

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) INGENIERO ORGANIZACIÓN INDUSTRIAL

ANÁLISIS DE COSTES DEL SISTEMA ENERGÉTICO ESPAÑOL. ESTUDIO DE VIABILIDAD TÉCNICA Y ECONÓMICA DE LA ELIMINACIÓN DEL DÉFICIT TARIFARIO.

Autor: Cristóbal González de Aguilar Rabanera Director: Francisco Fernández-Daza Mijares

Análisis de costes del sistema eléctrico español. Estudio de viabilidad técnica y

económica de la eliminación del Déficit Tarifario.

Autor: González de Aguilar Rabanera, Cristóbal.

Director: Fernández-Daza Mijares, Francisco.

<u>INTRODUCCIÓN</u>

El objetivo final del sistema eléctrico es llevar la electricidad hasta los consumidores,

ya que esta es fundamental para el correcto funcionamiento de nuestra sociedad. Las

actividades necesarias para llevar a cabo esta misión generan unos costes que, para

que la estructura financiera del sistema sea viable, tienen que ser cubiertos por unos

ingresos.

Actualmente, la situación económica en la que se encuentra el sector eléctrico español

es deficitaria, es decir, que los costes antes mencionados superan a los ingresos.

Ingresos que proceden, principalmente, de la factura que pagan los consumidores.

Es por ello, que el fin de este proyecto es, en primer lugar, cuantificar costes, ingresos

y en definitiva, el desajuste económico, y en segundo lugar, proponer medidas para

acabar con este desequilibrio y comprobar cuál es el impacto que producirían; para

conseguir que el sistema eléctrico sea viable económicamente.

OBJETIVOS

Los objetivos fundamentales del presente proyecto son:

- Cuantificar costes derivados de las actividades del sector eléctrico, e ingresos satisfechos por los consumidores.
- Calcular el desequilibrio entre costes e ingresos mediante la liquidación de estos. Este será el valor que alcanza el denominado Déficit de Tarifa.
- Proponer medidas de ajuste para atajar dicho desajuste y medir el impacto de las mismas.

ANTECEDENTES

El déficit tarifario del sector eléctrico español es la diferencia entre los costes reconocidos a las empresas eléctricas los ingresos obtenidos a través de las tarifas reguladas que pagan los consumidores.

El déficit tarifario surgió por primera vez el año 2000, pero fue a partir de 2005, debido al aumento del precio de los hidrocarburos, cuando alcanzó valores anuales superiores a 6.000 millones de euros (esto es, casi el 0,5% del PIB) y un importe acumulado a finales de 2012 próximo a los 28.000 millones de euros (es decir, casi el 3% del PIB ese año).

METODOLOGÍA

Para obtener el valor del Déficit Tarifario es necesario hacer la liquidación entre los costes y ingresos derivados de las actividades desarrolladas por el sector eléctrico. Básicamente, las actividades llevadas a cabo por este sector son la de generar, transportar y distribuir la electricidad.

Los costes de producir de la electricidad son el valor al que se compra la electricidad en el mercado. Dicho precio lo hemos obtenido a partir de los históricos recogidos por el operador del mercado (OMEL). Y en el caso de las tecnologías primadas, hemos recurrido al RD 661/2007 y al RD 1578/2008 —en el caso de las plantas fotovoltaicas posteriores a 2008- para conocer su sistema retributivo.

Los costes procedentes de las actividades logísticas, los hemos obtenido a partir de los informes realizados por el órgano regulador (CNE) anualmente. Mayoritariamente son costes regulados previamente por las Administraciones.

Una vez obtenidos todos los costes, realizamos la liquidación de estos y los ingresos satisfechos por los consumidores, y tendremos el valor del desequilibrio.

Por último, hemos propuesto una serie de medidas destinadas a paliar dicho déficit después de analizar cuáles son sus consecuencias y sobre quién recaen.

CONCLUSIONES

Las soluciones propuestas por este proyecto son:

- Modificar el marco retributivo de las energías renovables y la cogeneración llevando a cabo reducciones en las primas recibidas. Los valores a detraer – en %- que proponemos son:
 - a. Solar Fotovoltaica→30%
 - b. Solar Termoeléctrica → 10%
 - c. Eólica → 100%
 - d. Hidráulica R.E. →0%
 - e. Biomasa→100%
 - f. Biogás → 45%
 - g. Cogeneración→30%

- 2. Reducir las sobrerretribuciones o WP de la Nuclear y de la Hidráulica en R.O., derivadas de la enorme diferencia entre los costes marginales y el precio de mercado. Para esto, limitamos la rentabilidad por ellas a un 8%.
- Establecer un recargo de 10 €/tep para las tecnologías que utilicen como combustible algún hidrocarburo.

Costs analysis of the spanish electricity system. Study of technical and economic

viability of removing Tariff Deficit

Author: González de Aguilar Rabanera, Cristóbal.

Director: Fernández-Daza Mijares, Francisco.

INTRODUCTION

The ultimate goal of the electrical system is to bring the electricity to consumers, as

this is essential for the correct performance of our society. The activities necessaries to

carry out this mission generate costs that must be covered by incomes to make viable

the financial structure of the system.

Currently, the economic situation in the spanish electricity sector is deficit, that is it,

that the above costs exceed incomes. Those incomes are satisfied by consumers

trough the bill.

Therefore, the aim of this project is, first, to quantify costs, revenues and, ultimately,

the economic imbalance; and second, to propose measures to eliminate this

disequilibrium and see what the impacts are. To ensure that the electrical system is

economically viable.

OBJECTIVES

The main objectives are:

- Quantify costs derived from the activities of the electricity sector, and revenues

satisfied by consumers.

- Calculate the imbalance between costs and revenues by liquidating these. This
 is the value that reaches the so-called tariff deficit.
- Propose adjustment measures to address this desequilibrium and measure their impact.

BACKGROUND

The Spanish tariff deficit in the electricity sector is the difference between the recognized cost utilities revenue obtained through regulated rates paid by consumers.

The tariff deficit first emerged in 2000, but it was from 2005, due to the rising price of oil, when it reached over 6000 million euros (ie, almost 0.5% of GDP) annual values and accumulated at the end of 2012 close to 28,000 million euros (almost 3% of GDP that year).

METHODOLOGY

To get the value of the Tariff Deficit is necessary to make the settlement between the costs and revenues from the activities of the electricity sector. Basically, the activities carried out by this sector are to generate, transport and distribute electricity.

The cost of producing electricity is the value at which electricity is purchased on the market. That price we have obtained from historical collected by the market operator (OMEL). And in the case of primate technologies, we have used the RD 661/2007 and RD 1578/2008, in the case of post- 2008 photovoltaic plants - for their benefit package

Costs derived from logistics activities, we have obtained from reports made by the regulator (CNE) annually. Majority are previously regulated by Administrations costs.

After obtaining all costs, perform these clearance and income paid by consumers, and have the value of the imbalance.

Finally, we have proposed a number of measures to alleviate this deficit after analyzing what the consequences are and who bears.

CONCLUSIONS

The solutions proposed by this project are:

- Decrease the remuneration framework of renewable energy and cogeneration conducting reductions in premiums received. The values to detract-in% - we propose are:
 - a. Solar Photovoltaic → 30%
 - b. Solar Thermoelectric → 10%
 - c. Wind \rightarrow 100%
 - d. Hydraulics R. E. \rightarrow 0%
 - e. Biomass \rightarrow 100%
 - f. Biogas \rightarrow 45%
 - g. Cogeneration \rightarrow 30%
- 2. Reduce Windfall Profits from Nuclear and Hydro in RO, derived from the enormous difference between the marginal cost and the market price. For this, we limit them to yield 8%.
- 3. Establish a tax of 10 € / tep for technologies that use a hydrocarbon fuel.

7.1.6.

UNIVERSIDAD PONTIFICIA DE COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

	DICE ARTE 1	: MEN	MORIA	ŝ
1.	INT	RODU	JCCIÓN	4
2.	AN	TECEL	DENTES	5
3.	FUN	<i>ICIO</i> N	IAMIENTO DEL SISTEMA ELÉCTRICO ESPAÑOL	<i>6</i>
	3.1.	GEN	IERACIÓN	6
	3.2.	TRA	NSPORTE	10
	3.3.	DIST	FRIBUCIÓN	11
	3.4.	CON	//ERCIALIZACIÓN	12
4.	cos	STES L	DEL SISTEMA ELÉCTRICO ESPAÑOL	13
	4.1.	cos	TES DE PRODUCCIÓN	13
	4.1.	1.	Costes Régimen Ordinario	13
	4.1.	2.	Costes Régimen Especial	17
	4.1.	3.	Comentarios	34
	4.2.	cos	TES REGULADOS O DE ACCESO	38
	4.2.	1.	Costes de redes	38
	4.2.	2.	Costes de distribución y gestión comercial de la distribución	38
	4.2.	3.	Costes de diversificación y seguridad de abastecimiento	39
	4.2.	4.	Costes permanentes	42
	4.2.	5.	Anualidades del déficit de tarifa	45
	4.2.	6.	Otros costes regulados	46
5.	ING	RESO	S DEL SISTEMA ELÉCTRICO ESPAÑOL	46
6.	DÉF	ICIT L	DE TARIFA	50
7.	ME	DIDA	S DE AJUSTE	53
	7.1.	RED	UCCIÓN DE LAS PRIMAS OTORGADAS A LAS ENERGÍAS RENOVABLES	54
	7.1.	1.	Solar Fotovoltaica	57
	7.1.	2.	Solar Termoeléctrica	57
	7.1.	3.	Eólica	58
	7.1.	4.	Hidráulica R.E.	58
	7.1.	5.	Biomasa	58

	7.1.7	'. Cogeneración	59
7	.2.	IMPUESTO POR WINDFALL PROFITS	59
	7.2.1	HIDRÁULICA R.O	65
	7.2.2	. NUCLEAR	66
7	.3.	SUBASTAS CO ₂	68
7	.4.	CÉNTIMO VERDE	73
	7.4.1	. CICLO COMBINADO	75
	7.4.2	. FUEL-GAS	75
7	.5.	IMPACTO DE LAS MEDIDAS	75
	7.5.1 reno	IMPACTO DE M.A.1: Reducción de las primas otorgadas a las energías vables	75
	7.5.2	IMPACTO DE M.A.2: Reducción de Windfall Profits	76
	7.5.3	IMPACTO DE M.A.3: Subastas CO ₂	76
	7.5.4	IMPACTO DE M.A.4: Céntimo Verde	77
	7.5.5	. IMPACTO EN CONJUNTO	78
8.	CON	CLUSIONES	78
9.	BIBL	IOGRAFÍA	81
PAR	TE 2:	ANEXOS	83
1.	DÉFI	CIT DE TARIFA	84
2.	FLUJ	O DE CAJA DE UNA CENTRAL DE CICLO COMBINADO	85
3.	FLUJ	O DE CAJA DE UNA CENTRAL TÉRMICA DE FUEL-GAS	86
4.	FLUJ	O DE CAJA DE UNA PLANTA FOTOVOLTAICA	87
5.	FLUJ	O DE CAJA DE UNA PLANTA TERMOSOLAR	88
6.	FLUJ	O DE CAJA DE UN PARQUE EÓLICO	89
7.	FLUJ	O DE CAJA DE UNA CENTRAL HIDRÁULICA EN R.E	90
8.	FLUJ	O DE CAJA DE UNA CENTRAL DE BIOMASA	91
9.	FLUJ	O DE CAJA DE UNA CENTRAL DE BIOGÁS	92
10.	FL	UJO DE CAJA DE UNA PLANTA DE COGENERACIÓN	93

PARTE 1: MEMORIA

1. INTRODUCCIÓN

Todas las actividades económicas están recogidas en cuatro grandes grupos o sectores, que son:

- El sector primario: dentro del cual se encuentran los sectores agropecuario, pesquero y forestal.
- El sector secundario: abarca los sectores energético, industrial y minero.
- El sector terciario: comprende los sectores transportes, comunicaciones, comercial, turístico, sanitario, educativo, financiero y de la administración.
- El sector cuaternario: incluye los servicios intelectuales tales como investigación, desarrollo, innovación e información.

De todos ellos, el sector en el que se centrará este proyecto es el sector energético, más concretamente en el sistema eléctrico, que se encuentra dentro del sector secundario.

El objetivo final del sistema eléctrico es llevar la electricidad hasta los consumidores, ya que esta es fundamental para el correcto funcionamiento de nuestra sociedad. Las actividades necesarias para llevar a cabo esta misión generan unos costes que, para que la estructura financiera del sistema sea viable, tienen que ser cubiertos por unos ingresos.

Actualmente, la situación económica en la que se encuentra el sector eléctrico español es deficitaria, es decir, que los costes antes mencionados superan a los ingresos. Ingresos que proceden, principalmente, de la factura que pagan los consumidores.

Es por ello, que el fin de este proyecto es, en primer lugar, cuantificar costes, ingresos y en definitiva, el desajuste económico, y en segundo lugar, proponer medidas para acabar con este desequilibrio y comprobar cuál es el impacto que producirían; para conseguir que el sistema eléctrico sea viable económicamente.

2. ANTECEDENTES

El déficit tarifario del sector eléctrico español es la diferencia entre los costes reconocidos a las empresas eléctricas los ingresos obtenidos a través de las tarifas reguladas que pagan los consumidores.

El déficit tarifario surgió por primera vez el año 2000 -como resultado de un ligero desajuste entre la previsión inicial de ingresos y costes y las liquidaciones efectivas- y, tras alcanzar un valor significativo en 2002, volvió prácticamente a desaparecer durante los dos ejercicios siguientes.

Fue a partir de 2005, debido al aumento del precio de los hidrocarburos, cuando –el *GRÁFICO 1* únicamente muestra el período de estudio 2007-2012- alcanzó valores anuales superiores a 6.000 millones de euros (esto es, casi el 0,5% del PIB) y un importe acumulado a finales de 2012 próximo a los 28.000 millones de euros (es decir, casi el 3% del PIB ese año).

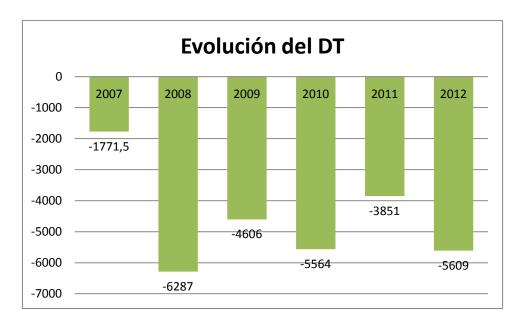


GRÁFICO 1. EVOLUCIÓN ANUAL DÉFICIT DE TARIFA (Fuente: Elaboración propia)

3. FUNCIONAMIENTO DEL SISTEMA ELÉCTRICO ESPAÑOL

Para entender la situación en la que se encuentra la estructura financiera del sistema eléctrico español, primero, es necesario entender cómo funciona dicho sistema y las actividades que comprende.

GRÁFICO 2. Actividades que componen la cadena de suministro. (Fuente: Elaboración propia) El GRÁFICO 2 muestra las cuatro actividades que componen la cadena de suministro

eléctrico. A continuación procederemos a explicar cada una de ellas.

3.1. **GENERACIÓN**

La actividad de GENERACIÓN consiste en producir electricidad transformando energías primarias en energía eléctrica. Se trata de una actividad liberalizada y por lo tanto, puede ser ejercida por cualquier sujeto en régimen de competencia.

Las diferentes tecnologías de generación se pueden clasificar en dos grupos, según su régimen retributivo y jurídico: Régimen Ordinario y Régimen Especial.

Dentro del Régimen Ordinario se encuentran las conocidas como tecnologías convencionales, que son:

- <u>Nuclear</u>: En sus centrales se genera calor a partir de la fisión de los núcleos de uranio. Dicho calor se usa para producir vapor que se turbina y de esta forma generar electricidad.
- Hidráulica R.O.: Esta tecnología aprovecha la energía cinética o potencial de una masa de agua para convertirla en energía eléctrica. Se incluirán dentro del Régimen Ordinario aquellas centrales cuya potencia instalada sea superior a 50 MW.
- <u>Carbón</u>: Son centrales térmicas en las que quemando este combustible fósil se produce vapor, el cual es turbinado para generar electricidad.
- <u>Ciclo combinado</u>: En estas centrales, la energía térmica del gas natural es transformada en electricidad mediante dos ciclos termodinámicos consecutivos: primero una turbina de gas y después una turbina de vapor.
- <u>Fuel-Gas</u>: También son centrales térmicas, por lo tanto, el proceso es el mismo que el de las centrales térmicas de carbón. La diferencia es que los combustibles fósiles empleados son el fuelóleo y el gas natural.

Por otro lado, se encuentra el Régimen Especial que recoge la generación de energía eléctrica en instalaciones de potencia que utilizan como energía primaria energías renovables o residuos; y aquellas otras como la cogeneración que implica una tecnología con un nivel de eficiencia y ahorro energético considerable:

- Solar fotovoltaica: Se transforma la energía solar en energía eléctrica mediante células fotovoltaicas basadas en semiconductores que generan electricidad cuando incide sobre ellas la radiación solar.
- <u>Solar Termoeléctrica</u>: Se aprovecha la energía solar para calentar un fluido y generar vapor, que al turbinarlo produce electricidad.

- <u>Eólica</u>: En estas instalaciones se transforma la energía cinética del viento en energía eléctrica.
- <u>Biomasa/Biogás</u>: Son centrales térmicas en las que los combustibles empleados para producir el vapor que más tarde será turbinado, son el biogás o la biomasa.
- <u>Hidráulica R.E.</u>: tienen el mismo funcionamiento que las centrales de R. O. pero su capacidad instalada es inferior a los 50 MW.
- Cogeneración: En este tipo de instalaciones se produce energía térmica útil (calor o frío) y electricidad simultáneamente.

El mix eléctrico recoge el abanico de tecnologías que se utilizan para producir la electricidad que consumimos en nuestro país, así como el porcentaje que representa la energía producida por cada una de ellas dentro de la producción total. El mix eléctrico español en 2012 se representa en el GRÁFICO 2:

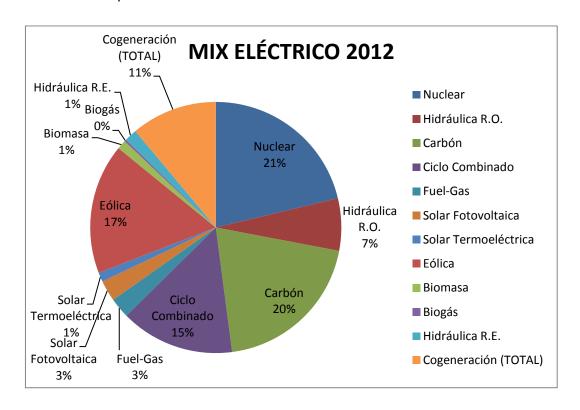


GRÁFICO 3. MIX ELÉCTRICO AÑO 2012 (Fuente: Elaboración propia).

A la hora de cubrir la demanda eléctrica, existen preferencias de penetración entre las distintas tecnologías. Esto es, se incorpora a la red la energía producida por las tecnologías -por orden de preferencia- hasta que queda cubierto el volumen total de electricidad demandada.

El orden de preferencia establecido en el sistema eléctrico español es el siguiente:

- 1. Régimen especial
- 2. Nuclear
- 3. Hidráulica
- 4. Carbón
- 5. Ciclo combinado
- 6. Fuel-Gas

Diariamente, Red Eléctrica Española (REE) hace una previsión de la demanda de electricidad que habrá al día siguiente, a partir de ahí, los productores hacen ofertas de la cantidad que pueden producir y del precio al que están dispuestos a venderla. Estas ofertas se hacen por orden de preferencia, como hemos dicho anteriormente.

Únicamente se aceptarán aquellas que sean necesarias para cubrir la demanda existente, y el precio con el cual serán retribuidos todos los productores participantes, será el que haya ofertado la última tecnología en entrar –precio spot-.

En definitiva, se trata de un mercado que se establece por la ley de la oferta y la demanda. Este mercado mayorista donde se produce la fijación de precios de la electricidad, se conoce como "pool".

3.2. TRANSPORTE

La actividad de transporte tiene como objetivo llevar la electricidad desde los puntos de generación hasta los grandes consumidores industriales que están directamente conectados a la red y hasta los puntos de entronque con las redes de distribución —qué llevarán la electricidad al resto de consumidores-. Se trata de una actividad regulada ejercida en régimen de monopolio.

La tensión a la que se opera la electricidad durante la actividad de transporte es igual o superior a 220 kV. Aquellas otras instalaciones, cualquiera que sea su tensión, que cumplan funciones de transporte, de interconexión internacional y, en su caso, las interconexiones con los sistemas eléctricos insulares y extrapeninsulares, también se consideran de transporte.

La red de transporte española se compone de más de 40.000 km de líneas, más de 5.000 posiciones de subestaciones –donde se producen los cambios de tensión según sea conveniente- y más de 78.000 MVA de capacidad de transformación.

Dicha red de transporte garantiza:

- El equilibrio del sistema eléctrico nacional, manteniendo los parámetros de tensión y frecuencia dentro de los límites aceptables.
- La seguridad del sistema eléctrico nacional.
- Transferir energía entre distintas subestaciones eléctricas cuando sea necesario.
- Minimizar pérdidas operando con esos rangos de tensión y con unas configuraciones de las líneas establecidas –número de fases, rectificación, conexión de dos o más circuitos-.

Según la Ley 17/2007, se ratifica a Red Eléctrica Española (REE) como transportista único y operador del sistema eléctrico español, convirtiéndola, por tanto, en titular de toda la red de transporte. Actualmente, REE es una sociedad cuyo accionariado está compuesto por un 20% propiedad de la Sociedad Estatal de Participaciones Industriales (SEPI) –sociedad de capital público- y un 80% restante que es de cotización libre en el IBEX-35.

3.3. DISTRIBUCIÓN

La distribución es la actividad que tiene por objeto trasladar la electricidad desde las redes de transporte hasta el consumidor final. Se consideran instalaciones y elementos –protecciones, centros de transformación, control, etc.-de distribución, aquellos cuya tensión sea inferior a 220 kV –y que no se consideren parte de la red de transporte-. Se trata de una actividad regulada ejercida en régimen de monopolio.

Los objetivos que garantiza dicha red son:

- Atender nuevas demandas de electricidad, ampliando la red de instalaciones.
- Asegurar la calidad de servicio.
- Medición del consumo.

La actividad de distribución en España la desarrollan, principalmente, 5 grandes empresas distribuidoras y más de 300 con menos de 100.000 clientes.

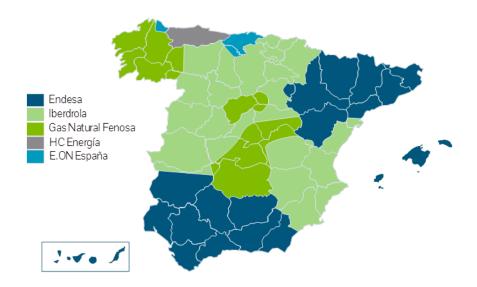


GRÁFICO 4. MAPA DE LAS ZONAS DE DISTRIBUCIÓN (Fuente: Energía y Sociedad).

3.4. COMERCIALIZACIÓN

Se entiende por comercialización aquella actividad que tiene como función la venta de energía eléctrica a los consumidores. Al tratarse de una función liberalizada, puede ejercerla cualquier sujeto en régimen de competencia.

El 1 de julio de 2009 entra en vigor un nuevo sistema de tarifas en el que coexisten, por un lado, el mercado libre —donde el consumidor puede buscar ofertas de un comercializador liberalizado-, y por otro lado, una tarifa fijada por el Gobierno: la Tarifa de Último Recurso (TUR).

La TUR es el precio regulado por el Gobierno para el suministro obligatorio a los clientes que no quieren o no pueden buscar otras ofertas en el mercado. Esta alternativa se reserva a los consumidores con una potencia contratada inferior a 10kW, segmento en el que se encuentran prácticamente todos los consumidores domésticos. Las empresas comercializadoras designadas por la Administración para

desarrollar esta tarea son los llamados Comercializadores de Último Recurso (CUR). Y actualmente son:

- Iberdrola Comercialización de Último Recurso, S.A.U.
- Endesa Energía XXI, S.L.U.
- E.ON Comercializadora de Último Recurso, S.L.
- Gas Natural S.U.R., SDG, S.A.
- HC-Naturgás Comercializadora Último Recurso, S.A.(Grupo EDP).

4. COSTES DEL SISTEMA ELÉCTRICO ESPAÑOL

Como cualquier otro sistema económico, el sector eléctrico consta de unos costes y de unos ingresos.

Los costes que derivan de las actividades de la cadena de suministro, se pueden separar en dos grupos: los originarios de la producción de la energía y los que proceden de las operaciones logísticas de transporte y distribución, conocidos como "costes de acceso o regulados".

4.1. COSTES DE PRODUCCIÓN

Es el importe de la energía total vertida a la red por los generadores. Para realizar el cálculo de dichos costes, se ha diferenciado entre la energía producida en Régimen Ordinario y la producida en Régimen Especial. Esto es debido a las diferencias en su régimen retributivo y jurídico.

4.1.1. Costes Régimen Ordinario

Las tecnologías que operan en este régimen no tienen derecho al cobro de primas y la energía que producen la venden directamente en el mercado −sin posibilidad de venderla a tarifa regulada-. Entonces, si conocemos el precio que se ha pagado en el pool −en €/MWh- y la producción anual −en GWh-, sabremos el coste de producción anual -€-.

Los precios del pool los hemos obtenido del operador de mercado OMIE –tiene registrados dichos valores- y la producción anual del "Informe Anual sobre el Sector Eléctrico" que realiza anualmente el operador del sistema REE.

A continuación, desarrollaremos cómo se ha calculado dicho coste para cada una de las tecnologías en Régimen Ordinario:

4.1.1.1. Nuclear

Este tipo de central funciona las 24 horas del día debido al altísimo coste que supone su puesta en funcionamiento. Aunque anualmente se realiza una parada técnica para hacer una revisión de los equipos, se puede decir que está operativa prácticamente todo el año.

Por ejemplo, en el año 2012 la producción fue de 61.470 GWh y la potencia nuclear instalada de 7.853 MW, es decir, las horas de funcionamiento efectivo de esta tecnología fue de 7.828 horas/año —aproximadamente un 90% del año-, según el Informe Anual sobre El Sistema Eléctrico Español de REE.

Por ello, se puede afirmar que el precio medio del pool refleja, de manera real, la retribución que se ha hecho a esta energía.

AÑO	POOL (€/GWh)	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE POOL (M€)
2007	47380	7716	55102	7141,264904	2610,73276
2008	69610	7716	58973	7642,949715	4105,11053
2009	42630	7716	52761	6837,869362	2249,20143
2010	45360	7777	61990	7970,939951	2811,8664
2011	60150	7853	57731	7351,458042	3472,51965
2012	59420	7853	61470	7827,581816	3652,5474
TOTAL					18901,97817

CUADRO 1. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA NUCLEAR (Fuente: Elaboración propia).

4.1.1.2. Hidráulica R.O.

Este tipo de centrales tiene la posibilidad de embalsar el agua que más tarde se usará para generar energía eléctrica, es decir, que puede administrar su producción. Debido

a estas características, esta tecnología genera sólo cuando el precio al que se paga la electricidad alcanza valores altos.

AÑO	POOL (€/GWh)	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE POOL (M€)
2007	72920	17506	26352	1505,312464	1921,58784
2008	93040	17554	21428	1220,690441	1993,66112
2009	68760	17554	23862	1359,348297	1640,75112
2010	78080	17564	38562	2195,51355	3010,92096
2011	71500	17567	27571	1569,47686	1971,3265
2012	74090	17762	19455	1095,315843	1441,42095
TOTAL					11979,66849

CUADRO 2. CÁCULO DEL COSTE DE PRODUCCIÓN ENERGÍA HIDRÁULICA R.O. (Fuente: Elaboración propia).

Es por ello que, como se puede observar en el *CUADRO 2*, las horas de funcionamiento anual son considerablemente menores a las de la energía nuclear y el precio al que se vende la energía generada es mucho mayor.

El valor de dicho precio se ha obtenido calculando el promedio de los precios máximos.

4.1.1.3. Carbón

AÑO	POOL (€/GWh)	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE POOL (M€)
2007	47380	11867	75028	6322,406674	3554,82664
2008	69610	11869	49647	4182,913472	3455,92767
2009	42630	11869	37311	3143,567276	1590,56793
2010	45360	11890	25478	2142,809083	1155,68208
2011	60150	12210	46519	3809,90991	2798,11785
2012	59420	11758	57662	4904,065317	3426,27604
TOTAL					15981,39821

CUADRO 3. CÁCULO DEL COSTE DE PRODUCCIÓN ENERGÍA CARBÓN (Fuente: Elaboración propia).

Para esta energía hemos decidido calcular los costes a partir del precio medio del pool. El elevado de número de horas de funcionamiento que tiene esta tecnología –reflejado en el *CUADRO 3-*, ha sido la razón que nos ha hecho llegar a esta conclusión.

4.1.1.4. Ciclo Combinado

El número de horas de funcionamiento de esta tecnología tienen un valor bajo en comparación con el resto. El motivo por el que se produce esto, es que todas las

demás tecnologías tienen prioridad sobre ella a la hora de verter su energía producida a la red. Y por tanto, una parte importante del año permanecen inoperativas.

Otro aspecto que cabe resaltar es el elevado precio a partir del cual hemos calculado los costes de esta energía. La razón de esto, es que dicha energía tiene unos costes mayores -debido al precio del combustible-, y por lo tanto, el precio al que oferta el kWh es también mayor. Luego, el precio elegido es el resultado del promedio de los precios máximos del pool.

A continuación se presenta el *CUADRO 4,* donde se pueden observar los rasgos antes comentados.

AÑO	POOL (€/GWh)	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE POOL (M€)
2007	72920	22107	72219	3266,793323	5266,20948
2008	93040	23066	95529	4141,550334	8888,01816
2009	68760	24611	82239	3341,554589	5654,75364
2010	78080	27023	68595	2538,393221	5355,8976
2011	71500	27123	55140	2032,960956	3942,51
2012	74090	27194	42510	1563,212473	3149,5659
TOTAL					32256,95478

CUADRO 4. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA CICLO COMBINADO (Fuente: Elaboración propia).

4.1.1.5. Fuel-Gas

Estas centrales térmicas tienen el mismo problema que las de Ciclo Combinado, es decir, que operan muy pocas horas comparativamente y cuando lo hacen es a un precio muy alto. En el *CUADRO 5* se puede se refleja lo que hemos comentado.

AÑO	POOL (€/GWh)	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE POOL (M€)
2007	72920	7629	10827	1419,189933	789,50484
2008	93040	7170	10691	1491,073919	994,69064
2009	68760	5815	10056	1729,320722	691,45056
2010	78080	5723	9553	1669,229425	745,89824
2011	71500	4376	7479	1709,095064	534,7485
2012	74090	3429	7541	2199,183435	558,71269
TOTAL					4315,00547

CUADRO 5. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA FUEL-GAS (Fuente: Elaboración propia).

4.1.2. Costes Régimen Especial

Para calcular el coste que suponen las energías que operan en este régimen, hemos considerado que durante el primer año venden a tarifa y en los posteriores lo hacen a precio de mercado más una prima preestablecida.

Tanto la tarifa como las primas son las estipuladas por las Administraciones en el RD 661/2007 –ANEXO I de este documento- y se actualizan según lo establecido en este mismo Real Decreto:

Valor a detraer del IPC para las actualizaciones a que se hace referencia en el presente real decreto.

El valor de referencia establecido para la detracción del IPC a que se hace referencia en el presente real decreto para las actualizaciones de algunos valores establecidos será de veinticinco puntos básicos hasta el 31 de diciembre de 2012 y de cincuenta puntos básicos a partir de entonces

Estas actualizaciones se aplicarán también a los límites superior e inferior de la suma del precio de mercado y la prima de referencia.

Para calcular el coste -€- de la energía vendida a tarifa, necesitamos conocer el valor de esta última -€/MWh- y la producción anual -GWh-.

Como en el caso de las tecnologías en Régimen Ordinario, aquí, los valores del precio del pool y de la producción anual, también los hemos sacado del OMIE y de REE, respectivamente.

En el caso de la energía vendida a precio de mercado más una prima, precisamos el valor del precio al que se ha vendido la energía en el mercado -€/MWh-, la prima de referencia establecida -€/MWh- y la producción anual-GWh-. Es importante destacar que la suma del precio de mercado y la prima de referencia, está limitada superior e inferiormente por unos valores establecidos por las Administraciones.

Asimismo, es importante señalar que en el Artículo 2 del RD 661/2007 –ANEXO I- se clasifican las instalaciones en diferentes categorías, grupos y subgrupos, en función de las energías primarias utilizadas, de las tecnologías de producción empleadas y de los rendimientos energéticos obtenidos.

A la hora de escoger la retribución adecuada del RD 661/2007 –ANEXO I-, es necesario tener en cuenta dos variables: plazo de la instalación y potencia instalada:

- Dado el período de análisis que ocupa a este proyecto, hemos seleccionado la retribución establecida para el plazo de los primeros 25 años (20 y 15 en algunos casos) en todas las tecnologías.
- En el caso de la potencia instalada, se ha escogido una capacidad diferente para cada energía. Los motivos se explican durante el cálculo de los costes de cada una.

A continuación se muestran las hojas de cálculo Microsoft Excel empleadas para la cuantificación de los costes y las primas o tarifas —que dependen de la categoría, del grupo y del subgrupo al que pertenezca cada instalación- a partir de las cuales se han realizado.

4.1.2.1. Solar Fotovoltaica

Las instalaciones que únicamente utilicen la radiación solar como energía primaria mediante la tecnología fotovoltaica, están incluidas en el Subgrupo b.1.1. del Grupo b.1. de la Categoría b).

La retribución establecida por el RD 661/2007 –ANEXO I- para esta tecnología hacía de ella una inversión muy atractiva. Esto supuso un "boom", en cuanto a capacidad fotovoltaica instalada - alcanzando los 3.000 MW frente a los 500 MW previstos-, que elevó drásticamente el coste de las subvenciones a la energía.

Por ello, en septiembre del año 2008, la Administración aprueba, mediante el RD 1578/08, un nuevo marco retributivo con el fin de regular la producción de energía fotovoltaica.

En resumen, hemos hecho una contabilidad para las retribuciones de las plantas anteriores al año 2008 y, paralelamente, una contabilidad para las posteriores a 2008:

- En primer lugar se muestran las tarifas asignadas por el RD 661/2007:

Grupo	Subgrupo	Potencia	Plazo	Tarifa regulada c€/kWh	Prima de referencia c€/kWh	Límite Superior c€/kWh	Límite Inferior c€/kWh
		P ≤100 kW	primeros 25 año	44,0381			
	•	P ≤100 KW	a partir de entonces	35,2305			
b.1	b.1.1	100 kW <p≤10 mw<="" td=""><td>primeros 25 años</td><td>41,7500</td><td></td><td></td><td></td></p≤10>	primeros 25 años	41,7500			
D.1	D.1.1		a partir de entonces	33,4000			
		10 -D - E0 MW	primeros 25 años	22,9764			
		10 <p≤50 mw<="" td=""><td>a partir de entonces</td><td>18,3811</td><td></td><td></td><td></td></p≤50>	a partir de entonces	18,3811			

TABLA 1. TARIFAS Y PRIMAS (Fuente: RD 661/2007 -Anexo I-).

Hemos seleccionado la retribución establecida para plantas de 100 kW porque la práctica totalidad de las plantas anteriores a 2008 tenían dicha capacidad. Esto es debido a las atractivas subvenciones que se pagaban.

- A continuación, se expone la retribución de las plantas después de 2008:

Ti	pología	Tarifa regulada (c€/kWh)
Tipo I	Subtipo I.1	34,00
прот	Subtipo I.2	32,00
Tipo II		32,00

TABLA 2. TARIFAS Y PRIMAS (Fuente: RD 1578/2008 -Anexo II-).

Dados estos valores el coste de esta tecnología sería:

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	COSTE PRIMAS (M€)
2007	612	463	756,5359477	203,896403	0	203,896403	269,513172
2008				1105,003721	0	1105,00372	1472,879025
			,	2664,447766	0	2664,44777	1484,632599
2009	3207	5755,5546	1794,684939	2518,243088	0	2518,24309	1499,44181
2010	3207	5386,008	1679,453695	2704,75017	0	2704,75017	1548,799685
2011	3207	5600,5524	1746.352479	2868,08505	0	2868,08505	1579,698239
2012	3207			12064,4262	0	12064,4262	
TOTAL				COSTE TOTAL 1	12064,4262		
				COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	
				24,236982	0	24,236982	13,53
~				251,2993132	0	251,299313	149,6479958
AÑO	POT. INSTALADA (MW)	BALANCE ENERGETICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	513,4500479	0	513,450048	294,0005005
2009	41	. 73,4454	1791,35122	695,3801768	0	695,380177	383,0838399
2010	449	753,992	1679,269488	1484,36652	0	1484,36652	0
2011	854	1491,4476	1746,425761	COSTE TOTAL 2	1484,36652		
2012	1091	. 1980,4014	1815,216682	COSTE TOTAL 2	1404,30032		
TOTAL				COSTE TOTAL	13548,79272		

CUADRO 6. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA SOLAR FOTOVOLTAICA (Fuente: Elaboración propia).

Viendo la evolución de las horas de funcionamiento en los resultados del *CUADRO 6* podemos concluir que no se tuvo en cuenta la curva de aprendizaje y se apostó por esta tecnología antes de tiempo.

4.1.2.2. Solar Termoeléctrica

Las instalaciones que utilizan únicamente procesos térmicos para la transformación de la energía solar, como energía primaria, están incluidas en el Subgrupo b.1.2. del Grupo b.1.de la Categoría b). Donde las retribuciones de tarifa y prima son las mismas para todas las capacidades:

Grupo	Subgrupo	Potencia	Plazo	Tarifa regulada c€/kWh	Prima de referencia c€/kWh	Límite Superior c€/kWh	Límite Inferior c€/kWh
		P ≤100 kW	primeros 25 año	44,0381			
		P ≤100 KW	a partir de entonces	35,2305			
b.1	h 1 1	b.1.1 100 kW <p≤10 mw<="" td=""><td>primeros 25 años</td><td>41,7500</td><td></td><td></td><td></td></p≤10>	primeros 25 años	41,7500			
D.1	D.1.1		a partir de entonces	33,4000			
		10 <p≤50 mw<="" td=""><td>primeros 25 años</td><td>22,9764</td><td></td><td></td><td></td></p≤50>	primeros 25 años	22,9764			
		10 <p≤50 mw<="" td=""><td>a partir de entonces</td><td>18,3811</td><td></td><td></td><td></td></p≤50>	a partir de entonces	18,3811			
	b.1.2		primeros 25 año	26,9375	25,4000	34,3976	25,4038
	D.1.2		a partir de entonces	21,5498	20,3200	34,3976	23,4038

TABLA 3. TARIFAS Y PRIMAS (Fuente: RD 661/2007 -Anexo I-).

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	AÑO
		(2,155	0	2,155	2007
2007	11	. 8	727,2727273	3,454047138	0,904807782	4,35885492	2008
2008	61	15	245,9016393	27,13315055	10,58376612	37,7169167	2009
2009	232	130	560,3448276	111,6027992	95,06859359	206,671393	2010
2009	232	. 130	300,3448270	252,9891336	330,4345033	583,423637	2011
2010	532	692	1300,75188	519,2123246	590,7885298	1110,00085	2012
2011	999	1832	1833.833834	916,5464551	1027,780201	1944,32666	TOTAL
2011	333	1032	1033,033034				
2012	2000	3443	1721,5	COSTE TOTAL	1944,326656		

CUADRO 7. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA SOLAR TERMOELÉCTRICA (Fuente: Elaboración propia).

De los resultados reflejados en el *CUADRO 7*, es importante resaltar el incremento que ha experimentado esta tecnología en cuanto al número de horas de funcionamiento. Esto se debe a los importantes progresos y mejoras de la tecnología.

4.1.2.3. Eólica

Las instalaciones que únicamente utilizan como energía primaria la energía Eólica, están incluidas en el Grupo b.2. de la Categoría b). Tampoco hace distinción de capacidad:

Grupo	Subgrupo	Potencia	Plazo	Tarifa regulada c€/kWh	Prima de referencia c€/kWh		Límite Inferior c€/kWh
b.2	b.2.1		primeros 20 años	7,3228	2,9291	8,4944	7,1275
0.2	0.2.1		a partir de entonces	6,1200	0,0000		

TABLA 4. TARIFAS Y PRIMAS (Fuente: RD 661/2007 -Anexo I-).

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	AÑO
	. ,	, ,		1920,162671	0	1920,16267	2007
2007	14058	27247	1938,184664	296,9459409	2470,575545	2767,52149	2008
2008	16018	31777	1983,83069	429,7296917	2306,045368	2735,77506	2009
2000	10000	2001	1050 035030	224,9683539	3119,362193	3344,33055	2010
2009	18865	36991	1960,826928	165,1471883	3700,391106	3865,53829	2011
2010	20203	43692	2162,649112	259,1249962	4176,616264	4435,74126	2012
2011	21239	42160	1985,027544	3296,078841	15772,99048	19069,0693	TOTAL
2012	22722	48472	2133,262917	COSTE TOTAL	19069,06932		

CUADRO 8. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA EÓLICA (Fuente: Elaboración propia).

Si analizamos los resultados del *CUADRO 8* y los comparamos con los resultados de la energía solar, veremos que el coste es similar. Sin embargo, la producción eólica es sustancialmente mayor.

4.1.2.4. Hidráulica R.E.

Las centrales Hidroeléctricas se encuentran en los Grupos b.4. y b.5. de la Categoría b).

Grupo	Subgrupo	Potencia	Plazo	Tarifa regulada c€/kWh	Prima de referencia c€/kWh	Límite Superior c€/kWh	Límite Inferior c€/kWh
b.4			primeros 25 años	7,8000	2,5044	0.5000	6,5200
D.4			a partir de entonces	7,0200	1,3444	8,5200	0,3200
L -			primeros 25 años	*	2,1044	0.0000	6 1200
b.5			a partir de entonces	**	1,3444	8,0000	6,1200

TABLA 5. TARIFAS Y PRIMAS (Fuente: RD 661/2007 -Anexo I-).

En este caso, el RD 661/2007 –ANEXO I- hace distinción por capacidad entre centrales con potencia instalada no superior a 10 MW y centrales con potencia superior a 10 MW y no superior a 50 MW. Para las del segundo grupo, no establece un valor fijo, sino variable:

*6,60 + 1,20 x [(50 - P) / 40], siendo P la potencia de la instalación.

Luego, para saber a qué retribución acogernos, primero, hemos hallado cual sería la retribución de tarifa máxima, es decir, para una central de 50 MW de capacidad:

6,60 + 1,20 x
$$\left[\frac{(50 - P)}{40} \right]$$
 = 6,6000 (c€/kWh)

Entonces, sabiendo la variedad de centrales existente en España en cuanto a capacidad, hemos supuesto que una retribución justa, sería la media de ambas. Este razonamiento se ha utilizado también para la prima de referencia y el valor de los límites superior e inferior. La diferencia es que para la prima y los límites, si que se especifican valores fijos, luego, no ha sido necesario aplicar la fórmula.

Como resultado, nos dan los siguientes valores:

- Tarifa regulada =
$$(\frac{7,8000+6,6000}{2})$$
 = 7,2000 c€/kWh

- Prima de referencia =
$$(\frac{2,5044+2,1044}{2})$$
 = 2,3044 c€/kWh

- Límite superior = $\left(\frac{8,5200+8,0000}{2}\right)$ = 8,2600 c€/kWh
- Límite inferior = $(\frac{6,5200+6,1200}{2})$ = 6,3200 c€/kWh

Y por tanto los costes son:

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	AÑO
				297	0	297	2007
2007	1871	4125	2204,703367	19,33797501	1465,285574	1484,62355	2008
2008	1981	4638	2341,241797	8,769948373	1652,890687	1661,66064	2009
2009	2024	5454	2604 664022	3,583417858	2135,010272	2138,59369	2010
2003	2024	3434	2694,664032	1,023023923	1788,683603	1789,70663	2011
2010	2038	6824	3348,380765	0	1591,555691	1591,55569	2012
2011	2043	5294	2591,287323	329,7143652	8633,425826	8963,14019	TOTAL
2011	2043	3254	2031,207020				
2012	2042	4633	2268,854065	COSTE TOTAL	8963,140191		

CUADRO 9. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA HIDRÁULICA R.E. (Fuente: Elaboración propia).

4.1.2.5. Biomasa

Centrales que utilicen como combustible principal biomasa procedente de cultivos energéticos, de residuos de las actividades agrícolas o de jardinerías, o residuos de aprovechamientos forestales y otras operaciones selvícolas en las masas forestales y espacios verdes, están incluidas en el Grupo b.6. de la Categoría b).

Grupo	Subgrupo	Potencia	Plazo	Tarifa regulada c€/kWh	Prima de referencia c€/kWh	Límite Superior c€/kWh	Límite Inferior c€/kWh
		P≤2 MW	primeros 15 años	15,8890	11,5294	16,6300	15,4100
	b.6.1	PSZ MIVV	a partir de entonces	11,7931	0,0000		
	D.0.1	2 MW ≤ P	primeros 15 años	14,6590	10,0964	15,0900	14,2700
		Z MIVV ≤ P	a partir de entonces	12,3470	0,0000		
		P≤2 MW	primeros 15 años	12,5710	8,2114	13,3100	12,0900
h c	h 6 0		a partir de entonces	8,4752	0,0000		
b.6	b.6.2	2 MW < D	primeros 15 años	10,7540	6,1914	11,1900	10,3790
		2 MW ≤P	a partir de entonces	8,0660	0,0000		
		D-2 MW	primeros 15 años	12,5710	8,2114	13,3100	12,0900
	h 6 2	P≤2 MW	a partir de entonces	8,4752	0,0000		
	b.6.3	2 MW < D	primeros 15 años	11,8294	7,2674	12,2600	11,4400
		2 MW ≤ P	a partir de entonces	8,0660	0,0000		

TABLA 6. TARIFAS Y PRIMAS (Fuente: RD 661/2007 -Anexo I-).

Hay diferenciación entre la procedencia de la biomasa y entre las capacidades, por lo que, utilizamos el mismo razonamiento que en el anterior. Esto es, la media de las retribuciones para las distintas capacidades:

- Tarifa regulada =
$$\left(\frac{15,8890+14,6590+12,5710+10,7540+12,5710+11,8294}{6}\right)$$
 = 13,0456 c€/kWh

- Prima de referencia =
$$\left(\frac{11,5294+10,0964+8,2114+6,1914+8,2114+7,2674}{6}\right)$$
 = 8,5846 c€/kWh

- Límite superior =
$$\left(\frac{16,6300+15,0900+13,3100+11,1900+13,3100+12,2600}{6}\right)$$
 = 13,6317 c€/kWh

- Límite inferior =
$$\left(\frac{15,4100+14,2700+12,0900+10,3790+12,0900+11,4400}{6}\right)$$
 = 12,6132 c€/kWh

Luego, el valor de los cotes de producción será:

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	AÑO	
				214.7300273	0	214,730027		2007
2007	395	1646	4167,088608	16,86970851	257,8843558	274,754064		2008
2008	422	1938	4592,417062	68,79275197	248,917686	317,710438		2009
2009	535	2375	4420 252226	12,29324271	324,0889512	336,382194		2010
2009	333	25/3	4439,252336	63,25083958	386,118004	449,368844		2011
2010	555	2463	4437,837838	35,43728413	481,3790429	516,816327		2012
2011	650	3025	4653.846154	411,3738542	1698,38804	2109,76189	TOTAL	
2011	030	3023	4003,040134					
2012	700	3400	4857,142857	COSTE TOTAL	2109,761894			

CUADRO 10. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA BIOMASA (Fuente: Elaboración propia).

4.1.2.6. Biogás

Centrales que utilicen como combustible principal biomasa procedente de estiércoles, biocombustibles o biogás procedente de la digestión anaerobia de residuos agrícolas y ganaderos, de residuos biodegradables de instalaciones industriales o de lodos de depuración de aguas residuales, así como el recuperado en los vertederos controlados, están incluidas en el Grupo b.7. de la Categoría b).

Grupo	Subgrupo	Potencia	Plazo	Tarifa regulada c€/kWh	Prima de referencia c€/kWh	Limite Superior c€/kWh	Limite Inferior c€/kWh
	b.7.1		primeros 15 años	7,9920	3,7784	8,9600	7,4400
	D.7.1		a partir de entonces	6,5100	0,0000		
		P≤500 kW	primeros 15 años	13,0690	9,7696	15,3300	12,3500
b.7	b.7.2	P≤300 KW	a partir de entonces	6,5100	0,0000		
D./	D./.2	500 kW ≤ P	primeros 15 años	9,6800	5,7774	11,0300	9,5500
		300 KW ≤ P	a partir de entonces	6,5100	0,0000		
	b.7.3		primeros 15 años	5,3600	3,0844	8,3300	5,1000
	0.7.3		a partir de entonces	5,3600	0,0000		

TABLA 7. TARIFAS Y PRIMAS (Fuente: RD 661/2007 -Anexo I-).

También distingue entre la procedencia del biogás y las capacidades. Por ello, llevaremos a cabo el mismo procedimiento:

- Tarifa regulada =
$$\left(\frac{7,9920+13,0690+9,6800+5,3600}{4}\right)$$
 = 9,0253 c€/kWh

- Prima de referencia =
$$\left(\frac{3,7784+9,7696+5,7774+3,0844}{4}\right)$$
 = 5,6025 c€/kWh

- Límite superior =
$$\left(\frac{8,9600+15,3300+11,0300+8,3300}{4}\right)$$
 = 9,0383 c€/kWh

- Límite inferior =
$$\left(\frac{7,4400+12,3500+9,5500+5,1000}{4}\right)$$
 = 8,6100 c€/kWh

Obteniendo, por tanto, los siguientes resultados:

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	AÑO	
				65,884325	0	65,884325		2007
2007	155	730	4709,677419	4,822287397	62,37744542	67,1997328		2008
2008	167	713	4269,461078	5,557690984	58,09169831	63,6493893		2009
2009	183	670	3661,202186	5,146756572	62,88076956	68,0275261		2010
2005	100	070	5001,202100	3,649715301	72,36779963	76,0175149		2011
2010	198	709	3580,808081	4,294958872	74,55296727	78,8479261		2012
2011	208	767	3687.5	89,35573413	330,2706802	419,626414	TOTAL	
2011	200	707	3007/3					
2012	220	780	3545,454545	COSTE TOTAL	419,6264143			

CUADRO 11. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA BIOGÁS (Fuente: Elaboración propia).

4.1.2.7. Cogeneración

Aquellos productores que utilicen la cogeneración u otras formas de producción de electricidad a partir de energías residuales.

Tienen la consideración de productores cogeneradores aquellas personas físicas o jurídicas que desarrollen las actividades destinadas a la generación de energía térmica útil y energía eléctrica y/o mecánica mediante cogeneración, tanto para su propio uso como para la venta total o parcial de las mismas. Pertenecen a la categoría a).

No establecen límites superior o inferior.

Debido a las grandes diferencias que hay entre las distintas instalaciones, según sea el combustible empleado, hemos realizado un desglose:

A. Gas Natural

Cogeneraciones que utilicen como combustible el gas natural, siempre que éste suponga al menos el 95 por ciento de la energía primaria utilizada, o al menos el 65 por ciento de la energía primaria utilizada cuando el resto provenga de biomasa y/o biogás. Pertenecen al Subgrupo a.1.1. del Grupo a.1.:

Subgrupo	Combustible	Potencia	Tarifa regulada c€/kWh	Prima de referencia c€/kWh
		P≤0,5 MW	12,0400	
		0,5 <p≤1 mw<="" td=""><td>9,8800</td><td></td></p≤1>	9,8800	
		1 <p≤10 mw<="" td=""><td>7,7200</td><td>2,7844</td></p≤10>	7,7200	2,7844
a.1.1		10 <p<25 mw<="" td=""><td>7,3100</td><td>2,2122</td></p<25>	7,3100	2,2122
		25 <p≤50 mw<="" td=""><td>6,9200</td><td>1,9147</td></p≤50>	6,9200	1,9147

TABLA 8. TARIFAS Y PRIMAS (Fuente: RD 661/2007 –Anexo I-).

Debido a que la práctica totalidad de este tipo de centrales tienen una capacidad instalada superior a 25 MW y no superior a 50 MW, hemos seleccionado las retribuciones correspondientes a esa potencia instalada:

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	AÑO	
	, ,	, ,		1253,4196	0	1253,4196		2007
2007	4924	18113	3678,513404	74,11692897	6705,623434	6779,74036	:	2008
2008	5185	21109	4071,166827	76,97909398	6714,772601	6791,75169		2009
2009	5449	22790	4182,418792	57,42875766	7609,264749	7666,69351		2010
2005	3445	22/30	4102,410/32	52,61150611	8744,872591	8797,4841	:	2011
2010	5634	24974	4432,729854	0	9120,613768	9120,61377		2012
2011	5797	26566	4582,715198	1514,555887	38895,14714	40409,703	TOTAL	
2011								
2012	5792	26550	4583,90884	COSTE TOTAL	40409,70303			

CUADRO 12. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA COGENERACIÓN Gas Natural (Fuente: Elaboración propia).

B. Fuel-Gasóleo-GLP

Cogeneraciones que utilicen como combustible gasóleo, fuel-oil o bien Gases Licuados del Petróleo (GLP), siempre que estos supongan al menos el 95 por ciento de la energía primaria utilizada, medida por el poder calorífico inferior. Pertenecen al Subgrupo a.1.2. del Grupo a.1.:

Subgrupo	Combustible	Potencia	Tarifa regulada c€/kWh	Prima de referencia c€/kWh
		P≤0,5 MW	13,2900	
		0,5 <p≤1 mw<="" td=""><td>11,3100</td><td></td></p≤1>	11,3100	
		1 <p≤10 mw<="" td=""><td>9,5900</td><td>4,6644</td></p≤10>	9,5900	4,6644
	Gasoleo / GLP	10 <p<25 mw<="" td=""><td>9,3200</td><td>4,2222</td></p<25>	9,3200	4,2222
		25 <p≤50 mw<="" td=""><td>8,9900</td><td>3,8242</td></p≤50>	8,9900	3,8242
		0,5 <p≤1 mw<="" td=""><td>10,4100</td><td></td></p≤1>	10,4100	
a.1.2		1 <p≤10 mw<="" td=""><td>8,7600</td><td>3,8344</td></p≤10>	8,7600	3,8344
	Fuel	10 <p<25 mw<="" td=""><td>8,4800</td><td>3,3822</td></p<25>	8,4800	3,3822
		25 <p≤50 mw<="" td=""><td>8,1500</td><td>2,9942</td></p≤50>	8,1500	2,9942

TABLA 9. TARIFAS Y PRIMAS (Fuente: RD 661/2007 -Anexo I-).

Para este tipo de instalaciones, la única distinción que haremos nosotros es la del combustible empleado. Sin embargo, para las capacidades haremos la misma suposición que en el caso del gas natural:

- Tarifa regulada =
$$(\frac{8,9900+8,1500}{2})$$
 = 8,5700 c€/kWh

- Prima de referencia =
$$(\frac{3,8242+2,9942}{2})$$
 = 3,4092 c€/kWh

Y por tanto, el coste es:

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	AÑO	
	. ,	, ,		207,9082	0	207,9082		2007
2007	966	2426	2511,387164	0	899,1486202	899,14862		2008
2008	966	2688	2782,608696	0	872,2518086	872,251809		2009
2009	938	2817	3003,198294	0	814,0425976	814,042598		2010
2005	730	2017	3003,130234	0	822,3609095	822,36091		2011
2010	916	2584	2820,960699	0	807,2859644	807,285964		2012
2011	878	2428	2765.375854	207,9082	4215,0899	4422,9981	TOTAL	
2011	070	2120						
2012	870	2350	2701,149425	COSTE TOTAL	4422,9981			

CUADRO 13. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA COGENERACIÓN F-G-GLP (Fuente: Elaboración propia).

C. Minería

Resto de cogeneraciones que incluyen como posibles combustibles a emplear, gases residuales de refinería, coquería, combustibles de proceso, carbón y otros no contemplados en los subgrupos anteriores. Pertenecen al Subgrupo a.1.4. del Grupo a.1.:

Subgrupo	Combustible	Potencia	Tarifa regulada c€/kWh	Prima de referencia c€/kWh
		P≤10 MW	6,1270	3,8479
	Carbón	10 <p<25 mw<="" td=""><td>4,2123</td><td>1,5410</td></p<25>	4,2123	1,5410
		25 <p≤50 mw<="" td=""><td>3,8294</td><td>0,9901</td></p≤50>	3,8294	0,9901
		P≤10 MW	4,5953	1,9332
a.1.4	Otros	10 <p<25 mw<="" td=""><td>4,2123</td><td>1,1581</td></p<25>	4,2123	1,1581
		25 <p≤50 mw<="" td=""><td>3,8294</td><td>0,6071</td></p≤50>	3,8294	0,6071

TABLA 10. TARIFAS Y PRIMAS (Fuente: RD 661/2007 -Anexo I-).

Mismo planteamiento que en el anterior:

- Tarifa regulada =
$$(\frac{3,8294+3,8294}{2})$$
 = 3,8294 c€/kWh

- Prima de referencia =
$$(\frac{0.9901+0.6071}{2})$$
 = 0,7986 c€/kWh

Resultando:

-		_					
AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	AÑO
				52.84572	0	52,84572	2007
2007	350	1380	3942,857143	0	124,610398	124,610398	2008
2008	350	1322	3777,142857	0	119,903882	119,903882	2009
2000	225	1000	2767 164170	0	162,266669	162,266669	2010
2009	335	1262	3767,164179	0	158,785434	158,785434	2011
2010	335	1691	5047,761194	0	169,03084	169,03084	2012
2011	332	1602	4825,301205	52,84572	734,597223	787,442943	TOTAL
2042	225	4570	5400 004055				
2012	326	1672	5128,834356	COSTE TOTAL	787,442943		

CUADRO 14. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA COGENERACIÓN Minería (Fuente: Elaboración propia).

D. Residuos Urbanos

Centrales que utilicen como combustible principal residuos sólidos urbanos.

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	AÑO
				67,05125	0	67,05125	2007
2007	234	1358	5803,418803	0	477,0036951	477,003695	2008
2008	234	1426	6094,017094	0	451,4530128	451,453013	2009
2009	234	1458	6220 760221	0	454,2760935	454,276094	2010
2005	234	1430	6230,769231	0	451,8243218	451,824322	2011
2010	234	1442	6162,393162	0	459,6377108	459,637711	2012
2011	208	1334	6413,461538	67,05125	2294,194834	2361,24608	TOTAL
2011	200	1334	0413,401330				
2012	208	1338	6432,692308	COSTE TOTAL	2361,246084		

CUADRO 15. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA COGENERACIÓN R.U. (Fuente: Elaboración propia).

E. Calor Residual

Centrales que utilicen como combustible principal otros residuos no contemplados anteriormente.

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)	AÑO
				1,915	0	1,915	2007
2007	67	50	746,2686567	0	2,922029	2,922029	2008
2008	67	31	462,6865672	0,078875099	13,01231534	13,0911904	2009
2000		400	2044 447547	0	9,308023	9,308023	2010
2009	68	139	2044,117647	0	10,605519	10,605519	2011
2010	68	97	1426,470588	0	10,614975	10,614975	2012
2011	68	107	1573,529412	1,993875099	46,46286134	48,4567364	TOTAL
2011	00	107	13/3,325412				
2012	68	105	1544,117647	COSTE TOTAL	48,45673644		

CUADRO 16. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA COGENERACIÓN C.R. (Fuente: Elaboración propia).

F. TOTAL

A continuación, se refleja la suma de todos los anteriores. El fin de esto es poder tratar la energía de Cogeneración como una sola con el fin de simplificar los cálculos que necesiten sus datos.

AÑO	POT. INSTALADA (MW)	BALANCE ENERGÉTICO (GWh)	HORAS DE FUNCIONAMIENTO (h)	COSTE TARIFA (M€)	COSTE POOL (M€)	COSTE (M€)
2007	6541	23327	3566,27427	1583,13977	0	1583,13977
2008	6802	26576	3907,086151	74,11692897	8209,308176	8283,4251
2009	7024	28466	4052,676538	77,05796908	8171,393619	8248,45159
2010	7187	30788	4283,845833	57,42875766	9049,158132	9106,58689
2011	7283	32037	4398,87409	52,61150611	10188,44878	10241,0603
2012	7264	32015	4407,351322	0	10567,18326	10567,1833
TOTAL				1844,354932	46185,49196	48029,8469
				COSTE TOTAL	48029,84689	

CUADRO 17. CÁLCULO DEL COSTE DE PRODUCCIÓN ENERGÍA COGENERACIÓN Total (Fuente: Elaboración propia).

4.1.3. Comentarios

El objetivo principal del cálculo de estos resultados –además de cuantificar el déficites el de sacar conclusiones y comparar las distintas tecnologías. Ya sea, para conocer el valor relativo de cada una dentro del balance energético (Mix Eléctrico), como para saber el coste que supone producir un kWh procedente de una o de otra.

Para facilitarnos esto, mostramos a continuación los *GRÁFICOS 4* y *5* relativos al período 2007-2012:

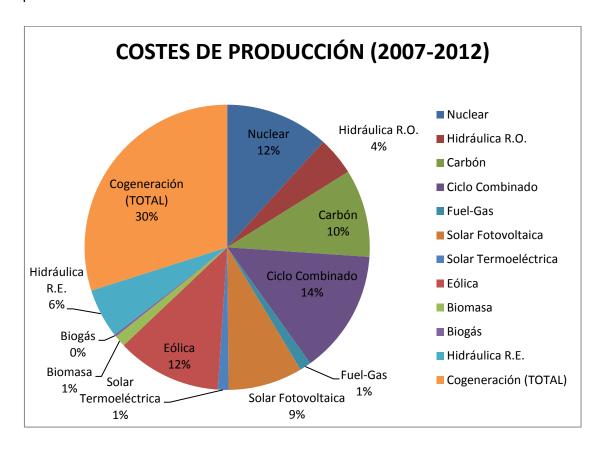
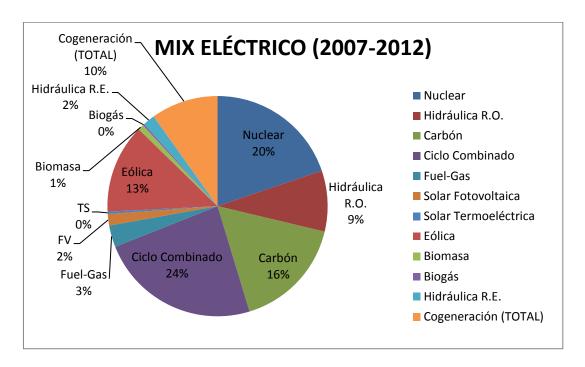
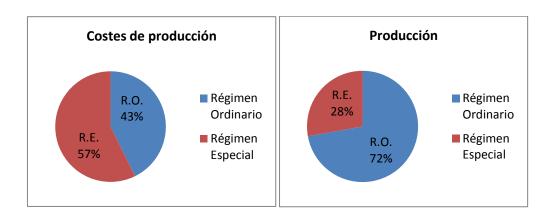


GRÁFICO 5. COSTES DE PRODUCCIÓN PERÍODO 2007-2012 (Fuente: Elaboración propia)




GRÁFICO 6. PRODUCCIÓN PERÍODO 2007-2012 (Fuente: Elaboración propia)

Teniendo en cuenta estos gráficos, podemos realizar los siguientes comentarios:

- Un aspecto importante para que el sistema eléctrico español sea viable, es que ambos gráficos coincidan. Es decir, que el coste de cada tecnología se corresponda con su aportación energética, tratando de evitar que sea mayor.

En el caso de las tecnologías en Régimen Ordinario, sucede que, en todos los casos, el coste de producción relativo es menor que el valor relativo de su aportación. No se puede decir lo mismo de las tecnologías en Régimen Especial. En las que, a excepción de la energía eólica, el coste de producción relativo es siempre mayor que su aportación relativa. A modo de resumen:

GRÁFICO 7. COSTES PRODUCCIÓN Y PRODUCCIÓN R.O. vs R.E. (Fuente: Elaboración propia)

- Algunas tecnologías, como son los casos de la Nuclear y del Ciclo Combinado, merecen ser destacadas debido a que, no solo tienen un coste relativo mayor que su aportación relativa, sino que además dicha diferencia es muy significativa. Esto es sinónimo de eficiencia y productividad global.

Sin embargo, los numerosos detractores -en el caso de la Nuclear- y la dependencia tanto del precio del crudo, como de recursos exteriores -en el caso de los Ciclos Combinados-, impiden que nuestro país apueste única y exclusivamente por estas energías.

Además, debido a los compromisos adquiridos con la firma del protocolo de Kyoto, cuyo objetivo primordial es la reducción de los gases de efecto invernadero, la política energética nacional debe estar enfocada a la búsqueda de la eficiencia energética en la generación de la electricidad y a la utilización de fuentes de energía renovables.

Pero la falta de regularidad y previsibilidad de la producción eléctrica de origen renovable ha obligado a mantener una elevada potencial de respaldo (*back-up*).

Las compañías eléctricas deben, pues, mantener disponibles sus plantas de producción eléctrica de fuentes tradicionales, por si la ausencia de viento, sol o agua embalsada impide producir a las renovables. Pero estarán totalmente

inactivas cuando, por circunstancias climatológicas, la producción de las renovables sea abundante y la demanda de electricidad sea escasa. Esa falta de producción impedirá a las compañías rentabilizar su inversión en tales plantas, porque el Gobierno ha reducido drásticamente durante los últimos años la retribución por mera disponibilidad de capacidad.

- En el lado opuesto, desde el punto de vista de la eficiencia, nos encontramos con casos como el de la Fotovoltaica.

El marco retributivo de dicha actividad —compuesto mayormente por primashacía de ella un negocio muy atractivo. Por ello, su potencia instalada experimentó un crecimiento muy superior al esperado, alcanzando en 2008, según los datos de la CNMC, los 1.000 MW de potencia instalada, cuando el objetivo para 2010 era de 400 MW. Esta situación obligó a las Administraciones a restablecer la retribución de la actividad.

El problema no es que esta fuente de energía sea poco eficiente, sino que se apostó, de manera abusiva, por una tecnología joven a la que todavía le faltaba por evolucionar. En resumidas cuentas, se apostó por ella antes de tiempo. No hay más que observar el *CUADRO7* donde queda reflejado la evolución en cuanto a horas de funcionamiento, pasando de 750 a más de 1800 horas de funcionamiento al año. Es decir, no se tuvo en cuenta la curva de aprendizaje.

4.2. COSTES REGULADOS O DE ACCESO

También denominados tarifas de acceso (ATR), son los costes regulados por la Administración. Por lo tanto, los datos necesarios para cuantificarlos han sido tomados de los "INFORME SOBRE LOS RESULTADOS DE LA LIQUIDACION PROVISIONAL № 14 DE 20XX Y VERIFICACIONES PRACTICADAS SECTOR ELECTRICO" de la CNE −ahora CNMC-.

Están compuestos por:

4.2.1. Costes de redes Estos costes son los derivados de las actividades de transporte y distribución.

AÑO	COSTE (M€)
2007	1090
2008	1246
2009	1344
2010	1397
2011	1534
2012	1477
TOTAL	8088

CUADRO 18. COSTES DE TRANSPORTE (Fuente: CNE).

4.2.2. Costes de distribución y gestión comercial de la distribución Son los derivados de la distribución y de la gestión comercial del acceso a la red (contratos de acceso, lectura de consumo, facturación, etc.).

AÑO	COSTE (M€)
2007	4160
2008	4734
2009	4528
2010	5136
2011	5091
2012	4663
TOTAL	28312

CUADRO 19. COSTES DE DISTRIBUCIÓN GESTIÓN COMERCIAL DE LA DISTRIBUCIÓN (Fuente: CNE).

4.2.3. Costes de diversificación y seguridad de abastecimiento Estos costes están compuestos por:

4.2.3.1. Primas a la producción del Régimen Especial Comprende el sistema retributivo de primas a las tecnologías del Régimen Especial. Dicha prima consiste en una cantidad adicional al precio que resulte en el mercado organizado o el precio libremente negociado por el titular o el representante de la instalación.

AÑO		COSTE (M€)
	2007	1817,07078
	2008	3315,83306
	2009	3636,89164
	2010	4246,91551
	2011	4818,03621
	2012	5669,61603
TOTAL		23504,3632

CUADRO 20. COSTES DE PRIMAS RÉGIMEN ESPECIAL (Fuente: CNE).

Como ya se ha dicho anteriormente –ver apdo. 4.1.2- las primas se actualizan anualmente.

4.2.3.2. Costes de «stock» estratégico del combustible nuclear o servicio de interrumpibilidad

La interrumpibilidad se configura como una herramienta para flexibilizar la operación del sistema y dar respuestas rápidas y eficientes ante eventuales situaciones de emergencia, minimizando el impacto en la seguridad del sistema.

AÑO	COSTE (M€)
2007	0
2008	227
2009	365
2010	402
2011	497
2012	471
TOTAL	1962

CUADRO 21. COSTES DE INTERRUMPIBILIDAD (Fuente: CNE).

4.2.3.3. Costes asociados a la moratoria nuclear Se denomina moratoria nuclear a la suspensión temporal del desarrollo de políticas de construcción y puesta en marcha de centrales nucleares.

Para compensar la inversión de los propietarios de las centrales nucleares que se bloquearon, se destinó un porcentaje de la tarifa eléctrica.

AÑO	COSTE (M€)
2007	3,6
2008	3,6
2009	15,4
2010	98,9
2011	49,3
2012	53,5
TOTAL	224,3

CUADRO 22. COSTES DE MORATORIA NUCLEAR (Fuente: CNE).

4.2.3.4. Fondo para la financiación del segundo ciclo del combustible nuclear

Fondo destinado a hacer frente a los costes de los gastos, trabajos, proyectos e inmovilizaciones derivados de actividades correspondientes a la segunda parte del ciclo del combustible nuclear y gestión de residuos radiactivos producidos por el sector eléctrico. Actuaciones previstas en el Plan General de Residuos Radiactivos aprobado por el Gobierno.

AÑO	COSTE (M€)
2007	50,6
2008	62,6
2009	67,8
2010	0,5
2011	0,1
2012	0,1
TOTAL	181,7

CUADRO 23. COSTES DE PGRR (Fuente: CNE).

4.2.4. Costes permanentes

Está formado por:

4.2.4.1. Compensación extrapeninsular e insular

Compensación a la actividad de producción de energía eléctrica que se desarrolla en los sistemas insulares y extrapeninsulares (es decir, Baleares, Canarias y Ceuta y Melilla), debido al sobre-coste soportado por las compañías que suministran electricidad a estas zonas.

AÑO	COSTE (M€)
2007	1119
2008	1165
2009	1348
2010	860
2011	719
2012	10
TOTAL	5221

CUADRO 24. COSTES DE COMPENSACIÓN EXTRAPENINSULAR E INSULAR (Fuente: CNE).

4.2.4.2. Operador del Sistema

La operación del sistema comprende las actividades necesarias para garantizar dicha seguridad y continuidad, así como la correcta coordinación entre la producción y el transporte, asegurando que la energía producida por los generadores sea transportada hasta las redes de distribución con las condiciones de calidad exigibles en la normativa vigente.

Red Eléctrica Española (REE) es quien realiza esta tarea en España, tanto en la península como en los sistemas no peninsulares.

AÑO	COSTE (M€)
2007	34,7
2008	37,9
2009	42
2010	36,6
2011	36,9
2012	18,8
TOTAL	206,9

CUADRO 25. COSTES DE REE (Fuente: CNE).

4.2.4.3. Operador del Mercado

El operador del mercado gestiona el mercado mayorista de la electricidad, donde los agentes compradores y vendedores contratan las cantidades que necesitan de energía a un determinado precio.

El mercado eléctrico peninsular recibe el nombre de Mercado Ibérico Eléctrico (MIBEL) y su operador el de Operador del Mercado Eléctrico (OMEL). OMEL agrupa los operadores de España y Portugal.

En el caso de España, el operador del mercado es OMIE, y en el caso de Portugal, OMIP.

AÑO	COSTE (M€)
2007	10,2
2008	11
2009	5,3
2010	0,001
2011	0
2012	0
TOTAL	26,501

CUADRO 26. COSTE DE OMIE (Fuente: CNE).

4.2.4.4. Comisión Nacional de la Energía (CNE)

Los costes derivados del ente regulador de los sistemas energéticos. Sus objetivos son velar por la competencia efectiva en los sistemas energéticos y por la objetividad y transparencia de su funcionamiento, en beneficio de todos los sujetos que operan en dichos sistemas y de los consumidores. A estos efectos se entiende por sistemas energéticos el mercado eléctrico, así como los mercados de hidrocarburos tanto líquidos como gaseosos.

Desde octubre de 2013, las actividades y funciones de la Comisión Nacional de Energía se encuentran integradas en la Comisión Nacional de los Mercados y la Competencia.

AÑO	COSTE (M€)
2007	14,4
2008	15
2009	17,5
2010	22,7
2011	22,8
2012	22,8
TOTAL	115,2

CUADRO 27. COSTES DE CNE (Fuente: CNE).

4.2.5. Anualidades del déficit de tarifa

Con el fin de cubrir el desfase económico, diversas normas -la última de ellas, el Real Decreto Ley 6/2010- han venido obligando a las grandes compañías eléctricas (esto es, Endesa, Iberdrola, Hidroeléctrica, Gas Natural-Unión Fenosa y E.On, que forman la patronal UNESA) a ingresar en una cuenta administrada por la CNE los fondos precisos para cubrir el déficit tarifario, reconociéndoles como coste regulado el derecho a obtener su reembolso en 15 anualidades y un tipo de interés sobre el saldo vivo que ha estado entre el Euribor -sin margen alguno- y el 2%.

AÑO	COSTE (M€)
2007	477
2008	1033
2009	887
2010	2181
2011	1205
2012	2653
TOTAL	8436

CUADRO 28. COSTES ANUALIDADES DEL DÉFICIT DE TARIFA (Fuente: CNE).

La actual clave de financiación del déficit tarifario es:

Endesa: 44,16%

Iberdrola: 35,01%

Gas Natural-UE 13,75%

Hidroeléctrica: 6,08%

E.On España: 1,00%

Las citadas compañías quedan, pues, obligadas de forma coercitiva a financiar un déficit.

4.2.6. Otros costes regulados

Relativo a otras cuotas y costes regulados por las Administraciones:

AÑO		COSTE (M€)
	2007	1248,42922
	2008	619,066944
	2009	3423,10836
	2010	3938,38349
	2011	2839,86379
	2012	5474,18397
TOTAL		17543,0358

CUADRO 29. OTROS COSTES REGULADOS (Fuente: CNE).

5. INGRESOS DEL SISTEMA ELÉCTRICO ESPAÑOL

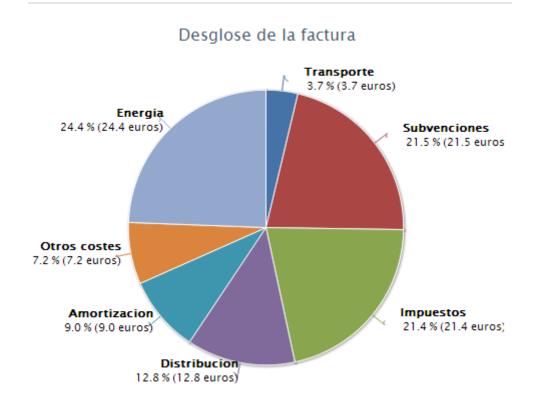
Como se ha mencionado anteriormente, son necesarios unos ingresos que hagan frente a estos costes, para de esta forma garantizar la estabilidad y viabilidad financiera del sistema eléctrico.

Estos ingresos son satisfechos por el consumidor final mediante la factura de la luz. Como ya hemos explicado anteriormente, existen los consumidores que están acogidos a la TUR y los que contratan libremente con comercializadores.

Ambas facturas se desglosan en dos componentes:

- Pago de la energía: es la parte destinada a cubrir los costes procedentes de este concepto y supone aproximadamente el 24,4% de la factura. El coste de la energía que tienen que pagar los clientes acogidos a la TUR, se determina periódicamente en una subasta trimestral especial organizada por el Operador del Mercado Eléctrico (OMEL) y conocida como "subasta CESUR" (Compra de Energía para el Suministro de Último Recurso).

En contra de lo que normalmente se cree, la energía, si no se incluyen las subvenciones a las renovables y a la cogeneración, representa menos de un tercio de lo que pagan los consumidores.


Peaje de acceso: componente que cubre los llamados "costes regulados".
 Supone el 75,6% restante.

A continuación haremos un desglose del porcentaje que representa, dentro de esta componente, cada partida:

- Transporte=3,7%
- o Primas a las EERR y a la cogeneración=21,5%
- o Impuestos: IVA (18%) e Impuesto sobre la electricidad (5,113%)=21,4%
- o Distribución=12,8%
- Amortización=9%
- Otros costes=7,2%

Es decir, si nuestra factura fuese de 100 €:

GRÁFICO 8. DESGLOSE DE LA FACTURA DE LA LUZ (Fuente: UNESA)

Son en este último concepto donde los costes superan a los ingresos. Es decir, que los costes derivados de las actividades de acceso no son cubiertos por los ingresos reconocidos procedentes de esta partida. Luego, este será el componente a analizar.

Para conocer su valor hemos recurrido al informe que realiza la CNE (ahora CNMC) anualmente y cuyo título es: "Informe sobre los resultados de la liquidación provisional nº 14 de 20XX y verificaciones practicadas".

A continuación se exponen los datos recogidos por dicho organismo:

(Millones de €uros)	2007	2008	2009	2010	2011	2012	TOTAL
Ingresos por facturación de clientes a tarifa	6263	3312	3877	0	0	0	39987
Ingresos por facturación de tarifas de acceso	1645	2112	6890	12620	12861	14840	50968
Ingresos facturados por régimen especial	360	759	307	0	0	0	1426
Ingresos facturados por Orden ITC/1659/2009	0	0	71	136	101	64	372
TOTAL INGRESOS BRUTOS	8268	6183	11074	12756	12962	14904	92753

CUADRO 30.INGRESOS DEL SISTEMA ELÉCTRICO (Fuente: CNE).

6. DÉFICIT DE TARIFA

Como ya se ha explicado anteriormente, los ingresos totales satisfechos por los consumidores son inferiores al conjunto de "costes" del sistema eléctrico que incluyen no sólo la electricidad consumida -valorada a los precios del mercado mayorista o "pool"- sino también los demás costes reconocidos, como las primas a las energías renovables, el sobrecoste del suministro extrapeninsular o la amortización y gastos financieros de los déficits tarifarios pasados (amortización de principal e intereses). Esos "costes regulados" teóricamente debieran ser satisfechos con cargo a los llamados "peajes de acceso", pero no lo son.

En resumen, de todos los costes reconocidos del sistema eléctrico español, los que generan la situación deficitaria son los llamados costes regulados, ya que los ingresos procedentes de los pagos por este concepto de los consumidores no son suficientes. Por lo que nos centraremos en las liquidaciones de costes e ingresos derivados de estas actividades:

Ingresos por facturación de tarifas de acceso 1645 2112 6890 12620 12861 14840 50968 Ingresos facturados por régimen especial 360 759 307 0 0 0 1426 Ingresos facturados por Orden ITC/1659/2009 0 0 71 136 101 64 372 TOTAL INGRESOS BRUTOS 8268 6183 11074 12756 12962 14904 66147 Costes de transporte 1090 1246 1344 1397 1534 1477 8088 Distribución y gestión comercial 4160 4734 4528 5136 5091 4663 28312 100 10 10 10 10 10 10 10 10 10 10 10 10								
Ingresos por facturación de tarifas de acceso 1645 2112 6890 12620 12861 14840 50968 Ingresos facturados por régimen especial 360 759 307 0 0 0 1426 Ingresos facturados por Orden ITC/1659/2009 0 0 71 136 101 64 372 TOTAL INGRESOS BRUTOS 8268 6183 11074 12756 12962 14904 66147 8088 11074 12756 12962 14904 66147 1400 1400 1400 1400 1400 1400 1400 1	(Millones de €uros)	2007	2008	2009	2010	2011	2012	TOTAL
Ingresos facturados por régimen especial 360 759 307 0 0 0 1426 Ingresos facturados por Orden ITC/1659/2009 0 0 71 136 101 64 372 TOTAL INGRESOS BRUTOS 8268 6183 11074 12756 12962 14904 66147 Costes de transporte 1090 1246 1344 1397 1534 1477 8888 Distribución y gestión comercial 4160 4734 4528 5136 5091 4663 28312 Primas R.E. 1817,07078 3315,83306 3636,89164 4246,91551 4818,03621 5669,61603 23504,3632 Interrumpibilidad 14,5 227 365 402 497 471 1976,5 Moratoria nuclear 3,6 3,6 15,4 98,9 49,3 53,5 224,3 Fondo PGRR 50,6 62,6 67,8 0,5 0,1 0,1 181,7 Costes de diversificación y seguridad de abastecimiento 1885,77078 3609,03306 4085,09164 4748,31551 5364,43621 6194,21603 25886,8632 Compensación insulares y extrapeninsulares 1119 1165 1348 860 719 10 5221 Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 26,501 Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 11178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 933835,5	Ingresos por facturación de clientes a tarifa	6263	3312	3877	0	0	0	13452
Ingresos facturados por Orden ITC/1659/2009 0 0 71 136 101 64 372 TOTAL INGRESOS BRUTOS 8268 6183 11074 12756 12962 14904 66147 Costes de transporte 1090 1246 1344 1397 1534 1477 8088 Distribución y gestión comercial 4160 4734 4528 5136 5091 4663 28312 Primas R.E. 1817,07078 3315,83306 3636,89164 4246,91551 4818,03621 5669,61603 23504,3632 Interrumpibilidad 14,5 227 365 402 497 471 1976,5 Moratoria nuclear 3,6 3,6 15,4 98,9 49,3 53,5 224,3 Fondo PGRR 50,6 62,6 67,8 0,5 0,1 0,1 0,1 181,7 Costes de diversificación y seguridad de abastecimiento 1885,77078 3609,03306 4085,09164 4748,31551 5364,43621 6194,21603 25886,8632 Compensación insulares y extrapeninsulares 1119 1165 1348 860 719 10 5221 Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 26,501 Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Ingresos por facturación de tarifas de acceso	1645	2112	6890	12620	12861	14840	50968
TOTAL INGRESOS BRUTOS 8268 6183 11074 12756 12962 14904 66147 Costes de transporte 1090 1246 1344 1397 1534 1477 8088 Distribución y gestión comercial 4160 4734 4528 5136 5091 4663 28312 Primas R.E. 1817,07078 3315,83306 3636,89164 4246,91551 4818,03621 5669,61603 23504,3632 Interrumpibilidad 14,5 227 365 402 497 471 1976,5 Moratoria nuclear 3,6 3,6 15,4 98,9 49,3 53,5 224,3 Fondo PGRR 50,6 62,6 67,8 0,5 0,1 0,1 181,7 Costes de diversificación y seguridad de abastecimiento 1885,77078 3609,03306 4085,09164 4748,31551 5364,43621 6194,21603 25886,8632 Compensación insulares y extrapeninsulares 1119 1165 1348 860 719 10 5221 Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 26,501 Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 CONE 114,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,1839 17543,0358	Ingresos facturados por régimen especial	360	759	307	0	0	0	1426
Costes de transporte 1090 1246 1344 1397 1534 1477 8088 Distribución y gestión comercial 4160 4734 4528 5136 5091 4663 28312 Primas R.E. 1817,07078 3315,83306 3636,89164 4246,91551 4818,03621 5669,61603 23504,3632 Interrumpibilidad 14,5 227 365 402 497 471 1976,5 Moratoria nuclear 3,6 3,6 15,4 98,9 49,3 53,5 224,3 Fondo PGRR 50,6 62,6 67,8 0,5 0,1 0,1 181,7 Costes de diversificación y seguridad de abastecimiento 1885,77078 3609,03306 4085,09164 4748,31551 5364,43621 6194,21603 25886,8632 Compensación insulares y extrapeninsulares 1119 1165 1348 860 719 10 5221 Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 26,501 CNE<	Ingresos facturados por Orden ITC/1659/2009	0	0	71	136	101	64	372
Distribución y gestión comercial 4160 4734 4528 5136 5091 4663 28312 Primas R.E. 1817,07078 3315,83306 3636,89164 4246,91551 4818,03621 5669,61603 23504,3632 Interrumpibilidad 14,5 227 365 402 497 471 1976,5 Moratoria nuclear 3,6 3,6 15,4 98,9 49,3 53,5 224,3 Fondo PGRR 50,6 62,6 67,8 0,5 0,1 0,1 181,7 Costes de diversificación y seguridad de abastecimiento 1885,77078 3609,03306 4085,09164 4748,31551 5364,43621 6194,21603 25886,8632 Compensación insulares y extrapeninsulares 1119 1165 1348 860 719 10 5221 Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 26,501 Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 160 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1119 1133 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,4292 619,066944 3423,10836 3938,38349 2839,86379 5474,1839 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	TOTAL INGRESOS BRUTOS	8268	6183	11074	12756	12962	14904	66147
Primas R.E. 1817,07078 3315,83306 3636,89164 4246,91551 4818,03621 5669,61603 23504,3632 Interrumpibilidad 14,5 227 365 402 497 471 1976,5 Moratoria nuclear 3,6 3,6 15,4 98,9 49,3 53,5 224,3 Fondo PGRR 50,6 62,6 67,8 0,5 0,1 0,1 0,1 181,7 Costes de diversificación y seguridad de abastecimiento 1885,77078 3609,03306 4085,09164 4748,31551 5364,43621 6194,21603 25886,8632 Compensación insulares y extrapenínsulares 1119 1165 1348 860 719 10 5221 Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 0 26,501 Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 160,000 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,4292 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Costes de transporte	1090	1246	1344	1397	1534	1477	8088
Interrumpibilidad 14,5 227 365 402 497 471 1976,5 Moratoria nuclear 3,6 3,6 15,4 98,9 49,3 53,5 224,3 Fondo PGRR 50,6 62,6 67,8 0,5 0,1 0,1 181,7 Costes de diversificación y seguridad de abastecimiento 1885,77078 3609,03306 4085,09164 4748,31551 5364,43621 6194,21603 25886,8632 Compensación insulares y extrapeninsulares 1119 1165 1348 860 719 10 5221 Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 0 26,501 Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 16X 200,000 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Distribución y gestión comercial	4160	4734	4528	5136	5091	4663	28312
Moratoria nuclear 3,6 3,6 15,4 98,9 49,3 53,5 224,3 Fondo PGRR 50,6 62,6 67,8 0,5 0,1 0,1 181,7 Costes de diversificación y seguridad de abastecimiento 1885,77078 3609,03306 4085,09164 4748,31551 5364,43621 6194,21603 25886,8632 Compensación insulares y extrapeninsulares 1119 1165 1348 860 719 10 5221 Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 0 26,501 Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Primas R.E.	1817,07078	3315,83306	3636,89164	4246,91551	4818,03621	5669,61603	23504,3632
Fondo PGRR 50,6 62,6 67,8 0,5 0,1 0,1 181,7 Costes de diversificación y seguridad de abastecimiento 1885,77078 3609,03306 4085,09164 4748,31551 5364,43621 6194,21603 25886,8632 Compensación insulares y extrapeninsulares 1119 1165 1348 860 719 10 5221 Coperador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 26,501 COperador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 COTROS COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Interrumpibilidad	14,5	227	365	402	497	471	1976,5
Costes de diversificación y seguridad de abastecimiento 1885,77078 3609,03306 4085,09164 4748,31551 5364,43621 6194,21603 25886,832 Compensación insulares y extrapeninsulares 1119 1165 1348 860 719 10 5221 Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 26,501 Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Moratoria nuclear	3,6	3,6	15,4	98,9	49,3	53,5	224,3
Compensación insulares y extrapeninsulares 1119 1165 1348 860 719 10 5221 Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 26,501 Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Fondo PGRR	50,6	62,6	67,8	0,5	0,1	0,1	181,7
Operador del mercado (OMIE) 10,2 11 5,3 0,001 0 0 26,501 Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Costes de diversificación y seguridad de abastecimiento	1885,77078	3609,03306	4085,09164	4748,31551	5364,43621	6194,21603	25886,8632
Operador del sistema (REE) 34,7 37,9 42 36,6 36,9 18,8 206,9 CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Compensación insulares y extrapeninsulares	1119	1165	1348	860	719	10	5221
CNE 14,4 15 17,5 22,7 22,8 22,8 115,2 Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Operador del mercado (OMIE)	10,2	11	5,3	0,001	0	0	26,501
Costes permanentes 1178,3 1228,9 1412,8 919,301 778,7 51,6 5569,601 Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Operador del sistema (REE)	34,7	37,9	42	36,6	36,9	18,8	206,9
Anualidades del déficit 477 1033 887 2181 1205 2653 8436 Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	CNE	14,4	15	17,5	22,7	22,8	22,8	115,2
Otros costes 1248,42922 619,066944 3423,10836 3938,38349 2839,86379 5474,18397 17543,0358 TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Costes permanentes	1178,3	1228,9	1412,8	919,301	778,7	51,6	5569,601
TOTAL COSTES REGULADOS (Tarifa de acceso) 10039,5 12470 15680 18320 16813 20513 93835,5	Anualidades del déficit	477	1033	887	2181	1205	2653	8436
	Otros costes	1248,42922	619,066944	3423,10836	3938,38349	2839,86379	5474,18397	17543,0358
DÉFICIT/SUPERÁVIT (Costes regulados) -1771,5 -6287 -4606 -5564 -3851 -5609 -27688,5	TOTAL COSTES REGULADOS (Tarifa de acceso)	10039,5	12470	15680	18320	16813	20513	93835,5
DÉFICIT/SUPERÁVIT (Costes regulados) -1771,5 -6287 -4606 -5564 -3851 -5609 -27688,5								
	DÉFICIT/SUPERÁVIT (Costes regulados)	-1771,5	-6287	-4606	-5564	-3851	-5609	-27688,5

CUADRO 31. LIQUIDACIÓN INGRESOS Y COSTES (Fuente: Elaboración propia).

Si analizamos el *CUADRO* 30, el déficit acumulado es de casi 28.000 millones de euros. Una cifra desorbitada que pone a nuestro sistema eléctrico en una situación límite.

Según lo que se refleja hemos tenido años en los que el desequilibrio ha alcanzado los 6.000 millones de euros.

Para entender la magnitud de estas cifras, podemos decir el déficit acumulado equivale casi al 3% del PIB español en 2012, o que la cantidad prestada por el Eurogrupo para sanear la banca española fue de 30.000 millones de euros.

Históricamente, las previsiones de ingresos por peajes y costes regulados se mantenían en equilibrio, aunque ocasionalmente en las liquidaciones efectivas a finales de año se produjeran ciertos desajustes, muy modestos. No obstantes, desde principios de la pasada década (y, sobre todo, a partir de 2005), la reticencia de las autoridades políticas a elevar la TUR -por razones meramente políticas, para no aplicar medidas impopulares- llevó a que los ingresos en la cuenta administrada por la CNE no bastaran para satisfacer todos los costes regulados.

Para cubrir ese desfase, diversas normas -la última de ellas, el Real Decreto-Ley 6/2010- han venido obligando a las compañías eléctricas (esto es, Endesa, Iberdrola, Hidroeléctrica, Gas Natural-Unión Fenosa y E.On) a ingresar en la citada cuenta administrada por la CNE los fondos precisos para cubrir el déficit tarifario, reconociéndoles como coste regulado el derecho a obtener su reembolso en 15 anualidades y un tipo de interés sobre el saldo vivo que ha estado entre el Euribor -sin margen alguno- y el 2%.

La actual clave de financiación del déficit tarifario es:

Endesa: 44,16%

Iberdrola: 35,01%

Gas Natural-UE 13,75%

Hidroeléctrica: 6,08%

E.On España: 1,00%

En respuesta a la preocupación existente por el tamaño de este déficit, en 2009 el Real Decreto Ley 6/2009 creó un "Fondo para la Amortización de la Deuda Eléctrica" (FADE) que permitiría a las compañías ceder sus derechos para que el FADE los colocara en el mercado financiero con aval del Tesoro público.

Desde un punto de vista jurídico-financiero esos derechos de crédito tienen una naturaleza singular: lucen como activo en el balance de las compañías eléctricas o, tras su titulización, del FADE, pero su deudor es el llamado "Sistema Eléctrico", un ente abstracto carente de personalidad jurídica y de balance.

Por esto, es imprescindible proponer medidas para atajar esta situación. Y para ello es necesario reducir el desajuste a cero, pero también hacer que el sistema sea viable económicamente.

7. MEDIDAS DE AJUSTE

Para reducir el desequilibrio económico entre los ingresos y los costes, vamos a proponer diferentes medidas de ajuste para cada una de las tecnologías, reflejando cuál sería su impacto en la percepción de nuestra seguridad jurídica. No solo de la actividad directamente afectada, sino del conjunto de actividades económicas. Lo que en último término repercutirá sobre la valoración del *riesgo-país*.

Los criterios que han primado a la hora de pensar en cuáles son las mejores soluciones al problema del déficit, han sido: evitar que el problema lo paguen los consumidores, ya sea directa —subiendo la tarifa de la luz- o indirectamente —subiendo los impuestos-; tratar de repartir el peso de dichas soluciones; y, por último, respetar, dentro de lo posible, la rentabilidad esperada por los inversores en su día —y con ello, mantener la fiabilidad de nuestro *riesgo-país*-:

- Para evitar que el problema del desajuste recaiga sobre los ciudadanos, hemos descartado esta opción en todos los escenarios previstos.
- Cuando hablamos de repartir el peso de las soluciones, no queremos decir que por el hecho de tratarse de un problema derivado del sistema eléctrico tangan que pagarlo todas la energías involucradas en él. Estarían pagando justos por pecadores y no sería lógico.

Lo que se quiere decir, es que todo el que tenga alguna responsabilidad en que la situación sea la actual, debe de contribuir. Es decir, no bastaría con aplicar medidas de ajuste que afectasen únicamente a unas pocas tecnologías — aunque estas fuesen suficientes para atajar el desequilibrio-, y que las corresponsables del problema saliesen indemnes. Esto sería completamente parcial e injusto.

Además, la forma de conseguir que nuestro sistema eléctrico sea rentable y viable, es eliminando sus defectos y carencias.

 Muy en la línea del anterior, este criterio busca respetar y ser lo más justo posible, dada la situación puntual que nos atañe, con las inversiones acaecidas en el pasado.

El modelo económico de cada tecnología, está en el ANEXO I

Una vez expuesto el punto de vista desde el que se han ideado las medidas de ajuste, procedemos a reflejar cuál es su impacto sobre la liquidación de ingresos y costes:

7.1. REDUCCIÓN DE LAS PRIMAS OTORGADAS A LAS ENERGÍAS RENOVABLES

Las primas satisfechas a los generadores de energía en régimen especial y, en particular, de energías renovables han crecido de manera vertiginosa —como se observa en el *GRÁFICO 8*- aumentando, por tanto, los costes agregados de tales primas.

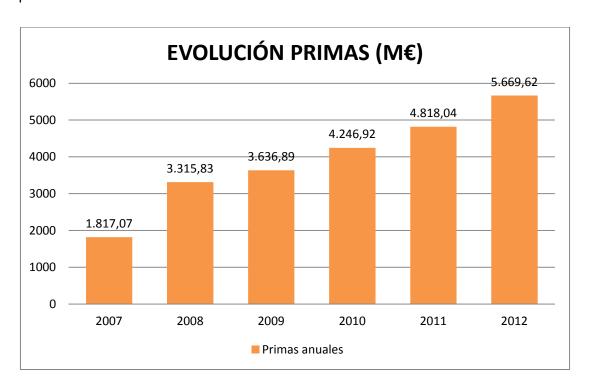


GRÁFICO 9. EVOLUCIÓN DEL DÉFICIT DE TARIFA (Fuente: Elaboración propia).

Luego, es lógico que una posible solución pase por reducir estas retribuciones. Siempre de la manera más justa posible -dentro de las circunstacias-.

Es por esto, que para calcular el valor de la reducción, hemos desarrollado un modelo económico ficticio (lo más real posible) para una instalación de cada tecnología, para ver cuál sería el impacto sobre la rentabilidad esperada. Dicha rentabilidad la calcularemos del modelo inicial —sin reducciones- y corresponderá al TIR. La información que nos da este valor es, básicamente, la rentabilidad mínima para que la inversión sea rentable.

El límite inferior que hemos considerado "razonable" para todas las plantas es de 8%. Es decir, si aplicando las reducciones el TIR que nos resulta es menor a un 8% descartaremos esa opción.

En todos los modelos hemos hallado el flujo de caja partiendo de los siguientes datos generales —hay variaciones entre unas tecnologías y otras, que se exponen en sus apartados correspondientes-:

- Los ingresos que obtendría la planta han sido calculados mediante el producto del precio de la electricidad en el mercado mayorista más la prima correspondiente-€/MWh- que están reflejados en el punto 4.1.2. Costes del Régimen Especial, y la producción anual de la planta -MWh-.
 - Para los años posteriores a 2012 no se tiene constancia todavía de cuál será el valor del precio spot, luego, hemos utilizado la media de un período de 7 años.
- Los gastos corresponden a los costes de operación y mantenimiento y la fuente de los datos se presentan en cada tecnología.
- Se ha calculado para un ciclo de vida de 25 años.
- Para el cálculo de la amortización, se ha dividido la inversión total entre los años de vida de la instalación.

- En cuanto al coste de la inversión, hemos supuesto que un 20% procede de financiación privada, y el otro 80% es un crédito bancario a 10 años cuya devolución seguirá el modelo americano. Donde el principal se va devolviendo en cuotas fijas mientras que los intereses anuales son de un 5% sobre el capital aún por devolver.
- El impuesto de sociedades que hemos empleado es el actual: 30%.

Por lo que el modelo tendrá la siguiente forma:

POTENCIA INSTALADA (MW)
HORAS DE FUNCIONAMIENTO (h)
POOL (€/GWh)
LÍMITE INFERIOR (€/GWh)
PRIMA REF. (€/GWh)
LÍMITE SUPERIOR (€/GWh)
POOL +PRIMA TEÓRICO (€/GWh)
RETRIBUCIÓN FINAL (€/GWh)
INGRESOS (€)
COSTES (O&M) (€/MWh)
GASTOS (€)
AMORTIZACIÓN INSTALACIÓN (€)
INTERESES
B.A.I. (€)
I.S (%)
B.D.I. (€)
AMORTIZACIÓN INSTALACIÓN (€)
COSTE INVERSIÓN (€)
INVERSIÓN PRIVADA (€)=20%
CRÉDITO BANCARIO_MODELO AMERICANO_10 AÑOS_5%TAE (€)=80%
FLUJO DE CAJA

CUADRO 32. MODELO DEL BALANCE ECONÓMICO (Fuente: Elaboración propia).

7.1.1. Solar Fotovoltaica

Para una planta de 100 KW de potencia instalada, una inversión de 536.540 euros y una TIR del 16%, la reducción llevada a cabo en la retribución de este tipo de tecnologías es de un 30%.

Aún así la TIR resultante será la acordada.

7.1.2. Solar Termoeléctrica

Hemos seleccionado una planta con una capacidad de 50 MW con un coste de inversión de 130 millones de Euros. Y según los datos desarrollados anteriormente, el TIR resultante del modelo inicial es de un 14%.

Si aplicamos una reducción del 10% en las primas, el TIR caería hasta 8%. Al ser este el límite inferior que hemos considerado, podemos afirmar que, para esta tecnología, esta sería la reducción.

7.1.3. Eólica

En este caso, la instalación utilizada tiene una capacidad de 20 MW y el coste de inversión es de 20 millones de Euros. Obteniendo un TIR del 20%.

Según los resultados obtenidos, en esta instalación podríamos quitar el 100% de las primas y aun así, el TIR seguiría siendo de un 16 %. Un valor muy por encima del límite inferior supuesto.

7.1.4. Hidráulica R.E.

En el caso de la hidráulica, hemos empleado una central de 5 MW con un coste de inversión de 12,5 millones de Euros. Y por tanto, un TIR del 5%.

Es decir, no se puede tocar las primas, ya que, el TIR inicial es menor que el límite establecido.

7.1.5. Biomasa

Se trata de una planta de 5 MW con un coste de inversión de 15 millones de Euros. El TIR esperado inicialmente es de un 30%.

Hemos comprobado que aun quitando el 100% de las primas, el TIR sería de un 22%. Valor muy superior al límite inferior, luego, no habría problema en hacer una reducción de estas dimensiones.

7.1.6. Biogás

La planta elegida tiene una capacidad de 5 MW, un coste de inversión de 10 millones de Euros y un TIR del 26%.

La reducción que tendríamos que aplicar para que el TIR sea mayor que el límite inferior establecido, es de, como máximo, un 45%.

7.1.7. Cogeneración

Se ha utilizado una planta de 49 MW, un coste de 117,6 millones de Euros y un TIR del 11%.

Para no superar el límite inferior la reducción debe ser igual o menor al 30%.

7.2. IMPUESTO POR WINDFALL PROFITS

Los "windfall profits" (WP) o "beneficios sobrevenidos" se definen como aquellos beneficios supranormales, de magnitud significativa y sostenidos durante un cierto período de tiempo, debidos a circunstancias de mercado extraordinarias, inesperadas y fuera del control de las empresas o a cambios significativos en la regulación / legislación de sus actividades. Esta definición sería aplicable a cualquier sector económico.

La definición de WP – y por tanto su propia existencia – es una cuestión cuanto menos debatible y con unas connotaciones de discrecionalidad / subjetividad por parte del regulador / legislador significativas:

- Por "beneficios supranormales" se entienden aquellos superiores a los correspondientes al coste de oportunidad del capital invertido, el cual se puede definir como el beneficio que se obtendría de optar por invertir en un negocio distinto con un nivel de riesgo no diversificable similar. Sin embargo, no existe una metodología mínimamente precisa o de consenso con la que estimar dicho coste de oportunidad. Así, quedaría a la discreción del regulador decidir qué son beneficios "supranormales", especialmente en el caso de un sector que funciona con criterios de mercado (ingresos y beneficios no regulados) Y sujeto a los riesgos propios del mismo (obsolescencia tecnológica, de sobrecapacidad, etc.)
- La misma discrecionalidad existiría en cuanto a la definición de "magnitud significativa", "sostenidos en el tiempo" o "circunstancias de mercado extraordinarias".

- En cuanto a "circunstancias inesperadas y fuera del control de las empresas", estas son innumerables y de hecho en su mayor parte forman parte del riesgo propio y normal de la mayoría de actividades / sectores. De hecho, riesgos tales como el desarrollo tecnológico o el cambio en las preferencias de los consumidores tienen evidentemente una naturaleza "inesperada y fuera del control de las empresas", siendo sin embargo circunstancias perfectamente comunes.
- Cambios significativos en la regulación / legislación responden en realidad a cambios en las preferencias de los consumidores (articuladas a través de las actuaciones de sus representantes políticos). Así, surge la pregunta de hasta qué punto estos cambios no son normales y propios de actividades / sectores en un entorno liberalizado.

El debate sobre la definición de WP no es trivial ya que en ciertos casos se utiliza para justificar la intervención del regulador en el mercado – la detracción de los beneficios supranormales obtenidos por una empresa-.

Existen argumentos a favor y en contra de detraer los WP.

A favor:

- Al ser beneficios extraordinarios, inesperados y fuera del control de las empresas, no tienen por qué afectar a sus decisiones de producción e inversión, con lo que la exacción no tendría efectos perniciosos desde el punto de vista de la eficiencia.
- Los beneficios extraordinarios debidos a razones fuera del control de las empresas y, por tanto, "no merecidos", pueden considerarse injustos desde el punto de vista de la distribución de la renta si los consumidores soportan un coste que se perciba como elevado por bienes/servicios esenciales.

- La detracción de los "WP" (en cualquiera de sus formas) supone una buena fuente de ingresos para el Estado y, siempre que esté bien diseñado, no generará distorsiones significativas sobre la eficiencia.

En contra:

- Es muy difícil identificar inequívocamente situaciones en las que existan WP. Además, las detracciones pueden alterar el comportamiento de las empresas y, por tanto, generar ineficiencias (decisiones de producción que no tienen en cuenta de forma adecuada el valor económico de los bienes/servicios y/o decisiones de inversión que no reflejen adecuadamente los beneficios y costes sociales).
- Incluso para los bienes/servicios esenciales, la detracción de los WP podría reducir o incluso eliminar los incentivos a la innovación y a la productividad si las empresas perciben un riesgo de que cualquier beneficio extraordinario futuro será considerado WP y, por tanto, les será detraído.
- La experiencia histórica muestra que la puesta en práctica de la detracción de WP es compleja y cara, a menudo no alcanza los objetivos buscados y tiene en la mayoría de los casos efectos perniciosos significativos (discriminación, pérdida de eficiencia, etc.). Así, la detracción puede conllevar un coste social incluso mayor que el que trata de corregir, lo cual es síntoma de una actuación ineficiente.

Una aplicación sistemática de los WP a todos los sectores llevaría a una economía altamente intervenida, lo que significaría la pérdida de los beneficios que los mercados ofrecen (optimización de la eficiencia asignativa, productiva y dinámica).

Si se contempla la existencia de "beneficios sobrevenidos", entonces es necesario considerar también la existencia de "pérdidas sobrevenidas" o "windfall losses" (WL).

Por simple simetría, los WL se definirían como beneficios infranormales, de magnitud significativa y sostenidos durante un cierto período de tiempo, debidos a circunstancias de mercado extraordinarias, inesperadas y fuera del control de las empresas o a cambios significativos en la regulación o legislación de sus actividades.

Por coherencia, si se considera la necesidad de regular la existencia de WP y se actúa sobre ellos (por ejemplo, detrayéndolos mediante impuestos), entonces se debería aceptar también la existencia de WL y se debería actuar sobre ellos de forma similar (por ejemplo, compensar a las empresas por sus WL). El argumento para ello sería paralelo al de los WP – dado que los WL son menores beneficios / pérdidas inesperados y fuera del control de las empresas, compensar estos WL no afectaría las decisiones ni de inversión ni de operación de los activos de las empresas (es decir, no afectaría a la eficiencia). Adicionalmente, el monto a compensar serviría para asegurar la viabilidad de las empresas y, por tanto, la continuidad del servicio a los consumidores y de los puestos de trabajo.

En caso de detraer los WP y no compensar los WL se estarían introduciendo ineficiencias, especialmente en las decisiones de inversión:

- Se estaría sometiendo a las empresas a un esquema de riesgo asimétrico, ya que los WP (beneficios supranormales) se los apropiaría el regulador / legislador y los WL (beneficios infranormales) serían soportados por los accionistas de las empresas.
- Más concretamente, detraer los WP implicaría que la probabilidad de incurrir en beneficios infranormales sería mayor que la de obtener beneficios supranormales. Esto haría que la rentabilidad esperada media de las inversiones fuera menor, lo que supone un desincentivo a acometer las mismas que daría lugar a ineficiencias (por ejemplo, menor inversión que la socialmente óptima).
- Para evitar esta ineficiencia, sería necesario considerar también la compensación de WL. Si se detrae a las empresas sus WP pero se les compensa por sus WL, entonces la rentabilidad esperada de las inversiones permanecería inalterada, con lo que se mantendría también inalterado el incentivo a la inversión, evitándose las ineficiencias (es decir, la falta de inversión).

A continuación se muestra cómo la introducción de WL corrige la ineficiencia en la inversión producida por la detracción de los WP:

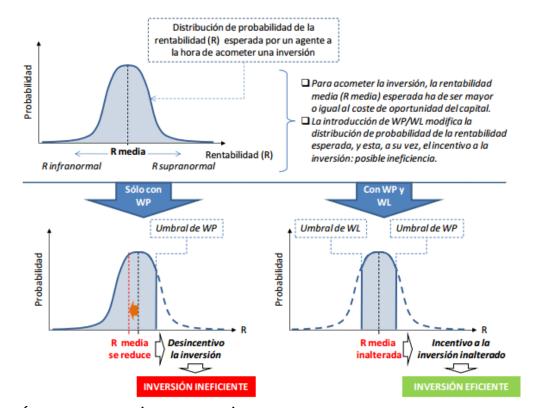


GRÁFICO 10. WP y WL (Fuente: AEEE)

A la vista de esto, parecería que aplicar sólo la detracción de WP, olvidándose de los WL, supondría un caso de oportunismo regulatorio, ya que su único resultado sería la detracción del WP (recaudación) a costa de introducir ineficiencias en la inversión:

- Para evitar la ineficiencia en la inversión, un regulador podría proponer aplicar la detracción de WP únicamente a los activos ya existentes, comprometiéndose a no hacerlo sobre las nuevas inversiones en el futuro. Evidentemente, esta propuesta no resolvería el problema, ya que las acciones del regulador en el pasado determinan las expectativas sobre sus acciones futuras (es decir, las detracciones pasadas crean la expectativa sobre las detracciones futuras). Por ello, este tipo de propuestas no resuelven el problema de la ineficiencia creada por la detracción de los WP.
- En el entorno legislativo / regulatorio europeo, la compensación de WL sería muy difícil de poner en práctica ya que con una alta probabilidad serían

consideradas Ayudas de Estado, las cuales no están en general permitidas. Así, existe la práctica seguridad de que detracciones de WP realizadas en el presente no podrán ser equilibradas con compensaciones de WL en el futuro. Esto, evidentemente, determina la expectativa de las empresas respecto al comportamiento del regulador, haciendo inevitable que de la detracción de WP se deriven ineficiencias en la inversión.

Por último, es importante destacar que rara vez existen situaciones en las que aparezcan únicamente WP o WL, sino que un mismo suceso causa ambos a la vez.

En resumen, se tiene que demostrar que únicamente se está incurriendo en WP para poder realizar una detracción, ya que, si se demostrase que paralelamente esta situación da lugar a WL que no están siendo recompensados, podría ser visto como oportunista, intervencionista y discriminatorio.

A continuación, se exponen los cálculos que nos dan la razón cuando proponemos esta medida de ajuste:

7.2.1. HIDRÁULICA R.O.

AÑO	COSTE DE PRODUCCIÓN (€/GWh)	RETRIBUCIÓN (€/GWh)	PRODUCCIÓN (GWh)	INGRESOS TOTALES (M€)	INGRESOS RAZONABLES=8% RENT. (M€)	WINDFALL PROFITS (M€)	RENTABILIDAD REAL (%)
2007	3000	72920	26352	1921,58784	85,38048	1836,20736	2330,666667
2008	3000	93040	21428	1993,66112	69,42672	1924,2344	3001,333333
2009	3000	68760	23862	1640,75112	77,31288	1563,43824	2192
2010	3000	78080	38562	3010,92096	124,94088	2885,98008	2502,666667
2011	3000	71500	27571	1971,3265	89,33004	1881,99646	2283,3333333
2012	3000	74090	19455	1441,42095	63,0342	1378,38675	2369,666667
TOTAL	18000	458390	157230	11979,66849	509,4252	11470,24329	

CUADRO 33. WP ENERGÍA HIDRÁULICA R.O. (Fuente: Elaboración propia).

7.2.2. NUCLEAR

AÑO	COSTE DE PRODUCCIÓN (€/GWh)	RETRIBUCIÓN (€/GWh)	PRODUCCIÓN (GWh)	INGRESOS TOTALES (M€)	INGRESOS RAZONABLES=8% RENT. (M€)	WINDFALL PROFITS (M€)	RENTABILIDAD REAL (%)
2007	18000	47380	55102	2610,73276	1071,18288	1539,54988	163,22222222
2008	18000	69610	58973	4105,11053	1146,43512	2958,67541	286,7222222
2009	18000	42630	52761	2249,20143	1025,67384	1223,52759	136,8333333
2010	18000	45360	61990	2811,8664	1205,0856	1606,7808	152
2011	18000	60150	57731	3472,51965	1122,29064	2350,22901	234,1666667
2012	18000	59420	61470	3652,5474	1194,9768	2457,5706	230,1111111
TOTAL	108000	324550	348027	18901,97817	6765,64488	12136,33329	

CUADRO 34. WP ENERGÍA NUCLEAR (Fuente: Elaboración propia).

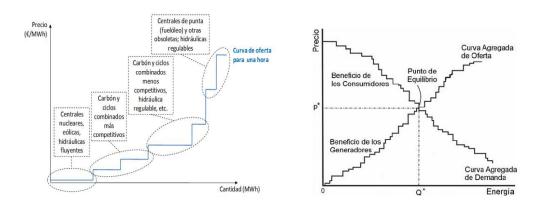
Luego, como conclusión sacamos que los llamados Windfall Profits ascienden a :

AÑO	HIDRAULICA (M€)	NUCLEAR (M€)	TOTAL (M€)
2007	1836,20736	1539,54988	3375,75724
2008	1924,2344	2958,67541	4882,90981
2009	1563,43824	1223,52759	2786,96583
2010	2885,98008	1606,7808	4492,76088
2011	1881,99646	2350,22901	4232,22547
2012	1378,38675	2457,5706	3835,95735
TOTAL	11470,24329	12136,33329	23606,57658

CUADRO 35. TOTAL WP (Fuente: Elaboración propia).

Si analizamos detenidamente los resultados obtenidos, observamos que la rentabilidad obtenida con estas tecnologías es desproporcionada llegando a alcanzar una rentabilidad del 3000 %, en el caso de la hidráulica, y del 290 %, en la nuclear. Es decir, podemos decir que dichas tecnologías están sobreretribuidas.

Para conocer el valor de la sobreretribución, en primer lugar, debemos estipular cuál sería una rentabilidad razonable, y el valor elegido es: un 8 %. Coincidente con la rentabilidad mínima escogida en la primera medida de ajuste –Reducción de las Primas-.


Una vez conocido este valor, sabremos cuál sería la retribución razonable. Y la diferencia entre la retribución real y la razonable, nos daría los famosos Windfall Profits o "Beneficios caídos del cielo".

Los costes de producción empleados para realizar estas liquidaciones son los proporcionados por el "INFORME DE PRECIOS Y COSTES DE LA GENERACIÓN DE LA ELECTRICIDAD" realizado por la CNE el 1 de julio de 2008.

Algunos de los argumentos que se exponen para llevar a cabo esta medida son los siguientes:

- Las desorbitadas rentabilidades que nos dan como resultado, se traducen en unos costes también desorbitados trasladados al consumidor. Ya que dentro de la tarifa que paga el usuario final está el precio acordado en la CESUR.
 - Además estas rentabilidades en una parte de la balanza dificultan que el mercado se comporte de manera justa y lógica.
- Teniendo en cuenta el funcionamiento del mercado eléctrico:

GRÁFICO 11. CURVA OFERTA Y DEMANDA (Fuente: AEEE).

Y sabiendo que las energías beneficiarias de estos Windfall Profits –Hidráulica R.O. y Nuclear- son las únicas que se encuentran en un mercado ya cerrado, es decir, que no acepta la entrada de nuevos competidores, alegamos que estas tecnologías no pueden acudir al mismo mercado que las demás porque al no

estar en un escenario de competitividad y tener unos costes que les permiten estas rentabilidades, no intentarán disminuir dichos costes y por lo tanto no contribuirán a "tumbar" la curva de oferta.

Es decir, que las circunstancias en las que se encuentran dichas energías tienden a subir el precio.

- Tales beneficios aumentan también cuando se encarece el petróleo y sube el precio del pool, lo que resulta paradójico, pues los defensores de la energía nuclear afirman que las centrales nucleares "nos protegen del encarecimiento del petróleo".
 - Luego, lo lógico, es que para que de verdad ejerciesen una protección del encarecimiento del crudo, deberían destinar estas sobreretribuciones para beneficio general y no propio.
- Consideramos que debe establecerse un canon a las concesiones hidroeléctricas por estar sacándole una rentabilidad a un cauce público. Esto es, es injusto que de un bien público, únicamente se beneficie una empresa. Lo lógico es que toda la sociedad obtenga algo de esto.

Es por todo ello que lo que se propone en este proyecto, es que tanto la energía nuclear como la hidráulica en R.O., sean retribuidas de manera distinta.

Una opción podría ser que sean remuneradas al coste real más un margen razonable, por ejemplo de 7%. Obteniendo unos ingresos como los representados en los *CUADROS 33* y *34*.

7.3. SUBASTAS CO₂

Es de sobra conocido que el cambio climático es uno de los grandes desafíos a los que nos enfrentamos, sin ir más lejos, es uno de los ocho objetivos conocidos como "Objetivos de Desarrollo del Milenio de la ONU", además de ser el objetivo principal del Protocolo de Kyoto.

Por ello, Europa se ha propuesto alcanzar una serie ambiciosos objetivos relacionados con el cambio climático y la energía (Roadmap 2050). Las medidas establecidas para alcanzar dicha meta son los también llamados "Objetivos 20/20/20" y consisten en:

- Reducir las emisiones de gases de efecto invernadero (GEI) en un 20%.
- Ahorrar el 20% del consumo de energía mediante una mayor eficiencia energética.
- Conseguir que el 20% de la producción total de la energía proceda de fuentes renovables.

Con el fin de favorecer este plan energético, es lógico y justificado que se opte por controlar las emisiones de GEI. Para esto, una medida de ajuste puede ser vender derechos de emisión de CO₂, medida que se viene practicando en Europa desde 2008 y que se aplica no sólo a sus 27 estados miembro sino también a los otros tres miembros del Espacio Económico Europeo (Noruega, Islandia y Liechtenstein). A continuación, desarrollaremos el funcionamiento de dicha medida que, no olvidemos, supone una fuente de ingresos.

Esta actividad se conoce como el Comercio Internacional de Emisiones. Que recoge las operaciones de compra-venta de créditos (ERUs y CERs) entre países en vías de desarrollo y/o industrialización para cumplir con los compromisos adquiridos en el marco del Protocolo de Kyoto reduciendo sus emisiones y, al mismo tiempo, comercializar los créditos de emisiones excedentarios a otros países.

El Régimen Comunitario de Comercio de Derechos de Emisión (RCCDE) tiene por objeto ayudar a los Estados miembros de la UE a cumplir sus compromisos de limitación o reducción de las emisiones de gases de efecto invernadero de una manera rentable. El hecho de que las empresas que participan en el régimen puedan comprar o vender derechos de emisión permite reducir emisiones al mínimo coste.

69

El RCCDE es la piedra angular de la estrategia de lucha contra el cambio climático de la UE. Es el primer régimen internacional de comercio de derechos de emisiones de CO2 en el mundo, y desde principios de 2008 se aplica no sólo a los 27 Estados miembros de la Unión sino también a los otros tres miembros del Espacio Económico Europeo (Noruega, Islandia y Liechtenstein). En la actualidad están incluidas en el régimen más de 10 000 instalaciones de los sectores energético e industrial, que son responsables, en su conjunto, de cerca de la mitad de las emisiones de CO2 y del 40 % de las emisiones totales de gases de efecto invernadero de la UE. Se está debatiendo legislación para incluir el sector de la aviación en el sistema a partir de 2011 o 2012.

El RCCDE es un régimen de comercio de derechos de emisión con fijación previa de límites máximos («cap and trade»), es decir, establece un límite máximo que no deben superar las emisiones globales pero, dentro de ese límite, permite a los participantes en el régimen comprar y vender derechos de emisión según sus necesidades. Esos derechos de emisión son la «moneda de cambio» sobre la que se sustenta el régimen. Un derecho permite a su titular emitir una tonelada de CO2. La imposición de un límite máximo respecto al número total de derechos es lo que crea escasez en el mercado.

En la actualidad los Estados miembros elaboran, en relación con cada período de comercio con arreglo al régimen, Planes Nacionales de Asignación (PNA), en los que se fija el nivel total de emisiones en el comercio de derechos de emisión y el número de derechos de emisión asignado a cada instalación en su territorio. Al final de cada año, las instalaciones tienen que entregar una cantidad de derechos equivalente a sus emisiones. Las empresas cuyas emisiones se sitúan por debajo del nivel de derechos pueden vender los derechos que les sobran. Las que tienen dificultades para mantener sus emisiones al nivel de sus derechos pueden optar, bien por tomar medidas para reducir sus propias emisiones (como, por ejemplo, invertir en una tecnología más eficiente o utilizar fuentes de energía con menos emisiones de carbono), bien por comprar en el mercado derechos suplementarios, bien por una combinación de ambas

opciones, que pueden depender de sus costes relativos. De ese modo, las emisiones se reducen ahí donde resulta más rentable hacerlo.

El RCCDE se inauguró el 1 de enero de 2005. El primer período de comercio duró tres años, hasta finales de 2007, y constituyó una etapa de «aprendizaje práctico», como preparación para el segundo período de comercio, de importancia crucial. Este segundo período ha empezado el 1 de enero de 2008 y tendrá cinco años de duración, hasta finales de 2012. La importancia de este segundo período reside en el hecho de que coincide con el primer período de compromiso del Protocolo de Kioto, durante el cual la UE y otros países industrializados tienen que cumplir sus objetivos de limitación o reducción de las emisiones de gases de efecto invernadero. Para este segundo período de comercio, los límites máximos establecidos por la Comisión respecto a las emisiones nacionales de los sectores incluidos en el RCCDE se sitúan en un nivel medio inferior en un 6,5 % a las emisiones de 2005, y ello para garantizar que la Comunidad en su conjunto y cada uno de los Estados miembros cumplan los compromisos de Kioto que les corresponden.

El RCCDE ha puesto un precio al carbono y ha demostrado que el comercio de emisiones de gases de efecto invernadero funciona. En el primer período se consiguió establecer el libre comercio de derechos de emisión en toda la UE, crear la infraestructura necesaria y desarrollar un mercado dinámico del carbono. Los beneficios de la primera fase desde el punto de vista del medio ambiente quizás hayan sido limitados debido a que en algunos Estados miembros y en algunos sectores se asignaron demasiados derechos de emisión, principalmente a causa de que se utilizaron proyecciones a la espera de disponer de datos sobre emisiones verificadas en el marco del RCCDE. Cuando la publicación de los datos sobre las emisiones verificadas de 2005 puso de manifiesto que se había asignado un exceso de derechos, el mercado reaccionó como cabía esperar reduciendo el precio de mercado de los derechos de emisión. La publicación de los datos sobre emisiones verificadas permitió

a la Comisión fijar el límite máximo de los derechos de emisión nacionales para la segunda fase en un nivel que produjera reducciones reales de emisiones. Además de la necesidad de datos verificados, la experiencia ha demostrado que una mayor armonización en el RCCDE es fundamental para que la UE realice sus objetivos de reducción de emisiones al mínimo coste y limitando al máximo las distorsiones de la competencia. La necesidad de una mayor armonización resulta patente por lo que se refiere, en particular, al establecimiento de un límite máximo para el número total de derechos

Los dos primeros períodos de comercio ponen de manifiesto, asimismo, que las grandes diferencias existentes entre los métodos nacionales de asignación de derechos de emisión a las instalaciones constituyen una amenaza para la competencia leal en el mercado interior. También se requiere una mayor armonización, aclaración y precisión del ámbito de aplicación del régimen, del acceso a los créditos por proyectos de reducción de emisiones fuera de la UE, de las condiciones para establecer vínculos con otros regímenes de comercio de derechos de emisión y de los requisitos en materia de seguimiento, verificación y notificación.

En los PNA tanto del primer período de comercio (2005-2007) como del segundo (2008-2012), los Estados miembros determinaron la cantidad total de derechos por expedir (el límite máximo) y cómo iban a asignarse a las instalaciones. Ese planteamiento ha generado diferencias considerables entre las normas de asignación, que incitan a los Estados miembros a favorecer a su propia industria, lo cual ha dado pie a una situación de gran complejidad.

La Comisión propone establecer un único límite máximo para toda la Unión y asignar derechos sobre la base de normas plenamente armonizadas. Los Planes Nacionales de Asignación, por tanto, dejarán de ser necesarios.

El precio de la multa por no entrgar una cantidad de derechos de emisión equivalkentes a las emisiones de reales de una planta, era de 40 €/Tm durante el primer período -2005 a 2007-, y de 100 €/Tm

El valor del derecho de emisión de CO2 es muy volátil y factores como el clima, situaciones político-económicas y el volumen de asignaciones a nivel europeo, influyen directamente en su evolución.

A pesar de dicha volatilidad, el precio será siempre superior a cero e inferior al valor de la multa, por lo tanto está acotado y se calcula mediante un modelo lineal, donde el precio será una de las variables.

A continuación se muestra cuál hubiese sido el valor anual de dicha fuente de ingresos:

AÑO	PRECIO DERECHO EMISIÓN (€/Derecho)	EMISIONES (MTm)	INGRESOS (M€)
2007	5,85	120,67	705,9195
2008	22,02	104,32	2297,1264
2009	13,06	88,13	1150,9778
2010	14,32	72,22	1034,1904
2011	12,89	85,85	1106,6065
2012	7,33	90,5	663,365
TOTAL			6958,1856

CUADRO 36. INGRESOS SUBASTAS CO2 (Fuente: Sendeco2 y Eurostat).

7.4. CÉNTIMO VERDE

El argumento va muy en la línea de la medida de las subastas de CO₂, y consiste en aplicar un recargo en el impuesto de los hidrocarburos con el fin de reducir el consumo de combustible, e, inevitablemente, buscar otra fuente de ingresos para equilibrar ingresos y costes.

Si tenemos en cuenta el consumo de hidrocarburos en toneladas equivalentes de petróleo –tep -durante el período de estudio:

AÑO	CONSUMO (ktep)
2007	69856
2008	66060
2009	60431
2010	60826
2011	57794
2012	61185
TOTAL	376152

CUADRO 37. CONSUMO HIDROCARBUROS (Fuente: IDAE).

Aplicando un recargo de 10 €/tonelada obtendríamos unos ingresos de:

AÑO	INGRESOS (M€)
2007	698,56
2008	660,6
2009	604,31
2010	608,26
2011	577,94
2012	611,85
TOTAL	3761,52

CUADRO 38. INGRESOS CÉNTIMO VERDE (Fuente: Elaboración propia).

Al igual que con las instalaciones de energía renovable, para comprobar la viabilidad que tiene esta medida y el impacto sobre las plantas a las que afecta, en este caso Ciclo Combinado y Fuel/Gas, hemos desarrollado un modelo económico del mismo tipo –la estructura se expone en el apartado 7.1.-

Para asegurar lo máximo posible, dentro de la situación, la inversión de los propietarios hemos establecido una TIR mínima del 8% a la hora de proponer el valor del recargo:

7.4.1. CICLO COMBINADO

La rentabilidad esperada por los inversores, antes de la aplicación del recargo, para una planta de 400 MW y un coste de inversión de 200 millones de euros es de: un 10%. Mientras que si introducimos una tasa de 10 €/tep, la TIR desciende a un 8% -límite establecido-.

Luego, este sería el valor propuesto.

7.4.2. FUEL-GAS

En este caso hemos utilizado una planta de las mismas características: una potencia instalada 400 MW, un coste de inversión 200 millones de euros y una rentabilidad del 10%.

Para obtener el TIR formalizado, el recargo debe ser igual al anterior: 10 €/tep.

7.5. IMPACTO DE LAS MEDIDAS

En este apartado trataremos de explicar el impacto que tendrán estas medidas sobre la liquidación de ingresos y costes de nuestro sistema eléctrico. Tanto individual como simultáneamente.

7.5.1. IMPACTO DE M.A.1: Reducción de las primas otorgadas a las energías renovables

El impacto económico que tendría esta medida de ajuste sobre la liquidación sería el que se expone a continuación:

(Millones de €uros)	2007	2008	2009	2010	2011	2012	TOTAL
DÉFICIT/SUPERÁVIT (Costes regulados)	-1771,5	-6287	-4606	-5564	-3851	-5609	-27688,5
MA1: Reducción Primas EERR	1225,15648	2330,07238	2538,73618	2917,18316	3088,21383	3454,34225	15553,7043
DÉFICIT/SUPERÁVIT (Corregido)	-546,343519	-3956,92762	-2067,26382	-2646,81684	-762,786172	-2154,65775	-12134,7957

CUADRO 39. IMPACTO M.A. 1 (Fuente: Elaboración propia).

A tenor de los resultados obtenidos, se puede afirmar que se produce una reducción notable del déficit acumulado, pasando de casi 28.000 millones a 12.000 millones de euros. Es decir, más de un 57%.

Aun así, seguiría existiendo desequilibrio, luego, esta única medida no sería suficiente.

Para obtener estos resultados y respetar una rentabilidad razonable -8%- se han llevado a cabo las siguientes reducciones:

- Solar Fotovoltaica→30%
- Solar Termoeléctrica → 10%
- Eólica → 100%
- Hidráulica R.E. →0%
- Biomasa→100%
- Biogás → 45%
- Cogeneración → 30%

Esto supondría una reducción del 50,47% de las primas entregadas durante el período de estudio 2007-2012.

7.5.2. IMPACTO DE M.A.2: Reducción de Windfall Profits

La segunda medida propuesta también tendría un alcance nada desdeñable, sin embargo, tampoco vale como medida única:

(Millones de €uros)	2007	2008	2009	2010	2011	2012	TOTAL
DÉFICIT/SUPERÁVIT (Costes regulados)	-1771,5	-6287	-4606	-5564	-3851	-5609	-27688,5
MA2: Windfall Profits	3386,46616	4894,16779	2797,17867	4505,07594	4243,44418	3847,6056	23673,9383
DÉFICIT/SUPERÁVIT (Corregido)	1614,96616	-1392,83221	-1808,82133	-1058,92406	392,44418	-1761,3944	-4014,56166

CUADRO 40. IMPACTO M.A. 2 (Fuente: Elaboración propia).

Según nuestros cálculos esta sería la que más influiría en la eliminación del desequilibrio económico, causando una reducción de casi el 85% del mismo: de los casi 28.000 millones iniciales a 4.000 millones de euros.

No olvidemos que la rentabilidad establecida como razonable -8%- se respeta en todo momento.

7.5.3. IMPACTO DE M.A.3: Subastas CO₂

A continuación se muestra el efecto de la tercera medida:

(Millones de €uros)	2007	2008	2009	2010	2011	2012	TOTAL
DÉFICIT/SUPERÁVIT (Costes regulados)	-1771,5	-6287	-4606	-5564	-3851	-5609	-27688,5
MA3: Subastas CO2	705,9195	2297,1264	1150,9778	1034,1904	1106,6065	663,365	6958,1856
DÉFICIT/SUPERÁVIT (Corregido)	-1065,5805	-3989,8736	-3455,0222	-4529,8096	-2744,3935	-4945,635	-20730,3144

CUADRO 41. IMPACTO M.A. 3 (Fuente: Elaboración propia).

La reducción de más de 7.000 millones de euros –menos del 30%- que provoca esta medida sobre el acumulado, es significativamente menor a las que provocan las M.A.1 y M.A.2.

7.5.4. IMPACTO DE M.A.4: Céntimo Verde Ahora, se expone el resultado de la última medida propuesta:

(Millones de €uros)	2007	2008	2009	2010	2011	2012	TOTAL
DÉFICIT/SUPERÁVIT (Costes regulados)	-1771,5	-6287	-4606	-5564	-3851	-5609	-27688,5
MA4: Céntimo Verde	698,56	660,6	604,31	608,26	577,94	611,85	3761,52
DÉFICIT/SUPERÁVIT (Corregido)	-1072,94	-5626,4	-4001,69	-4955,74	-3273,06	-4997,15	-23926,98

CUADRO 42. IMPACTO M.A. 4 (Fuente: Elaboración propia).

Al lado de las anteriores, su impacto anual es casi despreciable. Pero si nuestro objetivo es conseguir un sistema eficiente y viable, los casi 3.000 millones de euros que se acumulan durante el período de estudio, suponen una cifra muy a tener en cuenta.

La tasa establecida que nos genera dichos ingresos es de 10 €/tep.

7.5.5. IMPACTO EN CONJUNTO

Por último, queremos reflejar cual sería el impacto de aplicar todas las medidas simultáneamente sobre la liquidación:

(Millones de €uros)	2007	2008	2009	2010	2011	2012	TOTAL
DÉFICIT/SUPERÁVIT (Costes regulados)	-1771,5	-6287	-4606	-5564	-3851	-5609	-27688,5
MA1: Reducción Primas EERR	1225,15648	2330,07238	2538,73618	2917,18316	3088,21383	3454,34225	15553,7043
MA2: Windfall Profits	3386,46616	4894,16779	2797,17867	4505,07594	4243,44418	3847,6056	23673,9383
MA3: Subastas CO2	705,9195	2297,1264	1150,9778	1034,1904	1106,6065	663,365	6958,1856
MA4: Céntimo Verde	698,56	660,6	604,31	608,26	577,94	611,85	3761,52
DÉFICIT/SUPERÁVIT (Corregido)	4244,60214	3894,96657	2485,20265	3500,7095	5165,20451	2968,16285	22258,8482

CUADRO 43. IMPACTO CONJUNTO (Fuente: Elaboración propia).

El resultado de esta última liquidación suscita varios comentarios que hacer. De tener un sistema eléctrico deficitario, con un desajuste de casi 28.000 millones de euros, hemos pasado a un sistema que no solo ha eliminado dicho desequilibrio sino que además está en superávit.

El superávit del que hablamos alcanza los 20.000 millones. Es decir, hemos conseguido transformar casi todo el valor que teníamos de déficit en superávit.

8. CONCLUSIONES

Para finalizar, queremos exponer las ideas principales sobre cómo alcanzar el objetivo por este proyecto:

- En primer lugar, destacar la necesidad de un Pacto de Estado para, de esta forma, garantizar una estabilidad en el sector duradera en el tiempo, y que permita a las medidas propuestas cumplir su objetivo.
- Subrayar que subir la tarifa a los consumidores no es la única solución al problema del déficit.
- Tener en cuenta las curvas de aprendizaje en el desarrollo de las tecnologías antes de fomentar su producción.
- A pesar de la difícil situación vivida en España como consecuencia, en parte, de la retribución de las energías renovables, compartimos la idea de seguir

78

apostando por ellas dados los beneficios que nos proporcionan: energía limpia, independencia energética o la disminución del precio del pool por citar algunos.

Y por último, mencionar que durante los procesos de investigación y búsqueda de datos, ha resultado llamativo la "guerra" abierta entre productores acogidos al Régimen Ordinario –energías convencionales- y productores acogidos al Régimen Especial –energías renovables y cogeneración-. Esta consiste en echarse la culpa unos a otros de ser los responsables del denominado déficit de tarifa.

Sin embargo, y como ya se ha desarrollado anteriormente, nosotros consideramos que ambos son corresponsables de esta situación.

Si bien las energías renovables son habitualmente señaladas como las principales desencadenantes de este desequilibrio debido a los excesos que se cometieron en sus retribuciones, es importante no olvidar que la proliferación de este tipo de instalaciones se produjo en un escenario en el que España buscaba mayor independencia energética además de haberse comprometido, firmando el Protocolo de Kyoto, a reducir las emisiones de CO₂, así como a fomentar la producción eléctrica mediante energías renovables. Es decir, es necesario recordar que la apuesta por este tipo de tecnologías se hizo buscando un fin beneficioso para la sociedad como es la lucha contra el cambio climático.

En cuanto a las energías conocidas como tradicionales, en particular la Nuclear y la Hidráulica en R.O., se ha demostrado que reciben una sobrerretribución también abusiva. Estos son los llamados Windfall Profits. Es curioso que son estos productores los que acusan a las energías renovables de provocar un "agujero" de casi 16.000 millones de euros, mientras que sus WP superan los 20.000 millones.

Luego, podemos afirmar que nuestras medidas son del todo imparciales, ya que afectan a ambos regímenes por igual.

Por ello, las soluciones que se proponen para atajar el desajuste económico que sufre el sistema eléctrico son:

- Modificar el marco retributivo de las energías renovables y la cogeneración llevando a cabo reducciones en las primas recibidas. Los valores a detraer –en %- que proponemos son:
 - a. Solar Fotovoltaica→30%
 - b. Solar Termoeléctrica→10%
 - c. Eólica→100%
 - d. Hidráulica R.E. →0%
 - e. Biomasa→100%
 - f. Biogás → 45%
 - g. Cogeneración→30%
- Reducir las sobrerretribuciones o WP de la Nuclear y de la Hidráulica en R.O., derivadas de la enorme diferencia entre los costes marginales y el precio de mercado. Para esto, limitamos la rentabilidad por ellas a un 8%.
- Establecer un recargo de 10 €/tep para las tecnologías que utilicen como combustible algún hidrocarburo.

9. BIBLIOGRAFÍA

- INFORME SOBRE COSTES E INGRESOS AÑO 2008

Comisión Nacional de la Energía (CNE)

www.cne.es

 INFORME SOBRE LOS RESULTADOS DE LA LIQUIDACION PROVISIONAL № 14 DE 2007 Y VERIFICACIONES PRACTICADAS

Comisión Nacional de la Energía (CNE)

www.cne.es

 INFORME SOBRE LOS RESULTADOS DE LA LIQUIDACION PROVISIONAL № 14 DE 2008 Y VERIFICACIONES PRACTICADAS

Comisión Nacional de la Energía (CNE)

www.cne.es

 INFORME SOBRE LOS RESULTADOS DE LA LIQUIDACION PROVISIONAL № 14 DE 2009 Y VERIFICACIONES PRACTICADAS

Comisión Nacional de la Energía (CNE)

www.cne.es

 INFORME SOBRE LOS RESULTADOS DE LA LIQUIDACION PROVISIONAL № 14 DE 2010 Y VERIFICACIONES PRACTICADAS

Comisión Nacional de la Energía (CNE)

www.cne.es

- INFORME SOBRE LOS RESULTADOS DE LA LIQUIDACION PROVISIONAL № 14 DE 2011 Y VERIFICACIONES PRACTICADAS

Comisión Nacional de la Energía (CNE)

www.cne.es

- INFORME SOBRE LOS RESULTADOS DE LA LIQUIDACION PROVISIONAL № 14 DE 2012 Y VERIFICACIONES PRACTICADAS

Comisión Nacional de la Energía (CNE)

www.cne.es

Real Decreto 661/2007.

Boletín Oficial del Estado (BOE)

Real Decreto 1578/2008.

Boletín Oficial del Estado (BOE)

 PFC: Estudio de viabilidad de una planta termosolar trough (Autor:Guillermo Entrecanales).

Instituto de Investigación Tecnológica (IIT)

www.iit.upcomillas.es

- Libro Blanco sobre la reforma del marco regulatorio de la generación eléctrica en España.

Instituto de Investigación Tecnológica (IIT)

www.iit.upcomillas.es

- El sistema eléctrico español 2007

Red Eléctrica de España (REE)

www.ree.es

- El sistema eléctrico español 2008

Red Eléctrica de España (REE)

www.ree.es

- El sistema eléctrico español 2009

Red Eléctrica de España (REE)

www.ree.es

- El sistema eléctrico español 2010

Red Eléctrica de España (REE)

www.ree.es

- El sistema eléctrico español 2011

Red Eléctrica de España (REE)

www.ree.es

- El sistema eléctrico español 2012

Red Eléctrica de España (REE)

www.ree.es

- Calculadora de consumo

Asociación Española de la Industria Eléctrica (UNESA).

www.unesa.net

- Informe "Las centrales de ciclo combinado de gas natural"

Gas Natural-Fenosa

www.fundaciongasnaturalfenosa.org

- Artículo "Windfall Profits"

Asociación Española para la Economía Energética (AEEE).

www.aeee.es

PARTE 2: ANEXOS

1. DÉFICIT DE TARIFA

(Millones de €uros)	2007	2008	2009	2010	2011	2012	TOTAL
TOTAL INGRESOS BRUTOS	8268	6183	11074	12756	12962	14904	92753
			_				
Costes de transporte	1090	1246	1344	1397	1534	1477	8088
Distribución y gestión comercial	4160	4734	4528	5136	5091	4663	28312
Primas R.E.	1817,07078	3315,83306	3636,89164	4246,91551	4818,03621	5669,61603	23504,3632
Interrumpibilidad	14,5	227	365	402	497	471	1962
Moratoria nuclear	3,6	3,6	15,4	98,9	49,3	53,5	224,3
Fondo PGRR	50,6	62,6	67,8	0,5	0,1	0,1	181,7
Costes de diversificación y seguridad de abastecimiento	1885,77078	3609,03306	4085,09164	4748,31551	5364,43621	6194,21603	25872,3632
Compensación insulares y extrapeninsulares	1119	1165	1348	860	719	10	5221
Operador del mercado (OMIE)	10,2	11	5,3	0,001	0	0	26,501
Operador del sistema (REE)	34,7	37,9	42	36,6	36,9	18,8	206,9
CNE	14,4	15	17,5	22,7	22,8	22,8	115,2
Costes permanentes	1178,3	1228,9	1412,8	919,301	778,7	51,6	5569,601
Anualidades del déficit	477	1033	887	2181	1205	2653	8436
Otros costes	1248,42922	619,066944	3423,10836	3938,38349	2839,86379	5474,18397	17543,0358
TOTAL COSTES REGULADOS (Tarifa de acceso)	10039,5	12470	15680	18320	16813	20513	93821
DÉFICIT/SUPERÁVIT (Costes regulados)	-1771,5	-6287	-4606	-5564	-3851	-5609	-27688,5
MA1: Reducción Primas EERR	1225,15648	2330,07238	2538,73618	2917,18316	3088,21383	3454,34225	15553,7043
MA2: Windfall Profits	3386,46616	4894,16779	2797,17867	4505,07594	4243,44418	3847,6056	23673,9383
MA3: Subastas CO2	705,9195	2297,1264	1150,9778	1034,1904	1106,6065	663,365	6958,1856
MA4: Céntimo Verde	698,56	660,6	604,31	608,26	577,94	611,85	3761,52
DÉFICIT/SUPERÁVIT (Corregido)	4244,60214	3894,96657	2485,20265	3500,7095	5165,20451	2968,16285	22258,8482

2. FLUJO DE CAJA DE UNA CENTRAL DE CICLO COMBINADO

INC. IPC MEDIO = 0,02		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
POTENCIA INSTALADA (MW)	0	400	400	400	400	400	400	400	400	400	400	400
HORAS DE FUNCIONAMIENTO (h)	0	3266,79332	4141,55033	3341,55459	2538,39322	2032,96096	1563,21247	2500	2500	2500	2500	2500
tep/GWh_eléctrico	0	145	145	145	145	145	145	145	145	145	145	145
COMBUSTIBLE CONSUMIDO (tep)	0	189474,013	240209,919	193810,166	147226,807	117911,735	90666,3235	145000	145000	145000	145000	145000
POOL (€/GWh)	0	72920	93040	68760	78080	71500	74090	76398,3333	76398,333	76398,333	76398,333	76398,333
INGRESOS (€)	0	95285827,7	154131937	91906117,4	79279097,1	58142683,3	46327364,9	76398333,3	76398333	76398333	76398333	76398333
COSTES (O&M) (€/MWh)	0	56,91	56,91	56,91	56,91	56,91	56,91	56,91	56,91	56,91	56,91	56,91
GASTOS (€)	0	-74365283,2	-94278251,8	-76067148,7	-57783983,3	-46278323,2	-35584968,7	-56910000	-56910000	-56910000	-56910000	-56910000
AMORTIZACIÓN INSTALACIÓN (€)	0	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000
INTERESES	0	-8000000	-7200000	-6400000	-5600000	-4800000	-4000000	-3200000	-2400000	-1600000	-800000	0
B.A.I. (€)	0	4920544,44	44653685,4	1438968,75	7895113,79	-935639,863	-1257603,88	8288333,33	9088333	9888333	10688333	11488333
I.S (%)	0	30	30	30	30	30	30	30	30	30	30	30
B.D.I. (€)	0	3444381,11	31257579,8	1007278,13	5526579,65	-935639,863	-1257603,88	5801833,33	6361833,1	6921833,1	7481833,1	8041833,1
AMORTIZACIÓN INSTALACIÓN (€)	0	8000000	8000000	8000000	8000000	8000000	8000000	8000000	8000000	8000000	8000000	8000000
COSTE INVERSIÓN (€)	200000000											
INVERSIÓN PRIVADA (€)=20%	-40000000											
CRÉDITO BANCARIO_MODELO AMERICANO_10 AÑOS_5%TAE (€)=80%	160000000	-16000000	-16000000	-16000000	-16000000	-16000000	-16000000	-16000000	-16000000	-16000000	-16000000	0
FLUJO DE CAJA	-40000000	-4555618,89	23257579,8	-6992721,87	-2473420,35	-8935639,86	-9257603,88	-2198166,67	-1638166,9	-1078166,9	-518166,9	16041833,1
		TIR	10%									

3. FLUJO DE CAJA DE UNA CENTRAL TÉRMICA FUEL-GAS

INC. IPC MEDIO = 0,02		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
POTENCIA INSTALADA (MW)	0	400	400	400	400	400	400	400	400	400	400	400
HORAS DE FUNCIONAMIENTO (h)	0	1419,18993	1491,07392	1729,32072	1669,22943	1709,09506	2199,18344	1700	1700	1700	1700	1700
tep/GWh_eléctrico	0	230	230	230	230	230	230	230	230	230	230	230
COMBUSTIBLE CONSUMIDO (tep)	0	130565,474	137178,801	159097,506	153569,107	157236,746	202324,876	156400	156400	156400	156400	156400
POOL (€/GWh)	0	72920	93040	68760	78080	71500	74090	76398,3333	76398,3333	76398,3333	76398,3333	76398,3333
INGRESOS (€)	0	41394932	55491807	47563237,1	52133373,4	48880118,8	65175000,3	51950866,7	51950866,7	51950866,7	51950866,7	51950866,7
COSTES (O&M) (€/MWh)	0	45	45	45	45	45	45	45	45	45	45	45
GASTOS (€)	0	-25545418,8	-26839330,5	-31127773	-30046129,7	-30763711,2	-39585301,8	-30600000	-30600000	-30600000	-30600000	-30600000
AMORTIZACIÓN INSTALACIÓN (€)	0	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000	-8000000
INTERESES	0	-8000000	-7200000	-6400000	-5600000	-4800000	-4000000	-3200000	-2400000	-1600000	-800000	0
B.A.I. (€)	0	-150486,827	13452476,4	2035464,14	8487243,75	5316407,68	13589698,5	10150866,7	10950866,7	11750866,7	12550866,7	13350866,7
I.S (%)	0	30	30	30	30	30	30	30	30	30	30	30
B.D.I. (€)	0	-150486,827	9416733,5	1424824,9	5941070,63	3721485,37	9512788,92	7105606,67	7665606,67	8225606,67	8785606,67	9345606,67
AMORTIZACIÓN INSTALACIÓN (€)	0	8000000	8000000	8000000	8000000	8000000	8000000	8000000	8000000	8000000	8000000	8000000
COSTE INVERSIÓN (€)	200000000											
INVERSIÓN PRIVADA (€)=20%	-40000000											
CRÉDITO BANCARIO_MODELO AMERICANO_10 AÑOS_5%TAE (€)=80%	160000000	-16000000	-16000000	-16000000	-16000000	-16000000	-16000000	-16000000	-16000000	-16000000	-16000000	0
FLUJO DE CAJA	-40000000	-8150486,83	1416733,5	-6575175,1	-2058929,37	-4278514,63	1512788,92	-894393,333	-334393,333	225606,667	785606,667	17345606,7
		TIR	10%									

4. FLUJO DE CAJA DE UNA PLANTA FOTOVOLTAICA

INC. IPC MEDIO = 0,02		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
POTENCIA INSTALADA (MW)	0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
HORAS DE FUNCIONAMIENTO (h)	0	756,535948	750,233863	1794,68494	1679,4537	1746,35248	1815,59046	1780,97147	1798,28096	1789,62622	1793,95359	1791,7899
POOL (€/GWh)	0	0	0	0	0	0	0	0	0	0	0	0
LÍMITE INFERIOR (€/GWh)	0	0	0	0	0	0	0	0	0	0	0	0
TARIFA REG. (€/GWh)	0	440381	459270,042	462935,017	467552,794	482943,463	492578,185	502405,12	512428,102	522651,043	533077,931	543712,836
LÍMITE SUPERIOR (€/GWh)	0	0	0	0	0	0	0	0	0	0	0	0
POOL +PRIMA TEÓRICO (€/GWh)	0	0	0	0	0	0	0	0	0	0	0	0
RETRIBUCIÓN FINAL (€/GWh)	0	440381	459270,042	462935,017	467552,794	482943,463	492578,185	502405,12	512428,102	522651,043	533077,931	543712,836
INGRESOS (€)	0	33316,4057	34455,9938	83082,2503	78523,3267	84338,9514	89432,0253	89476,9184	92148,9701	93535,0008	95631,7068	97421,9169
COSTES (O&M) (€/MWh)	0	6,415	6,415	6,415	6,415	6,415	6,415	6,415	6,415	6,415	6,415	6,415
GASTOS (€)	0	-485,31781	-481,275023	-1151,29039	-1077,36955	-1120,28512	-1164,70128	-1142,4932	-1153,59724	-1148,04522	-1150,82123	-1149,43322
AMORTIZACIÓN INSTALACIÓN(€)	0	-21461,6	-21461,6	-21461,6	-21461,6	-21461,6	-21461,6	-21461,6	-21461,6	-21461,6	-21461,6	-21461,6
INTERESES (€)	0	-21461,6	-19315,44	-17169,28	-15023,12	-12876,96	-10730,8	-8584,64	-6438,48	-4292,32	-2146,16	0
B.A.I. (€)	0	-10092,1121	-6802,32122	43300,0799	40961,2372	48880,1062	56074,924	58288,1852	63095,2928	66633,0355	70873,1255	74810,8837
I.S (%)	0	30	30	30	30	30	30	30	30	30	30	30
B.D.I. (€)	0	-7064,47846	-4761,62486	30310,0559	28672,866	34216,0744	39252,4468	40801,7296	44166,705	46643,1249	49611,1879	52367,6186
AMORTIZACIÓN INSTALACIÓN (€)	0	21461,6	21461,6	21461,6	21461,6	21461,6	21461,6	21461,6	21461,6	21461,6	21461,6	21461,6
COSTE INVERSIÓN (€)	536540											
INVERSIÓN PRIVADA (€)=20%	-107308											
CRÉDITO BANCARIO_MODELO AMERICANO_10 AÑOS_5%TAE (€)=80%	429232	-42923,2	-42923,2	-42923,2	-42923,2	-42923,2	-42923,2	-42923,2	-42923,2	-42923,2	-42923,2	0
FLUJO DE CAJA	-107308	-28526,0785	-26223,2249	8848,45592	7211,26602	12754,4744	17790,8468	19340,1296	22705,105	25181,5249	28149,5879	73829,2186
		TIR=	16%									

5. FLUJO DE CAJA DE UNA PLANTA TERMOSOLAR

INC. IPC MEDIO = 0,02	-	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
POTENCIA INSTALADA (MW)	o	50	50	50	50	50	50	50	50	50	50	50
HORAS DE FUNCIONAMIENTO (h)	0	727	246	560	1300	1833	1721	1980	1800	1800	1800	1800
POOL (€/GWh)	0	47380	69610	42630	45360	60150	59420	54092	54092	54092	54092	54092
LÍMITE INFERIOR (€/GWh)	0	254038	264934,325	267048,501	269712,31	278590,565	284148,446	289817,208	295599,061	301496,262	307511,113	313645,96
PRIMA REF. (€/GWh)	0	254000	264895	267009	269672	278549	284106	289773,915	295554,904	301451,225	307465,177	313599,107
LÍMITE SUPERIOR (€/GWh)	0	343976	358730	361593	365200	377221	384747	392422,703	400251,536	408236,554	416380,873	424687,671
POOL +PRIMA TEÓRICO (€/GWh)	0	0	334505	309639	315032	338699	343526	343865,915	349646,904	355543,225	361557,177	367691,107
RETRIBUCIÓN FINAL (€/GWh)	0	269375	334505	309639	315032	338699	343526	343865,915	349646,904	355543,225	361557,177	367691,107
INGRESOS (€)	0	9791781,25	4114411,5	8669892	20477080	31041763,4	29560412,3	34042725,6	31468221,4	31998890,2	32540145,9	33092199,6
COSTES (O&M) (€/MWh)	0	30	30	30	30	30	30	30	30	30	30	30
GASTOS (€)	0	-1090500	-369000	-840000	-1950000	-2749500	-2581500	-2970000	-2700000	-2700000	-2700000	-2700000
AMORTIZACIÓN INSTALACIÓN (€)	0	-5200000	-5200000	-5200000	-5200000	-5200000	-5200000	-5200000	-5200000	-5200000	-5200000	-5200000
INTERESES	0	-5200000	-4680000	-4160000	-3640000	-3120000	-2600000	-2080000	-1560000	-1040000	-520000	0
B.A.I. (€)	0	-1698718,75	-6134588,5	-1530108	9687080	19972263,4	19178912,3	23792725,6	22008221,4	23058890,2	24120145,9	25192199,6
I.S (%)	0	30	30	30	30	30	30	30	30	30	30	30
B.D.I. (€)	0	-1698718,75	-6134588,5	-1530108	6780956	13980584,3	13425238,6	16654907,9	15405755	16141223,2	16884102,1	17634539,7
AMORTIZACIÓN INSTALACIÓN (€)	0	5200000	5200000	5200000	5200000	5200000	5200000	5200000	5200000	5200000	5200000	5200000
COSTE INVERSIÓN (€)	130000000											
INVERSIÓN PRIVADA (€)=20%	-26000000											
CRÉDITO BANCARIO_MODELO AMERICANO_10 AÑOS_5%TAE (€)=80%	104000000	-10400000	-10400000	-10400000	-10400000	-10400000	-10400000	-10400000	-10400000	-10400000	-10400000	0
FLUJO DE CAJA	-26000000	-12098718,8	-16014588,5	-10890108	-2059044	5660584,35	5625238,61	9374907,89	8645754,97	9901223,15	11164102,1	22834539,7
	TIR=	14%										

6. FLUJO DE CAJA DE UN PARQUE EÓLICO

INC. IPC MEDIO = 0,02	•	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
POTENCIA INSTALADA (MW)	0	20	20	20	20	20	20	20	20	20	20	20
HORAS DE FUNCIONAMIENTO (h)	0	1938	1984	1961	2163	1985	2133	2076	2076	2076	2076	2076
POOL (€/GWh)	0	47380	69610	42630	45360	60150	59420	54092	54092	54092	54092	54092
LÍMITE INFERIOR (€/GWh)	0	71275	74332	74925	75672	78164	79723	81313,4739	82935,6777	84590,2444	86277,8198	87999,0623
PRIMA REF. (€/GWh)	0	29291	30547	30791	31098	32121	32762	33415,6019	34082,2432	34762,1839	35455,6895	36163,0305
LÍMITE SUPERIOR (€/GWh)	0	84944	88588	89294	90185	93154	95012	96907,4894	98840,7938	100812,668	102823,88	104875,217
POOL +PRIMA TEÓRICO (€/GWh)	0	0	100157	73421	76458	92272	92183	87507,6019	88174,2432	88854,1839	89547,6895	90255,0305
RETRIBUCIÓN FINAL (€/GWh)	0	73228	88588	74925	76458	92272	92183	87507,6019	88174,2432	88854,1839	89547,6895	90255,0305
INGRESOS (€)	0	2838317,28	3515171,84	2938558,5	3307573,08	3663198,4	3932526,78	3633315,63	3660994,58	3689225,72	3718020,07	3747388,87
COSTES (O&M) (€/MWh)	0	6,415	6,415	6,415	6,415	6,415	6,415	6,415	6,415	6,415	6,415	6,415
GASTOS (€)	0	-248645,4	-254547,2	-251596,3	-277512,9	-254675,5	-273663,9	-266350,8	-266350,8	-266350,8	-266350,8	-266350,8
AMORTIZACIÓN INSTALACIÓN(€)	0	-800000	-800000	-800000	-800000	-800000	-800000	-800000	-800000	-800000	-800000	-800000
INTERESES (€)	0	-800000	-720000	-640000	-560000	-480000	-400000	-320000	-240000	-160000	-80000	0
B.A.I. (€)	0	989671,88	1740624,64	1246962,2	1670060,18	2128522,9	2458862,88	2246964,83	2354643,78	2462874,92	2571669,27	2681038,07
I.S (%)	0	30	30	30	30	30	30	30	30	30	30	30
B.D.I. (€)	0	692770,316	1218437,25	872873,54	1169042,13	1489966,03	1721204,02	1572875,38	1648250,64	1724012,44	1800168,49	1876726,65
AMORTIZACIÓN INSTALACIÓN (€)	0	800000	800000	800000	800000	800000	800000	800000	800000	800000	800000	800000
COSTE INVERSIÓN (€)	20000000											
INVERSIÓN PRIVADA (€)=20%	-4000000											
CRÉDITO BANCARIO_MODELO AMERICANO_10 AÑOS_5%TAE (€)=80%	16000000	-1600000	-1600000	-1600000	-1600000	-1600000	-1600000	-1600000	-1600000	-1600000	-1600000	0
FLUJO DE CAJA	-4000000	-107229,684	418437,248	72873,54	369042,126	689966,03	921204,016	772875,382	848250,643	924012,441	1000168,49	2676726,65

7. FLUJO DE CAJA DE UNA CENTRAL HIDRÁULICA EN R.E.

INC. IPC MEDIO = 0,02		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
POTENCIA INSTALADA (MW)	0	5	5	5	5	5	5	5	5	5	5	5
HORAS DE FUNCIONAMIENTO (h)	0	2205	2341	2695	3348	2591	2269	3449	2699,71429	2699,71429	2699,71429	2699,71429
POOL (€/GWh)	0	47380	69610	42630	45360	60150	59420	54092	54092	54092	54092	54092
LÍMITE INFERIOR (€/GWh)	0	63200	65911	66437	67010	69308	70691	72101,2855	73539,7061	75006,8232	76503,2094	78029,4484
PRIMA REF. (€/GWh)	0	23044	24032	24224	24466	25271	25775	26289,2113	26813,681	27348,614	27894,2188	28450,7085
LÍMITE SUPERIOR (€/GWh)	0	82600	86143	86830	87697	90583	92390	94233,1805	96113,1325	98030,5894	99986,2997	101981,026
POOL +PRIMA TEÓRICO (€/GWh)	0	0	93642	66854	69826	85421	85195	80381,2113	80905,681	81440,614	81986,2188	82542,7085
RETRIBUCIÓN FINAL (€/GWh)	0	72000	86143	66854	69826	85421	85195	80381,2113	80905,681	81440,614	81986,2188	82542,7085
INGRESOS (€)	0	793800	1008303,82	900857,65	1168887,24	1106629,06	966537,275	1386173,99	1092111,11	1099331,94	1106696,83	1114208,65
COSTES (O&M) (€/MWh)	0	3,6	4,30715	3,3427	3,4913	4,27105	4,25975	4,01906056	4,04528405	4,0720307	4,09931094	4,12713542
GASTOS (€)	0	-39690	-50415,1908	-45042,8825	-58444,362	-55331,4528	-48326,8638	-69308,6994	-54605,5557	-54966,5972	-55334,8415	-55710,4323
AMORTIZACIÓN INSTALACIÓN (€)	0	-500000	-500000	-500000	-500000	-500000	-500000	-500000	-500000	-500000	-500000	-500000
INTERESES	0	-500000	-500000	-500000	-500000	-500000	-500000	-500000	-500000	-500000	-500000	0
B.A.I. (€)	0	-245890	-42111,3758	-144185,233	110442,878	51297,6022	-81789,5888	316865,289	37505,5584	44365,3474	51361,9891	558498,214
I.S (%)	0	30	30	30	30	30	30	30	30	30	30	30
B.D.I. (€)	0	-245890	-42111,3758	-144185,233	77310,0146	35908,3216	-57252,7121	221805,702	26253,8909	31055,7432	35953,3924	390948,75
AMORTIZACIÓN INSTALACIÓN (€)	0	500000	500000	500000	500000	500000	500000	500000	500000	500000	500000	500000
COSTE INVERSIÓN (€)	12500000											
INVERSIÓN PRIVADA (€)=20%	-2500000											
CRÉDITO BANCARIO_MODELO AMERICANO_10 AÑOS_5%TAE (€)=80%	10000000	-1000000	-1000000	-1000000	-1000000	-1000000	-1000000	-1000000	-1000000	-1000000	-1000000	0
FLUJO DE CAJA	-2500000	-745890	-542111,376	-644185,233	-422689,985	-464091,678	-557252,712	-278194,298	-473746,109	-468944,257	-464046,608	890948,75

8. FLUJO DE CAJA DE UNA CENTRAL DE BIOMASA

INC. IPC MEDIO = 0,02		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
POTENCIA INSTALADA (MW)	0	5	5	5	5	5	5	5	5	5	5	5
HORAS DE FUNCIONAMIENTO (h)	0	4167	4592	4439	4438	4654	4857	4525	4525	4525	4525	4525
POOL (€/GWh)	0	47380	69610	42630	45360	60150	59420	54092	54092	54092	54092	54092
LÍMITE INFERIOR (€/GWh)	0	126132	131542	132592	133914	138322	141082	143896,586	146767,323	149695,331	152681,753	155727,754
PRIMA REF. (€/GWh)	0	85846	89528	90242	91142	94143	96021	97936,619	99890,4545	101883,269	103915,84	105988,961
LÍMITE SUPERIOR (€/GWh)	0	136317	142164	143298	144728	149492	152474	155515,856	158618,398	161782,835	165010,402	168302,36
POOL +PRIMA TEÓRICO (€/GWh)	0	0	159138	132872	136502	154293	155441	152028,619	153982,454	155975,269	158007,84	160080,961
RETRIBUCIÓN FINAL (€/GWh)	0	130456	142164	132872	136502	149492	152474	152028,619	153982,454	155975,269	158007,84	160080,961
INGRESOS (€)	0	2718050,76	3264085,44	2949094,04	3028979,38	3478678,84	3702831,09	3439647,5	3483853,03	3528940,46	3574927,39	3621831,75
COSTES (O&M) (€/MWh)	0	6,5228	7,1082	6,6436	6,8251	7,4746	7,6237	7,60143095	7,69912272	7,79876345	7,90039201	8,00404806
GASTOS (€)	0	-135902,538	-163204,272	-147454,702	-151448,969	-173933,942	-185141,555	-171982,375	-174192,652	-176447,023	-178746,369	-181091,587
AMORTIZACIÓN INSTALACIÓN (€)	0	-600000	-600000	-600000	-600000	-600000	-600000	-600000	-600000	-600000	-600000	-600000
INTERESES	0	-600000	-540000	-480000	-420000	-360000	-300000	-240000	-180000	-120000	-60000	0
B.A.I. (€)	0	1382148,22	1960881,17	1721639,34	1857530,41	2344744,9	2617689,54	2427665,13	2529660,38	2632493,44	2736181,02	2840740,16
I.S (%)	0	30	30	30	30	30	30	30	30	30	30	30
B.D.I. (€)	0	967503,755	1372616,82	1205147,54	1300271,29	1641321,43	1832382,67	1699365,59	1770762,27	1842745,41	1915326,71	1988518,11
AMORTIZACIÓN INSTALACIÓN (€)	0	600000	600000	600000	600000	600000	600000	600000	600000	600000	600000	600000
COSTE INVERSIÓN (€)	15000000											
INVERSIÓN PRIVADA (€)=20%	-3000000											
CRÉDITO BANCARIO_MODELO AMERICANO_10 AÑOS_5%TAE (€)=80%	12000000	-1200000	-1200000	-1200000	-1200000	-1200000	-1200000	-1200000	-1200000	-1200000	-1200000	0
FLUJO DE CAJA	-3000000	367503,755	772616,818	605147,537	700271,288	1041321,43	1232382,67	1099365,59	1170762,27	1242745,41	1315326,71	2588518,11
	TIR=	30%										

9. FLUJO DE CAJA DE UNA CENTRAL DE BIOGÁS

INC. IPC MEDIO = 0,02		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
POTENCIA INSTALADA (MW)	0	5	5	5	5	5	5	5	5	5	5	5
HORAS DE FUNCIONAMIENTO (h)	0	4710	4270	3661	3581	3685	3546	3909	3909	3909	3909	3909
POOL (€/GWh)	0	47380	69610	42630	45360	60150	59420	54092	54092	54092	54092	54092
LÍMITE INFERIOR (€/GWh)	0	86100	89793	90510	91412	94422	96305	98226,2848	100185,899	102184,608	104223,191	106302,443
PRIMA REF. (€/GWh)	0	56025	58428	58894	59481	61439	62665	63915,1668	65190,2743	66490,8203	67817,3122	69170,2675
LÍMITE SUPERIOR (€/GWh)	0	90383	94259	95011	95959	99118	101095	56711,5149	31813,6003	17846,5549	10011,4265	5616,13496
POOL +PRIMA TEÓRICO (€/GWh)	0	90253	128038	101524	104841	121589	122085	118007,167	119282,274	120582,82	121909,312	123262,268
RETRIBUCIÓN FINAL (€/GWh)	0	90253	94259	95011	95959	99118	101095	56711,5149	31813,6003	17846,5549	10011,4265	5616,13496
INGRESOS (€)	0	2125458,15	2012429,65	1739176,36	1718145,9	1826249,15	1792414,35	1108426,56	621796,818	348810,915	195673,331	109767,358
COSTES (O&M) (€/MWh)	0	4,51265	4,71295	4,75055	4,79795	4,9559	5,05475	2,83557574	1,59068001	0,89232774	0,50057133	0,28080675
GASTOS (€)	0	-106272,908	-100621,483	-86958,8178	-85907,2948	-91312,4575	-89620,7175	-55421,3279	-31089,8409	-17440,5458	-9783,66656	-5488,36789
AMORTIZACIÓN INSTALACIÓN (€)	0	-400000	-400000	-400000	-400000	-400000	-400000	-400000	-400000	-400000	-400000	-400000
INTERESES	0	-400000	-360000	-320000	-280000	-240000	-200000	-160000	-120000	-80000	-40000	0
B.A.I. (€)	0	1219185,24	1151808,17	932217,537	952238,6	1094936,69	1102793,63	493005,231	70706,9767	-148629,631	-254110,335	-295721,01
I.S (%)	0	30	30	30	30	30	30	30	30	30	30	30
B.D.I. (€)	0	853429,67	806265,717	652552,276	666567,02	766455,685	771955,543	345103,661	49494,8837	-104040,741	-177877,235	-207004,707
AMORTIZACIÓN INSTALACIÓN (€)	0	400000	400000	400000	400000	400000	400000	400000	400000	400000	400000	400000
COSTE INVERSIÓN (€)	10000000											
INVERSIÓN PRIVADA (€)=20%	-2000000											
CRÉDITO BANCARIO_MODELO AMERICANO_10 AÑOS_5%TAE (€)=80%	8000000	-800000	-800000	-800000	-800000	-800000	-800000	-800000	-800000	-800000	-800000	0
FLUJO DE CAJA	-2000000	453429,67	406265,717	252552,276	266567,02	366455,685	371955,543	-54896,3386	-350505,116	-504040,741	-577877,235	192995,293
	TIR=	8%										

10. FLUJO DE CAJA DE UNA PLANTA DE COGENERACIÓN

INC. IPC MEDIO = 0,02		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
POTENCIA INSTALADA (MW)	0	49	49	49	49	49	49	49	49	49	49	49
HORAS DE FUNCIONAMIENTO (h)	0	3678,5134	4071,16683	4182,41879	4432,72985	4582,7152	4583,90884	4255,24215	4351,36361	4398,06307	4434,00379	4434,21611
POOL (€/GWh)	0	47380	69610	42630	45360	60150	59420	54092	54092	54092	54092	54092
LÍMITE INFERIOR (€/GWh)	0	0	0	0	0	0	0	0	0	0	0	0
PRIMA REF. (€/GWh)	0	19147	19299,7931	19290,1673	19376,756	19487,8938	19585,0897	19975,8122	20374,3297	20780,7976	21195,3745	21618,2222
LÍMITE SUPERIOR (€/GWh)	0	0	0	0	0	0	0	0	0	0	0	0
POOL +PRIMA TEÓRICO (€/GWh)	0	0	88909,7931	61920,1673	64736,756	79637,8938	79005,0897	74067,8122	74466,3297	74872,7976	75287,3745	75710,2222
RETRIBUCIÓN FINAL (€/GWh)	0	69200	88909,7931	61920,1673	64736,756	79637,8938	79005,0897	74067,8122	74466,3297	74872,7976	75287,3745	75710,2222
INGRESOS (€)	0	12473103,2	17736363,4	12689827,5	14061067	17882931,5	17745454,3	15443647,4	15877473,8	16135469	16357400,7	16450058,9
COSTES (O&M) (€/MWh)	0	10	10	10	10	10	10	10	10	10	10	10
GASTOS (€)	0	-1802471,57	-1994871,75	-2049385,21	-2172037,63	-2245530,45	-2246115,33	-2085068,65	-2132168,17	-2155050,91	-2172661,86	-2172765,89
AMORTIZACIÓN INSTALACIÓN (€)	0	-4704000	-4704000	-4704000	-4704000	-4704000	-4704000	-4704000	-4704000	-4704000	-4704000	-4704000
INTERESES	0	-4704000	-4233600	-3763200	-3292800	-2822400	-2352000	-1881600	-1411200	-940800	-470400	0
B.A.I. (€)	0	1262631,68	6803891,66	2173242,29	3892229,38	8111001,09	8443338,99	6772978,71	7630105,62	8335618,12	9010338,82	9573292,97
I.S (%)	0	30	30	30	30	30	30	30	30	30	30	30
B.D.I. (€)	0	883842,18	4762724,16	1521269,60	2724560,56	5677700,76	5910337,30	4741085,10	5341073,93	5834932,69	6307237,18	6701305,08
AMORTIZACIÓN INSTALACIÓN (€)	0	4704000	4704000	4704000	4704000	4704000	4704000	4704000	4704000	4704000	4704000	4704000
COSTE INVERSIÓN (€)	117600000											
INVERSIÓN PRIVADA (€)=20%	-23520000											
CRÉDITO BANCARIO_MODELO AMERICANO_10 AÑOS_5%TAE (€)=80%	94080000	-9408000	-9408000	-9408000	-9408000	-9408000	-9408000	-9408000	-9408000	-9408000	-9408000	0
FLUJO DE CAJA	-23520000	-3820157,82	58724,16	-3182730,40	-1979439,44	973700,76	1206337,30	37085,10	637073,93	1130932,69	1603237,18	11405305,08
	TIR=	11%										