

# FICHA TÉCNICA DE LA ASIGNATURA

| Datos de la asignatura |                                                 |  |  |
|------------------------|-------------------------------------------------|--|--|
| Nombre                 | Química                                         |  |  |
| Código                 | DIM-GITI-123                                    |  |  |
| Titulación             | Grado en Ingeniería en Tecnologías Industriales |  |  |
| Curso                  | Primero                                         |  |  |
| Cuatrimestre           | 1º o 2º                                         |  |  |
| Créditos ECTS          | 6                                               |  |  |
| Carácter               | Obligatorio/ formación Básica                   |  |  |
| Departamento           | Ingeniería Mecánica                             |  |  |
| Área                   | Química y materiales                            |  |  |
| Coordinador            | Ana Ma Santos Montes                            |  |  |

| Datos del profesorado |                                       |  |
|-----------------------|---------------------------------------|--|
| Profesor              |                                       |  |
| Nombre                | Ana María Santos Montes               |  |
| Departamento          | Ingeniería Mecánica                   |  |
| Área                  | Química y Materiales                  |  |
| Despacho              | D-512                                 |  |
| e-mail                | asantos@comillas.edu                  |  |
| Teléfono              |                                       |  |
| Horario de            | Se comunicará el primer día de clase. |  |
| Tutorías              |                                       |  |

| Datos del profesorado |                                       |  |  |  |
|-----------------------|---------------------------------------|--|--|--|
| Profesor              | Profesor                              |  |  |  |
| Nombre                | Mercedes Cano de Santayana Ortega     |  |  |  |
| Departamento          | Ingeniería Mecánica                   |  |  |  |
| Área                  | Química y Materiales                  |  |  |  |
| Despacho              | D-117                                 |  |  |  |
| e-mail                | mcanodes@comillas.edu                 |  |  |  |
| Teléfono              |                                       |  |  |  |
| Horario de            | Se comunicará el primer día de clase. |  |  |  |
| Tutorías              |                                       |  |  |  |

| Datos del profesorado |                                       |  |  |
|-----------------------|---------------------------------------|--|--|
| Profesor              | Profesor                              |  |  |
| Nombre                | Marta Revuelta Aramburu               |  |  |
| Departamento          | Ingeniería Mecánica                   |  |  |
| Área                  | Química y Materiales                  |  |  |
| Despacho              | D-314                                 |  |  |
| e-mail                | mrevuara@comillas.edu                 |  |  |
| Teléfono              |                                       |  |  |
| Horario de            | Se comunicará el primer día de clase. |  |  |
| Tutorías              |                                       |  |  |



| Datos del profesorado |                                       |  |
|-----------------------|---------------------------------------|--|
| Profesor              |                                       |  |
| Nombre                | Ana Pizarro Arranz                    |  |
| Departamento          | Ingeniería Mecánica                   |  |
| Área                  | Química y Materiales                  |  |
| Despacho              | D-314                                 |  |
| e-mail                | ampizarro@comillas.edu                |  |
| Teléfono              |                                       |  |
| Horario de            | Se comunicará el primer día de clase. |  |
| Tutorías              |                                       |  |

| Datos del profesorado DE LABORATORIO |                          |  |  |
|--------------------------------------|--------------------------|--|--|
| Profesor                             | Profesor                 |  |  |
| Nombre                               | Carlos Martin Sastre     |  |  |
| Nombre                               | Eva Paz Jiménez          |  |  |
| Nombre                               | Catalina Hueso Kortekaas |  |  |
| Nombre                               | Carlos Morales Polo      |  |  |
| Nombre                               | Marcos Benedicto Córdoba |  |  |
| Nombre                               | Marta Herrero Palomino   |  |  |

#### DATOS ESPECÍFICOS DE LA ASIGNATURA

#### Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado en Ingeniería en Tecnologías Industriales, esta asignatura pretende proporcionar un conocimiento de los conceptos y principios básicos de la química que son necesarios para comprender muchos de los fenómenos naturales y la tecnología que sustenta algunos campos de la Ingeniería.

Al finalizar el curso los alumnos deben dominar las relaciones cuantitativas en una reacción química, las leyes que regulan el comportamiento de los gases ideales, y el concepto de humedad relativa. Conocer y comprender las propiedades de los líquidos y sólidos, los diferentes tipos de disoluciones, unidades de concentración y propiedades coligativas. Entender los fundamentos de la Termoquímica y conocer el primer principio de la Termodinámica y aplicaciones. Entender el funcionamiento de una pila y de un proceso electrolítico.

Los conocimientos de química básicos adquiridos en esta asignatura serán necesarios para entender conceptos relacionados con la preparación y caracterización de las propiedades de los materiales, el medio ambiente, la energía y el desarrollo sostenible que se estudiaran en otras asignaturas de este grado. Estos conocimientos de química serán un requisito fundamental para poder abordar la asignatura de Ingeniería Química del Máster en Ingeniería Industrial.



Además esta asignatura tiene un carácter mixto teórico-experimental por lo que a los componentes teóricos se les añaden los de carácter práctico, tanto la resolución de cuestiones numéricas como la realización de trabajos prácticos de laboratorio en los que se ejercitaran los conceptos estudiados.

#### **Prerrequisitos**

No se exigen requisitos previos, aunque es recomendable conocer los fundamentos básicos de química estudiados en los curso de bachillerato.

#### **BLOQUES TEMÁTICOS Y CONTENIDOS**

#### Contenidos – Bloques Temáticos

#### **BLOQUE 1:**

# Tema 1: INTRODUCCIÓN A LAS REACCIONES QUÍMICAS. REACCIONES QUÍMICAS EN DISOLUCIÓN.

- 1.1 Las reacciones químicas y las ecuaciones químicas.
- **1.2** Tipos de reacciones químicas.
- 1.3 Reacciones químicas en disolución.
- 1.4 Las relaciones cuantitativas en una reacción química.
- **1.5** Factores estequiométricos.
- 1.6 Determinación del reactivo limitante y del rendimiento de una reacción.

#### Tema 2: GASES IDEALES.

- 2.1 Teoría cinética-molecular de los gases.
- 2.2. Leyes fundamentales de los gases.
- 2.3 Ecuación de estado del gas ideal.
- **2.4** Mezcla de gases y ley de las presiones parciales de Dalton.
- 2.5 Presión de vapor del agua.
- 2.6 Recogida de gases sobre agua y humedad relativa.

#### Tema 3: PROPIEDADES FÍSICAS Y QUÍMICAS DE LAS DISOLUCIONES.

- **3.1** Tipo de disoluciones.
- 3.2 Unidades de concentración.
- **3.3** Efectos de la temperatura y la presión en la solubilidad de los gases.
- **3.4** Propiedades coligativas: disminución de la presión de vapor, elevación de la temperatura de ebullición, disminución de la tempera de congelación y presión osmótica.

#### Tema 4: TERMOQUÍMICA. CAMBIOS DE ENERGIA EN LAS REACCIONES.

- **4.1** Cambios de energía en las reacciones químicas.
- 4.2 Entalpia.
- 4.3 Calorimetría. Calor específico y capacidad calorífica.
- **4.4** Entalpía estándar de formación y reacción.
- 4.5 Calor de disolución y dilución.
- **4.6** Introducción a la Termodinámica, primer principio.



#### Tema 5: FUERZAS INTERMOLECULARES. LIQUIDOS Y SÓLIDOS

- **5.1** Teoría cinético-molecular de líquidos y sólidos.
- **5.2** Fuerzas intermoleculares.
- **5.3** Propiedades de los líguidos: tensión superficial, viscosidad, capilaridad.
- **5.4** Sólidos de red covalentes, iónicos y metálicos.
- 5.5. Estructuras cristalinas.
- 5.6 Sólidos amorfos.

#### Tema 6: ELECTROQUÍMICA.

- 6.1 Electrificación de los electrodos.
- 6.2 Potenciales estándar.
- 6.3 Serie electromotriz.
- **6.4** Ecuación de Nerst.
- 6.5. Pilas voltaicas.
- **6.6** Fuerza electromotriz de la pila.
- 6.7 Células electrolíticas.
- 6.8 Baterías.

#### **Competencias – Resultados de Aprendizaje**

#### Competencias

#### **Competencias Generales**

- CG3. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- CG4. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.

#### Competencias de Formación Básica

CFB4. Capacidad para comprender y aplicar los principios de conocimientos básicos de la química general, química orgánica e inorgánica y sus aplicaciones en la ingeniería.

#### Resultados de Aprendizaje

Al final de curso los alumnos deben ser capaces de:

- **RA1.** Identificar y ajustar cualquier tipo de reacción química incluyendo reacciones de oxidación-reducción y calcular la cantidad de reactivo consumido y de producto obtenido en una reacción.
- **RA2.** Comprender la teoría cinético-molecular de los gases y conocer las leyes que regulan el comportamiento de los gases ideales. Utilizar correctamente la ecuación de estado de



los gases ideales.

- **RA3.** Aplicar correctamente la ley de Dalton de las presiones parciales y comprender el concepto de equilibrio liquido-vapor y el concepto de humedad relativa.
- **RA4.** Expresar la concentración de una disolución en diferentes unidades. Predecir el efecto de P y T en la solubilidad de los gases. Conocer y aplicar correctamente las propiedades coligativas
- **RA5.** Entender los fundamentos de la Termoquímica. Conocer el primer principio de la termodinámica y aplicaciones. Saber calcular variaciones de entalpia en procesos físico-químicos.
- **RA6.** Entender la naturaleza de las fuerzas de Van del Waals y del enlace de hidrogeno. Comprender las propiedades de los líquidos tales como: tensión superficial, viscosidad, presión de vapor, ebullición y punto de ebullición y punto crítico.
- **RA7.** Conocer e interpretar los diagramas de fase de un solo componente.
- **RA8.** Conocer las estructuras cristalinas sencillas de metales e iónicas.
- **RA9.** Entender el funcionamiento de una pila y de un proceso electrolítico. Saber calcular la fuerza electromotriz de la pila. Entender el proceso de las baterías durante la carga y la descarga.

#### **METODOLOGÍA DOCENTE**

| Asp | Aspectos metodológicos generales de la asignatura                                                                                                                                                                                                                                          |                 |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|
|     |                                                                                                                                                                                                                                                                                            |                 |  |  |  |  |  |
| Me  | etodología Presencial: Actividades                                                                                                                                                                                                                                                         | Competencias    |  |  |  |  |  |
| 1.  | Clase magistral y presentaciones generales. Exposición de los principales conceptos y procedimientos mediante la explicación por parte del profesor. Incluirá presentaciones dinámicas, pequeños ejemplos prácticos y la participación reglada o espontánea de los estudiantes (28 horas). | CG3 y CFB4      |  |  |  |  |  |
| 2.  | Resolución en clase de problemas prácticos. Resolución de unos primeros problemas para situar al alumno en contexto. La resolución correrá a cargo del profesor y los alumnos de forma cooperativa (24 horas).                                                                             | CG4 y CFB4      |  |  |  |  |  |
| 3.  | <b>Prácticas de laboratorio.</b> Se formarán grupos de trabajo que tendrán que realizar prácticas de laboratorio regladas o                                                                                                                                                                | CG3, CG4 y CFB4 |  |  |  |  |  |



| diseños de laboratorio <b>(6 horas).</b>                                                                                                                                                                                                                                                                                                             |                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 4. Tutorías. Se realizarán en grupo e individualmen resolver las dudas que se les planteen a los alumnos de haber trabajado los distintos temas. Y tambi orientar al alumno en su proceso de aprendizaje                                                                                                                                             | después                   |
| Metodología No presencial: Actividades                                                                                                                                                                                                                                                                                                               | Competencias              |
| El objetivo principal del trabajo no presencial es<br>entender y comprender los conceptos teóricos de la asi<br>así como ser capaz de poner en práctica estos conoci<br>para resolver los diferentes tipos de problemas                                                                                                                              | gnatura,                  |
| 1. <b>Estudio de los conceptos teóricos</b> . El alumno debe un trabajo personal posterior a las clases teóric comprender e interiorizar los conocimientos aportac materia (40 horas).                                                                                                                                                               | cas para                  |
| 2. Resolución de problemas prácticos fuera del hor clase por parte del alumno. El alumno una vez estudi conceptos teóricos debe ponerlos en práctica para los problemas. Pasado un cierto tiempo de planteamiento dispondrá de la resolución completa problemas, pudiendo pedir tutorías con el profes requiere para aclaración de dudas (60 horas). | resolver esde su a de los |
| 3. Prácticas <b>de laboratorio</b> . Las prácticas de laboratorio requerir la realización de un trabajo previo de prepa finalizar con la redacción de un informe de laborato inclusión de las distintas experiencias en un cuad laboratorio. (12 horas)                                                                                              | orio o la                 |



|       |       | ACT                                           | TIVIDADES PRESENCIALES                      |                                                |     | ACTI                                                                                      | VIDADES NO PRESENCIALE                                                                                                         | S                                                        | Resu                         | ultados de aprendizaje                                                                                                                                                                                                                                                   |
|-------|-------|-----------------------------------------------|---------------------------------------------|------------------------------------------------|-----|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Semai | a h/s | Clase teoría/problemas                        | Laboratorio                                 | Evaluación                                     | h/s | Estudio individual de conceptos teóricos                                                  | Resolución de problemas                                                                                                        | Preparación previa e informe de prácticas de laboratorio | Resultados de<br>aprendizaje | Descripción                                                                                                                                                                                                                                                              |
| 1     | 2     | Presentación (1h)+ Teoría Tema 1 (1h)         |                                             |                                                | 2   | Lectura y estudio de los contenidos<br>teoricos vistos del Tema 1 (2h)                    |                                                                                                                                |                                                          | RA I                         | Conocer la importancia del ajuste de<br>reacciones químicas                                                                                                                                                                                                              |
| 2     | 4     | Teoría Tema 1 (2h)+ Problemas Tema 1 (2h)     |                                             |                                                | 8   | Estudio de todos los contenidos teóricos<br>del Tema 1 (5h)                               | Realizar todos los ejercicios propuestos en<br>clase del Tema I (problemas dee ajustes de<br>reacciones) (3h)                  |                                                          | RA 1                         | Identificar y ajustar cualquier tipo de<br>reacción quimica, incluyendo<br>reacciones de oxidación reducción:<br>Ajustar molecularmente cualquier tipo de<br>reacción                                                                                                    |
| 3     | 4     | Problemas Tema I (2h)+ Teoría Tema 2 (2h)     |                                             |                                                | 8   | Cerrar el estudio de todos los contenidos<br>del Tema 1 (2h)                              | Realizar todos los ejercicios propuestos en<br>clase del Tema 1 (problemas de<br>estequiometria)(6h)                           |                                                          | RA l                         | Calcular la cantidad de reactivo<br>consumido y de producto obtenido:<br>Reactivo limitante, Rendimiento de la<br>reacción. Algunas Unidades de<br>concentración y Volumetrias.                                                                                          |
| 4     | 4     | Teoría Tema 2 (2h)+ Problemas Tema 2 (2h)     |                                             |                                                |     | Estudio de los contenidos teóricos del<br>Tema 2 (5h)                                     | Realizar los ejercicios propuestos en clase<br>del Tema 2 (problemas de gases<br>ideales)(3h)                                  |                                                          | RA2 y RA3                    | Comprender la teoría cinetico<br>molecular de los gases y concore las<br>leyes que regulan el comportamiento de<br>los gases ideales. Aplicar correctamente<br>la ley de Dalton de las presiones<br>parciales: Aplicaciones de ecuación de<br>estado y mezclas de gases. |
| 5     | 4     | Problemas Tema 2 (2h)+ Dudas Temas 1 y 2 (1h) |                                             | Prueba Evaluación Rendimiento Temas 1 y 2 (1h) | 8   | Cerrar el estudio de todos los contenidos<br>del Tema 2 (2h)                              | Finalizar la resolución de los problemas de los Temas 1 y 2 (6h)                                                               |                                                          | RA3 y repasar<br>RA1 y RA2   | Comprender el concepto de equilibrio líquido-vapor y la humedad relativa.<br>Aplicaciones Ley de Dalton a recogidas de gases sobre agua. Asimilar todos los contenidos de los Temas 1 y 2                                                                                |
| 6     | 4     | Teoría Tema 3 (3h)+ Problemas Tema 3 (1h)     |                                             |                                                | 8   | Estudio de los contenidos teóricos del<br>Tema 3 (5h)                                     | Realizar los ejercicios propuestos en clase<br>del Tema 3 (problemas de Disoluciones<br>)(3h)                                  |                                                          | RA4                          | Expresar la concentración de una<br>disolución en diferentes unidades.<br>Predecir el efecto de P y T en la<br>solubilidad de los gases: molalidad y<br>fracción molar. Ley de Henry                                                                                     |
| 7     | 4     | Examen                                        | Intersemestral (solo contenidos de los Tema | as 1 y 2)                                      | 8   |                                                                                           | Preparacion                                                                                                                    | del examen intersemestral (8h)                           |                              |                                                                                                                                                                                                                                                                          |
| 8     | 4     | Problemas Tema 3 (2h)                         | Prática I (2h)                              |                                                |     | Estudio de los contenidos teóricos del<br>Tema 3 (2h)                                     | Realizar los ejercicios propuestos en clase<br>de la hoja de problemas de Disoluciones<br>(4h)                                 | Realizar el informe de la práctica (2h)                  | RA4                          | Conocer y aplicar correctamente las<br>propiedades coligativas: Disoluciones de<br>electrolitos y no electrolitos. calcular la<br>cantidad de agua que se evapora o congela y<br>el paso osmótico                                                                        |
| 9     | 4     | Problemas Tema 3 (1h) + Teoría Tema 4 (3h)    |                                             |                                                |     | Estudio de los contenidos teóricos del<br>Tema 4 (4h)                                     | Realizar los ejercicios propuestos en clase<br>de la hoja de problemas de Termoquímica<br>(4h)                                 |                                                          | RA5                          | Entender los fundamentos de la<br>Termoquímica: Calor, Calor especifico y<br>su significado. Calor de reacción y<br>calorimetria. Trabajo en reacciones<br>químicas.                                                                                                     |
| 10    | 4     | Teoría Tema 4 (1h)+ Problemas Tema 4 (1h)     | Práctica II (2h)                            |                                                | 8   | Estudio de los contenidos teóricos del<br>Tema 4 (2h)                                     | Realizar los ejercicios propuestos en clase<br>de la hoja de problemas de Termoquímica<br>(4h)                                 | Realizar el informe de la práctica (2h)                  | RA5                          | Entender el primer principio de la<br>Termodinámica y aplicaciones. Saber<br>calcular variaciones de entalpía en<br>procesos físico-químicos: Variaciones de<br>Energía Interna y Entalpía en una reacción<br>química.                                                   |
| 11    | 4     | Problemas Tema 4 (3h)                         |                                             | Prueba Evaluación Rendimiento Tema 3 (1h)      | 8   | Preparación del examen del Tema 3 (3h)                                                    | Realizar los ejercicios propuestos en clase<br>de la hoja de problemas de Termoquímica<br>(4h)                                 |                                                          | RA4 y RA5                    | Preparar prueba de Tema 3 (RA 4) y<br>asimilar contenidos Tema 4 (RA5)                                                                                                                                                                                                   |
| 12    | 4     | Teoria Tema 5 (2h)                            | Práctica III (2h)                           |                                                | 8   | Cerrar el estudio del tama 4 (4h)+ Estudio<br>del Tema 5 (1h)                             | Realizar los ejercicios propuestos en clase<br>de la hoja de problemas de Estados de la<br>materia (2h)                        | Realizar el informe de la práctica (2h)                  | RA6                          | Entender la naturaleza de las fuerzas<br>de Van der Waals y el enlace de<br>hidrogeno.                                                                                                                                                                                   |
| 13    | 4     | Teoría Tema 5 ( 3,5h)                         |                                             | Prueba Tema 4 (30 min)                         | 8   | Estudio de los contenidos teóricos del<br>Tema 5 (5h)+ Preparacion Prueba Tema 3<br>(3 h) |                                                                                                                                |                                                          | RA5 y RA6                    | Compresnder las propiedades de los<br>líquidos tales como: tensión superficial,<br>viscosidad, presión de vapor, punto de<br>ebullición y punto crítico. Relacion entre<br>las propiedades y als fuerzas<br>intermoleculares                                             |
| 14    | 4     | Problemas Tema 5 (3h)+ Teoría Tema 6 (1h)     |                                             |                                                | 8   | Cerrar el estudio del tama 5 (4h)+ Estudio<br>del Tema 5 (1h)                             | Realizar los ejercicios propuestos en clase<br>de la hoja de problemas de Liquidos y<br>solidos. Problemas de estructuras (5h) |                                                          | RA7 y RA8                    | Conocer e interpretar los diagramas de<br>fase de un solo componente. Conocer<br>las estructuras cristalinas de metáles e<br>iónicas                                                                                                                                     |
| 15    | 4     | Teoría Tema 6 (2h)+Problemas tema 6 (2h)      |                                             |                                                | 8   | Estudio de los contenidos teoricos del tema<br>6 (5h)                                     | Realizar los ejercicios propuestos en clase<br>de la hoja de problemas del tema 6 (3h)                                         |                                                          | RA9                          | Entender el funcionamiento de una pila<br>y de un proceso electrolitico. Saber<br>calcular la fuerza electromotriz de una<br>pila                                                                                                                                        |



#### **EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN**

| Actividades de evaluación                                                                                                                                         | Criterios de evaluación                                                                                                                                                                                                                                            | PESO |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Realización de exámenes:  Examen Intersemestral  Examen Final                                                                                                     | <ul> <li>Comprensión de conceptos.</li> <li>Aplicación de conceptos a la resolución de problemas prácticos.</li> <li>Análisis e interpretación de los resultados obtenidos en la resolución de problemas.</li> <li>Presentación y comunicación escrita.</li> </ul> | 80%  |
| <ul> <li>Evaluación del Rendimiento.</li> <li>Pruebas realizadas en clase durante las semanas</li> <li>5, y 11. Ejercicios y prácticas de laboratorio.</li> </ul> | <ul> <li>Comprensión de conceptos.</li> <li>Aplicación de conceptos a la resolución de problemas prácticos.</li> <li>Análisis e interpretación de los resultados obtenidos en la resolución de problemas.</li> </ul>                                               | 20%  |

#### Criterios de Calificación

La calificación en la **convocatoria ordinaria** de la asignatura se obtendrá como:

- Un 80% la calificación de los exámenes. La nota del examen final supondrá un 60% de la nota final en la asignatura y un 20% de la nota será la del examen intersemestral. En cualquier caso para aprobar la asignatura (nota ≥ 5,0) se exigirá una nota mínima de 4 en el examen final.
- Un 20% será la nota de seguimiento, la de las pruebas realizadas durante las horas de clase en las semanas 5 y 11 y de las notas de los ejercicios y prácticas realizadas en clase y fuera de clase.

Para aprobar la asignatura (nota  $\geq 5,0$ ) en la convocatoria ordinaria los alumnos tienen que tener al menos 4 puntos sobre 10 en el examen final de la asignatura.

#### **Convocatoria Extraordinaria**

- Un 20% la nota que obtuvo el alumno en su evaluación formativa.
- Un 80% la nota del examen de la convocatoria extraordinaria. La nota mínima será de 4 en el examen de la convocatoria extraordinaria.

La inasistencia a más del 15% de las horas presenciales de esta asignatura puede tener como consecuencia la imposibilidad de presentarse a la convocatoria ordinaria de esta asignatura. La asistencia a las prácticas de laboratorio es obligatoria.



## **RESUMEN PLAN DE LOS TRABAJOS Y CRONOGRAMA**

| Actividades Presenciales y No presenciales                                                           | Fecha de realización                               | Fecha de<br>entrega          |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------|
| Pruebas de evaluación del rendimiento                                                                | Semanas 5 y 11                                     |                              |
| Examen Intersemestral y Examen Final                                                                 | Semana 8 y<br>periodo de<br>exámenes<br>ordinarios |                              |
| Prácticas de laboratorio                                                                             | Semanas 6, 9 y<br>12                               |                              |
| Lectura y estudio de los contendidos teóricos en el<br>libro de texto                                | Después de cada clase                              |                              |
| Resolución de los problemas propuestos                                                               | Semanalmente                                       |                              |
| Entrega de los problemas propuestos                                                                  |                                                    | Se indicará en<br>las clases |
| <ul> <li>Preparación de las pruebas que se realizarán</li> <li>durante las horas de clase</li> </ul> | Semanas 4 y 10                                     |                              |
| Preparación de Examen intersemestral y final                                                         | Octubre y<br>Diciembre                             |                              |
| Elaboración de los informes de laboratorio                                                           |                                                    | Semanas 7, 10<br>y 13        |

| RESUMEN HORAS DE TRABAJO DEL ALUMNO                                                        |                                |             |    |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------|-------------|----|--|--|--|--|--|
|                                                                                            | HORAS PRESENCIALES             |             |    |  |  |  |  |  |
| Lección magistral Resolución de Prácticas laboratorio Evaluación problemas                 |                                |             |    |  |  |  |  |  |
| 24                                                                                         | 24                             | 6           | 6  |  |  |  |  |  |
|                                                                                            | HORAS NO F                     | RESENCIALES |    |  |  |  |  |  |
| Trabajo autónomo sobre contenidos teóricos prácticos Realización de trabajos colaborativos |                                |             |    |  |  |  |  |  |
| 24                                                                                         | 36                             | 12          | 48 |  |  |  |  |  |
|                                                                                            | CRÉDITOS ECTS:   6 (180 horas) |             |    |  |  |  |  |  |



## **BIBLIOGRAFÍA Y RECURSOS**

#### Bibliografía Básica

#### Libros de texto

• Ralph H. Petrucci; F. Geoffrey Herring; Jeffry D. Madura y Carey Bissonnette. Química. Pearson Custom Publishing. Pearson Educación S.A. 2013.

#### **Bibliografía Complementaria**

#### Libros de texto

- B.M. Mahan y R.J. Myers. Química. Curso universitario (4ªed.). Addison Wesley Iberoamericana. Wilmington (1990).
- W.L. Masterton, C.N. Hurley. Química. Principios y reacciones (4ªed.). Thomson. Madrid (2003).
- P.W. Atkins y L. Jones. Química. Moléculas, materia, cambio (3ªed.). Omega. Barcelona (1998).
- R. Chang. Química (7<sup>a</sup>ed.). McGraw-Hill. México (2003).