 m and a spatial resolution of ~100 m. From April to September,
28-30 S-1 images are available per year. In addition to S-1 data, NDVI time series derived
from S-2 images have been used. The S-2 Level-2A (bottom of atmosphere reflectance)
product [39] has been selected and subsequently processed to derive the NDVI index. Over
Riaza, two different orbits of S-2A are available, i.e., RON 137 and 094. In total, 148 S-1
and 155 S-2 images have been coregistered and analyzed. These products are currently
made available by ESA and have been downloaded from the Copernicus Open Access Hub
(https:/ /scihub.copernicus.eu/, accessed on 26 September 2022).

2.3. Sentinel-1 and Sentinel-2 Surface Soil Moisture Maps

The SMOSAR code is used to transform dense time series of S-1 and S-2 acquisitions
into multi-temporal SSM maps at very high resolution, i.e., ~100 m. The algorithmic devel-
opment and validation have been described in Mattia et al. [40,41] and Balenzano et al. [42].
The SSM retrieval implements a short-term change detection (STCD) algorithm. It is ap-
plied to bare and vegetated surfaces dominated by soil attenuated scattering that enables
good radar sensitivity to SSM throughout the growing season [43]. The land use restriction
requires applying a dynamic vegetation masking to obscure those areas showing a poor
radar sensitivity to SSM (i.e., areas dominated by volume scattering), before the SSM re-
trieval. Masking is implemented in two steps. The first one consists of using a quasi-static
land cover (e.g., Climate Change Initiative (CCI) Land Cover map [44]) to mask forests,
urban areas, water bodies. The second step exploits an adaptive segmentation method
applied to S-1 VH colocated observations [36]. As a result, the SSM retrieval is applied only
over those land surfaces dominated by soil attenuated scattering that show an adequate
radar sensitivity to SSM. The contribution of S-2 NDVI data is important for retrieving SSM
at a very high resolution. This is because STCD is susceptible to the occurrence of abrupt
changes of the vegetation and/or soil roughness, e.g., due to tillage change [45,46], that can
be wrongly interpreted as SSM changes. Such changes have a limited impact at a resolution
equal to or above ~1000 m, but they usually produce significant errors at a field scale
resolution. In this respect, the combined use of S-1 and 5-2 data can significantly simplify
the characterization of surface changes due either to vegetation or roughness conditions as
described in [41]. As a result, SMOSAR can provide SSM maps either at field scale by using
in input the land parcel border data wherever available or at ~100 m resolution. Both mean
and standard deviation of SSM at field scale are computed and delivered.

2.4. Why SSM for Irrigation Identification

The benefit of SSM maps for irrigation detection and its complementarity with respect
to NDVI are first illustrated through a case study. Figure 5 (left column) shows the SSM
maps, at field scale, on 22 and 4 April 2017. White areas are masked for tillage changes.
Parcel borders are in black. In the right column, the NDVI maps on 22 April and 18 July
2017 are reported. In April, fields planted with winter crops show NDVI equal to or higher
than 0.5, while over bare or recently planted fields NDVI is lower than 0.3. In July, NDVI
follows the same pattern for summer crops.
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Figure 5. View over the Riaza irrigation district in Spain. Parcel borders are in black. Left column:
SSM maps at field scale, derived on 22 and 4 April 2017. White areas are fields masked for tillage
practice. The irrigated fields, f159, 218 and f225, show medium-high (i.e., 0.3-0.4 m3/m?) SSM levels.
Right column: NDVI maps on 22 April and 18 July 2017.

In situ data indicate that fields {218 (winter barley) and {159 (winter wheat) were
irrigated approximately one day before the S5-1 passage on 22 April. In addition, field 225
(sugar beet) was irrigated approximately one day before the S-1 passage on 4 April. On
the contrary, fields f160 and {221 (winter wheat) were not irrigated. Indeed, for wheat
and barley, irrigation was supplemental. Conversely, for sugar beet (a summer crop),
irrigation is systematically required from the early stage onward. Dark and light blue
colors correspond to SSM of 0.3-0.4 m®/m3. Such high levels were sparse in the area and
observed in f159 and {218 on 22 April. Therefore, they indicate the effect of irrigation that,
conversely, is not evident on the NDVI map on the same date. Analogously, on 4 April,
£225 showed SSM values higher than 0.3 m®/m?, consistent for a field recently irrigated.
The NDVI map on April 22 confirms that {225 was almost bare. Only late in the season,
e.g., on 4 July, was the greenness of the crop evident on the NDVI map.

This example provides evidence of the qualities of irrigation monitoring by SSM. First,
the irrigated areas are detected well before crops appear well-developed in the NDVI maps.
Second, SSM intercepts the span of irrigation events, which is not detectable by NDVI.
Therefore, SSM can integrate vegetation indexes to resolve in time and space the irrigation
occurrence, rather than detect the indirect effects of irrigation on crop development. Under
the government’s water use limitations, such a skill can be valuable, as farmers tend to
abandon irrigated crops for crops, such as wheat, or permanent crops, such as vineyards,
for which supplemental irrigation is sufficient.

2.5. Optimal Spatial Resolution for the SSM Contrast Detection

For the detection of irrigated fields using SSM, the influence of spatial resolution turns
out to be very important. As an example, Figure 6 compares SSM on 22 April 2017, ata
spatial resolution of 1000 m, with that at the field scale (already shown in Figure 5) and at
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100 m. Fields f159 and f218 (irrigated) and 221 (non-irrigated) are reported. Looking at
the map at 1000 m, it is clear that the irrigated field f159, with a size of 2.5 ha, cannot be
resolved. Considering that the average extent of the Riaza fields is 2.6 ha, the irrigation
detection would require SSM information at least better than 150 m. In fact, there is often
an important spatial variability of soil moisture within a single field. This is mainly because
the irrigation supply usually is not uniform in space and time. For instance, Figure 6
(bottom row, left panel) depicts the SSM map on 22 April at 100 m (i.e., before averaging at
field scale) and shows quite a heterogeneous irrigation pattern within the irrigated fields.
In the right panel, the box plot of the SSM values shows the SSM distributions of fields
159 and 218 (irrigated) and f221 (non-irrigated). Crosses represent the SSM averages at
the field scale, and the dotted lines the SSM averages at 1000 m. Averaging SSM at field
scale reduces the SSM contrast. Additionally, the coarser the resolution, the smaller is the
distance between averages. Under these circumstances, a pixel-wise (~40 m) segmentation
of irrigated /non-irrigated areas seems more effective than that at a field scale or even at a
coarser scale. Thus, the SSM maps used in this paper have been delivered at 40 m pixel size
corresponding to a resolution of ~100 m. Nevertheless, the final irrigated /non-irrigated
map can be subsequently aggregated at a field scale, using the parcel borders information.

S-1SSM S-1&S-2 SSM
22-04-2017 \ 22-04-2017
[at 1000m] [at field scale]
0.05 m3/m3 0.5 0.05 m3/m3 0.5
E [

O0f159 0f221 0218

0.6 ... SSM value
at 1000 m

0.4

o
N

S-1&S-2 SSM

SSM [m3/m3]
=}
w

22-04-2017
[at 100 m] 0.1
0.05 m3/m? 0.5
0

Figure 6. View over the Riaza irrigation district in Spain. Field borders are in black. White areas
are masked for roughness or local vegetation changes. Top row: S-1 SSM map at 1000 m, i.e., 520 m
pixel (left panel) and at field scale (right panel) on 22 April 2017 (EPSG: 4326, WGS 84). Bottom row:
SSM map at 100 m, i.e., 40 m pixel (left panel). Right panel: box plot of the SSM distributions of the
irrigated fields, f159 and 218, and non-irrigated field f221 at 100 m. Crosses represent the mean SSM
value at field scale; dashed lines indicate the SSM level at 1000 m.

A second important aspect in the box plot is that the SSM dispersion within a field
increases with its average, which is an intrinsic property of SSM statistics [47]. This implies
that to enhance the contrast between irrigated and non-irrigated fields, it is better to adopt
as a metric the distance (or the ratio) between the wettest parts of the fields rather than
between the averages.
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Based on this argument, the SSM contrast has been defined as:

< SSMyzsq >y,

C= , 1
< SSM75Q > no irr @

where < > indicates the spatial average over the irrigated or non-irrigated pixels. The SSM
values higher than the third quartile (75Q) have been identified and averaged.

Only fields including a spatial average over at least 10% of the total pixels have been
considered. The total number of wheat and barley irrigated fields ranges from 94 in 2018 to
119 in 2017, while the total number of maize irrigated fields ranges from 23 in 2018 to 31
in 2017.

3. Results and Discussion

The potential of the contrast index defined above to identify the irrigated areas during
the crop growing season and the main disturbing factors are identified. Figure 7 depicts the
logical flow of data in the analysis. EO inputs are S5-1 and S-2 images that are transformed
by SMOSAR into SSM maps at very high resolution. Then, the analysis is supported by
ancillary data, such as irrigation management, meteorological data and parcel borders. The
SSM contrast is derived according to (1). Results are finally analyzed to characterize the
main factors which may jeopardize the irrigation detection.

Time series of S-1 IW

(‘:’ .

Time series of S-2

SMOSAR

Figure 7. Data flow diagram.

3.1. Causes of Incertitude in Mapping Irrigated Areas
3.1.1. Effect of Irrigation Timing

The effect on the contrast of the time span (TS) between the S-1 acquisition date and
the irrigation date is analyzed for wheat and barley fields. It is worth recalling that, in the
context of this study, a field is considered irrigated if it received a water supply at most
5 days before the S-1 passage. Therefore, for each S-1 acquisition, from 2017 to 2021 and
from April to June, the irrigated fields can be classified based on their TS distance (i.e.,
0 < TS < 5). For the homogeneity of the sample, only the S-1 dates when at least four fields
were irrigated have been considered. Then, for each irrigation date the contrast between
irrigated and non-irrigated fields has been computed according to (1) and labeled with
the appropriate TS. Subsequently, the distribution of the SSM contrast as a function of
TS has been investigated. Figure 8 shows the first and third quartile of the SSM contrast
distribution, as well as the median, for each TS. The number of the S-1 acquisitions dates
per TS is also reported. In general, percentiles decrease from 1 to 5 TS. Up to TS = 3, for
approximately 75% of the total SSM maps, the irrigated fields show a contrast higher than
1 (C > 1). In principle, they can all be discriminated from non-irrigated fields. At TS =1,
the highest contrast is achieved. It ranges between 1.11 and 1.22 for 50% of the total SSM
maps. Conversely, for TS = 5, the contrast is less than 1 for 50% of the total SSM maps. It is
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noted that, in Figure 8, all the S-1 passages for which precipitation events occurred in the
previous 24 h have been disregarded. The rationale is illustrated in the next section.

1.25
o ® 25Q @ median ® 75Q
1.2
1.15
7]
£1a ¢ °
c
S ® o
a ® 23
1 o ® 19
o 22
0.95
0.9
0 1 2 3 4 5 6
time span

Figure 8. First quartile (25Q, green points), median (orange points) and third quartile (75Q, blue
points) of the SSM contrast between irrigated and non-irrigated wheat/barley fields as a function
of the time span (TS) between the irrigation events and the S-1 passages. The number of the S-1

acquisition dates is also reported.

3.1.2. Effect of Precipitation

The impact of precipitation on the SSM contrast is summarized in Figure 9. It is the
same as Figure 8 but only for the S-1 passages preceded by precipitation events. Clearly,
precipitations close to the S-1 passage reduce the SSM contrast, smoothing the difference
between the SSM level of the irrigated and non-irrigated fields. Whenever the irrigation
occurred, the median of the contrast is approximately 1, regardless of T'S. Therefore, Figure 9
conveys the message that the presence of localized precipitation events largely affects the
identification of irrigated fields.

1.25
1.2 ®25Q ® median ® 75Q
1.15
)
g 1.1 ¢
t o
] o [
s1.05 ®
(%)}
[7,]
1
Py 14 ® o
0.95 o 13 16
18 ?3
0.9
0 1 2 yimekpan 2 5 6

Figure 9. As for Figure 8, but for the S-1 acquisition dates when precipitation occurred within 24 h.

3.1.3. Effect of Water Supply

It is now instructive to address the dependence of SSM contrast on water supply. Data
reported in Figure 8, at TS = 1, have been separated into two groups. The first one concerns
fields where the water supply was between 1 and 15 mm, while the second shows those
between 15 and 45 mm. Figure 10 shows the first and third quartile of the SSM contrast
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distribution, as well as the median, for each group. In general, the SSM contrast increases
with the water supply. However, in the case of medium-low irrigation, for approximately
50% of the total cases, the SSM contrast is less than 1.

1.4
1.35
13
1.25
1.2
o 1.15
s 11
A 1.05
1

0.95
0.9

25Q median ® 75Q

ntrrast

(o

1-15mm 15-45 mm
water supply
Figure 10. First quartile (25Q, green points), median (orange points) and third quartile (75Q, blue
points) of the SSM contrast as a function of water supply in case of TS = 1 of Figure 8.

3.1.4. Effect of Vegetation Cover

Finally, the case of irrigated maize fields is discussed. The procedure to compute the
contrast as a function of TS is the same as for the winter crops. The only difference is
that for maize, almost all the fields were irrigated on any date. Therefore, as a reference
for non-irrigated areas, the harvested wheat and barley fields (i.e., NDVI < 0.3) have
been considered.

Figure 11 reports the SSM contrast distribution as a function of TS. It can be noted
that for TS = 1 (TS > 1), approximately 75% (50%) of the total S-1 passages show an
SSM contrast higher (less) than 1. Comparing Figures 8 and 11, two main variations
can be noted. First, the SSM contrast of maize fields is less sensitive than wheat to TS.
This is likely because maize fields are mainly irrigated from July—August. In this pe-
riod, the reference evapotranspiration rate reaches the highest values, i.e., approximately
5.5 mm/w on average (see green shaded area in Figure 12), which corresponds to 6.6 mm/w
crop evapotranspiration for maize in the mid-season according to the FAO56 method
(https:/ /www.fao.org/3/x0490e /x0490e0b.htm, accessed on 26 September 2022), thus
facilitating the drying out process after irrigation. Second, the SSM contrast in the case of
maize fields is generally lower than the SSM contrast of wheat/barley fields. Reasonably,
this is due to the reduced sensitivity of the S-1 signal to SSM of maize, particularly in its
mature phase. The effect is investigated in Figure 12, which reports the temporal behavior
of the average and standard deviation of SSM observed over irrigated maize (at TS = 1)
and non-irrigated wheat/barley fields in 2021. The behavior of the SSM contrast is also
reported (purple circles). The purple dashed line is the linear fit of temporal contrast. It
indicates a decrease in time with the development of the crop, i.e., from emergence of the
plants to the mature stage (i.e., NDVI > 0.6).
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Figure 11. As for Figure 8, but for maize fields.
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Figure 12. Temporal behavior of average SSM of maize irrigated (blue squares) within 1 day before
the S-1 passages and non-irrigated wheat/barley (orange circles) fields in 2021. Bars refer to the
inter-field variability. The number of maize fields irrigated is in black. Time series of SSM contrast
(purple circles scaled by 100) and their linear fit (purple dashed line) are on the secondary axis.
Weekly precipitation and reference evapotranspiration (ET) rate (scaled by 10) are reported in gray
and green shaded areas on the secondary axis, too, as well as the S-2 NDVI (dashed green line, scaled
by 100).

3.2. Perspectives for Mapping Irrigated Areas by S-1 and S-2 SSM

A first outcome of the analysis is that the presence of localized precipitation events
reduces the contrast of irrigated and non-irrigated areas, thus hampering the irrigated
areas’ detection in a time window somewhere colocated with the precipitations. In the
same vein, for example, Bazzi et al. [32] recently observed over a test site in France a
reduced separability between irrigated and non-irrigated fields by using S-1 and S-2 data
during years with high precipitation. Therefore, automatic detection of precipitation
patterns is needed as a preliminary step for mapping irrigated areas. Algorithms mapping
precipitation fields already exist (e.g., [48,49]) and could be integrated.

Another crucial factor affecting SSM irrigation detection is the temporal resolution
of the EO observations. For the analyzed data set, a three-day revisit is necessary to
capture 75% of the total cases. However, one-day revisit would significantly increase the
observed SSM contrast. This result is also in line with the findings of Le Page et al. [50]
and Bazzi et al. [51]. The studies analyzed the effect of the S-1 temporal resolution on
the capability of irrigation detection over 4 and 46 irrigated maize and grassland plots,
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respectively, in France. They concluded that an irrigation event over low vegetation cover
(NDVI < 0.7) could be detected until three days after the irrigation occurrence. Beyond
three days, the possibility of detecting irrigation events decreases due to the drying out
of the soil, a few days after the irrigation event. In this respect, the next generation of the
5-1 constellation (5-1 NG) and the forthcoming EU L-band Radar Observation System for
Europe (ROSE-L) system [52] should approach a one-day revisit. Additionally, they will
provide complementarity between microwave frequencies that can overcome some of the
shortcomings observed over well-developed crops [53], such as the loss of S5-1 sensitivity to
SSM over maize.

Currently, the use of vegetation indexes to detect irrigated summer crops, in a mature
stage, may seem more robust than SSM. A promising scenario encompasses SAR in tandem
with optical data. SSM can support an early detection of the irrigation events, while optical
indexes are more reliable late in the growing season. The continuous monitoring of the
irrigated areas can be accumulated per season to produce a time-dependent extent of
irrigated areas, which is crucial for water management models.

In summary, the benefit of integrating multi-frequency and multi-platform EO data to
detect irrigated areas is a continuous monitoring that can produce accurate time-dependent
extents of actual irrigated areas. This improved information serves a more efficient irri-
gation management. In particular, the capability of SAR data to identify supplemental
irrigation can support the objective of improving water withdrawal estimates as recom-
mended by the new European Common Agricultural Policy (CAP) monitoring.

4. Conclusions

This study investigated the retrieval of irrigation land use, at the district scale, by SSM
at ~100 m resolution, derived from S-1 and S-2 observations. A large and well-documented
data set, acquired over the Riaza irrigation district (Spain), has provided the experimental
basis to characterize the SSM contrast between irrigated and non-irrigated fields. Results
indicate that the contrast generally decreases as TS (time span between the irrigation
event and the S-1 acquisition) increases. Approximately 75% of irrigated fields show a
contrast larger than 1 for TS equal to or less than three days. Therefore, they can be isolated.
Additionally, the level of the SSM contrast depends on the amount of water supplied per
field and on the meteorological conditions. Moreover, it is influenced by the sensitivity of
SAR data to SSM underneath winter and summer crops. In particular, for maize a decline in
the contrast during the mature phase has been observed. In this respect, an integrative use
of SSM and vegetation indexes can provide timely information on the extent of irrigated
areas during the entire growing season. To consolidate the results, the analysis will be
extended to other agricultural areas, e.g., in southern Italy.
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