Using JavaScript in a compatible way

Rafael Palacios*

*Universidad Pontificia Comillas, Madrid, Spain

Abstract

Many web pages use JavaScript to enhance appearance and to perform some client—side operations such us Form
verification. Today the majority of browsers are JavaScript—capable, consequently many system administrators are disregard
of the fact that their pages cannot be used properly if JavaScript is not supported or disabled. Browsers without JavaScript
support are rare, but the number of users that disable JavaScript is quite significant. Another issue is that sometimes
security is relaxed assuming that form fields have been verified by a client—side data validation function. Allowing access
to non—JavaScript browsers increases accessibility and encourages programmers to pay more attention to security threats.
This paper describes some programming tricks to ensure compatibility in web page design.

1 Introduction

JavaScript is a programming language developed by Netscape in 1995 to add dynamism and more graphical possibilities to
existing web pages. It is not a compiled language, source code is embedded inside HTML code that defines a page. HTML
is used to define the overall appearance of the page and JavaScript is used to define functions that respond to certain signals
such as mouse actions or time events. For similarities in syntax, JavaScript took its name after the Java programming
language. Java was developed by Sun Microsystems and became very popular after Netscape announced that it was going
to incorporate Java Technology into its browser, in march 1995.

Since JavaScript was officially announced on December 4, 1995; most Internet browsers have adopted this script language
as a standard and today it is widely supported. Nevertheless many Internet users have opted to disable this option in their
browsers, because JavaScript is often use as an advertising tool and because of apprehension to execute downloaded code.
Advertising is sometimes annoying, specially when ads are shown sequentially, associating the close event in a window to
the creation of another window with the following advertisment. In addition, some people may have disabled JavaScript
inadvertently by selecting the highest level of security in section "Internet Options" of Microsoft's Browser. According to INT
Media Group statistics [1], that analyzes an average of 700,000 visitors/hour, 99% of today's Internet browsers can support
JavaScript, but it is enabled only in 87%. The number of users accepting JavaScript code had been increasing since the
appearance of Netscape Navigator 2 and Internet Explorer 3 (first browsers to support JavaScript 1.0), but the percentage
stabilized at 87% since May 2001.

Some web sites are economically supported by advertising companies and will not be able to offer any content without their
sustenance. If their advertisements require JavaScript to be shown, then non—JavaScript browsers may not be allowed.
But in most cases, and specially in intranets, web pages must be developed to be fully compatible. In this paper it is shown
how to develop Forms, image effects and text menus, compatible to all browsers.

2 Form Validation

One of the most important applications of JavaScript is data validation in forms. When the user presses the Submit button,
a JavaScript function reads and verifies all the fields in the form before sending any data to the server. If some error is
found, the data is not sent and the user is encouraged to correct the error. This kind of data validation is very convenient,
it reduces server load and network traffic. It is faster because users get error messages immediately , instead of waiting for
server—side validation and networks delays. Nevertheless, JavaScript form validation can not replace server—side
verification, otherwise server security will be compromised. Server—side validation of inputs is always necessary as the
program in charge of processing the data (typically a Common Gateway Interface CGI) may not work properly. The most
common errors are due to values out of range or failure to meet a required length and format, that may yield to a buffer
overflow. Anyone can write his own page with a Form tag defined to send any kind of information to any server, acting as
areplacement of the original form page. Therefore it is very easy to attack any form processing program with data in wrong
format.

Since JavaScript data validation only ensures correct data for harmless users, it must be considered as an additional work
to help users. This code, however, should never replace the same functional code in the program in charge of processing the

—1-

data on the server. Moreover, valid ranges and lengths of each field can be seen in the JavaScript code, making it evident
to construct malicious content to be sent to the server.

Web page developers should focus on the server—side to provide data checking and processing. Almost any kind of
programming language can be used for this task, from conventional high level programming languages to script languages
like PERL, or web oriented languages such as PHP, ASP.NET or JSP [3]. In addition to the server—side code, web developers
may also provide some JavaScript code for data validation to reduce server load, network traffic, and annoying delays for
capable browsers. In some pages I have seen the call to the verification function associated to the submit button of the form,
so if there are no errors the information is sent using form.submit (). The code for the button is:

<input type="button" value="Submit Data" onClick="verify()">

This kind of code will never work on non-JavaScript browser, because the parameter onc1ick will be ignored so clicking on
the button will not do anything. The correct way to add data validation to forms is through the onsubmit directive of the form
tag, as described in [2]. In addition, a good trick is to include a warning if JavaScript is not supported.

<html>
<head>

<title>Example 1</title>

<script language="JavaScript">

<!-- Hide code if JavaScript is not supported

function verify (fm)

{

var msg="";

var obj;

//Check all the fields first
for(var i = 0; i1 < fm.length; i++) {

obj = fm.elements[i];
if (obj.required) {
if ((obj.value == null) || (obj.value == "")) {
msg += "The field '" + obj.name + "' is empty.\n";

}
}

//Print all the error together
if (msg=="") return true; //returning true will send the data to the server
alert(
" E R R O R, your data was not submitted\n" +
N o \n\n\n" +
msg +
"\nPlease correct the error and re-submit.\n");
return false;
}
//End of hidden code -->
</script>
</head>
<body>
<form name="form2"
method="post"
action="/cgi-bin/server-program"
onSubmit="
this.fieldl.required=true;
this.field2.required=true;
this.field3.required=false;
return verify(this) ;">
———————————— text and <input> tags -------—-------—-
<input type="submit" value="Submit Data">
<NOSCRIPT> Warning, this browser is not JavaScript-capable. Data will be verified at the server. </NOSCRIPT>
</form>
</body>
</html>

In the previous example, verify function is very simple and only checks if the required fields are empty, but it shows the
recommended basic structure for form verification:

+ JavaScript code is defined in the header, hidden to old browsers.
* The call to verify is defined as onSubmit in the form tag

+ A good practice is to define parameter or field ranges also inside the form tag, but they can also be defined in the input
tags

* The submit button does not need additional definitions such as onclick.

* The text within <xoscripT> and </NoscripT> is only shown in browser where JavaScript is not supported or has been
cancelled.

Since JavaScript treats the <!-- sequence as a single-line comment and ignores the --> sequence, another way to show
messages on non-JavaScript browsers is the following [2]:

<SCRIPT LANGUAGE="JavaScript'">
<!-- --> Your web browser does not support JavaScript.
<!-- Hide code if JavaScript is not supported

JavaScript code goes here

//End of hidden code -->
</SCRIPT>

The latter way to show HTML text on non-JavaScript browsers requires more code, but it is more backward compatible. To
be more precise, the text hidden by <noscripT> tag will be shown in Netscape 2.0 that is a JavaScript1l.0—enabled browser.
Despite this problem of incompatibility, specific to Netscape 2.0, the <noscr1pT> tags are preferred for its compact syntax.

3 Forms With Just One Field

For some pages it is very useful to provide a way to make a selection within a list of options in a pull-down menu. This kind
of selection object requires just one line of space, as compared to one line per option in the classical HTML way using <a>
tags. The way to implement the list of items is using a form with a select object of size equal to one line. Although a submit
button is usually provided in forms, in the case of form with just one field it is more efficient to process the request as soon
as the person makes the change. This can be done in JavaScript associating the submit function to the event onchange of the
select object, so the submit button is only needed if JavaScript is disabled.

<form action=newlanguage.cgi method="POST">
<SELECT name="lang" size="1" onChange="form.submit () ">
<OPTION VALUE=1>English

<OPTION VALUE=2>Espafiol

<OPTION VALUE=3>Francais

<OPTION VALUE=4>Deutsch

</SELECT>

<NOSCRIPT>

<input type="submit" value="GO">
</NOSCRIPT>

</form>

4 Image Changes

One of the most attractive features of JavaScript powered web pages is the ability to change images or make button effects
as the mouse moves around the page. Images are usually changed as a consequence of onMouseover and onMouseout events,
which are properties of the anchor object defined inside <a> tags. In HTML code, an image is included using <1Mc> tag, that
has a property called src to define the source of the image to be shown. JavaScript is allowed to read or change src property
of any image object. For compatibility with non-JavaScript, it is important to define the image and the link in pure HTML
way, and then add extra definitions for JavaScript—enabled browsers.

<html>
<head>
<title>Images Example</title>
<script language="JavaScript">
<!-- Hide code if JavaScript is not supported
function Changelmage (image_ obj, image src)
{
image obj.src=image src;
}
//End of hidden code -->
</script>
</head>
<body>
<hl>Main Menu</hl>
<a href="pagel.html"
onMouseOver='ChangeImage (img0l, "red ball.gif")'
onMouseOut ='ChangeImage (img01,"gray ball.gif")'>

Go to page 1

<a href="page2.html"
onMouseOver='ChangeImage (img02, "red ball.gif")'
onMouseOut ='ChangeImage (img02,"gray ball.gif")'>

Go to page 2

</body>
</html>

In the previous code all the definition are together (links address, initial image, onMouseOver image, and onMouseOut
image) therefore the possibility making mistakes is diminished. Non—dJavaScript browsers will ignore the properties
onMouseover and onMouseout; they will only show the initial images defined inside 1M tag, but at least one image is shown
and the link works. Although the code is easy and clear, it may produce unwanted delays when the cursor is moved over
alink for the first time. The delay is due to the loading of the alternative image defined for onMouseover, and can be annoying
if the connection is slow or if the images are large. The only images loaded at the same time as the HTML page are those
defined in 1Mc tags, all other images are loaded as needed. After loading an image, there are no additional delays using it
because it is stored into the browser's cache. To force an image to be cached, it is possible to create an rmage object in
JavaScript. One way to do it is defining a preloadimages function that can be associated to onLoad event of the <body> tag.
Here is an example:

function PreloadImages ()
{
img0lon =new Image () ; imgOlon.src="red_ball.gif";
img0loff=new Image () ; imgOloff.src="gray ball.gif";
}

To call this function from the body tag, one has to write: <body onLoad="PreloadImages ()">

After doing these definitions both images are stored in the cache, so all image changes are faster. It is also possible to make
calls to the same changeImage but using the Image object just created, instead of using the filename:
<a href="pagel.html"

onMouseOver="ChangeImage (img0l, img0lon.src)"

onMouseOut ="ChangeImage (img0l, imgOloff.src)">

Go to page 1

Nevertheless, the former way to call changeImage is also valid as the browsers are smart enough to detect that the filename
in the string is the same as the one cached in preloadimages. Therefore it could be easy to use any variable name in
PreloadImages, and then filenames in the call to changeImage.

5 Text Menus

This section describes how to create dynamic menus in text mode. There is a main menu in the web page and several
submenus that are shown according to the position of the mouse over the main menu. Both kinds of menus are defined using
tables consisting on one column. The sizes of the cells in the main menu are hardcoded, making it possible to know the
correct coordinates where the submenu tables should appear. The main menu table is defined inside a <p1v> tag, that allows
determining the position of table. Each submenu is also defined inside <p1v> tags, in order to specify the coordinates of its
origin and to make it initially invisible. The entries of the main menu are links to other pages, these links are mainly used
by non—dJavascript browsers. In JavaScript mode, when the cursor is over one of these links the value of the visibility
attribute of the corresponding submenu is changed from "hidden" to "visible", so it suddenly appears at the correct
coordinates.

All the dynamism of the submenus is defined using onMouseover property of the <a> tag. It is important to pay attention to
the objects that should become visible or invisible on every event. In the code presented here, the submenu does not
disappear unless another submenu is shown, so the user can easily make a selection in the submenu. To hide all submenus,
two white images have been added to the first and last rows of the main menu. These images provide the expected behavior
when the cursor leaves the main menu without making any selection: cleaning of submenus and recovery of whatever
information was located under the submenu area. Similar objects could be added to submenu tables, but most people find
the selection process very sensitive to mouse movements and at the end more difficult.

The menu tables are drawn as transparent objects over the current page, and the background is recovered when the submenu
is hidden. The parameter bgcolor in <table> tag can be initialized to provide a background color to the menus. In fact,
white.gif in the code is an image in GIF format made of one pixel of transparent color, so even the first and last rows of the
main menu will show the background of the page (if bgcolor is not defined) or the background of the table.

In order to have access to p1v parameters, it is necessary to take into account the different implementations of this kind of
objects in Netscape4, Netscape6 and Internet Explorer. Up to this section all the code was compatible with all browsers, but
the access to p1v objects is not standard. Bill Pena proposed a set of very useful JavaScript functions to find objects in
different browsers [4]. The code to identify the version of the browser and these functions are located inside the header of
the page. Once these functions have been declared, object access is as simple as using variables:

getMyStyle ('submenu02') .visibility="hidden';
The code for a web page that contains one menu with two submenus is presented below:

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="Author" content="Rafael Palacios">
<title>Text Menus</title>

<script language="JavaScript">

<!-- Hide code if JavaScript is not supported

/*

getMyStyle functions will return the object of a DIV tag.

This function is different for Internet Explorer, Netscape 4 and Netscape 6

Here is a variation of the method proposed by Bill Pena
http://www.oreillynet.com/pub/a/javascript/2002/01/23/crossbrowser style.html?page=2
*/

//document.write ('appName = ' + navigator.appName + '
');

//document.write ('appVersion = ' + navigator.appVersion + '
');

//document .write ('appVersion.substring(0,1) = ' + navigator.appVersion.substring(0,1) + '
');
//document .write ('appCodeName = ' + navigator.appCodeName + '
');

if (navigator.appName == 'Netscape' && navigator.appVersion.substring(0,1) < 5) {

document.getMyStyle = nav4GetStyle;
} else {

document.getMyStyle = nav5GetStyle;
}

function nav5GetStyle (id) {
var obj = document.getElementById (id)
return obj.style;

}
function nav4GetStyle (id) {
return nav4FindLayer (this, id);

}

function nav4FindLayer (doc, id) {

var 1i;
var subdoc;
var obj;
for (1 = 0; i < doc.layers.length; ++1i) {
if (doc.layers[i].id && id == doc.layers[i].id)

return doc.layers[i];
subdoc = doc.layers[i].document;
obj = navé4FindLayer (subdoc, id);
if (obj != null) {
return obj;
}
}
return null;
}
//End of hidden code -->
</script>
</head>

<body bgcolor="#FFFFFF" text="#000000">
Hi, This is an example of text menus by Rafael Palacios

<div id='mainmenu' style="position:absolute; left:10; top:50;">
<table width="100" border="0" cellpadding="0" cellspacing="0" bgcolor=#FFFFFF>
<tr><td align="right" height="20"><!-- First cell used to delete all submenus -->
<a href="" OnMouseOver=
"getMyStyle ('submenu0l') .visibility="hidden';
getMyStyle ('submenu02') .visibility="hidden';">

</td></tr>

<tr><td align="right" height="20">
<a href="optionl.html" OnMouseOver="
getMyStyle ('submenu0Ol') .visibility="visible';
getMyStyle ('submenu02') .visibility="hidden';">
option 1
</td></tr>

<tr><td align="right" height="20">
<a href="option2.html" OnMouseOver="
getMyStyle ('submenu0l') .visibility="hidden';
getMyStyle ('submenu02') .visibility="'visible';">
option 2

</td></tr>
<tr><td align="right" height="20"><!-- Last cell used to delete all submenus -->
<a href="" OnMouseOver=

"getMyStyle ('submenu0l') .visibility="hidden';
getMyStyle ('submenu02') .visibility="hidden';">

</td></tr>

</table>

</div>

<!-- SUBMENUS -->
<div name="submenuOl" id="submenuOl" style="position:absolute; left:112; top:70; visibility:hidden">
<table width="100" border="1" cellpadding="0" cellspacing="0">

<tr><td>

option 1.1

</td></tr>

<tr><td>
option 1.2
</td></tr>

</table>

</div>

<div name="submenu02" id="submenu02" style="position:absolute; left:112; top:90; visibility:hidden">
<table width="100" border="1" cellpadding="0" cellspacing="0">

<tr><td>

option 2.1

</td></tr>

<tr><td>
option 2.2
</td></tr>

<tr><td>
option 2.3
</td></tr>

</table>

</div>

</body>
</html>

Another difference in web browsers is that Netscape4 ignores <p1v> tags if JavaScript is disabled, therefore submenus appear
at the end of the web page. In Netscape6 or Internet Explorer, visibility attribute is taken into account even if JavaScript
is disabled. One easy workaround is to define a non—JavaScript file that only contains general HTML code that describes
the page and the main menu, but without submenus. The header of this page must include the following code that replaces
the current page (my_home_page.html) by the JavaScript version shown above:

<script language="JavaScript">

<!-- Hide code if JavaScript is not supported

location.replace ("my home page Jjs.html");

//End of hidden code -->
</script>

It is also possible to create menus in graphic mode, using images and the properties onMouseover and onMouseout as described
in the previous section. Text written in images can show color changes and 3D effects, adding more dynamism and improving
the overall appearance. In this case each menu could be built as a column of images or as a big image divided into active
regions defined in a <map> tag. Graphic menus require more computer power to redraw images and better bandwidth to
transfer all the images efficiently. The only concern, in term of compatibility with non—Javascript web browsers, is to define
the images of the main menu as described above and to keep submenus hidden.

6 References
1] The Counter Statistics. http://www.thecounter.com/stats. March 2002.
2] David Flannagan, JavaScript: The Definitive Guide. Ed. O'Reilly and Associates, ISBN: 1-56592-235-2, 1997.

3] Brian Jepson, "From Script to Database" in PC Magazine — Ziff Davis Media, Vol 20, No 21, December 11, 2001.

—_ o, o,

4] Bill Pena, "O'Reilly Network: Cross-Browser Style Objects", http://www.oreillynet.com/pub/a/javascript
/2002/01/23/crossbrowser_style.html, April 2002.

