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Abstract – This document presents a finite decomposition algorithm to solve mixed integer 
linear problems. Integer variables appear at the master problem and at the subproblem. The 
nonconvex recourse function is approximated via a modified lagrangean relaxation algorithm. 
The decomposition algorithm is understood as a convexification procedure of the perturbation 
function that appears when a first stage variable is fixed. Mixed integer subproblems are solved 
through a parametric branch and bound that simultaneously updates a correct Lagrange 
multiplier value. Extension to nested decomposition is presented. 
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1. INTRODUCTION 

Benders decomposition algorithm [2,11] solves a mixed integer linear problem (MILP) 
bunching the integer variables (complicating variables) into a master problem and building a 
subproblem on the remaining variables. Part of the objective function is explicitly evaluated in 
the master problem, while the rest constitutes the objective function of the subproblem and it is 
only considered in the master problem in an approximate manner. When the subproblem turns 
out to be linear, its objective function (called recourse function) is convex, so that it is 
immediately approximated at a point building up the tangent with the optimal dual variable. 
The algorithm proceeds proposing values at the master problem and solving the subproblem to 
update the approximation of the recourse function. 

When the subproblem is non convex, then the recourse function is non convex [3], and the 
former approach is no longer valid. Then, a way to proceed consists of forming the lower convex 
envelope of the recourse function [7,10]. This lower convex envelope is traditionally constructed 
via a lagrangean relaxation (LR) procedure (also called conjugate function or Fenchel duality). 

That is the approach presented in Geoffrion’s generalized Benders decomposition [5], where 
the subproblem is solved by using LR [4]. However, for non-complete recourse problems, the 
simple use of LR to solve a subproblem only yields an approximation of the convex envelope of 
the recourse function, and additional development is needed to get the exact envelope. This 
extra development consists of introducing in the subproblem cuts that constrain the region over 
which the convexification procedure is carried out.  
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The paper is organized in the following way. The first part reviews LR and its relation with 
the powerful concept of perturbation function. The second part presents Benders decomposition 
within a two-stage problem. Then, a simple example to clarify the previous concepts is 
presented. Subsequently, the resolution of the subproblem via a parametric branch and bound 
algorithm is presented, with the purpose of reducing the explored nodes all over the algorithm. 
Finally, the difficulties encountered when extending this technique to nested case are presented. 

2. PERTURBATION FUNCTION AND LAGRANGEAN RELAXATION ALGORITHM 

This section introduces the concept of perturbation function and its relation with LR. Later, 
the recourse function of a Benders algorithm is interpreted as a perturbation function and solved 
via LR. 

Consider a problem of the form 

( )P  

min ( )

( ) 0

f x

g x

x X

≤

∈

 (2.1) 

with X  being the mixed integer solutions of a polyhedron X  (i.e., a non convex region). We 
can assume without loss of generality that region X  incorporates the non negativity constraints 
of variables x , 0x ≥ . 

It is defined the generalized graph G  of the problem as 

 { }0 0( , )/  with ( ), ( )G r r x X r g x r f x= ∃ ∈ = =  (2.2) 

so that the problem ( )P  is reinterpreted as finding a point 0( , )r r  in G  with minimum ordinate 
and 0r ≤ , see [6]. G  is the image of X  under the transformation ( , )g f . The generalized 
epigraph of the problem, see [6], is defined as 

 { }0 0epi ( , )/  with ( ), ( )G r r x X r g x r f x= ∃ ∈ ≥ ≥  (2.3) 

Closely related with this idea is the concept of perturbation function. Consider that the 
right hand side of problem ( )P  is being modified obtaining a family of problems whose solutions 
define a function on the right hand side parameter introduced. This function is known in the 
literature as perturbation function or value function [1,9]. 

 

( ) min ( )

( )

y f x

g x y

x X

υ =

≤

∈
 (2.4) 

Observe that due to the inequality in problem ( )P , the perturbation function is non 
increasing. Problem ( )P  is understood as finding (0)υ . It should be clear that finding the 
convex hull of the generalized epigraph is equivalent to finding the lower convex envelope of the 
perturbation function. 

A LR procedure gives the value of the convexification of the perturbation function at the 
point 0y = . For any 0λ ≥  define the dual function ( )w λ  as 

 { } { }0 0 0 0 0 0( ) min ( ,1)( , ) ,( , ) min ( ,1)( , ) ,( , ) epiw r r r r r r G r r r r r r Gλ λ λ λ λ= = + ∈ = = + ∈  (2.5) 

or equivalently 
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( ) min ( ) ( )w g x f x

x X

λ λ= +

∈
 (2.6) 

Assume ( )w λ  has a finite value, then there exists ix X∈  with ( ) ( ) ( )i ig x f x wλ λ+ = . This 
optimal solution determines a level curve { }0 0( , )/ ( ) ( )i iL r r r r g x f xλ λ= + = + . So that for 

0r =  we have the point ( )0, ( ) ( )i ig x f xλ +  and so it is stated that (0) ( ) ( ) ( )i ig x f x wυ λ λ≥ + = . 
The dual problem traditionally consists of finding the maximum of those minimum values ( )w λ . 

( )D  { }max ( ), 0w λ λ ≥  (2.7) 

Assume X  is a polytope and 1,..., Kx x  the extreme points of X . Assume f  and g  are 
convex functions (e.g., linear), then we obtain the equivalent expression for the dual function 

 { }( ) min ( ) ( )/ 1,..., , extr( )k k kw f x g x k K x Xλ λ= + = ∈  (2.8) 

which shows concavity of the dual function and allows the dual problem to be formulated as a 
linear problem 

 

1 1

max

( ) ( )

( ) ( )

0

K K

w

w f x g x

w f x g x

λ

λ
λ

≤ +

≤ +

≥

…  (2.9) 

Clearly for large scale problems it is not possible to calculate all polytope extreme points, so 
that the dual function is usually optimized formulating a relaxed problem, denoted master dual 
problem ( )MD , whose resolution proposes multiplier values. 

( )MD  

max

( ) ( )

0, 1, ,

i i

w

w f x g x

i k

λ

λ

≤ +

≥ = …

 (2.10) 

Evaluation of the dual function at these multiplier values obtains tangential approximations 
of function ( )w λ , which are incorporated into the master dual problem. 

Traditional LR algorithm iterates between the master dual problem ( )MD  and the 
lagrangean subproblem (evaluation of the dual function) ( )PRλ  until a certain tolerance is 
satisfied. 

( )PRλ  { }0 0 0( ) min ( ,1)( , ) ,( , )w r r r r r r Gλ λ λ= = + ∈  (2.11) 

This algorithm is nothing but the cutting plane method of Kelley [8] for convex programs. 
These cuts are called lagrangean optimality cuts. 

Supposing we ignore unboundness cases, the lagrangean relaxation algorithm is summarized 
on the next steps: 

 
1. Solve problem ( )MD  and obtain λ  
2. Obtain upper bound z w=  
3. Solve problem ( )PRλ  and obtain kx  
4. Obtain lower bound ( )z w λ=  
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5. Stop if tolz z− < , otherwise do 1k k= +  and go to 1. 

1.1. Constrained perturbation region 
When calculating the dual function in previous section the problem (2.5) 

 

0 0

0

min( ,1)( , )

( )

( )

r r r r

r f x

r g x

x X

λ λ= +

≥

≥

∈

 (2.12) 

was transformed into the problem 

 
min ( ) ( )g x f x

x X

λ +

∈
 (2.13) 

due to the nonexistence of additional constraints over variables 0( , )r r . 
If the perturbation function is defined for a constrained set of right hand side values, then 

the convexification procedure has to take this constrained set into account, and previous 
transformation is no longer valid. Consider the perturbation function  

 

( ) min ( )

( )

y f x

g x y

x X

υ =

≤

∈
 (2.14) 

be defined for y R∈ . We consider a constrained generalized graph and epigraph as follows. 

 { }0 0( , )/  with ( ), ( ),G r r x X r g x r f x r R= ∃ ∈ = = ∈  (2.15) 

 { }0 0epi ( , )/  with ( ), ( ),G r r x X r g x r f x r R= ∃ ∈ ≥ ≥ ∈  (2.16) 

When calculating the value of the perturbation function convexification at 0y =  the dual 
function ( )w λ  is defined 

( )PRλ  

( ) min ( )

( )

,

w f x r

r g x

x X r R

λ λ= +

≥

∈ ∈
 (2.17) 

and the dual problem still remains as 

( )D  { }max ( ), 0w λ λ ≥  (2.18) 

From an algorithmic point of view, this dual problem is replaced by a relaxed problem, 
called master dual problem ( )MD , that is continuously updated during the LR algorithm 

( )MD  

max

( )

0, 1, ,

i i

w

w f x r

i k

λ

λ

≤ +

≥ = …

 (2.19) 

{ }( , ) extr ( ) , , , : 1,...,i ix r g x r x X r R i k∈ ≤ ∈ ∈  
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Now it is not possible to eliminate the variable r  in the same way as it was eliminated 
when the perturbation region was the whole euclidean space. 

1.2. Phase I of lagrangean relaxation and bounding cuts 
Previous section implicitly assumed that master dual problem ( )MD  was a bounded 

problem, so each resolution would give a new multiplier proposal λ . It did also assume problem 
( )PRλ  was bounded for each value λ . However, this is not the general situation and a family of 
cuts is necessary to guarantee master dual problem boundness. It is also necessary to obtain a 
bounding cut that excludes the proposed multiplier value in case problem ( )PRλ  turns out to be 
unbounded. From hereafter it is assumed that the objective function is linear and the 
constraints are affine. We will exhaustively use the Farkas’ law results. 

1.1.1. Phase I of lagrangean relaxation  

Let problem ( )P  take the form 

( )P  

mincx

Ax b

x X

≤

∈

 (2.20) 

In the resolution of problem ( )P  it is necessary to test that the problem is feasible and, if 
not the case, to provide a minimization of infeasibilities. Its feasibility is equivalent to a non 
infinite value of the associated perturbation function for 0r = , which for a constrained 
perturbation region R  is defined as 

 

min

,

cx

Ax b r

x X r R

− ≤

∈ ∈

 (2.21) 

It is clear that system { }, , , 0Ax b r x X r R r− ≤ ∈ ∈ =  has a solution if and only if system 
{ }{ }conv , , , 0Ax b r x X r R r− ≤ ∈ ∈ =  does. Feasibility of this region is tested formulating the 

minimization of infeasibilities problem. Assuming that infeasibility can only be caused by the 
constraints 0r =  this problem takes the form 

 

min

0

conv
,

, 0

r r

r r r

Ax b r

x X r R

r r

+ −

+ −

+ −

+

− + =

 − ≤     ∈ ∈   
≥

 (2.22) 

Feasibility region of the above problem immediately satisfies the integrality property [4] that 
guarantees its optimal value is equivalent to the value obtained by a LR algorithm. Then, for 
any 0λ ≥  consider 

*( )PRλ  

*( ) min ( )

,

, 0

w r r r r r

Ax b r

x X r R

r r

λ λ+ − + −

+

= + + − +

− ≤

∈ ∈

≥

 (2.23) 
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and solve the following dual problem 

*( )D  { }*max ( ), 0w λ λ ≥  (2.24) 

If this problem has positive solution, then primal problem is infeasible due to value 0r = . 
Observe that *( )w λ  verifies 

 
{ }*

1
( )

min ,( , ) , , 1
w

r x r Ax b r x X r R

λ
λ

λ λ

 −∞ >=  ∈ − ≤ ∈ ∈ ≤
 (2.25) 

So that dual problem *( )D  can be rewritten as 

*( )D  { }*max ( ), 0 1w λ λ≤ ≤  (2.26) 

The resolution of problem *( )D  is carried out formulating a relaxed problem, called master 
dual problem *( )MD , which is being updated when necessary. 

*( )MD  

max

0 1, 1, ,

i

w

w r

i k

λ

λ

≤

≤ ≤ = …

 (2.27) 

{ }( , ) extr , , , : 1,...,i ix r Ax b r x X r R i k∈ − ≤ ∈ ∈  

Remark 1. Observe that this cutting plane technique creates a group of planes that correspond 
to a group of planes of problem ( )MD  moved to the origin. So in case problem *( )MD  ends with 
zero solution, problem ( )MD  has a set of constraints that will guarantee its boundness. 

Introducing a new parameter 0λ , with value 0 in phase 1 and value 1 in phase 21, we 
formulate lagrangean subproblem 

0
( )PRλ λ  and master dual problem 

0
( )MDλ , which will 

generalize the LR algorithm. 

0
( )MDλ  0

max

0, 1, ,

i i

w

w cx r

i k

λ λ

λ

≤ +

≥ = …

 (2.28) 

0
( )PRλ λ  

{ }
0 0( ) min

( , ) , ,

w cx r

x r Ax b r x X r R
λ λ λ λ= +

∈ − ≤ ∈ ∈
 (2.29) 

where 0 0λ =  and 0 1λ≤ ≤  in phase 1 and 0 1λ =  in phase 2. 

1.1.2. Bounding cuts 

Consider problem ( )P  of the form 

( )P  

mincx

Ax b

x X

≤

∈

 (2.30) 

                                            
1 Phase 2 is understood as the algorithm presented at the beginning of section 2 

corresponding to problems (2.10) and (2.11). 
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When solving this problem via LR, in order to obtain the convexification of its associated 
perturbation function, a multiplier value is proposed through the resolution of a master dual 
problem ( )MD  and then we have to solve the problem ( )PRλ . 

( )MD  

max

0, 1,...,

i i

w

w cx r

i k

λ

λ

≤ +

≥ =

 (2.31) 

( )PRλ  

( ) min

,

w cx r

Ax b r

x X r R

λ λ= +

− ≤

∈ ∈

 (2.32) 

we can assume { }1 1
11 1,

n mX A x b x= ≤ ∈ ×\ ] , { }11 1R R r r= ≤ . 
Previous problem is unbounded if its linear relaxation is unbounded. On the contrary, a 

bounded linear relaxation problem implies boundness for the mixed integer case. Unboundness 
of previous linear relaxation problem is equivalent to infeasibility of its dual linear problem 
( )DPRλ , which takes the form 

( )DPRλ  

1 2 1 3 1

1 2 11

1 3 11

1 2 3

max

, , 0

b b r

A A c

R

π π π

π π

π π λ
π π π

+ +

+ =

− + =

≤

 (2.33) 

A direct application of Farkas results assures problem ( )DPRλ  is feasible if and only if 

 

( )

11

11

0, , /

0

0

0

cx r x r

Ax r

A x

R r

λ+ ≤ ∀

− + ≤

− ≤

− ≤

� � � �

� �

�

�

 (2.34) 

This equation constrains the set of Lagrange multipliers such that problem ( )PRλ  is 
bounded to belong to set B , denoted as bounding set. A closed form expression for this set B  is 
then 

 
{ }11 11

/ 0

( , ) extreme ray 0, 0, 0

j j

j j

cx r
B

x r Ax r A x R r

λ λ + ≤   =   ∀ − + ≤ − ≤ − ≤   

� �

� � � � � �
 (2.35) 

Then, the dual problem ( )D  takes the form 

( )D  { }max ( ), 0,w Bλ λ λ≥ ∈  

Calculating all the former extreme rays is an out of question matter, so that when proposing 
a new multiplier value at the master problem it should be tested if this multiplier value belongs 
to set B . In the negative case a new constraint will be added to the master dual problem 
( )MD . This new constraint is defined as bounding cut. Before solving problem ( )PRλ  next 
problem has to be solved 
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 11

11

max

0

0

0

1 1, 1 1

cx r

Ax r

A x

R r

x r

λ+

− + ≤

− ≤

− ≤

− ≤ ≤ − ≤ ≤

� �

� �

�

�

� �

 (2.36) 

and in case this problem ends with a positive solution, a constraint of the form 0j jcx rλ+ ≤� �  is 
introduced into the master dual problem ( )MD . The point ( , )j jx r� �  represents the optimal 
solution of previous problem. This constraint eliminates the last multiplier λ  from the 
feasibility set of problem ( )MD . Observe that the dual problem of (2.36) is precisely the 
minimization of infeasibilities of problem ( )DPRλ . 

So in a LR algorithm a master problem is solved to obtain a new multiplier proposal. This 
master problem is built up with constraints that outer approximate the dual function ( )w λ  
(lagrangean optimality cuts) and bounding cuts that eliminate multiplier values for which 
lagrangean subproblem turns out to be unbounded. The master dual problem takes the form 

( )MD  

max

0

0, : 1,..., , : 1,...,

i i

j j

w

w cx r

cx r

i k j l

λ

λ

λ

≤ +

≤ +

≥

� �
 (2.37) 

with 
{ }( , ) extr , , , : 1,...,i ix r Ax b r x X r R i k∈ − ≤ ∈ ∈  and 

{ }11 11( , ) extreme ray 0, 0, 0 , 1, ,j jx r Ax r A x R r j l∈ − + ≤ − ≤ − ≤ =� � � � � � …  
Remark 2. Observe that the former development of bounding cuts has been done for phase 2, 
but it should also be done for phase 1. A bounding cut obtained in phase 1 is also valid for 
phase 2, in the same way as lagrangean optimality cut obtained in phase 1 provides a valid cut 
for phase 2. 

1.1.3. Equality constraints 

The perturbation function is no increasing in the case of all the constraints are inequality 
constraints. The case with equality constraints is quite similar, although concepts need to be 
redefined. We generalize the above development to the case with inequality and equality 
constraints and summarize the general relaxation algorithm for mixed integer linear problems. 

Consider problem ( )P  

( )P  

mincx

Ax b

Dx d

x X

≤

=

∈

 (2.38) 

and consider possible perturbations of the right hand side of this problem for ( , )r r R′ ∈ . 

 

( , ) minr r cx

Ax b r

Dx d r

x X

υ ′ =

− ≤

′− =

∈

 (2.39) 
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Graph and epigraph associated with problem ( )P  are defined as 

 { }0 0( , , )/  with , , ,( , )G r r r x X r Ax b r Dx d r cx r r R′ ′ ′= ∃ ∈ = − = − = ∈  (2.40) 

 { }0 0epi ( , , )/  with , , ,( , )G r r r x X r Ax b r Dx d r cx r r R′ ′ ′= ∃ ∈ ≥ − = − ≥ ∈  (2.41) 

Assume we want to obtain the lower convex envelope value of the perturbation function at 
0r = , 0r ′ = . We have to solve a lagrangean subproblem of the form 

0
( )PRλ λµ  

0 0( , ) min ( )

,( , )

w cx r Dx d

Ax b r

x X r Dx d R

λ λ µ λ λ µ= + + −

− ≤

∈ − ∈

 (2.42) 

with 0 0λ =  on algorithm phase 1 and 0 1λ =  on algorithm phase 2. 
Lagrange multipliers are proposed solving a relaxed master dual problem whose expression is 

0
( )MDλ  

0

0

max

( )

0

0 1

i i i

j j j

w

w cx r Dx d

cx r Dx

λ λ µ

λ λ µ

λ

≤ + + −

≤ + +

≤ ≤

� � �
 (2.43) 

with { }( , ) extr , ,( , )i ix r x X Ax b r r Dx d R∈ ∈ − ≤ − ∈  and ( , )j jx r� �  are extreme rays for the 
corresponding region. 

The lagrangean relaxation algorithm is summarized on the following steps: 
 

1. Set 0 0λ =  
2. Solve problem 

0
( )MDλ and obtain multiplier values λ  and µ  

3. Obtain upper bound 
0

z wλ =  
4. If 0 0λ =  and 0w =  switch to phase 2 set 0 1λ =  
5. Solve linear relaxation of problem 

0
( )PRλ λµ  

6. If linear relaxation is unbounded, then take dual values and form a bounding cut 
Set 1l l= +  and go to step 2 

7. If linear relaxation is bounded, then continue solving mixed integer linear problem 
0

( )PRλ λµ  
Obtain value ( , )k kx r  and set 1k k= +  
Obtain lower bound 

0 0
( , )z wλ λ λ µ=  

8. If 
0 0

tolz zλ λ− <  then stop. Otherwise go to 2. 
9. If 0 0λ =  problem ( )P  is infeasible 
10. If 0 1λ =  problem ( )P  is feasible 

 
The LR algorithm ends at phase 2 with the value of the lower convex envelope of problem 

( )P  at 0r = , 0r ′ = . In case that it ends at phase 1, then problem ( )P  is infeasible, and the 
final value gives the minimization of infeasibilities due to the complicating constraints 
{ },Ax b Dx d≤ = . Infeasibility of problem due to these constraints is identified if a lagrangean 
subproblem has positive optimal value during phase 1 algorithm. In that case the algorithm may 
stop or may continue to get the minimization of infeasibilities required by most optimization 
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algorithms. This is necessary when incorporating a lagrangean algorithm into a Benders 
decomposition scheme, producing what is defined on literature as deepest cut. 

3. BENDERS DECOMPOSITION 

We now face the issue of solving the problem ( )P  of the form 

( )P  1 2

min

,

cx dy

A x A y b

x X y Y

+

+ ≤

∈ ∈

 (3.1) 

where feasible regions for first and second stage variables, x  and y  respectively, incorporate 
integrality constraints for some variables { }1 1

11 1,
n mX A x b x= ≤ ∈ ×\ ] , 

{ }2 2
22 2,

n mY A y b y= ≤ ∈ ×\ ] . We assume this representation incorporates the non negativity 
constraints for variables x  and y . The resolution of this problem ( )P  is equivalent to solve the 
master problem ( )MP  

( )MP  
min ( )cx x

x X

θ+

∈
 (3.2) 

with the recourse function ( )xθ  defined as 

( )xSP  2 1

( ) minx dy

A y b A x

y Y

θ =

≤ −

∈

 (3.3) 

1.3. Linear problems 
For linear problems, the Benders algorithm [2] proceeds formulating a master problem that 

incorporates first stage variables and a partial description of the recourse function ( )xθ . 
Resolution of this master problem gives a first stage optimal value x . Evaluation of subproblem 
( )SP  at this optimal value (modifying right hand sides of corresponding equations) gives a 
supporting hyperplane of the epigraph of the recourse function, named Benders optimality cut. 
This supporting hyperplane updates master problem, which is solved again. In addition to these 
supporting planes the algorithm also provides feasibility cuts that eliminate those first stage 
values of the master problem that turns infeasible the second stage problem. The algorithm 
continues until a certain tolerance is satisfied. Subsequently, a very briefly review for the linear 
case is presented. 

Let us assume integrality constraints are removed from Y  so that problem ( )SP  for a fixed 

0x  takes the form 

0
( )xSP  { }0 2 1 0( ) min , ,x dy A y b Ax y Yθ = ≤ − ∈  (3.4) 

where { }2 2
22 2/ , n mY y A y b y += ≤ ∈ \ . 

Duality in linear programming immediately derives an equivalent expression for problem 

0
( )xSP  

0
( )xSP  

0 1 0 2

1 22

( ) max ( )

0, 0

x b A x b

A A d

θ π ρ

π ρ
π ρ

= − +

+ =

≤ ≤

 (3.5) 
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Resolution of this problem ends with optimal value iθ , achieved for dual values ( , )i iπ ρ . 
The recourse function then trivially satisfies next constraint 

 1 2( ) ( )i ix b A x bθ π ρ≥ − +  (3.6) 

Linearizing around the point of interest 0x  we have the expression 

 1 2 1 0 1 0 1 2

1 0 2 1 0 1 1 0

( ) ( ) ( )

( ) ( ) ( )

i i i i

i i i i i

x b A x b b Ax A x Ax b

b A x b Ax A x A x x

θ π ρ π ρ

π ρ π θ π

≥ − + = − + − + =

= − + + − = + −
 (3.7) 

So that expression (3.6) is written as 

 1 0( ) ( )i ix A x xθ θ π≥ + −  (3.8). 

and denoted in the literature as Benders optimality cut. 

1.1.4. Feasibility cuts 

Subproblem 
0

( )xSP  is infeasible if no solution exist for the region { }2 1 0 22 2,A y b A x A y b≤ − ≤ . 
This is equivalent to assert that there exists no 1 0s ≥ , 2 0s ≥  such that 

 { }2 1 1 0 22 2 2,A y s b A x A y s b+ = − + =  (3.9) 

Direct application of Farkas law implies that a necessary condition for a first stage value 0x  
to produce a feasible subproblem is 

 { }1 0 2 2 22( ) 0, , 0/ 0b Ax b A Aπ ρ π ρ π ρ− + ≤ ∀ ≤ + ≤� � � � � �  (3.10) 

This result introduces the feasible set K , as the set of first stage values that guarantee 
feasibility for second stage problem. A closed form expression for this set is 

 { }{ }0 1 0 2 2 22/ ( ) 0, ,  extreme ray 0, 0, 0j j j jK x b A x b A Aπ ρ π ρ π ρ π ρ= − + ≤ ∀ + ≤ ≤ ≤� � � � � � � �  (3.11) 

Once a first stage solution 0x  is obtained at the master problem ( )MP , it is solved the 
problem 

 

* 0 1 0 2

2 22

( ) max ( )

0

1 0

1 0

x b A x b

A A

θ π ρ

π ρ
π
ρ

= − +

+ ≤

− ≤ ≤

− ≤ ≤

� �

� �

�

�

 (3.12) 

and if the objective function has positive value then a feasibility cut is introduced that excludes 
that first stage value 0x  with the following form 

 1 2( ) 0j jb A x bπ ρ− + ≤� �  (3.13) 

Linearizing around the first stage value and letting jθ  be the optimum of problem (3.12) 
and jπ�  and jρ�  its optimal values we have 

 
1 2

1 1 0 1 0 2

1 1 0 1 0

0 ( )

( )

( ) ( )

j j

j j

j j j j

b A x b

b Ax A x Ax b

Ax Ax A x x

π ρ

π ρ

π θ π θ

≥ − + =

= − + − + =

= − + + = − +

� �

� �

� �

 (3.14) 

This feasibility cut gets a similar expression to the optimality cut (3.8) 
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 1 00 ( )j jA x xθ π≥ + −�  (3.15) 

Observe that problem (3.12) is precisely the dual problem of 

 

1 2

2 1 1 0

22 2 2

1 2

min

, 0

s s

A y s b A x

A y s b

s s

+

− ≤ −

− ≤

≥

 (3.16) 

that represents the minimization of infeasibilities of problem ( )SP . 
Observe this is the dual situation of the lagrangean decomposition scheme in which a 

bounding cut excludes a multiplier value if this turns the lagrangean subproblem unbounded.  
Benders decomposition proceeds iterating between a linear master problem ( )MP  and a 

subproblem ( )SP  until a certain tolerance is satisfied. The master problem presents an 
expression 

( )MP  

{ }1 1

1 0

1 0

11 1

min

0 ( ) 1, ,

( )    1, ,

, ,

j j j

i i i

n m

cx

A x x j l

A x x i k

x X X A x b x

θ

θ π

θ θ π
+

+

≥ + − =

≥ + − =

∈ = ≤ ∈

� …

…

\

 (3.17) 

1.4. Mixed integer linear problems 
The mixed integer case keeps the same procedure, but face the disadvantage of the no 

convexity of the recourse function ( )xθ . The resolution of problem ( )P  requires the 
convexification of this recourse function. Considering the recourse function as the perturbation 
function of a problem, we want to obtain the convexified expression of the perturbation function 

 { }2( ) min , , ,r dy A y b r y Y r Rθ = − ≤ ∈ ∈  (3.18) 

with { }1/ /R r x X r Ax= ∃ ∈ = −  
Following results of section 2, define for any 0λ ≥  the dual function by 

( )PRλ  2

( ) min

,

w dy r

A y b r

y Y r R

λ λ= +

− ≤

∈ ∈

 (3.19) 

Its solution determines a level curve of the form { }0 0( , )/ ( )L r r r r wλ λ= + = . For 1r A x=−  
the resulting point is then 1 1( , ( ) )A x w Axλ λ− + . The dual problem consists of finding the 
maximum of those ordinates points 

( )xD  { }1max ( ) , 0w Axλ λ λ+ ≥  (3.20) 

So, in the mixed integer case the linear resolution of the subproblem is replaced by the LR 
algorithm that finds the supporting plane of the lower convex envelope of the recourse function 
at the first stage proposal. Region R  is only known through its implicit definition, and will be 
outer approximated as the algorithm proceeds. 
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The resolution of dual problem ( )xD  ends with an optimal Lagrange multiplier iλ  and an 
optimal value for the dual problem given as 1( )i iw A xλ λ+ . The epigraph of the perturbation 
function then immediately satisfies 

 1( ) ,i iw A x x Xθ λ λ≥ + ∀ ∈  (3.21) 

Denoting 1( )i i iw A xθ λ λ= +  the optimum value of problem ( )xD  and linearizing around the 
first stage solution we have 

 
1

1 0 1 0 1

1 0

( )

( )

( ),

i i

i i i i

i i

w A x

w Ax A x Ax

A x x x X

θ λ λ

λ λ λ λ

θ λ

≥ + =

= + − + =

= + − + ∀ ∈

 (3.22) 

Summarizing 

 1 0( ),i iA x x x Xθ θ λ≥ − − ∀ ∈  (3.23) 

This expression recovers the Benders optimality cut introduced in the master problem for 
the linear case and shows the classical result that relates the dual value of a linear problem to 
the negative of the optimal Lagrange multiplier that maximizes the dual function. 

The optimization of the dual function is carried out through a LR algorithm. The end of 
this algorithm on phase 2 produces an optimal multiplier and an optimal value of the dual 
function, that are used to form a Benders optimality cut. 

1.1.5. Feasibility cuts 

In order to check if the first stage proposal turns the subproblem into a feasible one, we 
have to solve the dual problem of the phase 1 LR algorithm. This dual problem takes the form 

*( )xD  { }* 1max ( ) , 0 1w Axλ λ λ+ ≤ ≤  (3.24) 

with 

*( )PRλ  
*

2

( ) min

,

w r

A y b r

y Y r R

λ λ=

− ≤

∈ ∈

 (3.25) 

If the phase 1 of LR procedure indicates subproblem is infeasible for that first stage proposal 
then a feasibility cut is introduced into the master problem which takes the form 

 1 00 ( ),j jA x x x Xθ λ≥ − − ∀ ∈  (3.26) 

The master problem on a Benders decomposition algorithm presents the next form 

( )MP  

{ }1 1

1 0

1 0

11 1

min

0 ( ) 1, ,

( )    1, ,

, ,

j j j

i i i

n m

cx

A x x j l

A x x i k

x X X A x b x

θ

θ π

θ θ π

+

≥ + − =

≥ + − =

∈ = ≤ ∈ ×

� …

…

\ ]

 (3.27) 

where values ( , )i iθ π , being i iπ λ= − , represent the optimal values of LR procedure when this 
ends on phase 2, and 0

ix  is the first stage solution used on that iteration. These values are used 
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to form the outer approximation of the convexified recourse function. Values ( , )j jθ π� , being 
j jπ λ= −� , represent the optimal values of the LR procedure when this ends on phase 1, with 0

jx  
is the first stage solution used. These values are used to create feasibility cuts to exclude 
infeasible first stage solutions. 

Once the resolution of master problem ( )MP  produces a first stage value, the associated 
dual subproblem is optimized by iterating between a relaxed master dual problem 

0
( )xMD λ  and 

a subproblem ( )PRλ  whose expressions take the form 

0
( )xMD λ  

1

0

0

max

0

0, : 1,..., , : 1,...,

i i

j j

w A x

w dy r

dy r

i k j l

λ

λ λ

λ λ

λ

+

≤ +

≤ +

≥

� �
 (3.28) 

where 0 0λ =  in phase 1 and 0 1λ =  in phase 2 and 0 1λ≤ ≤  in phase 1. 

0
( )PRλ λ  

0 0

2

( ) min

, i

w dy r

A y b r

y Y r R

λ λ λ λ= +

− ≤

∈ ∈

 (3.29) 

This subproblem resolution gives back the supporting hyperplane of the recourse function 
when it is interpreted as a perturbation function. This convexification considers iR  to be the 
perturbation region. During the algorithm, region R  is being outer approximated with further 
resolutions of master problem. In the next sections it is commented a way to incorporate cuts to 
approximate perturbation region R . 

1.5. Perturbation cuts 
In the general case not all the first stage variables will modify the right hand side 

parameters of the second stage subproblem, only a group of first stage variables are tied with a 
group of second stage variables. Consider then a problem ( )P  of the form 

( )P  
1 1 2 2

1 2 2

1 2

min

( , ) ,

c x c x dy

A x A y b

x x X y Y

+ +

+ ≤

∈ ∈

 (3.30) 

We define the 2x  space to be the space of coupling variables between first and second 
stages. 

Define the shadow S  of region X  over the coupling variable space as 

 { }2 1 1 2/ /( , )S x x x x X= ∃ ∈  

and define the perturbation region R  as 

 { }2 1 2/ /R r x S r Ax= ∃ ∈ = −  (3.31) 

So we are interested in finding { }2 1 1 2/ /( , )S x x x x X= ∃ ∈ . This is the projection of set X  
over the euclidean space of the coupling variables 2x . Let 1 2 2( , )P x x x=  this projection. We 
differentiate between the case of a linear master problem and a mixed integer one. The second 
case extends the first one. 
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1.1.6. Linear master problem 

The idea for obtaining a constraint for region S  comes from inspection of an optimal 
solution of the master problem. Let the master problem at an iteration of the algorithm be given 
as 

( )MP  

{ }1 1

1 1 2 2

1 0 2

1 0 2

11 1

min

0 ( ) 1, ,

( )    1, ,

, ,

j j j

i i i

n m

c x c x

A x x j l

A x x i k

x X X A x b x

θ

θ π

θ θ π
+

+ +

≥ + − =

≥ + − =

∈ = ≤ ∈

� …

…

\

 (3.32) 

and let 0 0
1 2 0( , , )x x θ  the optimal solution. As 1 1n mx +∈ \  and θ ∈ \  then the optimal point is 

given as the intersection of 1 1 1n m+ +  planes. Let 
1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +  be the edges at that 

extreme point. Let 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +
� � � �

 be the projection of these edges over the euclidean 
space of the coupling variables 2x . Then we eliminate those projected edges that can be 
obtained as a positive linear combination of the remaining ones. If the positive cone generated 
by those remaining projected edges generates the coupling variable space, then 0

2x  is not an 
extreme point of region S . On the contrary, those remaining projected edges generate a cone 

iC  such that iS C⊂ . See Appendix A. 

1.1.7. Mixed integer master problem 

In this case the problem will be solved with a B&B algorithm. The B&B algorithm ends 
with a partition of the master problem feasible region. Let { }, 1,...,nX n N=  this partition. Let 

i
nC  the cone obtained at each optimum point of the each partition. Then the convex sum of 

these cones constrains region S . Observe that in case the partition { }, 1,...,nX n N=  reduces to 
a point for each set, i.e., Pure Integer Problem PIP, then the region S  is obtained as the 
convex hull of the set of extreme points of S . More details about constraining the shadow 
region S  can be found in Appendix A. 

1.6. Outline of the Benders algorithm 
Assume we are at iteration p  of the algorithm. At this moment we have a family of 

optimality cuts and a family of feasibility cuts for the master problem. We do also have a 
collection of cuts for the perturbation region R , so we have an approximation 1pR −  1( )pR R −⊂  
of this perturbation region. 

 
Step 1. Solve master problem ( )MP  and obtain ( , )p px θ . Check if this point’s projection is as 

extreme point of S . In that case then generate a group of constraints for region R . Then 
we have the new region approximation pR  1( )p pR R R −⊂ ⊂ . Calculate lower bound 

p pz cx θ= + . Pass value px  to the subproblem. Go to step 2.  
 
Step 2. Solve subproblem ( )pxSP . Eliminate those extreme points ( , )i iy r  i I∈  out of the master 

dual problem 
0

( )pxMD λ  (that until this moment have been used to form approximations of 

the dual function) such that i pr R∉ . Observe it is enough to check the last constraint 
introduced to the perturbation region.  
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Solve the LR phase 1 to check feasibility of the master proposal. Let jλ  and *( )jw λ  the 
optimal solution. If *( ) 0jw λ >  then generate a feasibility cut for the master problem with 
the dual value j jπ λ= − . Go to step 1. 
If *( ) 0jw λ = , then solve the lagrangean relaxation phase 2. Let iλ  and 1( )i i pw A xλ λ+  the 
optimal solution. Calculate upper bound 1( )p i i pz cx w A xλ λ= + + . Stop if difference 
between bounds is close enough. Otherwise generate an optimality cut for the master 
problem with the multiplier i iπ λ= − . Go to step 1. 

1.7. Convergence proof 
Proposition. The Benders algorithm as proposed on section 3.4 is finite and ends with an 
optimal solution of original problem ( )P . 
Proof. 

Let ( )
p

xθ�  the outer approximation of ( )xθ  available at iteration p . Immediately 
( ) ( )

p
x xθ θ≥ � . 

Let ( )pR xθ  the convexification of ( )xθ  when the perturbation region is pR . ( ) ( )pRx xθ θ≥ , 
x X∀ ∈ . 

By algorithm construction we also have that ( ) ( )p

p

R x xθ θ≥ � . 
Let ( , )p px θ  the solution obtained at the master problem. Then ( )

pp pxθ θ= � . 
Let ( )p

p
R xθ  the solution obtained at the subproblem. This value represents the value of the 

convexification of the recourse function when the perturbation region is pR . Then we have these 
cases. 

 
Case a. If ( )p

p p
R xθ θ> , then a new cut is generated. The algorithm proceeds formulating an 

augmented master problem ( )MP  and obtaining new first stage values. 
Case b. If ( )p

p p
R xθ θ= , then px  is an optimal solution for problem { }min ( ),pRcx x x Xθ+ ∈ . In 

this case we observe that 

 
{ }

{ } { }
min ( ), ( )

( ) min ( ), min ( ),p p

p pp p p p

pp p
R R

cx x x X cx x cx

cx x cx x x X cx x x X

θ θ θ

θ θ θ

+ ∈ = + = + =

= + ≥ + ∈ ≥ + ∈

� �

�
  (3.33) 

and immediately 

 { }min ( ),p
p p

Rcx cx x x Xθ θ+ = + ∈  (3.34) 

so that this means that px  is an optimal solution. 
We are also interested in proving that px  is an optimal solution for problem 
{ }min ( ),cx x x Xθ+ ∈ . It assumed the contrary and obtained a contradiction. 
Assume ( )p

p p
R xθ θ=  and assume that px  is not an optimal solution for problem 

{ }min ( ),cx x x Xθ+ ∈ . Then  

 ( ) ,p pcx x m cx x Xθ θ+ ≥ > + ∀ ∈  (3.35) 

differentiating the following two cases. 
 
Case 1. ( ) int( )pP x S∈ . Then there is a neighborhood U  ( ( )pP x U S∈ ⊂ ) such that 

( )cx x mθ+ ≥ , x U∀ ∈ . The function ( )pR xθ  then the immediately satisfies 
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( ) ( )

( ) / ( )

p

p

p

R

R

cx x cx x x X

cx x m x P x U

θ θ

θ

+ ≥ + ∀ ∈

+ ≥ ∀ ∈

�
 (3.36) 

then 

 ( ) max( ( ), )p

p

Rcx x cx x m x Xθ θ+ ≥ + ∀ ∈�  (3.37) 

In particular, for px x=  observe that ( )p
p p p p

Rcx x m cxθ θ+ ≥ > +  and then ( )p
p p

R xθ θ>  
which is a contradiction with the initial assumptions. 
Case 2. ( ) fr( )pP x S∈ . In that case the algorithm determines a cone pC  that constrains the 
perturbation region R . The algorithm construction then implies that 

 
( )

ˆ( ) ( )

p

p

p p
R

p p p
R

x d d C

x d x d d C

θ λ

θ λ θ λ

+ =∞ ∉

+ ≥ + ∈
 (3.38) 

and that the function ( )pR xθ  satisfies 

 
( ) ( )                                       

ˆ( ) ( ) max( ( ) ( ), )

p

p

p p p
R

p p p p p
R

c x d x d d C

c x d x d c x d x d m d C

λ θ λ

λ θ λ λ θ λ

+ + + =∞ ∉

+ + + ≥ + + + ∈
 (3.39) 

In particular, for px x=  observe that ( )p
p p p p

Rcx x m cxθ θ+ ≥ > +  and then the 
contradiction appears. 

Observe that the argument in case 2 cannot be carried out in the case of simple use of 
lagrangean relaxation (i.e., without the introduction of the perturbation region). The convexified 
function obtained is not forced to satisfy the last constraints. 

 
It only remains to proof that there can only be a finite number of iterations in which the 

solution of master problem and the solution of the subproblem fill to satisfy situation presented 
in case a. 

Assume that no cuts for the perturbation region are generated. The function ( )pR xθ  is a 
piecewise convex linear function. This means there is only necessary a finite number of cuts 
(perhaps a high number) to build it up as the maximum of linear functions. If the same point at 
the master problem is obtained, we can assure that the point is an optimal solution because 
repetition of the subproblem ended with the situation described in case b. So that repetitions of 
master problem always give back different first-stage proposals. 

In case ( )p
p p

R xθ θ> , then a new cut is generated. So that the number of iterations with no 
added constraints for the perturbation region is finite. A new perturbation cut is introduced in 
case a first stage solution results to be an extreme point of shadow S . Region S  has a finite 
number of extreme points, so that there only is a finite number of iterations in which the 
perturbation region is updated due to the non-possibility of repetitions of first stage solutions. 
After that finite number of iterations situation presented in case b will then appear after a finite 
number of iterations. Considering that the lagrangean relaxation algorithm is a finite algorithm, 
then the proposed algorithm is also finite. 

4. EXAMPLE 

Consider the problem 
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min 0.3 1.5

0 5

3.7

5.2

0, 0

,

x y z

x

x y

y z

y z

y z

− − −

≤ ≤

+ ≤

+ ≤

≥ ≥

∈ ∈] ]

 

The optimal solution of this problem is -6.71 achieved at 0.7x = , 3y = , 2z = . 
Solving this program by Benders decomposition we formulate this master problem ( )MP  

 
min 0.3 ( )

0 5

x x

x

θ− +

≤ ≤
 

and this subproblem ( )SP  

 ( ) min 1.5

3.7

5.2

0, 0

,

x y z

y x

y z

y z

y z

θ = − −

≤ −

+ ≤

≥ ≥

∈ ∈] ]

 

The expression of recourse function ( )xθ , depicted in the next figure, is 

 

3.7 ( )

(2.7, 3.7] 1 0 5 ( ) 5

(1.7,2.7] 2 1 4 ( ) 5.5

(0.7,1.7] 3 2 3 ( ) 6

( 0.3, 0.7] 4 3 2 ( ) 6.5

( 1.3, 0.3] 5 4 1 ( ) 7

1.3 5 0 ( ) 7.5

x x

x y y z x

x y y z x

x y y z x

x y y z x

x y y z x

x y z x

θ

θ

θ

θ

θ

θ

θ

≥ ⇒ =∞

∈ ⇒ < ⇒ = = = −

∈ ⇒ < ⇒ = = =−

∈ ⇒ < ⇒ = = = −

∈ − ⇒ < ⇒ = = = −

∈ − − ⇒ < ⇒ = = =−

≤− ⇒ = = = −

 

 
 
First it is solved relaxing the subproblem integrality conditions. Then, the subproblem is 

solved directly by LR, and finally its is solved with the above described approach. For simplicity 
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of the exposition, in the LR we avoid obtaining the dual function interactively. The dual 
function is analytically calculated and optimized. 

1.8. Relaxation of subproblem integrality conditions 
Iteration 1: solve master problem 

 
min 0.3

0 5

x

x

−

≤ ≤
 

with solution 5x = . 
Solve subproblem for 5x =  

 (5) min 1.5

3.7 5

5.2

0, 0

y z

y

y z

y z

θ = − −

≤ −

+ ≤

≥ ≥

 

obtaining a feasibility cut 3.7x ≤  
Iteration 2: solve augmented master problem 

min 0.3

0 5

3.7

x

x

x

−

≤ ≤

≤

 

with solution 3.7x =  
Solve subproblem for 3.7x =  

(3.7) min 1.5

3.7 3.7

5.2

0, 0

y z

y

y z

y z

θ = − −

≤ −

+ ≤

≥ ≥

 whose dual take the form of 2

1 2

2

1 2

(3.7) max 5.2

1.5

1

, 0

θ π
π π
π
π π

=

+ ≤−

≤−

≤

 

with solution 1 0.5π = − , 2 1π = − , (3.7) 5.2θ =−  that generates the following Benders 
optimality cut 

 1(3.7) (3.7 )xθ θ π≥ + −  

 0.5 7.05xθ ≥ −  

Iteration 3: solve augmented master problem 

 

min 0.3

0 5

3.7

0.5 7.05

x

x

x

x

θ

θ

− +

≤ ≤

≤

≥ −

 

with solution 0x = , 7.05θ = −  
Solve subproblem for 0x =  
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 (0) min 1.5

3.7 0

5.2

0, 0

y z

y

y z

y z

θ = − −

≤ −

+ ≤

≥ ≥

 whose dual take the form of 2

1 2

2

1 2

(0) max5.2

1.5

1

, 0

θ π
π π
π
π π

=

+ ≤−

≤−

≤

 

with solution 1 0.5π = − , 2 1π = − , (0) 7.05θ =− . The stopping rule is verified, so the optimal 
solution is –7.05. 

1.9. Subproblem resolution by lagrangean relaxation. 
Iteration 1: solving the master problem determines the optimal solution 5x = . 
Solve subproblem for 5x = . We firstly solve the minimization of infeasibilities problem 

 *(5) min

3.7 5

5.2

0, 0

,

s s

y s s

y z

y z

y z

θ + −

+ −

= +

+ − ≤ −

+ ≤

≥ ≥

∈ ∈] ]

 

by LR formulating the lagrangean 

 ( , , ) ( 3.7 5)L y z s s y s sλ λ+ − + −= + + + − − +  

or equivalently 

 ( , , ) (1 ) (1 ) ( 3.7 5)L y z s s yλ λ λ λ+ −= + + − + − +  

If 1λ >  then the dual function *( )w λ = −∞ , so the dual function for 0 1λ≤ ≤  takes the 
form 

 *( ) min ( 3.7 5)

5.2

0, 0

,

w y

y z

y z

y z

λ λ= − +

+ ≤

≥ ≥

∈ ∈] ]

 

that has solution 0y =  for every [0,1]λ ∈ . Then , 0 1λ≤ ≤ . 
Dual problem { }*max ( ), 0 1w λ λ≤ ≤  ends with solution 1λ = , *(1) 1.3 0w = > , so a 

feasibility cut is generated determined as 

*(1) (5 ) 0w xπ+ − ≤�  
with 1π λ=− = −�  

1.3 ( 5) 0

3.7

x

x

+ − ≤

≤
 

It is the same feasibility cut obtained in case of relaxing subproblem integrality conditions. 
Iteration 2: the master problem is solved ending with optimal solution 3.7x =  and solve the 

subproblem for this value. 
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 (3.7) min 1.5

3.7 3.7

5.2

0, 0

y z

y

y z

y z

θ = − −

≤ −

+ ≤

≥ ≥

 

The minimization of infeasibilities problem leads to the resolution of the first stage dual 
function 

 *( ) min ( 3.7 3.7)

5.2

0, 0

,

w y

y z

y z

y z

λ λ= − +

+ ≤

≥ ≥

∈ ∈] ]

 

with *( ) 0w λ ≡ . The subproblem is then feasible and a bounding cut is obtained for the second 
stage 0w ≤ . The subproblem is now solved via LR 

 ( ) min ( 1.5 )

5.2

0, 0

,

w y z

y z

y z

y z

λ λ= − + −

+ ≤

≥ ≥

∈ ∈] ]

 

obtaining 

 
7.5 5 0 0.5

( )
5 0.5

w
λ λ

λ λ

− + ≤ ≤= − ≥
 

Dual problem { }max ( ), 0w λ λ ≥  presents multiple solutions due to the no differentiability of 
the recourse function at the point 3.7x = . Take as solution 0.5λ = , (0.5) 5w =− . We 
formulate then an optimality cut with 0.5π λ=− =−  and (0.5) 5w =− . 

 (0.5) (3.7 )w xθ π≥ + −  

This is 

 
0.5 5 0.5 3.7

0.5 6.85

x

x

θ

θ

− ≥− − ⋅

≥ −
 

Iteration 3: The master problem is now 

 

min 0.3

0 5

3.7

0.5 6.85

x

x

x

x

θ

θ

− +

≤ ≤

≤

≥ −

 

with solution 0x = , 6.85θ = − . 
Solve subproblem for 0x =  
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 (0) min 1.5

3.7

5.2

0, 0

,

y z

y

y z

y z

y z

θ = − −

≤

+ ≤

≥ ≥

∈ ∈] ]

 

We skip if 0x =  is feasible. The dual function at phase 2 takes the form 

 ( ) min( 1.5 ) 3.7

5.2

0, 0

,

w y z

y z

y z

y z

λ λ λ= − + − −

+ ≤

≥ ≥

∈ ∈] ]

 

or 

 
7.5 1.3 0 0.5

( )
 5 3.7 0.5

w
λ λ

λ λ λ
− + ≤ ≤=  − − ≥

 

and the { }max ( ), 0ω λ λ ≥  is achieved at 0.5λ = , (0.5) 6.85w =− . This solution ends the 
algorithm because the stopping rule is satisfied. 

1.10. Subproblem resolution by the proposed method 
Iteration 1: solving the master problem determines the optimal solution 5x =  
Solve subproblem for 5x = . We have the following constraint 5x ≤  for the projection S . 

So that we have the following constraint for the perturbation region 5r ≥− . Phase 1 has to 
solve the problem 

 *( ) min

3.7

5.2

0, 0

5

,

w r

y r

y z

y z

r

y z

λ λ=

− ≤

+ ≤

≥ ≥

≥−

∈ ∈] ]

 

The dual problem is stated then as 
{ } { } { }* 1 *max ( ) , 0 1 max ( ) 5 ,0 1 max 1.3 , 0 1 1.3w A x wλ λ λ λ λ λ λ λ+ ≤ ≤ = + ≤ ≤ = ≤ ≤ =  at 
1λ = . 
A feasibility cut is obtained with expression 3.7x ≤ . Observe this is precisely the cut 

obtained when solving subproblem relaxing integrality constraints. This feasibility cut induces a 
cut for the perturbation function that is given as 3.7r ≥− . 

Iteration 2: once solved the augmented master problem we obtain 3.7x =  as a solution. 
Solve subproblem for 3.7x = . Phase 1 of the subproblem is now 
{ } { } { }* 1 *max ( ) , 0 1 max ( ) 3.7 , 0 1 max 0,0 1 0w A x wλ λ λ λ λ λ λ+ ≤ ≤ = + ≤ ≤ = ≤ ≤ = . Then 

the subproblem is feasible. This solution is obtained for 0y = , 3.7r =− , [0,5]z ∈ ∩ Z . 
Multiplicity of solutions is due to the no differentiability of the recourse function at 3.7x = . 
This solution generates a cut for future phase 2 of LR, preventing the dual function to be 
unbounded. This cut is given as 0w ≤ . Now we face the solution of 
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 ( ) min 1.5

3.7

5.2

0, 0

3.7

,

w y z r

y r

y z

y z

r

y z

λ λ= − − +

− ≤

+ ≤

≥ ≥

≥−

∈ ∈] ]

 

Check that 

 
7.5 1.3 0 0.5

( )
 5 3.7 0.5

w
λ λ

λ λ λ
− + ≤ ≤=  − − ≥

 

so that we have 

 
7.5 5 0 0.5

( ) 3.7
5 0.5

w
λ λ

λ λ λ
− + ≤ ≤+ =  − ≥

 

Dual problem now solves the problem 
{ } { }1max ( ) , 0 max ( ) 3.7 , 0 5w A x wλ λ λ λ λ λ+ ≥ = + ≥ = − . The optimal solution is obtained for 
0.5λ ≥ . Again multiple solutions appear because of the no differentiability of the recourse 

function. Take 0.5λ =  and create the Benders optimality cut 0.5 6.85xθ ≥ − . Observe this is 
the same cut obtained when solving the subproblem directly by LR. 

Iteration 3: the resolution of the augmented master problem ends with 0x = , 6.85θ = − . 
The region S  is now updated with 0x ≥ , and then the perturbation region with the constraint 

0r ≤ . 
We now solve subproblem for 0x = . We avoid testing feasibility of this point. The dual 

function is now 

 ( ) min 1.5

3.7

5.2

0, 0

3.7 0

,

w y z r

y r

y z

y z

r

y z

λ λ= − − +

− ≤

+ ≤

≥ ≥

− ≤ ≤

∈ ∈] ]

 

or 

 
6.5 0.7 0 0.5

( )
 5 3.7 0.5

w
λ λ

λ λ λ
− − ≤ ≤=  − − ≥

 

The dual problem now { } { }1max ( ) , 0 max ( ), 0 6.5w A x wλ λ λ λ λ+ ≥ = ≥ = −  for 0λ = . 
This solution generates the Benders optimality cut 6.5θ ≥− . 
Iteration 4: now solve the augmented Master Problem 
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min 0.3

0 5

3.7

0.5 6.85

6.5

x

x

x

x

θ

θ

θ

− +

≤ ≤

≤

≥ −

≥−

 

with solution 0.7x = , 6.5θ = − . 
Now solve the dual problem. Observe that no perturbation cut is introduced now because 

the point 0.7x =  belongs to the interior of the region S . Dual problem has to maximize the 
function 

 
6.5 0 0.5

( ) 0.7
5 3 0.5

w
λ

λ λ λ λ
− ≤ ≤+ = − − ≥

 

The dual problem now { } { }1max ( ) , 0 max ( ) 0.7 , 0 6.5w A x wλ λ λ λ λ λ+ ≥ = + ≥ =−  that 
gives the optimal solution 6.5− , with multiplicity of solutions due to the no differentiability of 
the recourse function at point 0.7x = . Observe that the stopping rule is now satisfied. For 

0λ =  the optimum value of the dual function is achieved at 3y = , 2z = , 0.7r =− . 
The solution given by the proposed method finally is 0.7x = , 6.5θ = − , 3y = , 2z = . 

1.11. Summary of results 
We summarize the example results on the following table and figure fore the three 

algorithms. 
 

Optimal solution    Duality 
gap 

A. Relaxation of subproblem integrality conditions 7.05z = − 0x =  7.05θ = −  0.34 
B. Subproblem resolution by LR 6.85z = − 0x =  6.85θ = −  0.14 
C. Subproblem resolution by the proposed method 6.71z = − 0.7x =  6.5θ = −  0.00 
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5. PARAMETRIC BRANCH AND BOUND 

When applying LR to solve a subproblem, or the approach presented in which a partial 
description of the perturbation region is introduced, once a multiplier is proposed from the 
relaxed dual problem, a MIP problem must be solved. This resolution of the dual problem 
makes the calculation of Benders cut very cumbersome. A natural solution then consists of 
continuously updating the Lagrange multiplier as the branching step of the branch and bound 
(B&B) procedure goes on. These ideas are presented on this section with final commentaries 
about its adequacy within the Benders decomposition framework. 

Let 1Y , 2Y  be two closed sets and assume 1 2Y Y⊂ . Suppose we want to solve 

 
1

1

min z cy

Ay b

y Y

=

≤

∈

 and 
2

2

min z cy

Ay b

y Y

=

≤

∈

 (5.1) 

Then it is clear that 1 2z z≥ . If we formulate the lagrangean dual function for each problem 
then 2 1( ) ( )w wλ λ≤ . This is the case with a B&B procedure, in which a decreasing sequence of 
close sets nY , 1,...,n N=  is obtained, such that 

 
1

, , 1,...,
N

n n
n

Y Y Y Y Y n N
=

= ⊂ ⊂ =∩  (5.2) 

where Y  represents the region in which integrality constraints are relaxed. Thus, when 
considering the dual function for each of the previous regions we have that 

 ( ) ( ) ( ) 1,...,nw w w n Nλ λ λ≤ ≤ =  (5.3) 
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and ( ) ( )nw wλ λ→  as the B&B algorithm proceeds. Moreover, the previous sequence is a finite 
sequence, so the last approximate dual function is the function we are looking for. 

This observation enables us to formulate a B&B algorithm that includes the updating of the 
relaxed constraint multiplier by optimizing an approximation of the dual function. This 
approximation is continuously updated as new nodes are explored, so that new cuts are added 
and previous cuts are deleted from the branching node. It should be taken into account that the 
approximation built is neither a lower nor an upper approximation of the final dual function. 
This is because at each iteration of the B&B algorithm we do not have all extreme points of the 
set nY , but just a few, corresponding to the number of different multiplier evaluations at that 
node. 

Another interesting situation is the possibility of having a family of cuts of the ( )MD  
problem for a determined iteration n  of the B&B algorithm that guarantees that the 
approximated master dual problem is bounded, and finding that branching at a node (deleting 
cuts obtained at the branching node) turns the next approximation of the dual problem 
unbounded. This is actually a possibility because there can be infeasible MIP problems whose 
linear relaxation is feasible. 

The parametric B&B is presented to obtain the convexification of the perturbation function 
at the point of interest. However, this technique may independently be used to solve a problem 
via LR. When facing the resolution of the subproblem a partial description of the perturbation 
region is at hand. In case this partial description is not available, the following algorithm solves 
the LR problem through the parametric B&B. At further resolutions of the subproblem, 
information about the branching tree should be used to accelerate the convergence towards the 
optimum. 

1.12. Outline of the method 
Consider the following subproblem 

0
( )PRλ λ  and relaxed master dual problem 

0
( )xMD λ , which 

will take part in the development of the parametric B&B algorithm 

0
( )YPR λ λ  

0 0

2

( ) min

, i

w dy r

A y b r

y Y r R

λ λ λ λ= +

− ≤

∈ ∈
 (5.4) 

0
( )xMD λ  

1

0

0

max

0

0, 1, , , 1, ,

i i

j j

w A x

w dy r

dy r

i k j l

λ

λ λ

λ λ
λ

+

≤ +

≤ +

≥ = =

� �

… …

 (5.5) 

where Y  is the branching region available in an iteration of the B&B algorithm. 
 
Step 1.  (Solve root node). Set 0 0λ = . Select [0,1]λ ∈ . Solve subproblem 

0
( )YPR λ λ . 

If problem 
0

( )YPR λ λ  is unbounded, then obtain a bounding cut and solve 
0

( )xMDλ . Go to 

step 1. Continue in other case. 
If 

0
( ) 0wλ λ >  then problem ( )P  is infeasible. The process stops or continues in order to find 

the sum of infeasibilities required at each primal optimization algorithm. In that case 
evaluations with 0 1λ =  are avoided hereafter. 
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The problem solved represents the root node 1n  of the B&B algorithm and determines a 
first 1 1( , )y r  point that approximates the dual function through the lagrangean. Identify if 

1 1( , )y r  satisfy integrality conditions or not. Evaluate the bounding functions 

0 1 0 1 1 1( ) ( ( ), ( ))L n L n L nλ =  where 1
0L rλ=  for 0 0λ =  and 1 1

1L dy rλ= +  for 0 1λ = . 
 
At this point we assume we have explored a set N  of tree nodes (evaluated once or more 
times for different multiplier values) and that we have an approximation of the dual 
function where we can identify those cuts obtained with integer feasible points. The region 
that branching defines at this moment is denoted NY . We also assume we have a set T  of 
terminal nodes T N⊂  and that all approximating cuts of the dual function approximation 
come from these terminal nodes, except those cuts obtained from previous integer feasible 
solutions encountered. For each terminal node t T∈  we have a lower bounding function 

0 0 1( ) ( ( ), ( ))L t L t L tλ =  that represents the objective functions evaluated for the latest 
multiplier proposed. For each region N  we have the upper bounding function 

0
( )U Nλ  of the 

relaxed dual problem for region NY . We also have a lower bounding function 
0
( )L Nλ  

defined as { }
0 0
( ) min ( ),  terminal nodes of L N L t t Nλ λ= . 

 
Step 2. (Solve dual problem and obtain new multiplier). Set 0 0λ = . Solve problem 

0,( )xMD λ . 

Let 
0 1( )U N w A xλ λ= + . If 0w >  then the dual problem is unbounded, so that we do not 

have enough cuts to assure boundness for the dual problem. The primal problem ( )P  could 
be infeasible. If 0w =  and all active constraints are cuts coming from integer solutions of 
the subproblem, then problem ( )P  is feasible and we will never evaluate dual problem or 
subproblem for 0 0λ = . If 0w =  do 0 1λ =  and solve problem 

0,( )xMD λ . Let 

0 1( )U N w A xλ λ= + . At this point there appear different strategies for the parametric B&B 
algorithm. These strategies come from the mixture of LR and classical branching strategies 
of the B&B algorithm. 

 
Step 3. (Reevaluate terminal nodes for the new multiplier λ  proposed). We assume this value is 

different from the latest multiplier value used to evaluate the terminal nodes so far. Then 
we obtain new NY  extreme points that are appended (on the form of lagrangean optimality 
cuts) to the dual function approximation. We could also obtain new values to form bounding 
cuts. Update 

0
( )L tλ , t T∈  for the proper 0λ  value. If all nodes remain bounded and no 

new NY  extreme points are found, then necessarily 
0 0
( ) ( )U N L Nλ λ=  and go to step 4. In 

other case go to step 2 and obtain a new multiplier or go to step 4. 
This step could be skipped in the algorithm or just passed through it on certain predefined 
iterations. Multiple possible ways of reevaluating the terminal nodes are possible but we are 
not trying to face that problem. If the algorithm does not give the possibility of branching 
at this moment (all terminal nodes are integer feasible), then this step is unavoidable. 
Iterations between step 3 and step 2 represent the classical LR iterations when the 
subproblem feasible region has been frozen to NY . 
 

Step 4. (Selection of a branching node). For the outline of the algorithm we assume we use a 
best-bound strategy. This method chooses the terminal node with the lowest bounding 
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function, expecting the solution to be among the descendent nodes of that terminal node. 
So, select the terminal node as the one with the lowest bounding function 

0
( )L Nλ  that 

depends on the 0λ  value at this moment. The branching procedure will be done based on 
the last optimal solution encountered at that node. In the traditional B&B, if that solution 
is integer feasible, then the algorithm stops with that solution as the optimal one. In this 
parametric B&B version, the algorithm does not stop, without having been proved before 
that the current multiplier λ  is the optimal multiplier. If the last solution is integer 
feasible, then go to step 2. If the last solution is integer feasible and 

0 0
( ) ( )U N L Nλ λ= , then 

the parametric B&B algorithm stops. 
 
Step 5. (Branch and solve). Select a branching variable and create a set of subsequent 

subproblems adding constraints that represent new bounds for certain variables. That 
branching defines a region 1N NY Y+ ⊂ . Solve the subproblems 

1 0
( )

NYPR λ λ+
 associated with 

those new descendent subproblems of the branching node. Delete lagrangean optimality cuts 
at the master dual problem that where formed with non-integer points obtained at the 
branching node2. Augment problem 

0
( )xMD λ  with those cuts that define the optimal 

solutions of the descendent subproblems (lagrangean optimality or bounding cuts). For each 
new terminal node n  (the new subproblems) update its lower bounding function 

0
( )L nλ . In 

case a subproblem is infeasible then prune it and consider 
0
( )L nλ =∞ . That node will never 

be evaluated again. Go to step 2. 
This step is subject to all branching strategies developed for B&B algorithm. The reason of 
going to step 2 at this moment lays on the expected low computational cost of solving 
problem 

0
( )xMD λ , which is an augmented problem of the previous 

0
( )xMD λ  solved, and is 

suitable to be solved with a dual simplex algorithm. 

1.13. Convergence proof 
Lemma 1. Consider situation presented at step 3. If the reevaluation of terminal nodes does not 
produce new NY  extreme points, then 

0 0
( ) ( )U N L Nλ λ=  and the parametric B&B algorithm 

must go to step 4. 
Proof. Consider we have the NY  region at this point of the algorithm. We have then that 

N Nt
t T

Y Y
∈

= ∪ , where NtY  represents each one of the convex regions determined at each terminal 

node of the B&B algorithm. We suppose we have a specific 0λ  value so we can avoid carrying it 
as a subindex all through the proof. 

Let ( )Nw λ  the dual function obtained considering just the NY  region. We have an outer 
approximation of this function i ( )Nw λ  so that 

 ( ) ( )N Nw wλ λ≤ �  (5.6) 

Then { }
0 1 1

ˆ( ) max ( ) , 0 ( )N NU N w A x w A xλ λ λ λ λ λ= + ≥ = + �� � . 

                                            
2 When finding an unbounded problem at a node of the branching tree a bounding cut is 

introduced into the master dual problem ( )MD . That unbounded problem implies problem at 
the root node is unbounded. That bounding cut eliminates the multiplier value that turns the 
problem unbounded, and so it is not necessary to be deleted from problem ( )MD  on future 
branching of that node. 
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It is stated that if reevaluation of terminal nodes remains with all nodes bounded, and does 
not produce new NY  extreme points, then 

0 1( ) ( )NU N w A xλ λ λ= +� � . By the contrary, we have 
that 
Case 1. 

 
{ }
{ }

0 1 0 1

0 1

( ) ( ) min ( )/ , ,

( )/( , ) , ,

i
N N

i i i i i
N

U N w A x dy r A x Ay b r y Y r R

dy r A x y r Ay b r y Y r R

λ λ λ λ λ

λ λ

> + = + + − ≤ ∈ ∈ =

= + + ∈ − ≤ ∈ ∈

� � �

�
 (5.7) 

So that the point ( , )i iy r  does not belong to the set of points defining the approximation 
ˆ( )Nw λ� , opposed to the initial assumption. 

Case 2. 

 { }
0 1 0 1( ) ( ) min ( )/ , , i

N NU N w A x dy r A x Ay b r y Y r Rλ λ λ λ λ> + = + + − ≤ ∈ ∈ =−∞� � �  

So that a region NtY  is unbounded. This contradicts initial assumptions. 
Then we have that 

 
{ }

{ }
0

0

1

1 1

( ) max ( ) , 0

max ( ) , 0 ( ) ( )

N

N N

U N w A x

w A x w A x U N

λ

λ

λ λ λ

λ λ λ λ λ

= + ≥ ≥

≥ + ≥ ≥ + =

�

� �
 (5.8) 

So that λ�  maximizes 1( )Nw A xλ λ+  and 

 
0 01( ) ( ) ( )NU N w A x L Nλ λλ λ= + =� �  (5.9) 

We can even relax the proposition and obtain the following immediately corollary. 
Corollary. If reevaluation of terminal nodes ends with a lowest terminal node such that its 
extreme point is not new, then 

0 0
( ) ( )U N L Nλ λ=  and the parametric B&B algorithm must go to 

step 4. 
Remark. Observe that the corollary implicitly assumed that all associated problems remain 
bounded. 
Lemma 2. Consider the situation at step 4. If the lowest terminal node turns out to have integer 
feasible solution and 

0 0
( ) ( )U N L Nλ λ=  then the actual multiplier is the optimal multiplier for the 

LR procedure at region NY . Even more, the actual multiplier is the optimal multiplier for the 
LR procedure at region Y . Then, the parametric B&B algorithm stops. 
Proof of the final remark. We always have that ( ) ( )Nw wλ λ≥  

If λ�  is optimal multiplier 
0 0
( ) ( )U N L Nλ λ= , then { }1arg max ( ) , 0Nw A xλ λ λ λ= + ≥� . Then 

{ } { }1 1 1max ( ) , 0 max ( ) , 0 ( )N Nw A x w A x w A xλ λ λ λ λ λ λ λ+ ≥ ≥ + ≥ = +� �  

Now { }1 0 1 0 1( ) min ( ), , , ( )i i i
N Nw A x dy r A x Ay b r y Y r R dy r A xλ λ λ λ λ λ+ = + + − ≤ ∈ ∈ = + +� � � �  

with { }( , ) , ,i i iy r Ay b r y Y r R∈ − ≤ ∈ ∈ , because the terminal node satisfies integrality 
constraints. 

So we assure then that 

{ }
{ }

1 0 1

0 1 1

( ) min ( ), , ,

min ( ), , , ( )

i
N N

i

w A x cy r A x Ay b r r R y Y

cy r A x Ay b r r R y Y w A x

λ λ λ λ

λ λ λ λ

+ = + + − ≤ ∈ ∈ =

= + + − ≤ ∈ ∈ = +

� � �

� � �
 

and finally { } { }1 1 1 1max ( ) , 0 max ( ) , 0 ( ) ( )N Nw A x w A x w A x w A xλ λ λ λ λ λ λ λ λ λ+ ≥ ≥ + ≥ = + = +� � � � � �  

The optimal multiplier at region NY  is the optimal multiplier that the algorithm seeks. 
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1.14. Parametric B&B within the Benders algorithm 
A few features ought to be commented when using the parametric B&B to solve the 

subproblem repetitively in a Benders algorithm. 
Remark 1. Observe that dual function ( )w λ  is independent of the first stage value proposed at 
the master problem ( )MP . So outer approximations obtained at a certain iteration of the 
Benders algorithm are valid on further subproblem resolutions, in case no new perturbation cuts 
are introduced. 
Remark 2. Assume a subproblem resolution has ended with an approximation of the dual 
problem given as 

0
( )xMDλ  

1

0

0

max

0

0, 1, , , 1, ,

i i

j j

w A x

w dy r

dy r

i k j l

λ

λ λ

λ λ

λ

+

≤ +

≤ +

≥ = =

� �

… …

 (5.10) 

with { }( , ) , ,i i iy r Ay b r y Y r R∈ − ≤ ∈ ∈ , 1, ,i k= … . 
Assume that the new resolution of the master problem ends with ( , )p px θ  as a solution, with 

the projection of px  defining an extreme point for the shadow S . So the approximated 
perturbation region iR  is constrained with new cuts defining a new perturbation region 1iR + . 
The dual problem is now redefined deleting those cuts such that 1i ir R +∉ . These new 
constraints turn infeasible a set of terminal nodes of the branching tree. These nodes will never 
be evaluated again. 
Remark 3. (Premature end of the parametric B&B algorithm). 

Assume that a new resolution of the master problem ( )MP  ends with ( , )p px θ  as a solution. 
If px  is not an optimal solution, then the resolution of the subproblem ends with value ( )i

p
R xθ , 

and ( )i
p p

R xθ θ> . Let ( )
0 0
( ), ( )U N L Nλ λ  the upper and lower bounds that the parametric B&B 

algorithm is obtaining as the branching proceeds. Let λ  be a proposed multiplier. Solve 
subproblem 

 
0, 0

2

( ) min

,

N

i
N

w dy r

A y b r

y Y r R

λ λ λ λ= +

− ≤

∈ ∈
 (5.11) 

and let ( , )i iy r  its optimal point. In this case the epigraph of the problem (denoted epi NG ) is 
contained in the region { }

00 0 0 0 ,( , )/ ( )i i
Nr r r r dy r wλλ λ λ λ λ+ ≥ + = . If 

0, 1( )N pw Axλ λ λ θ+ > , then 

π λ=−  and 
0, 1( )Nw Axλ λ λ+  determine a valid cut for the master problem, that eliminates the 

previous master problem solution ( , )p px θ . So that the parametric B&B could be stopped (called 
premature end) and the master problem could be solved again with that Benders optimality cut. 
If the parametric B&B is not stopped until optimality, the Benders cut obtained is known in the 
literature as deepest cut. The same situation is applied when the master problem solution turns 
the subproblem infeasible and a feasibility cut is generated. In this case the eliminated first stage 
solution will not appear on further master problems resolutions. Considering non deepest cuts 
could speed down the Benders algorithm convergence towards the optimum. 
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6. NESTED BENDERS DECOMPOSITION 

Nested situations appear when the second stage (or the subproblem) of a two-stage problem 
is solved with decomposition. This situation creates a chain of problems that are solved 
proposing primal solutions for the subproblem and giving back dual values to create an outer 
approximation of the associated recourse functions. 

When introducing integer variables on the process, dual values have to be calculated with a 
LR procedure. This procedure approximates the dual function ( )w λ  with cuts { }i iw dy rλ≤ +  

formed with points belonging to the feasible region { }2 , , iA y b r y Y r R− ≤ ∈ ∈ . If this feasible 
region is not completely known a priori, then cuts that approximate the dual function are 
eliminated as the corresponding points are found not to belong to the feasible region. This is the 
situation presented on section 3.4, where new approximations of the perturbation region 
eliminated cuts of the relaxed master dual problem ( )MD . 

In nested case, this scheme is maintained. The feasible regions for subproblems are modified 
as new perturbation cuts are introduced from master problems, and feasibility and Benders 
optimality cuts are introduced from subproblems. 

Consider a three-stage problem of the form 

( )P  

1 2 3

1 2 1

3 4 2

min

, ,

c x c y c z

A x A y b

A y A z b

x X y Y z Z

+ +

+ ≤

+ ≤

∈ ∈ ∈

 (6.1) 

Second stage problem then solves 

 
2 2

2 1 1

min ( )c y y

A y b A x

y Y

θ+

≤ −

∈

 (6.2) 

In any algorithm iteration that problem is replaced by a relaxed problem whose expression 
is 

( )MP  

2 2

2 1 1

2 2

min

( )p

c y

A y b A x

y

y Y

θ

θ θ

+

≤ −

≥

∈

 (6.3) 

with 2 2 ( )p yθ θ≥  representing the collection of Benders (optimality or feasibility) cuts that outer 
approximate the recourse function at that algorithm iteration. On the resolution of this problem 
with LR, once a multiplier value λ  is proposed, the following problem must be solved 

( )PRλ  

2 2

2 1

2 2

min

( )

,

p

i

c y r

A y b r

y

y Y r R

θ λ

θ θ

+ +

− ≤

≥

∈ ∈

 (6.4) 



 32 

with iR  representing the approximated perturbation region at that algorithm iteration. 
Repetitions of previous problem create an approximation of the dual function ( )w λ  and an 
approximation of the dual problem given as 

( )MD  

1

1 1 1
2 2

2 2

max

k k k

w A x

w c y r

w c y r

λ

θ λ

θ λ

+

≤ + +

≤ + +

…
 (6.5) 

with { }2 2 2( , , ) , ( ),k k k p iy r y Y y r Rθ θ θ∈ ∈ ≥ ∈  considering only phase 2 and lagrangean optimality 
cuts. The successive resolutions of its master problem and its subproblems generate constraints 
for the perturbation region 1iR +  (perturbation cuts) and outer approximations of the recourse 
function 1

2 2 ( )p yθ θ +≥  (Benders optimality cuts and feasibility cuts). Then when facing the 
resolution of the second stage subproblem, there must be removed those cuts such that their 
associated points 2( , , )k k ky rθ  do not satisfy the new constraints. (i.e. 

{ }1 1
2 2 2( , , ) , ( ),k k k p iy r y Y y r Rθ θ θ + +∉ ∈ ≥ ∈ ). 

A few issues must also be commented about nested situations. When second stage is solved 
with the purpose of obtaining a proposal for the third stage problem (forward pass), then the 
problem that has to be solved presents the feasible region 

 
2 1 1

2 2 ( )p

A y b A x

y

y Y

θ θ

− ≤−

≥

∈

 (6.6) 

On the other hand, when trying to obtain a dual value (backward pass), then the feasible 
region of the parametric branch and bound is 
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The second region contains first region. An efficient implementation would try to take 
advantage of these similarities, for example reformulating the region for the first situation as 
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The calculation of the shadow (and consequently the perturbation region) for third and 
future stages can be found in Appendix B. 

7. CONCLUSIONS 

This document has presented a finite Benders decomposition algorithm for mixed integer 
linear programs. Following traditional lines about nonlinear duality theory, the nonconvex 
recourse function is convexified formulating a LR problem whose resolution produces correct 
dual values that outer approximate the nonconvex recourse function. 
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In the Benders algorithm, the recourse function is understood as the perturbation function 
of the subproblem when the right hand side of coupling constraints is modified. For the LR 
procedure, a family of cuts denoted as perturbation cuts is introduced that constrains the 
perturbation region. This perturbation function domain is precisely the projection or shadow of 
the first stage feasible region over the first stage coupling variables space and is continuously 
updated as Benders algorithm proceeds and new perturbation cuts are found. 

The algorithm converges to the optimal value of the problem, and at the optimal solution 
there is no duality gap between the primal solution and the resolution through the LR. 

The LR procedure is introduced within a B&B algorithm, developing a parametric B&B 
algorithm suitable for this situation. This parametric B&B gives back the minimization of 
infeasibilities (due to the relaxed constraints) in case the subproblem turns out to be infeasible. 
In the feasible case, it gives back the value of the lower convex envelope of the recourse function 
at the point proposed at the master problem. 

The situation is generalized to nested decomposition, with the added difficulty of calculating 
the perturbation region for third and further stages. 
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1. APPENDIX A 

1.1. Linear problem 
Consider the problem 
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( )MP  
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 (A.1) 

Let 1 2( , , )x x θ  be the optimal solution of this problem and let 2 1 2( , , )x P x x θ=  the projection 
of this point over the coupling variable space 2n ′\ . Let 

1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +  the edges of the 
feasible region at point 1 2( , , )x x θ . Let 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +

� � � �
 the projection of these edges over 

the coupling variable space. We have then that 2x  is an extreme point of the shadow S  if and 
only if the coupling variable space cannot be expressed as a positive linear combination of the 
vectors 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +

� � � �
. This situation leads to the following criterion based on Farkas’ 

law. 
Criterion 1. 

Let 1 (1, 0,0,..., 0)e = , 2 (0,1, 0,..., 0)e = , ... ,
2

(0, 0,0,...,1)ne ′ = , 0 ( 1, 1, 1,..., 1)e = − − − − . It is 

immediately that every 2nv ′∈ \  can be expressed as a positive linear combination of previous 
elements. 

Consider the family of problems 

( )iP  

min

0

1 1

ie x

Dx

x

≤

− ≤ ≤

 (A.2) 

where D  represents a matrix whose rows are the elements 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +
� � � �

. 
Positive solution of this problem ( )iP  implies ie  cannot be expressed as a positive linear 

combination of vectors 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +
� � � �

. Consequently, positive solution of at least one of 
those problems implies 2x  is an extreme point of the shadow S . Denote 2( )C x  the cone defined 
at point 2x  by directions 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +

� � � �
. 

Criterion 2. 
This criterion is modified so as to find the minimum set of projected edges that define the 

same positive cone 2( )C x . 
For 1 11 to 1k K n m= = + +  consider the problem 

( )kP  

min

0

1 1

k

k

d x

D x

x

≤

− ≤ ≤

�

�
 (A.3) 

where kD
�

 represents matrix D  with the k -row removed. 
Positive solution of this problem implies kd

�
 is not a positive linear combination of the 

remaining vectors. So it is an extreme direction of the cone at point 2x . On the contrary, 
negative or null solution of this problem implies kd

�
 can be represented as a positive linear 

combination of the remaining vectors. So it is not necessary any more and it is deleted from the 
family 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +

� � � �
 and matrix D  updated with the k -row removed. This algorithm 

ends with a minimal set of extreme directions that generates the positive cone at point 2x , 

2( )C x . 
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These both criteria can be interchanged so as to firstly obtain a minimal set of extreme 
directions and later to check if the positive cone generated (by the remaining vectors) is the 
whole space or not. 

1.2. Mixed integer problem 
In this case the solution of problem 

( )MP  

1 1 2 2

1 0 2

1 0 2

min

0 ( ) 1, ,

( )    1, ,

j j j

i i i

c x c x

A x x j l

A x x i k

x X

θ

θ π

θ θ π

+ +

≥ + − =

≥ + − =

∈

� …

…
 (A.4) 

ends with a set of terminal nodes N , together with a solution 1 2( , )n n
nx x x=  for each node and a 

family of edges 
1 1 1 11 2 1( , ,..., , )n n n n

n m n md d d d+ + +  for each node. Consider 0 0
0 1 2( , )x x x=  the optimal 

solution of problem ( )MP . Then we consider the positive cone generated by all projected edges 
together with vectors connecting all the projected solutions. So we consider the positive cone 

generated by 
1 1 1 11 2 1( , ,..., , )n n n n

n m n md d d d+ + +

� � � �
 from 1, ,n N= …  and the vectors 0 1 0 2 0

2 2 2 2 2 2( , , , )Nx x x x x x
JJJJJGJJJJG JJJJG

… . 
We apply now criterion 2 for considering a minimal set of extreme directions and later 

criterion 1 (over this minimal set) to check whether 0
2x  is an extreme point for S  or not. 

APPENDIX B 

1.3. Inequality constraints 
Consider a nested situation as the one presented on section 6 and let and let the problem 

( )P  take the form  

( )P  

11 1 12 2 21 1 22 2 3

1 2 2 1

3 2 4 2

1 2 1 2

min

( , ) , ( , ) ,

c x c x c y c y c z

A x A y b

A y A z b

x x x X y y y Y z Z

+ + + +

+ ≤

+ ≤

= ∈ = ∈ ∈

 (B.1) 

It is defined the shadow 1S  of the region X  over the coupling variable space as  

 { }1 2 1 1 2/ /( , )S x x x x X= ∃ ∈  (B.2) 

so that its associated perturbation region keeps the form 

 { }1 2 1 1 2/ /R r x S r A x= ∃ ∈ =−  (B.3) 

The interest on further stages lays on the next projection (particularized for three stages in the 

appendix) 

 { }2 2 1 2 1 1 2 1 2 2 1/ ( , ) , / , ( , ) ,S y x x x X y x X y y y Y A x A y b= ∃ = ∈ ∃ ∈ = ∈ + ≤  (B.4) 

so that its associated perturbation region keeps the form 

 { }2 2 2 3 2/ /R r y S r A y= ∃ ∈ =−  (B.5) 
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In a nested decomposition procedure, we are interested in finding 1S  and 2S . Constraints 
for region 1S  (and consequently for 1R ) are found after solution of a first stage master problem 
and application of criterion 1 and 2. A few comments are necessary when solving the second 
stage problem. Let the master problem solved in a second stage take the form 

( )MP  

21 1 22 2 2

2 1 1 2

2 2 2

min

( )p

c y c y

A y b A x

y

y Y

θ

θ θ

+ +

≤ −

≥
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 (B.6) 

Let 1 2 2( , , )y y θ  be the optimal solution. The problem now is to check if 2 1 2 2( , , )y P y y θ=  is an 
extreme point of the region 2S  and, in that case, to calculate the associated positive cone to 
constrain the perturbation region. It might be pointed out that 2S  is the projection of the 
feasible region 
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 (B.7) 

over the coupling variable space 2y , defined by variables connecting second and third stage. 
Definition. 2y  is a 2-extreme point of 2S  if it satisfies criterion 1 when considering 

2 1 2 2( , , )y P y y θ= , with 1 2 2( , , )y y θ  optimal solution of second stage problem. 
We immediately obtain the following results. 

Fact. If 2y  is not a 2-extreme point of 2S  then 2y  is not an extreme point of 2S . 
Assume then 2y  is a 2-extreme point of 2S . We have the following fact. 

Fact. If 2y  is a 2-extreme point and 2 1 1 2A y b A x≤ −  is not active, then 2y  is an extreme point. 
In case 2 1 1 2A y b A x≤ −  is an active constraint, then 2y  will be an extreme point if an only if 

the region { }2 2 2 1 1 2, ( ),py y A y b A xθ θ≥ ≤ −  is as biggest as possible, i.e., there is no 1 2( , )x x x′ ′ ′=  
such that the region { }2 2 2 1 1 2, ( ),py y A y b A xθ θ≥ ≤ −  is included in the region 

{ }2 2 2 1 1 2, ( ),py y A y b A xθ θ ′≥ ≤ − . 

Then consider the point 1 2( , )x x x=  obtained at first stage problem. In case 2x  is not an 
extreme point for the region 1S  (projection of first stage feasible region over the coupling 
variable space), then 2x  can freely move alongside any direction, so that there is a vector d  
with 1 2 1 2( )A x A x d≥ + . We are assuming without lost of generality 1A  is a nonsingular matrix. 

In case x  is an extreme point for its region 1S  then consider the positive cone 2( )C x to be 
given by the extreme directions 1 2( , ,..., )kd d d

� � �
. These extreme directions are found as a result of 

applying criterion 2 to the first stage solution. 
Then, if 1 0kAd ≥

�
, : 1,...,k K∀  we can assure 2y  is an extreme point for region 2S . 

The previous results are summarized on the following proposition. 
Proposition. Let 2 1 2 2( , , )y P y y θ=  the projection of the optimal second stage solution onto the 
space of coupling variables. Then 2y  is an extreme point of 2S  if and only if: 
 
1. 2y  is a 2-extreme point and 2 1 1 2A y b A x≤ −  is not an active constraint. 
2. 2y  is a 2-extreme point, 2x  is an extreme point of 1S and 1 0kAd ≥

�
, kd∀

�
 extreme direction 

of 2( )C x . 
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1.4. Equality constraints 
Now the situation is slightly different. Consider the problem 

( )MP  
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and assume its feasibility. In other case a feasibility cut will be generated and we will not be 
worried about the optimal solution. In case feasibility its resolution is equivalent to the problem 
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with M  big enough. Then we transform it to the situation presented on section 10.1. 
 


