

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

GENERAL INFORMATION

Course information					
Name	Introduction to Smart Systems				
Code	DEA-OPT-613				
Degree	MII, MIT				
Year	2				
Semester	Fall				
ECTS credits	3 ECTS				
Туре	Elective				
Department	Electronics, Control Engineering and Communications				
Area					
Coordinator	Álvaro Sánchez Miralles				

Lecturer	
Name	Álvaro Sánchez Miralles
Department	Electronics, Control Engineering and Communications
Area	
Office	D-IIT
e-mail	alvaro@comillas.edu
Phone	
Office hours	Ask for an appointment by email.
Lecturer	
Name	
Department	
Area	
Room	
e-mail	
Tutorial	
timetable	

DETAILED INFORMATION

Contextualization of the course

Contribution to the professional profile of the degree The purpose of the course is to provide students with a basic overview of the smart systems and their applications. It deals with smart grids, smart cities and smart industry.

By the end of the course, students will:

- Know the basic features of a smart system. •
- Have practical experience dealing and designing some applications related with • smart grids, cities or industry.

Prerequisites

No prerequisites.

CONTENTS

Contents

CHAPTER 1: INTRODUCTION TO SMART SYSTEMS

- Features
- Architecture
- Applications

CHAPTER 2: DATA MODELLING AS A KEY PART IN SMART SYSTEMS

- Context
- Main schemas: conceptual, logical and physical.

CHAPTER 3: SMART GRIDS & ENERGY

- Sensors & actuators
- Intelligence
- Services provided in smart grids

CHAPTER 4: SMART CITIES

- Sensors & actuators
- Intelligence
- Services provided in smart cities

CHAPTER 5: SMART INDUSTRY 4.0

- Sensors & actuators
- Intelligence
- Services provided in the smart industry

COMPETENCES AND LEARNING OUTCOMES

Competenc	
	es
General Com	ipetences
CG3. The base	capability of adapting to new theories, methods and changing engineering situations ed on a sound technical training.
CG4. The reas	capability of solving problems with personal initiative, efficient decision making, critical soning and transmitting technical information in the engineering world.
CG5. The plan	capability of conducting measurements, calculations, assessments, studies, reports, nning, etc.
CG10. The	ability to work in a multilingual and multidisciplinary environment.
	etences
Specific Cor	mpetences
Learning o	utcomes
RA1. The stu	dent understands the basic principles behind Smart systems.
RA2. The stu	dent has a basic and practical experience in researching about Smart systems.
RA3. The stu	dent has a practical experience in developing conceptual data models.

TEACHING METHODOLOGY

General methodological aspects

Each session will combine theory and practice. The teacher will explain the basics of the subject and will go in depth in the more important issues with illustrative examples. The students will be grouped in pairs in order to put in practice the proposed methods and techniques in a collaborative way.

In-class activities

1. Lectures and problem-solving sessions (10 hours): The lecturer will introduce the fundamental concepts of some topics, along with some practical recommendations, and will go through worked examples to support the explanation. Active participation will be encouraged by raising open questions to foster discussion and by proposing short application exercises to be solved in class either on paper or using a software package.

2. Smart subject exposition (8 hours): students are grouped in teams of 2 people. After a preliminary research about one smart theme (smart grids, smart cities or smart industry), the team has to make a presentation in the class.

3. Project development (7 hours): students are grouped in teams of 2 people. They have to design the solution of a real problem of a smart system, proposed by the lecturer.

4. Assessment (5 hours).

Off-class activities

1. Personal study of the course material and resolution of the proposed exercises (20 hours).

- 2. Research and development of one smart theme (30 hours).
- **3.** Development of the final project (10 hours).

ASSESSMENT AND GRADING CRITERIA

Assessment activities	Grading criteria	Share
Data modeling exam	 Understanding of the theoretical concepts. Application of these concepts to problem-solving. 	30%
Content & exposition of the smart subject	 Depth of analysis and understanding of the research work developed. Quality of the exposition. 	20%
Final project development	Quality of the project designQuality of the exposition	40%
Final exam	 Understanding of the theoretical concepts. Application of these concepts to problem-solving. 	10%

GRADING AND COURSE RULES

Grading Regular assessment

- A1. Data modeling exam: 30%
- A2. Content & exposition of the smart subject: 20%
- A3. Final project development: 40%
- A4. Final exam: 10%

Retakes

There will be only a final exam which will be the 100% of the grade. It will include both some practical questions and theoretical concepts.

Course rules

- Class attendance is mandatory according to Article 93 of the General Regulations (Reglamento General) of Comillas Pontifical University and Article 6 of the Academic Rules (Normas Académicas) of the ICAI School of Engineering. Not complying with this requirement may have the following consequences:
 - Students who fail to attend more than 15% of the lectures may be denied the right to take the final exam during the regular assessment period.
 - Regarding laboratory, absence to more than 15% of the sessions can result in losing the right to take the final exam of the regular assessment period and the retake. Missed sessions must be made up for credit.
- Students who commit an irregularity in any graded activity will receive a mark of zero in the activity and disciplinary procedure will follow (cf. Article 168 of the General Regulations (Reglamento General) of Comillas Pontifical University).

WORK PLAN AND SCHEDULE¹

In and out-of-class activities	Date/Periodicity	Deadline
Mid-term exam	Week 4	-
Final exam	Last week	-
Lectures	Weekly	-
Review and self-study of the concepts covered in the lectures	Weekly	-
Project preparation	Last 3 weeks	-

STUDENT WORK TIME SUMMARY									
IN-CLASS HOURS									
Lectures	Problem solving	Assessment	Practical Session						
6	4	5	15						
	OFF-CLASS HOURS								
Individual review of	Individual practical	Team work	Practical session						
lectures	work		elaboration						
6	15	24	15						
		ECTS CREDITS	3 (90 hours)						

BIBLIOGRAPHY

Basic

• Notes prepared by the lecturer (available in Moodle).

Complementary

¹ A detailed work plan of the subject can be found in the course summary sheet (see following page). Nevertheless, this schedule is tentative and may vary to accommodate the rhythm of the class.

ORIENTATIVE SCHEDULE SMART ENG													
PROGRAM	6-9	13-9	20-9	27-9	4-10	11-10	18-10	25-10	3-11	8-11	15-11	22-11	29-11
Introduction to Smart System		1											
Data modeling as a key part in Smart systems		1	2		2								
Data modeling evaluation				2									
Smart grids & energy						2	2						
Smart cities								2	2				
Smart industry 4.0										2	2		
Project development												2	2