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Abstract—This paper describes a new neural 
network able to adapt itself, both its parameters 
and its structure, to a data set in real-time 
conditions. The adaptation is based on a non-
supervised learning procedure. The new neural 
network can automatically create interconnections 
between neurons using any generic activation 
function. Still another important feature of this 
new neural network is the use of few neurons to 
make a good prediction using a reduced number 
of examples. This is relevant in order to make fast 
calculations using few resources in real-time 
applications. Some examples using this neural 
network are included in order to demonstrate its 
good performance. These examples use elliptical 
Gausian functions as domains for the neurons. 
 
Index terms—real-time neural network, neural 
network self-adaptation, dynamic neural network 
(DNN), topologies representing network (TRN), 
elliptical Gaussian domain of neurons, radial basis 
function network (RBFN), probability density 
function (PDF) 

I. INTRODUCTION   
As is already known, there are many algorithms 
based on non-supervised learning for the 
training of neuronal networks. Their 
applications are diverse, such as clustering [1], 
density function estimation [2], aid to the 
supervised learning [3] [4] and networks for 
topology representation  [5].  
 
Some of these algorithms are “k-means” [6] and 
“Neural Gas” [7]. They require the making of 
an a priori decision concerning the number of 
neurons that the neural network will use before 
its training. Therefore, they have little ability for 
adaptation under unknown scenarios for the 
designers.  
 
An alternative could be neural networks that 
dynamically change their structure such as 
“Growing Neural Gas” [8], “Growing Cell 
Structures” [9], “Dynamic 
TopologyRrepresenting Networks” [10]. Also, 
they can create interconnections between 
neurons. This type of neural networks are 

referred to as  “topology-representing 
networks”.  However, they have several weak 
points: the training is controlled by a great 
number of parameters that can be changed, they 
need a large data set to calculate an acceptable 
solution and most importantly, they generate 
complex neural networks with a large number 
of neurons. In counterpart, their algorithms are 
prepared to run in real time and are able to adapt 
their structure under new situations.  
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The previously mentioned types of algorithms 
can be used to aid the supervised learning 
process of RBFN networks [3] [4], where the 
centers of the radial units are fixed by these 
algorithms, the width of the radial unit is 
calculated through heuristic rules and finally an 
optimization algorithm is applied. The weak 
point is to calculate the width of the radial unit 
through heuristic rules, which sometimes entails 
falling into a local optimum.  
 
On the other hand there are learning algorithms 
for the estimation of density functions (FDP) 
[11]. These are based on the optimization of the 
logarithmic probability of a data set. Usually 
they need to limit the maximum number of 
neurons to be used, in order to prevent a perfect 
learning situation by a continuous addition of 
neurons with the consequent lost of efficiency 
and generalization capability. Some papers [12] 
recommend the use of a function that weighs the 
quality of the model and the cost to add a new 
neuron. However, this is a laborious process 
since there are problems that require a greater 
number of neurons, due to the complexity of the 
data distributions. 
 
In this paper a new Real-Time Dynamic Neural 
Network (RTDNN) is proposed  which is able 
to adapt, both its parameters and its structure, to 
a data set in real-time conditions without 
previous knowledge. The training process is 
non-supervised and it would be based on 
existing soft competitive learning techniques 
[5]. It does not require a great number of 
samples to carry out a good adaptation. The 
RTDNN consists of a reduced number of 
neurons with generic activation function. It is 
mandatory that this activation function be 
convex and with axial symmetry in respect to its 
own axes (they do not have to coincide with the 
co-ordinate axes). An example of such a 
function is the elliptical Gaussian function that 
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will be used in the examples included in this 
paper. This type of activation function allows to 
obtain a good adaptation, requiring few neurons 
and great generalization capability. In addition 
to this, the neurons can be interconnected to 
each other. It facilitates the creation of clusters 
and the representation of topologies. The 
RTDNN is designed to be adapted with each 
sample that is collected. All these characteristics 
of the RTDNN are useful for:  
 
• Applications running in real-time.  
• Applications using an unknown size of the 

data set. 
• Applications without knowledge available.  
• Applications for clustering and construction 

of topological maps.  
• Estimation of density functions.  
• Applications of data mining and case based 

reasoning.  
 
This paper is organized in the following 
sections. First, the RTDNN is described, 
including its structure and its main parameters. 
The next section presents the algorithm used by 
the RTDNN for training. Finally, some 
examples about the performance of the RTDNN 
are included. 

II. DESCRIPTION OF THE RTDNN 

The objective of this section is the description 
of the RTDNN. A special notation will be used 
in order to simplify the RTDNN description 
where its structure is presented in Figure 1.  

A. RTDNN Notation  
 
M: Workspace dimension. 
 
R : Neural network workspace of dimension M. 
 
Ri : Workspace of the neuron i. 
 
I : Number of neurons in the neural network. 
 
NNI : Set of  I neurons. Each element of this set 
is called nni. 
 
N : Number of sample vectors of dimension M 
each one, that belong to the workspace R. 
 
XN : Set of N sample vectors of dimension M, 
that belong to the workspace R. Each sample 
vector is called xi. 
 
Ki : Number of sample vectors of dimension M, 
that belong to the workspace Ri. 

i
Ki

X

i
jkx

: Set of Ki sample vectors of dimension M, 
that belong to the workspace Ri . Each sample 
vector of this set is called x with components 

. 

i
j

 
i
Ki

µ : Mean vector of the Ki sample vectors of 
dimension M, that belong to the workspace Ri. 
 

i
Ki

Ω : Covariance matrix of the Ki sample 
vectors of dimension M, that belongs to the 
workspace Ri. This matrix has dimension MxM. 
Each element of this matrix is called ; 
being x the row and y the column of the matrix 
to which the element belongs. 

i
Kyx i⋅),(ν

 
Re : Input region. 
 
H : Number of sample vectors of dimension M 
that excite the neural network. 
 

e
HX : Set of H sample vectors of dimension M 

that excite the neural network; in another words 
they belong to the input region. This is the input 
data set to the neural network. Each sample 
vector of this data set is called x . e

i

 
e
Hµ  : Mean vector of the H sample vectors of 

dimension M that excite the neural network. 
 

e
HΩ : Covariance matrix of the H sample 

vectors of dimension M that excite the neural 
network. 

B. RTDNN Description 

Let be  a sample vector set 
belonging to R

{ }N
iiN 1== xX

{ }M
jij 1

x
=

INN

  with R ⊂ ℜM and 
. The information included in this 

vector will be represented by the following 
neural network  that is a 
RTDNN, see Figure 1.  

i =x

{ }I
iinn 1==
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Figure 1: RTDNN structure 

Each neuron nni in the RTDNN is specialized in 
a particular variable region of the workspace Ri  
with Ri ⊂ R. The original sample vectors 
included in this region, 

 will be 
characterized by the following RTDNN 
parameters :  

i
i
j

K
j

i
j

i
K Ri

i
∈= = xxX /}{ 1

 
• The number of sample vectors that belongs 

to region Ki  
• One vector representative obtained by 

the estimation of the mean values of the 
sample vectors of that region. 

i
Ki

µ

∑
=

=
i

i

K

j i

i
ji

K K1

x
µ  

• A set of quadratic distances in respect to 
the mean in each region Ω such that i

Ki
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According to the RTDNN parameters, all the 
information of a particular region could be 

substituted at an instant of time by M2+M+1 
parameters. They have the following meaning: 
 
M: the M dimensional position of the i region 

 i
Ki

µ
1: the number of samples in that region  
M2 : the M2 parameters that measure the shape 
and size of the region. 
 
These parameters suggest the use of activation 
functions with axial symmetry in respect to their 
main axes of information in the neurons. These 
axes could be or could not be the cartesian 
coordinates in the domain. This is a special 
RTDNN feature, instead of activation functions 
with total symmetry used by some neural 
networks. Although the number of parameters 
used in each region is greater than that required 
by other types of simpler activation functions, it 
allows for a lower number of neurons to make a 
good adaptation with reduction of time and 
resources required. 
 
On the other hand the neurons can be 
interconnected to each other so that each neuron 
can have some neighboring neurons. These 
connections are quantified indicating the force 
of the same ones. In this manner, the 
interdependence of the neurons can be 
quantified to each other. This is an important 
advantage of the RTDNN. 

III. RTDNN TRAINING 
In this section the process followed to adapt the 
parameters of the RTDNN will be described. 
This learning procedure is based on the 
automatic fitting of the RTDNN parameters 
using a set of recursive calculations. According 
to these parameters, the excitation of each 
neuron can be measured and also, fusion of two 
regions dominated by two near neurons can be 
decided or not. All this information guides the 
RTDNN training process allowing for a 
dynamic and fast adaptation of the neural 
network structure and its parameters. 
 
The structure of this section is the following. 
First, the recursive equations previously 
mentioned will be presented, next the 
measurement of the excitation of each neuron 
will be described, and also, the procedure to 
fuse regions belonging to near neurons. Finally, 
the RTDNN algorithm itself will be presented. 

A. Recursive equations for estimation of the 
RTDNN parameters 

The dynamic self-adaptation of the RTDNN is 
the result of a process of recursive cycles of 
reevaluation of its main parameters. The process 
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requires a very short time for calculations and 
adaptation of the RTDNN structure to the new 
data coming during the training phase. 
 
The RTDNN adapts each time that new 
examples excite it. This is based on  a set of 
recursive equations that allow for a quick 
updating of its parameters. Next the set of 
recursive equations will be presented. 
 
A.1 Number of examples that represent a 
neuron in a region i 
 
The number of examples that represent a neuron 
of the region i is calculated as the known 
number of examples which are represented in 
the region i plus the number of new examples 
(n) falling in the region i:  
 

nKK ii +=   (1) 
 
A.2 Mean value of k examples in a region i 
 
The mean value of k examples in a region i is 
calculated using the mean values coming from 
the k-n examples existing in the region i and the 
n new examples falling in the region i. 
 
Let this be the mean value of k examples: 

∑
=

=
k

j

j
k k

x

1
µ       (2) 

 
and making some calculations 

nnk

nk

j

n

j
jjk nnkxxk µµµ ·)·(

0 1
+−=+=⋅ −

−

= =
∑ ∑

 
finally a recursive equation is obtained: 

nnkk k
n

k
nk µµµ ·· +−= −  (3) 

 
A.3 Quadratic distances of k examples in a 
region i 
 
The quadratic distances of k samples in a region 
i can be obtained using the mean values and the 
quadratic distances  of k-n examples and n 
examples in the region i.  
 
Let  
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∑
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This can be simplified taking into account 
equation (2): 
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This can be developed as follows: 

kykx

n

j
jyjx

nk

i
iyixkyx kxxxxk ⋅⋅
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++−= −⋅−⋅−⋅⋅ )·)·((· ),(),( nkynkxnkyxkyx nkk µµνν

kykxnynxnyx kn ⋅⋅⋅⋅⋅ −++ µµµµν ··)··( ),(  
 
Finally, the following recursive equation allows 
for the estimation of the quadratic distances of k 
examples: 

++−= −⋅−⋅−⋅⋅ )··( ),(),( nkynkxnkyxkyx k
nk µµνν

kykxnynxnyxk
n

⋅⋅⋅⋅⋅ −+ µµµµν ·)··( ),(  (4) 

 

B. Excitation of a neuron in the RTDNN 
 
The neurons in the RTDNN are excited by a set 

of sample vectors . These 
samples belong to the input region R

{ }H
i

e
i

e
H 1== xX

e
H

e
maxν

e, which is 
characterized by the same parameters as the 
other regions: the number of input sample 
vectors H, the mean vector of input examples 

 and a set of quadratic distances with 

respect to the average Ω in the region. The 

diagonal parameters of the matrix  must be 

less than a minimum resolution called . If 
the set of excitation samples were a single 
sample (H=1), they would be characterized by 
the average  and the diagonal matrix  

with all elements equal to .  

e
Hµ

e
HΩ

e
maxν

Ωe
Hµ e

H

 
The excitation degree of the i-th neuron  is 
measured using the following equation: 
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)()()(
1

1 i
K

e
H

i
K

Ti
K

e
H

i
iii

exc
µµµµ −⋅Ω⋅−

= −
    (5) 

 
This excitation is labeled according to the 
following criteria:  
 
• Maximum excitation: If exci >= excmax 
• Minimum Excitation: If excmax > exci >= 

excmin.  
• Non excitation: If exci < excmin.  
 
In the case of the use of an elliptical Gaussian 
activation function in the neurons, the following 
criteria can be taken: 
 
• excmin = 1/3, since below this excitation 

level is 1% of the data, and it is considered 
that the sample is outside the neuron. 

• excmax=1, since above this excitation level 
is 68% of the data, and any sample that has 
maximum excitation reinforces the 
logarithmic probability of the neuron, the 
standard deviation of the same diminishes.  

 
Conceptually, the neuron excitation is a 
measure of the inverse of the normalized 
distance between the center of neuron and the 
mean of the input samples. It is used a 
normalized distance because the measure of 
excitation must be independent of the neuron 
size. In that way it could be obtained a measure 
of the neuron size using this normalized 
distance in order to control the growing of the 
neuron. Next it is explained how to obtain this 
measure. 
 
Let be a neuron nni and one M-dimensional 
point y (y could be any point in the workspace, 
such as  o ). It could be defined the 
distance between  the neuron and the point y, 
which is denoted by , as 

e
Hµ i

Ki
µ

)(yi
Ki

ν

)()
)(

( 1 i
K

i
Ki

K
ii

i

i µyy
µy

yν
−⋅

−⋅
−()

)
i
K

T

Ti
Ki

Ω
µ

⋅
−

(
) =

(
i
Ki

µ
y

−
 

 
)(yi

Ki
ν  is called equivalent quadratic distance 
of the neuron nni from y. The relationship 
between the excitation and  is as 
follows: 

)(yi
Ki

ν

==
)(

),(1
yν

µy
i
K

i
K

i
i

i
distance

exc
 

)(

)()(

yν

µyµy
i
K

i
K

Ti
K

i

ii
−⋅−

=  

The graphical interpretation of this concept is 
applied to a bidimensional Gaussian activation 
function in Figure 2. As it is showed in the 
figure the measure is the variance of the 
Gaussian in the direction formed by the center 
of the neuron µ and the point y, which is a 
measure of the neuron size in that direction.  

i
Ki

 

y  

Figure 2:   interpretation )(yi
Ki

ν

C. Fusion of neurons in the RTDNN 
The fusion of neurons plays an important role 
inside the procedure of the RTDNN training. It 
allows for the reduction of the number of 
neurons by fusion of several ones, and for the 
saving of memory,  resources and time of 
calculations. This process is oriented to be 
applied during the training phase of the 
RTDNN, but it is also possible to apply it to 
neural networks already trained. It is important 
to enhance its simplicity and efficiency.  
 
The fusion process is based on looking for two 
neurons which are specialized in regions of the 
workspace very similar, if they are found. Then, 
it fuses these two neurons in a new one that is 
specialized in a region of the workspace 
resulting from the union of the previous two 
regions. Often this fusion cannot be carried out 
since the region corresponding to the resulting 
neuron is too great, in which case the fusion is 
not carried out. The parameter that delimits the 
size of the neurons is named maxν . This 
parameter regulates the number of neurons in 
the neural network according to the accuracy 
required for the characterization of the 
information included in the different examples. 
In the case that the number of neurons is great 
because maxν  is small, it is best to apply the 

fusion process with a greater maxν . This will 
allow for the reduction of the number of 
neurons. This parameter maxν is 
unidimensional, however it acts in all the 
dimensions. In order to apply this concept, the 
equivalent quadratic distance from y is used so 
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that <)(yi
Ki

ν maxν . In the case of  fusion of 
two neurons nni and nnj, it is verified that the 
resulting neuron nnf fulfils 

f
K f

ν (µ
f

K f
(µ

j ∈nnnni ,

(i
K

j
K

i

j

µν

−(
d

µ
=

2
minexc

i
Ki

ν

<

Ti
Ki

)µj
K j

−(µ

 
  and  max

i
Ki

ν<)

max
j
K j

νν <)   (6) 

 
Several steps must be followed in the fusion 
process. Following is a complete list of these 
steps: 
 
Let a set of neurons  be proposed 
to be fused:  

NNNNF ⊂

 
1. Two close neurons are selected 

 NNF
2. It is estimated 

)()

)()
i
K

j
K

j
K

i
K

j
K

Ti
K

ijj

iji

µ

µµµ

ν+

−⋅
  

3. If d , the neurons are fused 

applying equations (1)(3)(4). If the neurons 
are similar ( ) , 

means that one neuron center excite the 
other;  

)()( i
K

j
K

j
K ijj

µµ ν≈

minexc>i
K

j
K

i
K iji

−⋅Ω⋅ − )()(
1

1 µµ

 
4. If equation (6) is not fulfilled, the fusion 

can not be done. 
5. Return to point 1 until every combination 

of pairs of neurons belonging to  NNF has 
been tried. 

 
In order to increase the speed of the algorithm 
and to obtain better solutions, it is suggested to 
use, in the third point, an equation that depends 
on the number of examples that the neuron 
represents (Ki) and depending on a low number 
of examples, to increase the possibility of 
fusion. 

D. Training algorithm of the RTDNN 
The training algorithm is based on what is 
exciting to the neural network, and on observing 
the neurons that surpass a certain level of 
excitation (excmin). In the case that there is no 
neuron that surpasses this minimum level of 
excitation, this means that there is a region non-
modeled by the network and therefore a neuron 
is added. On the other hand if there is some 
neuron that surpasses the minimum level of 

excitation, its parameters are updated. This 
updating is not always possible since it is not 
allowed that the neurons include a very great 
region of space, in which case a new neuron is 
added. According to the number of neurons 
growing, they are merged with others. The 
fusion algorithm between neurons is one of the 
key parts of the training. This algorithm tries to 
fuse two neurons when it detects that the same 
ones specialize in space regions that are very 
similar. 
 
The RTDNN parameters controlling the training 
procedure are  and e

maxν maxν . represents 
the  resolution of the neural network. This 
parameter must only be considered when the 
training of the neural  network is off-line with 
the disordered data. At the time of applying the 
algorithm in real time it is not necessary to fix 

 since it is already fixed by its own effect 
from the sampling of the application.  

e
maxν

e
maxν

The parameter maxν  represents the accuracy of 

the neural network. When maxν  is greater, the 
accuracy of the neural  network will be greater, 
but the capability of generalization will be 
smaller. This parameter must be fixed 
beforehand in any case and can be changed 
during the network training. It is recommended 
to use a small value of maxν  at the beginning of 
the training (this can slow down the training), so 
that the network does not lose great accuracy, 
and to use a big value of maxν  at the end of the 
training.  
 
The training algorithm of the RTDNN consists 
of the following steps: 
 

1. Let H sample vectors that 
excite the neural network. Estimate 

, µ , If there are not any samples left, 
then go to point 10. 

{ }H
i

e
i

e
H 1== xX

e
HΩ e

H

2. The excitation due to the neural network 
inputs is calculated for each neuron as such: 

)()()(
1

1 i
K

e
H

i
K

Ti
K

e
H

i
iii

exc
µµµµ −⋅Ω⋅−

= −

   
3. Select the most excited neuron, which has 

an excitation level that surpasses excmax. 
This neuron will be called  

( ). If there is no any 
neuron go to point 5. 

1dnn

maxdd excexcnn
ii

>/

4. Update the neuron parameters according to 
the equations (1)(3)(4). Go to point 1 
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5. Select the neurons which have an excitation 
level greater than the excmin threshold. This 
set of neurons will be called D2. 

. If 
there is no neuron, go to point 9. 

mind
ND
ii excexcdD

i
>= = 21 /}2{2

6. Select the neurons from set D2 that could 
grow up: 

If there are no neurons, then go to point 8. 
max

e
H

d
K

ND
ii

i

id
dDDD νν <=⊂ = )µ(/}3{3,23 33

1 3

7. Update the neuron parameters of set D3 
according to the equations (1)(3)(4). Next it 
should be propose a fusion among the 
neurons belonging to set D2. Make all 
neurons belonging to D2 neighbors among 
themselves. Go to point 1. 

8. Add one neuron with the entries parameters  
but influenced by the neuron more excited 
of the set D2 (any reasonable criterion  is 
right, it is optional). Make all neurons 
belonging to D2 neighbors among 
themselves. Go to point 1. 

9. Add one neuron with the entries 
parameters. Go to point 1. 

10. A fusion should be proposed between all 
neurons. 

 
Anything previously forgotten in the network 
knowledge could be introduced. It is only 
necessary to substitute the equation (1) for the 
(7) one: 
 

HK
x

HxK ii +−=  (7) 

 
where x is the number of samples that the 
neuron needs to remember beginning at the last 
one. 

IV. RTDNN PERFORMANCE  
Next some results showing the RTDNN 
performance will be presented. These results are 
based on two-dimensional examples for easier 
understanding. They use elliptical Gaussian as 
activation function in the neurons of the 
RTDNN. 
  
The training consists of cycles where 5 
examples by each one are taken (that is to say, 
H=5). From the parameters that regulate the 
training pays attention to maxν = 1.   is not 
necessary to fix,  as was previously commented.  

e
maxν

 
The next subsections include three cases of the 
RTDNN application to different data sets. These 
cases are explained using graphs where: 
 

- the data to fit are drawn with dots in a light 
color.  

-the neurons are represented by the center with a 
dark circumference and by the average 
distance of the samples to the center in all  
directions of the neuron work space 
(equivalent to the standard deviation in one 
dimension) with dots in a dark color.  

- the connections between neurons are 
represented by straight lines. 

 

A. Case 1 
 
This case is based on the RTDNN adaptation to 
some examples obtained from a noisy 
hyperbolic tangent. Figure 3 shows the RTDNN 
resulting after the training process when maxν = 
1.  According to point 10 in section II.D, if 

∞→maxν , less neurons will be required 
saving some memory resources, this is 
represented in Figure 4. 
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Figure 3. Adaptation to Tanh using maxν = 1 
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Figure 4: Adaptation to Tanh using 

∞→maxν  
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Using a hyperbolic tangent function with a 
higher slope in order to obtain examples to train 
a RTDNN, two clusters of neurons are 
discovered . They are shown in Figure 5.  
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Figure 5: final adaptation 

B. Case 2 
 
This case shows successive training cycles 
during the RTDNN adaptation to a data set 
distributed following a semi circumference. 
Figure 6 shows the 13th training where the 
fitting is not good yet. .Figure 7 shows the 22nd 
training cycle and now  shown. In this cycle the 
RTDNN adaptation is better. 
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∞→max

Figure 8 shows the last RTDNN training cycle.  
Figure 9 shows the reduction of information 
using ν . 
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Figure 6: 13nd RTDNN training cycle  
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Figure 7: RTDNN 22nd training cycle 
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Figure 8: last RTDNN training cycle 
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Figure 9: last RTDNN training cycle using 

∞→maxν  

C. Case 3 
 
This case illustrates how a RTDNN can 
estimate a probability density function. The 
input space is generated from an hyperbolic sine 
function. Figure 10 shows the final  RTDNN 
adaptation, while Figure 11 represents the three 
dimensional probability density estimation.  
 

 
Figure 10: final RTDNN adaptation to Sinh 

 

 
Figure 11: probability distribution 

D. Case 4 
 
Finally, Figure 12 shows a last example that 
illustrates a more complicated workspace. As it 
can be observed a good adaptation is also 
obtained. 
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Figure 10 : final adaptation 

V. CONCLUSIONS 
A new neural network named Real Time 
Dynamic Neural Network (RTDNN) with 
generic activation function has been set out. It is 
able to adapt itself, both parametrically and 
structurally, to the data necessities, which 
allows to work with a data set of indeterminate 
and changing size. 
 
In addition to this, a training algorithm has been 
developed which allows for the adaptation of 
the network on line and in real time. 
 
It must be noted that real time is a concept that 
depends on application and on computation 
machines. This article has proposed some 
recursive equations and a very optimized 
training method in order to apply the RTDNN to 
real time and on-line applications.  
 
In future studies we will apply the RTDNN to 
environment modeling for the guidance of an 
AGV (Auto Guided Vehicle). 
 
Furthermore, some experiments have been done 
with a neural network with Gaussian activation 
function in its neurons. The application to 
another type of activation function is possible in 
the same manner as described in this article. 
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