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Abstract

This paper explores the eisting relationship
between Possbility Theory and Theory of
Evidence, when they are both applied to fuzzy
arithmetic. Possbility Theory arithmetic is based
on the extension principle (projedion of the joint
posshility distribution), while in Theory of
Evidence the nsonant bodes of evidence
obtained from ead operand are combined into a
new joint body of evidence, which can in general
be non consonant. Identicd behaviour is found
when the joint posshility distribution is cdculated
using the min operator, while Posshility Theory
gives more spedfic results when others T-norms
are used. This has been considered by some
authors as a Theory of Evidence drawbad
(Dubois & Prade 1989. This paper shows that
Theory of Evidence may be a more redistic
uncertainty model when input data ae obtained
from random experiments with impredse
outcomes.

1INTRODUCTION

Thereisastraight forward relationship between Posshility
Theory and Theory of Evidence, when consonant bodes
of evidence ae involved. In this case posshility and
plausibility measures coincide. Interpreting basic
assgnments as density functions, where the random
variables are the focd elements, simulations can be
performed from given passhility distributions.

This paper shows how the sum of two fuzzy numbers A
and B can be cdculated, applying both the extension
principle and the theory of evidence and compares the
results.

Sedion 2 reviews me basic definitions. Sedion 3 shows
how the joint possbility/plausibility distribution can be
obtained. Sedion 4 compares the possbility/plausibility
distribution of the union of two pants. Sedion 5 compares
the results of summing two fuzzy numbers using both
approaches, and finally some aonclusions are presented in
Sedion 6.

2 DEFINITIONS REVIEW

Plausibility and Belief measures are fuzzy measures
defined by (see(Klir 1988 (Shafer 1987):

Pl : P(X) - [0]]
Bel : P(X) - [0]]
such that:
PI(A N Am...AJsZPI(A) - SPIADA) + ..

<]

+ (-D™PI(ADAD..A)
Bel(A UAL..A)2Y Bd(A) - SPIANA) + ..

<]
+ (-)"™Bel(A n An...A)
where P(X) isthe power set of crisp subsets of X.

Plausibilit y/Belief measures can also be defined, given a
body of evidence (F,m), as.
PI(B)= § m(A)

ANnBz0

Bel(B) = mi
(B) AZB(A)

where A are the focd elements and m is the basic
probability assgnment (Alvarez1994).

When the body of evidence is consonant, that is, its focd
elements are nested, then the plausibility (resp belief)
measure is cdled possbility (resp necessty) measure, and
the foll owing properties hold:

P(AOB) =me{PI(A),P(B] - TTAOB =ne{7LA),7TB)
Bd(AnB =nifBd(A,Bd(B] - NAnB :m‘r{ N, I\I(B)]

Taking into acount the body of evidence afuzzy set can
be given a probabilistic interpretation. The basic
assgnment is view as a probability density function whose
random variable is the set of focad elements. The
posshility/plausibility distribution function is defined
from the plausibility measure definition by:

HOO=PI0)= 5 mA)= 3 m(A)
An{xjz0 XOA

u(x) can then be interpreted as a probability distribution

function of the focd elements, and Montercarlo method
can be used to oltain a redisation of the random variable,
that is, to otainaset A .



A possbility distribution can be dso be represented in
terms of its alpha-cuts (Dubois & Prade 1989 (Dubois &
Prade 19864):

{F |aD(01} where F, ={ w| y-(w)2a}
e (W) :sup{ a0(01] |wOF, }

In the following, only posshility and plausibility measures
will be mnsidered.

3 JOINT POSSIBILITY / PLAUSIBILITY
DISTRIBUTION

3.1 JOINT DISTRIBUTION
THEORY

Having two fuzzy numbers A and B with possbility
distributions 7T, (a) and 7T,(b) defined over Uy and

Ug, thejoint posshility distribution 7T, can be obtained
combining them with a T-norm:

TTys (21, b)}) = T(TT,(a,). T, (b))
where g, U, and b, OU .

IN POSSIBILITY

Figure 1 shows A and B possbility distributions and the
joint distribution 7T g for the minimum, product or
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Luckasievicz T-norms. As it can be seen, the min T-norm
givesthe least spedfic result.

When both numericd variables a, and b, correspond the
same physicd variable, a possbility distribution can be
obtained cutting the previous surfaces with a, = b,, as
shown in Figure 2 (Zadeh 1977). It is supposed that the

sources are completely reliable, as conjunctive consensus
has been used (Dubois & Prade 1988).

3.2 JOINT DISTRIBUTION
EVIDENCE

If we onsider the cnsonant body of evidence of eath
fuzzy set (F,,m,) . (Fz,mg) as the random variables

density functions, the relationship between both random
variables can be used to cdculate the joint basic

assgnment M, o . The plausibility measure is then gven
by:

IN THEORY OF

Pl((a,,b,)) = Z My (C))

G n{(a.b)}z0

where C, are the focd elements of the joint body of
evidence, defined in A x B, or a subset, depending on
the relationship between the random variables.
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Figure 1: Joint posshility distribution, with different T-norms:
&) minimum, b) product, c) Lukasiewicz
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Figure 2: A and B possbility distribution when a, = b, , with different T-norms:
a) minimum, b) product, c) Lukasiewicz



If the joint body of evidenceis consonant, this plausibility
measure is also a posshbility measure.

In the following, three kinds of relationships between the
random variables will be @aaysed: a,=0a;,

independence, and a , =1-a . As explained in (Tan
1993, when probability is concentrated and uniformly
distributed on the main diagonal of the joint domain, o ,

and a, arein perfed positive rrelation. It cen also be

interpreted as concordance between A and B sources of
knowledge (for example, the same instrument has been
used to measure A and B intervals).

When the whole probability is concentrated and uniformly
distributed on the anti-diagonal, a, and o, are in

perfed negative rrelation. It can be interpreted as a
discrepancy between both sources of knowledge, or
between predsion in measurements. Independence
remains with its usua interpretation.

321 a, =ag relationship

In this case the joint basic assgnment is only defined in
the line shown in Figure 3. A and B basic assgnments are
displayed in X and Y axes, and the joint basic probability
assgnment in the crresponding subset of A x B, .

Eacdh point of the A basic assgnment represents an interval
that isa (F,, m,) body of evidencefocd element. Every

interval is represented by its lower limit, and thus the
domain of the basic asssgnment is the domain of the
intervals lower limits. This graphicd representation is
similar to (Tan 1993, where focd elements are
represented by their corresponding apha value. But lower
limit representation allows to show plausibility measures
in the basic assgnment graph.

AXB basic probability assignment
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Figure 3: Joint basic asssgnmentwhen g, =a,,

Every pair (a, b)) locaed in the domain of the joint basic
assgnment M, . represents a foca element of the joint

body of evidence (Fyg, Myg) - Figure 4 shows that in

this case the joint focd elements are nested, and thus
plausibility measures will be posshility measures.

To cdculate the posshbility of a and b, (see Figure 4),
every joint foca element containing the pair (a,,b) hasto
be cmonsidered. That is,

M(@,b)) = 3 M (C.)

or, expressd for continuous variables:

C

T(a,b))= [Mya(C) EC,

which isequal to the aeaindicated in Figure 5.
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Figure 4: Joint body of evidence focd elements when
a,=0ag

Since this point belongs to the line crresponding to
a,=ag,Itis n((a’_l'bl)) = T[A(a1) = nB(bl) .

To cdculate the possbility of the pair (a,,b,) shown in

Figure 4, it should be noted that the joint focd elements
containing this point are the same joint focd elements that
contain the previous one (a,,b)) . That is,

Tl(a,,b,)=T(a, b)) =TT (b,)=mn(7T (a,),TT (b))

m(AXB)

Pos(al.AND.b1)

13 14 15

L6 17 18" 4 )t Bi
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Figure 5: Possbility of (a,,b,) when o, =a



Calculating the posshility of every pair (a.b) the joint
posshility distribution is the one obtained in posdbility
theory when the min T-normis used.

Numericd simulation can be gplied to oltain the same
result R using both approadhes, when A and B refer to the
same physicd variable. (Figue 2.8). To perform the
simulation, random variables are obtained by Montecalo
method: a value of apha is generated as a uniform
distribution between 0 and 1 With this value, alpha-cuts
of A and B are obtained, which are redisations of the
random variables. The intersedion of both intervals is

calculated, and the result is a focd element of (Fs,mg).

These focd elements are nested and the posshility
measure asciated to the resulting body of evidence can
be obtained by the formula

ﬂ(rl):ZmR(Ru

3.2.2 Independence relationship

If A and B, random variables are independent, the joint

basic assgnment domain is the whole cartesian product
A XB,, where the basic adgnment is uniformly

distributed (seeFigure 6).

AXB basic probability assignment

m(AxB)
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Figure 6: Joint basic assgnment when A and B, are
independent

Again, every paint in the domain represents a joint focd
element, build from a foca element of (F,,m,) and a

focd element of (Fg,my) (represented bah by their

lower limits). Two of these joint focd elements are shown
in Figure 7. As the domain is the whole cartesian product,
the focd elements are not nested, and the plausibility
measures asociated to the joint body of evidence ae not
posshility measures.
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Figure 7: Joint body of evidencefocd elementswhen A
and B, areindependent

Plausibility of (a, and b,) is caculated considering every
joint foca element that contains the paint (a,b). Every
focd element, represented by a point locaed in the
volume base in Figure 8, contains (a,b). Applying the
plausibility formula for continuous variable, the
plausibility is the volume shown in Figure 8.
Pl((a;,b,)) = J’mAxB(Ci)mICi =
Cin(a,b)#0

An Bn
= [ [ma(A)Tng(B) BA @B, =
A=A B=B
Ay B
= J’mA(A)mAi DJ’mB(Bi)mBi =TT, (a,) T, (b))
A=A B=B«
Furthermore, (a,b) plausibility is equal to the product of
possbilities 7T, (a,), TT4(b,), and thus the plausibility
distribution obtained from the theory of evidence is the

same & the posshility distribution obtained from the
posshility theory.

As it will be eplained later, the difference is that the
underlying body of evidence in posshility theory is
consonant, whil e in the theory of evidenceit is not.

1 m(AXB)

Pi(al.AND.b1)

Figure 8: Plausibility of (a,,b,) when A and B, are
independent



The same onclusion was readed using numericd
simulation, when A and B refer to the same variable.
Numericad simulation with independent random variables
gives the same result as the possbility theory approach,
when the product t-norm is used.

Numericd simulation has been performed as before, but
two dfferent values of alpha ae obtained independently,
one for A an the other one for B.

323 a, =1-a relationship

When the relationship between A and B is ssmehow
contradictory, a , =1-a g, the joint focd elements are

only defined in the line shown in figure 9, where the joint
basic assgnment is uniformly distributed (Tan 1993.

AXB basic probability assignment

Figure 9: Joint basic assgnmentwhen o , =1-a

In this case, as $rown in Figure 10, focd elements are
again not nested, giving a non consonant body of
evidence and thus, plausibility measures are not
posshility measures.
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Figure 10: Joint body of evidence focd elements when
a,=1l-ag

Let us consider the point (a,b) in Figure 10. Since no

joint focd element contains that point, its plausibility is
nul. On the other hand, (a,,b,) plausibility is not nuil.

Every joint focd element from C to c has to be
considered, because it contains the point (a,,b,) giving:

C

PI((8, b)) = [M,e(C) A

which can be interpreted as the aeashown in Figure 11.

m(AXB)

Pi(a2.AND.b2)

Figure 11: Plausibility of (a,,b,)when g, =1-a,

Plausibility measure can be expresed in terms of the
initial bodes of evidence

[

P8, 0,) = [ My (C)HC, =

C Cy

= ImAxB (C)HC - ImAxB (C)HC =
c=c, c=c

B

A q
= [m,(A)®A - [m,(B)EB =
A':[.Ap 3'[51

A, O B, E
= A N BB| mB. =
AL\T (A)A -1 aIqun( )t

= T[A(az)_1+ T[B(bz)
And in general, for any pair(ai,bj), itis:

PI((a. b)) = max(0, 7T, (a,) + TT, (b, ) - 1)

that is, Lukasiewicz T-norm. The joint plausibility
distribution in this cese is the same & the posshility
distribution oldained by pasbility theory, the difference
being again the underlying body é evidence

Numericd simulation gves the same result. A value of
alphais obtained (uniformly distributed between 0 and 1)
and the other oneis cdculated acaordingto o , =1-0a ;.



4 PLAUSIBILITY OF (a,,b,)0(a,,b,)

4.1 POSSIBILITY THEORY

The posshility of a set is the maximum posshility of
every point belongingtoit, that is:

TT((ay,b,) O (a;,b,)) = max(Th(ay, by), T&, . b,))

where the joint posshility is obtained with a T-norm.

42 THEORY OF EVIDENCE

Given a body of evidence (F,g,M,g), the plausibility
measure of atwo pants %t isgiven by:

PI((ai,bl)D(a«z,bz))= Mg (C)

Ci n(ay,b)£0
G ()20

that is, every joint focd element containing at least one of
the two pdnts must be considered.

Figure 12.a shows the joint focd elements that contain
(a,b)) or (apb,), when the relationship between the
random variablesis a , = a . In this case, the plausibility
of the union is equal to the plausibility of (a,,b,), whichis
the maximum plausibility of both points (max operator is
obtained when focd elements are nested, (Klir 1988).
The result is the same & in possbility theory becaise the
underlying body of evidenceis also the same.

Figure 12b shows the joint focd elements when the
random variables are independent. All the joint focd
elements located in the marked area ontain at least one of
the two pdnts. Expresing the formula for continuous
variables, the plausibility is the integral of the uniform
distribution m,, over the indicaed area (that is, the

volume whose base is the indicated areg. This volume is
in general greaer or equal than the volumes obtained for

Pl((a;,b,)). or PI((a,,b,)). Thenitis:

PI((a,,b,) 0 (a,,b,)) = max(Pl(a,, b,), Pi(a,,b,))

This discrepancy between both approadches is due to the
fad that the body of evidence obtained from the theory of
evidence is not consonant, while posshility theory always
considers, among all the different bodes of evidence with
the same posshility/plausibility  distribution, the
underlying consonant body of evidence The use of max
operator in the etension principle means that the
considered body of evidenceisthe mnsonant one.

Figure 12.c shows the joint focd elements that contain at
least one of the points, when the relationship between the
random variablesis a , =1—a 5. Again, expressng the
plausibility for continuows variables, its value is given by
the aeawhose base is marked, and in general it is greaer
or equa than the individual plausibility measures. As in
the previous case, the body d evidence @nsidered by the
theory of evidence is not consonant, while the body d
evidence underlying in passhility theory cdculus is the
consonant one.

5SUM OF A AND B

In this edion the sum of two fuzzy numbers A and B will
be discused using the previous results. Given A and B
their sum R=A+B will be obtained computing the
possbilit y/plausibility of the union of pointslocated in the
line defined by a; +b, =r,, wherer; [JUg.

5.1 POSSIBILITY THEORY

Applying the extension principle, the posshility of ead r;
is obtained as the maximum of the posgbiliti es of the pairs
(a,by) verifying a, +b, =r,, which defines a sedion in

the joint posshility distribution. Figure 13 shows the
sedion olained for aparticular r..

0(azb2)

0(aLb1)

Figure 12: Joint foca elements containing (a,,b,) or (a,,b, ).
a) a, =a,,b)independence ¢) a, =1-a,
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Figure 13 a; +b, =constant cut with different T-norms:

&) minimum, b) product, c) Lukasiewicz

5.2 THEORY OF EVIDENCE

Given a line defined by a, +b, =constant=r,, the
plausibility of r,
probability assgnment of every joint focd element
containing any of the points of the line.

is cdculated summing the basic

Figure 14.a shows these focd elements when the random
variables are related by ¢, =a,. For example the

possbility of r, = 3 isgiven by the posshbility of the paint
where the diagonal and theline a; + b, =3 intersed.

Figure 14b shows the joint focd elements where the
random variables are independent. The plausibility
measure is the volume whose base is the marked area

When the random variables are related by o, =1-a .,
seefigure 14.c, there ae no joint focd elementslocaed in
a,=1-a, line ontaining any point defined by
a; +b, =3. This means that the plausibility of 3, in this

case, is zeo. The figure dso shows the joint focd
elements that must be taken into acount to cdculate the
plausibility of 3.5.

Againit can be chedked that the plausibility of the unionis
greder or equal to the maximum of all of them:

PI(r)> max (Pi(a;, b))

The values of R under these three @aumptions were dso
computed using numericd simulations. Again Montecalo
method was used to oltain the focd elements of A and B
that had to be added. Apart from the cae where o , = o

that gives the same result using bdh approadies, in
general theory of evidence leads to less gedfic
distributions than pcssbility theory.

281
261
alfa(A)=alfa(B)

24

22

alfa(B)=1-alfa(A)

Figure 14: Joint focd elements containing any point of a; + b, = constant :
a8 a,=a, b)independencec) a, =1-a,



Figure 15: Joint focd elements with diff erent T-norms:
a) minimum, b) product, c) Lukasiewicz

6 CONCLUSIONS

This paper analyses two dfferent approaches to aggregate
possbility distributions and to operate fuzzy numbers,
using posshility theory and fuzzy arithmetic in one hand,
and theory of evidence on the other hand.

Given the focd elements of ead of the operands
(interpreted as random variables), the cnjunctive joint
possbility/plausibility distributions obtained from baoth
methods are identicd when:

e therandom variables are related by o, =, and

the and operator used in possbility theory is the
min t-norm.

e therandom variables are independent and the and
operator used in possbility theory is the product
T-norm.

* the random variables are related by o, =1-a,

and the and operator used in posshility theory is
the Lukasiewicz t-norm.

Given a subset of the @njunctive joint posshility
distribution, its posshility is cdculated using the max
operator, and thus implicitly asuming a @nsonant
underlying body of evidence However in theory of
evidence, the plausibility distribution must be obtained
from an explicitly cdculated body of evidence, whichisin
general not consonant, leading to dfferent and less
spedfic results.

If we suppose (see (Dubois & Prade 1986 B) that fuzzy
numbers A and B are obtained from random experiments
with impredse outcomes, that is, eath measure is an
interval where no dstinctions can be made, the theory of
evidence seems a more redistic model. Additionaly this
means that Montecalo simulation can be used to perform
the computations.

On the ontrary the nested underlying focd elements
obtained from the joint posshility distributions (using
product and Lukasiewicz t-norms) can not be interpreted
the same way (see figure 15), since they can not be
obtained combining A and B focd elements. As e

previously, the combination of A and B focd elements
only produceredangles paral el to the aes.

Theory of evidence gproach leads to less pedfic results
than posshility theory, athoughit could be mnsidered a
more redistic uncetainty model under the &ove
asumptions, not just a possbility theory approximation
(see(Dubois & Prade 1989).
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