
1

Real Time Dynamic Neural Network (RTDNN)
Álvaro Sánchez Miralles, Miguel Ángel Sanz Bobi, Member, IEEE 1

Abstract—This paper describes a new neural
network able to adapt itself, both its parameters
and its structure, to a data set in real-time
conditions. The adaptation is based on a non-
supervised learning procedure. The new neural
network can automatically create interconnections
between neurons using any generic activation
function. Still another important feature of this
new neural network is the use of few neurons to
make a good prediction using a reduced number
of examples. This is relevant in order to make fast
calculations using few resources in real-time
applications. Some examples using this neural
network are included in order to demonstrate its
good performance. These examples use elliptical
Gausian functions as domains for the neurons.

Index terms—real-time neural network, neural
network self-adaptation, dynamic neural network
(DNN), topologies representing network (TRN),
elliptical Gaussian domain of neurons, radial basis
function network (RBFN), probability density
function (PDF)

I. INTRODUCTION
As is already known, there are many algorithms
based on non-supervised learning for the
training of neuronal networks. Their
applications are diverse, such as clustering [1],
density function estimation [2], aid to the
supervised learning [3] [4] and networks for
topology representation [5].

Some of these algorithms are “k-means” [6] and
“Neural Gas” [7]. They require the making of
an a priori decision concerning the number of
neurons that the neural network will use before
its training. Therefore, they have little ability for
adaptation under unknown scenarios for the
designers.

An alternative could be neural networks that
dynamically change their structure such as
“Growing Neural Gas” [8], “Growing Cell
Structures” [9], “Dynamic
TopologyRrepresenting Networks” [10]. Also,
they can create interconnections between
neurons. This type of neural networks are

referred to as “topology-representing
networks”. However, they have several weak
points: the training is controlled by a great
number of parameters that can be changed, they
need a large data set to calculate an acceptable
solution and most importantly, they generate
complex neural networks with a large number
of neurons. In counterpart, their algorithms are
prepared to run in real time and are able to adapt
their structure under new situations.

1 Universidad Pontificia de Comillas
Escuela Técnica Superior de Ingeniería- ICAI
Instituto de Investigación Tecnológica
Santa Cruz de Marcenado 26, 28015 Madrid,
SPAIN. alvaro@iit.upco.es

The previously mentioned types of algorithms
can be used to aid the supervised learning
process of RBFN networks [3] [4], where the
centers of the radial units are fixed by these
algorithms, the width of the radial unit is
calculated through heuristic rules and finally an
optimization algorithm is applied. The weak
point is to calculate the width of the radial unit
through heuristic rules, which sometimes entails
falling into a local optimum.

On the other hand there are learning algorithms
for the estimation of density functions (FDP)
[11]. These are based on the optimization of the
logarithmic probability of a data set. Usually
they need to limit the maximum number of
neurons to be used, in order to prevent a perfect
learning situation by a continuous addition of
neurons with the consequent lost of efficiency
and generalization capability. Some papers [12]
recommend the use of a function that weighs the
quality of the model and the cost to add a new
neuron. However, this is a laborious process
since there are problems that require a greater
number of neurons, due to the complexity of the
data distributions.

In this paper a new Real-Time Dynamic Neural
Network (RTDNN) is proposed which is able
to adapt, both its parameters and its structure, to
a data set in real-time conditions without
previous knowledge. The training process is
non-supervised and it would be based on
existing soft competitive learning techniques
[5]. It does not require a great number of
samples to carry out a good adaptation. The
RTDNN consists of a reduced number of
neurons with generic activation function. It is
mandatory that this activation function be
convex and with axial symmetry in respect to its
own axes (they do not have to coincide with the
co-ordinate axes). An example of such a
function is the elliptical Gaussian function that

mailto:alvaro@iit.upco.es

2

will be used in the examples included in this
paper. This type of activation function allows to
obtain a good adaptation, requiring few neurons
and great generalization capability. In addition
to this, the neurons can be interconnected to
each other. It facilitates the creation of clusters
and the representation of topologies. The
RTDNN is designed to be adapted with each
sample that is collected. All these characteristics
of the RTDNN are useful for:

• Applications running in real-time.
• Applications using an unknown size of the

data set.
• Applications without knowledge available.
• Applications for clustering and construction

of topological maps.
• Estimation of density functions.
• Applications of data mining and case based

reasoning.

This paper is organized in the following
sections. First, the RTDNN is described,
including its structure and its main parameters.
The next section presents the algorithm used by
the RTDNN for training. Finally, some
examples about the performance of the RTDNN
are included.

II. DESCRIPTION OF THE RTDNN

The objective of this section is the description
of the RTDNN. A special notation will be used
in order to simplify the RTDNN description
where its structure is presented in Figure 1.

A. RTDNN Notation

M: Workspace dimension.

R : Neural network workspace of dimension M.

Ri : Workspace of the neuron i.

I : Number of neurons in the neural network.

NNI : Set of I neurons. Each element of this set
is called nni.

N : Number of sample vectors of dimension M
each one, that belong to the workspace R.

XN : Set of N sample vectors of dimension M,
that belong to the workspace R. Each sample
vector is called xi.

Ki : Number of sample vectors of dimension M,
that belong to the workspace Ri.

i
Ki

X

i
jkx

: Set of Ki sample vectors of dimension M,
that belong to the workspace Ri . Each sample
vector of this set is called x with components

.

i
j

i
Ki

µ : Mean vector of the Ki sample vectors of
dimension M, that belong to the workspace Ri.

i
Ki

Ω : Covariance matrix of the Ki sample
vectors of dimension M, that belongs to the
workspace Ri. This matrix has dimension MxM.
Each element of this matrix is called ;
being x the row and y the column of the matrix
to which the element belongs.

i
Kyx i⋅),(ν

Re : Input region.

H : Number of sample vectors of dimension M
that excite the neural network.

e
HX : Set of H sample vectors of dimension M

that excite the neural network; in another words
they belong to the input region. This is the input
data set to the neural network. Each sample
vector of this data set is called x . e

i

e
Hµ : Mean vector of the H sample vectors of

dimension M that excite the neural network.

e
HΩ : Covariance matrix of the H sample

vectors of dimension M that excite the neural
network.

B. RTDNN Description

Let be a sample vector set
belonging to R

{ }N
iiN 1== xX

{ }M
jij 1

x
=

INN

 with R ⊂ ℜM and
. The information included in this

vector will be represented by the following
neural network that is a
RTDNN, see Figure 1.

i =x

{ }I
iinn 1==

3

e
jx 1

e
jx 2

e
jNx

iX1
iX 2

i
Ki

X

nn1

nni

nnI

nni

e
jx 1

e
jx 2

e
jNx

Workspace R

RIR1

Ri

Region Ri

Ki

iX1
iX 2

i
Ki

X

 O

For FDP estimation

K1

K2

KI

Sample vectors

Figure 1: RTDNN structure

Each neuron nni in the RTDNN is specialized in
a particular variable region of the workspace Ri
with Ri ⊂ R. The original sample vectors
included in this region,

 will be
characterized by the following RTDNN
parameters :

i
i
j

K
j

i
j

i
K Ri

i
∈= = xxX /}{ 1

• The number of sample vectors that belongs

to region Ki
• One vector representative obtained by

the estimation of the mean values of the
sample vectors of that region.

i
Ki

µ

∑
=

=
i

i

K

j i

i
ji

K K1

x
µ

• A set of quadratic distances in respect to
the mean in each region Ω such that i

Ki

















=Ω

⋅⋅

⋅⋅

i
KMM

i
KM

i
KM

i
K

i
K

ii

ii

i

),()1,(

),1()1,1(

...
.........

...

νν

νν

where

i

K

j

i
Ky

i
jy

i
Kx

i
jx

i
Kyx K

i

ii

i

∑
=

⋅⋅⋅⋅

⋅

−−
= 1

),(

))·((µxµx
ν

According to the RTDNN parameters, all the
information of a particular region could be

substituted at an instant of time by M2+M+1
parameters. They have the following meaning:

M: the M dimensional position of the i region

 i
Ki

µ
1: the number of samples in that region
M2 : the M2 parameters that measure the shape
and size of the region.

These parameters suggest the use of activation
functions with axial symmetry in respect to their
main axes of information in the neurons. These
axes could be or could not be the cartesian
coordinates in the domain. This is a special
RTDNN feature, instead of activation functions
with total symmetry used by some neural
networks. Although the number of parameters
used in each region is greater than that required
by other types of simpler activation functions, it
allows for a lower number of neurons to make a
good adaptation with reduction of time and
resources required.

On the other hand the neurons can be
interconnected to each other so that each neuron
can have some neighboring neurons. These
connections are quantified indicating the force
of the same ones. In this manner, the
interdependence of the neurons can be
quantified to each other. This is an important
advantage of the RTDNN.

III. RTDNN TRAINING
In this section the process followed to adapt the
parameters of the RTDNN will be described.
This learning procedure is based on the
automatic fitting of the RTDNN parameters
using a set of recursive calculations. According
to these parameters, the excitation of each
neuron can be measured and also, fusion of two
regions dominated by two near neurons can be
decided or not. All this information guides the
RTDNN training process allowing for a
dynamic and fast adaptation of the neural
network structure and its parameters.

The structure of this section is the following.
First, the recursive equations previously
mentioned will be presented, next the
measurement of the excitation of each neuron
will be described, and also, the procedure to
fuse regions belonging to near neurons. Finally,
the RTDNN algorithm itself will be presented.

A. Recursive equations for estimation of the
RTDNN parameters

The dynamic self-adaptation of the RTDNN is
the result of a process of recursive cycles of
reevaluation of its main parameters. The process

4

requires a very short time for calculations and
adaptation of the RTDNN structure to the new
data coming during the training phase.

The RTDNN adapts each time that new
examples excite it. This is based on a set of
recursive equations that allow for a quick
updating of its parameters. Next the set of
recursive equations will be presented.

A.1 Number of examples that represent a
neuron in a region i

The number of examples that represent a neuron
of the region i is calculated as the known
number of examples which are represented in
the region i plus the number of new examples
(n) falling in the region i:

nKK ii += (1)

A.2 Mean value of k examples in a region i

The mean value of k examples in a region i is
calculated using the mean values coming from
the k-n examples existing in the region i and the
n new examples falling in the region i.

Let this be the mean value of k examples:

∑
=

=
k

j

j
k k

x

1
µ (2)

and making some calculations

nnk

nk

j

n

j
jjk nnkxxk µµµ ·)·(

0 1
+−=+=⋅ −

−

= =
∑ ∑

finally a recursive equation is obtained:

nnkk k
n

k
nk µµµ ·· +−= − (3)

A.3 Quadratic distances of k examples in a
region i

The quadratic distances of k samples in a region
i can be obtained using the mean values and the
quadratic distances of k-n examples and n
examples in the region i.

Let

=
−−

=
∑

=
⋅⋅

⋅ k

xx
k

i
kikxix

kyx
1

22

),(

))·((µµ
ν

k

xxxx
k

i
kykxkyixkyixiyix∑

=
⋅⋅⋅⋅⋅⋅⋅⋅ +−−

= 1
)····(µµµµ

This can be simplified taking into account
equation (2):

=+−−= ⋅⋅
=

⋅⋅
=

⋅⋅
=

⋅⋅

⋅

∑∑∑
kykx

k

i
iykx

k

i
ixky

k

i
iyix

kyx k

x

k

x

k

xx
µµ

µµ
ν ·

··)·(
111

),(

kykx

k

i
iyix

k

xx
⋅⋅

=
⋅⋅

−=
∑

µµ ·
)·(

1

This can be developed as follows:

kykx

n

j
jyjx

nk

i
iyixkyx kxxxxk ⋅⋅

=
⋅⋅

−

=
⋅⋅⋅ −+= ∑∑ µµν ··)·()·(·

11
),(

++−= −⋅−⋅−⋅⋅)·)·((·),(),(nkynkxnkyxkyx nkk µµνν

kykxnynxnyx kn ⋅⋅⋅⋅⋅ −++ µµµµν ··)··(),(

Finally, the following recursive equation allows
for the estimation of the quadratic distances of k
examples:

++−= −⋅−⋅−⋅⋅)··(),(),(nkynkxnkyxkyx k
nk µµνν

kykxnynxnyxk
n

⋅⋅⋅⋅⋅ −+ µµµµν ·)··(),((4)

B. Excitation of a neuron in the RTDNN

The neurons in the RTDNN are excited by a set

of sample vectors . These
samples belong to the input region R

{ }H
i

e
i

e
H 1== xX

e
H

e
maxν

e, which is
characterized by the same parameters as the
other regions: the number of input sample
vectors H, the mean vector of input examples

 and a set of quadratic distances with

respect to the average Ω in the region. The

diagonal parameters of the matrix must be

less than a minimum resolution called . If
the set of excitation samples were a single
sample (H=1), they would be characterized by
the average and the diagonal matrix

with all elements equal to .

e
Hµ

e
HΩ

e
maxν

Ωe
Hµ e

H

The excitation degree of the i-th neuron is
measured using the following equation:

5

)()()(
1

1 i
K

e
H

i
K

Ti
K

e
H

i
iii

exc
µµµµ −⋅Ω⋅−

= −
 (5)

This excitation is labeled according to the
following criteria:

• Maximum excitation: If exci >= excmax
• Minimum Excitation: If excmax > exci >=

excmin.
• Non excitation: If exci < excmin.

In the case of the use of an elliptical Gaussian
activation function in the neurons, the following
criteria can be taken:

• excmin = 1/3, since below this excitation

level is 1% of the data, and it is considered
that the sample is outside the neuron.

• excmax=1, since above this excitation level
is 68% of the data, and any sample that has
maximum excitation reinforces the
logarithmic probability of the neuron, the
standard deviation of the same diminishes.

Conceptually, the neuron excitation is a
measure of the inverse of the normalized
distance between the center of neuron and the
mean of the input samples. It is used a
normalized distance because the measure of
excitation must be independent of the neuron
size. In that way it could be obtained a measure
of the neuron size using this normalized
distance in order to control the growing of the
neuron. Next it is explained how to obtain this
measure.

Let be a neuron nni and one M-dimensional
point y (y could be any point in the workspace,
such as o). It could be defined the
distance between the neuron and the point y,
which is denoted by , as

e
Hµ i

Ki
µ

)(yi
Ki

ν

)()
)(

(1 i
K

i
Ki

K
ii

i

i µyy
µy

yν
−⋅

−⋅
−()

)
i
K

T

Ti
Ki

Ω
µ

⋅
−

(
) =

(
i
Ki

µ
y

−

)(yi

Ki
ν is called equivalent quadratic distance
of the neuron nni from y. The relationship
between the excitation and is as
follows:

)(yi
Ki

ν

==
)(

),(1
yν

µy
i
K

i
K

i
i

i
distance

exc

)(

)()(

yν

µyµy
i
K

i
K

Ti
K

i

ii
−⋅−

=

The graphical interpretation of this concept is
applied to a bidimensional Gaussian activation
function in Figure 2. As it is showed in the
figure the measure is the variance of the
Gaussian in the direction formed by the center
of the neuron µ and the point y, which is a
measure of the neuron size in that direction.

i
Ki

y

Figure 2: interpretation)(yi
Ki

ν

C. Fusion of neurons in the RTDNN
The fusion of neurons plays an important role
inside the procedure of the RTDNN training. It
allows for the reduction of the number of
neurons by fusion of several ones, and for the
saving of memory, resources and time of
calculations. This process is oriented to be
applied during the training phase of the
RTDNN, but it is also possible to apply it to
neural networks already trained. It is important
to enhance its simplicity and efficiency.

The fusion process is based on looking for two
neurons which are specialized in regions of the
workspace very similar, if they are found. Then,
it fuses these two neurons in a new one that is
specialized in a region of the workspace
resulting from the union of the previous two
regions. Often this fusion cannot be carried out
since the region corresponding to the resulting
neuron is too great, in which case the fusion is
not carried out. The parameter that delimits the
size of the neurons is named maxν . This
parameter regulates the number of neurons in
the neural network according to the accuracy
required for the characterization of the
information included in the different examples.
In the case that the number of neurons is great
because maxν is small, it is best to apply the

fusion process with a greater maxν . This will
allow for the reduction of the number of
neurons. This parameter maxν is
unidimensional, however it acts in all the
dimensions. In order to apply this concept, the
equivalent quadratic distance from y is used so

6

that <)(yi
Ki

ν maxν . In the case of fusion of
two neurons nni and nnj, it is verified that the
resulting neuron nnf fulfils

f
K f

ν (µ
f

K f
(µ

j ∈nnnni ,

(i
K

j
K

i

j

µν

−(
d

µ
=

2
minexc

i
Ki

ν

<

Ti
Ki

)µj
K j

−(µ

 and max

i
Ki

ν<)

max
j
K j

νν <) (6)

Several steps must be followed in the fusion
process. Following is a complete list of these
steps:

Let a set of neurons be proposed
to be fused:

NNNNF ⊂

1. Two close neurons are selected

 NNF
2. It is estimated

)()

)()
i
K

j
K

j
K

i
K

j
K

Ti
K

ijj

iji

µ

µµµ

ν+

−⋅

3. If d , the neurons are fused

applying equations (1)(3)(4). If the neurons
are similar () ,

means that one neuron center excite the
other;

)()(i
K

j
K

j
K ijj

µµ ν≈

minexc>i
K

j
K

i
K iji

−⋅Ω⋅ −)()(
1

1 µµ

4. If equation (6) is not fulfilled, the fusion

can not be done.
5. Return to point 1 until every combination

of pairs of neurons belonging to NNF has
been tried.

In order to increase the speed of the algorithm
and to obtain better solutions, it is suggested to
use, in the third point, an equation that depends
on the number of examples that the neuron
represents (Ki) and depending on a low number
of examples, to increase the possibility of
fusion.

D. Training algorithm of the RTDNN
The training algorithm is based on what is
exciting to the neural network, and on observing
the neurons that surpass a certain level of
excitation (excmin). In the case that there is no
neuron that surpasses this minimum level of
excitation, this means that there is a region non-
modeled by the network and therefore a neuron
is added. On the other hand if there is some
neuron that surpasses the minimum level of

excitation, its parameters are updated. This
updating is not always possible since it is not
allowed that the neurons include a very great
region of space, in which case a new neuron is
added. According to the number of neurons
growing, they are merged with others. The
fusion algorithm between neurons is one of the
key parts of the training. This algorithm tries to
fuse two neurons when it detects that the same
ones specialize in space regions that are very
similar.

The RTDNN parameters controlling the training
procedure are and e

maxν maxν . represents
the resolution of the neural network. This
parameter must only be considered when the
training of the neural network is off-line with
the disordered data. At the time of applying the
algorithm in real time it is not necessary to fix

 since it is already fixed by its own effect
from the sampling of the application.

e
maxν

e
maxν

The parameter maxν represents the accuracy of

the neural network. When maxν is greater, the
accuracy of the neural network will be greater,
but the capability of generalization will be
smaller. This parameter must be fixed
beforehand in any case and can be changed
during the network training. It is recommended
to use a small value of maxν at the beginning of
the training (this can slow down the training), so
that the network does not lose great accuracy,
and to use a big value of maxν at the end of the
training.

The training algorithm of the RTDNN consists
of the following steps:

1. Let H sample vectors that
excite the neural network. Estimate

, µ , If there are not any samples left,
then go to point 10.

{ }H
i

e
i

e
H 1== xX

e
HΩ e

H

2. The excitation due to the neural network
inputs is calculated for each neuron as such:

)()()(
1

1 i
K

e
H

i
K

Ti
K

e
H

i
iii

exc
µµµµ −⋅Ω⋅−

= −

3. Select the most excited neuron, which has

an excitation level that surpasses excmax.
This neuron will be called

(). If there is no any
neuron go to point 5.

1dnn

maxdd excexcnn
ii

>/

4. Update the neuron parameters according to
the equations (1)(3)(4). Go to point 1

7

5. Select the neurons which have an excitation
level greater than the excmin threshold. This
set of neurons will be called D2.

. If
there is no neuron, go to point 9.

mind
ND
ii excexcdD

i
>= = 21 /}2{2

6. Select the neurons from set D2 that could
grow up:

If there are no neurons, then go to point 8.
max

e
H

d
K

ND
ii

i

id
dDDD νν <=⊂ =)µ(/}3{3,23 33

1 3

7. Update the neuron parameters of set D3
according to the equations (1)(3)(4). Next it
should be propose a fusion among the
neurons belonging to set D2. Make all
neurons belonging to D2 neighbors among
themselves. Go to point 1.

8. Add one neuron with the entries parameters
but influenced by the neuron more excited
of the set D2 (any reasonable criterion is
right, it is optional). Make all neurons
belonging to D2 neighbors among
themselves. Go to point 1.

9. Add one neuron with the entries
parameters. Go to point 1.

10. A fusion should be proposed between all
neurons.

Anything previously forgotten in the network
knowledge could be introduced. It is only
necessary to substitute the equation (1) for the
(7) one:

HK
x

HxK ii +−= (7)

where x is the number of samples that the
neuron needs to remember beginning at the last
one.

IV. RTDNN PERFORMANCE
Next some results showing the RTDNN
performance will be presented. These results are
based on two-dimensional examples for easier
understanding. They use elliptical Gaussian as
activation function in the neurons of the
RTDNN.

The training consists of cycles where 5
examples by each one are taken (that is to say,
H=5). From the parameters that regulate the
training pays attention to maxν = 1. is not
necessary to fix, as was previously commented.

e
maxν

The next subsections include three cases of the
RTDNN application to different data sets. These
cases are explained using graphs where:

- the data to fit are drawn with dots in a light
color.

-the neurons are represented by the center with a
dark circumference and by the average
distance of the samples to the center in all
directions of the neuron work space
(equivalent to the standard deviation in one
dimension) with dots in a dark color.

- the connections between neurons are
represented by straight lines.

A. Case 1

This case is based on the RTDNN adaptation to
some examples obtained from a noisy
hyperbolic tangent. Figure 3 shows the RTDNN
resulting after the training process when maxν =
1. According to point 10 in section II.D, if

∞→maxν , less neurons will be required
saving some memory resources, this is
represented in Figure 4.

-15 -10 -5 0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

X1

X
2

Figure 3. Adaptation to Tanh using maxν = 1

-15 -10 -5 0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

X1

X
2

Figure 4: Adaptation to Tanh using

∞→maxν

8

Using a hyperbolic tangent function with a
higher slope in order to obtain examples to train
a RTDNN, two clusters of neurons are
discovered . They are shown in Figure 5.

-15 -10 -5 0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5: final adaptation

B. Case 2

This case shows successive training cycles
during the RTDNN adaptation to a data set
distributed following a semi circumference.
Figure 6 shows the 13th training where the
fitting is not good yet. .Figure 7 shows the 22nd
training cycle and now shown. In this cycle the
RTDNN adaptation is better.

-6 -4 -2 0 2 4 6
-1

0

1

2

3

4

5

6

X1

X
2

∞→max

Figure 8 shows the last RTDNN training cycle.
Figure 9 shows the reduction of information
using ν .

-6 -4 -2 0 2 4 6
-1

0

1

2

3

4

5

6

X1

X
2

Figure 6: 13nd RTDNN training cycle

-6 -4 -2 0 2 4 6
-1

0

1

2

3

4

5

6

X1

X
2

Figure 7: RTDNN 22nd training cycle

-6 -4 -2 0 2 4 6
-1

0

1

2

3

4

5

6

X1

X
2

Figure 8: last RTDNN training cycle

9

-6 -4 -2 0 2 4 6
-1

0

1

2

3

4

5

6

X1

X
2

Figure 9: last RTDNN training cycle using

∞→maxν

C. Case 3

This case illustrates how a RTDNN can
estimate a probability density function. The
input space is generated from an hyperbolic sine
function. Figure 10 shows the final RTDNN
adaptation, while Figure 11 represents the three
dimensional probability density estimation.

Figure 10: final RTDNN adaptation to Sinh

Figure 11: probability distribution

D. Case 4

Finally, Figure 12 shows a last example that
illustrates a more complicated workspace. As it
can be observed a good adaptation is also
obtained.

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

X1

X
2

Figure 10 : final adaptation

V. CONCLUSIONS
A new neural network named Real Time
Dynamic Neural Network (RTDNN) with
generic activation function has been set out. It is
able to adapt itself, both parametrically and
structurally, to the data necessities, which
allows to work with a data set of indeterminate
and changing size.

In addition to this, a training algorithm has been
developed which allows for the adaptation of
the network on line and in real time.

It must be noted that real time is a concept that
depends on application and on computation
machines. This article has proposed some
recursive equations and a very optimized
training method in order to apply the RTDNN to
real time and on-line applications.

In future studies we will apply the RTDNN to
environment modeling for the guidance of an
AGV (Auto Guided Vehicle).

Furthermore, some experiments have been done
with a neural network with Gaussian activation
function in its neurons. The application to
another type of activation function is possible in
the same manner as described in this article.

VI. REFERENCES
[1] A. K. Jain and R.C. dubes. Algorithms for

clustering data. Prentice Hall, 1988.
[2] A. Muñoz San Roque. Aplicación de técnicas de

redes neuronales artificiales al diagnóstico de procesos

10

industriales. Tesis doctoral. Universidad Pontificia de
Comillas. Madrid. 1996.

[3] J. E. Moody and C.Darken. Fast learning in
networks of locally-tuned processing units. Neural
Computation, 1989.

[4] B. Fritzke. Fast learning with incremental RBF
networks. Neural Processing Letters,1(1):2-5,1994.

[5] T. M. Martinetz and K. J. Schulten. Topology
representing networks. Neural Networks,1994.

[6] J. MacQueen. Some methods for classification and
analysis of multivariate observations. Volume 1 of
Proceedings of the Fifth Berkeley Symposium on
Mathematical statistics and probability, pages 281-
297, Berkeley, 1967. University of California Press.

[7] T. M. Martinetz and K. J. Schulten. A “neural-gas”
network learns topologies. In T.Kohonen, K.Mäkisara,
O.Simula, and J.Kangas, editors, Artificial Neural
Networks, pages 397-402. North-
Holland,Amsterdam,1991.

[8] B. Fritzke. A growing neural gas network learns
topologies. In G.Tesauro, D.S. Touretzky, and T.K.
Leen, editors, Advances in Neural Information
Processing Systems 7, pages 625-632. MIT Press,
Cambridge MA, 1995.

[9] B. Fritzke. Growing cell structures-a self organizing
network for unsupervised and supervised learning.
Neural Networks,7(9):1441-1460,1994.

[10] J. Si, S. Lin, M.-A. Vuong. Dynamic topology
representing networks. Neural Networks 13 (2000)
617-627.

[11] K. A. Gernoth, J. W. Clark. Neural Networks that
learn to predict probabilities: global models of nuclear
stability and decay”, 1995.

[12] J. Barry Gomm, Ding Li Yu. Selecting Radial
Basis Function Network Centers with Recursive
Orthogonal Least Squares Training. IEEE
Transactions on Neural Networks. Volume 11, NO. 2,
Pages 306-314. March 2000.

	Introduction
	Description of the RTDNN
	The objective of this section is the description of the RTDNN. A special notation will be used in order to simplify the RTDNN description where its structure is presented in Figure 1.
	RTDNN Notation
	RTDNN Description

	RTDNN Training
	Recursive equations for estimation of the RTDNN parameters
	Excitation of a neuron in the RTDNN
	Fusion of neurons in the RTDNN
	Training algorithm of the RTDNN

	RTDNN Performance
	Case 1
	Case 2
	Case 3
	Case 4

	Conclusions
	References

