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ABSTRACT IN ENGLISH LANGUAGE 

Driven by economic growth, changing life-styles and increasing penetration of electric 

vehicles, demand for electricity is continuously growing worldwide, and so are the 

global concerns of climate change, sustainability and energy security. The current 

energy production paradigm heavily depends on conventional energy sources i.e. fossil 

fuels. This is unsustainable because these sources of energy are quickly running out, 

leading to deep concerns of medium- and long-term energy security throughout the 

world. In addition, the heavy dependence on fossil fuels for power generation in the 

power industry has been substantially contributing to the increased level of greenhouse 

gas emissions. Because of all these and other techno-economic as well as structural 

issues, the electric energy industry is expected to undergo a paradigm shift with a 

considerably increased level of renewables (mainly, variable energy sources such as 

wind and solar), gradually replacing conventional power production sources. The scale 

and the speed of integrating such sources of energy are of paramount importance to 

effectively address the aforementioned concerns. As it is witnessed in recent years, wind 

and solar power have been attracting large-scale investments in many countries, 

especially in Europe. The favorable agreements of states in the recent climate 

conference in Paris (COP21), along with other driving factors, will further accelerate the 

renewable integration in power systems.  

Renewable energy resources—RESs (wind and solar, in particular) are abundant almost 

everywhere on earth despite the fact that they are widely distributed and their energy 

intensities vastly differ from one place to another. Because of this, the global drive for 

high level integration of such energy sources can be realized by undergoing heavy 

investments in transmission infrastructures. In other words, transmission expansion 

planning (TEP) has to be carried out over geographically wide and large-scale networks. 

This helps to effectively accommodate the RESs and optimally exploit their benefits 

while minimizing the side effects. However, the stochastic nature of most of the 

renewable sources, along with the size of the network systems, results in a complex and 

combinatorial optimization problem, requiring a huge computational effort. The 

resulting problem can eventually become harder to solve, if not intractable. Thus, this 

demands that the models and the tools pursued to be computationally very efficient and 

reasonably accurate. At the same time, they should feature aspects that are believed to 

play a non-negligible role in TEP. To this end, this thesis presents solution strategies, 

tools and methods that collectively contribute to an effective and efficient resolution of 

such a complex problem within a finite simulation time.  

From a modeling perspective, firstly, a new formulation is proposed for a long-term 

planning of transmission infrastructures under uncertainty with a multi-stage decision 

framework and considering a high level renewable integration. Secondly, recognizing 

the significant impacts network losses have on TEP solutions (which are often neglected 

in most TEP studies because of computational limitations), this thesis contributes new 

linear losses models, some of which strike the right balance between accuracy and 
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computational effort, particularly, in the context of medium to long-term TEP in large-

scale power systems accommodating high level variable energy sources.  

The integration of variable energy sources in the power systems introduces vast 

uncertainty and operational variability. This along with the uncertainty of electricity 

demand and other sources of uncertainty makes such a problem more complex. Hence, 

developing effective uncertainty and variability management tools is a very critical 

issue, especially in terms of computational requirements. A significant part of this 

uncertainty and variability is often handled by a set of operational states, here referred 

to as “snapshots”, generation-demand patterns of power systems that lead to optimal 

power flow (OPF) patterns in the transmission network. A large set of snapshots, each 

one with an estimated probability, is then used to evaluate and optimize the network 

expansion. In long-term TEP of large networks, the number of operational states must 

be reduced. Hence, from a methodological perspective, this thesis shows how the 

snapshot reduction can be achieved by means of clustering, without relevant loss of 

accuracy, provided that a good selection of classification variables is used in the 

clustering process. The proposed method relies on two ideas. First, the snapshots are 

characterized by their OPF patterns (the effects) instead of the generation-demand 

patterns (the causes). This is simply because the network expansion is the target 

problem, and losses and congestions are the drivers to network investments. Second, the 

OPF patterns are classified using a “moments” technique, a well-known approach in 

Optical Pattern Recognition problems. 

The entire TEP problem is kept as a stochastic mixed-integer linear programming (S-

MILP) optimization, an exact solution method. This helps one to use effective off-the-

shelf solvers and obtain expansion results within a finite simulation time, overall 

enhancing problem tractability. Furthermore, in order to significantly reduce the 

combinatorial solution search (CSS) space and hence facilitate the computation, a new 

heuristic solution strategy is devised. This approach works by primarily decomposing 

the problem into successive optimization phases. The foremost phases use relatively less 

complex optimization models than the following ones. And, each phase uses the results 

of the previous one. Hence, the main objective of this solution approach is to reduce the 

combinatorial solution search space, which in turn enhances tractability. Each 

optimization phase could be defined and solved as an independent problem, thus, 

allowing the use of specific decomposition techniques, or parallel computation when 

possible. A relevant feature of the solution strategy is that it combines both 

deterministic and stochastic modeling techniques on a multi-stage modeling framework 

with a rolling-window planning concept.  

The planning horizon is divided into two sub-horizons: medium- and long-term, each 

having multiple decision stages. The first one is characterized by a set of investments 

which are good enough for all scenarios in the first sub-horizon while scenario-

dependent decisions are sought in the second one. 
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The developed models, methods and solution strategies are tested on small-, medium- 

and large-scale network systems. This thesis also present numerical results of an 

aggregated 1060-node European network system obtained considering multiple RES 

development scenarios. Generally, test results show the effectiveness of the proposed 

TEP model, and the proposed methods and solution strategy are very effective in 

facilitating the solution process, and contribute to a significant reduction in 

computational effort while fairly maintaining optimality of the solutions. 
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This chapter gives a brief introduction to the research topic, describes the scope and 

outlines the main as well as the specific objectives of this thesis. The thesis organization 

and structure is also presented at the end of this chapter.    

1.1. BACKGROUND 

Most of the energy that we consume today, in one form or another, comes from 

unsustainable energy sources. In particular, the electric industry is highly dependent on 

fossil fuels for power production. This has led to a series of questions from energy 

dependence and sustainability concerns to climate change issues, which are some of the 

major drivers of renewable energy source (RES) integrations in many power systems 

across the world.  It is now widely recognized that integrating RESs in power systems 

brings about a lot of economic, environmental, societal and technical benefits to all 

stakeholders. Among the wide-range benefits of RESs is their significant contribution in 

combating climate change and abating its dire consequences. Most RES technologies 

(wind and solar PV, for instance) have very low carbon footprints, making them very 

suitable for solving such emission-induced health and environmental problems. Hence, 

integrating RESs in power systems partly replaces polluting (conventional) power 

generation sources, resulting in a “cleaner” energy mix i.e. one with lower emission 

levels.  

The potential of RESs is colossal because, in principle, they can meet several times the 

world demand. RESs such as wind, solar, hydro, biomass and geothermal can provide 

sustainable energy services based on available resources in all parts of the world. The 

transition to renewable energy based power systems tends to increase, while their costs 

continuously decline as gas and oil prices continue to oscillate. In the last half century, 

the demand for wind and solar energy systems has been continuously increasing, 

experiencing a reduction in capital costs and generated electricity costs. There have 

been continuous performance improvement and R&D undergoing in the sector in the 

past decades. As a result, the prices of renewable energy and fossil fuels, as well as 

social and environmental costs are to diverge in opposite directions. Economic and 

political mechanisms are expected to massively support the wide spread of sustainable 

markets for the rapid development of RESs. At this point, it is clear that the present and 

future growth will occur mainly in renewable energy and in some natural gas-based 

generation systems, and not common sources like coal or oil-fired power plants. The 

progress of RESs can increase diversity in the electricity markets, contributing to obtain 

long-term sustainable energy, helping to reduce local and global greenhouse gas (GHG) 

emissions, promote attractive trade options to meet specific energy needs, and create 

new economic growth opportunities. 

With climate change, sustainability, energy security, continuously increasing demand 

for electricity and socio-economic factors as the main drivers, the level of global RES 

integration has been steadily growing during the past decades, as indicated in a 2015 

report by the International Energy Agency (IEA) [1]. The report further shows that, in 

2013 alone, an approximately 19.1% of global electric energy consumption came from 
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RESs, most of which was from hydropower [1], [2]. After several decades of efforts in 

research and continuous development in RES, the yearly growth in the capacity of these 

plants is becoming greater than the total investment capacity added in power plants 

based on coal, natural gas and oil all combined together [3]. Nowadays, RESs have 

reached a significant level of share in energy supply options, becoming one of the 

prominent global alternative power supply sources. The latest global trends in 

renewable energy investment status reports indicate that renewables represented a 

58.5% of net additions to global power capacity in 2014, with significant growth in all 

regions, which represents an estimated 27.7% of the world’s power generating capacity, 

enough to supply an estimated 22.8% of global electricity. Investments in wind and 

solar power sources continue to outpace other technologies. Figure 1.1 shows the trends 

cumulative wind and solar power additions in Europe as well as globally. These trends 

nothing but reflect the growing interest in developing renewables. The overall cost-

cutting achieved to date has helped to ensure such a strong momentum in 2014, 

reaching an investment boom up to 29% in solar, and 11% in wind technologies 

globally [4]. These figures are further strengthened in 2015 [4]  with more than 33% and 

16% new investments made globally in solar and wind technologies.  

 

Fig. 1. 1 Cumulative installed capacity of wind and solar [4]–[7] . 

These remarkable growths have been against a number of odds such as the recent global 

financial crisis, the dramatically falling fuel prices and the slowdown of increasing 

global electricity consumption that have been thought to decelerate or stall this trend 

[4]. The recent developments in the 2015 Paris climate conference (COP-21), overall 

trends in international policy on RESs, energy dependence concerns, the falling capital 

costs of several matured RES technologies, and other techno-economic factors are all 

favorably expected to further accelerate the level RES integrated into power systems. In 

general, there is a general consensus globally that RESs will cover a significant amount 

of electricity consumption in the years to come [2]. 
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It can be inferred from Figure 1.1 that Europe, as the leading advocate of renewables, 

accounts for nearly half of the total installed capacities of these resources worldwide. 

European countries have set forth ambitious targets for emissions reductions and RES 

integrations. As in Figure 1.2, the renewable share in the final energy consumption in 

Europe is expected to reach 20%, 27% and 80% by 2020, 2030 and 2050, respectively. 

As a result, the integration of wind and solar is especially expected to increase 

significantly in the years to come. 

 

Fig. 1. 2 Historical and targeted trends of renewable energy share in gross final energy 

consumption in Europe [8]. 

Despite these interesting figures, several challenges remain in place pertaining to the 

tapping of large-scale RESs, their integrations and their efficient utilization. A growing 

effort in pursuing innovative approaches to increase RES participation is required to 

guarantee a clean energy future. Most of the challenges are related to the nature of such 

resources (especially wind and solar), which are abundant almost everywhere on earth 

despite the fact that they are widely distributed and their energy intensities vastly differ 

from one place to another. Their intermittent nature also poses significant challenge in 

operation and planning of power systems because of the vast uncertainty and variability 

such resources introduce to the system. In addition, power systems are subject to many 

more sources of uncertainties with different levels such as uncertainty in generation 

expansion/retirement, fuel prices, demand growth, component outages, carbon 

emissions, demand response, etc. The compound effect of all these creates considerable 

challenges, which increase with level of RES integration. The global drive for high level 

integration of such energy sources can be realized by undergoing heavy investments in 

transmission infrastructures among others, which help to even out the negative 

consequences of RES integration. In other words, because of their distributed nature, 

unprecedented transmission expansion planning (TEP) has to be carried out over a 
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geographically wide area and large-scale networks to meet the short- to long-term 

objectives of integrating renewables (particularly, variable energy sources). This helps 

to effectively accommodate the RESs and optimally exploit their benefits while 

minimizing the side effects. In the context of Europe, for instance, there is an ambitious 

plan to develop massive RESs in the coming decades in a bid to curb GHG emissions, 

promote clean energy technologies and meet the increasing demand for electricity 

among other reasons. However, these energy sources are usually located in places of 

low demands. For instance, the West Coast and the North Sea are among the best 

locations in Europe for large-scale wind power developments. There  are also initiatives 

to import huge amount of solar power from Middle East and North Africa (MENA) [9].  

With these and other scenarios in mind, the European network will have to be 

adequately reinforced and expanded to support the integration of such developments 

[10], [11]. However, the high level uncertainty and variability inherent to such such 

resources [12], along with the size of such network systems and temporal scope, results 

in a complex and combinatorial optimization problem, requiring a huge computational 

effort.  

Generally speaking, computational complexity of TEP problem dramatically increases 

with the size of the network dealt with. The resulting problem can eventually become 

harder to solve, if not intractable. Extensive literature survey reveals that existing 

planning models are not adequate to handle such a problem; they cannot seamlessly be 

extended to long-term TEP of large-scale networks with high level integration of 

variable energy sources mainly because they are not properly equipped with the 

necessary strategies and methods to systematically handle the vast uncertainty and 

operational variability inherent to such a problem. In addition, given the size of the 

problem, most traditional solution methods, which have been designed at most for 

national networks, have computational limitations, leading to tractability issues. All this 

explains the need for new strategies, tools and methods that effectively cope with a 

problem of this magnitude, which is the main theme of this thesis. 

1.2. RESEARCH MOTIVATION AND PROBLEM DEFINITION 

As introduced in the above background, the renewables’ share in the total energy 

consumption will keep on increasing strongly. However, this will require tapping 

variable energy sources such as wind and solar in geographically wide and remote areas, 

far away from major demand centers and existing transmission infrastructures, leading 

to network expansion planning problems of exta-large network systems. This is highly 

needed to meet striving RES integration targets and global environmental-related 

obligations as well as balance out the negative effects of RES integration in power 

systems. However, the unprecedented uncertainty, temporal and spatial scopes of such a 

problem pose a significant computational challenge. This is the main motivation of the 

present work. Framed in this context, this thesis endeavors to address three main 

research questions emanating from a modeling and methodological perspectives of such 

a problem.  
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Network fidelity:  From the context of long-term planning of large-scale networks 

under high penetration of variable energy sources, what are the levels of details that 

can be included in a network expansion model that strikes the right balance between 

accuracy and computational requirement? This question mainly relates to the modeling 

aspects of network systems. This is discussed in detail in Chapter 3, and modeling 

aspects of network losses is covered in our published work [13]. 

Uncertainty and variability:  From the same context, how should the different sources 

of uncertainty and variability be captured in such a way that ensures the right balance 

between problem tractability and solution accuracy? To address this question, a new 

uncertainty and variability management tool is presented and thoroughly discussed in 

Chapter 4 and in [14]. 

TEP Model: The high temporal and geographical scope of the problem as well as the 

need for combining short- to long-term planning decisions demands a new TEP model. 

From this perspective,  how should the TEP model be formulated so that it meets the 

demands? What investments should be made now (in the short and medium term) and 

where should these be? What/where are the strategic investment decisions to be made 

considering different possible evolutions of the system? These and other related issues 

are addressed in Chapter 5. 

Managing combinatorial problem: Given the size of the problem, how should the 

combinatorial solution search space be handled? The present work proposes a heuristic 

solution method which includes a systematic way of decomposing the TEP problem into 

successive optimization phases. This is partly presented and discussed in [15]. 

1.3. THESIS OBJECTIVES 

Main Objective—The main objective of this research is to develop mathematical 

optimization models, uncertainty and variability management methods, and solution 

strategies that support the complex decision-making process of long-term expansion 

planning of large-scale transmission grids under high level renewable integrations.  

Specific Objectives —The specific objectives of this thesis are: 

 To formulate a tractable long-term TEP model for very large-scale network 

under high level uncertainty and massive integration of variable energy sources; 

 To propose methods for managing uncertainty and variability introduced by 

intermittent energy sources such as wind and solar power generators, electricity 

demand and price as well as component availabilities; 

 To devise a new solution strategy for enhancing the tractability of the TEP 

problem in view of reasonably reducing computational time without 

significantly compromising the optimality of the solution;  

 To test the proposed solution techniques on a realistic network under high 

penetration of renewables. 
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1.4. RESEARCH METHODOLOGY  

In order to achieve the main research objective, this thesis develops simulation models, 

methods and solution strategies to analyze the long-term expansion of electricity grids 

under uncertainty and dramatically changing power generation scheme over time. In 

other words, the TEP problem is formulated from the perspective of long-term 

expansion planning and under high penetration level of renewables. Under these 

circumstances, the proposed model should sufficiently emulate the anticipated complex-

decision making process planners have to face in relation to network expansion needs of 

especially large-scale power systems. This indicates that the tractability of such a model 

is of a paramount importance. On one hand, it is desired that the developed model 

embrace the inherent characteristics of the electrical systems in a reasonably accurate 

manner. On the other hand, the complex nature of the problem means that certain 

accuracy related issues should be compromised to ensure tractability. A tradeoff 

mechanism reconciles these two conflicting requirements. To this end, first, existing 

models are critically reviewed and compared in terms of their mathematical 

complexities, accuracy and possible applications to such a complex problem. Based on 

the results of the extensive analysis and comparisons, a tractable mathematical 

optimization model, based on an improved “DC” network flow model, is then proposed. 

The main objective of the resulting TEP optimization is to meet the growing demand for 

electricity at the lowest cost possible (seen from the system perspective) while 

respecting all technical, economic and environmental constraints. This leads to a 

constrained optimization framework with an overall cost minimization as an objective. 

Hence, the resulting TEP model includes multiple cost terms such as investment, 

operation and maintenance, emission and reliability costs, which are combined to form a 

single objective function (the total cost in the system) in a stochastic programming and 

multi-stage planning framework.  

In order to efficiently handle the uncertainty and the variability inherent to such 

problems, the thesis also introduces a new problem-specific methodology based on the 

theory of moments, which clusters operational situations based on their expected impact 

on expansion needs. Moreover, the research work proposes a new heuristic solution 

strategy that is proven to significantly facilitate the solution process. This strategy 

works by decomposing the original problem into successive optimization phases, which 

is structured in a manner that the output of given phase is the input for the subsequent 

phase.  

The proposed optimization model as well as the solution strategy is implemented in 

GAMS
©

 and mainly solved using CPLEX™ algorithm mostly with default parameters. 

Whereas, the clustering methodology is programmed in MATLAB
©

 programming 

environment and Visual Basic™ with Excel
©

 used as an interface for this purpose. The 

whole work here aims to provide a reliable expansion solution containing short-, 

medium as well as long-term decisions that can effectively cope with the rapidly 

changing environment in the power industry.     
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1.5. THESIS OUTLINE AND ORGANIZATION 

This thesis is organized as follows. The first chapter presents a brief overview of the 

problem and motivation of the research work, and outlines the research objectives and 

methodology. The subsequent chapter presents an extensive review of the literature by 

organizing previous related works to highlight the research questions and objectives.  

Chapter 3 begins by reviewing existing and modified TEP models, from the network 

representation perspective, and describing the modifications made in order to ultimately 

develop a reasonably accurate network representation which is to be used in the 

formulation a TEP model from the context of large-scale network applications. From 

computational requirement and accuracy standpoint, a comprehensive comparison of 

total of six TEP models, and thirteen variants of these models with different network 

fidelity levels, is discussed both theoretically and numerically to further motivate the 

need to develop a reasonably accurate TEP model for the stated problem. This chapter 

also presents a detailed modeling of network losses, which encompasses an extensive 

comparison of existing and novel losses models ones both from computational burden 

and accuracy viewpoints. 

Chapter 4 introduces the novel methodology developed in this thesis for managing 

uncertainty and variability inherent to the problem at hand. The methodology is 

described in detail and its efficacy is demonstrated with a numerical example.  

Chapter 5 presents detailed descriptions of the mathematical formulations of the TEP 

optimization problem in a multi-stage planning horizon and stochastic programming 

framework. This chapter also introduces the proposed solution strategy. In the 

subsequent chapter, the proposed strategy, tools and methods are verified by carrying 

out numerical studies on a realistic 1060-node European network system. 

The last chapter gathers the main findings of this thesis in the form of conclusions, 

summarizes the main contributions of the thesis by revisiting the thesis objectives, and 

finally draws some directions for extending this work.  
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This chapter presents a comprehensive review of existing literature focusing on the 

relevant previous works in relation to transmission grid expansion planning.  

2.1. CHAPTER OVERVIEW 

In power systems, grid expansion planning is always one of the most critical issues that 

has to constantly be addressed for meeting the demand while maintaining system 

integrity and reliability. In other words, transmission expansion planning (TEP) is 

mandatory in every electric power industry which continually undergoes rapid changes 

in structure, management and operation [16] regardless of the electricity markets: 

traditional or competitive. The literature on the subject area of TEP includes several 

decades of research works, dating back to 1970. Recently, there have been a dramatic 

increase in the number of publications on this, especially in the past decade, indicating 

the growing concerns and challenges. This could be partly explained by the deregulation 

of power systems which increased the level of uncertainty in such systems, increasing 

the complexity of the problem, and increasing penetration level of non-conventional 

generation sources. A detailed review of existing literature on TEP as of 2003 is 

presented in [17], which has been recently complemented in [18], [19]. From the 

context of TEP, the following relevant issues define the structure of this literature 

review: 

 fidelity of network representation (alternating current—AC, “direct current”—

DC models, etc.),  

 solution methods employed (mathematical, heuristic and meta-heuristic),  

 nature of the electricity market (regulated vs. deregulated),  

 objective function considered (investment cost, investment cost +operation 

costs, etc.),  

 flexibility of expansion plans computed (static vs. dynamic), and 

 methods adopted to handle uncertainty and variability inherent to the TEP 

problem (probabilistic, stochastic, etc.).  

2.2. NETWORK REPRESENTATION FIDELITY 

Power systems are characterized  by their complex nature whose components are 

generally described by highly nonlinear and nonconvex models. The complexity of such 

systems are often systematically handled in complex power systems analysis, operation 

and planning problems mainly by using “proxy” models. Fidelity then refers to the level 

of details (i.e. actual physics describing the characteristics of the system) captured by 

such proxy models i.e. in relation to accuracy and complexity levels. This is especially 

the case in TEP problems, where the network is represented using various models such 

as the customary non-linear AC [20]–[22], the classic “direct current” (DC) [23]–[27], 

[28], “pipeline” [29], [30] and [31], hybrid (which combines the DC and the pipeline 

models) [30], or linear variants of these models and disjunctive models [10], [32], [33].  

The AC network model is the most realistic model and it implicitly models network 
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losses but its mathematical complexity, nonlinear and nonconvex nature means its 

application in TEP problems is very limited. The DC model, which is derived from the 

AC model by making use of a number of simplifying assumptions, respects the physical 

laws that govern power flows in power systems. It is currently the most commonly used 

network model in TEP studies because of its appealing computational performance 

while delivering reasonably “accurate” solutions. However, the simplifying assumptions 

made in its formulation (which include flat voltage, zero resistance and very small 

voltage angles) leaves this model lossless. Moreover, the existence of reactive power 

flows is not acknowledged in the DC model. In a pipeline model, flows are only 

required to respect the capacity and nodal balance constraints. This model effectively 

treats the lines as flow networks. In other words, flows in a line can assume any value 

independent of its parameters and system variables (voltage and angles). Because of 

this, expansion solutions obtained from TEP models employing this model can be 

suboptimal or may sometimes be incompatible with the original network system. 

Hybrid network models combine both DC and pipeline models, and are generally better 

than the pipeline models in terms of accuracy. Some other network models, formulated 

by relaxing or linearizing the AC network model, have been proposed recently by 

researchers [34]–[36], [37], [38]. Authors claim that their models can bridge the AC and 

the DC network models, yet, their applicability in large-scale networks have not been 

demonstrated. 

From computational viewpoint, the network models reviewed here have different 

computational requirements. Generally, the higher the fidelity level is, the more 

accurate the solution is but the higher the computational burden is. In Chapter 3, 

different TEP models formulated using these models and their variants are further 

reviewed and compared in terms of solution accuracy and their computational 

requirements, from which some conclusions are drawn. 

2.3. SOLUTION METHODS IN TEP 

The solution methods employed in TEP can be generally classified as exact and non-

exact methods. 

2.2.1. Exact Solution Methods in TEP Optimization 

The TEP problem is formulated into a constrained mathematical optimization with a 

certain objective function which is then solved by making use of pure mathematical 

procedures and algorithms. The solution obtained should therefore satisfy several 

technical, economic, and reliability criteria constraints imposed in the optimization 

process. As early as 1970, authors in [39] and [40] proposed mathematical optimization 

techniques using linear programming and dynamic programming, respectively, to solve 

the transmission expansion problem. The vast literaute on the TEP problem is 

dominated by mixed integer linear programming (MILP) optimization which embeds a 

DC network model, as in [41]–[43]. In general, the solution approaches adopted in such 

problems can be categorized as convex and nonconvex optimization techniques. The 

first category includes linear programming—LP [39], [44], [45], [46], mixed integer 
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linear programming [41]–[43], and quadratic programming—QP [47], [48]. Non-

convex optimization techniques include nonlinear programming—NLP [49], [50] and 

mixed integer non-linear programming [51], [52]. There are also solution techniques 

that can exhibit characteristics of both categories such as dynamic programming [53], 

[40], [54], decomposition techniques [55], [55]–[57], and branch and bound methods 

[58], [59]. Other mathematical optimization techniques like Benders [60], [61], [62] and 

hierarchical decompositions [63], [64] have been also extensively used. Unlike others, 

LP- and NLP-based TEP optimization models do not take account of the lumpiness of 

investments because the investment variables are relaxed to assume continuous values.  

A MILP model has been formulated to solve a long-term TEP problem in a competitive 

pool-based electricity market by maximizing social welfare and considering 

uncertainties in electricity demand [65]. The work utilizes a set of decision-making 

metrics such as changes in aggregate social welfare, generator surplus, demand surplus 

and merchandizing surplus to obtain an optimal TEP solution, as a guide to make 

investment decisions. Similarly, a static MILP for long-term TEP model based on 

disjunctive formulation, incorporating losses and N-1 security criteria has been 

developed in [66]. Authors in [66] characterize uncertainties due to contingencies and 

inflows to hydropower plants by using multiple scenarios. 

Authors in [36] have introduced the concept of transmission expansion with ‘redesign’. 

It is based on the notion of “a transmission network may be efficient after cutting off 

some of its circuits”. Thus, a MILP TEP model based on disjunctive formulation has 

been developed where all transmission lines including existing ones are taken to be as 

candidates, while the cost of cutting off a line is considered to be zero. Authors have 

also presented a fair comparison of the disjunctive model with other variants of TEP 

mathematical formulations in terms of their performances. The analysis has also 

included N-1 contingency and a discussionon on how to handle uncertainties in demand 

and generation. TEP and network switching problems have been developed into a 

combined MILP problem in [67] and authors indicate that “there can be some savings 

upon switching off some lines in a system”. 

Acknowledging the complexity of the problem (and/or being motivated by the structure 

of the TEP problem), some researchers have resorted to the use of mathematical 

decomposition techniques to enhance its tractability and “speed up” the solution 

process. Benders decomposition technique is especially the most commonly used 

approach in TEP studies [55], [56], [61], [68]. Reference [68] presents a methodology to 

increase the robustness of TEP solution by incorporating a detailed contingency 

analyses (adequacy and N-1 security criteria), and considering uncertainties in load and 

wind generation via Monte Carlo simulations. Authors in [64], [69] develop a bi-level 

mathematical programming, where the TEP problem is split into two levels: upper and 

lower levels. The upper level minimizes the investment cost; whereas, the lower-level 

maximizes aggregate social welfare for a given investment decision (obtained from the 

upper level). The duality theory is employed to link the two levels.  
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The work in [70] proposes a mathematical method based on a network topological 

synthesis to investigate the impact of power-flow patterns on transmission planning in a 

competitive market environment. TEP based on some economometric approaches has 

also been reported in the literature. Decision analysis scheme based on min-max regret 

criteria in future plan has been methodically employed to make the TEP solution robust 

and flexible enough in the face of uncertainty. The work in [71] adopts real options 

analysis. The main idea behind this approach stems from evaluating the worth and the 

risk of transmission expansions by constructing binomial trees (and Monte-Carlo 

Simulation as a second approach) to represent all possible paths for investments. 

In general, the solution obtained by exact solution methods is usually accurate, which 

can be regarded as one of the advantages of using such solution methods. If the problem 

is fully convexified, global optimality is guaranteed within a finite simulation time. 

However, the use of such solution methods in complex power systems may be 

sometimes complicated.  

2.2.2. Non-exact TEP Solution Methods 

The complexity and combinatorial nature of the TEP problem prompted researchers to 

seek for various heuristic [59], [72] and meta-heuristic optimization methods [73]–[76] 

that can provide an expansion solution within a reasonable simulation time. Heuristic 

methods, mainly based on sensitivity analyses or invented engineeric methods, are often 

used when the structure or size of the problem makes it impossible or prohibitively 

expensive to use exact solution methods. Metaheuristics improve the performance of 

low level heuristic algorithms by employing higher level algorithms that increase the 

chance of avoiding or escaping locally optimal solutions. 

In [39], a heuristic method is proposed to form fictitious overload paths in the network. 

Then, the approach makes use of guiding numbers to penalize those without initial 

transmission lines. Heuristic procedures based on sensitivity analysis are also proposed 

in [77]. This methodology has been later extended to multistage TEP with constructive 

heuristic algorithm applied to the problem [78], [79]. Least-effort algorithm has been 

also proposed in [80] where a heuristic index tries to identify the circuits that provide 

better power-flow distributions in the system. In [81], flow sensitivity-based TEP has 

been proposed where the expansion decision has been made based on a value given by 

the ratio of cost of a line and flow distribution factor (sensitivity across a corridor). In 

[82], a model for a static long-term TEP is developed, and  possible investments are 

heuristically ranked in accordance with their effectiveness in increasing the system’s 

load supplying capability or reducing unserved power. Similar approaches were applied 

to short-term TEP models in [20], [59].  

In [83], a heuristic static TEP model with an objective of minimizing aggregate 

investment and operation costs has been developed. In this work, integer expansion 

variables have been represented by continuous sigmoid functions and the expansion 
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decision have been made using a heuristic model based on a sensitivity given by the 

values of the sigmoid function. In [72], an expansion decision has been made by 

analyzing the heuristic ratio of load shedding reduction as a result of investment and the 

investment cost of the line under consideration. 

Meta-heuristic optimization methods have been also widely applied in TEP in a bid to 

further tackle the computational burden of TEP problems and improve the solution 

accuracy by avoiding local optima which is thought to be a common problem with 

heuristic solution techniques. These methods are often inspired by nature. The most 

common ones are simulated annealing (SA), genetic algorithm (GA), tabu search (TS), 

game theory (GT), expert systems (ES), fuzzy set theory (FS), ant-colony optimization 

(ACO), particle swarm optimization (PSO) and greedy randomized adaptive search 

procedure (GRASP) [84]. Meta-heuristic methods integrate the features of optimization 

and heuristic methods. Compared to heuristic methods, meta-heuristics usually yield 

high quality solutions within a relatively lower computational time.  

The literature in this area includes neural network hybridized with genetic algorithm 

[85], genetic algorithm [86], [87], [88], [89] and [90], differential evolution algorithm 

[91]-[92], tabu search [93], [94], greedy randomized search algorithm [60], [76], 

simulated annealing [95], ant colony optimization[96], [74], particle swarm 

optimization [97]-[98], chaos quantum honey bee algorithm [99], expert systems [100] 

and scatter search [101].  

The concept of object-oriented programming paradigm has been applied to model 

dynamic TEP in a deregulated environment [102]. Reference [103] reports a method 

based on evolutionary programming for solving a MINLP TEP problem which 

minimizes aggregate cost: investment, generation and penalty for unserved power. The 

proposed solution method has been compared with other methods such as GA, TS and 

SA.  

Genetic algorithm has been applied to solve a least-cost and reliability base TEP 

problem in [104]. The work in [105] also uses GA to solve the same problem and 

proposes a methodology based on Taguchi’s orthogonal arrays to handle uncertainty in 

renewable generation and demand. Authors in [106] propose a Niche GA (NGA) based 

algorithm for solving a stochastic MINLP TEP model. In [107], a combination of 

Benders decomposition and differential evolution algorithm (DEA) has been used to 

solve a multi-stage MILP TEP model based on a disjunctive formulation. Limited 

discrepancy local search (LDLS), a tree-search meta-heuristic optimization technique, 

has been proposed to solve TEP model in [108]. Here, the complex power system is 

encapsulated in a black-box which is then queried for information about the quality of a 

proposed expansion. Authors in [108] claim that the LDLS method can be applied 

flexibly to a power system of any size even if this has not been substantiated in their 

study. A GA-based ‘overload minimization’ instead of the classical ‘unserved power 

minimization approach’ has been proposed in [109] to solve TEP model. In this case, 

the fitness function includes investment cost, overload and underload penalties. 
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2.4. TEP IN REGULATED AND DEREGULATED POWER SYSTEM STRUCTURES  

Despite the fact that the main aim of expanding the power transmission network in both 

environments is to better serve growing demand for electricity while satisfying a 

number of economic and technical constraints, different ways are followed in order to 

achieve such an objective [110]. For instance, TEP in regulated environment is usually 

carried out in coordination with generation expansion hence the level of uncertainties is 

relatively low. Deregulation of the power systems has generally increased the level of 

uncertainty in the system, introduced additional objectives some of which can be 

conflictngr, and increased the requirements for transmission expansion problem. Under 

competitive market structure, the naturally regulated transmission utility needs to 

provide non-discriminatory access to all the market players and facilitate fair 

competition [111]. Because of these reasons, TEP in deregulated environment is more 

challenging than in regulated (traditional) environment. References in [12] and [112] 

present a detailed review of existing TEP models as well as methods adopted for 

incorporating uncertainties in a deregulated market environment. In addition, a 

comparison of centralized vs. deregulated expansion plan, and the need for new 

methodologies in the restructured power industry has been pointed out in [110]. 

The literature on TEP in regulated environment, whose objective is to meet the demand 

while satisfying certain reliability and quality standards, includes [39], [113], [46], [17], 

[114], [115], [60]-[61], [55], [77], [80], [30], [83], [116], [88] [100], [117] and [118]. 

Previous works on TEP in a deregulated environment include [62], [65], [70], [119] and 

[120] is not only very complex to solve but also usually accompanied by high 

uncertainties in load, generation and market associated with price volatilities. Methods 

employed for handling such uncertainties introduced as a result of deregulation fall 

either into deterministic or non-deterministic approaches. Deterministic approaches are 

usually based on the trivial worst-case-scenario analysis while non-deterministic 

approaches such as probabilistic load flow, probabilistic based reliability criteria, 

scenario techniques, decision analysis (a method for dynamic programming), fuzzy 

decision-making, etc have been employed [111]. A detailed review of issues related to 

uncertainty management in TEP is presented in Section 2.7. 

Authors in [121] propose a mid-term transmission expansion model in a liberalized 

electricity market with an objective of maximizing the aggregate benefits of the whole 

system and considering power exchange deviations, N-1 security criteria and unsupplied 

power. Investment decisions are taken based on computing and analyzing investment 

sensitivities which are determined from dual variables and reduced costs as a result of 

the investment. 

Authors in [122] propose a meta-heuristic based static TEP model in restructured power 

industry which included N-1 security criteria, and uncertainties in demand as well as in 

generation and consumer bids. The model minimizes investment and congestion costs 

and uncertainties are handled via Monte Carlo simulations [122]. A congestion driven 

TEP model is proposed in [123], [124] in the context of restructured markets. In [112] 
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and [125], a multi-stage TEP model is proposed for deregulated environments. 

Simulated annealing algorithm is then used to solve the resulting problem, and fuzzy 

models incorporate uncertainties due to load evolution along a planning horizon, and 

system component availabilitities. 

2.5. OBJECTIVE FUNCTION OF TEP 

Traditionally, the objective of TEP has been to minimize the investment cost of lines 

subject to a number of operational and technical constraints [55], [126]–[128]. In other 

words, a centralized approach of TEP is mainly to meet current and future demand with 

adequate reliability and at a reasonable cost. However, the continuously changing 

environment of power systems is forcing reconsideration of this approach. In a 

deregulated environment, TEP has to satisfy multiple objectives set by the regulatory 

body and/or other stakeholders, some of which can be conflicting. In addition to 

minimizing the investment cost of lines, TEP in a deregulated environment should aim 

to provide non-discriminatory access, create a conducive environment for fair 

competition, increase network reliability, meet the demand at a minimum operation cost 

possible, mitigate transmission congestion, minimize risk, increase operation flexibility, 

and minimizing environmental impacts among others. From this context, the objective 

function used in TEP problems in the literature include minimizing operation and 

investment costs [22], [42], [56], [118], [129]–[131], costs of operation, investment and 

load shedding [16], [94], [125], [132], [133], congestion and load shedding costs [134], 

[135], and maximizing welfare [56] among others.  

2.6. TEMPORAL SCOPE OF TEP 

From the temporal scope of planning, TEP can be categorized as static and dynamic. 

Static planning framework does not recognize the dynamic nature of the problem; a 

single target year is instead considered, for which the optimal expansion solution is 

determined. All investments are assumed to be made in the same year. The fact that 

decisions can be postponed is not acknowledged in such framework, answers only the 

TEP questions of where and what investments are to be made on the system. Majority of 

the literature falls into this category, some examples are [16], [22], [25], [42], [55], [56], 

[94], [126], [128], [129], [134]–[137]. In contrast, dynamic planning involves a multi-

year decision framework, emulating the dynamic nature of the problem. Dynamic 

planning obtains not only the type and the location of investments to be made but also 

the timing of each investment. Recent works on dynamic TEP include [23], [27], [118], 

[125], [127], [130], [132], [133], [138]–[140]. 

The dynamic planning is a more orthodox planning framework than the static 

counterpart, and it generally leads to a better expansion solution at a lower cost when 

compared to the static planning approach. However, dynamic planning is very complex, 

requiring higher computational effort. To overcome this, some researchers employ 

meta-heuristic approaches such as GA [118], SA [125], ordinal optimization [140] and 

others. 
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2.7. TREATMENT OF UNCERTAINTY AND VARIABILITY IN TEP 

Traditionally, TEP has been carried out deterministically, often for the worst-case 

scenario (peak-load) in many power systems in a centralized approach. Even if network 

investments have been often oversized to meet the worst case scenario, the deterministic 

approach has been operational in most cases where the system’s conditions are 

relatively predictable. However, recent developments in the power industry 

(deregulation, increasing level of variable energy sources, etc.) have increased the level 

of uncertainty and variability in the system, and made it impossible to exactly 

distinguish what the worst-case scenario is. All this adds extra complexity to the 

decision-making process of grid expansions.  

The vast literature on TEP is base on deterministic planning, but the review in this 

section is limited to the techniques applied to address some of the limitations of 

deterministic planning models by considering the effects of uncertainty on TEP 

solutions. So far, various methods have been employed for managing such uncertainty 

in network expansion planning problems. A comprehensive review of some of the 

techniques adopted for modeling uncertainty in such problems can be found in [18]. 

Authors in [141] also excellently present the uncertainty management techniques so far 

suggested or applied by researchers in the generic subject of energy systems. In the 

context of TEP, the techniques can be generally classified into probabilistic, stochastic 

and parametric methods, depending on how uncertainty is described in the input 

parameters. 

The first category includes probabilistic-power-flow and probabilistic-reliability-based 

methods. Both methods are based on sensitivity analyses, which are often carried out by 

varying one uncertain input parameter at a time. But it may also include the combined 

variations of several uncertain inputs. Either way, to perform sensitivity analysis, all 

uncertain input parameters considered should have known PDFs so that some instances 

of the corresponding parameters can be sampled. The PDFs themselves are 

approximated from the respective historical data of uncertain parameters.  

The principal goal of probabilistic approaches is to estimate the statistical parameters 

(e.g. mean values, variances, PDFs, etc) of relevant output variables such as the network 

expansion solution, the combined investment and operation cost, the loss of load 

probability, and the expected level of unserved energy. This can be achieved either 

numerically, analytically or a combination of both. Monte-Carlo simulation (MCS) is 

the most widely used numerical approach in estimating the PDFs of output variables. It 

involves an iterative process including generation of samples and running simulations. 

First, a sample containing realizations of the uncertain input parameters involved is 

generated using their respective PDFs. Second, considering this sample as an input, a 

deterministic optimization is run and corresponding values of random variables of 

interest are computed and recorded. This process is repeated until a sufficiently large 

number of samples are computed for the random output variables of interest so as to 
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estimate their PDFs. Note that during the iterative process, sampling can be carried out 

either sequentially or non-sequentially depending on the type of MCS used. 

In particular, MCS has found wide applications in a TEP optimization framework to 

deal with various sources of operational uncertainty. For example, the authors in [12] 

developed a market-based TEP model which embeds MCS for generating different 

samples using the PDFs of various random inputs (load, component availability, 

generator bid prices and wheeling transactions), and then ultimately compute PDFs of 

locational marginal prices (LMPs). Similarly, uncertainties related to load, renewable 

power generation, fuel and emission allowance prices are considered in [142]. And the 

solution approach used in [142] combines optimization with MCS. In [129], uncertainty 

in CO2 emission price is accounted for and simulated using MCS while other sources of 

uncertainties are largely ignored except demand uncertainty, which is represented by 

only two load levels. In [143], uncertainties associated to load and wind power 

generation are also simulated using MCS. In addition, the forced outage rates (FORs) of 

individual lines are used to randomly simulate line contingencies. Similarly, authors in 

[144] also consider uncertainties in load and wind power generation, as well as line 

outages using the so-called deterministic N-1 analysis. Even if correlations among most 

uncertain parameters naturally exist, they are not explicitly modeled in [143], while in 

[144], only a correlation factor of 0.75 is assumed between two wind speed regimes 

considered in the analysis. In [145], load uncertainty is considered and MCS is used to 

generate a large number of samples which are later reduced by employing a scenario 

reduction technique. In [146], MCS is used to simulate load and market price 

uncertainties and estimate the probability distribution of the adaptation cost of various 

candidate plans. The authors in [147] also use MCS to include wind power production 

uncertainty under a large-scale wind integration framework; and this work is further 

extended in [148] to include uncertainty in solar power production. Generator and 

transmission line availabilities are simulated using MCS in [149], and reference [150] 

applies a similar approach to handle uncertainties associated with load, generator and 

line outages. Since MCS is a generic approach in uncertainty handling, it has been 

widely applied in other fields than TEP. For instance, in a generation expansion 

planning framework, MCS has been used in [151] to capture uncertainties related to fuel 

prices, generator availability, and availability and price of electricity imports and 

exports. Also, in a unit commitment problem, [152] considers wind power generation 

uncertainty, and an MCS based on Latin hypercube sampling has been used to generate 

sufficiently large wind power output samples. Then, a conventional sample reduction 

algorithm is applied to reduce the size of the samples. 

Generally, the MCS approach can be feasible in small-scale problems or when a small 

set of uncertain input is considered. However, it is worth noting here that the 

applicability of MCS-based analyses is limited in long-term TEP problems with high 

RES generation due to the following reasons. First, it naturally requires too many 

optimization runs which may cause long execution times before estimates of PDFs 

corresponding to the variables of interest are obtained. Second, the high level 
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uncertainty in such problems, and the correlations among uncertain parameters, further 

makes the MCS intricate and computationally expensive. Thus, the MCS approach may 

not be a practical and viable option for such huge problems. In an effort to overcome 

computational issues (convergence problem, in particular), variance reduction 

techniques such as importance and stratified sampling (e.g. see [146]) are sometimes 

applied to drastically reduce the samples required to estimate the PDFs of the output 

variables. However, since the variance reduction process is applied prior to the TEP 

optimization, it is very difficult to draw conclusions about whether the considered 

samples are reasonably good representatives of all the samples that are discarded, 

particularly from the network expansion strategy viewpoint. In some cases, in an effort 

to reduce the computational burden, all uncertain input parameters are simply replaced 

by their expected values, and subsequently, a deterministic mathematical problem 

(which can be stated as the expected value problem) is solved. However, this again 

could result in poor solutions, as it is very conservative and may not be well suited to 

extreme situations. 

Analytical methods are also applied as alternatives or complements to MCS approaches. 

They are used to systematically approximate the statistical properties of random output 

variables of interest, which are themselves functions of one or more random input 

variables. These include methods such as cumulant, Gram-Charlier expansion, Taylor 

series expansion, first-order second-moment method, point estimation methods (PEMs), 

etc [153]. In comparison to MCS approaches, the analytical methods (the PEMs, in 

particular) are generally claimed to yield comparable results to MCS-based techniques 

with lower computational effort. But their merits highly depend on the dimension of the 

input uncertainty set considered. Intuitively, the higher this dimension is, the higher the 

computational cost will be, and it is harder to estimate the statistical behavior of random 

output variables. Furthermore, the assumptions and mathematical simplifications (e.g. 

linear approximations) required by most of these methods to simplify the problem may 

render non-negligible inaccuracy.  

Among the aforementioned analytical methods, PEMs have been applied in TEP to the 

estimation of PDFs of certain output variables. For example, PEM is used in [23] to 

account for uncertainty associated with load and wind power output. A two point 

estimate method (2PEM), a variant of PEMs, is adopted in [154] to quantify uncertainty 

in transfer capacity by considering uncertainties in network parameters and bus 

injections. The same approach is further extended in [134] to handle wind power output 

uncertainty in a TEP problem incorporating large-scale wind power. The work in [135] 

presents an experimental analysis to show the versatility of the PEM-based approach 

theoretically developed in [134]. The authors in [155] use another variant of PEM 

approach, called 2-micro PEM, to handle uncertainties in load and wind power 

generation and estimate PDFs of desired output variables. The idea of PEM is to 

represent each uncertain input by its first statistical moments (e.g. mean, variance, 

skewness and kurtosis) and concentrations in either side of the mean value. In most 

cases, the mean and other two values (one below and another above this mean) are used, 
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which means this would require running 3
w deterministic optimizations (where w is the 

total number of uncertain parameters considered). The 2PEM even considers only two 

concentrations selected from either side of the mean (which may not necessarily be 

symmetric)For example, 2PEM is used to represent uncertainties related to transfer 

capacity [154] and wind power output [134]. This reduces the computational effort 

significantly, but with a relevant loss of accuracy. In the same way as in MCS 

approaches, the optimization problem is run a number of times (but with largely lower 

number of iterations than that required by MCS). This way, the expected value and 

higher order moments of output variables are determined, and using analytical methods, 

their PDFs are then estimated. Note that the number of iterations required in PEM-based 

approaches depends on how the uncertain input parameters are represented. For 

example, the 2PEM requires 2
w iterations where w is the total number of uncertain 

parameters. 

While analytical methods based on PEM may be successfully applied in small (even 

medium-scale) problems with a few uncertain parameters, and may deliver useful 

estimates of PDFs, their application becomes of limited use (or computationally 

expensive) when the scale of the problem and the level of uncertainty under 

consideration increase (such as in long-term TEP problems with strong penetration of 

RESs on large-scale systems). Moreover, the existence of both spatial and temporal 

correlations among random input variables complicates the practical application of PEM 

in TEP. 

Sometimes, a combination of MCS and analytical methods is used in power system 

analyses. In particular, the authors in [156] combine MCS with analytical methods to 

account for uncertainties in load and wind power output. They first use MCS to estimate 

the PDF of wind power output. Then, discrete samples of the wind power output are 

simulated by combining analytical and probabilistic methods in a chance-constrained 

TEP framework. The authors claim their approach is computationally more efficient 

than MCS. Similarly, the combination of MCS and PEM is also adopted in a two-paper 

work [134] and [135] when considering uncertainties in load and wind power 

generation. The authors in [157] develop an analytical methodology to consider 

uncertainty in wind power generation and generator availability. Their methodology is 

compared with MCS, and it is reported that the results obtained using both approaches 

largely coincide. 

Stochastic methods, on the other hand, assume a given number of operational states is 

available, each one with a certain probability. All these operational states are then 

jointly considered in the analysis, the outcome being the expected values of relevant 

output variables. The quality of the solution based on this approach depends on how 

thoroughly the operational situations are explored and how representative the selected 

operational states are. In general, a good TEP solution is computed when a large number 

of operational states is considered. Nevertheless, this increases the computation burden. 

Because of this, the number of operational states must be significantly reduced before 

the stochastic programming model is run by using certain algorithms such as forward 



 

21  
 

and backward selection [158] (for example, see the previous works in the context of 

substation and TEP [145], joint generation and TEP [149], generic TEP [150] and 

power management [159] problems). Very often this number is predetermined. For 

instance, the authors in [160] represent the uncertainty related to pool price by 

considering three realizations of pool price per day corresponding to three periods, each 

with an 8-hours interval. But the number of operational states to be considered can also 

be iteratively estimated by monitoring some accuracy indices (for example, see [161]). 

The authors in [162] develop a methodology based on the roulette wheel technique to 

randomly generate a large number of samples with certain probabilities of occurrence, 

and employ backward scenario reduction algorithm before a stochastic optimization 

problem is solved. This technique uses the corresponding PDFs of load demand and 

wind power generation. In [163], uncertainties in demand and fuel price are modeled 

using a binomial Markov chain as a stochastic process. The work in [164] only 

considers uncertainty in CO2 allowance price, and the “carbon” price uncertainty is 

modeled via samples generated from a set of PDFs obtained using Geometric Brownian 

Motion and MCS. 

Under the auspices of stochastic methods, although not common, the variability of 

uncertain parameters may be individually aggregated to a predefined number of values 

with approximate probabilities or weights, such as the load aggregation technique in 

TEP [129] and joint substation and TEP problems [145]. In stochastic methods, data-

mining techniques are also applied to drastically reduce an initially large number of 

operational states to be considered, prior to running the optimization. These include 

different supervised and unsupervised clustering techniques used in contingency and 

reliability [165] and electricity supply analyses [166]. In [161], authors use such 

techniques in order to take into account the uncertainties related to wind power output 

and load in a stochastic TEP model, a reduced number of clusters are formed from a 

two-dimensional random input dataset (i.e. containing load and wind power output 

series). Here, the input datasets themselves are generated using Gaussian copula, a 

multivariate probability distribution capable of describing the dependence of random 

variables. Instead of working with a fixed number of clusters (like in traditional 

clustering), the authors in [161] adopt a mechanism to iteratively determine the 

minimum number of clusters needed, by increasing the number of clusters until the 

marginal improvement in the objective value is sufficiently small. Note that, in addition 

to working on data series generated using joint PDFs, it is also possible to perform the 

clustering process on historical data samples (if available), forecast data series or 

samples generated from individual PDFs. 

In general, the clustering algorithm uses uncertain parameters (the causes) as clustering 

variables (hereinafter, clustering based on causes or CbC). The entire clustering process 

involves grouping “similar” snapshots together, selecting representative snapshots per 

cluster and assigning probabilities to each one of them. Similarity is measured by the 

distance among snapshots in the uncertain input space. However, such clustering is not 

efficient because it is carried out without acknowledging the effects of the snapshots on 
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the target problem. This significantly conditions the outcome of the optimization, 

especially in the context of TEP. As it shall be explained in detail in the following 

Chapters, clustering based on effects (CbE), which is advocated by this work, is 

superior to CbC. 

Both the probabilistic and the stochastic methods depend on the availability of historical 

data or PDFs of random variables. But sometimes the relevant random parameters may 

not have sufficient information (historical data) to formulate their PDFs. This is 

especially the case in deregulated power systems where information asymmetry is 

rampant. Inspired by such knowledge gap, parametric (non-probabilistic) methods [167] 

such as info-gap decision theory (IGDT), robust optimization (RO) and fuzzy systems 

theory (FST) are used to systematically account for random as well as non-random 

uncertainties. They all model uncertainty by characterizing the uncertain input 

parameters’ space using parametric ranges, i.e. by forming parametric input datasets 

such as polyhedral (formed by upper and lower bounds of uncertain parameters), 

ellipsoidal (an approximate uncertainty space), etc.  

As stated above, the IGDT tool is inspired by the severe lack of information about 

uncertain parameters. It requires only the definition of ranges of uncertain parameters 

over which the parameters may have certain values, which can be seen as an advantage 

over probabilistic and stochastic methods. In general, IGBT-based TEP models such as 

[168] seek robust solutions in the face of severe uncertainty, where the robustness of the 

solution is measured by “immunity” to a range of operational situations defined by the 

uncertainty set. But the theory itself has been the subject of strong criticism [169], citing 

its weaknesses such as conservativeness, localized and poor solution approximation, etc. 

Instead, robust optimization has been praised as a good alternative to decision making 

under severe uncertainty [170], [171].. The concept of RO is similar to IGDT. Like in 

IGDT, uncertainty comes from a known uncertainty set. In [172], uncertainties in 

renewable power generation and demand are considered and represented by their 

corresponding uncertainty sets in an RO-based TEP model. The solution obtained by 

RO should, in principle, be robust under the worst-case situation in the uncertainty set, 

which also makes RO highly conservative. Reference [173] presents a slight 

modification to ordinary RO by adding features to minimize conservatism i.e. by 

characterizing uncertainties using ellipsoidal constrained uncertainty sets and 

incorporate correlation factors of considered uncertain parameters by means of the 

variance-covariance matrix. Recently, there are also some ongoing research works (e.g. 

adjustable RO in [170]) to address the conservativeness of RO. These normally work by 

adjusting the uncertainty sets depending on how much uncertainty one desires to 

capture. But RO still remains to be a hot research area in mathematical optimization 

which requires further refining to solve robust problems.  

On the other hand, FST is inspired by linguistic expressions such as “high”, “medium”, 

“low”, etc. Each uncertain parameter is considered as a fuzzy variable and is 

represented by a certain membership function (often a trapezoidal membership 

function). For example, generator and consumer bid prices are modeled using this 
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method in [174]. Some of the major disadvantages with FST-based methods is the 

absence of clear guidelines to select appropriate membership functions, and the 

fundamental difficulty to prove the accuracy of the solutions. 

A long-term TEP problem, with investment horizons spanning over 30 or more years 

and increasing RES penetration, demands extensive management of uncertainty and 

operational variability. This is the subject area of this thesis. The subsequent chapters 

describe in detail how the two types of uncertainties (random and nonrandom, according 

[12]) are handled. In general, high level uncertainties (also labeled as random in [12]) 

are modeled by considering a sufficiently large number of operational situations, also 

known as “snapshots” in this thesis. Then, a new clustering methodology based on 

moments technique [14], a tailor-made approach for TEP problems, is then used to 

substantially reduce the original set of snapshots by grouping them into a predefined 

number of clusters. The low level uncertainties on the other hand are characterized by a 

number of storylines (probable future scenarios), each with an estimated probability of 

realization.  

2.8. SIGNIFICANCE OF THIS RESEARCH 

There is no question about the importance of TEP in every electric power industry. It 

has always been mandatory, as a part of the changes needed to face the ever increasing 

demand for electricity within a reliable operational frame [16]. The power industry is 

expected to further experience rapid changes and transformations to meet 

environmentally-friendly, sustainable, secure and affordable energy to growing demand 

for electricity. Nowadays, there is a general consensus that this objective can be 

achieved by aggressively promoting the deployment of renewables, particularly variable 

energy sources, in particular. In the coming decades, because of the aforementioned 

techno-economic and environmental reasons, large amount of such energy resources are 

expected to integrated in power systems. However, such resources are often abundantly 

available in remote locations broadly dispersed across a geographically wide area, and 

far away from major demand centers. This will require huge transmission investment 

needs. This poses a huge challenge for network planners because the complexity of the 

resulting TEP problem. Both the size of the system and the level of uncertainty are 

huge. The intermittent nature of variable energy resources (such as wind and solar) also 

introduces significant uncertainty and variability  to the system, further complicating the 

TEP problem. Exiting transmission networks should be largely reinforced and expanded 

to balance the extra operational uncertainty introduced by such energy sources. In 

general, solving a TEP problem for such a big system under high levels of uncertainty 

demands an exceptionally huge computational effort when using reasonably precise 

network expansion models.  

In the European context, for instance, there is a huge potential of large-scale wind 

power in the North Sea, West Coast and Baltic areas. In addition, a huge amount of 

solar power is expected to be imported from the Middle East and North Africa (MENA) 

[9]. Under these circumstances, a pan-European electricity network expansion [9] has to 
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be adequately reinforced and expanded to support full integration of these large-scale 

RESs and fully ship the power generated from such sources to meet the ever increasing 

demand for electricity [11]. This is an extremely challenging task because of the 

unprecedented geographical, temporal and uncertainty scope, albeit there is a need for 

TEP tools to help in such a complex decision-making process.  

Despite the extensive literature on TEP, the problem still remains very challenging 

especially with network instances of this magnitude. In other words, there has been little 

progress on a TEP problem which considers large-scale integration of RESs on a 

network of continental or intercontinental size. The literature is vastly composed of 

solving TEP problems in small- to medium-scale networks. In such networks, 

introducing any level of complexity (in modeling, solution strategy or both) may be 

affordable, but this is not the case with networks of a continental size. The size of the 

TEP problem have been getting more complex because of the ever-increasing size of the 

networks being dealt with, uncertainties growing from time to time, etc., increasingly 

becoming computationally demanding. As a result, traditional solution strategies and 

more detailed TEP models (such as the AC power flow based one) are no longer 

computationally affordable. Technically speaking, the geographically wide TEP 

optimization model should be as simple as possible to make sure that the problem is 

computationally and practically tractable but at the same time it should deliver reliable 

and robust solutions. In general, currently adopted TEP models and solution approaches 

cannot be seamlessly applied to such a huge problem, principally due to their 

computational limitations. Computational complexity of a TEP problem dramatically 

increases with the size of the network dealt with. Unless handled systematically, 

pursuing optimal expansion solutions in continental scale TEP problems such as the EU 

network deems to be impossible. This justifies the fact that the problem needs to be 

approached in a way different from the conventional ones. In general, new “algorithmic 

and computational methods are needed to address (1) the high dimensionality of an 

optimization problem having a long decision horizon, large geographic scale and high 

uncertainty; (2) a need to provide solutions in terms of tradeoffs among multiple 

objectives; and (3) the discrete nature of the investment decisions” [175]. 

In view of the complex nature of the problem, this thesis proposes a global strategy, 

methods and tools to solve this kind of problems, as outlined and discussed in [13], 

[14], [15]. This strategy comprises: 

 Successive optimization problems, that reduce the space of combinatorial 

solution search while gradually using more detailed and accurate models. 

 Multi-stage planning, to find short-term decisions that consider long-term 

scenarios. 

 Two-period planning framework to combine short-term decisions and long-term 

strategies. 

 Stochastic models combined with alternative deterministic storylines. 

 Mathematical programming, empowered by heuristic and expert knowledge. 
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 Effective methods for handling the vast uncertainty and variability inherent to 

such a problem.  

 Network models that adequately capture the physical characteristics of the 

network system.  
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Both the tractability of a TEP problem and the accuracy of an expansion solution largely 

depend on the level of system details captured by the expansion  model. This is associated 

with the characterization of physical network variables, in particular, flows and losses.   

This chapter thoroughly reviews a number of TEP models, commonly used in grid 

planning studies, in terms of accuracy and mathematical complexity levels. In addition to 

the systematic comparisons of various existing models both theoretically and numerically, 

this chapter contributes some improvements to the mathematical modeling of existing 

TEP models.   

3.1. CHAPTER OVERVIEW 

The transmission grid is the backbone of any power flow analysis, planning and 

operation. This is particularly indispensable in TEP studies because the expansion 

solutions are conditioned by the topology, the strength and the level of modeling details of 

the network which constitutes existing and candidate lines. Therefore, modeling the 

network (grid) should be an integral part of any TEP study. As extensively reviewed in 

Chapter 2, TEP models based on a number of network models, each with a different 

fidelity level, have been adopted. Here, the context of fidelity should be understood as the 

extent to which the physical characteristics of the system are captured. This Chapter 

reviews some of the most commonly used network models in the context of TEP studies, 

and discusses in detail the pros and the cons of each one from modeling complexity and 

computational performance.  

3.2. TEP MODEL FIDELITY—THEORETICAL VIEW 

The TEP problem can be considered as an optimal power flow problem consisting of a 

number of discrete constraints. A number of existing TEP models as well as improved 

and new ones are  reviewed and discussed here. Theoretical and experimental 

comparisons of the different models are also presented. This is motivated by the 

conflicting accounts of existing network models in the literature [176]–[179] as well as by 

the need to build the right network model that balances the tradeoff between accuracy and 

computational requirement. Note that, for the sake of simplicity, a number of notations 

are suppressed.  

3.3.1. An AC based TEP Model (ACTEP) 

Current transmission networks are predominantly AC systems. The ACOPF, which is 

based on the customary AC power flow equations (1) and (2), employs the most accurate 

network model but the resulting optimization problem is highly nonlinear and nonconvex.  

𝑃𝑘 = 𝑉𝑖
2𝑔𝑘 − 𝑉𝑖𝑉𝑗(𝑔𝑘𝑐𝑜𝑠𝜃𝑘 + 𝑏𝑘𝑠𝑖𝑛𝜃𝑘)        (1) 

𝑄𝑘 = −𝑉𝑖
2𝑏𝑘 + 𝑉𝑖𝑉𝑗(𝑏𝑘𝑐𝑜𝑠𝜃𝑘 − 𝑔𝑘𝑠𝑖𝑛𝜃𝑘)        (2) 

An ACOPF-based TEP (ACTEP) model minimizes a user-defined objective function as 

in (3) subject to a number of technical constraints given by Equations (4) through (15). 

Note that extending the ACOPF problem to a TEP problem only requires adding the 
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discrete variables to the power flow equations in (4)—(7) and corresponding capacity 

constraints in (8) and (9). Note that the flow equations related to existing lines are 

generalized to indicate the switching statuses/utilizations of the lines. Equations (4) and 

(5) represent the active and reactive power flows in existing lines, respectively; whereas, 

Equations (6) and (7) are the corresponding flows in candidate lines. The flow limits for 

existing and candidate lines are given by (8) and (9), respectively. Equations (10) and (11) 

represent the active and the reactive power balances at each node i.e. Kirchhoff’s current 

law (KCL), respectively. Equations (12) and (13) provides the permissible bound for the 

active and the reactive power generation of a unit, respectively. Voltage and angle bounds 

as well the corresponding reference values are given by (14) and (15), respectively. As it 

can be seen, the resulting ACTEP model is a mixed integer programming (MINLP) 

problem, which is highly non-linear and non-convex. According to computational 

complexity theory, MINLP problems are regarded as NP-hard or even NP-complete 

problems [180], [181]. Generally, despite there are some advances in MINLP solvers in 

recent years, employing the AC flow equations in power system planning applications 

(especially for large-scale TEP problems) is yet increasingly difficult. For this reason, 

ACTEP is rarely employed in the literature. The few ACTEP models proposed in the 

literature are practically limited to small-scale systems, and often use heuristic and 

metaheuristic methods for solving the resulting problem. For instance, authors in [20] 

propose a constructive heuristic algorithm, guided by interior point method, for solving an 

ACTEP problem. Reference [182] proposes a genetic algorithm for solving a similar 

problem while Benders decomposition is applied to an ACTEP problem by decomposing 

it into a master involving only integer programming problem and a sub-problem with a 

nonlinear programming nature.  

As mentioned in the previous Chapter, the heuristic and metaheuristic solution methods 

neither guarantee optimality nor give a measure to the optimal solution. Equations  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑍 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛            (3) 

Subject to: 

𝑃𝑘 = 𝑢𝑘 (𝑉𝑖
2𝑔𝑘 − 𝑉𝑖𝑉𝑗(𝑔𝑘𝑐𝑜𝑠𝜃𝑘 + 𝑏𝑘𝑠𝑖𝑛𝜃𝑘))           (4) 

𝑄𝑘 = 𝑢𝑘 (−𝑉𝑖
2𝑏𝑘 + 𝑉𝑖𝑉𝑗(𝑏𝑘𝑐𝑜𝑠𝜃𝑘 − 𝑔𝑘𝑠𝑖𝑛𝜃𝑘))        (5) 

𝑃𝑘 = 𝑧𝑘 (𝑉𝑖
2𝑔𝑘 − 𝑉𝑖𝑉𝑗(𝑔𝑘𝑐𝑜𝑠𝜃𝑘 + 𝑏𝑘𝑠𝑖𝑛𝜃𝑘))           (6) 

𝑄𝑘 = 𝑧𝑘 (−𝑉𝑖
2𝑏𝑘 + 𝑉𝑖𝑉𝑗(𝑏𝑘𝑐𝑜𝑠𝜃𝑘 − 𝑔𝑘𝑠𝑖𝑛𝜃𝑘))        (7) 

𝑃𝑘
2 + 𝑄𝑘

2 ≤ 𝑢𝑘𝑆𝑘,𝑚𝑎𝑥
2              (8) 

𝑃𝑘
2 + 𝑄𝑘

2 ≤ 𝑧𝑘𝑆𝑘,𝑚𝑎𝑥
2              (9) 

∑ 𝑃𝑘𝑘∈𝑖 + ∑ 𝑃𝐺𝑔𝑔∈𝑖 + 𝑝𝑖 − ∑ 𝑃𝐷𝑑𝑑∈𝑖 = 0            (10) 
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∑ 𝑄𝑘𝑘∈𝑖 + ∑ 𝑄𝐺𝑔𝑔∈𝑖 + 𝑞𝑖 − ∑ 𝑄𝐷𝑑𝑑∈𝑖 = 0            (11) 

𝑢𝑔𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔 ≤ 𝑢𝑔𝑃𝐺𝑔,𝑚𝑎𝑥             (12) 

𝑢𝑔𝑄𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑄𝐺𝑔 ≤ 𝑢𝑔𝑄𝐺𝑔,𝑚𝑎𝑥             (13) 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥  ;  𝑉𝑟𝑒𝑓 = 𝑉𝑛𝑜𝑚            (14) 

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖 ≤ 𝜃𝑚𝑎𝑥   ;  𝜃𝑟𝑒𝑓 = 0             (15) 

In some cases, it is suggested that decoupling the products of binary (𝑢𝑘 and 𝑧𝑘) and 

continuous variables in (4)—(7) by means of disjunctive (also called big-M) formulation 

as in (16)—(19) may facilitate the computational process. However, choosing suitable 

values for the big-M parameters is not straightforward as there is no clear guideline so far 

used for selecting the right values to such parameters that ensure tight relaxations of the 

original equations. Inappropriate values may lead to numerical difficulties which can 

further impede the solution process.   

|𝑃𝑘 − (𝑉𝑖
2𝑔𝑘 − 𝑉𝑖𝑉𝑗(𝑔𝑘𝑐𝑜𝑠𝜃𝑘 + 𝑏𝑘𝑠𝑖𝑛𝜃𝑘))| ≤ 𝑀𝑃𝑘(1 − 𝑢𝑘)                  (16) 

|𝑄𝑘 − (−𝑉𝑖
2𝑏𝑘 + 𝑉𝑖𝑉𝑗(𝑏𝑘𝑐𝑜𝑠𝜃𝑘 − 𝑔𝑘𝑠𝑖𝑛𝜃𝑘))| ≤ 𝑀𝑄𝑘(1 − 𝑢𝑘)       (17) 

|𝑃𝑘 − (𝑉𝑖
2𝑔𝑘 − 𝑉𝑖𝑉𝑗(𝑔𝑘𝑐𝑜𝑠𝜃𝑘 + 𝑏𝑘𝑠𝑖𝑛𝜃𝑘))| ≤ 𝑀𝑃𝑘(1 − 𝑧𝑘)                  (18) 

|𝑄𝑘 − (−𝑉𝑖
2𝑏𝑘 + 𝑉𝑖𝑉𝑗(𝑏𝑘𝑐𝑜𝑠𝜃𝑘 − 𝑔𝑘𝑠𝑖𝑛𝜃𝑘))| ≤ 𝑀𝑄𝑘(1 − 𝑧𝑘)       (19) 

Because of the computational issues associated with the AC-based TEP models, a number 

relaxed ACTEP models [34] have been proposed, and compared in terms of their 

computational requirement and solution quality. Even if the relaxed models are interesting 

and demand relatively lower computational effort when compared to ACTEP one, the 

authors concluded that they are not feasible for large-scale TEP applications. From this 

perspective, further reductions and mathematical simplifications are needed to solve such 

problems. Several computationally less-intensive linearized models, with different levels 

of fidelity and computational complexity, have been employed in TEP applications. They 

are derived from the AC power flow equations under simplifying assumptions. The most 

common used models are reviewed below. 

3.3.2. A Linearized AC based TEP Model (LinACTEP)  

The formulation of this model, denoted as LinACTEP, includes the objective function (3) 

and constraints (8)—(15) as well as linearized forms of the AC power flow equations in 

(1) and (2). The linearization process is based on two practical assumptions, which is 

explained as follows. The first assumption is concerning the bus voltage magnitudes, 

which in power transmission systems are expected to be very close to the nominal value 

𝑉𝑛𝑜𝑚. Hence, without loss of generality, a flat voltage profile is assumed throughout the 

system. The second assumption is in relation to the angular difference 𝜃𝑘 across a line, 
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which is practically small because of stability reasons, leading to the trigonometric 

approximations 𝑠𝑖𝑛𝜃𝑘 ≈ 𝜃𝑘 and 𝑐𝑜𝑠𝜃𝑘 ≈ 1. Note that this assumption is valid in 

transmission systems, where the active power flow dominates the total apparent power in 

lines. The LinACTEP model, which is based on the two assumptions and a Taylor series 

expansion, is first introduced in [131] in the context of transmission expansion planning. 

In this model, the voltage magnitude at bus 𝑖 can be expressed as the sum of the nominal 

voltage and a small deviation ∆𝑉𝑖, as in (20). 

𝑉𝑖 = 𝑉𝑛𝑜𝑚 + ∆𝑉𝑖, 𝑤ℎ𝑒𝑟𝑒 ∆𝑉
𝑚𝑖𝑛 ≤ ∆𝑉𝑖 ≤ ∆𝑉

𝑚𝑎𝑥  (20) 

Note that the voltage deviations at each node ∆𝑉𝑖 are expected to be very small. 

Substituting (20) in (1) and (2) and neglecting higher order terms, one gets:  

𝑃𝑘 ≈ (𝑉𝑛𝑜𝑚
2 + 2𝑉𝑛𝑜𝑚∆𝑉𝑖)𝑔𝑘 − (𝑉𝑛𝑜𝑚

2 + 𝑉𝑛𝑜𝑚∆𝑉𝑖 + 𝑉𝑛𝑜𝑚∆𝑉𝑗)(𝑔𝑘 + 𝑏𝑘𝜃𝑘    (21) 

𝑄𝑘 ≈ −(𝑉𝑛𝑜𝑚
2 + 2𝑉𝑛𝑜𝑚∆𝑉𝑖)𝑏𝑘 + (𝑉𝑛𝑜𝑚

2 + 𝑉𝑛𝑜𝑚∆𝑉𝑖 + 𝑉𝑛𝑜𝑚∆𝑉𝑗)(𝑏𝑘 − 𝑔𝑘𝜃𝑘)  (22) 

Note that Equations (21) and (22) still contain nonlinearities because of the products of 

two continuous variables—voltage deviations and angle differences. However, since these 

variables (∆𝑉𝑖, ∆𝑉𝑗 and 𝜃𝑘) are very small, their products can be neglected. Hence, the 

above flow equations become: 

𝑃𝑘 ≈ 𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘            (23) 

𝑄𝑘 ≈ −𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘       (24) 

When the investment planning problem includes network switching, reinforcement, 

replacement and expansion of transmission lines, Equations (23) and (24) must be 

multiplied by the corresponding binary variables as in (25)—(28). This is to make sure 

that the flow through an existing or a new line is zero when the associated 

switching/investment variable is zero; otherwise, the flow in that line should obey the 

Kirchhoff’s law.  Note that the models here are generalized to include network redesign 

(switching) via the switching variable 𝑢𝑘  i.e. existing network can be redesigned by 

cutting off some lines that improve the overall economic efficiency. 

𝑃𝑘 ≈ 𝑢𝑘{𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘}   (25) 

𝑄𝑘 ≈ 𝑢𝑘{−𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘}  (26) 

𝑃𝑘 ≈ 𝑧𝑘{𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘}   (27) 

𝑄𝑘 ≈ 𝑧𝑘{−𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘}  (28) 

The bilinear constraints, involving products binary (𝑢𝑘 and 𝑧𝑘) with voltage deviation and 

angle difference variables, introduces undesirable nonlinearity to the problem. This 

nonlinearity can be avoided using the big-M formulation i.e. by reformulating the above 
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equations into their respective disjunctive equivalents as in (29)—(32). As a rule-of-

thumb, the big-M parameter is often set to the maximum transfer capacity in the system.   

|𝑃𝑘 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘  )}| ≤ 𝑀𝑃𝑘(1 − 𝑢𝑘) (29) 

|𝑄𝑘 − {−𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘} | ≤ 𝑀𝑄𝑘(1 − 𝑢𝑘) (30) 

|𝑃𝑘 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘}| ≤ 𝑀𝑃𝑘(1 − 𝑧𝑘)  (31) 

|𝑄𝑘 − {−𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘}| ≤ 𝑀𝑄𝑘(1 − 𝑧𝑘)  (32) 

The apparent power flow 𝑆𝑘 through a line is given by √𝑃𝑘
2 + 𝑄𝑘

2 and this has to be less 

than or equal to the rated value which is denoted as: 

𝑃𝑘
2 + 𝑄𝑘

2 ≤ (𝑆𝑘
𝑚𝑎𝑥)2      (33) 

Considering line switching/investment, Equation (33) can be rewritten as: 

𝑃𝑘
2 + 𝑄𝑘

2 ≤ 𝑢𝑘(𝑆𝑘,𝑚𝑎𝑥)
2
    (34) 

𝑃𝑘
2 + 𝑄𝑘

2 ≤ 𝑧𝑘(𝑆𝑘,𝑚𝑎𝑥)
2
    (35) 

The quadratic expressions of active and reactive power flows in (34) through (35) can be 

easily linearized using piecewise linearization, considering a sufficiently large number of 

linear segments, 𝐿. There are a number of ways of linearizing such functions such as 

incremental, multiple choice, convex combination and other approaches in the literature 

[183], [13]. Here, the first approach (which is based on first-order approximation of the 

nonlinear curve) is used because of its relatively simple formulation. To this end, two 

non-negative auxiliary variables are introduced for each of the flow variables 𝑃𝑘  and 𝑄𝑘 

such that 𝑃𝑘 = 𝑃𝑘
+ − 𝑃𝑘

− and 𝑄𝑘 = 𝑄𝑘
+ − 𝑄𝑘

−, and by implication |𝑃𝑘| = 𝑃𝑘
+ + 𝑃𝑘

− and 

|𝑄𝑘| = 𝑄𝑘
+ +𝑄𝑘

−. Note that these auxiliary variables (i.e. 𝑃𝑘
+ , 𝑃𝑘

−, 𝑄𝑘
+ and 𝑄𝑘

−) represent 

the positive and the negative flows of 𝑃𝑘 and 𝑄𝑘, respectively. Expressing a variable as 

the difference of its positive and negative parts, which is called a bijection, is widely 

applied technique in linear programming problems. Bijection guarantees the equivalency 

the reformulated problem with the original problem, and a proof of this can be found in 

[184]. Bijection helps one to consider only the positive quadrant of the nonlinear curve, 

resulting in a significant reduction in the mathematical complexity and by implication the 

computational burden. In this case, the associated linear constraints are:  

𝑃𝑘
2 ≈ ∑ 𝛼𝑘,𝑙Δ𝑝𝑘,𝑙

𝐿
𝑙=1                    (36) 

𝑄𝑘
2 ≈ ∑ 𝛽𝑘,𝑙𝛥𝑞𝑘,𝑙

𝐿
𝑙=1                   (37) 

𝑃𝑘
+ + 𝑃𝑘

− = ∑ Δ𝑝𝑘,𝑙
𝐿
𝑙=1                  (38) 

𝑄𝑘
+ + 𝑄𝑘

− = ∑ Δ𝑞𝑘,𝑙
𝐿
𝑙=1                  (39) 
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where Δ𝑝𝑘,𝑙 ≤ 𝑆𝑘
𝑚𝑎𝑥 𝐿⁄ , Δ𝑞𝑘,𝑙 ≤ 𝑆𝑘

𝑚𝑎𝑥/𝐿, Δ𝑝𝑘,𝑙+1 ≤ Δ𝑝𝑘,𝑙 and 𝛥𝑞𝑘,𝑙+1 ≤ 𝛥𝑞𝑘,𝑙. 

Note that at most one of the two auxiliary variables introduced per active and reactive 

flows through a line should be zero at a time. This condition is implicitly enforced by the 

theory of optimality because, as it can be inferred from (38), network losses are a function 

of (𝑃𝑘
+ + 𝑃𝑘

−), and should be minimized. Setting both of them to be greater that zero does 

not only make sense but contradict with the notion of optimality. A small penalty can 

alternatively be included in the objective function to ensure at most one of them is zero at 

a time. As shall be described in the following section, this losses model can in some 

situations result in “fictitious” losses [13]. Several existing and proposed losses models 

are compared theoretically as well as numerically in Section 3.5 and [13].   

The active and reactive power losses in line 𝑘 can be approximated as follows: 

𝑃𝐿𝑘 = 𝑃𝑘,𝑖𝑗 + 𝑃𝑘,𝑗𝑖 ≈ 2𝑉𝑛𝑜𝑚
2 𝑔𝑘(1 − 𝑐𝑜𝑠𝜃𝑘) ≈ 𝑉𝑛𝑜𝑚

2 𝑔𝑘𝜃𝑘
2              (40) 

𝑄𝐿𝑘 = 𝑄𝑘,𝑖𝑗 + 𝑄𝑘,𝑗𝑖 ≈ −2𝑉𝑛𝑜𝑚
2 𝑏𝑘(1 − 𝑐𝑜𝑠𝜃𝑘) ≈ −𝑏𝑘𝑉𝑛𝑜𝑚

2 𝜃𝑘
2  (41) 

Clearly, Equations (40) and (41) are nonlinear and nonconvex functions, making the 

problem nonconvex and more complex to solve. This can be overcome by having the 

quadratic angle differences piecewise-linearized, as it is done in [131] by introducing 

additional binary variables and big-M formulation to avoid unnecessary constraints on the 

angle differences when binary variable associated to an existing or candidate line is zero. 

A major disadvantage of the linear models of (40) and (41) in [131] is that the additional 

binary variables required as well as the introduction of the big-M method  increase the 

complexity to the TEP problem. Instead of doing this, this thesis proposes flow-based 

losses, which has substantial benefits from the computational point of view, which will be 

explained shortly. The angle-based losses models in (40) and (41) are expressed in terms 

of the active and the reactive power flows as in (42) and (43). Note that Equation (42) can 

be easily obtained by multiplying the squared expressions of both sides of the equations in 

(23) and (24) by the resistance of the branch, combining the resulting equations, 

neglecting higher order terms and reordering both sides of the resulting equation. 

Equation (43) can also be obtained in a similar fashion but by multiplying the squared 

expressions by the reactance the line. More details about the derivation of Equations (42) 

and (43) is provided in Appendix A. 

𝑃𝐿𝑘 = 𝑟𝑘{𝑃𝑘
2 + 𝑄𝑘

2}/𝑉𝑛𝑜𝑚
2    (42) 

𝑄𝐿𝑘𝑡 = 𝑥𝑘{𝑃𝑘
2 + 𝑄𝑘

2}/𝑉𝑛𝑜𝑚
2    (43) 

Note that expressing the losses as a function of flows has two advantages.  First, doing so 

reduces the number of nonlinear terms that has to be linearized, which in turn results in a 

model with a reduced number of equations and variables. For example, if Equations (41) 

and (42) are used instead, in addition to the quadratic power flow terms 𝑃𝑘
2 and 𝑄𝑘

2, the 

quadratic angle differences 𝜃𝑘
2 need to also be linearized to make the problem linear and 

convex. On the contrary, when Equations (43) and (44) are used, one is only required to 
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linearize 𝑃𝑘
2 and 𝑄𝑘

2. Second, it avoids unnecessary constraints on the angle differences 

when a line between two nodes is not connected or remains not selected for investment. 

This is often avoided by introducing binary variables and using a so-called big-M 

formulation [131]. However, this adds extra complexity to the problem. 

Losses are often treated as “virtual” loads connected to the buses. In this respect, the 

losses in a given line are equally distributed to the nodes connecting the line. The load 

balance equations in (10) and (11) should be slightly modified to take account of these 

changes as in (44) and (45). The line capacity constraints in (34) and (35) may also be 

extended as in (46) and (47). The quadratic terms in these equations can be linearized in 

the same way as in the quadratic flow functions. However, even if this is an elegant 

approach, the additional linear constraints needed to do this leads to further computational 

complexity. Because of this reason, Equations (34) and (35) are adopted in the analysis 

throughout this work. Note that the absolute value flow terms in (46) and (47) are 

replaced by the linear expression |𝑃𝑘| = 𝑃𝑘
+ + 𝑃𝑘

−. 

∑ 𝑃𝑘𝑘∈𝑖 + ∑ 𝑃𝐺𝑔𝑔∈𝑖 + 𝑝𝑖 − ∑ 𝑃𝐷𝑑𝑑∈𝑖 + 0.5∑ 𝑃𝐿𝑘𝑘∈𝑖 = 0           (44) 

∑ 𝑄𝑘𝑘∈𝑖 + ∑ 𝑄𝐺𝑔𝑔∈𝑖 + 𝑞𝑖 − ∑ 𝑄𝐷𝑑𝑑∈𝑖 + 0.5∑ 𝑄𝐿𝑘𝑘∈𝑖 = 0           (45) 

(|𝑃𝑘| + 0.5𝑃𝐿𝑘)
2 + (|𝑄𝑘| + 0.5𝑄𝐿𝑘)

2 ≤ 𝑢𝑘(𝑆𝑘,𝑚𝑎𝑥)
2
   (46) 

(|𝑃𝑘| + 0.5𝑃𝐿𝑘)
2 + (|𝑄𝑘| + 0.5𝑄𝐿𝑘)

2 ≤ 𝑧𝑘(𝑆𝑘,𝑚𝑎𝑥)
2
   (47) 

Computationally speaking, the LinACTEP problem (either lossy or lossless) is relatively 

less complex when compared with the full ACTEP model. The entire LinACTEP model 

is a MILP optimization problem, for which efficient and of-the-shelf solvers are available, 

and optimal solution is guaranteed in a reasonable simulation time. 

3.3.3. A “DC” based TEP Model (DCTEP) 

This model, which is denoted as DCTEP, is the most commonly used model in technical 

and economic analyses of complex power systems [32], [51], [79], mainly because of its 

relatively lower computational requirement compared to the models discussed previously. 

This TEP model often minimizes a certain objective function (48), and is based on the 

classic “direct current” (DC) branch flow model in (49) [178]. It is derived from the well-

known AC network flows under the simplifying assumptions (i.e. the assumptions related 

to the unity voltages, and small angular differences across lines) described above in 

Subsection 3.3.2 and zero resistance. Further details of the DC network model including 

its full derivation and related details can be found in [178].  

The DCTEP model respects constraints related to the Kirchhoff’s voltage law (KVL) of 

existing (51) and candidate (52) lines and the corresponding network capacity limits given 

by (53) and (54), nodal active power balance (55), the generation limits (56) and the 

voltage angle related constraints (57). However, the assumptions means that information 

regarding reactive power and voltage magnitude variations among nodes are not provided. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑍 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛            (48) 

Subject to: 

𝑃𝑘 = −𝑉𝑛𝑜𝑚
2 𝑏𝑘𝑢𝑘𝜃𝑘  ;  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘           (49) 

𝑃𝑘 = −𝑉𝑛𝑜𝑚
2 𝑏𝑘𝑧𝑘𝜃𝑘 ;  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘         (50) 

|𝑃𝑘 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘| ≤ 𝑀𝑘(1 − 𝑢𝑘);  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘           (51) 

|𝑃𝑘 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘| ≤ 𝑀𝑘(1 − 𝑧𝑘) ;  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘         (52) 

−𝑢𝑘𝑆𝑘,max  ≤ 𝑃𝑘 ≤ 𝑢𝑘𝑆𝑘,max              (53) 

−𝑧𝑘𝑆𝑘,max  ≤ 𝑃𝑘 ≤ 𝑧𝑘𝑆𝑘,max               (54) 

∑ 𝑃𝑘𝑘∈𝑖 + ∑ 𝑃𝐺𝑔𝑔∈𝑖 + 𝑝𝑖 − ∑ 𝑃𝐷𝑑𝑑∈𝑖 = 0           (55) 

𝑢𝑔𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔 ≤ 𝑢𝑔𝑃𝐺𝑔,𝑚𝑎𝑥            (56) 

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖 ≤ 𝜃𝑚𝑎𝑥;  𝜃𝑟𝑒𝑓 = 0              (57) 

As described in the preceding Section, the bilinear terms in Equations (49) and (50) are 

separated by the method of disjunctive formulation as in (51) and (52). Sufficiently large 

values should be selected for the big-M parameters involved in this formulation to make 

sure that reformulated problem is tight enough and that numerical problems are avoided. 

The approach presented in [184] can be used to approximate the minimum value for each 

corridor. 

 Basically, the underlining assumptions make the DC model lossless. However, losses are 

often approximated by the quadratic expression in (40) [178], or some proxy of it, and 

combined with the DC power flow model. Some of the existing linear losses models 

(presented in the next subsection) are derived from (40).  

Notice that Equation (40) is both nonlinear and nonconvex. In complex problems such as 

large-scale TEP, linear models are welcome. The expression in (40) could be linearized in 

order to include losses in DCTEP models. The most common approach in this case is to 

perform a piecewise linearization of the expression in (40) as proposed in [42], and 

further applied in formulating a long-term TEP problem of deregulated power systems 

[65]. As explained before (see Section 3.3.2), the main drawback of such linearization 

when used in TEP problems, is that angular differences between nodes are inappropriately 

constrained to be zero for those nodes connected by lines selected for contingency 

screening or candidate new lines that are not built, since in common piecewise-linearized 

models, angle differences are formulated in terms of the line flows (zero flow implies 

equal angles). To avoid this problem, the corresponding linear constraints are 

reformulated into their respective disjunctive equivalents (described as the big-M 

approach as in [42]) to guarantee that these constraints are not binding for lines that are 

not built or not operative. However, the big-M approach creates some numerical 

difficulties during the OPF solution process, such as ill-conditioning of matrices 
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representing the system topology. To avoid the use of the big-M approach, losses can be 

expressed as a function of flows (as in the case of LinACTEP) instead of angle 

differences. The relationship between a line flow and its losses can be readily derived 

using the DC flow model equations or directly from Equation (42) by simply neglecting 

the reactive power flow, which leads to:  

𝑃𝐿𝑘 = 𝑟𝑘𝑃𝑘
2/𝑉𝑛𝑜𝑚

2      (58) 

Unlike angle differences, line flows are bound to be zero in lines that are not built 

(candidate lines) or not operative (because of contingency screening or maintenance). 

Another advantage of Equation (58) is its possible application to model losses in HVDC 

lines or, generally, in lines where flows are independent of the voltage angles at the buses 

they are connected to. The linearization of the quadratic flow function in (58) is as 

described in the preceding Section, and includes the constraints given in (36) and (38).  

Like in the case of lossy LinACTEP model formulation, losses in each line are treated as 

“virtual” loads connected to the two end nodes of the line. In other words, losses in a 

given line are equally distributed to the nodes connecting the line. When formulating a 

lossy DCTEP model, the line capacity constraints (53) and (54) as well as the load 

balance equation in (55) need to be slightly modified to take account of the losses as in 

(59)—(61), respectively.  

|𝑃𝑘| + 0.5𝑃𝐿𝑘 ≤ 𝑢𝑘𝑆𝑘,max              (59) 

|𝑃𝑘| + 0.5𝑃𝐿𝑘 ≤ 𝑧𝑘𝑆𝑘,max              (60) 

∑ 𝑃𝑘𝑘∈𝑖 + ∑ 𝑃𝐺𝑔𝑔∈𝑖 + 𝑝𝑖 − ∑ 𝑃𝐷𝑑𝑑∈𝑖 + 0.5∑ 𝑃𝐿𝑘𝑘∈𝑖 = 0           (61) 

In Equations (59) and (60), the absolute flow terms |𝑃𝑘| are easily linearized by 

introducing two non-negative continuous auxiliary variables 𝑃𝑘
+ and 𝑃𝑘

− such that 

𝑃𝑘 = 𝑃𝑘
+ − 𝑃𝑘

−. This implies |𝑃𝑘| = 𝑃𝑘
+ + 𝑃𝑘

−. These two auxiliary variables correspond 

to the forward and the backward flows in a line. Note that at most one of them will be 

zero at a time. This condition is implicitly enforced by the theory of optimality because 

network losses are a function of (𝑃𝑘
+ + 𝑃𝑘

−)2 and should be minimized. Setting both of 

them to zero does not only make sense but contradict with law of optimality. A small 

penalty can alternatively be included in the objective function to ensure at most one of 

them is zero at a time. Computationally speaking, the DCTEP problem (either lossy or 

lossless) is relatively less complex when compared with the LinACTEP model. Since the 

entire formulation keeps the problem linear, like in the case of LinACTEP, commercially 

available solvers can solve problems of this type efficiently. 

3.3.4. A Modified  “DC” based TEP Model (M-DCTEP) 

It has been stated that the formulation of DC network model is anchored on the basic 

assumption that the voltage magnitudes are close to the nominal one, which effectively 

leads to a flat voltage profile in the system. This assumption is valid in most cases 

especially in electrical networks spanning over small geographical areas because in such 
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networks, the transmission lines are often short and low impedances, leading to low 

voltage drops. However, in bigger networks, which is the subject of this thesis, the 

voltage drops may be very high as long lines are very common in such networks. 

Moreover, since RESs are often available in remote areas, very far from major demand 

centers, long lines are expected to be constructed to tap the available sources. Because 

of these reasons, it can be appealing to modify the DC model to include some of the 

interesting features of LinACTEP model. In this model, denoted as M-DCTEP, the 

customary flow equations in the DC model, which solely depend on angular differences, 

are replaced with the following equations: 

|𝑃𝑘 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘  )}| ≤ 𝑀𝑃𝑘(1 − 𝑢𝑘) (62) 

|𝑃𝑘 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘}| ≤ 𝑀𝑃𝑘(1 − 𝑧𝑘)  (63) 

where Equations (62) and (63) stand for the disjunctive flow models in existing and 

candidate lines, respectively, and ∆𝑉𝑚𝑖𝑛 ≤ ∆𝑉𝑖 ≤ ∆𝑉
𝑚𝑎𝑥. The remaining constraints in 

DCTEP are also retained here. The full list of constraints can be found in Appendix C.         

3.3.5. Relaxed “DC” based TEP Model (R-DCTEP) 

The relaxed DC TEP (R-DCTEP) model can be considered as an alternative formulation 

of the DCTEP model. As explained before, the DC model relies on disjunctive 

formulations for decoupling bilinear terms. Selecting appropriate big-M parameters can 

be problematic in most cases, and this directly influences the solution process. Unlike 

the DCTEP, this model does not require big-M formulation in the case of candidate 

lines, which can be regarded as a significant computational advantage. Instead of using 

the disjunctive model, the DC model is relaxed by replacing the bilinear terms with new 

continuous auxiliary variables. In other words, the proposed R-DCTEP model is 

linearized by transforming the bilinear terms in the DC power flow equations into 

separable functions [185]. Here, we show how this is done for the bilinear terms in 

Equation (46). First, two auxiliary continuous variables 𝜙1,𝑘 and 𝜙2,𝑘 are introduced 

such that 𝜙1,𝑘 ≔ (𝑧𝑘 + 𝜃𝑘)/2 and 𝜙2,𝑘 ≔ (𝑧𝑘 − 𝜃𝑘)/2. This means the product of 

discrete and continuous variables 𝑢𝑘𝜃𝑘 appearing in the DC flow equation (46) can be 

transformed into separable functions given by 𝜙1,𝑘
2 − 𝜙2,𝑘

2  as in (66). The linearization of 

these quadratic terms is straightforward; the incremental approach (described in the 

preceding Section) is adopted here. Like in the DCTEP, this model minimizes a given 

objective function (64) subject to a number of technical constraints. Equation (65) 

corresponds to the big-M equivalent formulation of the DC power flow model in 

existing lines while the relaxed form of such a model for candidates is shown in (66). 

Constraints (67)—(70) form the set of additional constraints required to make the 

linearization approach complete. Further details of the linearization technique adopted 

here can be found in an optimization modeling book [185]. The rest of the constraints 

correspond to the power flow limits (71) and (72), load balance (73), generation 

capacity limits (74) and voltage angle bounds (75). 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑍 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛            (64) 

Subject to: 

|𝑃𝑘 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘| ≤ 𝑀𝑘(1 − 𝑢𝑘);  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘          (65) 

𝑃𝑘 = −𝑉𝑛𝑜𝑚
2 𝑏𝑘(𝜙1,𝑘

2 − 𝜙2,𝑘
2 ) ;  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 =

1

𝑥𝑘
           (66) 

𝜙1,𝑘 =
𝑧𝑘+𝜃𝑘

2
    ;      𝜙2,𝑘 =

𝑧𝑘−𝜃𝑘

2
             (67) 

0 ≤ 𝑧𝑘 ≤ 𝑧𝑘,max              (68) 

𝜃𝑚𝑖𝑛

2
≤ 𝜙1,𝑘 ≤

𝑧𝑘,max+𝜃𝑚𝑎𝑥

2
              (69) 

0−𝜃𝑚𝑎𝑥

2
≤ 𝜙2,𝑘 ≤

𝑧𝑘,max−𝜃𝑚𝑖𝑛

2
              (70) 

−𝑢𝑘𝑆𝑘,max  ≤ 𝑃𝑘 ≤ 𝑢𝑘𝑆𝑘,max              (71) 

−𝑧𝑘𝑆𝑘,max  ≤ 𝑃𝑘 ≤ 𝑧𝑘𝑆𝑘,max               (72) 

∑ 𝑃𝑘𝑘∈𝑖 + ∑ 𝑃𝐺𝑔𝑔∈𝑖 + 𝑝𝑖 − ∑ 𝑃𝐷𝑑𝑑∈𝑖 = 0           (73) 

𝑢𝑔𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔 ≤ 𝑢𝑔𝑃𝐺𝑔,𝑚𝑎𝑥            (74) 

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖 ≤ 𝜃𝑚𝑎𝑥;  𝜃𝑟𝑒𝑓 = 0              (75) 

When it is desired to include network losses in the TEP study, they can be modeled in a 

similar way as in the DCTEP model described before i.e. by including the constraints 

(58)—(61).  

Note that the investment variables in this model need not be only be discrete variables; 

this model equally works for continuous as well as discrete variables. As one of its salient 

features, this model avoids big-M formulation; and hence, demands relatively less 

computational effort when compared with its DC counterpart. Unlike the DC model, the 

investment variables can be relaxed to hold continuous values instead of discrete ones 

while respecting the physical laws of flows, which is another feature of this model.  This 

is relevant because, sometimes, a first-hand estimate of the network expansion needs 

may be required. In such cases, it is desirable that such information be made available 

as fast as possible to deliver the results for carrying out the required analysis. One way 

to do this is by relaxing the discrete investment variables to continuous ones. Thus, the 

R-DCTEP model with continuous investment variables can be used in this regard. We 

will demonstrate the usage of such models in the following Chapters.  

3.3.6. A Hybrid TEP Model (HTEP) 

Due to the computationally intensive nature of the  problem, researchers have resorted to 

further simplify the DC model. A hybrid TEP model (HTEP), which has been used in  
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network expansion problems [10], [30], is formulated by exempting the candidate lines 

from obeying KVL. In other words, candidate lines only respect load balance and 

capacity limits. On the other hands, flows in existing lines are governed by both 

Kirchhoff’s laws. Since the DC flow equations are not in this model, the discrete variables 

can be relaxed to continuous ones.  Although the simplifications and assumptions made in 

this model lead to a more manageable TEP model (computationally speaking), it has a 

major drawback associated with “reverse” flows (i.e. flows in a direction opposite to that 

determined by the law of physics). In power systems, physical laws dictate that power 

always flows from high potential to low potential. In the case of DC models, this should 

be from nodes with high voltage angles to those with low voltage angles. However, when 

HTEP is used as a transmission investment model, the flows in the newly added lines (i.e. 

candidates) could unfortunately be in the opposite direction in certain circumstances, 

violating the physical laws that govern power flows in AC systems. To further clarify this 

problem, consider the system in Figure 3. 1. All corridors can be reinforced with the same 

line characteristics as the existing one. Assume the generator connected to node 1 is 

renewable type with very low cost of power production. As we can see, there are two 

electrical paths to the high-load node 5 namely 1-2-3-4-5 and 1-6-5. Suppose the former 

path is congested, with all lines along the path reaching their respective maximum 

capacity, and suppose the latter path has sufficient capacity for sending more power to the 

load node. However, the congestion in the parallel path (1-2-3-4-5) makes it impossible to 

send more power to this node. When the system is expanded by making use of the HTEP 

model, instead of investing in all lines in this path, the model may instead result in 

investment in corridor 1-2 to allow reverse flow in the new line. This temporarily relieves 

the congestion and enables to send more power to node 5. The sum of investment cost of 

line 1-2 and operation of cost of the power injected by G2 (in the form of counter flow in 

the newly added line) may in the end be lower than the overall investment cost the four 

lines along the path (1-2-3-4-5). This phenomenon is detected in the numerical analysis of 

all models, which will be discussed shortly. 

2
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Fig. 3. 1 Illustrative example of counter flows 



 

39  
 

3.3.7. A “Pipeline” TEP Model (PTEP) 

This model, denoted as PTEP, is sometimes referred to as the “flow” or transportation 

model which has been used in TEP studies in [31]. The lines are regarded as pipelines, 

which respect only the capacity limits and nodal balance. PTEP does not obey the 

Kirchhoff’s voltage law. This means that a particular line can carry any desired amount of 

power flow independent of the impedance of that line and the angular differences. A 

PTEP model can be formed with any of the models presented and discussed before by 

excluding the KVL constraints related to both existing and candidate lines. As an 

example, a lossless PTEP model can be formulated from the DCTEP model in Subsection 

3.3.3 by considering only the constraints in (53)—(57). The PTEP model is 

mathematically less complex and computationally less-intensive when compared to any 

other model discussed so far. However, given the overly simplified network model  to 

form the PTEP model, the expansion solutions obtained by employing this model can be 

largely suboptimal. Like HTEP model, this may also be prone to problems of reverse 

flows. 

3.3.8. A “Copper Sheet” TEP Model (CSTEP) 

The copper sheet TEP (CSTEP) model regards existing lines as if they did not have flow 

limits i.e. by relaxing the flow limits. This model can be alternatively understood as a 

TEP model without flow limit constraints. CSTEP can be formulated with any of the TEP 

models presented and discussed so far by excluding the capacity constraints of existing 

lines or relaxing the binary switching variable associated to these lines to have continuous 

values with no bounds imposed. For instance, a lossless CSTEP form of the DCTEP 

model would include the constraints in (51), (52) and (55)—(57) as well as the constraints 

in (53), where 𝑢𝑘 ∈ ℝ and 𝑢𝑘 ≥ 0. Such a model can be a very handy tool in quickly 

analyzing corridors that are prone to congestion so that preventive measures can be 

undertaken. In addition, it can be very useful in identifying corridors that may need 

reinforcements/investments. This application is especially relevant when carrying out 

TEP on large-scale networks, where the huge geographical scope makes it difficult to 

short-list candidate lines for investments. In such network systems, planners cannot rely 

on expert knowledge (unlike in small- to medium-scale systems) for the candidate 

selection procedure. In the following chapters, we will further show its application in this 

regard. 

3.3. TEP MODEL FIDELITY—NUMERICAL COMPARISONS 

3.3.1. Input Data and General Description 

The TEP models briefly described and discussed under Subsection 3.2 have been 

compared numerically by running case studies constituting of the Garver’s 6-bus, IEEE 

24- and 118-bus test systems in terms of computational requirement as well as solution 

accuracy. As mentioned earlier, the motivation of such a comparative analysis is to find 

the model that strikes the right balance between accuracy and computational demand in 

the context of large-scale TEP applications.  
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For the analysis here, a deterministic model with an objective function given by (76) is 

considered which is subject to the constraints corresponding to each model. Equation (76) 

is composed of the net present values (NPV) of investment cost, operation as well as load 

shedding costs.  

The investment cost of a line is amortized in fixed annual installments throughout its 

lifetime 𝐿𝑇𝑘, which is considered to be 30 years here. It should be noted that operation 

and load shedding costs are incurred every year during and after the planning horizon, 

leading to infinite payments of these costs annually. To further clarify this, consider the 

illustrative example in Figure 3.2. It is understood that investments are made in a specific 

year within the planning horizon (the second year in this case) and the investment costs 

are amortized throughout its lifetime. However, the operation and load shedding costs are 

incurred every year within and after the planning horizon. To balance these cost terms and 

to take account of the long-term impact of network investments, a perpetual planning 

horizon, i.e. an endless payment horizon of fixed installments is assumed here. In other 

words , the concept of perpetuity described in detail in [186] is adopted. Based on the 

finance theory in [186], the present value of perpetuity, which is the sum of the net worth 

of infinite annual fixed payments, is determined by dividing the fixed payment at a given 

period by the interest rate 𝑟. Based on this, the operation and load shedding costs include 

the associated annual costs within (part I) and outside the planning horizon (part II). The 

latter (part II) are determined by the perpetuity of the costs in the last planning stage 

updated by NPV factor in this case (1 + 𝜎)−3. Note that after the lifetime of the line 

elapses, it is assumed that investments will be made in the same lines with the same cost 

and technical characteristics in agreement with the concepts of a perpetual planning 

horizon.   

min
𝑧𝑘,𝑡,𝑃𝐺𝑔,𝑏,𝑡,𝑝𝑖,𝑏,𝑡

𝑍     

= ∑∑(1 + 𝑟)−𝑡
𝜎(1 + 𝜎)𝐿𝑇𝑘

(1 + 𝜎)𝐿𝑇𝑘 − 1
𝑧𝑘,𝑡𝐼𝐶𝑘/𝜎

𝑘𝑡

+∑∑∑(1 + 𝜎)−𝑡Δ𝑏𝑃𝐺𝑔,𝑏,𝑡𝜆𝑔
𝑏𝑔𝑡⏟                    

𝐼

+∑∑(1 + 𝜎)−1Δ𝑏𝑃𝐺𝑔,𝑏,𝑡𝜆𝑔/𝜎

𝑏𝑔⏟                    
𝐼𝐼

+∑∑∑(1 + 𝜎)−𝑡Δ𝑏𝑝𝑖,𝑏,𝑡𝛬

𝑏𝑔𝑡⏟                  
𝐼

+∑∑∑(1 + 𝜎)−1Δ𝑏𝑝𝑖,𝑏,𝑡𝛬/𝜎

𝑏𝑔𝑡⏟                    
𝐼𝐼

 

(76) 
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Years
1 2 3

Planning 

horizon

Annual operation costs Amortized investment costs

II
I

  

Fig. 3. 2 Illustration of cost components within and outside the planning 

For the sake of simplicity, the duration of planning horizon is assumed to be one year. 

Hence, Equation (70) becomes: 

min
𝑧𝑘,𝑃𝐺𝑔,𝑏,𝑝𝑖,𝑏

 𝑍    =∑(1 + 𝜎)−1
𝜎(1 + 𝜎)𝐿𝑇𝑘

(1 + 𝜎)𝐿𝑇𝑘 − 1
𝑧𝑘𝐼𝐶𝑘/𝜎

𝑘

+∑∑(1 + 𝜎)−1Δ𝑏𝑃𝐺𝑔,𝑏𝜆𝑔
𝑏𝑔⏟                  

𝐼

+∑∑(1 + 𝜎)−1Δ𝑏𝑃𝐺𝑔,𝑏𝜆𝑔/𝜎

𝑏𝑔⏟                  
𝐼𝐼

+∑∑(1 + 𝜎)−1Δ𝑏𝑝𝑖,𝑏𝛬

𝑏𝑔⏟                
𝐼

+∑∑(1 + 𝜎)−1Δ𝑏𝑝𝑖,𝑏𝛬/𝜎

𝑏𝑔⏟                
𝐼𝐼

 

(77) 

The constraints of lossy TEP models presented before can be extended to a multi-load 

level planning framework. For quick reference, a summary of each of the models is 

presented in Appendix B. All simulations are carried out in HP Z820 Workstation with 

E5-2687W processor, clocking at 3.1 GHz. GAMS 24.0™ is used to code and run the 

optimizations. Throughout the analysis in this section, CPLEX 12.0™ is called to solve 

the problems with default parameters. A 5% interest rate is considered, and the number of 

partitions for all sorts of linearization is set to 10 but five segments are sufficient 

according our extensive analysis on this issue [13]. The range of permissible node voltage 

deviations is between +10% and -10% of the nominal voltage; voltage angles are allowed 

to vary 1.5 and -1.5 radians.  

An hourly demand series for one year is aggregated dividing the load duration curve into 

30 load blocks, as shown in Figure 3.3. The duration (in hours) of each load block is 

indicated in Figure 3.4. Further input data used in the simulations can be found in 

Appendix C. 
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Fig. 3. 3 Aggregation of a load duration curve 

 

Fig. 3. 4 Number of hours for each load block 𝛥𝑏 

3.3.2. Numerical Results and Comparisons 

Numerical performance of each model is assessed by carrying out simulations on the 

aforementioned test systems. Simulations results are summarized in Tables 3.1 through 

3.4 and Appendix D. Table 3.1 presents the investment decisions obtained by each model 

with and without losses. As can be observed, neglecting losses generally leads to 

underinvestment or even a different expansion solution. The overall costs for the lossless 

cases seem lower than those computed with losses. However, these are unrealistic because 

of the cost and impact of losses are unaccounted for. In the following section, we shall see 

a detailed analysis of losses and their influences in expansion results.    
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Comparing the expansion results with that of an AC solution reveals that all lossy models 

provide very similar results. This is especially the case with LinACTEP and DCTEP as 

well as the modified DCTEP models. The expansion results of lossy LinACTEP model 

only differ by one from the solutions of AC and lossy DC-based TEP models. Yet, the 

total investment costs for the three models are the same in all three models, as can be seen 

in Table 3.2. Figure 3.5 compares the losses in each load level computed by each TEP 

model. It can be inferred from this figure that the DCTEP results in the lowest losses, 

followed by LinACTEP and the remaining models. 

Table 3. 1 Network expansion solutions for different TEP models – 6-bus case 

   
Investment solution 

  
From 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 

  
To 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6 

D
is

cr
et

e 

PTEP 
Lossy 

    
1 1 

  
1 

  
1 

 
1 1 

Lossless 
    

1   
  

1 
  

1 
 

1 1 

HTEP 
Lossy 

    
1 1 

  
1 

  
1 

 
1 1 

Lossless 
    

1   
  

1 
  

1 
 

1 1 

R-DCTEP 
Lossy 

    
1 1 

  
1 

 
1 1 

 
1 1 

Lossless 
    

1   
  

1 
  

1 
 

1 1 

DCTEP 
Lossy 

    
1 1 

  
1 1 1 1 

 
1 1 

Lossless                 1 1         1 1     1     1 1 

M-DCTEP Lossy     1 1   1 1 1 1  1 1 

LinACTEP 
Lossy 

   
1 1 1 

  
1 1 

 
1 

 
1 1 

Lossless                 1 1         1 1     1     1 1 

ACTEP* 
    

1 1   1 1 1 1  1 1 

C
o
n
ti

n
u
o
u
s 

PTEP 
Lossy    0.1 1 0.17 

  
1 

 
0.1 1 

 
1 1 

Lossless        1     
  

1 
 

    1 
 

1 1 

HTEP 
Lossy    0.1 1 0.26 

  
1 

 
0.2 1 

 
1 1 

Lossless        1     
  

1 
 

    1 
 

1 1 

R-DCTEP 
Lossy    0.1 1 0.26 

  
1 

 
0.2 1 

 
1 1 

Lossless        1             1         1     1 1 

* Best solution after a number of restarts  

 

Computational burden generally increases with model fidelity i.e. PTEP, HTEP,  

R-DCTEP, DCTEP, M-DCTEP, LinACTEP and ACTEP. Despite its solution accuracy, 

the LinACTEP demands nearly 5 times more computational effort to solve the problem 
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than the DCTEP model. Interestingly, the modified lossy DCTEP models (R-DCTEP, M-

DCTEP) perform well. The computational requirement of R-DCTEP is significantly 

lower than that DCTEP while the increase in simulation time when using the M-DCTEP 

is marginal compared with the simulation time of DCTEP. Figure 3.6 demonstrates this 

phenomena. In general, from the simulation results, one can see that the models which 

strike the right balance between accuracy and computational demand are lossy DCTEP 

and its derivative M-DCTEP. 

Another observation in Tables 3.1 and 3.2 is that the models, whose investment variables 

are converted to continuous ones, yield interesting expansion outcomes. The values of 

those lines make up optimal solution set are significant, which is very relevant 

information which can exploited in reducing the combinatorial solution search space, 

which will be discussed in detail in Chapter 5. 

Table 3. 2 Costs and simulation times for different TEP models – 6-bus case 

   

Investment 

cost (€) Total cost (€) 

CPU time 

(s) 

Discrete 

PTEP 
Lossy 284987239.4 1316109950.0 0.764 

Lossless 260205740.3 1073807336.9 0.078 

HTEP 
Lossy 284987239.4 1316174242.8 2.855 

Lossless 260205740.3 1073807337.0 0.125 

R-DCTEP 
Lossy 311007813.4 1316174242.8 1.372 

Lossless 260205740.3 1073807337.0 0.234 

DCTEP 
Lossy 382874160.8 1919502705.2 34.991 

Lossless 358092661.7 1661650011.6 3.697 

M-DCTEP Lossy 382874160.8 1844384854.2 36.442 

LinACTEP 
Lossy 382874160.8 1844384838.0 166.375 

Lossless 358092661.7 1658033570.6 116.532 

ACTEP Lossy 358092661.7 1658033601.9 434087.045 

Continuous 

PTEP 
Lossy 269495228.7 1297679459.3 0.187 

Lossless 260205740.3 1073807336.9 0.015 

HTEP 
Lossy 269767517.4 1298477815.1 0.172 

Lossless 260205740.3 1073807337.0 0.031 

R-DCTEP 
Lossy 269767517.4 1298477815.1 0.359 

Lossless 260205740.3 1073807337.0 0.094 
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Fig. 3. 5 Losses computed by selected TEP models – 6-bus case 

 

Fig. 3. 6 Performance comparison of selected TEP models – 6-bus case 

 

Table 3. 3 Network expansion solutions for different TEP models – 24-bus case 

   

Investment solution (values shown in brackets) 

D
is

cr
et

e 

PTEP 
Lossy 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1) 

Lossless 2-4 (1), 4-9 (1) 

HTEP 
Lossy 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1) 

Lossless 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1) 

R-DCTEP 
Lossy 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1) 

Lossless 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1) 

DCTEP 
Lossy 1-2 (1), 2-4 (1), 2-8 (1), 4-9 (1), 10-11 (1), 16-17 (1) 

Lossless 1-2 (1), 1-8 (1), 2-4 (1), 4-9 (1), 16-17 (1) 
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LinACTEP 
Lossy 1-2 (1), 2-4 (1), 2-8 (1), 4-9 (1), 10-11 (1), 16-17 (1) 

Lossless 1-2 (1), 1-8 (1), 2-4 (1), 4-9 (1), 16-17 (1) 

ACTEP* 1-2 (1), 2-4 (1), 2-8 (1), 4-9 (1), 10-11 (1), 16-17 (1) 

C
o
n
ti

n
u
o
u
s 

PTEP 
Lossy 

1-2 (0.2), 1-8 (0.2), 2-4 (1.0), 2-8 (0.3), 4-9 (1.0), 14-16 

(0.2), 16-17 (0.6), 16-19 (0.1), 17-18 (0.1) 

Lossless 2-4 (1.0), 4-9 (1.0) 

HTEP 
Lossy 

1-2 (0.2), 1-8 (0.2), 2-4 (1.0), 2-8 (0.3), 4-9 (1.0), 9-10 

(0.03), 10-11 (0.02), 14-16 (0.2), 15-21 (0.07), 16-17 (0.8), 

16-19 (0.13), 17-18 (0.11) 

Lossless 1-2 (1.0), 2-4 (1.0), 2-8 (0.47), 4-9 (1.0), 16-17 (0.77) 

R-DCTEP 
Lossy 

1-2 (0.2), 1-8 (0.2), 2-4 (1.0), 2-8 (0.3), 4-9 (1.0), 9-10 

(0.03), 10-11 (0.02), 14-16 (0.2), 15-21 (0.07), 16-17 (0.8), 

16-19 (0.13), 17-18 (0.11) 

Lossless 1-2 (1.0), 2-4 (1.0), 2-8 (0.47), 4-9 (1.0), 16-17 (0.77) 

*Best solution after multiple restarts 

 

The simulation results pertaining to the 24-bus case, shown in Tables 3.3 and 3.4, and 

Figure 3.7, largely support the analysis and conclusions made in the 6-bus case. The 

expansion outcome of lossy LinACTEP and DCTEP models exactly match with AC 

expansion solution; however, the simulation times of these models significantly differ. 

Like in the 6-bus case, LinACTEP is a lot more computationally demanding than any 

other model. about five times and 41 times more expensive computationally than DCTEP 

in the 24-bus and 118-bus cases. Hence, DCTEP balances well accuracy with 

computational requirement. Figure 3.8 plots the losses computed by selected models. It 

can be observed that the difference in these losses curves is not significant mainly because 

of the similarity in the expansion outcomes. 

Table 3. 4 Costs and simulation times for different TEP models – 24-bus case 

  

 Investment 

cost (€) Total cost (€) 

Simulation 

time (s) 

Discrete 

investement 

variable 

PTEP 
Lossy 1375373.199 3916428514.8 6.973 

Lossless 743444.9723 3913114138.0 0.219 

HTEP 
Lossy 1375373.199 3916554450.2 16.069 

Lossless 1375373.199 3913746068.8 1.95 

R-DCTEP 
Lossy 1375373.199 3916554450.2 15.741 

Lossless 1375373.199 3913746068.8 1.529 

DCTEP 
Lossy 1660360.438 3917018556.0 62.556 

Lossless 1437326.947 3913885370.5 4.368 

LinACTEP 
Lossy 1660360.438 3916449214.4 362.562 

Lossless 1437326.947 3913873912.4 148.591 

ACTEP Lossy 1660360.438 3916450118.3 - 

Continuous PTEP Lossy 1195667.085 3916117546 0.952 
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investment 

variable 

Lossless 743444.9723 3913114138 0.063 

HTEP 
Lossy 1314158.391 3916253139 

3.775 

Lossless 1145970.474 3913516667 0.156 

R-DCTEP 
Lossy 1314158.391 3916253139 

2.746 

Lossless 1145970.474 3913516667 0.39 

 

As explained in the preceding sections, a major concern with the hybrid and pipeline 

models is the occurrence of reverse flows. These are not observed in the first two case 

studies but they are detected in the IEEE 118-bus system in corridors 34—37, 84—85, 

85—89, 88—89, which have been part of the expansion solution. This is corrected by 

excluding the candidate lines in these corridors. Alternatively, this can be avoided by 

including a small penalty in the objective function. The penalty factor should however be 

selected carefully not to influence the outcome.    

 

Fig. 3. 7 Performance comparison of selected TEP models – 24-bus case 

It has been stated from the outset that the main motivation of doing this analysis is to 

identify and/or propose an improved TEP model that balances the tradeoff between 

accuracy and computational requirement from the context of large-term TEP problems 

under uncertainty in large-scale networks. From this perspective, the computational 

requirement can be roughly estimated from the simulation results in this section. As the 

plots in Figures 9 and 10 show the simulation times appear to follow polynomial trends. 

Holding other parameters the same, the expected simulation times  for a system with 1000 

nodes or 1000 candidates are computed. These are depicted in Table 3.5. Note that these 

values only give rough estimates. Yet, the figures show the stark differences in the 

computational complexity of the models. With the same computing machine, in a 1000-

node system, LinACTEP would likely take astoundingly 85 and a half days (nearly three 

months) before it returns the solution; whereas, the DCTEP model would finish within 
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approximately 2 days. The observations with the number of candidates is the same. This 

strengthens the previous argument that DCTEP or its “equivalent” formulations, R-

DCTEP and M-DCTEP, are the most feasible models that can be extended to TEP 

problems of a significant network size. Based on the comprehensive analysis made in this 

section, these models strike the right balance between computational requirement and 

solution accuracy.  

 

Fig. 3. 8 Losses computed by selected TEP models – 6-bus case 

 

Fig. 3. 9 Simulation time trends as a function of system parameters—DCTEP  
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Fig. 3. 10 Simulation time trends as a function of system parameters—LinACTEP  

Table 3. 5 Estimating the computational burden (measured in days) of selected lossy 

TEP models  

 System size 

TEP Model 1000 Nodes 1000 Candidates 

PTEP 0.025 0.013 

HTEP 1.794 0.814 

R-DCTEP 1.219 0.553 

DCTEP 1.742 0.792 

LinACTEP 85.500 38.750 

3.4. REPRESENTATION OF TRANSMISSION LOSSES 

Most of the existing losses models fall into one of the categories reviewed in the 

following subsection. It should be noted here that we have slightly modified the common 

formulations of those models. First, the flow-based losses expression in (58) is used 

instead of the angle-based one in (40) when formulating the linear models. Second, 

additional features and constraints are included in some of these models to improve their 

computational performance and accuracy in representing losses. We also subsequently 

present some alternative losses models. 

3.4.1. Motivation and Overview 

The global push for the integration of renewable energy sources (RESs) involves planning 

the expansion of the transmission grid over geographically wider areas. Moreover, the 

expected high penetration of RESs introduces significant uncertainties in the development 

and operation of the system, which need to be accounted for. In most cases, large-scale 

renewable generation projects will be located far away from major demand centers. Due 

to the intermittency of their production, ensuring an acceptable level of guarantee of 

supply in systems with very high RES penetration will require a well-developed 
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transmission network with sufficient capacity to transport the renewable power produced 

at remote areas to any other area where renewable production is very low. Depending on 

the availability of RESs, the power flow patterns of the system are expected to undergo 

dramatic changes over time. 

As a result, to properly address a TEP study, a large number of operational states 

(snapshots) and network investment candidates must be considered, together with several 

timeline scenarios (or storylines) to represent the uncertainty about the evolution of the 

system in the future. This leads to a very complex combinatorial TEP optimization 

problem, requiring a large number of optimal power flow (OPF) computations, which can 

eventually become intractable. The common practice of considering only the OPF for the 

peak demand scenario is no longer valid in such power systems, particularly in the context 

of TEP, where operational states stressing different parts of the network may be largely 

different. Thus, the OPF formulation considered in TEP should be computationally very 

efficient to ensure tractability while delivering results with an acceptable level of 

accuracy. For instance, using a full alternating current optimal power flow (AC-OPF) 

model, similar to the model used in [187], is not computationally affordable for such a 

problem, while the classic direct current optimal power flow (DC-OPF) [178] may not be 

a good solution either because it neglects transmission losses. In general, the OPF 

formulation should feature all aspects that are believed to play a non-negligible role in 

TEP, especially in large-scale systems. 

Network losses may change the economic generation dispatch and affect optimal 

solutions for the development of the network; see in [30] and more thorough analyses in 

[42]. In spite of this, losses are frequently neglected in TEP models or treated in an overly 

simplified way, mainly to reduce the computational burden when dealing with systems of 

a significant size. Finding an appropriate representation of losses is critical when the 

scope of the considered system becomes as wide as the full European transmission 

network [188]. Moreover, as mentioned previously, large power flows are expected in 

large-scale network of systems with high penetration of RESs, leading to higher losses 

which could in turn play a more relevant role in TEP. 

When using the conventional AC-OPF model, network losses (both active and reactive) 

are implicitly modeled because such a model includes all network parameters. However, 

the resulting problem is highly nonlinear and non-convex which makes computing the 

optimal solution very demanding. Acknowledging the complexity of the AC-OPF 

problem, distributed and parallel computation schemes are proposed in [189]. But in some 

cases, the AC-OPF problem is directly solved via mathematical optimization techniques 

(for example, the interior-point method in [190]). Due to the nature of the problem, such 

techniques often rely on a series of approximations to reduce its complexity. Moreover, 

the nonlinear and non-convex nature of the problem means global optimality could be 

highly compromised because the solution algorithm could get stuck at local optima. This 

limitation, combined with the complexity of the AC-OPF problem, led researchers to 

resort to different heuristic and meta-heuristic solution methods which are based on 

different nature-inspired algorithms such as: harmony search [191], evolutionary 
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programming [192], imperialist competitive [187], chaotic invasive weed optimization 

[193], particle swarm optimization [194], shuffle frog leaping [195] and many others 

[196]. Such solution approaches are claimed to find “good” solutions within an acceptable 

computational time but provide no guarantee of achieving global optimality. Generally, 

even if the AC-OPF network model is the most detailed and accurate modeling approach, 

its practical application is only limited to flow analysis pertaining to single or very few 

system snapshots due to its mathematical complexity. In other words, it is 

computationally expensive, if not impossible, to carry out multi-faceted analysis using an 

AC-OPF based network model and given the sheer size of current power system networks 

with a high level uncertainty (for example, long-term TEP problems). Therefore, a full 

modeling of losses (i.e. using an AC power flow model) is not computationally 

affordable, especially in the TEP context. Therefore, a tradeoff between accuracy in losses 

representation and efficiency (in computational terms) of the OPF model becomes critical 

to address TEP studies with high renewable generation penetration scenarios and large-

scale networks. This work addresses this objective and contributes losses formulations 

and a strategy to solve the resulting problem that best achieves this trade-off. The 

proposed losses models and other existing ones are compared in terms of accuracy in 

losses representation and computational efficiency. 

A review of some of the existing linear modeling approaches of losses is provided in 

[197]. A losses model based on mixed integer linear programming is reported in [42], 

applying a piecewise linear approximation of the quadratic expression of losses. And, the 

same model is applied in TEP studies in [65]. An iterative way of adding linear 

constraints is adopted in [197] using a dynamic piecewise linear model. In this case, the 

fully accurate expression of losses is iteratively approximated by adding linear cuts of 

actual transmission losses. A further extension of this iterative approach is reported in 

[198], where losses are approximated by progressively adding linear cuts of equally 

distributed nodal losses, instead of line losses. The node-based approach in [198] is 

reported to take advantage of the fact that there are fewer nodes than lines in a typical 

power system. Iterative or dynamic methods to compute losses are feasible in small to 

medium-scale systems, but in very large-scale systems, performing several iterations may 

be computationally unaffordable. 

In some cases, a single linear losses equality constraint determined by curve fitting is used 

[199], but this may either overestimate or underestimate transmission losses, depending 

on the parameters of the constraint (i.e. slope and intercept). In a similar manner, the 

authors in [142] simply represent losses in a given line as a certain percentage of its flow. 

In other cases, a quadratic function of losses is merely added to a DC branch flow model 

to account for losses in TEP [83]. But this adds nonlinearity to the problem, thus, 

negatively influencing the convergence speed of the computation process. Elsewhere, in 

problems other than TEP such as locational marginal price calculations, transmission 

losses are modeled by a fictitious load either concentrated at a single node (often the slack 

bus) or distributed among all nodes of the system. The distribution of losses is based on 

either predefined [200] or adaptive coefficients (alternatively termed as distribution 
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factors of losses) [201]. In reference [200], the entire system losses are distributed among 

all nodes based on fixed losses distribution factors obtained from an AC power flow 

analysis; whereas, the authors in [201] assume the losses in each line are distributed as 

additional loads between its terminals. In the latter case, the distribution factors are 

computed by means of a DC power flow analysis and losses are iteratively estimated. A 

further extension of the work proposed in [200], with adaptive coefficients instead of 

fixed ones, is presented in [202], and  authors  in [203] combine and extend  the methods 

developed in these works, i.e. an iterative linear approximation of losses with adaptive 

coefficients is employed in [203]. These coefficients are modified iteratively based on 

information obtained from an AC power flow analysis, the operational system states, the 

operation point of generators and the network parameters. 

In generation expansion planning (GEP) frameworks, transmission losses and hence their 

associated impacts on the system are mostly neglected because GEP is often carried out 

without considering transmission networks. A few works in the GEP subject area 

incorporate losses by using certain loss allocation methods. For example, losses in 

transmission and distribution networks are simply considered to be a certain percentage of 

the demand to be supplied at each node in [204]. The authors in [205] account for losses 

by multiplying the total power generation at each node with a predefined coefficient 

(which ranges from 1.08 to 1.10). Similarly, power injections at each node are assumed to 

comprise a certain ratio of losses [151]. Losses estimated using such approaches may be 

sufficient in the GEP context; however, such a rough estimation method cannot be 

extended to TEP, which must consider the entire network system. 

Another losses modeling approach, mostly common in economic dispatch (ED) problems, 

is Kron's loss formula [206], which is based on the concept of marginal transmission 

losses allocation. Here, losses are represented as a function of levels of power injections 

(i.e. power generation levels of generating units). This can be understood as an approach 

which calculates the marginal increase in transmission losses due to an increase in the 

load or generation level. The so-called B-loss coefficients [206] capture such sensitivity 

factors i.e. the transmission loss coefficients. These coefficients are determined once 

using power flow analysis and often considered to remain unchanged over a large set of 

operational situations, which seems to be a very conservative assumption. In [207], 

Kron’s loss formula is used to estimate losses in an ED problem which minimizes the 

total cost of power generation. Transmission losses are also modeled using the same 

formula in a stochastic [208] and a deterministic [209] multi-objective ED optimization 

framework considering wind power generation. The differences between these two works 

lie in the solution algorithms employed and the level of details in handling uncertainty. 

Reference [208] presents a stochastic programming framework to better handle 

uncertainties in load and wind power generation. And, particle swarm optimization is 

used to solve the resulting problem; whereas, reference [209] uses a variant of firefly 

algorithm for the same purpose. Most recently, the authors in [210] embed the Kron’s loss 

formula in a reliability constrained unit commitment problem to estimate the total 

transmission losses. The application of Kron’s loss formula in the subject area of ED is 
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not limited to the aforementioned works. In [211], this formula is embedded in an ED 

optimization model which has the cost of power generation as an objective function, and 

an imperialist competitive algorithm is employed as a solution method to the resulting 

problem. Authors in [212] use a different heuristic method (charged system search 

algorithm) to solve the same problem as in [211], but including emission costs. Other 

works related to ED, incorporating Kron’s loss formula, employ point estimate method 

(analytical) [213] and a derivative of genetic algorithm (meta-heuristic) [214] to solve the 

ED problem. Both works consider wind power integration, and an objective function that 

jointly minimizes the costs associated to power generation and emissions. 

In [215], with an apparently different strategy, losses are represented by incorporating 

penalty functions in the objective function. Similarly, the authors in [216] include a linear 

cost term in the objective function in order to account for the cost of losses and solve a 

constrained TEP optimization problem which is based on a modified DC-OPF. The 

authors in [187] also extend this concept by considering a nonlinear formulation for the 

cost of losses, which is to be minimized in a multi-objective TEP framework based on an 

AC-OPF. The penalty method may significantly reduce overall losses computed in the 

system if a large penalty factor is used. Finding an appropriate penalty factor is not easy. 

Hence, there is a tendency to over-condition the system through the application of large 

factors, which may lead to sub-optimal results. In many DC-OPF based TEP problems, 

transmission losses are altogether neglected (for instance, see in [136]), mainly for 

computational reasons. 

The main motivation of our study is as follows. As we shall explain in more detail in the 

subsequent sections, most of the linear losses models currently used in TEP applications 

have certain accuracy and/or computation related drawbacks. Of a particular interest here 

is the estimation accuracy of losses. Most of the linear losses models in TEP do not have 

the capability to effectively limit “artificial losses” (i.e. extra losses which do not exist in 

reality, but computed by some models to increase the economic efficiency of the optimal 

solution under specific circumstances). This means that the computation of such losses 

leads to an artificial increase in cheap power generation, yet reduce the overall operation 

cost in the system. Models that do not appropriately limit “artificial” losses normally rely 

on linear inequality constraints that mainly form an unbounded feasible losses space.  

Artificial losses normally involve spilling cheap energy produced in an exporting area to 

ease network congestion between this area and an importing one, thus allowing some 

extra demand in the importing area to be supplied with the remaining cheap energy. 

Congestion occurs because there are several parallel paths between the exporting and the 

importing area, one of which has very low transfer capacity. Then, spilling some cheap 

energy along the constrained path in the form of artificial losses eases the network 

congestion and allows more power to be transported along the other paths while 

complying with Kirchhoff’s laws in AC systems. Generally, “artificial” losses are 

computed when overly simplified losses models with an unbounded feasible solution 

space are used in the OPF analyses of a system with a lot of cheap generation from RESs.  
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Based on what has been explained, one can conclude that artificial losses are not 

exclusive of systems where RES generation exists. However, given that these losses 

normally make economic sense only when large amounts of cheap power production are 

available, some of which are to be spilled (in the form of artificial losses), the 

computation of artificial losses is especially worrisome when there is abundant, 

intermittent, and non-controllable RES generation in the system.  

Another important factor is the computational complexity of the resulting linear losses 

model. As mentioned earlier, this work is written in the context of large-scale and long-

term network expansion planning under high penetration of renewable generation, where 

there is no room for detailed or complex models of losses. Long term network expansion 

planning problems are of a huge size when formulated for large systems like the European 

one or the eastern or western interconnections in the USA. Therefore, our main goal in 

the present study is to seek a losses representation that is accurate enough to appropriately 

address problems like the avoidance of artificial losses, while not imposing a significant 

computational burden. All in all, the main purpose of our study is to find a good linear 

model for losses in such problems, considering computational efficiency, accuracy of 

losses estimation, and especially effective limits to “artificial losses”. 

In our work, two novel linear losses models that represent an alternative to currently 

existing ones, and two variants of existing models, are compared to one another. The 

losses models considered here are compared in terms of their accuracy and the increase in 

the computational time as a result of including them in the OPF formulation; always from 

the perspective of their application to large TEP problems. Case studies including small, 

medium and large-scale networks are used to illustrate the performance of the models.  

3.4.2. Transmission Network Losses in TEP 

3.4.2.1. Impact of Losses on TEP Results 

As mentioned earlier, neglecting transmission losses in TEP studies significantly reduces 

the computation burden of the problem. However, this can jeopardize the accuracy of 

TEP solutions, especially in large-scale power systems (where power may flow over long 

distances). 

According to the analyses in [30] and more thoroughly in [42],  accounting for losses in a 

TEP problem influences expansion decisions, often resulting in a higher number of line 

investments. The following three points summarize the impact of losses on optimal 

transmission expansion. 

 “Free” power transfer: Neglecting network losses in TEP problems involves 

ignoring the operational cost of transporting power. Therefore, a lossless TEP 

results in a network configuration with a lower expansion cost but higher network 

losses. Considering network losses allows balanced expansion plans that minimize 

overall costs. 
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 Hiding congested lines: Actual losses imply not only additional generation, but 

also additional power flows all over the network. If losses are neglected, lines that 

would in fact be congested may seem to be uncongested, resulting in such lines 

being excluded from the set of possible expansion decisions and; hence, leading to 

a different expansion solution. 

 Changes to generator dispatch profile: Network losses can considerably affect the 

dispatch order of generators. In large systems or those with large flows, this may 

in turn affect the network expansion solution. 

The aforementioned effects have been verified in two case studies as we shall present in 

the results section. Generally, a TEP model with losses leads to a network configuration 

with lower overall system costs, where a trade-off is achieved between all considered cost 

components. When losses are considered, some extra investments may be undertaken to 

reduce congestion and losses. 

3.4.2.2. Modeling Aspects: Artificial Losses and Their Consequences 

In losses models, another important aspect that should be appropriately handled is the 

presence of so-called “artificial losses”. The term “artificial losses” is used here to refer to 

the amount of losses exceeding the real ones which may be computed if the losses model 

(used to solve economic dispatch -ED- or TEP problems) does not provide an appropriate 

upper bound for the estimation of losses. Therefore, the word “artificial” is used here to 

indicate that such losses do not occur in reality, and the related power flows are not 

realistic. Such inaccuracy in modeling losses is due to the use of an overly simplified 

formulation of losses, with the purpose of making the problem computationally tractable 

(i.e. by keeping all formulations linear). 

In a convex cost-minimizing optimization problem such as the ED or the TEP problems, 

computed losses in each line should normally be very close to their real values even if the 

“feasible” region defined for losses is unbounded. This is because minimizing losses 

normally makes economic sense. However, under special circumstances, an artificial 

increase of losses may result in a reduced operation cost. A simple example of this case is 

provided in the system shown in Figure 1. Note that, in linear ED and TEP problems, 

losses in each line are effectively treated as demand by equally distributing them to both 

extreme ends of the line (i.e. nodes).  

Artificial losses may appear in areas where there is power production available at a very 

low cost, such as solar or wind power, and network congestion prevents this cheap energy 

from being exported to other areas. There may be several parallel paths to transport power 

from the exporting to the importing areas, while the capacity of one of these parallel paths 

is significantly lower than that of the remaining paths. Note that congestion in power 

systems is caused by the physical limitations of the grid, i.e. power transmission capacity 

limits. A power transmission line, for example, has a maximum level of power carrying 

capability that should not be exceeded for its healthy operation. Otherwise, it could get 

overheated due to the resistive losses in the line. This may eventually lead to not only 

malfunctioning and irreparable damages to the line but also operational and technical 
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problems in the system. In interconnected AC systems, power flows predominantly 

depend on angle differences between nodes, when the system tries to increase the power 

flow in a particular line, other power flows increase as side-effects. We clearly 

demonstrate this by using a three-node AC system, shown below. 

To understand how losses models with unbounded feasible losses space can result in 

artificial losses, let us assume an AC network, so power-flows must comply with both 

Kirchhoff‘s laws. Then, some artificial losses along the congested path would result in 

some extra amount of power being shifted along the remaining ones without violating the 

power flow capacity constraint for the former path. Recall that losses in every line are 

treated as demand by equally distributing the losses to both extreme ends of the line (i.e. 

effectively considered as “virtual loads”). Since the power produced in the exporting area 

is very cheap (i.e. energy produced at zero or very low cost from intermittent, renewable, 

energy sources), consuming extra power at some nodes to supply an artificial demand 

would make economic sense i.e. in reducing the overall operation cost in the system. This 

occurs when the incremental supply costs computed at these nodes turn out to be 

negative. Then, creating an artificial demand in the form of artificial losses in lines 

connected to these nodes would be efficient from an economic point of view 

(unrealistically lowering operation costs, and/or avoiding network investments). 

Note that artificial losses are higher in congested paths than in uncongested ones because 

this is a means to artificially “reduce” or “control” the amount of power flowing in 

congested paths so that the capacity limit and flow constraints are not violated. In other 

words, spilling energy in the congested paths in the form of artificial losses would keep 

(though this is not realistic) the flow in these paths within the limits set by the capacity of 

the congested lines, while still complying with the 2
nd

 Kirchhoff’s law, which rules the 

distribution of power flows in the system. Thus, by reducing the amount of power flowing 

in congested paths, more power can be transferred over uncongested paths while 

complying with the laws of physics and keeping flows within line capacity limits. 

Therefore, inaccurate losses models may result in artificial losses. Additional losses in 

lines adjacent to congested ones may relax some active constraints, and thus lower the 

overall system cost [217]. Negative incremental supply costs rarely happen in properly 

developed networks. However, in TEP problems, the currently existing network will be 

exposed to demand and generation scenarios only occurring in the (long term) future, 

sometimes including much higher demand and generation levels than now. As a result, 

the original network system may be very heavily loaded and stressed, and therefore, not 

well-adapted to the operation situations being represented in the TEP problem. In some 

scenarios, losses might be artificially increased to reduce operation costs while avoiding 

certain network investments. Therefore, the losses model used in a TEP problem should 

prevent artificial losses by setting appropriate upper bounds or relevant constraints. 

It has been already stated that some existing losses models do not properly limit artificial 

losses. Here, we use a fictitious three node AC system [217] to demonstrate that such 

losses may exist in expansion planning studies if not properly handled. We shall present 
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below how some of the existing losses models deal with such losses. The system 

considered includes a low-cost (renewable wind power) generator at node 1 whose 

installed capacity is1000 MW and an expensive (conventional) generator at node 2 with a 

capacity of 400 MW, as shown in Figure 3.5 (a). Their associated marginal costs of power 

production are depicted in Figure 3.5.The demand at each node is also shown in Figure 

3.5. The power transfer capacity limits of the lines 1-2, 1-3 and 3-2 are 1000, 500 and 200 

MW, respectively The data for this system, including impedances of the three lines, can 

be found in [217].   

 

Fig. 3. 11 An illustrative three-node system. 

Suppose the economic dispatch (ED) of this AC system, which is based on a DC-OPF 

model, minimizes the total cost of generation while meeting the following technical 

constraints: both Kirchhoff’s laws and generators’ minimum and maximum power 

production limits. First, the resulting DC-OPF based ED problem is solved by neglecting 

losses. And, Figure 3.5(a) shows the economic dispatch results corresponding to this case. 

Here, one can easily observe that line 3-2 is loaded to its full capacity. Second, a quadratic 

losses model is embedded in the DC-OPF based ED problem. This is needed for 

comparing the losses computed by an existing losses model [197]. The ED problem 

(which encompasses the aforementioned constraints and the nonlinear losses model) is 

then solved by including the transmission capacity constraints. The corresponding OPF 

results (i.e. the actual power generations, line flows and corresponding losses) are 

presented in Figure 3.5(b). Note that the two values associated with each line, shown in 

Figure 3.5, correspond to losses (upper) and power flow (lower) in MW through the line, 

respectively. It should also be noted that the mismatches in load balance at each node in 

Figure 3.5 correspond to the losses in the lines connected to the node, which are 

represented by a quadratic losses model. 
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Third, the quadratic losses model is replaced by the linear losses model in [197]. In this 

case, the resulting ED problem is solved excluding and including transmission capacity 

constraints. The dispatch solutions corresponding to these cases are shown in Figure 3.5 

(c) and (d), respectively. Clearly, the solution in Figure 3.5(c) dictates that if there were 

no transmission capacity constraints, the cheaper generator at node 1 would produce its 

maximum allowable power (1000 MW) and literally cover all the demand. The expensive 

generator at node 2 would only contribute a small amount of power to cover the 

remaining balance (in this case example, the losses in the system).  In addition, artificial 

losses would not be computed in the transmission system. This is because it would be 

possible to increase flow through link 3-2 beyond its rated capacity, which would remove 

the congestion (or, alternatively speaking, the bottleneck), and also allow more flows to 

go through the parallel path 1-2. In other words, it would not make sense to spill power in 

the form of artificial losses when it is possible to send as much power through the lines as 

needed to the other side of the network (i.e. node 2). However, the ED results 

(considering line capacity constraints) show that this link is congested in reality. Hence, 

an ED model which excludes the transmission capacity constraints does not lead to a 

realistic OPF solution. In other words, given the physical limitations of the lines, i.e. the 

power transfer limits shown in Figure 3.5(a), the dispatch solution in Figure 3.5(c) is not 

practically feasible. This is because, as shown in Figure 3.5(c), lines 1-3 and 2-3 are 

loaded above their physical limits. And, this is not acceptable because of the previously 

stated reasons. In order to correct this, generator 1 should step down its power production 

while generator 2 should step up power production so that a feasible dispatch solution as 

in Figure 3.5(b) is obtained. As it can be seen in Figure 3.5(b), such rearrangement of 

nodal injections increases the operation cost of the system but this is required if feasible 

solution is pursued in such instances. In fact, it does not make sense at all to run ED 

neglecting line capacity limits. We brought this argument here only to demonstrate the 

relationship between congestion and artificial losses. The consideration of line capacity 

limits is always crucial to obtain a realistic solution. But the underlying point here is that 

artificial losses will be computed if improper losses models are used in systems where 

congestion and massive low cost generation are present. 

Generally, when low cost generators are unable to deliver power to a particular consumer 

because of congestion, other expensive generators located elsewhere on the grid are 

dispatched. For instance, as shown in Figure 3.5(b), the power production by the 

expensive generator is increased by nearly 70% of its rated capacity while that of the 

cheaper generator is reduced by about 275 MW. As a result, this temporarily relieves the 

congestion in the lines, and effectively avoids its consequences. The re-dispatching 

process, explained here, is one of the tools commonly used for congestion management in 

real power systems. Others remedies of congestion include line reinforcements or 

switching. In general, most of the congestion management tools rely on ED or TEP 

optimization models, and the transmission losses model embedded in such models plays a 

relevant role in the final solution. We will now explain why some of the existing linear 

losses models do not behave well in certain circumstances. 



 

59  
 

As stated earlier, the dispatch solution in Figure 3.5(d) corresponds to the solution of an 

ED problem, embedding the linear losses model proposed in [197] and considering the 

line capacity limits. Here, it can be observed that the losses computed in line 1-3 are 

artificially high, nearly 40 times higher than the actual value in Figure 3.5 (b). This can be 

explained as follows. As in Figure 3.5 (b), line 2-3 is fully loaded to its rated capacity 

(200 MW) while the other lines are only partially loaded. One can see that the demand at 

nodes 1 and 3 is easily met making use of the output of the cheaper generator at node 1. 

The problem arises when we try to supply the demand at node 2 with cheap energy 

produced at node 1. Since line 2-3 is loaded to its full capacity, it is not possible to 

transport as much cheaper power from generator 1 as we would like to fully serve the load 

at node 2. This is due to the Kirchhoff’s laws that govern the distribution of energy flows 

among lines. According to Kirchhoff’s law, part of each MW of power injected at node 1 

to supply the load at node 2 would flow through the other parallel path connecting 

nodes1, 3 and 2 to reach node 2. As a result, the flow through line 2-3 would increase 

beyond its rated capacity. Hence, it is not technically possible to send more flow through 

line 1-2 instead of using lines 1-3 and 2-3, trying to avoid the congestion at the latter. 

Thus, the only feasible solution here is to dispatch the more expensive generator located 

at node 2 to supply part of the load at the same node, as shown in Figure 3.5(b). However, 

some losses models with an unbounded “feasible” solution space of losses (see the 

models reviewed in Section 3, especially those based on linear inequalities), may result in 

artificial losses.  

For instance, in the considered example, using the losses model in [197] leads to losses as 

high as 100 MW in line 1-3, as illustrated in Figure 3.5 (d). From an economic point of 

view, this reduces the overall dispatch cost (even if it is not technically possible). This is 

because extra losses come at a nearly zero cost (i.e. the cost of producing power from 

primary wind energy is zero), allowing the congestion in line 2-3 to be (artificially) 

relieved; and thus paving the way to transfer about 12 MW of cheaper power through line 

1-2 to meet the demand at node 2. Losses computed with the aforementioned model for 

line 1-3 amount to 20% of the capacity of this line, and are nearly 40 times higher than the 

losses that would actually exist in the line (which should be about 2.5 MW). As a result, 

the overall system cost is lowered by nearly 14% with respect to the situation where 

losses computed in the ED for line 1-3 are limited to their actual level. This is a feasible 

solution from a mathematical point of view, but it makes no sense from a physical point 

of view (this is why these losses are called “artificial”). As already pointed out, such 

unrealistic results arise from the imperfect modeling of losses, and this  is not unique to 

the losses model in [197]. It happens with many of the commonly used existing losses 

models, where the “feasible space” considered for losses in the OPF problem is not 

effectively bounded (i.e. because of the “bigger than” linear inequality constraints 

commonly used in the losses models). The results of the entire economic dispatch for this 

small illustrative example can be found in Table 3.6, in the following section.  

Furthermore, if artificial losses are allowed in the solution, conducting the TEP on this 

system would not lead to reinforcing line 2-3. However, reinforcing line 2-3 might in fact 
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reduce the overall system cost when real losses are considered because this could relieve 

the existing network congestion and allow the expensive power produced by the generator 

at node 2 to be replaced with the low-cost power produced at node 1. 

The following section reviews some of the formulations of existing losses models, 

focusing on their modeling accuracy (artificial losses, in particular) and computational 

requirements. Since existing models do not achieve an adequate compromise between 

accuracy and computational efficiency in the context of TEP, this thesis contributes two 

alternative losses models, which are able to adequately deal with this problem. The 

performance of different models is analyzed and compared in the subsequent sections. 

3.4.3. Review of Existing Linear Transmission Losses Models 

3.4.1.1. Model 1—Single Linear Equality Constraint 

A rare, but possible, option is assuming losses to be proportional to flows, i.e. 

representing them using a single equality constraint. The parameters (i.e. slope and 

intercept) of such a linear constraint can be determined by minimizing the mean squared 

error (MSE) for values of losses that range from zero to the maximum flow capacity of 

the line. This results in the expression in equation (78), which is similar to that of the 

model proposed in [199] apart from the fact that a non-zero intercept is assumed here. 

Note that the coefficients included in (78), 1  and 0 .1 6 5 , correspond to the optimized 

slope and intercept parameters of the linear losses equality constraint that best “fits” the 

scaled quadratic function of losses (𝑃𝑘/𝑆𝑘
𝑚𝑎𝑥)2achieving an MSE value as low as 0.006.  

𝑃𝐿𝑘 = 𝑟𝑘 ∗ (𝑆𝑘
𝑚𝑎𝑥)2 {1 ∗

|𝑃𝑘|

𝑆𝑘
𝑚𝑎𝑥 − 0.165} (78) 

In equation (5), 𝑆𝑘
𝑚𝑎𝑥 denotes the capacity of the line 𝑘 connecting nodes i and j. 

Considering the absolute value of flow in line 𝑘, |𝑃𝑘|, in (78) may seem to add non-

linearity to the problem, but this can be easily linearized by introducing two non-negative 

auxiliary variables, representing the flow in the positive and the negative direction for the 

line, as explained in the preceding sections.  

This model avoids artificial losses, which is a relevant feature. However, representing 

losses with a single equality constraint is not accurate enough for TEP problems, since it 

results in a significant underestimation or overestimation of losses depending on its 

parameters (i.e. the slope and the intercept). At least four to five linear constraints are 

needed for the error in losses estimation to be acceptable. Numerical examples will be 

given at the end of this section to justify this argument. 

3.4.1.2. Model 2a—Tangent or Traversing Linear Inequality Constraints 

This is a linearization method in which a series of lines are defined as linear constraints 

which set a lower limit to losses, as shown in Figure 2a [197]. This model can be 

formulated either using L tangent lines or L lines traversing the quadratic losses curve 

whose equations are given by the right hand side of the linear constraints in (73) and (74), 
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respectively. The parameters of each of these lines (the slope and the intercept) are 

determined using the values of flow, “real” losses and derivate at the intersection points of 

the quadratic losses curve and the corresponding line representing a linear constraint. For 

example, for the first tangent line, its slope is given by evaluating the first derivative of 

the quadratic losses function (4) at 𝑃𝑘 = Δ𝑝𝑘
𝑚𝑎𝑥 which becomes 2𝑟𝑘Δ𝑝𝑘

𝑚𝑎𝑥; while its 

intercept can be determined by substituting the values of 𝑃𝑘and 𝑃𝐿𝑘  at the Cartesian 

coordinate (𝛥𝑝𝑘
𝑚𝑎𝑥 , 𝑟𝑘(𝛥𝑝𝑘

𝑚𝑎𝑥)2) in the linear equation of the line. In general, the linear 

expressions of the l
th

 constraint (where (1, 2 , ..., )l L ), which corresponds to the l
th

 tangent 

or traversing line, are given by (73) and (74), respectively. 

𝑃𝐿𝑘 ≥ 𝑟𝑘{2𝑙Δ𝑝𝑘
𝑚𝑎𝑥|𝑃𝑘| − (𝑙Δ𝑝𝑘

𝑚𝑎𝑥)2} (79) 

𝑃𝐿𝑘 ≥ 𝑟𝑘{(2𝑙 − 1)Δ𝑝𝑘
𝑚𝑎𝑥|𝑃𝑘| − (𝑙

2 − l)(Δ𝑝𝑘
𝑚𝑎𝑥)2} (80) 

where |𝑃𝑘| = 𝑃𝑘
+ + 𝑃𝑘

−; Δ𝑝𝑘
𝑚𝑎𝑥 = 𝑆𝑘

𝑚𝑎𝑥/𝐿 is the maximum step-size used in the 

representation of losses, and L is the number of linear constraints. Note that, for the sake 

of simplicity, Figures 2a and 2b show only two partitions (i.e. L = 2) but the formulation 

is valid for any desired number of partitions. 

The main drawback of both modeling approaches is that the feasible solution space of 

losses is not bounded from above, potentially resulting in artificial losses. However, when 

artificial losses do not occur in the system, four or five steps should provide a reasonably 

accurate value of losses (see in the results section). 

3.4.1.3. Model 3a—Piecewise Linear Approximation 

This model, which is described in [42] and further used in a long-term TEP problem in a 

deregulated environment [65], is based on the piecewise linearization of the nonlinear 

losses term. It should be noted here that we have modified the originally developed 

piecewise linear models. Line flows—instead of angle differences—are discretized here 

when computing losses, for the reasons already mentioned above. In other words, we 

compute here a piecewise linear approximation of the quadratic term of the losses 

expression in equation (40). In order to do this, we represent the absolute value of the line 

flow variable by the sum of positive step-size flow variables Δ𝑝𝑘,𝑙 associated with each 

partition of line losses computed using the corresponding linear expressions. This can be 

understood as a piecewise linear fitting (or first order approximation) of the quadratic 

losses function, as depicted in Figure 2b. Generally, the model includes constraints (81)–

(84).  

𝑃𝐿𝑘 = 𝑟𝑘∑ 𝛼𝑘,𝑙
𝐿

𝑙=1
Δ𝑝𝑘,𝑙 ; 𝑤ℎ𝑒𝑟𝑒 𝛼𝑘,𝑙 = (2𝑙 − 1)Δ𝑝𝑘

𝑚𝑎𝑥  (81) 

0 ≤ Δ𝑝𝑘,𝑙 ≤ Δ𝑝𝑘
𝑚𝑎𝑥 (82) 

|𝑃𝑘| = 𝑃𝑘
+ + 𝑃𝑘

− =∑ Δ𝑝𝑘,𝑙
𝐿

𝑙=1
 (83) 

𝑃𝐿𝑘 ≥ 0 (84) 
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Note that Δ𝑝𝑘,𝑙is a discrete flow variable associated to the l
th

 linear constraint used to 

represent the losses curve. Equation (81) provides the expression of linearized losses, 

which are computed as the accumulated sum of step-size losses; equation (82) ensures 

that the step-size variables do not exceed a preset value. According to equation (83), the 

discrete flow variables should add up to the absolute value of flows in line 𝑘. Equation 

(84) ensures losses are non-negative. 

Note that it is also possible to piecewise–linearize the losses curve by using secants 

(which allow positive and negative errors in losses representation) as reported in [43] 

instead of chords (which allow only positive errors) as in this model. Under normal 

conditions, the former may result in a slightly lower estimation error of overall losses than 

the latter provided that the expressions of the secants are properly optimized. This is 

because of the partial cancelation of the positive and the negative errors. However, this 

has to be weighed in the context of TEP, where losses computed on an individual line 

basis have more relevance than the overall system losses. Transmission investment 

decisions are especially sensitive to the underestimation of losses. 

 

Fig. 3. 12 Method of linearizing losses by (a) tangent or traversing linear inequality 

constraints with or without an upper bound and (b) piecewise linear approximation. 

The main drawback of this model is the large number of additional flow variables needed 

to represent losses. This model limits artificial losses, since the equality constraints in (8) 

and (10) guarantee that computed losses are bound to be less than or equal to 𝑟𝑘(𝑆𝑘
𝑚𝑎𝑥)2. 

The authors in [36] acknowledge that artificial losses computed with such a losses 

model can sometimes have a dramatic impact on the optimality of the transmission 

expansion solution. In order to avoid this effect, they reformulate the above model by 

introducing binary variables to ensure that the angle difference and the losses pair fall 

exactly on either of the linear segments. However, they conclude that introducing binary 

variables makes the problem highly complex to solve. The same model has been used in 

an ED problem [218], and with numerical results of the ED problem which embeds this 
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model, the authors have showed that “the optimization arrives at an infeasible solution 

from the physical point of view” [218]. They have demonstrated that the solution 

algorithm “tries to optimize losses” (referred to artificial losses here) in one of the lines 

to send more power through other links. And, computed losses in their study are 3.4 

times higher than the actual ones.  Note that even if Model 3a is based on equality linear 

constraints, artificial losses can still be computed under certain circumstances. 

Alternatively speaking, losses can be optimized, but not as high as the losses that would 

be computed by Model 2a. In Model 3a, losses cannot be higher than  𝑟𝑘(𝑆𝑘
𝑚𝑎𝑥)2. 

3.4.4. Coping with Artificial Losses 

We have already stated that, unless properly addressed in the TEP optimization model, 

artificial losses may negatively affect the optimality of a TEP solution. We use the results 

of the simple system shown in Figure 3.5 to illustrate how the models already described 

above deal with artificial losses. 

We can see in Table 3.6 that Model 2a results in high artificial losses because of the 

reasons mentioned in Section 2. With Model 3a, losses in line 1-3 are reasonably limited, 

yet they are 50% higher than the actual ones. Model 1 avoids artificial losses, but it 

underestimates losses, in this case, producing a value of losses that is 35% lower than 

actual one. Such inaccuracy (which can even be higher in large-scale systems) is not 

acceptable in the TEP context. 

When conducting a TEP optimization for this system, Model 2a does not result in the 

reinforcement of the network, since it is cheaper to assume high artificial losses than to 

reinforce line 2-3. With Model 3a, line 2-3 is chosen to be reinforced because the 

computed artificial losses in this illustrative example are too small to influence the result. 

But it should be noted that, when using Model 3a, the resulting expansion solution 

depends on the amount of artificial losses computed (the higher their level is, the fewer 

the network investments will most probably be). Model 1 also results in the reinforcement 

of line 2-3. Note that reinforcing corridor 2-3 relieves the congestion and allows the full 

use of the low-cost generator at node 1, reducing the overall system cost. 

Table 3. 6 Economic Dispatch Results Considering Different Losses Models 

Models 

System  

losses (MW) 

Generated power (MW) 

Total cost (€) G1 G2 

Model 1 2.109 720.900 281.210 55,168,454.68 

Model 2a
†
 100.689 833.370 267.319 48,286,036.20 

Model 2a
§
 100.731 833.391 267.340 48,291,302.83 

Model 3a, 2b
§
, 3b 4.646 725.410 279.236 56,065,934.04 

† 
With tangent linear constraints 

§ 
With traversing linear constraints 

 

These results show that some of the customary models provide artificial losses that may 

significantly influence expansion plans. Moreover, in long-term TEP problems stated for 

large-scale systems, the level of penetration of renewable sources is normally relevant. 
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Together with the computing time (due to the size of the system), the presence of large 

amounts of low-cost generation is of great concern because large artificial losses may 

make economic sense. 

In conclusion, an appropriate linear model for losses is needed in large-scale TEP 

problems. This should be chosen considering: 

 Computational efficiency 

 Estimation accuracy of losses, and especially 

 Effective limits to artificial losses 

In the next subsection, we present some models that can represent losses more accurately 

(and reduce artificial losses) and more efficiently (from computational point of view) than 

the ones already described. A comparative analysis of all these models is included in 

Section 3.5. 

3.4.5. Proposed Linear Losses Models 

3.4.5.1. Model 2b—Tangent or Traversing Linear Inequality Constraints with an Upper 

Bound 

We have already stated that when using Model 2a, artificial losses may appear in some 

lines for economic reasons. This can be partially avoided by including an additional linear 

constraint in the formulation of Model 2a that sets an upper limit to the feasible losses 

region, as shown in Figure 3.6a (using two constraints). Including such a constraint may 

also accelerate convergence because it further shrinks the feasible region. 

The expression of the upper bound constraint is given by 𝑃𝐿𝑘 ≤ 𝑟𝑘𝑆𝑘
𝑚𝑎𝑥|𝑃𝑘|, where 

|𝑃𝑘| = 𝑃𝑘
+ + 𝑃𝑘

−. Note that the inclusion of such a constraint does not fully avoid artificial 

losses, but limits their value (see Table 3.6) to the polygon area depicted in Figure 3.6a. 

3.4.5.2. Model 3b—Piecewise Linear Approximation 

This is a modified version of Model 3a. When using Model 3a, it is desirable that the 

losses segments be “filled up” successively, i.e. in increasing order of the segment 

indices. Otherwise, under the circumstances that lead to artificial losses, upper segments 

(with larger slopes leading to higher losses) would be filled up first and to a greater extent 

than lower segments (with smaller slopes). Despite this fact, Model 3a lacks a constraint 

that enforces the right behavior in the filling of losses segments. For this reason, we add 

here the constraint (85) to guarantee that at least upper segments are not filled to a greater 

extent than lower ones.  

∆𝑝𝑘,𝑙 ≥ ∆𝑝𝑘,𝑙+1 (85) 

Including (85) helps to limit artificial losses but does not fully eliminate them, since all 

step-size variables ∆𝑝𝑘,𝑙could be made equal, instead of forcing a given step variable to be 

at its maximum before the following step is allowed to be non-zero (see Table 3.6). As a 
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result, this development achieves a reduction in the level of artificial losses computed but 

does not manage to fully avoid them. 

3.4.5.3. Model 4—Traversing Linear Equality Constraints 

The problem of computing artificial losses (when using existing models) can be 

completely avoided if we can (i) convert the inequality constraints in Model 2a into 

equality constraints, and (ii) stipulate that no more than one constraint in Model 2 can be 

active simultaneously. The condition in (ii) can be met by introducing binary variables, as 

many as the number of linear constraints. Only one of these binary variables will have a 

value equal to 1, while the others will be set to 0. This can be expressed mathematically as 

in (86) or (87), where losses are made equal to the expression of the particular linear 

constraint whose binary variable is 1. 

𝑃𝐿𝑘 = 𝑟𝑘 {

𝑏𝑘,1(𝛼𝑘,1|𝑃𝑘| + 𝑐𝑘,1) + 𝑏𝑘,2(𝛼𝑘,2|𝑃𝑘| + 𝑐𝑘,2) +⋯

+𝑏𝑘,𝑙(𝛼𝑘,𝑙|𝑃𝑘| + 𝑐𝑘,𝑙) + ⋯(1 −∑ 𝑏𝑘,𝑙
𝐿−1

𝑙=1
) (𝛼𝑘,𝐿|𝑃𝑘| + 𝑐𝑘,𝐿)

} (86) 

𝑃𝐿𝑘 = 𝑟𝑘 {∑ 𝑏𝑘,𝑙(𝛼𝑘,𝑙|𝑃𝑘| + 𝑐𝑘,𝑙)
𝐿−1

𝑙=1
+ (1 −∑ 𝑏𝑘,𝑙

𝐿−1

𝑙=1
) (𝛼𝑘,𝐿|𝑃𝑘| + 𝑐𝑘,𝐿)} (87) 

∑ 𝑏𝑘,𝑙
𝐿−1

𝑙=1
≤ 1 (88) 

Equation (88) ensures that at most, one of the binary variables has a value equal to 1. 

Although this formulation is mathematically correct, it is non-linear because it includes 

products of binary and flow variables. These products can be easily expressed using an 

alternative linear expression by replacing the equations (86) and (87) above with their 

disjunctive equivalents as in (89) and (90). One of the drawbacks of the big-M 

formulation is the complication associated with the selection of the right value of the big-

M parameter. Very large values may lead power flow matrices to be ill-conditioned, while 

low values may cause convergence and inaccuracy problems [55]. To avoid such 

problems, equations (89) and (90) are reformulated as in (91) and (92), respectively. 

Equations (93) and (94) are included as well to ensure that the line segment considered to 

represent losses corresponds to the one defined for an interval that includes the value of 

the flow variable. 

|𝑃𝐿𝑘 − 𝑟𝑘(𝛼𝑘,𝑙|𝑃𝑘| + 𝑐𝑘,𝑙)| ≤ 𝑀𝑘(1 − 𝑏𝑘,𝑙) (89) 

|𝑃𝐿𝑘 − 𝑟𝑘(𝛼𝑘,𝐿|𝑃𝑘| + 𝑐𝑘,𝐿)| ≤ 𝑀𝑘 (1 − (1 −∑ 𝑏𝑘,𝑙
𝐿−1

𝑙=1
)) (90) 

−𝐿𝐵𝑘(1 − 𝑏𝑘,𝑙) ≤  𝑃𝐿𝑘 − 𝑟𝑘(𝛼𝑘,𝑙|𝑃𝑘| + 𝑐𝑘,𝑙) ≤ 𝑈𝐵𝑘(1 − 𝑏𝑘,𝑙) (91) 



 

66  
 

−𝐿𝐵𝑘 (1 − (1 −∑ 𝑏𝑘,𝑙
𝐿−1

𝑙=1
)) ≤ 𝑃𝐿𝑘 − 𝑟𝑘(𝛼𝑘,𝐿|𝑃𝑘| + 𝑐𝑘,𝐿)

≤ 𝑈𝐵𝑘 (1 − (1 −∑ 𝑏𝑘,𝑙
𝐿−1

𝑙=1
)) 

(92) 

|𝑃𝑘| ≤ ∑ 𝑏𝑘,𝑙𝑙
𝐿−1

𝑙=1
 Δ𝑝𝑘

𝑚𝑎𝑥 + 𝑆𝑘
𝑚𝑎𝑥 (1 −∑ 𝑏𝑘,𝑙

𝐿−1

𝑙=1
) (93) 

|𝑃𝑘| ≥ ∑ 𝑏𝑘,𝑙+1𝑙
𝐿−2

𝑙=1
 Δ𝑝𝑘

𝑚𝑎𝑥 + (𝐿 − 1)Δ𝑝𝑘
𝑚𝑎𝑥 (1 −∑ 𝑏𝑘,𝑙

𝐿−1

𝑙=1
) (94) 

where 

Δ𝑝𝑘
𝑚𝑎𝑥 = 𝑆𝑘

𝑚𝑎𝑥/𝐿 is the step-size of each linear constraint; |𝑃𝑘| = 𝑃𝑘
+ + 𝑃𝑘

−; 𝛼𝑘,𝑙 

and ck,l are the slope and the intercept of the l
th

 constraint in Model 2, which are 

given by (2𝑙 − 1)Δ𝑝𝑘
𝑚𝑎𝑥and (𝑙 − 𝑙2)(Δ𝑝𝑘

𝑚𝑎𝑥)2, respectively; 

𝑏𝑘,𝑙 is the binary variable associated with the l
th 

constraint; 

𝑀𝑘 is a big-M parameter; 

𝑈𝐵𝑘is an upper bound constant given by: 

max (𝑃𝐿𝑘 − 𝑟𝑘(𝛼𝑘,𝑙|𝑃𝑘| + 𝑐𝑘,𝑙)) ≈ 𝑟𝑘(𝛼𝑘,𝐿𝑆𝑘
𝑚𝑎𝑥 + 𝑐𝑘,𝐿); 

𝐿𝐵𝑘 is a lower bound constant whose value in this case is zero; and 

 L is the total number of linear losses constraints. 

In this case, the model includes constraints (88) and (91)–(94). The disadvantage of this 

model is its mathematical complexity. It is easy to understand that the higher the number 

of constraints and binary variables, the larger the computational burden of the model is. 

Regarding artificial losses, test results obtained for the system in Figure 3.5 show they are 

effectively avoided. 

3.4.5.4. Model 5—SOS2 Approach 

We have already mentioned earlier that the first three losses models have certain 

drawbacks, particularly in terms of their accuracy in estimating losses. The 

improvement achieved as a result of the additional constraints included in Models 2b 

and 3b may not be sufficient to properly limit artificial losses in some situations. 

Moreover, despite the fact that it provides a more accurate estimate of losses than the 

first three models, Model 4 cannot be suitably applied to large-scale TEP problems 

because of its computational complexity. Because of this reason, we propose a new 

modeling approach based on the use of Special Ordered Sets of type 2 (SOS2) [219] 

(also discussed in detail in [220]), which is explained in detail in the following 

paragraphs.  

Piecewise linear functions, as in Figure 3.13, can be modeled by introducing a set of 

positive variables 𝜆𝑘,𝑙, where (0 ,1, ..., )l L , that form an SOS2 (see [219]). These 

variables can be understood as weights associated to the points where the linear losses 

constraints cross the quadratic losses curve, here called intersection points. The main 
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property of SOS2 variables, as described in [219], is that at most, two consecutive 

variables among them can have non-zero values. As we shall explain below, this property 

leads to the fact that losses are computed by carrying out a linear interpolation between 

two consecutive intersection points.  

The formulation of this losses model is as follows. First, the absolute flow in a line is 

expressed as the sum of the products of the flow values at the partitions defined on the 

flow axis in Figure 3.13 {i.e. 𝑃𝑘,𝑙 where (0 ,1, ..., )l L } and the corresponding lambda 

variables, as in equation (95). Without loss of generality, the intersection points can be 

assumed to be equally spaced on the horizontal (flow) axis, where the distance between 

two consecutive points is given by Δ𝑝𝑘
𝑚𝑎𝑥, as in the previous models. Thus, the flow at 

the l
th

 intersection point becomes 𝑙 ∗ Δ𝑝𝑘
𝑚𝑎𝑥. Substituting this in (40) gives the line losses 

at this point as 𝑟𝑘(𝑙 ∗ Δ𝑝𝑘
𝑚𝑎𝑥)2, where (0 ,1, ..., )l L . Then, the flow expression in (96) is 

derived accordingly.  

Similarly, the line losses can be expressed as in (97), from which (98) is derived by 

considering the quadratic expression of losses at each intersection point. Equation (15) is 

a general upper bound for the lambda variables. Note that 𝑃𝑘,0 and 𝑃𝐿𝑘,0 are both zero 

since they correspond to the flow and the losses at the first intersection point (i.e. the zero 

coordinates as in Figure 3.13). Elsewhere, the SOS2 approach has been applied for 

dealing with nonlinear functions in a mixed integer programming gas network 

optimization [221]. The authors in [220] also extend this concept to linearization of a 

two-dimensional function. 

Remember that in this model, it is additionally required that at most two consecutive 

lambda variables are non-zero. This requirement combined with (99) makes the lambda 

variables have the same properties as SOS2 variables, thoroughly described in [219]. 

Adding this condition ensures the values of the flow and the losses for each line are linked 

and correspond to a point that lies exactly on one of the linear segments between two 

consecutive intersection points (see Figure 3.13).  

|𝑃𝑘| = ∑ 𝑃𝑘,𝑙 ∗ 𝜆𝑘,𝑙
𝐿

𝑙=0
 (95) 

|𝑃𝑘| = Δ𝑝𝑘
𝑚𝑎𝑥∑ 𝑙 ∗ 𝜆𝑘,𝑙

𝐿

𝑙=0
 (96) 

𝑃𝐿𝑘 =∑ 𝑃𝐿𝑘,𝑙 ∗ 𝜆𝑘,𝑙
𝐿

𝑙=0
 (97) 

𝑃𝐿𝑘 = 𝑟𝑘(Δ𝑝𝑘
𝑚𝑎𝑥)2∑ 𝑙 ∗ 𝜆𝑘,𝑙

𝐿

𝑙=0
 (98) 

∑ 𝜆𝑘,𝑙
𝐿

𝑙=0
= 1 (99) 

To further clarify how this linearization works, an example is provided next. Suppose the 

value of the line flow lies between p3 and p4 (see Figure 3.13). In this case, all but
3

 and

4
 variables would be zero, forcing the flow-losses pair to lie on the fourth segment. This 
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is because, due to constraints represented by equations (95) and (97), the line losses are 

computed by linearly interpolating the value of the losses function (the expression for 𝑃𝐿𝑘 

for a value of the line flow, 
3 3 4 4

p p  , lying between the two extreme flow values in the 

corresponding segment, p3 and p4. Then, the expression of losses is computed as

3 3 4 4
    . Since

3 4
1   from (15), 

3 3 4 4
p p   and 

3 3 4 4
    can be equivalently 

expressed as
3 3 4 3

(1 )p p    and
3 3 4 3

(1 )     , respectively, which clearly implies that 

line losses are computed by linear interpolation.   

As an example of the computation of the parameters of the expression used here to 

approximate actual losses, suppose the actual flow 𝑃𝐿𝑘 is 75 MW for a given line with a 

rated capacity and a resistance of 100 MW and 0.1 per-units, respectively. Note that the 

above formulations are based on per-units. But if one wants to instead work with 

megawatts, the per-unit flows and losses should be multiplied by the base power 
B

S (here, 

assumed to be 100 MVA). Based on this, multiplying the value of per unit losses 𝑃𝐿𝑘 in 

equation (40) by
B

S  gives the value of losses in megawatts 𝜙𝑘 i.e. 𝜙𝑘 = 𝑆𝐵 ∗ 𝑃𝐿𝑘 which 

is also equal to 𝑆𝐵 ∗ 𝑟𝑘𝑝𝑘
2. We know by definition the per-unit flow 𝑝𝑘 is obtained by 

dividing the MW flow  𝑃𝑘 by the base power
B

S  i.e. 𝑃𝑘/𝑆𝐵. Therefore, we can rewrite the 

losses expression as 𝑆𝐵𝑟𝑘𝑃𝑘
2/𝑆𝐵

2 or equivalently as 𝜉𝑘𝑃𝑘
2 where 𝜉𝑘 is a coefficient given 

by 𝑟𝑘/𝑆𝐵. For the example case, 𝜉𝑘 is equal to 0.001/MW.  

Taking five equally spaced partitions, the set of evenly distributed flow steps taken in the 

losses representation  
0 1 2 3 4 5
, , , , ,p p p p p p becomes 0, 20, 40, 60, 80,100 . Clearly, we 

can see that the line flow, 75, lies in the fourth partition (i.e. between 60 and 80). Actual 

losses corresponding to the flows 60 and 80 MW, computed using the quadratic 

expression, are 3.6 and 6.4 MW, respectively. In the losses model presented here, only the 

lambda variables corresponding to the intersection points (60, 3.6) and (80, 6.4) should be 

different from zero. Thus, equations (13)—(15) become:
3 4

7 5 6 0 8 0   , 𝑃𝐿𝑘 =

3.6𝜆3 + 4.6𝜆4 and
3 4

1   , respectively. Solving these equations simultaneously, we 

get
3

0 .2 5  ,
4

0 .7 5  and 𝑃𝐿𝑘 = 5.7 MW. In this case, the difference between the losses 

value computed with the proposed model (5.7 MW) and those that would be computed 

using the quadratic losses function (5.625 MW) is practically negligible, clearly showing 

the accuracy of this model. It is also interesting to observe that the point (75, 5.7) lies 

exactly on the linear segment which passes through the intersection points (60, 3.6) and 

(80, 6.4), thus resulting in the linear equation for losses 𝑃𝐿𝑘 = 0.14𝑃𝑘 − 4.8.  

The number of additional variables required to represent losses using this model may 

create a considerable computational burden, but this is counterbalanced by the fact that 

this model is fully based on the use of equality constraints. Artificial losses are not a 

concern here since the lambda variables are SOS2. In other words, constraints (96) and 

(98), together with SOS2 properties, guarantee that losses are not oversized for economic 

reasons.  
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It should be noted, however, that even if the SOS2 stipulation is not explicitly included in 

the model, losses should be bounded to be lower than 𝑟𝑘(𝑆𝑘
𝑚𝑎𝑥)2. This has been 

experimentally proven by applying this losses model to the 3-node test system in Figure 

3.5. The results of the economic dispatch for this system, when employing this SOS2-

based losses model, confirm its ability to effectively eliminate artificial losses. Calculated 

losses coincide with the actual losses (3.222 MW), with generators G1 and G2 producing 

721.456 and 281.766 MW, respectively. The total system operation cost in this case is  

€ 56,217,891.45. 

 

Fig. 3. 13. Piecewise linearization of losses in the SOS2 approach 

3.5. NUMERICAL COMPARISONS OF THE LOSSES MODELS 

Case studies including small, medium and large-scale networks are used here to analyze 

the performance of the models considered in this work. For this purpose, a static version 

of the DC-OPF based TEP model, described in Section 3.3 and in [15], is considered. In 

addition, the hourly forecast of electricity demand at each node is assumed to be given for 

the whole target (planning) year and a load duration curve is used to aggregate the 

demand at each node into 5 load blocks by means of piecewise approximation. The 

demand level and number of hours in each load block are determined in such a way that 

the peak hours are modeled more precisely than the off-peak and shallow ones. All case 

studies have been solved using a computing machine Core 2 Duo SU7300 processor with 

4 GB RAM clocking at 1.3 GHz.  
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3.5.1. Impact of Losses on TEP Results—Numerical Results 

For the analyses here, a static version of the DC-OPF based TEP model in [15] is 

employed. The considered TEP model minimizes the sum of operation and transmission 

investment costs while simultaneously satisfying a number of customary technical 

constraints. The operation cost includes generation and reliability costs. The latter are 

simply modeled by including a factor in the objective function which penalizes unserved 

power computed at each node. The standard Garver’s 6-bus [39], shown in Figure 3.14, 

and the IEEE 118-bus [222] test systems are used in the analyses. 

5 1

4

2

3

6

˜

˜

˜

 

Fig. 3. 14 Garver’s 6-bus test system 

Table 3. 7 Impact of Network Losses on Expansion Results 

Garver’s 6-bus System Lossless TEP Lossy TEP 

Total cost (investment + operation costs) 0.9157
 §
 1

§
 

Investment cost (as a fraction of total 

costs) 
0.1468 0.2244 

Losses (MW) 0 110.0089 

#Corridors with investments 3 5 

IEEE 118-bus system   

Total costs (investment +operation costs) 0.9047
†
 1

†
 

Investment cost (as a fraction of total cost) 0 0.1024 

Losses (MW) 0 501.1706 

#Corridors with investments 0 11 
§
 Expressed as the ratio of the total costs of lossy TEP in Garver’s system 

†
 Expressed as the ratio of the total costs of lossy TEP in IEEE 118-bus system 
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Table 3.7 summarizes the results of the analyses, showing the values of the most relevant 

output variables of the TEP problem with and without losses. Here, lossy TEP and 

lossless TEP refer to the TEP optimization problems with and without considering 

transmission losses, respectively. The total costs in Table 3.7 correspond to the optimal 

values of the objective function in the corresponding TEP optimization problems, which 

is given by the sum of the operation and the transmission investment costs. Comparing 

the total cost figures under lossy and lossless TEP (see in Table 3.7); the latter apparently 

results in a network expansion solution at a lower overall cost. However, this does not 

include real costs as the effect of losses is not accounted for in the lossless TEP problem. 

We shall explain next why this is the case.  

Let us define lossy ED as the economic dispatch (ED) problem, where the total operation 

cost is minimized taking into account transmission losses and considering the network 

configuration computed in the lossless TEP problem (i.e. the network consisting of lines 

in the base-case system plus the network reinforcements computed by running the lossless 

TEP optimization).  

In order to determine how good the network investment decisions obtained by lossless 

TEP are, it suffices to compare the following two cost figures: (i) the objective function 

value (operation cost) of the lossy ED plus the cost of network investments computed in 

the lossless TEP, and (ii) the total costs (i.e. network investment plus operation costs) 

computed in the lossy TEP problem. Note that the full operation costs, including 

transmission losses, resulting from the network configuration (investments) computed 

taking into account losses are the ones already computed in the lossy TEP problem. As 

expected, the total costs corresponding to the first and the second case studies, computed 

as in (i), are found out to be approximately 16% and 14% higher than those computed as 

in (ii), respectively. In other words, the total costs of a system—including operation and 

transmission investment—resulting from lossy TEP can be significantly lower than that of 

the system expanded according to lossless TEP. This is because lossless TEP 

underestimates the operation cost of the system (since it does not take into account the 

extra costs related to the existence of losses) and results in underinvestment which, in the 

end, turns out to be significantly more costly. Generally, incorporating network losses in 

TEP shifts the costs incurred from operation to line investments, resulting in different 

expansion results. We can also observe in Table 3.7 (especially for the second case study) 

that the reduction of losses achieved in lossy TEP may, by itself, justify network 

investments. This is because of the corresponding reduction achieved in operation costs. 

Related to this, the losses computed in the lossy ED case are nearly 5.3% higher than 

those computed in the lossy TEP for the Garver’s case study. This figure even gets as high 

as 29% in the second case study. The costs corresponding to these extra losses amount to 

approximately 11% and 23% of the total costs computed in the lossy TEP problem, 

respectively.  

The optimal network expansion strategy for the Garver’s system in the lossless TEP case 

comprises investments in corridors (2,4), (3,5) and (4,6). However, when the network is 

expanded taking into account losses, two more lines are built in corridors (2,3) and (2,5). 
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It should be noted here that the network expansion results obtained by the lossy TEP 

agree with the full AC-OPF network expansion results reported in [36]. This shows that a 

DC-OPF TEP model with losses can result in a realistic and reasonably accurate TEP 

solution.  

Analyzing the lossy DC-OPF results for the lossless TEP solution (i.e. lossy ED) clarifies 

the reasons for the higher costs compared to the lossy TEP solution. The results show that 

corridor 3-5 is congested in the first case, forcing the curtailment of about 30 MW of load 

at node 5. In addition, losses in the system are 5.3% higher than those in the system 

expanded according to lossy TEP. As expected, the increase in losses along with the 

increase in non-served energy causes an increase in the operation cost of the system 

which exceeds the savings in network investments. 

The overall cost reduction achieved by considering losses in TEP can be obtained by 

subtracting the total system costs computed for the system expanded according to the 

lossy TEP from those of the system expanded according to the lossless TEP. In this case, 

the operation cost reduction achieved when considering losses is approximately 20% 

higher than the cost of the two extra investments in the lossy TEP. As a result, net savings 

achieved in this particular case are about 2.3% of the total system costs obtained for the 

lossy TEP. 

Similarly, the results of the second case study, i.e. the IEEE 118-bus system [222], also 

highlight the undesirable consequences of ignoring losses. Given the data in [222], this 

system does not require investments regardless of which TEP model is used (lossy TEP or 

lossless TEP). However, in order to create a need for line investments, the base case 

electricity demand of 3733.07 MW has been increased by 90% to 7092.83 MW. 

Even in this case, no line investment is deemed necessary when the lossless TEP model is 

used. But in the lossy TEP exercise, up to 11 network reinforcements are planned, mainly 

due to the substantial 29% reduction in losses they bring about. This is a good example of 

reinforcements solely justified by the reduction of losses. 

3.5.2. Numerical Comparison of the Losses Models 

The level of accuracy of the results provided by different losses models is evaluated by 

two criteria: (1) the relative error in the estimation of losses, and (2) the impact of such 

error on the intermediate and final results of the TEP problem, i.e. the differences 

occurring due to losses computation in the set of network investment decisions and in the 

overall system cost (investment + operation). To this end, three test systems including the 

Garver’s 6-bus, IEEE 118-bus and a 425-node Spanish network systems are employed. 

The results for the first case study are presented here. Test results and further discussions 

can be found in [13].  

The standard Garver’s 6-bus test system (a complete description and data can be found in 

[39]), is used as a case study. This system comprises eleven candidate lines across 

different corridors, and is shown in Figure 3.14. 
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One of the goals of this work is to test the accuracy and computational burden of different 

linear losses models in a TEP context. Table 3.8 shows the accuracy in the computation of 

system losses and system costs for each model for various numbers of linear losses 

constraints, or segments. Note that the system costs in this table refer to the investment 

plus the operation costs computed after running the TEP optimization model which 

embeds each losses model. 

The total resistive losses value computed using an AC-OPF of the expanded system (in 

this case, 109.19 MW) is taken as a reference when assessing the relative accuracy of 

each model. Given that artificial losses do not make economic sense in this small system, 

the results obtained by all models are found out to be very similar in terms of their 

accuracy in estimating losses, no matter how many linear constraints or segments, L, are 

considered. As it can be seen in Table 3.8, when L is larger than 5, the relative error 

induced when computing the overall system losses falls below 5%, which is practically 

negligible from a TEP perspective. Table 3.8 also shows that considering a single linear 

constraint (i.e. L=1) can result in greatly overestimated losses. 

Table 3. 8 Effect of Number of Partitions in Losses Linearization on System Costs and 

Relative Error in the Estimation of Losses for the Garver’s System 

  Number of losses constraints (L) 

  1 2 3 5 10 15 20 

R
el

at
iv

e 
er

ro
r 

o
f 

lo
ss

es
 (

%
) 

Model 2a
†
 26.740 5.712 3.322 1.270 0.354 0.089 0.052 

Model 2a
§
 46.549 10.866 6.102 2.212 0.538 0.209 0.110 

Model 2b
§
 46.549 10.883 6.102 2.212 0.538 0.209 0.110 

Model 3b 46.549 10.883 6.102 2.212 0.538 0.209 0.110 

Model 5 46.549 10.883 6.102 2.212 0.538 0.209 0.110 

Model 4 46.549 10.883 5.278 1.387 0.505 0.027 0.030 

C
o
st

, 
in

 M
€
 

Model 2a
†
 286.29 291.11 291.67 292.21 292.41 292.48 292.49 

Model 2a
§
 305.21 295.60 294.21 293.13 292.66 292.56 292.54 

Model 2b
§
 305.21 295.60 294.21 293.13 292.66 292.56 292.54 

Model 3b 305.21 295.60 294.21 293.13 292.66 292.56 292.54 

Model 5 305.21 295.60 294.21 293.13 292.66 292.56 292.54 

Model 4 305.21 295.60 294.50 293.51 293.02 293.05 292.94 
† 
With tangent linear constraints 

§ 
With traversing linear constraints 

 

As depicted in Table 3.8, losses have a considerable impact on the overall system cost 

(which includes the operation and the network investment costs). For small values of L, 

the system costs tend to be overestimated in all the models, except for Model 2a (the one 

based on tangent constraints), in which the total system costs are underestimated. As L 

increases beyond 5, the effect of the model choice on the total system costs becomes 

insignificant because losses are represented accurately. 
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The performance of models related to their computational requirements can be assessed 

based on the figures provided in Table 3.9. In this table, we show the time elapsed when 

running the TEP problem for the Garver’s system using each of the losses models 

considered. As L increases, Model 4 becomes computationally very demanding compared 

to the others, because its formulation includes binary variables. 

Table 3.9 also shows there are small differences among the computational performances 

of the considered models. Model 2b behaves very well despite the fact that it is 

mathematically more complex due to the additional constraint added as an upper limit to 

the feasible losses space. This suggests that shrinking the feasible space by adding an 

upper bound has a substantial contribution to speeding up the solution process. 

Table 3. 9 Effect of Numbers of Partitions in Losses Linearization on TEP’s 

Computation Time in the Garver’s System  

 Computation times for each model (in seconds) 

L 

Model 

2a
†
 

Model 

2a
§
 

Model 

2b
§
 

Model 

3b 

Model 

3a 

Model 

5 

Model 

4 

1 0.875 0.953 0.813 0.829 0.833 0.823 0.906 

2 0.900 0.984 0.875 0.925 0.834 0.838 1.188 

5 0.930 1.010 0.899 1.078 0.855 0.872 1.688 

10 1.010 1.050 0.954 1.110 0.870 0.928 2.186 

15 1.050 1.080 0.985 1.172 0.901 0.963 3.016 

20 1.091 1.130 1.020 1.192 0.923 0.981 6.226 
† 
With tangent linear constraints 

§ 
With traversing linear constraints 

 

In general, it seems that Model 5 is attributed with the lowest computational requirements, 

with the exception of model 3a. In this particular case, the savings in computing time 

achieved by Model 5 with respect to the other models, apart from 3a, ranges from 3% to 

24% when L is set to 5, as depicted in Table 4. Using Model 3a in a TEP optimization 

may result in a faster convergence of the algorithm than using Model 5. However, in 

order for the solution provided by model 3a to be acceptable, either of the following two 

conditions must be met: (i) there should not be any operational condition in the 

considered system that can lead to artificial losses, or (ii) the effects of artificial losses 

should be deliberately neglected. However, knowing a priori (i.e. before solving a TEP or 

an OPF problem) whether artificial losses make economic sense in a system is very 

difficult. 

When planning the expansion of the grid in this test system for the set of data in [39] (i.e. 

in the base-case scenario), artificial losses are not computed regardless of which losses 

model is used in the TEP optimization. . This may be related to the fact that the original 

generation in this system does not include any renewable generation. For the purposes of 

assessment here, another scenario with some specific changes to the data in [39] has been 

defined. Changes made to the original data are as follows: 
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 A low-cost wind power generator is included at node 1, with a capacity five times 

greater than the original capacity of the generator at that node. This leads to a 45% 

penetration level of wind power in terms of installed capacity. 

 The capacity of line 1-4 is upgraded from 100 MW to 500 MW 

 The capacity of line 2-4 is derated by 50% 

 Demand at node 2 is decreased by 50% and  

 Demand at node 4 is increased by 400% 

Note that apart from the above changes, the remaining data (including demand, generation 

and network parameters) are kept the same as in the base-case scenario. In the new 

scenario, artificial losses as high as 5 times the actual losses are computed for line 1-2 

using Model 2a. Thus, the only network investment found optimal when using Model 2a 

is in corridor 3-5. In contrast, using Models 4 and 5, which avoid artificial losses, result in 

reinforcements in corridors 2-4, 3-5 and 4-6. 

As expected from previous analyses, using Model 2b, 3a or 3b significantly reduces 

artificial losses to about 89, 74, and 72% of the actual value of losses, respectively. This 

indicates that the features added to Models 2b and 3b manage to effectively limit artificial 

losses. However, sometimes, artificial losses computed in these three models also have an 

impact on the optimal network expansion solution. Thus, in the case of this test system, 

the optimal expansion solution computed when using either of these losses models differs 

from that computed when using Models 4 and 5. Thus, if Models 2b, 3a, or 3b are used, 

network investments computed do not concern corridor 2-4. Reinforcing this corridor is 

avoided by artificially increasing losses.  

Even though Model 1 avoids artificial losses as well, its use in TEP or OPF problems 

results in significant errors in losses estimation. In this case, losses computed with this 

model are about 37% lower than real ones, which is not acceptable. The impact of such a 

deviation on the network expansion solution computed can also be substantial. This 

occurs when using Model 1 in the new scenario defined above, in which reinforcing 

corridor 4-6 is not deemed optimal. 

To support the conclusions drawn from the analyses of the previous case study, similar 

tests have been carried out on a system featuring a medium-scale network: the IEEE 118-

bus system. Data used in this analysis can be found in [222]. Since the analysis conducted 

is basically the same as in the previous case study, the results are skipped in this 

document but can be found in [13]. In order to assess the accuracy of losses computed by 

each model, the benchmark level of losses is obtained by solving an AC-OPF problem. 

Note that the AC-OPF problem is formulated for the network configuration which 

includes the truly optimal network investments. This benchmark value amounts to 489.52 

MW. The relative error made in the estimation of losses, with respect to this reference 

value, drops below 10% in all models for L greater than or equal to 5. Having a 10% error 

in losses estimates may be deemed acceptable in many cases because an error of this 

magnitude normally do not have a relevant impact on the network expansion solution 

computed. The results here support the choice of Model 5, or Model 3a, since the savings 
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achieved by Model 5 in the computation time with respect to other models, apart from 

model 3a, ranges from 17% to 40%, as shown in Table V. However, given the inability of 

Model 3a to sufficiently limit artificial losses, it should be considered as a reasonable 

option only in systems where artificial losses are not relevant. 

To further validate the findings in this work, a real-life large-scale system featuring the 

Spanish system has been considered. The electricity network in this case-study comprises 

425 nodes and 628 transmission lines. Both wind and solar power generation existing in 

the Spanish system are included. All in all, a 25% penetration level of power generation 

from RES is considered in the case study. Test results from this system generally shows 

that Model 3a demands the least computation effort while delivering similar results to 

other models in terms of accuracy. Model 5 appears to be, computationally speaking, the 

second best performing model. Differences in computation times between Model 5 and 

Model 3a are nevertheless insignificant. As pointed out earlier, using Model 3a in TEP 

studies makes sense only if one can anticipate that artificial losses computed by any 

model will be negligible, and/or the system considered in the studies is unlikely to result 

in artificial losses.  

Talking about the accuracy in the computation of losses and the resulting overall system 

costs, it can be observed that all models provide quite similar values for losses and system 

costs when L is greater than or equal to 5. Regarding the computational time, Model 5 and 

Model 3a clearly outperform the rest of the models, achieving savings in computation 

time as high as 25% with respect to the third best performing model in this regard. 

All this suggests that Model 5 is the most appropriate losses model for large-scale 

network expansion optimization problems, since it strikes a good trade-off between 

accuracy in losses representation (including avoidance of artificial losses), and 

computation time required to solve the TEP problem. 

3.5.3. Effects of Number of Partitions on TEP Solutions 

Since the estimation accuracy of losses by the linear models depends on the value of L, it 

can also be expected that the choice of L affects network expansion planning outcomes. 

For the Garver’s system, the optimal network investment plan involves the reinforcement 

of corridors 2-3, 2-5, 2-6, 3-5 and 4-6, in line with the AC network expansion solution 

reported in [36]. When artificial losses are not computed, using any of the models 

assessed here find the same optimal network expansion solution for any value of L greater 

than or equal to 3.  

However, the threshold value for L in the two larger test systems is 5, beyond which the 

investment decisions do not change. When L is set to a value lower than the threshold (i.e. 

3 in the Garver’s system or 5 in the other two), investment decisions depend on which 

losses model is used. Generally, Model 2a (the one based on tangent constraints) 

underestimates both losses and line investments required. The remaining models 

overestimate losses and, consequently, result in overestimated network expansions.  
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3.5.4. Concluding Remarks 

The main motivation behind this study is the need to choose or develop an adequate 

losses model for large-scale TEP applications. Such a model should be computationally 

efficient, provide a reasonably accurate estimate of losses in every line and in particular, 

avoid the computation of artificial losses aimed at alleviating network congestion (a 

common drawback of many linear models). 

The compliance with these requirements has been separately analyzed for several losses 

models. Besides, and most importantly, the impact of the use of each model on the 

outcome of network expansion planning has also been assessed. In particular, four 

alternative linearization methods have been evaluated together with other four variants of 

existing methods. The performance of these methods has been assessed by embedding 

each method in TEP problems pertaining to small, medium and large-size systems. 

The results show how the accuracy of estimated losses increases with the number of linear 

partitions L considered in the linearization of nonlinear losses curve. However, increasing 

L beyond a certain threshold has no significant effect on losses estimates and TEP results. 

Then, it is not worth the extra computational burden. It seems that 5 partitions are 

sufficient to compute a reasonably accurate estimate of losses for medium and large-scale 

systems. Higher number of partitions (greater than or equal to 5) results in relative errors 

below 10% and 5% in the estimates of losses for the medium-scale system, respectively. 

This is acceptable from the TEP context since such small deviations in the estimation of 

losses are not likely to influence TEP results. 

Regarding the computational results, the SOS2-based linear losses model is found out to 

be the most efficient, having computational advantage over the other assessed models 

with as high as 40% reduction in solution time. In contrast, models which involve regular 

binary variables are certainly the most computationally intensive, which makes them 

inappropriate for large-scale expansion planning problems. 

The additional features included in Models 2b and 3b achieve some improvements in the 

accuracy and/or the computational efficiency of their original versions, Models 2a and 3a. 

For instance, the inclusion of an upper losses constraint in Model 2a makes the resulting 

Model 2b perform better than the former in terms of computational efficiency while 

yielding similar results. On the other hand, adding the logical precedence constraint in 

Model 3a when deriving Model 3b results in an increase in the computation time required 

to solve the TEP problem but achieves an increase in the level of accuracy of the 

representation of network losses. 

The results also show the importance of avoiding, or at least limiting, artificial losses 

computed. This is especially true when the problem being dealt with is the computation of 

long-term network expansion of large-scale systems featuring large amounts of RES 

generation because, in such a problem, having artificial losses may make economic sense. 

Models which make use of inequality constraints to represent losses define an unbounded 

feasible space of losses. As a result, such models fail to limit artificial losses. However, 
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those models that include an upper bound constraint for the feasible losses space, as well 

as the piecewise-linearized losses models, largely suppress artificial losses. The SOS2-

based model, on the other hand, avoids them completely. Despite their complexities, 

models based on additional binary variables guarantee that artificial losses are effectively 

avoided.  

All in all, the proposed SOS2 based approach balances accuracy very well with 

computational burden of the resulting TEP problem. For instance, in the large-scale 

system considered in the present work, using this model demands lower computational 

effort than using any other model considered in the study (with reductions in time 

achieved higher than 33%). This makes the SOS2 based approach the best candidate for 

modeling losses in very large-scale TEP problems. 

3.6. SUMMARY 

Both the tractability of a TEP problem and the accuracy of an expansion solution largely 

depend on the level of system details captured by the expansion  model. This is associated 

with the characterization of physical network variables, in particular, flows and losses.   

From this angle, this chapter has presented an extensive review of the most commonly 

used TEP optimization models with different mathematical complexity levels, theoretical 

and numerical comparisons of these models from the viewpoint of expansion solution 

accuracy and computational requirements. Contributions from this chapter include the 

systematic comparisons of various existing TEP models, and some improvements and 

proposed changes to the mathematical modeling of existing TEP models that can speed up 

the computational process. Some of these include two variants of the DC expansion 

planning model and flow-based losses representations in all TEP models. Instead of the 

angle-based losses representation commonly used in TEP studies, this work proposes a 

flow-based losses model which has a significant computational advantage over the angle-

based equivalent losses model.  

The comparative analyses of linear TEP models also includes the effect of network losses 

on the expansion outcome. Analysis results have showed that neglecting network losses 

can lead to underestimation of network investment needs. Hence, modeling losses should 

be an integral part of TEP models. The fact that network losses are a function of quadratic 

flow adds complexity to the TEP model because of its nonlinear and nonconvex nature. It 

should be linearized to keep the entire problem linear. In this regard, the provision of 

rigorous theoretical and technical analyses, and exhaustive performance comparisons, of 

several losses models has been presented in this chapter. Existing linear losses models are 

thoroughly assessed in terms of their accuracy in losses representation as well as the 

contribution in computational burden. Generally, this assessment has revealed that 

existing models are not adequate because of either their accuracy related issues or 

computational limitations. Motivated by this,  this thesis has proposed two novel linear 

losses models as well as two modified versions of existing ones that address accuracy and 

computational issues inherent to the existing losses models.  
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This chapter introduces the novel method developed in this thesis for handling the 

uncertainty and variability in a very efficient manner. Numerical results as well as the 

computational implications from applying this method in TEP problems are presented 

and discussed at the end of this chapter.  

4.1. INTRODUCTION 

4.1.1. Description of Terminologies 

The terminologies uncertainty and variability are sometimes incorrectly used 

interchangeably in the literature despite the fact that they are different. Variability, as 

defined in [223], refers to the natural variation in time of a specific uncertain parameter, 

whereas uncertainty refers to “the degree of precision with which the parameter is 

measured” or predicted. For example, wind power output is characterized by both 

phenomena; its hourly variation corresponds to the variability while its partial 

unpredictability (i.e. the error introduced in predicting the wind power output) is related 

to uncertainty. The schematic illustration in Figure 4.1 clearly distinguishes both 

terminologies. As demonstrated in this figure, the hourly differences in wind power 

outputs are due to the natural variability of primary energy source (wind speed); 

whereas, the likelihood of having different power outputs at a given hour is a result of 

uncertainty (partial unpredictability) in the wind speed. 

Other terminologies used in this thesis are snapshot and scenario. A snapshot refers to 

an hourly operational situation. Alternatively, it can be understood as a demand—

generation pattern at a given hour. A scenario, on the other hand, denotes the evolution 

of an uncertain parameter over a given time horizon (often yearly). For example, the 

hourly variations of wind power production and electricity consumption collectively 

form a group of snapshots; whereas, the annual demand growth (which is subject to 

uncertainty) and emission price uncertainty are represented by a number of possible 

storylines (scenarios). 

Hour

W
in

d
 p

o
w

er
 o

u
tp

u
t

Uncertainty

Variability

Profile 1

Profile s

Snapshot in profile s

Snapshot in profile 1

 
Fig. 4. 1  Illustration of variability and uncertainty in wind power output 

4.1.1. Overview of the Chapter 



 

81  
 

The global drive for integration of renewable energy sources (RESs) means they will 

have an increasing role and a profound impact on power systems. On one hand, it is 

inevitable that such resources introduce more variability and uncertainty to the system 

operation because of their intermittent nature. On the other hand, achieving large shares 

of RES power production results in a more relevant the role of electricity networks since 

the variability of the power production from such energy sources involves the need to 

develop larger amounts of interconnection capacities among zones to ensure security of 

supply at zones where RESs (wind and sun, for example) are scarce or not available. 

Hence, Transmission Expansion Planning (TEP) becomes a more relevant issue since 

the variability and uncertainty of RES power production significantly increase the 

amount of operational situations to be considered. 

TEP involves solving an optimization problem subject to multiple sources of 

complexity, such as the use of discrete variables, its non-linear behavior, and the 

existence of several levels of uncertainty. As aforementioned, this problem is especially 

hard to solve when the goal is the long-term expansion of a large network in a power 

system featuring large amounts of generation from RESs, since in this case the size of 

the problem increases very substantially. Moreover, the addition of new transportation 

load such as electric vehicles, railways, etc. also brings in more operational uncertainty 

to the system. It is therefore mandatory that long-term TEP tools consider the 

operational impact of such uncertainties and variability in system conditions, since 

additional investments may be required to expand the network. In principle, such 

objective can be met by considering a large number of operational states but this leads 

to a computationally intractable TEP problem. Improving the management of such kind 

of uncertainty in TEP problems is one of the main focus areas of this thesis, contributing 

therefore, to a more cost efficient penetration of RES energy in power systems. 

The different sources of uncertainties in long-term TEP that are related to the variability 

and unpredictability of situations are usually classified as random and nonrandom [12]. 

The random ones are also known as high-frequency uncertainties because they 

correspond to situations that occur repeatedly. Hence, they can be characterized by 

probability distribution functions (PDFs), estimated by fitting historical data. Such 

uncertainties have a profound impact on the operation of power systems. Demand 

variability is one example of random uncertainty. On the other hand, nonrandom 

uncertainties do not occur repeatedly; so they cannot be estimated by PDFs. A good 

example here is generation expansion. 

In light of this, an appropriate long-term TEP tool should account for both types of 

uncertainties. Because of their aforementioned differences, different methodologies are 

employed to effectively deal with each type of uncertainty. Nonrandom uncertainties are 

often modeled by a set of possible future scenarios, each with a certain probability of 

realization. This will not, however, be the subject of this thesis; instead, the work here 

focuses on the art of dealing with the variability of operational states and the associated 

random uncertainties (i.e. sources of operational uncertainty). Therefore, it should be 

noted here that the literature review is also limited to this subject area. 



 

82  
 

As introduced above, this thesis focuses on a particular aspect of the global TEP 

problem, namely the operational variability and uncertainty of the system which is 

introduced by the so-called random uncertainties. This is the level of uncertainty that 

remains when one considers known and constant factors of nonrandom uncertainties 

such as generation investments, costs and prices, economic growth (average demand 

growth level) and policy-related parameters. Operational variability and uncertainty 

include, for instance, component outages or availability, demand variability, and wind 

and solar power output variability. If such uncertainties are not properly managed, the 

quality of network expansion planning solutions could be significantly jeopardized. 

In spite of the aforementioned facts, the network expansion planning of power systems 

has often been solved using a deterministic approach, where the effect of operational 

uncertainty and variability is not accounted for, or represented in an overly simplified 

way, such as planning for the worst-case state —traditionally peak demand (i.e. the 

most stressful state from network point of view), or a proxy of this (for instance, dealing 

with a very limited number of operational states). However, this is not valid in current 

power system planning, especially in long-term TEP problems because of the large 

variability in operation conditions that can result in added stress to the system. The 

variation of operation conditions throughout the planning horizon, which cannot be 

predicted appropriately, is the main source of the operational uncertainty. Even if 

planning the network expansion for the most-stressful (worst-case) operation situation 

were an elegant approach, it would be very difficult to identify the “worst-case”, since it 

would be unrealistic to expect it to happen at the peak load time. In relation to this, it 

has been particularly reported in [224] that transmission investment decisions made 

under uncertainty are more robust than their deterministic counterparts. Authors in the 

former work highlight the benefits of including uncertainty in TEP studies. However, 

mainly because of computational reasons, many sources of uncertainty and variability 

are frequently ignored, partially addressed, or represented by few predefined operational 

states in TEP models. It is obvious that handling large instances of operational 

situations is not computationally feasible and/or efficient in power systems planning. On 

the other hand, inadequate consideration of operational situations could adversely affect 

decision-making. Therefore, an operational variability and uncertainty management tool 

that balances accuracy with computational burden is needed in TEP studies. Given that 

operational uncertainty and variability resulting in the need to consider a multiplicity of 

operational states in TEP studies are very much linked, and largely related to the 

existence of RES generation, we shall deal with both of them jointly in the remainder of 

this chapter under the name of operational uncertainty management.  

4.2. PROPOSED METHOD OF OPERATIONAL UNCERTAINTY MANAGEMENT 

Despite the vast literature on TEP, current modeling and planning practices have some 

limitations with regards to handling operational uncertainty because: (1) they tend to 

incorporate only a few sources of operational uncertainty (often one or two) while many 

sources of uncertainty are unaccounted for; and (2) spatial and temporal correlations 

among the uncertain parameters are largely neglected. In general, currently available 
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network expansion planning methods are not adequate to handle large-scale systems 

while appropriately taking account of operational uncertainty. Therefore, there is still a 

need to develop a scheme to accurately represent uncertainty in the context of TEP 

applied to large scale systems. The scheme adopted for uncertainty treatment should be 

able to capture the variability of relevant uncertain parameters and correlations existing 

among them, especially for long-term TEP with high penetration levels of renewable 

generation. The work in this thesis may be deemed a probabilistic method as explained 

above in detail. As it shall be explained in the following paragraphs and sections, 

differences with existing approaches are related to the criteria employed to select the set 

of operational states considered in the TEP problem, and the level of detail considered 

in representing the system. 

As mentioned above, operational uncertainty can be handled as the variation of 

stochastic parameters which are repeatable in time (often hourly) and exhibit a random 

behavior with known approximate probability distributions. It can broadly be 

represented by a set of operational states, here referred to also as “snapshots”, each 

containing a generation—demand pattern (i.e. with different levels of demand at each 

node and generator outputs). Each operational state can be considered as a generation—

demand pattern of the power system, which leads to an OPF pattern in the network. A 

large set of snapshots, each one with an estimated probability of occurrence, is assumed 

to be already available to evaluate and optimize the network expansion. In particular, 

hourly generation—demand data for a given target planning year (8760 snapshots, in 

total) are considered in this work. All snapshots are assumed to have the same 

probability of occurrence, therefore given by 1/8760. It should be noted here that this 

can be scaled to any number of snapshots. 

A common practice to handle such uncertainty is to perform a clustering process over 

the multi-dimensional stochastic input dataset (i.e. generation—demand patterns) [165]. 

Clearly, the overall accuracy of the TEP solutions in this regard depends on the 

selection of the clustering variables. The accuracy is indeed determined by how 

representative the clusters are with respect to the original set of operational situations or 

snapshots. Usually, a large number of clusters are required to achieve a reasonable level 

of accuracy. 

This thesis shows how to reduce the number of clusters, corresponding to operation 

snapshots considered in the TEP problem, without a relevant loss of accuracy in the 

TEP results, using an adequate selection of the classification variables in the clustering 

process. The proposed method relies on two ideas. First, the snapshots are characterized 

by their OPF patterns (the effects) instead of generation—demand patterns (the causes). 

This is because the network expansion planning is the target problem, and losses and 

congestions (resulting from the OPF) are the drivers of network investments. Second, 

OPF patterns, after some processing to represent their relevant features as 

“fingerprints”, are classified using a “moments” technique, a well-known approach to 

address Optical Pattern Recognition problems. To the best knowledge of the authors, 

this is the first time this technique has been applied in a TEP problem. 
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The proposed clustering method is conceptually illustrated in Figure 4.2. This Figure 

illustrates the process to follow in order to compute, for each snapshot t  taken from the 

generation—demand dataset, the values of classification variables, the relevant 

moments, to be considered in the clustering analysis. A description of this process 

follows: 

1) The OPF of the snapshot is computed neglecting transmission line capacities. 

2) The transmission lines with more relevant congestions (overloads) and losses are 

selected. 

3) The selected lines are represented as graphical objects, with properties such as 

location, orientation, thickness (overload or losses) and length. This arrangement 

of objects can be deemed the “fingerprint” of the snapshot. 

4) The graphical pattern, or snapshot’s fingerprint, is then coded into a reduced-

dimension space defined by moments. This technique is common in Optical 

Pattern Recognition problems. 

0I zIxI yI

z

x

y

0

1d 1g
2d ...

2g ... ...

Hourly generation—

demand patterns Moments
Network system

1

1s

2s

1s

2s

Fingerprints of overloads 

and losses in snapshot s1 
Fingerprints of overloads 

and losses in snapshot s2 

Run 

OPF

Apply 

moments 

technique

Cluster snapshots using 

moments as clustering 

variables

1
2

3

Identify a representative snapshot for each cluster 

in the original input data (medoids, for example)
4

T T

1

t t cx
...

...

...

...

...

...

...

...

1,1d 1,1g
2,1d ...

2,1g

11,sd
11,sg

12,sd ...
12,sg

21,sd
21,sg

22,sd ...
22,sg

1,Td 1,Tg
2,Td ...

2,Tg

10,sI
1,z sI

1,x sI
1,y sI

1,c sx

20,sI
2,z sI

2,x sI
2,y sI

2,c sx

0,TI ,z TI,x TI
,y TI ,c Tx

0,1I ,1zI,1xI
,1yI ,1cx

 

Fig. 4. 2  Conceptual illustration of the proposed clustering methodology 

Snapshots where network investment needs are similar have similar fingerprints of 

network overloads caused by non-capacity constrained economic flows. Similar 

fingerprints should result in similar “moments”. Thus, if the set of moments is properly 

selected, non-similar snapshots should result in different moments. This means that the 

snapshots can be effectively clustered using their moments as clustering variables, i.e., 

computing the distances in the moments space as measures of similarity. 

Once the clustering process is completed, the last step involves choosing from the 

original dataset a representative snapshot for each cluster. This can, for example, be the 

medoid of the set of snapshots grouped together in the corresponding cluster. Note that 

,
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and the generation levels at node i for snapshot t ; whereas, ,
( )

S B C M S

m t
I t a n d m      , 

,
( )

S B C

c t
x t   , etc. are the corresponding computed moments. 

In general, the main contributions of this work include: 

 The definition of a novel method for clustering operational states, including a 

detailed description of the process being followed, and the provision of 

formulations of each stage in the process. The main features of this clustering 

method are listed next: 

o The method is a tailor-made approach for TEP problems; 

o It involves systematic management of operational uncertainty in TEP 

problems, leading to an accurate representation of uncertainty, which 

makes this approach suitable to be applied in TEP of systems with 

significant share of generation from RESs; 

o It allows compact representation of snapshots via a new set of clustering 

variables, and the compactness of the set of the clustering variables 

derived leads to a significant reduction in computational burden, which 

makes this method suitable for the TEP of large systems. 

 The comparative analyses of results produced by our method and other snapshot 

clustering methods that, contrary to the former, are based on the causes of 

optimal power flows. 

Other contributions in this chapter include the new quasi-linear losses model used in the 

capacity unconstrained economic dispatch problem, and the nonlinear optimization 

approach developed to estimate the geographical coordinates of a test system. 

4.3. NETWORK CAPACITY UNCONSTRAINED ECONOMIC DISPATCH 

In order to characterize the snapshots by their OPF patterns (the effects or results of 

system operation), a Network Capacity Unconstrained Economic Dispatch (NCUED) 

model is used. This model is similar to the “copper sheet” TEP model described in 

Chapter 3. In this model, transmission capacity constraints are neglected (relaxed), 

leading to the assumption of having a flexible network. Technically speaking, this 

means that the constraints corresponding to the power transfer capacity limits of 

existing corridors are not active in the NCUED model. As a result, each existing 

corridor has the flexibility to accommodate any amount of flows that increase the 

overall system welfare as far as the flows respects the Kirchhoff’s laws. For example, 

suppose a given line has a capacity of 100 MW. In an ordinary economic dispatch 

problem, this constraint has to be included, which means the line cannot carry more than 

100 MW of power. However, in the NCUED problem, the capacity constraint is not 

imposed, allowing the line to transport more than 100 MW of power. This assumption 

makes sense in order to detect TEP investment needs, since the latter are closely related 

to the corridors of the system in which investments would have the largest impact on 

system operation by allowing the largest increase in flows that are efficient from an 

economic point of view. In this way, the aim here is to consider the relevance of each 
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snapshot on prospective expansion needs. Snapshots that result in similar patterns of 

overflows in lines may then be grouped together, because this means that similar 

network investments will be needed to increase the efficiency of the system operation.  

The NCUED model minimizes the total operation cost in (100), which includes the 

costs of generation (I), unserved power (II), and emissions (III), subject to the set of 

DC-OPF based constraints in (101) and the losses model provided by the set of 

constraints in (102). Issues related to the formulation of these cost terms are discussed 

in Chapter 3. 

min
𝑃𝐺𝑔,𝑏,𝑝𝑖,𝑏

 𝑍    = ∑ ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑(1+ 𝜎)−𝑡𝑃𝐺𝑔,𝑠,𝑤,𝑡𝜆𝑔,𝑠,𝑡
𝑔𝜖𝛺𝑔𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠𝑡∈𝛺𝑡⏟                              

𝐼

+ ∑ ∑ 𝜌𝑠 ∑ 𝜋𝑤∑(1+ 𝜎)−𝑡𝑝𝑖,𝑠,𝑤,𝑡𝛬

𝑖𝜖𝛺𝑖𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠𝑡∈𝛺𝑡⏟                          
𝐼𝐼

+ ∑ ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑(1 + 𝜎)−𝑡𝜆𝑠,𝑡
𝐶𝑂2𝑒𝐸𝑅𝑔𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝑔𝜖𝛺𝑔𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠𝑡∈𝛺𝑡⏟                                  
𝐼𝐼𝐼

 

(100) 

Subject to: 

𝑃𝑘,𝑠,𝑤,𝑡 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝑡 = 0;  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘

|𝑃𝑘,𝑠,𝑤,𝑡| + 0.5𝑃𝐿𝑘,𝑠,𝑤,𝑡 ≤ 𝑢𝑘,𝑠,𝑤,𝑡𝑆𝑘,𝑚𝑎𝑥  

∑𝑃𝑘,𝑠,𝑤,𝑡
𝑘∈𝑖

+∑𝑃𝐺𝑔,𝑠,𝑤,𝑡
𝑔∈𝑖

+ 𝑝𝑖,𝑠,𝑤,𝑡 −∑𝑃𝐷𝑑,𝑠,𝑤,𝑡
𝑑∈𝑖

+ 0.5∑𝑃𝐿𝑘,𝑠,𝑤,𝑡
𝑘∈𝑖

= 0

𝑢𝑔,𝑠,𝑤,𝑡𝑃𝐺𝑔,𝑠,𝑤,𝑡.𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔,𝑠,𝑤,𝑡 ≤ 𝑢𝑔,𝑠,𝑤,𝑡𝑃𝐺𝑔,𝑠,𝑤,𝑡𝑚𝑎𝑥
𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑠,𝑤,𝑡 ≤ 𝜃𝑚𝑎𝑥;  𝜃𝑟𝑒𝑓 = 0

𝑃𝑘,𝑠,𝑤,𝑡 = 𝑃𝑘,𝑠,𝑤,𝑡
+ − 𝑃𝑘,𝑠,𝑤,𝑡

− → |𝑃𝑘,𝑠,𝑤,𝑡| = 𝑃𝑘,𝑠,𝑤,𝑡
+ + 𝑃𝑘,𝑠,𝑤,𝑡

−

𝑢𝑘,𝑠,𝑤,𝑡 ∈ ℝ 𝑎𝑛𝑑 0 ≤ 𝑢𝑘,𝑠,𝑤,𝑡 ≤ ∞ }
 
 
 
 

 
 
 
 

 (101) 

𝐿1:                                     𝑃𝐿𝑘,,𝑠,𝑤,𝑡 ≥
0.5𝑟𝑘𝑆𝑘

𝑚𝑎𝑥|𝑃𝑘,𝑠,𝑤,𝑡|

𝑆𝐵

𝐿2:  𝑃𝐿𝑘,𝑠,𝑤,𝑡 ≥
𝑟𝑘(0.96𝑆𝑘

𝑚𝑎𝑥|𝑃𝑘,𝑠,𝑤,𝑡| − 0.24(𝑆𝑘
𝑚𝑎𝑥)2)

𝑆𝐵

𝐿3:                                           𝑃𝐿𝑘,𝑠,𝑤,𝑡 ≤
𝑟𝑘𝑆𝑘

𝑚𝑎𝑥|𝑃𝑘,𝑠,𝑤,𝑡|

𝑆𝐵
𝐿4:                                                                     𝑃𝐿𝑘,𝑠,𝑤,𝑡 ≥ 0}

 
 
 
 

 
 
 
 

 (102) 

If required, an additional term may be added to Equation (100) to factor in the 

investment cost of the “would-be” lines capable of accommodating the extra flows in a 

corridor (i.e. for flows beyond 𝑆𝑘,𝑚𝑎𝑥  ) by multiplying the net extra MW needed in each 

line by a fixed capital cost per MW. This should be then weighted by the capital 

recovery factor and amortized in fixed installments during the lifetime of the line. 

Should this be adopted, Equation (100) need to be modified to account for the 
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associated costs during and after the planning horizon. This is extensively discussed in 

Chapters 3 and 5. 

In equation (102), 𝐿1, 𝐿2, 𝐿3 and 𝐿4 represent the linear constraints of the losses model 

considered in the NCUED model. Note that the set each scenario in a given planning 

stage contains a certain number of operational samples (or at least 8760 hourly demand-

generation samples corresponding to the total number of hours in a given year). Note 

that the constraints in (101) in the NCUED model, are applicable only for existing lines. 

In order to obtain proper estimates of the losses in overloaded lines, the losses model 

formulation for each individual line in Chapter 3 is replaced here with the quasi-linear 

losses model in (102). This is based on the following plausible assumption: in a 

congested corridor, there “exist” parallel lines (able to transport all flow in the corridor) 

whose capacity limits are identical to that of the existing line in that corridor. This is 

based on the nature of the NCUED model (also known as the “copper sheet” model). 

Note that the coefficients in 𝐿2 are obtained by minimizing the mean squared error as a 

result of representing losses by a linear curve. The quasi-linear losses model used here 

is illustrated in Figure 4.3. This figure shows the losses model considering the 

installation of four parallel lines in a given corridor. It is straightforward to extend this 

to a higher number of parallel lines.    

 
Fig. 4. 3  Losses model for the NCUED model (with potentially 4 parallel lines) 

4.4. DEFINITION OF CLUSTERING VARIABLES 

This thesis proposes the use of new classification variables in the clustering process of 

operation states (snapshots), which is especially devised for TEP analyses. These 

variables may then be used in any clustering algorithm, and the standard k-means 
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algorithm has been applied in the test cases. This section describes the criteria applied 

for the selection of clustering variables. 

4.4.1. Selection of Operation Variables for Network Expansion Planning 

Power production and demand patterns are used as clustering variables in many power 

system planning applications such as contingency and reliability analysis [165], 

electricity supply analysis [166], TEP [130] and medium-term thermal scheduling [225] 

problems. However, such an approach (hereinafter, clustering based on causes, CbC), is 

not appropriate for TEP because some snapshots, apparently different, may result in the 

same transmission investment needs. 

Instead of considering the production/demand patterns (the causes), the clustering 

process proposed here is based on the effects of such patterns on the transmission grid, 

because the effects (congestions and losses) are more closely related to network 

investments needs. 

For the sake of simplicity, we use the two node system in Figure 4.4 to illustrate the 

proposed clustering methodology. Let us assume that we have two intermittent 

generation sources connected at each node. The electricity demand at each node is 

assumed to be 100 and this remains the same for the seven snapshots which we will 

consider here (see Table 4.1). Assume further that the capacity of the transmission line 

is 50, and 40 considering a 20% security margin. 

 

 

Fig. 4. 4  A system for illustrating the methodology 

Given the snapshots in Table 4.1 for this system, we want to obtain four clusters using 

the generation patterns as clustering variables (the conventional approach) and the 

proposed method, and compare the results. In this regard, when we apply the 

conventional clustering method, we obtain the clusters in column 7 of Table 4.1. 

Statistically, these clustering results make sense. However, one can observe some 

inconsistency in the clusters when measured in terms of expansion needs. They are not 

generally representative because the effect of each snapshot on the system is lost. For 

instance, the first two snapshots have the same effect in terms of expansion needs 

because both result in congestion in the line with an overload of 60 in either direction. 

Yet, they are grouped into two different clusters. Snapshots 3 and 4 also have the same 

effect in terms of TEP, both creating an overload of 10 MW in the line, but these 

 

 y 

x 

G1 G2 

100 100 

2 1 

1 
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snapshots again fall into different groups. This means that the first four snapshots result 

in an overload in the line (noting the difference in magnitudes of the overloads). The 

last three snapshots do not overload the line; hence, they are non-overloading snapshots.  

Table 4. 1 Illustrative example 

 

Classification Variables Unbalances Clustering Results 

Snapshots G1 G2 

Absolute 

overflow 

D1-

G1 

D2-

G2 

Clustering 

Based on 

G1 and G2 

Proposed 

Clustering 

Method 

Snapshot 1 200 0 60 NA NA 1 1 

Snapshot 2 0 200 60 NA NA 3 1 

Snapshot 3 150 50 10 NA NA 2 2 

Snapshot 4 50 150 10 NA NA 3 2 

Snapshot 5 100 100 0 0 0 4 3 

Snapshot 6 125 75 0 -25 +25 4 4 

Snapshot 7 75 125 0 +25 -25 3 4 

NA: Not Applicable 

If we cluster the snapshots by taking into account their effects instead of the causes, we 

obtain very realistic clusters. Note that we can determine the moments of overloads 

about any axis as per the proposal and the clustering results do not change. However, it 

is not necessary to do so here because we only have one line. As far as the non-

overloading snapshots are concerned, we can see that the last two snapshots have the 

same effect when it comes to losses in the line. As a result, it makes sense from TEP 

point of view that they should be grouped together. Figures 4.5 and 4.6 compare the 

clustering results obtained by classical and the proposed method, respectively.  

 

Fig. 4. 5  Clustering results using conventional approach 
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Fig. 4. 6  Clustering results using proposed method 

Generally, comparison results of this simple example demonstrate how effective the 

proposed clustering methodology is in obtaining representative clusters in terms of 

network expansion needs. 

In network expansion planning, the benefits of investing in a certain corridor can be 

measured in terms of reduction of network congestion, either under normal conditions 

or in a contingency situation, and/or the reduction of overall losses. Since both 

congestion and losses are directly related to power flow patterns, these patterns are the 

subjects of the proposed classification method. 

Power flow patterns should identify the areas of the network where reinforcements have 

the largest potential to reduce operation costs. They may also show the estimated size of 

the reinforcements to be made. Thus, snapshots with similar power flow patterns should 

also lead to similar investment solutions, and when clustered together (with 

accumulated probability), a reduced set of clusters representing a reduced set of flow 

patterns may be successfully used in a TEP problem, instead of the large original set of 

operational states. 

According to the features of flow patterns leading to investments, snapshots may be 

grouped into two big categories: overloading snapshots (those which lead to relevant 

network congestion), and non-overloading ones.  

In overloading snapshots, where network congestion is relevant, making flows 

compatible with existing line capacities probably causes a significant increase in 

operation costs. Then, one should expect that network reinforcements are largely related 

to the need to reduce congestion. On the other hand, in non-overloading snapshots, only 

those reinforcements that are able to significantly reduce network losses can make 

economic sense. 
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Line overloads in the NCUED model, whose formulation has been provided in the 

previous section, reflect the size of the extra flow of power in each line, beyond its 

capacity, that would make economic sense given the current topology of the grid. 

Hence, network investment needs associated with overloading snapshots are closely 

related to the size and location in the network of overloads resulting from the NCUED. 

Therefore, in overloading snapshots, only the flows in lines that are close to congestion 

are taken into account in the clustering process. 

On the other hand, the pattern of losses in the transmission allows characterizing 

potential network investments related to non-overloading snapshots. Losses in the 

network are the result of flows created by unbalances of power production and demand 

in the network. Therefore, different patterns of transmission losses should be the result 

of different patterns of unbalances of power production and demand in the system. 

Given that the location of conventional generation available to produce power is 

relatively stable across operation snapshots, non-overloading snapshots can reasonably 

be clustered using the pattern of demand and available RES power production. 

It can, therefore, be concluded that the size and the location of line overloads caused by 

economic power flows in the NCUED of the system are probably the most relevant to 

cluster those snapshots that result in congestion-relieving investment needs. For the rest 

of the snapshots, the pattern of unbalances of demand and available renewable 

electricity production can be used as clustering criteria since their related investment are 

aimed at reducing losses. 

4.4.2. The Use of Moments of Relevant Network Expansion Drivers  

In overloading snapshots, considering line overloads and their location as clustering 

variables would define a number of clustering variables equal to three times the number 

of overloaded lines (
o l

N ), which may be a relevant fraction of total lines. 

In non-overloading snapshots, considering net demands in system nodes (demand minus 

net available RES power)–and  their location—as clustering variables, would define a 

number of clustering variables equal to three times the number of system nodes (
N

N ). 

Then, grouping all the hourly snapshots of a year into clusters would require managing 

a matrix of samples of 8 7 6 0 * * 3
o l

N  and 8 7 6 0 * * 3
N

N , respectively. In order to overcome 

this dimensionality problem, methods such as principal component analysis may be 

applied. 

Along with these methods, the theory of moments provides a powerful tool to represent 

information, both for overload patterns and net demand patterns (unbalances between 

demand and gross RES power production). 

The theory of moments, widely used in statistics and mechanics, describes the 

geometrical properties of physical objects. The basic two-dimensional Cartesian 

moment,
p q

m , of order p q and with a density function of ( , )f x y , is given by (103) 

[226]. 
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∫ ∫ 𝑥𝑝
+∞

−∞

+∞

−∞

𝑦𝑞𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (103) 

where ( , )x y stand for the Cartesian coordinates. 

A reduced set of Cartesian moments can be used to characterize the pattern followed by 

a much larger set of variables distributed throughout a certain space. For this reason, 

pattern recognition and classification techniques based on moments are widely used. 

The low-order moments starting from the zeroth to the fourth orders are often employed 

for such purposes. A review of the method of moments and significant research works 

on this issue are reported in [226]. For the clustering purpose considered in this work, 

the first and the second order moments are sufficient. 

Both line overloads in the system and net demands can be represented as masses of a 

size proportional to their actual values, placed in those locations where these overloads 

and power unbalances occur. By making use of the moments technique in [226], the 

pattern (location and size) of these masses can be accurately characterized using a 

reduced set of moments. The first and the second order moments of these masses are 

used for obtaining the clusters of operation snapshots in a year. 

Overloads in lines are represented as bars, with a distributed mass proportional to the 

overload, while net demands are represented as punctual masses (positive or negative). 

The first order moments determine the center of mass of equivalent objects representing 

the relevant network expansion drivers (overloads and net demands); whereas, second 

order moments describe the “inertia” of these equivalent objects to rotate about a given 

axis. 

4.5. DETAILS OF THE PROCESS OF DEFINING CLUSTERING VARIABLES   

Practical implementation details of the definition of clustering variables employed to 

choose operation snapshots in TEP problems are described here. Since the classification 

variables considered for overloading and non-overloading snapshots are different, the 

definition of both sets of variables is discussed separately. 

4.5.1. Overloading Snapshots 

The direction of flows in overloaded lines does not have any influence on expansion 

needs. Hence, the absolute value of excess flows is considered when computing 

clusters. 

Moments are computed considering normalized distances among nodes and normalized 

levels of overloads in lines, so that magnitudes are comparable (i.e. in “per unit” 

quantities). 

For instance, in the case example considered here, coordinates of nodes are all divided 

by the maximum length of a line between two nodes in the system, while the overloads 
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are divided by the system base power used in power flow computations. In this way, 

one can make sure that variables representing overloads and distances range between 

similar values. 

Given that network expansion needs should also be computed taking contingency 

conditions into account, overloads have been defined as the excess of flows in lines over 

80% of their rated capacity. This is a common technique used to consider contingencies 

through some safety margin in the absence of a detailed model to represent N-1 

operation conditions. 

The next paragraphs describe the computation of moments to be chosen as classification 

variables, which, as already mentioned, are first and second-order ones. The description 

and derivation of these moments can be found in [226]. In this case, the mass density 

𝜓𝑘 in per unit values is given by: 

𝜓𝑘 = {
|𝑃𝑘| − 0.8𝑆𝑘

𝑚𝑎𝑥; 𝑖𝑓 |𝑃𝑘| > 0.8𝑆𝑘
𝑚𝑎𝑥

0               ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ; ∀𝑘 ∈ Ω𝐸𝐿 (104) 

Thus, the total mass is given by the product of mass density and length ℓ𝑘 i.e. 𝜓𝑘ℓ𝑘. 

Based on this, the centroid, or the first order moment (FOM), of a group of masses can 

be determined by equations (105) and (106).  

𝑥𝑐,𝑤 =
∑𝜓𝑘ℓ𝑘𝑥𝑘,𝑐
∑𝜓𝑘ℓ𝑘

; ∀𝑘 ∈ Ω𝑂𝐿𝑠; ∀𝑤 ∈ Ω𝑂𝑆; 𝑂𝐿𝑠 ∈ Ω
𝐸𝐿 (105) 

𝑦𝑐,𝑤 =
∑𝜓𝑘ℓ𝑘𝑥𝑘,𝑐
∑𝜓𝑘ℓ𝑘

; ∀𝑘 ∈ Ω𝑂𝐿𝑠; ∀𝑤 ∈ Ω𝑂𝑆; 𝑂𝐿𝑠 ∈ Ω
𝐸𝐿 (106) 

The second order moments (SOM), i.e. moments of inertia about different axes can be 

derived similarly from the general moment expression. For instance, the SOM about a 

given vertical, horizontal and perpendicular axes can be determined using (107)—(109), 

respectively. 

𝐼𝑥=𝑥′,𝑤 =∑𝜓𝑘ℓ𝑘(
ℓ𝑘
2

12
𝑠𝑖𝑛2𝜑𝑘 + 𝑑𝑥,𝑘

2 ) ; ∀𝑘 ∈ Ω𝑂𝐿𝑠; ∀𝑤 ∈ Ω𝑂𝑆; 𝑂𝐿𝑠 ∈ Ω
𝐸𝐿 (107) 

𝐼𝑦=𝑦′,𝑤 =∑𝜓𝑘ℓ𝑘(
ℓ𝑘
2

12
𝑐𝑜𝑠2𝜑𝑘 + 𝑑𝑦,𝑘

2 ) ; ∀𝑘 ∈ Ω𝑂𝐿𝑠; ∀𝑤 ∈ Ω𝑂𝑆; 𝑂𝐿𝑠 ∈ Ω
𝐸𝐿 

(108) 

𝐼𝑧=𝑧′,𝑤 = 𝐼𝑥=𝑥′,𝑤 + 𝐼𝑦=𝑦′,𝑤 =∑𝜓𝑘ℓ𝑘(
ℓ𝑘
2

12
+ 𝑑𝑧,𝑘

2 ) ; ∀𝑘 ∈ Ω𝑂𝐿𝑠; ∀𝑤

∈ Ω𝑂𝑆; 𝑂𝐿𝑠 ∈ Ω
𝐸𝐿 

(109) 

where 𝐼𝑎,𝑤 is the moment of inertia of a set of overloads about a given axis 𝑎, for 

snapshot 𝑤, whereas 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 represent the distances from each line to the 

particular axis of rotation, in this case, 𝑑𝑧 = √𝑑𝑥2 + 𝑑𝑦2; whereas, 𝜑𝑘 denotes the angle 

in which a particular line forms with the vertical axis.  
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4.5.2. Non-overloading Snapshots 

The density functions used to compute moments for non-overloading snapshots are the 

positive and the negative net demands of system nodes, i.e. the unbalances between 

demand and RES power production available at each node. The moments of negative 

and positive power unbalances are calculated separately to avoid the canceling out of 

net-demands of opposite signs in those nodes that are located symmetrically with 

respect to the axes considered in the computation process. 

The demand and RES power production dispatched at each node should result from the 

NCUED, as for the case of overloading snapshots. After all, the amount of demand that 

can be served, and the RES power that can be used, will be conditioned by the 

expansion of the network, and should be as large as possible.  

The equations (110)—(114), analogous to (105)—(109), are some of the expressions 

used here for computing the relevant moments.  

𝑥𝑐,𝑤′ =
∑(𝐷𝑖 − 𝑃𝐺𝑅𝐸𝑆,𝑖)𝑥𝑖,𝑐
∑(𝐷𝑖 − 𝑃𝐺𝑅𝐸𝑆,𝑖)

; ∀𝑖 ∈ Ω𝑁𝑆; ∀𝑤′ ∈ Ω𝑁𝑂𝑆 (110) 

𝑦𝑐,𝑤′ =
∑(𝐷𝑖 − 𝑃𝐺𝑅𝐸𝑆,𝑖)𝑦𝑖,𝑐
∑(𝐷𝑖 − 𝑃𝐺𝑅𝐸𝑆,𝑖)

; ∀𝑖 ∈ Ω𝑁𝑆; ∀𝑤′ ∈ Ω𝑁𝑂𝑆 (111) 

𝐼𝑥=𝑥′,𝑤′ =∑(𝐷𝑖 − 𝑃𝐺𝑅𝐸𝑆,𝑖)𝑑𝑥,𝑖
2  ; ∀𝑖 ∈ Ω𝑁𝑆; ∀𝑤′ ∈ Ω𝑁𝑂𝑆 (112) 

𝐼𝑦=𝑦′,𝑤′ =∑(𝐷𝑖 − 𝑃𝐺𝑅𝐸𝑆,𝑖)𝑑𝑦,𝑖
2  ; ∀𝑖 ∈ Ω𝑁𝑆; ∀𝑤′ ∈ Ω𝑁𝑂𝑆 (113) 

𝐼𝑧=𝑧′,𝑤′ = 𝐼𝑥=𝑥′,𝑤′ + 𝐼𝑦=𝑦′,𝑤′ =∑(𝐷𝑖 − 𝑃𝐺𝑅𝐸𝑆,𝑖)𝑑𝑧,𝑖
2   

; ∀𝑖 ∈ Ω𝑁𝑆; ∀𝑤′ ∈ Ω𝑁𝑂𝑆 

(114) 

In the above equations, Ω𝑁𝑂𝑆denotes the set of non-overloading snapshots, and
i

D  and

,R E S i
p represent the demand and the total renewable power output at node i , respectively; 

whereas, dx,i, dy,i and dz,i represent the distances from node i , whose Cartesian 

coordinate is 
, ,

( , )
i c i c

x y , to a particular axis of rotation, and here, 2 2 2

, , ,z i x i y i
d d d  . In the 

case study, 23 moments shown in Table 4.2 are calculated for each type of unbalances 

(positive or negative), resulting in a total of 46 moment variables. 

4.6. NUMERICAL RESULTS AND DISCUSSIONS 

4.6.1. Considered Moments 

Moments considered in this thesis correspond to FOM and SOM about several axes, as 

tabulated in Table 4.2. The selected moments must correspond to features that 

altogether distinctly represent each overload pattern of the network under consideration. 
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The overall number of moments considered may vary with the power system analyzed. 

However, there is a threshold beyond which adding more moments only adds redundant 

information. Arbitrarily, a total of 23 moments are computed for each snapshot in our 

analysis though, as it shall be seen in the results section, not all of them are necessary to 

accurately represent the snapshots in the TEP problem. The selection of the appropriate 

number of moments for each power system is a separate problem by itself that needs to 

be addressed. However, since it depends on the particular system to be expanded, it can 

be determined off-line before the TEP process starts, and kept constant for all the 

snapshots. 

Table 4. 2 Considered Moments 

Information about moments Considered moments (features) 
# of 

moments 

Center of masses (FOM) 
c

x ,
c

y  2 

About vertical axes (SOM) 
c

x x
I


,

'x x
I


 

where 'x  = -100, -60, 0, 40, 80 * 
6 

About horizontal axes (SOM) 
c

y y
I


,

'y y
I


 

where 'y  = -10, 0, 70, 90 ** 
5 

About perpendicular-axes 

(SOM) 

c
z

I and 
z

I  

where z = (0,-10); (-60,0); (40,70); 

(0,90); (0,0); (-100,-10);(80,-10);  

(-100,90); (80,90) *** 

10 

* Vertical axis, ** horizontal axis 

*** axis perpendicular to the x-y plane at a given (x,y) coordinate  

4.6.2. Modeling System Operational Uncertainties 

This thesis focuses on efficiently handling operational uncertainties in TEP by 

considering their expected influence in the final TEP solutions. The uncertainties 

considered here are discussed separately in the following subsections. 

4.6.1.1. Demand Variability and Uncertainty 

To capture demand variability, load aggregated models are often used, as in [227], 

based on the load duration curve. In real life, there exist spatial variations in demand 

which may significantly influence TEP solutions. Therefore, to account for this impact, 

demand correlations ranging from 0.7 to 1 are factored in to generate the demand series 

at different locations. 

4.6.1.2. Conventional Generator Outages  

A two–state model (online or offline) is used to represent the state of conventional 

power units based on their respective forced outage rates (FOR) , which range from 0.05 

to 0.15 depending on the technology type of each generator. Then, a discrete random 
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binomial distribution is applied to generate availability patterns for different generators, 

obtained from their corresponding forced outage rates. 

4.6.1.3. RES Output Variability and Uncertainty 

The outputs of wind and solar power plants are subject to the wind speed and solar 

radiation regimes, respectively. A common approach to handle uncertainties in RES 

output is MCS, in which a number of samples are generated randomly from probability 

distributions. For the present analyses, historical hourly wind speed and solar irradiance 

data have been used. These are taken from publicly available meteorological websites 

(see[228], and[229], respectively). 

Wind and solar power productions are correlated in space and time, and this effect is 

taken into account in the generation of input samples. In addition, the complementary 

nature of wind and solar power sources is also captured by taking correlations between 

them ranging from -0.3 to -0.1, which comply with the results in [230]. Note that wind 

and solar power outputs are determined by plugging in the hourly values of the primary 

renewable resource available in the wind [231] and solar [232] power output 

expressions (also known as power curves) . For instance, the hourly wind power output 

𝑃𝑤𝑛𝑑,𝑤 of each wind farm is determined by the nonlinear model of a typical wind 

turbine model as in (115). 

𝑃𝑤𝑛𝑑,𝑤 = {

0                        ; 0 ≤ 𝑣𝑤 ≤ 𝑣𝑐𝑖
𝑃𝑟(𝐴 + 𝐵𝑣𝑤

3) ; 𝑣𝑐𝑖 ≤ 𝑣𝑤 ≤ 𝑣𝑟
𝑃𝑟                    ;  𝑣𝑟 ≤ 𝑣𝑤 ≤ 𝑣𝑐𝑜
0                              ;  𝑣𝑤 ≤ 𝑣𝑐𝑜

  (115) 

In the above equation, A and B are parameters represented by the expressions in [233]. 

Similarly, the hourly solar power output 𝑃𝑠𝑜𝑙,𝑤 is determined by plugging in the hourly 

solar radiation levels in the solar power output expression given in (116), [234]. 

𝑃𝑠𝑜𝑙,𝑤 =

{
 
 

 
 

𝑃𝑟𝑅𝑤
2

𝑅𝑠𝑡𝑑∗𝑅𝑐
       ; 0 ≤ 𝑅𝑤 ≤ 𝑅𝑐

𝑃𝑟𝑅𝑤

𝑅𝑠𝑡𝑑
           ; 𝑅𝑐 ≤ 𝑅𝑤 ≤ 𝑅𝑠𝑡𝑑

𝑃𝑟       ; 𝑅𝑤 ≥ 𝑅𝑠𝑡𝑑 

  (116) 

4.6.3. Test Results and Discussion 

The standard IEEE 24-bus Reliability Test System (RTS) [235] has been used to show 

the behavior of the proposed clustering approach and test its performance in the target 

TEP problem. The data used in this study can be found in [235]. 

The clustering method requires information about the location of each transmission line 

and node, but the information available in [235], as in many other standard test systems, 

does not include node coordinates. Because of this, estimates of the geographical 

coordinates of nodes in the system of the case study have been generated by computing 
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a geographical map of the network system. Distances among neighboring nodes are as 

close to the lengths of the lines linking these nodes as possible. And these distances, i.e. 

the lengths of the lines, are assumed to be proportional to their corresponding 

impedances. A non-linear optimization problem has been solved to generate the system 

network map including the required geographical information. Figure 4.7 shows the 

resulting map of the standard IEEE 24-bus system. Note that nodes 9 to 12 are in one 

substation which has 4 transformers, linking these nodes, and so are nodes 3 and 24 

connected by a transformer (see Appendix C). 

 
Fig. 4. 7  Generated map of IEEE 24-bus system 

Our test system comprises 24 buses, 33 existing corridors, and 19 potential new ones, 

totaling 52 candidate corridors for potential investments. In addition to the existing 

generation capacity in the considered test system, three RES generators with a combined 

installed capacity of 3000 MW are added to the system, including a 500 MW solar farm 

connected to node 4 and two 1500 and 1000 MW wind farms connected to nodes 13 and 

22, respectively. The hourly production time series of wind and solar farms for the 

planning year are determined as explained in section 2, as well as the hourly demand 

profile at each node and the availability profile of conventional generators. In total, 

8760 samples, corresponding to hourly combinations of the regarded uncertain 

parameters, are subject to the clustering process. In particular, each sample includes the 

availability state of 11 conventional generators, the load level of 16 electricity 

consumers and the available power output of three RES generators, bringing the total 

dimension of the samples in the “uncertainty space” to 30. The dimension of samples 
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significantly increases with the network size, and the number and types of uncertain 

parameters being considered, leading to the curse of dimensionality and creating 

problems in the clustering process. The proposed clustering technique overcomes such 

problems by mapping high-dimensional samples to relatively lower-dimensional ones. 

Note that throughout this analysis, both terms–samples and snapshots–refer to operation 

states. 

4.6.2.1. Clustering Results for Overloading Snapshots 

The NCUED problem is solved for all snapshots to obtain the corresponding patterns of 

overloads. Figure 4.7 shows that there are a total of 13 overloaded lines, obtained by 

combining the sets of overloaded lines in all snapshots. In the considered case study, in 

a total of 4741 snapshots (out of the 8760 samples), there is at least one overloaded line 

that is congested (shown in Figure 4.7). This means that each overloading snapshot 

includes a subset of overloaded lines among those shown in Figure 4.7. In the remaining 

4019 snapshots, there is no congestion in the system.  

Once the fingerprint of each sample is obtained, the subsequent step is to compute the 

features of snapshots that are used as clustering variables in a TEP problem. In this case, 

the features considered are the moments of overloads, and groups of patterns are 

determined according to the set of moments. As mentioned before, the set of moments 

has to be adjusted to each power system under analysis, but only once and for all the 

further optimization processes to take place. The moments considered are selected here 

for the given case study using some performance metrics. One of these metrics is the 

similarity ratio, which is the ratio of average intra-cluster to average inter-cluster 

distances, in the space of moments. These are given by equations (117) and (118), 

respectively. The average intra-cluster distance measures the compactness of clusters; 

whereas, the average inter-cluster distance measures the cluster discrimination. The 

former should be as small as possible, while the latter should be as large as possible, 

resulting in a minimum value of the ratio. 

𝑥𝑎𝑣𝑔 =
1

𝐾
∑

1

𝑁𝑘

𝐾
𝑘=1 ∑ ‖𝑋 − 𝑋̂𝐾𝑆𝑘‖2𝑋∈𝐾𝑆𝑘   (117) 

𝑋𝑎𝑣𝑔 =
2

𝐾(𝐾−1)
∑ ∑ ‖𝑋̂𝐾𝑆𝑘 − 𝑋̂𝐾𝑆𝑙‖2

𝐾
𝑙=𝑘+1

𝐾−1
𝑘=1   

 

(118) 

In equations (117) and (118),
2

. represents the Euclidean distance. 

This ratio has been calculated for several numbers of moments and clusters, as 

illustrated in Figure 4.8. For each set and number of clusters, the evolution of the 

considered ratio with the number of moments taken has been represented in a separate 

curve. It can be observed in Figure 4.8 that adding more moments beyond 15 seems to 

have little significance since the similarity ratio remains stable. This corresponds to a 

50% reduction in the dimension of the clustering space. Another important conclusion is 

that adding more clusters does not improve the similarity ratio beyond some threshold. 

Here, the threshold seems to be close to 40 clusters. 
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Fig. 4. 8  Variation of similarity ratio with number of moments and clusters (for 

overloading snapshots) 

As stated earlier, the application of our clustering technique involves mapping the high-

dimensional input dataset into the space of moments, which is quite convenient because 

it makes working with a relatively lower number of parameters possible when clustering 

the corresponding snapshots, thus reducing the dimension of the data set. The 4741x30 

overloading dataset is, for example, clustered using the computed 4741 moment 

samples each including 15 moment values.  Figure 4.9 displays the hourly time series of 

values for two of the moments considered. Each series comprises 4741 hourly values, 

and the hour for each value of the moment in the series is represented in the horizontal 

axis. The thick line represents the values of the “dominant” moment variable. The 

concept of dominance here should be understood in the following context. A moment 

variable about a given axis is dominant when the variance of its values is larger in 

magnitude than the variance of any of the other considered moment variables, which 

correspond to moments computed about different axes from that of the dominant 

moment variable. In the case study, the dominant moment variable is the moment about 

the corner point (-100, 90) of the network map in Figure 4.7. Here, it should be noted 

that the moment samples (snapshots) in Figure 4.8 are sorted by increasing index of the 

cluster they belong to. 
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Fig. 4. 9  Patterns of moment values in the overloading snapshots sorted by increasing 

order of cluster indices (horizontal axis represents the number of samples) 

The moment pattern about the origin is also shown in Figure 4.9 for comparison 

purposes. Basically, the remaining moments, which are not shown in Figure 4.9 for the 

sake of simplicity, follow similar patterns. The width of each discrete step in the 

cumulative clusters’ curve is proportional to the number of snapshots grouped in that 

particular cluster. Generally, Figure 4.9 helps to observe whether the clustering results 

are accurate enough. Clearly, one can see that there is some discernible pattern in the 

plot i.e. some homogeneity in the values of the moments in each cluster and large 

differences among the values of the moments in different clusters, which validates the 

clustering approach. 

4.6.2.2. Clustering Results for Non-overloading Snapshots 

As mentioned earlier, the non-overloading snapshots are clustered according to 

variables related to line losses and their locations. The selected variables are the net 

demand at each node along with its geographical location. As in the previous case, the 

standard k-means algorithm is used for clustering the moments of these variables. 

Moments considered here correspond to those listed in Table 4.2 except for the fact that 

the positive and the negative power unbalances (net demands) are treated separately, 

resulting in a total of 46 moments i.e. 23 moments for unbalances of each sign. 

The number of clusters is decided based on the Elbow method, as in Figure 4.10, which 

allows balancing the accuracy of the clustering analysis (given by the objective value of 

the k-means algorithm) displayed on the primary vertical axis) and the number of 

clusters. The evolution of the objective value (minimized by the k-means clustering 

algorithm) with the number of clusters is shown in a curve. When plotting this curve, 46 

moments have been considered. In this case, one can see that using 10 clusters seems a 
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reasonable trade-off. The evolution of similarity ratio (shown on the secondary vertical 

axis, in Figure 4.10) with the number of moments is depicted in another curve. For the 

analysis here, note that the moment variables have been taken from the set of moments 

of the positive and the negative power unbalances. One can see in Figure 4.10 that the 

changes in the similarity ratio are negligible when 15 or more moments are taken. Then, 

15 is an appropriate number of moments. 

 
Fig. 4. 10  Estimating an appropriate number of moments and clusters for non-

overloading clusters 

4.6.2.3. Clustering in the Principal Components Space 

As discussed in the previous subsection, moments of overloads and net-loads are used 

as clustering variables, and the results presented in this thesis are based on this. For the 

test system considered here, it has been already stated earlier that when clustering 

snapshots in the space of moments, a reasonably good balance between accuracy and 

computation burden is achieved using 15 to 20 moments, both in the case of 

overloading and non-overloading snapshots. However, this may not be the case for 

larger systems. Intuitively, the number moments required to distinguish properly the 

respective patterns may be higher for larger systems, potentially leading to a size 

problem. Therefore, additional ways may be required to reduce the number of clustering 

variables. 
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Fig. 4. 11  First principal component values sorted by increasing order of cluster indices 

(for overloading snapshots) 

An interesting idea is to apply the Principal Component Analysis (PCA) to find the 

most relevant moments that represent most of the desired information regarding the 

variability of moment samples. For instance, in the considered system, using only 6 

principal components as clustering variables of the overloading snapshots is enough to 

get the same results as with 15 moments (see Figure 4.8). It is even lower (4 principal 

components) in the case of non-overloading snapshots. This shows the capability of 

transforming the moment space into a principal component space in tackling the 

dimension problem. 

Table 4. 3 Eigenvalues of Covariance Matrices of Moments 

  Overloading snapshots Non-overloading snapshots 

Principal 

component Eigenvalues  

Cumulative 

sum of 

eigenvalues Eigenvalues  

Cumulative 

sum of 

eigenvalues 

1 58.854 85.02% 399.451 65% 

2 9.002 96.59% 179.280 94% 

3 1.839 99.35% 31.360 100% 

4 0.510 99.93% 1.225 100% 

 

Figure 4.11 shows a plot of the first principal component values (PC1), sorted by 

increasing order of cluster indices. One can see that the first principal component 

captures nearly 85% of the required information in terms of data variability in the 

principal components space. It is also interesting to note that this pattern closely 

resembles the pattern of the dominant moment variable in Figure 4.8. As shown in 

0

5

10

15

20

25

30

35

40

-10

-5

0

5

10

15

20

25

C
lu

st
e
rs

P
ri

n
c
ip

a
l 
c
o

m
p

o
n

e
n

t 
v

a
lu

e
s

PC1 Cluster



 

103  
 

Table 4.3, the first two principal components account for 97% and 94% of the variance 

of the principal component values of the moments taken in the case of overloading and 

non-overloading snapshots, respectively. In general, PCA can be a handy tool in 

reducing the dimension of the set of clustering variables without losing significant 

information. 

4.6.2.4. Comparisons in terms of TEP Results 

Since the clustering approach proposed here is to be applied to TEP, its efficiency 

should be verified in this context. This can be accomplished by running a DC-based 

TEP model (presented in the preceding Sections and Chapter 3) considering the set of 

snapshots identified as representatives of the clusters, and comparing TEP results with 

those of the full-scale (brute-force) problem that considers all the 8760 snapshots.  

In this respect, investment decisions considering all the 8760 snapshots include new 

lines in corridors (2,4), (4,9), (9,11), (11,13), (13,23) and (21,22). Overall, investment 

costs in this brute-force problem amount to 82.8 M€. Now, one can check the evolution 

of network investment costs with the number of clusters, as shown in Figure 4.12. 

Investment costs with only 50 clusters, obtained using the moment-based clustering 

approach, are the same as those of the brute-force TEP solution. However, one can see 

in Figure 4.12 that selecting clusters according to generation—demand patterns, results 

in underinvestment even for higher number of clusters. This reveals a lack of 

representativeness of the snapshots selected according to this set of clustering variables.  

In addition to investment decisions, one should also compare the total dispatch 

(operation) costs. Operation costs are computed by solving the economic dispatch 

problem for the whole target year considering investment decisions. Regarding 

clustering methods, it has been already stated from the outset that the method proposed 

here is denoted as clustering based on effects (CbE); while the traditional method based 

on generation—demand patterns is identified as clustering based on causes (CbC). 

Figure 4.13 shows the evolution of the global dispatch costs with the number of clusters 

for both clustering approaches. Comparison of the total system dispatch costs in both 

cases (i.e. CbE and CbC) also strengthens the previous statement on the required 

number of clusters. In order to obtain the same results as in the brute-force problem in 

terms of investment solution and deviation in operation costs, CbC requires 310 or more 

clusters, while CbE only needs about 40 clusters of overloading snapshots along with 15 

clusters of non-overloading ones. 
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Fig. 4. 12  Evolution of investment costs with number of clusters 

 

Fig. 4. 13  Evolution of total dispatch costs with number of clusters 

In Figs. 12 and 13, the variations of costs with the number of clusters can be explained 

as follows. It is generally accepted in clustering theory that when increasing the number 

of clusters, the level of accuracy increases. When varying the number of clusters, two 

important parameters are affected: the representative snapshots and the cumulative 

probability of each cluster
s

 . Note that the representative snapshot in a given cluster is 

selected among the snapshots, grouped to that same cluster, based on certain criteria (for 

example, being the closest to the centroid which means the medoid in the cluster). The 
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parameter
s

 is the cumulative probability of all snapshots grouped together. Assuming 

the probability of occurrence of each snapshot is the same, 
s

 should be proportional to 

the number of snapshots in cluster s. This means
s

 is the sum of all individual 

probabilities in the same cluster. Both these parameters define the accuracy level of the 

clustering outcome. The higher the number of clusters are, the more similar the 

snapshots grouped together will be (in terms of their effects on network expansion 

needs), and therefore the higher the clustering accuracy will be. On the other hand, a 

lower number of clusters increase the chance of clustering “dissimilar” snapshots 

together. Chances are also high that the representative snapshots selected for each 

cluster may not accurately represent their companions in their respective clusters. 

Therefore, when using a smaller number of clusters, the variability of operation 

situations is likely to be underestimated, potentially resulting in underinvestment, as 

shown in Figure 4.12. Obviously, the ultimate price of such inadequate network 

reinforcements in the system is an increase in operation cost due to the presence of 

congestion and unserved power. This is reflected in Figure 4.13, where one can easily 

see very high dispatch costs associated to smaller number of clusters. When the number 

of clusters is slowly increased, all curves gradually approach the benchmark one, 

showing an increasing trend of accuracy. Here, it is interesting to observe that the CbE-

based method approaches the benchmark before the CbC-based one, showing the 

former’s excellent performance and clear advantage in terms of computational burden 

—which is further increased by the compact representation of the snapshots. Another 

important result observed in Figure 4.13 is the decreasing trend in the dispatch costs 

achieved when one increases the number of clusters for non-overloading snapshots 

while keeping the number of clusters of overloading snapshots constant. This can be 

attributed to the better estimation accuracy of transmission losses achieved in this way, 

which may increase the accuracy of the computation of operation costs and justify some 

more line reinforcements. This is particularly shown in the case study, also depicted in 

Figure 4.13 by the two curves in the middle. 

Therefore, the main conclusions from these analyses are two. First, it is much better to 

cluster snapshots based on relevant power flow effects (overloads and losses) than 

clustering them based on input system variables (generation—demand patterns). 

Second, the moments approach is an effective way to reduce the dimension of the 

clustering space. 

These results are in line with those shown in Figs. 4.8 and 4.10, where the threshold for 

the number of clusters of overloading and non-overloading snapshots seems to be also 

40 and 15, respectively, when the proposed clustering approach is applied.  

4.7. COMPUTATIONAL IMPLICATIONS 

Some computational implications of the proposed approach are discussed here. The 

efficacy of the proposed method has been already verified on the 24-bus test system. 

The results are very interesting in that the moment-based clustering using power flow 

variables results in a very compact optimization problem (because of the significant 
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reduction of snapshots) without considerable loss of accuracy. In addition, the results 

also show that using the generation—demand patterns (the causes, CbC) instead of 

power flow patterns (the effects, CbE) would require a far higher number of snapshots 

to achieve the same level of accuracy in the TEP context.  

The method can generally be extended to large-scale TEP problems. As it is known, the 

main limiting factor in such problems is the computation burden. The computing time is 

directly related to the problem complexity. In this regard, given the DC-based TEP 

optimization problem [14], the marginal impact of reducing the number of snapshots on 

its computational burden can be quantified. This depends on complexity of the problem 

being considered, i.e., the number of equations, variables, non-zeroes, etc. For example, 

in the TEP problem presented in [14], the total number of equations and continuous 

variables can be determined by  (119) and (120), respectively. 

 1 * 2 ( ) ( )(5 2 )
N G R E S C L E L

S N N N N N L         (119) 

 * 4 ( )
G R E S N C L E L

S N N N N N        (120) 

where L corresponds to the number of partitions in the losses modeling [15].  

The above expressions, (119) and (120), clearly indicate that the impact of the number 

of snapshots on the problem size is linear i.e. a reduction in the number of snapshots by 

a certain fraction results in the same level of reduction in the number of equations and 

variables. One can observe in (119) and (120) that reducing the number of snapshots 

marginally (i.e. by one snapshot) leads to a reduction in the number of equations and 

continuous variables by an amount given by: 

 2 ( ) ( )(5 2 )
N G R E S E L C L

N N N N N L     and  4 ( )
G R E S N E L C L

N N N N N    , respectively.  

Such a reduction in complexity of the problem can indeed result in a huge difference in 

computing time. The impact can even be more noticeable in large-scale problems. For 

instance, for a 1000-node system, assume there are 2000 existing and 2000 candidate 

lines, five conventional generators of different technologies and five types of renewable 

energy sources at each node. Suppose the number of losses partitions, L, is set to 5. 

Under these assumptions, the reductions in the number of equations and continuous 

variables, with respect to the marginal reduction of one snapshot, amount to 82,000 and 

30,000 respectively. Computationally speaking, such a huge reduction in complexity 

significantly enhances the tractability of the TEP problem.  

Furthermore, it has already been stated that, when using the proposed method, the 

minimum number of clusters required for obtaining an optimal TEP solution in the test 

system  is 50 (see Figure 4.13). However, up to 310 clusters are required to get the same 

solution using conventional clustering variables. This means that the resulting TEP 

optimization problem may have 6 times fewer equations and variables. Considering all 

the benefits, the proposed method seems to be very promising and can be extended to 

large-scale TEP problems which consider high uncertainty and a long temporal scope.  
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From a computational perspective, the implementation of the proposed clustering 

method is not burdensome. This is because it is formulated over a very fast NCUED 

model, and also because the OPF for each snapshot can be individually computed. This 

allows parallel computation, which further facilitates the computation process. 

4.8. SUMMARY 

This chapter has introduced a novel way of clustering operational states, or snapshots, 

based on classification variables that are closely related to TEP problems, instead of 

using the customary generation and demand variables. 

In the proposed approach, snapshots are characterized according to their effects on the 

network, i.e. the congestions (overloads) and losses that will in fact create expansion 

needs. In the non-overloading snapshots, net power unbalances are instead used as 

significant variables. The effects on the network are then translated into a much more 

compact representation, namely a moments-based space of variables. Moments translate 

both the geographical location and the power-related parameters of potential investment 

needs into a reduced reference system. 

The method has been tested comparing its results against both the original brute-force 

problem (using the whole original set of snapshots) and a clustering method based on 

generation and demand patterns. 

For identical results of the TEP problem, the test results show that the proposed method 

reduces the number of required snapshots in almost 200 times with respect to the 

original problem, and in 6 times regarding the generation—demand pattern based 

clustering method. This work also estimates the savings in computing time related to the 

marginal reduction in the number of snapshots. 

As a global conclusion, it can be stated that the proposed power-flow clustering criteria 

(the effects on the network), combined with the moments-based compact representation 

of those effects, seems to be an adequate and promising method to handle operation 

uncertainty in the context of TEP problems. 

In addition to the new clustering method, contributions from this chapter include the 

losses model used in the NCUED model as well as the nonlinear optimization approach 

developed to generate a network map by making use of network parameters 

(impedances, in particular).    
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This chapter presents the algebraic formulation of the stochastic TEP (STEP) model 

and a description of the proposed solution solution strategy. 

5.1. THE TEP PROBLEM 

5.1.1. Overview of the Multi-stage and Stochastic Programming Framework  

A TEP problem is naturally dynamic because the solution has to explicitly provide 

necessary information regarding not only where and what but also when line 

investments are needed. Regarding the planning horizon and decision stages, on account 

of the dynamic nature of TEP, a more realistic approach would be to formulate the 

problem with multiple decision stages (i.e. multi-year decision framework). This 

modeling framework assumes that there are n probable future storylines (or scenarios) 

each associated with a probability of realization 𝜌𝑠that stochastically represent major 

long-term uncertainties. This modeling framework is, on one hand, the building block of 

complex dynamic models, and on the other hand, an appropriate model to combine 

short-term (first stage) and long-term strategic decisions (second stage). It also makes 

sense considering the nature of transmission planning practice, which often requires 

short- to medium-term decisions accompanied by long-term strategic plans for 

exploring future possible developments. 

The length of the first period can be taken as 5 to 15 years because transmission 

expansions are planned well in advance (often within this range). Moreover, the 

construction permit process of lines is often accompanied by significant delays; most of 

the time, it takes several years (often in this range). Likewise, the length of the second 

period can be set in the range between 20 and 35 years long depending on the planner’s 

choice. Overall this leads to a 50-years long planning horizon.  

Figure 5.1 schematically illustrates the two-period TEP modeling framework and the 

form of its expansion solution. Each of these sub-horizons (periods) may have multiple 

planning stages. In the first period, we obtain a single and robust expansion strategy for 

each stage which is good enough for all scenarios. It should be noted here that the 

decisions made in the first stage are obtained considering the future scenarios. The long-

term investment decisions made in the second-stage are adapted to each scenario, 

guaranteeing sufficient flexibility in the planning process by allowing the ability to 

postpone or alter decisions in the future. 

As stated in the previous Chapters, the TEP problem is formulated considering its 

dynamic nature i.e. featuring multiple decision stages. In addition, in order to combine 

“here and now” and “wait and see” investment decisions, a two-period stochastic 

optimization framework is proposed in this work. This modeling framework assumes 

that there are n probable future storylines (or scenarios) each associated with a 

probability of realization 𝜌𝑠 that stochastically represent relevant sources of 

uncertainties. The whole modeling scheme adopted in this thesis (i.e. the multi-stage 

and multi-scenario DGIP modeling framework and the expansion solution structure) is 

illustrated in Figure 5.1. The formulation is based on the assumption that there are two 
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investment pools, one for each period, from which the potential lines can be selected. 

Investments in the first period can be postponed to the second period if deemed 

necessary. 
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Fig. 5. 1 A schematic representation of (a) possible future scenario trajectories and (b) a 

decision structure 

Figure 5.1 schematically represents the possible future scenario trajectories with 

multiple scenario spots throughout the planning horizon, along with the decision 

structure in the 𝜏th
 stage of the first planning period, showing a single investment 

decision 𝑧𝜏 (where 𝜏 = 1, 2, … , 𝑇1) in every stage of the first period which are common 

(or good enough) for all scenarios, and flexible or strategic decisions 𝑧′𝑠,𝜁 and 𝑦𝑠,𝜁 

(where  𝜁 = 𝑇1 + 1, 𝑇1 + 2,… , 𝑇) in every stage of the second one [15]. Note that the 

first-period decisions are more relevant than those made in the second period because 

they are implementable straightaway before uncertainties are uncovered i.e. “here and 

now” decisions. However, the second-period decisions can also be very useful if seen 
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from the flexibility/strategic planning perspective. In order to broaden the investment 

options, two investment pools are considered one for each period, in which it is possible 

to postpone the investments in the first 𝑧𝜏 to the second period 𝑧′𝑠,𝜁. The mathematical 

formulation of the model developed here is presented and explained in detail in the 

following sub-sections.  

5.1.2. Algebraic Formulation of the TEP Model 

The stochastic TEP model developed in this thesis is described as follows.  

5.1.2.1. Objective Function 

As mentioned earlier, this work develops a generalized optimization model that 

simultaneously determines the optimal location, time and size of transmission line 

investments under high penetration level of RESs. In other words, the objective is to 

expand the transmission network at a minimum cost possible from the system 

perspective. The resulting problem is formulated as a multi-objective stochastic MILP 

with an overall cost minimization.  

The objective function in (121) is composed of NPV of six cost terms each weighted by 

a certain relevance factor 𝛼𝑗; ∀𝑗 ∈ {1,2, … ,5}. Note that, in this work, all cost terms are 

assumed to be equally important; hence, these factors are set to 1. However, depending 

on the relative importance of the considered costs, different weights can be adopted in 

the objective function. The first term in (121), 𝑇𝐼𝑛𝑣𝐶, represents the total investment 

costs under the assumption of perpetual planning horizon [186]. In other words, the 

investment cost is amortized in annual installments throughout the lifetime of the 

installed component. Here, the total investment cost is the sum of investment costs of 

candidate lines as in (122).  

The second term, 𝑇𝑀𝐶, in (121) denotes the total maintenance costs, which is given by 

the sum of individual maintenance costs of new and existing lines and generators, at 

each stage and the corresponding costs incurred after the last planning stage, as in (123). 

Note that the latter costs depend on the maintenance costs of the last planning stage. 

Here, a perpetual planning horizon is assumed. The third term 𝑇𝐸𝐶 in (121) refers to the 

total cost of energy in the system, which is the sum of the cost of power produced by 

new and existing generators at each stage as in (124). Equation (124) also includes the 

total energy costs incurred after the last planning stage under a perpetual planning 

horizon. These depend on the energy costs of the last planning stage. The fourth term 

𝑇𝐸𝑁𝑆𝐶 represents the total cost of unserved power in the system and is calculated as in 

(125). The last term 𝑇𝐼𝑚𝑖𝐶 gathers the total emission costs in the system, given by the 

sum of emission costs for the existing and new generators as well that of power 

purchased from the grid at the substations. 

min
𝑧,𝑦,𝑧′,…

𝑇𝐶 = 𝛼1 ∗ 𝑇𝐼𝑛𝑣𝐶 + 𝛼2 ∗ 𝑇𝑀𝐶 + 𝛼3 ∗ 𝑇𝐸𝐶 + 𝛼4 ∗ 𝑇𝐸𝑁𝑆𝐶 + 𝛼5

∗ 𝑇𝐼𝑚𝑖𝐶  
(121) 
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𝑇𝐼𝑛𝑣𝐶 = ∑
(1 + 𝜎)−𝑡

𝜎
𝑡𝜖Ω𝑡

𝐼𝑛𝑣𝐶𝑡
𝐿𝑁

⏟              
𝑁𝑃𝑉 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

 
(122) 

𝑇𝑀𝐶 = ∑(1 + 𝜎)−𝑡

𝑡𝜖Ω𝑡

 (𝑀𝑛𝑡𝐶𝑡
𝑁𝐿 +𝑀𝑛𝑡𝐶𝑡

𝐸𝐿)
⏟                      

𝑁𝑃𝑉 𝑜𝑓  𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡𝑠

 

+
(1 + 𝜎)−𝑇

𝜎
(𝑀𝑛𝑡𝐶𝑇

𝑁𝐿 +𝑀𝑛𝑡𝐶𝑇
𝐸𝐿)

⏟                    
𝑁𝑃𝑉 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 

(123) 

𝑇𝐸𝐶 = ∑(1 + 𝜎)−𝑡

𝑡𝜖Ω𝑡

 (𝐸𝑔𝑦𝐶𝑡
𝑁𝐺 + 𝐸𝑔𝑦𝐶𝑡

𝐸𝐺)
⏟                      

𝑁𝑃𝑉 𝑜𝑓  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

+
(1 + 𝜎)−𝑇

𝜎
(𝐸𝑔𝑦𝐶𝑇

𝑁𝐺 + 𝐸𝑔𝑦𝐶𝑇
𝐸𝐺)

⏟                    
𝑁𝑃𝑉 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 

(124) 

𝑇𝐸𝑁𝑆𝐶 = ∑(1 + 𝜎)−𝑡

𝑡𝜖Ω𝑡

 𝐸𝑁𝑆𝐶𝑡
⏟              
𝑁𝑃𝑉 𝑜𝑓  𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠

+
(1 + 𝜎)−𝑇

𝜎
𝐸𝑁𝑆𝐶𝑇⏟          

𝑁𝑃𝑉 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 
(125) 

𝑇𝐸𝑚𝑖𝐶 = ∑(1 + 𝜎)−𝑡

𝑡𝜖Ω𝑡

 (𝐸𝑚𝑖𝐶𝑡
𝑁𝐺 + 𝐸𝑚𝑖𝐶𝑡

𝐸𝐺)
⏟                      

𝑁𝑃𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

+
(1 + 𝜎)−𝑇

𝜎
(𝐸𝑚𝑖𝐶𝑇

𝑁𝐺 + 𝐸𝑚𝑖𝐶𝑇
𝐸𝐺)

⏟                    
𝑁𝑃𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇

 

(126) 

The individual cost components in (122)—(126) are computed by the following 

expressions. Equation (127) represents the investment costs of lines. Notice that all 

investment costs are weighted by the capital recovery factor, 
𝜎(1+𝜎)𝐿𝑇

(1+𝜎)𝐿𝑇−1
. The 

formulations in (127), along with the logical constraints which are described in the 

constraints section, ensure that the investment cost of each line added to the system is 

considered only once in the summation. For example, suppose an investment in a 

particular feeder 𝑘 is made in the second year of a three-year planning horizon. This 

means that the feeder should be available for utilization after the second year. Hence, 

the binary variable associated to this feeder will be 1 after the second year while zero 

otherwise i.e. 𝑧𝑝,𝑘,𝑡 = {0,1,1}. In this particular case, only the difference (𝑧𝑝,𝑘,2 − 𝑧𝑝,𝑘,1) 

equals 1, implying that the investment cost is considered only once. Equations (128) and 

(129) stand for the maintenance costs of new and existing lines at each time stage, 

respectively. The maintenance cost of a new/existing lines is included only when its 

corresponding investment/utilization variable is different from zero. The maintenance 

costs of new and existing generators at each stage can also be similarly formulated but 

this information is not often available for network planners.  
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𝐼𝑛𝑣𝐶𝑡
𝑁𝐿 = ∑ ∑

𝜎(1 + 𝜎)𝐿𝑇𝑎,𝑘

(1 + 𝜎)𝐿𝑇𝑎,𝑘 − 1
𝐼𝐶𝑝,𝑘
𝑁1(𝑧𝑎,𝑘,𝜏

𝑁1 − 𝑧𝑎,𝑘,𝜏−1
𝑁1 )

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

 

+ ∑ 𝜌𝑠
𝑠∈𝛺𝑠

∑ ∑
𝜎(1 + 𝜎)𝐿𝑇𝑎,𝑘

(1 + 𝜎)𝐿𝑇𝑎,𝑘 − 1
𝐼𝐶𝑎,𝑘
𝑁1(𝑧′𝑎,𝑘,𝑠,𝜁

𝑁1

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

− 𝑧′𝑝,𝑘,𝑠,𝜁−1
𝑁1

)

+ ∑ 𝜌𝑠
𝑠∈𝛺𝑠

∑ ∑
𝜎(1 + 𝜎)𝐿𝑇𝑎,𝑘

(1 + 𝜎)𝐿𝑇𝑎,𝑘 − 1
𝐼𝐶𝑝,𝑘
𝑁2(𝑦𝑎,𝑘,𝑠,𝜁

𝑁2

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

− 𝑦𝑎,𝑘,𝑠,𝜁−1
𝑁2 )       ;  ∀𝜏 ∈ 𝛺𝑇1;  ∀𝜁 ∈ 𝛺𝑇2 ;   𝑧𝑝,𝑘,0

= 0 ; 𝑦𝑎,𝑘,𝑛,𝑠,𝑇1
𝑁2 = 0 

(127) 

𝑀𝑛𝑡𝐶𝑡
𝑁𝐿 = ∑ ∑ 𝑀𝐶𝑎,𝑘

𝑁1

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

𝑧𝑎,𝑘,𝑛,𝑡
𝑁1 + ∑ 𝜌𝑠

𝑠∈𝛺𝑠

∑ ∑ 𝑀𝐶𝑎,𝑘
𝑁1

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

𝑧′𝑎,𝑘,𝑠,𝜁
𝑁1

+ ∑ 𝜌𝑠
𝑠∈𝛺𝑠

∑ ∑ 𝑀𝐶𝑎,𝑘
𝑁2

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

𝑦𝑎,𝑘,𝑠,𝜁
𝑁2   ;  ∀𝑡 ∈ 𝛺𝑡;  ∀𝜁 ∈ 𝛺𝑇2 

(128) 

𝑀𝑛𝑡𝐶𝑡
𝐸𝐿 = ∑ 𝑀𝐶𝑘

𝐸𝐿

𝑘∈𝛺𝐸𝐿

𝑢1𝑘,𝜏
𝐸𝐿 + ∑ 𝜌𝑠 ∑ 𝑀𝐶𝑘

𝐸𝐿𝑢2𝑘,𝑠,𝜁
𝐸𝐿

𝑘∈𝛺𝐸𝐿𝑠∈𝛺𝑠

  ;  ∀𝜏 ∈ 𝛺𝑇1;  ∀𝜁

∈ 𝛺𝑇2 

(129) 

𝐸𝑔𝑦𝐶𝑡
𝑁𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝑂𝐶𝑔,𝑠,𝑤,𝜏

𝑁𝐺

𝑔∈𝛺𝑁𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

+ ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝑂𝐶𝑔,𝑠,𝑤,𝜁
𝑁𝐺

𝑔∈𝛺𝑁𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

;  ∀𝜏 ∈ 𝛺𝑇1;  ∀𝜁 ∈ 𝛺𝑇2    
(130) 

𝐸𝑔𝑦𝐶𝑡
𝐸𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝑂𝐶𝑔,𝑠,𝑤,𝑡

𝐸𝐺

𝑔∈𝛺𝐸𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

 ;  ∀𝑡 ∈ 𝛺𝑡 (131) 

𝐸𝑁𝑆𝐶𝑡 = ∑ 𝜌𝑠∑𝜋𝑤 ∑ 𝜋𝑤Λ𝑠,𝑤,𝑡𝑝𝑖,𝑠,𝑤,𝑡
𝑤∈𝛺𝑤𝑖∈𝛺𝑖𝑠∈𝛺𝑠

  ;  ∀𝑡 ∈ 𝛺𝑡 (132) 

𝐸𝑚𝑖𝐶𝑡
𝐺 = 𝐸𝑚𝑖𝐶𝑡

𝑁𝐺 + 𝐸𝑚𝑖𝐶𝑡
𝐸𝐺    ;  ∀𝑡 ∈ 𝛺𝑡 (133) 

𝐸𝑚𝑖𝐶𝑡
𝑁𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝑁𝐺𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝑁𝐺

𝑔∈𝛺𝑁𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

 ;  ∀𝑡 ∈ 𝛺𝑡 (134) 

𝐸𝑚𝑖𝐶𝑡
𝐸𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝐸𝐺𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝐸𝐺

𝑔∈𝛺𝐸𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

;  ∀𝑡 ∈ 𝛺𝑡 (135) 

The total operation costs given by (130) and (131) for new and existing generators, 

respectively, depend on the amount of power generated for each scenario, snapshot, 

stage and generator type. Therefore, these costs represent the expected costs of 

operation. Similarly, the penalty term for the unserved power, given by (132), is 

dependent on the scenarios, snapshots and time stages. Equation (132) therefore gives 
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the expected cost of unserved energy in the system. Equations (133) gathers the 

expected emission costs of power generated by new and existing generators, which are 

computed using (134) and (135), respectively. Note that, for the sake of simplicity, a 

linear emission cost function is assumed here. In reality, the emission cost function is 

highly nonlinear and nonconvex, as in [44]. Moreover, the cost of power generation 

𝑂𝐶𝑔,𝑠,𝑤,𝑡
𝐺  ;  ∀𝑡 ∈ 𝛺𝑡 is often modeled using a linear cost curve, where the marginal cost 

of power production is constant. Should there be a need to use more detailed generation 

cost curves (quadratic cost curves, for instance), nonlinear terms should be linearized 

using one of the linearization techniques, extensively discussed in Chapter 3. For the 

sake of simplicity, a linear cost curve is adopted throughout this thesis.   

5.1.2.2. Constraints 

Kirchhoff’s Laws: Flows in AC systems are governed by Kirchhoff’s voltage and 

current laws, abbreviated as KVL and KCL, respectively. The “DC” network model, 

described in Chapter 3, is reproduced here by extending the multi-load level equations 

to fit the proposed TEP framework. Inequality (136) and (137) represent the KVL 

constraints in existing lines in the first and the second investment sub-horizons, 

respectively. The corresponding constraints for candidate lines are given by (138)—

(140), respectively. 

|𝑃𝑘,𝑠,𝑤,𝑡 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝑡| ≤ 𝑀𝑘(1 − 𝑢1𝑘,𝑡);  ∀𝑡 ∈ Ω

𝜏;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 (136) 

|𝑃𝑘,𝑠,𝑤,𝑡 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝑡| ≤ 𝑀𝑘(1 − 𝑢2𝑘,𝑠,𝑡);  ∀𝑡 ∈ Ω

𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 (137) 

|𝑃𝑎,𝑘,𝑠,𝑤,𝑡 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝑡| ≤ 𝑀𝑝,𝑘(1 − 𝑧𝑎,𝑘,𝑡) ; ∀𝑡 ∈ Ω

𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 (138) 

|𝑃𝑎,𝑘,𝑠,𝑤,𝜁 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝜁| ≤ 𝑀𝑎,𝑘(1 − 𝑧′𝑎,𝑘,𝜁) ; ∀𝜁 ∈ Ω

𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 (139) 

|𝑃𝑎,𝑘,𝑠,𝑤,𝜁 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝜁| ≤ 𝑀𝑎,𝑘(1 − 𝑦𝑎,𝑘,𝑠,𝜁

𝑁2 ); ∀𝜁 ∈ Ω𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 (140) 

As mentioned in Chapter 3, the DC network model does not provide voltage magnitude 

information because one of the underlining assumptions in deriving this model is the 

consideration of flat voltage throughout the system.  This can be somehow corrected by 

using the linearized active AC power flow equation, presented in Chapter 3, instead of 

the DC power flow equations described above, as in (141)—(144). Notice that these 

equations reduce to (136)—(140) if the voltage deviations (from the nominal value) at 

each node and line resistances are very small. These are among the simplifying 

assumptions in DC formulation. 

|𝑃𝑘,𝑠,𝑤,𝑡 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑠,𝑤,𝑡 − ∆𝑉𝑗,𝑠,𝑤,𝑡)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝑡 )}|

≤ 𝑀𝑘(1 − 𝑢1𝑘,𝑡);  ∀𝑡 ∈ Ω
𝜏;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 

(141) 

|𝑃𝑘,𝑠,𝑤,𝑡 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑠,𝑤,𝑡 − ∆𝑉𝑗,𝑠,𝑤,𝑡)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝑡 )}|

≤ 𝑀𝑘(1 − 𝑢2𝑘,𝑠,𝑡);  ∀𝑡 ∈ Ω
𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 

(142) 
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|𝑃𝑎,𝑘,𝑠,𝑤,𝑡 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑠,𝑤,𝑡 − ∆𝑉𝑗,𝑠,𝑤,𝑡)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝑡 )}|

≤ 𝑀𝑎,𝑘(1 − 𝑧𝑎,𝑘,𝑡) ; ∀𝑡 ∈ Ω
𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 

(143) 

|𝑃𝑎,𝑘,𝑠,𝑤,𝑡 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑠,𝑤,𝑡 − ∆𝑉𝑗,𝑠,𝑤,𝑡)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝜁  )}|

≤ 𝑀𝑎,𝑘(1 − 𝑧′𝑎,𝑘,𝜁) ; ∀𝜁 ∈ Ω
𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 

(144) 

|𝑃𝑎,𝑘,𝑠,𝑤,𝑡 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑠,𝑤,𝑡 − ∆𝑉𝑗,𝑠,𝑤,𝑡)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝜁  )}|

≤ 𝑀𝑎,𝑘(1 − 𝑦𝑎,𝑘,𝑠,𝜁
𝑁2 ); ∀𝜁 ∈ Ω𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 

(145) 

KCL constraints dictate that the load balance at each node should be respected all the 

time i.e. the sum of all injections should be equal to the sum of all withdrawals. This is 

enforced by adding the following constraints:  

∑ ∑𝑃𝑎,𝑘,𝑠,𝑤,𝑡
𝑘∈𝑖(𝑎,𝑘)∈Ω𝑁𝐿

+ ∑ 𝑃𝑘,𝑠,𝑤,𝑡
𝑘∈𝑖;𝑘∈Ω𝐸𝐿 

+∑𝑃𝐺𝑔,𝑠,𝑤,𝑡
𝑔∈𝑖

+ 𝑝𝑖,𝑠,𝑤,𝑡

−∑𝑃𝐷𝑑,𝑠,𝑤,𝑡
𝑑∈𝑖

+ ∑ ∑0.5 ∗ 𝑃𝐿𝑎,𝑘,𝑠,𝑤,𝑡
𝑘∈𝑖(𝑎,𝑘)∈Ω𝑁𝐿

+ ∑ 0.5 ∗ 𝑃𝐿𝑘,𝑠,𝑤,𝑡
𝑘∈𝑖;𝑘∈Ω𝐸𝐿 

= 0; ∀𝑡 ∈ Ω𝑡;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 

(146) 

Constraints Related to Network Losses: The real power losses in line 𝑘 can be 

approximated as follows: 

𝑃𝐿𝑘,𝑠,𝑤,𝑡 ≈ 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘,𝑠,𝑤,𝑡

2  (147) 

Clearly, Equation (147) is nonlinear and nonconvex function. Since keeping the 

linearity of the TEP problem is critical for computational reasons, Equation (147) need 

to be linearized. The most common linearization approach in the literature piecewise-

linearizing the quadratic angular difference. However, instead of doing this, the 

expression in (147) can be expressed in terms of active power flows as in (148), as 

thoroughly described in Chapter 3. Issues related to network losses and linearization are 

extensively discussed in Chapter 3 and also in our published work [13]. 

𝑃𝐿𝑘,𝑠,𝑤,𝑡 = 𝑟𝑘𝑃𝑘,𝑠,𝑤,𝑡
2 /𝑉𝑛𝑜𝑚

2  (148) 

The quadratic expressions of active power flow in (148) can then be easily linearized 

using piecewise linearization, considering a sufficiently large number of partitions, 𝐿. 

There are a number of ways of linearizing such functions such as incremental, multiple 

choice, convex combination and other approaches in the literature [13], [183]. Here, the 

convex combination approach, which is implemented making use of special ordered sets 

of type 2 (SOS2). This losses modeling technique is described in Chapter 3. Further 

details can also be found in our published work [13]. For the sake of completeness, the 

model is reproduced here. For the linearization, two non-negative auxiliary variables are 

introduced for each of the flows 𝑃𝑘,𝑠,𝑤,𝑡 such that 𝑃𝑘,𝑠,𝑤,𝑡 = 𝑃𝑘,𝑠,𝑤,𝑡
+ − 𝑃𝑘,𝑠,𝑤,𝑡

− . This 

implies |𝑃𝑘,𝑠,𝑤,𝑡| = 𝑃𝑘,𝑠,𝑤,𝑡
+ + 𝑃𝑘,𝑠,𝑤,𝑡

− . Note that these auxiliary variables (i.e. 𝑃𝑘,𝑠,𝑤,𝑡
+  and 

𝑃𝑘,𝑠,𝑤,𝑡
−  represent the positive and negative flows of 𝑃𝑘,𝑠,𝑤,𝑡, respectively. This helps one 
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to consider only the positive quadrant of the nonlinear curve, resulting in a significant 

reduction in mathematical complexity, and by implication the computational burden. In 

this case, the associated linear constraints are:  

𝑃𝑘,𝑠,𝑤,𝑡
2 =∑𝜆𝑘,𝑠,𝑤,𝑡(𝑙)[𝑃𝑘,𝑠,𝑤,𝑡(𝑙)]

2
𝐿

𝑙=0

  ;  ∀𝑡 ∈ Ω𝑡;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤; 𝑘

∈ {Ω𝑁𝐿 ∪ Ω𝐸𝐿} 

(149) 

|𝑃𝑘,𝑏| = 𝑃𝑘,𝑠,𝑤,𝑡
+ + 𝑃𝑘,𝑠,𝑤,𝑡

− =∑𝜆𝑘,𝑠,𝑤,𝑡(𝑙)𝑃𝑘,𝑠,𝑤,𝑡(𝑙)

𝐿

𝑙=1

  ;  ∀𝑡 ∈ Ω𝑡;  𝑠 ∈ Ω𝑠;  𝑤

∈ Ω𝑤; 𝑘 ∈ {Ω𝑁𝐿 ∪ Ω𝐸𝐿} 

(150) 

∑𝜆𝑘,𝑠,𝑤,𝑡(𝑙)

𝐿

𝑙=1

= 1  ;  ∀𝑡 ∈ Ω𝑡;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤; 𝑘 ∈ {Ω𝑁𝐿 ∪ Ω𝐸𝐿} (151) 

𝜆𝑘,𝑠,𝑤,𝑡(𝑙) ∈ 𝑆𝑂𝑆2   ;  ∀𝑡 ∈ Ω
𝑡;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤; 𝑘 ∈ {Ω𝑁𝐿 ∪ Ω𝐸𝐿} (152) 

where 𝑃𝑘,𝑠,𝑤,𝑡(𝑙) = 𝑙 ∗
𝑆𝑘
𝑚𝑎𝑥

𝐿
. Note that this has to be done for both existing and 

candidate lines. Further details about this model can be found in [13]. The losses in 

candidate lines are also linearized in a similar way. 

Note that expressing the losses as a function of flows has a clear advantage over the 

angle-based losses. It avoids unnecessary constraints on the angle differences when a 

line between two nodes is not connected or remains not selected for investment. In the 

linearization of losses based on Equation (147), such problem is avoided by introducing 

additional binary variables and using a so-called big-M formulation [131]. However, 

this adds extra complexity to the problem. 

Line Flow Limits: Flows in any line should lie within the permissible range i.e. within 

its thermal capacity limits. In existing lines, these constraints are enforced by (153) and 

(154) in the first and the second sub-horizons, respectively. The corresponding 

constraints in the case of candidates are given by (155)—(157).  

|𝑃𝑘,𝑠,𝑤,𝑡| + 0.5𝑃𝐿𝑘,𝑠,𝑤,𝑡 ≤ 𝑢1𝑘,𝑡
𝐸𝐿𝑆𝑘,max   ;  ∀𝑡 ∈ Ω

𝜏;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤; 𝑘 ∈ Ω𝐸𝐿 (153) 

|𝑃𝑘,𝑠,𝑤,𝑡| + 0.5𝑃𝐿𝑘,𝑠,𝑤,𝑡 ≤ 𝑢2𝑘,𝑠,𝑡
𝐸𝐿 𝑆𝑘,max   ;  ∀𝑡 ∈ Ω

𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤; 𝑘 ∈ Ω𝐸𝐿 (154) 

|𝑃𝑎,𝑘,𝑠,𝑤,𝑡| + 0.5𝑃𝐿𝑎,𝑘,𝑠,𝑤,𝑡 ≤ 𝑧𝑎,𝑘,𝑡𝑆𝑎,𝑘,max  ;  ∀𝑡 ∈ Ω
𝜏;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤; (𝑎, 𝑘)

∈ Ω𝑁1 
(155) 

|𝑃𝑎,𝑘,𝑠,𝑤,𝑡| + 0.5𝑃𝐿𝑎,𝑘,𝑠,𝑤,𝑡 ≤ 𝑧′𝑎,𝑘,𝑡𝑆𝑎,𝑘,max  ;  ∀𝑡 ∈ Ω
𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤; (𝑎, 𝑘)

∈ Ω𝑁1 
(156) 

|𝑃𝑎,𝑘,𝑠,𝑤,𝑡| + 0.5𝑃𝐿𝑎,𝑘,𝑠,𝑤,𝑡 ≤ 𝑦𝑎,𝑘,𝑠,𝑡
𝑁2 𝑆𝑎,𝑘,max  ;  ∀𝑡 ∈ Ω

𝜁;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤; (𝑎, 𝑘)

∈ Ω𝑁2 
(157) 

Active Power Limits of generators: The generation capacity limits of existing and 

candidate generators are given by (158) and (159), respectively. In the case of candidate 

generators, the corresponding constraints are (60). Note that the binary variables 𝑢𝑔,𝑠,𝑤,𝑡 
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are required to indicate whether an existing generator is available or not. This makes 

sure that the power generation variable is zero when the generator is not being used. 

𝑃𝐺𝑔,𝑠,𝑤,𝑡
𝐸𝐺,𝑚𝑖𝑛𝑢𝑔,𝑠,𝑤,𝑡 ≤ 𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝐸𝐺 ≤ 𝑃𝐺𝑔,𝑠,𝑤,𝑡
𝐸𝐺,𝑚𝑎𝑥𝑢𝑔,𝑠,𝑤,𝑡 ;  ∀𝑡 ∈ Ω

𝑡;  𝑠𝜖Ω𝑠;  𝑤𝜖Ω𝑤; 𝑔

∈ Ω𝐸𝐺  
(158) 

𝑃𝐺𝑔,𝑠,𝑤,𝑡
𝑁𝐺,𝑚𝑖𝑛𝑥𝑔,𝑠,𝑤,𝑡 ≤ 𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝑁𝐺 ≤ 𝑃𝐺𝑔,𝑠,𝑤,𝑡
𝑁𝐺,𝑚𝑎𝑥𝑢𝑔,𝑠,𝑤,𝑡   ;  ∀𝑡 ∈ Ω

𝑡;  𝑠𝜖Ω𝑠;  𝑤𝜖Ω𝑤; 𝑔

∈ Ω𝑁𝐺 
(159) 

It should be noted that, in the case of intermittent power source, the lower generation 

limits 𝑃𝐺𝑔,𝑠,𝑤,𝑡
𝐸𝐺,𝑚𝑖𝑛

 and 𝑃𝐺𝑔,𝑠,𝑤,𝑡
𝑁𝐺,𝑚𝑖𝑛

 are often set to 0 while the corresponding upper limits 

are set equal to the actual power output of the variable generation source corresponding 

to the level of primary energy source (wind speed and solar radiation, for instance). 

Hence, the upper bound in this case depends on the operational state (i.e. the snapshot) 

and the scenario.   

Logical Constraints: Investment-related logical constraints (160)—(165) are included. 

These set of constraints ensure that an investment made at time stage 𝑡 cannot be 

reversed or divested in the subsequent time stages; instead, the asset should be available 

for utilization immediately. 

𝑧𝑎,𝑘,𝜏
𝑁1 ≥ 𝑧𝑎,𝑘,𝜏−1

𝑁1       ;   ∀𝜏 ∈ 𝛺𝑇1;  𝑘 ∈ 𝛺𝑘;  𝑎 ∈ 𝛺𝑎 (160) 

𝑧𝑎,𝑘,𝜁
𝑁1 = 𝑧𝑎,𝑘,𝑇1

𝑁1       ;  ∀𝜁 ∈ 𝛺𝑇2;  𝑘 ∈ 𝛺𝑘;  𝑎 ∈ 𝛺𝑎 (161) 

𝑧′𝑎,𝑘,𝑠,𝜁
𝑁1 ≥ 𝑧′𝑎,𝑘,𝑠,𝜁−1

𝑁1   ;  ∀𝜁 ∈ 𝛺𝑇2;  𝑠 ∈ 𝛺𝑠;  𝑘 ∈ 𝛺𝑘;  𝑎 ∈ 𝛺𝑎 (162) 

𝑧′𝑎,𝑘,𝑠,𝑇1
𝑁1 = 𝑧𝑎,𝑘,𝑇1

𝑁1       ;  𝑠 ∈ 𝛺𝑠;  𝑘 ∈ 𝛺𝑘;  𝑎 ∈ 𝛺𝑎 (163) 

𝑦𝑎,𝑘,𝑠,𝜁
𝑁2 ≥ 𝑦𝑎,𝑘,𝑠,𝜁−1

𝑁2   ;  ∀𝜁 ∈ 𝛺𝑇2;  𝑠 ∈ 𝛺𝑠;  𝑘 ∈ 𝛺𝑘;  𝑎 ∈ 𝛺𝑎 (164) 

𝑦𝑎,𝑘,𝑠,𝑇1
𝑁2 = 0      ;  𝑠 ∈ 𝛺𝑠;  𝑘 ∈ 𝛺𝑘;  𝑎 ∈ 𝛺𝑎 (165) 

Budget Constraints: A budget constraint for line invests is enforced by adding 

constraint (166) for the first period and (167) for the second one. 

∑ ∑ 𝐼𝐶𝑎,𝑘
𝑁1(𝑧𝑎,𝑘,𝜏

𝑁1

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

− 𝑧𝑎,𝑘,𝜏−1
𝑁1 ) ≤ 𝐼𝑛𝑣𝐿𝑖𝑚𝜏 ;  ∀𝜏 ∈ Ω

𝑇1 (166) 

∑ ∑ 𝐼𝐶𝑎,𝑘
𝑁1(𝑦𝑎,𝑘,𝑠,𝜁

𝑁2

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

− 𝑦𝑎,𝑘,𝑠,𝜁−1
𝑁2 ) + ∑ ∑ 𝐼𝐶𝑎,𝑘

𝑁1(𝑧′𝑎,𝑘,𝑠,𝜁
𝑁1

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

− 𝑧′𝑎,𝑘,𝑠,𝜁−1
𝑁1 )

≤ 𝐼𝑛𝑣𝐿𝑖𝑚𝑠,𝜁      ;  ∀𝜁 ∈ Ω
𝑇2;  𝑠 ∈ Ω𝑠 

(167) 

Unserved Power Limits: The unserved power at any given node cannot exceed the 

demand at that node, and this is enforced by:  

0 ≤ 𝑝𝑖,𝑠,𝑤,𝑡 ≤ 𝑑𝑖,𝑠,𝑤,𝑡    ; ∀𝑖 ∈ Ω
𝑖;  ∀𝑡 ∈ Ω𝑡;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 (168) 

Emission Related Constraints: Emission reduction targets can be achieved by imposing 

strict control, check and balance emission regulations. In this regard, constraint (169) is 
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added here which caps the expected emission levels at a given year 𝑡 below a preset 

target.  

∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ (𝐸𝑅𝑔
𝑁𝐺𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝑁𝐺

𝑔∈𝛺𝑁𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

+ 𝐸𝑅𝑔
𝐸𝐺𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝐸𝐺 ) ≤ 𝑇𝐸𝐸𝐿𝑡  ;  ∀𝑡 ∈ 𝛺
𝑡 

(169) 

Angle and Voltage Related Constraints: For stability and power quality reasons, the 

voltage magnitude and its angle at each bus are bounded by:  

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑠,𝑤,𝑡 ≤ 𝜃𝑚𝑎𝑥;  𝜃𝑟𝑒𝑓 = 0 ; ∀𝑖 ∈ Ω
𝑖;  ∀𝑡 ∈ Ω𝑡;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 (170) 

∆𝑉𝑚𝑖𝑛 ≤ ∆𝑉𝑖,𝑠,𝑤,𝑡 ≤ ∆𝑉
𝑚𝑎𝑥 ; ∀𝑖 ∈ Ω𝑖;  ∀𝑡 ∈ Ω𝑡;  𝑠 ∈ Ω𝑠;  𝑤 ∈ Ω𝑤 (171) 

HVDC Line Constraints: DC lines are modeled as “flow” networks, which means that 

power flows in such lines are not goverened by Kirchhoff’s voltage law. Unlike flows in 

AC lines, flows in DC ones are independent of the voltages and angles at the nodes 

where the DC lines are connected to. DC lines only respect load balance and capacity 

constraints and; hence, share the flow constraints, node balance as well as the losses 

constraints  in (146)—(157) with their AC counterparts.  

5.2. TEP MODEL REVISITED 

From a computational standpoint, the TEP model presented Section 5.1, which is based 

on a yearly temporal planning scope, may not be sometimes affordable when applied to 

extra-large systems of the European network scale. Given the sheer size of such network 

systems, computing optimal power flow calculations for each time stage and scenario 

over a long planning horizon (often 30 to 50 years) renders significant computational 

challenge. To overcome this, the TEP problem can be re-formulated based on a reduced 

number of intermediate planning stages in each sub-horizon (planning period). In a two-

period planning framework, assume the first period has two decision stages, one 

intermediate and one final stages, which are denoted as 𝜏 and 𝑇1, respectively, and, the 

second period is represented by one stage at the final planning horizon, as shown in 

Figure 5.2. This leads us to a three-stage problem. Note that an intermediate stage is 

intentionally added to the first period to somehow account for the investment lag 

inherent to TEP projects induced by the often lengthy permission process. 

One way to formulate the objective function of such a three-stage problem with three 

stages is to minimize the total NPV sum of costs in each of the considered years (i.e. the 

three planning stages), as in (121a). The composition of these costs the same as the 

original model in Section 5.1, and are computed using Equations (122a)—(135a). The 

cost terms here differ from those described before in that they do not reflect the 

operation, maintenance, emission and reliability costs incurred outside these stages. In 

other words, these costs are not spread throughout and beyond the planning horizon to 

capture the short to long term impacts of expansion decisions on the levels of these 

costs.  
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Fig. 5. 2 A schematic representation of (a) possible future scenario trajectories and (b) a 

decision structure 

min
𝑧,𝑦,𝑧′,…

𝑇𝐶 = 𝛼1 ∗ 𝑇𝐼𝑛𝑣𝐶 + 𝛼2 ∗ 𝑇𝑀𝐶 + 𝛼3 ∗ 𝑇𝐸𝐶 + 𝛼4 ∗ 𝑇𝐸𝑁𝑆𝐶 + 𝛼5

∗ 𝑇𝐼𝑚𝑖𝐶  
(121a) 

𝑇𝐼𝑛𝑣𝐶 = ∑ (1 + 𝜎)−𝑡

𝑡𝜖Ω𝑡
′

𝐼𝑛𝑣𝐶𝑡
𝐿𝑁

⏟              
𝑁𝑃𝑉 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

 
(122a) 

𝑇𝑀𝐶 = ∑ (1 + 𝜎)−𝑡

𝑡𝜖Ω𝑡
′

 (𝑀𝑛𝑡𝐶𝑡
𝑁𝐿 +𝑀𝑛𝑡𝐶𝑡

𝐸𝐿)

⏟                        
𝑁𝑃𝑉 𝑜𝑓  𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡𝑠

  
(123a) 

𝑇𝐸𝐶 = ∑ (1 + 𝜎)−𝑡

𝑡𝜖Ω𝑡
′

 (𝐸𝑔𝑦𝐶𝑡
𝑁𝐺 + 𝐸𝑔𝑦𝐶𝑡

𝐸𝐺)

⏟                        
𝑁𝑃𝑉 𝑜𝑓  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

 
(124a) 
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𝑇𝐸𝑁𝑆𝐶 = ∑ (1 + 𝜎)−𝑡

𝑡𝜖Ω𝑡
′

 𝐸𝑁𝑆𝐶𝑡
⏟              
𝑁𝑃𝑉 𝑜𝑓  𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠

 
(125a) 

𝑇𝐸𝑚𝑖𝐶 = ∑ (1 + 𝜎)−𝑡

𝑡𝜖Ω𝑡
′

 (𝐸𝑚𝑖𝐶𝑡
𝑁𝐺 + 𝐸𝑚𝑖𝐶𝑡

𝐸𝐺)

⏟                        
𝑁𝑃𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

 
(126a) 

𝐼𝑛𝑣𝐶𝑡
𝑁𝐿 = ∑ ∑

𝜎(1 + 𝜎)𝐿𝑇𝑎,𝑘

(1 + 𝜎)𝐿𝑇𝑎,𝑘 − 1
𝐼𝐶𝑎,𝑘
𝑁1(𝑧𝑎,𝑘,𝑡

𝑁1 − 𝑧𝑎,𝑘,𝑡−1
𝑁1 )

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

 ; ∀𝑡 ∈ {𝜏, 𝑇1}

𝐼𝑛𝑣𝐶𝑇
𝑁𝐿 = ∑ 𝜌𝑠

𝑠∈𝛺𝑠

∑ ∑
𝜎(1 + 𝜎)𝐿𝑇𝑎,𝑘

(1 + 𝜎)𝐿𝑇𝑎,𝑘 − 1
𝐼𝐶𝑎,𝑘
𝑁1(𝑧′𝑎,𝑘,𝑠,𝑇

𝑁1
− 𝑧′𝑎,𝑘,𝑠,𝑇1

𝑁1
)

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

+ ∑ 𝜌𝑠
𝑠∈𝛺𝑠

∑ ∑
𝜎(1 + 𝜎)𝐿𝑇𝑎,𝑘

(1 + 𝜎)𝐿𝑇𝑎,𝑘 − 1
𝐼𝐶𝑝,𝑘
𝑁2(𝑦𝑎,𝑘,𝑠,𝑇

𝑁2 − 𝑦𝑎,𝑘,𝑠,𝑇1
𝑁2 ) 

𝑎∈𝛺𝑎𝑘∈𝛺𝑘 }
 
 
 

 
 
 

 

 𝑧𝑝,𝑘,0 = 0 ; 𝑦𝑝,𝑘,𝑛,𝑠,𝑇1
𝑁2 = 0 

(127a) 

𝑀𝑛𝑡𝐶𝑡
𝑁𝐿 = ∑ ∑ 𝑀𝐶𝑝,𝑘

𝑁1

𝑝∈𝛺𝑝𝑘∈𝛺𝑘

𝑧𝑝,𝑘,𝑛,𝑡
𝑁1   ;  ∀𝑡 ∈ {𝜏, 𝑇1}

𝑀𝑛𝑡𝐶𝑡
𝑁𝐿 = ∑ 𝜌𝑠

𝑠∈𝛺𝑠

∑ ∑ 𝑀𝐶𝑝,𝑘
𝑁1

𝑝∈𝛺𝑝𝑘∈𝛺𝑘

𝑧′𝑝,𝑘,𝑠,𝑇
𝑁1 + ∑ 𝜌𝑠

𝑠∈𝛺𝑠

∑ ∑ 𝑀𝐶𝑝,𝑘
𝑁2

𝑝∈𝛺𝑝𝑘∈𝛺𝑘

𝑦𝑝,𝑘,𝑠,𝑇
𝑁2

}
 
 

 
 

 (128a) 

𝑀𝑛𝑡𝐶𝑡
𝐸𝐿 = ∑ 𝑀𝐶𝑘

𝐸𝐿

𝑘∈𝛺𝐸𝐿

𝑢1𝑘,𝑡
𝐸𝐿   ;  ∀𝑡 ∈ {𝜏, 𝑇1}

𝑀𝑛𝑡𝐶𝑇
𝐸𝐿 = ∑ 𝜌𝑠 ∑ 𝑀𝐶𝑘

𝐸𝐿𝑢2𝑘,𝑠,𝑇
𝐸𝐿

𝑘∈𝛺𝐸𝐿𝑠∈𝛺𝑠 }
 
 

 
 

     (129a) 

 𝐸𝑔𝑦𝐶𝑡
𝑁𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝑂𝐶𝑔,𝑠,𝑤,𝑡

𝑁𝐺

𝑔∈𝛺𝑁𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

;   ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (130a) 

𝐸𝑔𝑦𝐶𝑡
𝐸𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝑂𝐶𝑔,𝑠,𝑤,𝑡

𝐸𝐺

𝑔∈𝛺𝐸𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

 ;  ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (131a) 

𝐸𝑁𝑆𝐶𝑡 = ∑ 𝜌𝑠∑𝜋𝑤 ∑ 𝜋𝑤Λ𝑠,𝑤,𝑡𝑝𝑖,𝑠,𝑤,𝑡
𝑤∈𝛺𝑤𝑖∈𝛺𝑖𝑠∈𝛺𝑠

;  ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (132a) 

𝐸𝑚𝑖𝐶𝑡
𝐺 = 𝐸𝑚𝑖𝐶𝑡

𝑁𝐺 + 𝐸𝑚𝑖𝐶𝑡
𝐸𝐺;  ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (133a) 

𝐸𝑚𝑖𝐶𝑡
𝑁𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝑁𝐺𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝑁𝐺

𝑔∈𝛺𝑁𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

 ;  ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (134a) 

𝐸𝑚𝑖𝐶𝑡
𝐸𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝐸𝐺𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝐸𝐺

𝑔∈𝛺𝐸𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

;  ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (135a) 
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The constraints to this optimization problem are the same as the ones in the original 

formulation except for the domain of variables and parameters related to the stage 𝑡 =

{𝜏, 𝑇1, 𝑇2}. 

As stated above, the major disadvantage of this formulation is the misbalancing of 

investment and other costs. Because the real costs throughout the planning horizon are 

not properly captured by this modeling, the resulting expansion solution can be 

suboptimal. 

The above problem can be corrected by finding an estimate to the costs incurred on the 

“missing” years i.e. the years apart from the target years. By making use of the annuity 

concept [186], the operation, maintenance, emission and reliability costs incurred 

between the intermediate stages considered in the formulation can be approximated 

from the corresponding known quantities at these stages. This is further demonstrated in 

Figure 5.3. In this figure, suppose the first sub-horizon (period) spans over 15 years and 

the duration of the second one is 25 years. Furthermore, let us assume we have two 

target years for making investments in the first period i.e. one intermediate stage (5
th

 

year) and the last planning stage (15
th

 year). The second sub-horizon (i.e. from the 16
th

 

year to the 40
th

 one) have only one planning stage, which in this case is considered to be 

the last one.  In effect, instead of having 40 yearly stages (15 in the first period and 25 

in the second one), the whole planning horizon has now 3 decision stages. For this 

planning framework, the operation costs corresponding to these years are explicitly 

known. Now, the issue is to approximate the costs incurred in the years other than those 

explicitly considered i.e. the costs corresponding to Part I—IV in Figure 5.3.  

Without loss of generality, the fixed payments in the years leading to stage 5 can be 

assumed to be the same the costs at this stage 𝑂𝐶5. Similarly, the annualized costs 

between the six and the 15
th

 years can be assumed to be equal to those at the 15
th

 year 

𝑂𝐶15, while the annual costs in each year of the second period can be regarded to be 

equal to 𝑂𝐶40.  Given all this, the concept of annuity [186] can be applied. Hence, the 

costs in Part I are assumed to be accrued and paid in full at the end of the fifth year, 

those in Part II at the fifth year and those in Part III at the last stage of the planning 

horizon. the total operation costs in each range (part) can be estimated by the difference 

of the perpetuity of the corresponding two known operation costs, updated by the NPV 

factor. Note that the present value of perpetuity, which is the sum of the net worth of 

infinite annual fixed payments, is determined by the ratio of the fixed payment at a 

given time by the interest rate 𝜎. For the illustrative example, the total costs for the 

“missing” years can be estimated using: 𝑂𝐶𝐼 =
𝑂𝐶5

𝜎
−

𝑂𝐶5

𝜎(1+𝜎)5
,  𝑂𝐶𝐼𝐼 =

𝑂𝐶15

𝜎(1+𝜎)5
−

𝑂𝐶15

𝜎(1+𝜎)15
, and  𝑂𝐶𝐼𝐼𝐼 =

𝑂𝐶40

𝜎(1+𝜎)15
−

𝑂𝐶40

𝜎(1+𝜎)40
. It is rather straightforward to express the 

costs incurred after the planning horizon, which depend on the costs in the final 

planning stage. Assuming perpetual planning horizon, 𝑂𝐶𝐼𝑉 can be expressed as 
𝑂𝐶40

𝜎(1+𝜎)40
. The remaining costs can be formulated in a similar manner. The objective 

function then minimizes the sum of all cost cost terms formulated in this way. 
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Fig. 5. 3 Illustration of cost components in the formulation 

The complete formulation of the objective function of the TEP model with reduced 

number of stages is presented in (121b)—(135b). The constraints are for this 

optimization are the same as those in the original formulation with the exception of time 

stage domain, which in this case is {𝜏, 𝑇1, 𝑇2}.   

min
𝑧,𝑦,𝑧′,…

𝑇𝐶 = 𝛼1 ∗ 𝑇𝐼𝑛𝑣𝐶 + 𝛼2 ∗ 𝑇𝑀𝐶 + 𝛼3 ∗ 𝑇𝐸𝐶 + 𝛼4 ∗ 𝑇𝐸𝑁𝑆𝐶 + 𝛼5

∗ 𝑇𝐼𝑚𝑖𝐶  
(121b) 

𝑇𝐼𝑛𝑣𝐶 = ∑
(1 + 𝜎)−𝑡

𝜎
𝑡𝜖Ω𝑡

′

𝐼𝑛𝑣𝐶𝑡
𝐿𝑁

⏟              
𝑁𝑃𝑉 𝑜𝑓 𝑎𝑚𝑜𝑟𝑡𝑖𝑧𝑒𝑑 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

 
(122b) 

𝑇𝑀𝐶 = (
1

𝜎
−
(1 + 𝜎)−𝜏

𝜎
) (𝑀𝑛𝑡𝐶𝜏

𝑁𝐿 +𝑀𝑛𝑡𝐶𝜏
𝐸𝐿) 

⏟                        
𝐼

 

+ (
(1 + 𝜎)−𝜏

𝜎
−
(1 + 𝜎)−𝑇1

𝜎
) (𝑀𝑛𝑡𝐶𝑇1

𝑁𝐿 +𝑀𝑛𝑡𝐶𝑇1
𝐸𝐿)

⏟                              
𝐼𝐼 

+
(1 + 𝜎)−𝑇

𝜎
(𝑀𝑛𝑡𝐶𝑇

𝑁𝐿 +𝑀𝑛𝑡𝐶𝑇
𝐸𝐿)

⏟                    
𝐼𝐼𝐼+𝐼𝑉 

 

(123b) 

𝑇𝐸𝐶 = (
1

𝜎
−
(1 + 𝜎)−𝜏

𝜎
) (𝐸𝑔𝑦𝐶𝜏

𝑁𝐺 + 𝐸𝑔𝑦𝐶𝜏
𝐸𝐺) 

⏟                          
𝐼

 

+ (
(1 + 𝜎)−𝜏

𝜎
−
(1 + 𝜎)−𝑇1

𝜎
) (𝐸𝑔𝑦𝐶𝑇1

𝑁𝐺 + 𝐸𝑔𝑦𝐶𝑇1
𝐸𝐺)

⏟                                
𝐼𝐼 

+
(1 + 𝜎)−𝑇

𝜎
(𝐸𝑔𝑦𝐶𝑇

𝑁𝐺 + 𝐸𝑔𝑦𝐶𝑇
𝐸𝐺)

⏟                    
𝐼𝐼𝐼+𝐼𝑉 

 

(124b) 
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𝑇𝐸𝑁𝑆𝐶 = (
1

𝜎
−
(1 + 𝜎)−𝜏

𝜎
)𝐸𝑁𝑆𝐶𝜏 

⏟                
𝐼

 + (
(1 + 𝜎)−𝜏

𝜎
−
(1 + 𝜎)−𝑇1

𝜎
)𝐸𝑁𝑆𝐶𝑇1 

⏟                      
𝐼𝐼 

+
(1 + 𝜎)−𝑇

𝜎
𝐸𝑁𝑆𝐶𝑇 ⏟            

𝐼𝐼𝐼+𝐼𝑉 

 

(125b) 

𝑇𝐸𝑚𝑖𝐶 = (
1

𝜎
−
(1 + 𝜎)−𝜏

𝜎
) (𝐸𝑚𝑖𝐶𝜏

𝑁𝐺 + 𝐸𝑚𝑖𝐶𝜏
𝐸𝐺) 

⏟                          
𝐼

 

+ (
(1 + 𝜎)−𝜏

𝜎
−
(1 + 𝜎)−𝑇1

𝜎
) (𝐸𝑚𝑖𝐶𝑇1

𝑁𝐺 + 𝐸𝑚𝑖𝐶𝑇1
𝐸𝐺)

⏟                              
𝐼𝐼 

+
(1 + 𝜎)−𝑇

𝜎
(𝐸𝑚𝑖𝐶𝑇

𝑁𝐺 + 𝐸𝑚𝑖𝐶𝑇
𝐸𝐺)

⏟                    
𝐼𝐼𝐼+𝐼𝑉 

 

(126b) 

𝐼𝑛𝑣𝐶𝑡
𝑁𝐿 = ∑ ∑

𝜎(1 + 𝜎)𝐿𝑇𝑎,𝑘

(1 + 𝜎)𝐿𝑇𝑎,𝑘 − 1
𝐼𝐶𝑎,𝑘
𝑁1(𝑧𝑎,𝑘,𝑡

𝑁1 − 𝑧𝑎,𝑘,𝑡−1
𝑁1 )

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

 ; ∀𝑡 ∈ {𝜏, 𝑇1}

𝐼𝑛𝑣𝐶𝑇
𝑁𝐿 = ∑ 𝜌𝑠

𝑠∈𝛺𝑠

∑ ∑
𝜎(1 + 𝜎)𝐿𝑇𝑎,𝑘

(1 + 𝜎)𝐿𝑇𝑎,𝑘 − 1
𝐼𝐶𝑎,𝑘
𝑁1(𝑧′𝑎,𝑘,𝑠,𝑇

𝑁1
− 𝑧′𝑎,𝑘,𝑠,𝑇1

𝑁1
)

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

+ ∑ 𝜌𝑠
𝑠∈𝛺𝑠

∑ ∑
𝜎(1 + 𝜎)𝐿𝑇𝑎,𝑘

(1 + 𝜎)𝐿𝑇𝑎,𝑘 − 1
𝐼𝐶𝑝,𝑘
𝑁2(𝑦𝑎,𝑘,𝑠,𝑇

𝑁2 − 𝑦𝑎,𝑘,𝑠,𝑇1
𝑁2 ) 

𝑎∈𝛺𝑎𝑘∈𝛺𝑘 }
 
 
 

 
 
 

 

 𝑧𝑝,𝑘,0 = 0 ; 𝑦𝑝,𝑘,𝑛,𝑠,𝑇1
𝑁2 = 0 

(127b) 

𝑀𝑛𝑡𝐶𝜏
𝑁𝐿 = ∑ ∑ 𝑀𝐶𝑎,𝑘

𝑁1

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

𝑧𝑎,𝑘,𝑛,𝜏
𝑁1  ;   ∀𝜏 ∈ {𝜏, 𝑇1}

𝑀𝑛𝑡𝐶𝑇
𝑁𝐿 = ∑ 𝜌𝑠

𝑠∈𝛺𝑠

∑ ∑ 𝑀𝐶𝑎,𝑘
𝑁1

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

𝑧′𝑎,𝑘,𝑠,𝑇
𝑁1

+ ∑ 𝜌𝑠
𝑠∈𝛺𝑠

∑ ∑ 𝑀𝐶𝑎,𝑘
𝑁2

𝑎∈𝛺𝑎𝑘∈𝛺𝑘

𝑦𝑎,𝑘,𝑠,𝑇
𝑁2

}
 
 

 
 

 (128b) 

𝑀𝑛𝑡𝐶𝑡
𝐸𝐿 = ∑ 𝑀𝐶𝑘

𝐸𝐿

𝑘∈𝛺𝐸𝐿

𝑢1𝑘,𝑡
𝐸𝐿  ;   ∀𝑡 ∈ {𝜏, 𝑇1}

𝑀𝑛𝑡𝐶𝑇
𝐸𝐿 = ∑ 𝜌𝑠 ∑ 𝑀𝐶𝑘

𝐸𝐿𝑢2𝑘,𝑠,𝑇
𝐸𝐿

𝑘∈𝛺𝐸𝐿𝑠∈𝛺𝑠 }
 
 

 
 

  (129b) 

𝐸𝑔𝑦𝐶𝑡
𝑁𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝑂𝐶𝑔,𝑠,𝑤,𝑡

𝑁𝐺

𝑔∈𝛺𝑁𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

;   ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (130b) 

𝐸𝑔𝑦𝐶𝑡
𝐸𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝑂𝐶𝑔,𝑠,𝑤,𝑡

𝐸𝐺

𝑔∈𝛺𝐸𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

 ;  ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (131b) 

𝐸𝑁𝑆𝐶𝑡 = ∑ 𝜌𝑠∑𝜋𝑤 ∑ 𝜋𝑤Λ𝑠,𝑤,𝑡𝑝𝑖,𝑠,𝑤,𝑡
𝑤∈𝛺𝑤𝑖∈𝛺𝑖𝑠∈𝛺𝑠

  ;  ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (132b) 
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𝐸𝑚𝑖𝐶𝑡
𝐺 = 𝐸𝑚𝑖𝐶𝑡

𝑁𝐺 + 𝐸𝑚𝑖𝐶𝑡
𝐸𝐺    ;  ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (133b) 

𝐸𝑚𝑖𝐶𝑡
𝑁𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝑁𝐺𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝑁𝐺

𝑔∈𝛺𝑁𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

 ;  ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (134b) 

𝐸𝑚𝑖𝐶𝑡
𝐸𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝐸𝐺𝑃𝐺𝑔,𝑠,𝑤,𝑡

𝐸𝐺

𝑔∈𝛺𝐸𝐺𝑤∈𝛺𝑤𝑠∈𝛺𝑠

;  ∀𝑡 ∈ {𝜏, 𝑇1, 𝑇} (135b) 

5.3. ROLLING WINDOW OF PLANNING 

Power systems is subject to continuous changes and high level uncertainty. Because of 

this, it is almost impossible to exhaustively characterize its possible evolutions only in 

the form of a predefined storylines (scenarios). Moreover, the number of scenarios 

should be limited to ensure tractability. Yet, expansion decisions have to cope with the 

envitable changes in system evolutions. To adapt the decisions to a changing 

environment, the concept of a rolling window of planning is introduced in this thesis. 

This lays a quasi-dynamic planning framework which is attractive in intuitive terms 

because it recognizes the fact that the plan will be effectively readjusted as new data 

becomes available and tries to accommodate the effect of uncertainty by constantly 

readjusting the probabilities of realization of the scenarios. This is demonstrated in 

Figure 5.4. This planning framework uses the three-stage planning model developed in 

the preceding section. Figure 5.4 (a) shows the possible future scenario trajectories 

{𝑠1, 𝑠2, … , 𝑠𝑛} with three scenario spots along the planning horizon, in the three-stage 

and two-period planning framework. Whereas, Figure 5.4 (b) illustrates the decision 

structure  in each stage, showing a single investment decision zi common for all 

scenarios in the first period, and scenario-dependent decisions{𝑦1, 𝑦2, … , 𝑦𝑛} in the 

second period. Figure 5.4 (c) depicts new possible future scenario trajectories 

{𝑠1
∗, 𝑠2

∗, … , 𝑠𝑛
∗} after new information is unveiled or made available. A new TEP 

optimization is carried out accounting for these changes, and as illustrated in Figure 5.4 

(d), a new set of decisions are obtained. Note that Figures 5.4 (c) and (d) both 

demonstrate the moving window of planning. 

It is understood that as time passes by, the scenarios unfold or new information becomes 

available that changes the probabilities of realizations of the scenarios under 

consideration. Either way, the planning can be repeated by rolling the planning window 

and new investment decisions are obtained. This process can be repeated as many times 

as desired. In doing so, there will be some overlaps in the planning windows, and as in 

the decisions. Of particular interest in this case are the decisions made in the first stage.
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Fig. 5. 4 A schematic representation of the quasi-dynamic planning framework 
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In general, the quasi-dynamic planning framework helps to explore new expansion 

solutions as a result of dramatic changes in system evolution and/or obtain possible 

adjustments to a previously made expansion strategy for minor changes in the 

storylines. Experience shows that the first-stage expansion decisions are not built all 

overnight (i.e. at the same time). Considering the current practice in construction of 

lines, the permit process can be shorter for some, longer for others or even indefinite for 

some “unlucky” ones. This gives the planner an opportunity to revise the decisions 

taken in the first stage of the preceding planning window by comparing them with the 

decisions in the current window. Based on this, he can make some adjustments to the 

lines planned in the previous window. For instance, the lines in common can be 

understood as robust and retained in the current planning process. On the other hand, 

part of the lines of the first stage decisions of the previous window may not appear in 

the current planning window which may be taken as a reason to cancel them. This 

process somehow emulates the dynamism involved in TEP. 

5.4. DESCRIPTION OF THE SOLUTION STRATEGY 

TEP is a naturally combinatorial optimization problem because it includes several 

discrete (binary or integer) investment decision variables, which often pose significant 

computational burden. When the size of the system is not large, available solvers can 

explore the combinatorial search space and find the best expansion topology within a 

reasonable simulation time. However, for large-scale network systems, this is not 

possible. Suppose a given system has 2000 candidate corridors for line investments. 

Assume we have 5 transmission technologies to select from for the investment in each 

corridor. This would result in a combinatorial search space of 2(5∗2000) possible 

combinations, which is “maddeningly” huge. Currently available MILP solvers may not 

be able to efficiently handle a problem of this magnitude; or else, this may take 

unacceptably long simulation times even if the simplest TEP model is used. Because of 

this, the resolution of such a complex combinatorial problem needs to be supported by 

heuristic methods, which is one of the main aims of this work. This thesis proposes an 

effective solution strategy involving a gradual reduction of the combinatorial solution 

search (CSS) space, and parallel computation, largely discussed in [15]. The main of 

this approach is to significantly enhance the tractability of the TEP problem. Further 

details and descriptions of the proposed solution strategy is presented as follows.  

The computational complexity of TEP is especially pronounced when the considered 

network is of a continental size, as this work aims to address, where one has to consider 

thousands of candidate lines in the expansion planning model.  

Potential candidate lines for an expansion strategy have been traditionally 

identified/selected based on expert knowledge. Thus, a short list containing this 

information has been often made available for carrying out TEP studies. Sometimes, the 

candidate list by experts is complemented using some heuristic procedures such as the 

copper sheet method [237] or economic indicators such as locational marginal prices 

[237], [238] and [239], etc. However, given the huge network size (continental), such 



 

127  
 

information is unfortunately not available. This means that one cannot rely on expert 

knowledge; instead, consider a lot of candidates to complete this missing information. 

In addition, using a huge list of candidates intorudces sufficient flexibility in the search 

for the most economical expansion strategy.  

Unfortunately, as mentioned earlier, increasing the number of candidate lines increases 

the CSS space, rendering significant burden to the solution process. In other words, 

given the network size and the huge number of candidates needed in the planning, the 

size of the optimization problem quickly increases and its computational complexity 

becomes beyond acceptable level. Unless the CSS space is sufficiently reduced, the 

resulting optimization can be intractable or demand an exceptionally huge 

computational effort. This makes it important to reduce the size of the problem without  

significantly compromising the quality (accuracy) of the solution. In light of this, the 

present work uses a successive decomposition technique to reduce the CSS space. The 

proposed solution strategy is schematically illustrated in Figure 5.5, summarizing the 

procedures followed.  

The technique works by decomposing the problem into a number of successive 

optimization phases as illustrated in Figure 5.5. Each phase uses the results of the 

previous one to reduce the search space. This reduction in complexity allows each phase 

to use more complex models with a similar computational load. Moreover, each 

optimization phase could be defined and solved as an independent problem; thus, 

allowing the use of specific decomposition techniques, or parallel computation 

whenever possible.  

Generally, as shown in Figure 5.5, this solution strategy can be understood as an 

approach that refines the large size of initial candidate list (ICL) by employing a 

mathematically simplified optimization model (in this case, MODELS I and II) before 

applying a more accurate and advanced optimization model (which in this case is 

MODEL III) to produce the final optimal investment decisions from the reduced 

candidate list (RCL), obtained by MODELS I and II. In effect, this approach 

signinificantly reduces the CSS space, facilitating the computational process.  
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Fig. 5. 5  An illustration of the search space reduction approach and parallel 

implementation 

In general, a significant computational gain is achieved by using this technique. This is 

because, on one hand, a relatively simplified optimization model (designated by 

MODEL I in Figure 5.5 and whose formulation can be found in Chapter 3 and [15]), is 

employed in the early phases before gradually switching to a more detailed and complex 

optimization models (designated as MODEL II and MODEL III). On the other hand, 

parallel computation is implemented wherever it is possible. In addition, MODEL I 

makes use of continuous investment variables which helps to further reduce the 

computation burden. Converting the naturally discrete investment variables into 

continuous ones might seem a coarse assumption but numerical results in Chapter 3 and 

[15] have demonstrated the effectiveness of this methodology. 

In the context of the developed TEP problem, the first phase involves deterministic 

problems as many as the number of scenarios that can be independently solved. In the 

second phase, the reduced candidate list is further refined by MODEL II which involves 

a fully stochastic optimization model with continuous investment decision variables. 

This is followed by a final stochastic optimization, based entirely on an improved DC 

network model, but this time, considering only the lines selected after Model II of the 

second phase. 

Since the foremost optimization phases assumes continuous investment variables, a set 

of investment decisions with fractional values is thus obtained for each scenario. A 

threshold is, therefore, set to limit the list of candidates that would be passed on to the 

second phase. The present work considers all candidates whose investment variables are 

different from zero after the optimization. And, these would be selected to eventually 
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form a reduced candidate list (RCL). This may rather seem very conservative 

assumption. Setting this threshold a little bit higher than zero as a selection criterion will 

hardly change the solution, rather it can help to further disregard lines with small 

investments, that are unlikely to appear in the final and optimal solution. 

In the final stage of the first stage, the solution sets of each scenario (i.e. those lines 

whose investment decision variables are greater than zero) are combined to obtain 

reduced set of candidates i.e. RCL.  In other words, for a candidate line to be considered 

in the RCL, the line should be selected at least in one of the scenarios i.e. its investment 

variable should be greater than zero; otherwise, it is rejected.  

The second phase has two stochastic optimization processes sequenced one after 

another (i.e. MODELS II and III). The difference between the two models is that 

MODEL II is formulated based on the hybrid or the relaxed DC TEP model (see in 

Chapter 3), which allow continuous investment decisions, while MODEL III is fully 

based on an improved DC TEP model, in which only discrete investment variables are 

feasible. The optimization process in MODEL II is carried out considering all the 

scenarios together but only taking into account the lines in RCL. This optimization 

results in an intermediate solution comprising some of the lines in RCL. MODEL II 

further reduces the search space because not all the lines in the RCL are selected for an 

expansion plan. Therefore, we can also use here the same threshold to get rid of the 

lines which do not appear in the solution after running MODEL II of the second phase.  

As a final step, the second optimization process is run with the intermediate solution as 

an input. This process finally obtains the required TEP solution.  

It should be noted that MODELS I and II can be based on the hybrid or relaxed DC TEP 

model described in Chapter 3 including network losses. The main property of the hybrid 

model is that it exempts candidate lines from obeying the second Kirchhoff’s law while 

the rest is the same as the DC network model in [240]. This property makes the hybrid 

model fit for the CSS space reduction process because it allows the use of continuous 

transmission investment variables. The relaxed DC TEP model (R-DCTEP), proposed 

in Chapter 3, also permits the use of continuous variables. This model fares better than 

the hybrid TEP model (HTEP) because flows in R-DCTEP are forced to obey the law of 

physics unlike in HTEP where reverse flows can occur in candidate lines. These issues, 

including numerical results (Tables 3.1—3.4 and Appendix D) are discussed in detail in 

Chapter 3. 

5.5. SUMMARY 

This chapter has presented the algebraic formulation of the stochastic TEP model in a 

multi-stage planning framework and considering multiple objectives including cost of 

operation and maintenance, emission, energy production, load shedding and line 

investments. The model is formulated in such a way that it combines mandatory short- 

to medium-term network expansion decisions with long-term (strategic) decisions both 

determined in the face of uncertainty. Another salient feature of the proposed model is 
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its account for the long-term impact of line investments on the overall system costs by 

means of econometric concepts. Since, a long-term TEP problem spans over 30 or more 

years, performing a yearly evaluation of the system operation and investment decisions 

throughout the planning horizon may render significant computational burden. Because 

of these reasons, a compact formulation, with fewer number of decision stages, is 

developed for large-scale TEP applications. The concept of rolling window of planning 

is also introduced to emulate the continuously changing evolution of the system. To 

address the combinatorial nature of such a problem, an effective solution strategy is 

described in full. The method works by decomposing the original problem into 

successive optimization phases, which use TEP models with increasing fidelity levels. 

This strategy dramatically reduces the combinatorial solution search space, which has a 

considerable influence on the solution process. 
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This chapter presents numerical results from case study on a reduced 1060-node 

European network system. The proposed methods and solution strategy are tested on this 

system.     

6.1. CHAPTER OVERVIEW 

Solving a TEP model of extra-large network systems (the European network, for 

example) under high level temporal and uncertainty scope is prohibitively expensive or 

it can even be impossible. In other words, network planning has to be carried out 

considering the enormous variability of expected system conditions (described as 

operation states or snapshots in the preceding chapters) and the high level uncertainty 

about the evolution of the system in the future (referred to as scenarios or storylines), 

demanding a new dimension of thinking to solve the resulting huge problem. 

Here, the techniques proposed in the previous chapters are employed to reduce the 

complexity of the problem and enhance tractability. First, the moment-based technique 

that has been intorudced in Chapter 4 and dissemintated to the research community in 

[15] to cluster the operational states based on their effects on expansion needs. Second, 

the uncertainty regarding the evolution of the system is represented by a number of 

scenarios (or storylines) unfolding as time passes by. The number of storylines is 

limited, often defined according to expert knowledge. For the sake of brevity, three 

storylines are defined and used in this case study as the aim of the analysis in this 

chapters is to demonstrate the versatility of the proposed models, methods and solution 

strategy. 

6.2. A 1060-NODE EUROPEAN SYSTEM 

The TEP model, uncertainty and variability management methods and the solution 

strategy developed in this thesis have been tested on a reduced European transmission 

system. The analysis of the test results is presented as follows.  

6.2.1. Data Preparation and Assumptions 

In order to run a TEP on a continental scale, a great deal of data is required. For 

instance, hourly series of demand and generator output for each technology should be 

available for each node. In addition, network parameters (including transfer capacity 

and electrical parameters) of both existing and candidate lines should be known. 

However, most of this information is not publicly available for obvious reasons. We 

explain in the following subsections how we have extracted the information and data 

needed for the case study from various sources, and the corresponding assumptions that 

we have made to complement some missing information. 

6.2.1.1. Base-case Network 

Electricity network is a backbone for any TEP optimization process. Apparently, the 

required information about the existing European network is not readily available. For 

this reason, we relied on Enipedia database (which is developed by TUDelft, accessible 
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via http://enipedia.tudelft.nl) to generate a European network model, used here in the 

case study. The database contains plenty of information, yet incomplete when it comes 

to electricity networks (especially in countries of the Northern and Eastern Europe, 

where we had to almost generate the networks from scratch). Also, we have observed 

that a lot of details are missing especially at lower resolutions. In other words, those 

lines which carry power over relatively longer distances seem to be sufficiently 

available, but some lines that connect local electricity demand or generator are largely 

missing in the database. Because of this, we have decided to aggregate the demand and 

generation capacities by the smallest socio-economic regions of Europe (officially 

referred to as NUTS-3). And, we have developed a network model considering only the 

interconnections among these regions (with voltage levels higher or equal to 220 and 

150 kV for AC and DC lines, respectively). The network connections within a NUTS-3 

region are simply disregarded regardless of the type or voltage level; instead, 

represented by a single node located at the geographical center of the considered region.  

 

Fig. 6. 1 Network model aggregated by NUTS-3 regions 
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The network model, developed based on the data extracted from Enipedia database, is 

not yet complete because a large number of important links are missing (especially in 

the Balkan and Nordic countries). The missing network links are recovered by visually 

inspecting the network extracted from Enipedia database, and painstakingly comparing 

it with the ENTSO-E’s paper map of European networks. 

Once we know the number and the type of lines interconnecting the NUTS-3 regions, 

we represent those lines with a corresponding equivalent line, whose transfer capacity 

and electrical parameters are approximated as follows. First, standard values of 

transmission line parameters [241] are used for each type and voltage level. In some 

cases, lines connecting two specific areas can be of the same type and voltage level but 

their lengths can be generally different. Therefore, the standard values need to be 

readjusted to account for the effect of distance. For instance, the transfer capacity of a 

line gets substantially lower when the distance increases. On the other hand, the 

impedance of a line increases with distance. With this in mind, the maximum transfer 

capacity of each of the lines connecting two areas is determined, the sum of which gives 

the total (maximum) transfer capacity between the two given areas. This can be 

understood as the transfer capacity of an artificial line connecting the two areas. 

However, because of N-1 security criterion, the actual transfer capacity is often far less 

than the arithmetic sum. As a proxy to this criterion, we deduct the maximum transfer 

capacity of a line among those connecting the two areas, and obtain the effective (net) 

transfer capacity between those areas. And, the corresponding electrical parameters 

(resistance and reactance, in particular) are determined by fitting a curve with known 

transfer capacities and electrical parameters. Figure 3 shows the final European network 

model developed this way. 

6.2.1.2. Generation Capacity by Technology 

The Enipedia database contains a huge list of generators of different technologies 

associated with their geographical coordinates and relevant tags such as generation 

capacity (in MW), annual MWh-production and emission intensity among others. 

Unfortunately, the database is not complete. Only a fraction of the generators have the 

generation capacity information, prompting us to devise other ways to recover the 

required data. For instance, the technology type (if missing in the database) of a 

generator is identified by its emission intensity because each technology has a 

comparatively unique carbon footprint. In addition, we have mapped the annual 

production values to capacities by using regression models to recover the generation 

capacities of the generators. The regression models (see Figure 6.2, for example) are 

technology-specific, and in some cases, are even different for the same technology 

situated in different countries. They are obtained from already known quantities.  
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Fig. 6. 2  An example of a linear relationship between MWh-production and MW-

generation capacity in nuclear technology. 

When the generation capacities of all generators is determined, obtaining the total 

generation capacity corresponding to each technology in each NUTS-3 areas (nodes) is 

straightforward. Since we know the location of each generator, we add the capacities of 

the generators of the same technology which are located within the same region. This 

way, we get the total generation capacity for each technology and region. 

6.2.1.3. Electricity Demand 

The total demand per country is available in the ENTSO-E website. We redistribute this 

aggregate demand among all nodes in the country in proportion to their respective 

population sizes. For instance, suppose country X has a total electricity demand of 100 

MW and four NUTS-3 regions, with its population distributed across the regions in the 

following proportion {40%, 30%, 20%, 10%}. For this country, the corresponding 

electricity demand consumed by the population in each region would be {40, 30, 20, 

10} MW, respectively.  

ENTSO-E also regularly publishes records of hourly electricity demand aggregated at 

country level. We use this information in order to generate the demand series at all the 

nodes in each country. This is needed because electricity consumption varies with 

geographical locations and weather patterns. For instance, geographically dispersed 

demand regimes, particularly those in different time horizons, are likely to be less 

correlated. Therefore, spatial demand correlations ranging from 0.9 to 1 are factored in 

to account for such spatial variations of electricity demand within each country. This 

can be achieved by generating different time-lagged demand series or using Cholesky 

factorization to create different demand series with a given correlation matrix, whose 

entries depend on the distance among the nodes. 

Electricity demand is assumed to grow by 1% annually, and this is kept the same for all 

scenarios. Accordingly, the demand growth at the end of first and second stages is10% 

and 30%, respectively. 

6.2.1.4. Time-Series of Wind and Solar Power Sources 
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Solar irradiance and wind speed data are the most useful components in determining 

wind and solar power outputs. Because of this, historical records of solar irradiances 

with different time resolutions are collected from multiple sources such as 

http://project.mesor.net/web/guest/solemi-free and http://www.soda-

is.com/eng/index.html. Similarly, wind speed data series have been collected from 

various sources. Majority of the meteorological websites in Europe have historical 

records of wind speed, spanning over several years, publicly available. Some missing 

information is complemented from the daily data provided by the European Climate 

Assessment and Dataset (ECA&D), available online on http://eca.knmi.nl/. In some 

cases, wind speed series for different years are used because the inter-annual wind speed 

variations are often very small (less than six percent of the mean [242]). 

It should be noted here that whenever wind speed or solar irradiance information is not 

available for a specific place or country, the corresponding series are either generated 

from approximate probability distributions (given that the corresponding mean values 

are known) or simply assumed to be the same as that of neighboring nodes, where this 

information is already known. This has been the case for some nodes in the Balkan and 

Baltic countries. 

Once the hourly series of wind speed and solar irradiance are known for each node in 

the test system, the corresponding power outputs are determined by plugging in these 

values in the respective power output expressions in [243] and [244]. 

6.2.1.5. Time-Series of Conventional Power Sources  

The conventional power sources considered here are nuclear, gas- and coal-fired power 

plants.  In order to generate the time-series for these technologies, we use a two–state 

model (online or offline) to represent the state of conventional power units based on 

their respective forced outage rates (FOR) , which range from 0.05 to 0.15 depending on 

the type of generator. This way, a discrete random binomial distribution is employed to 

generate availability patterns for different generators, obtained from their corresponding 

forced outage rates. 

6.2.1.6. Other Power Sources  

The time series of hydro power plants are generated based on the assumption that hydro 

power outputs are closely related with rainfall pattern (which can be found in national 

meteorological sites). In this way, the highest power output from hydropower plants is 

assumed to occur at the same time with the highest rainfall, and for lower rainfalls, 

production is reduced proportionally and kept at its minimum during dry seasons (i.e. 

when there is no rainfall). 

Power plants that generate electricity from municipal solid waste, biomass and 

geothermal at each node (if any) are assumed to be available year-round. 

6.2.2. Scenario Definitions 

http://project.mesor.net/web/guest/solemi-free
http://www.soda-is.com/eng/index.html
http://www.soda-is.com/eng/index.html
http://eca.knmi.nl/
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The process of defining scenarios is in itself a very challenging task. A large number of 

scenarios are often required to fully explore the plausible future states. For the sake of 

simplicity, we only use three scenarios in the EU-1060 node system. These scenarios 

are characterized by large-scale power production from either wind in the Northern 

Europe, where a large portion comes from the North Sea area, distributed renewable 

energy (mainly, wind and solar), or solar resources in the MENA and Southern Europe. 

From now on, we refer the above scenarios as North-Wind, Distributed-RES, and 

South-Solar, respectively.  

6.2.2.1. North-Wind Scenario 

This scenario can be considered as a pro-wind scenario. By the end of the first stage, a 

35 GW of wind power is assumed to be generated from the North Sea, West Coast and 

Baltic Sea areas. This amount is injected at 88 strongly connected nodes bordering these 

areas. It is distributed among the nodes in proportion to their corresponding average 

wind speeds. Another 15 GW of wind power is distributed among all the nodes in the 

system proportionally to the primary energy source (i.e. average wind speed) and total 

area suitable for wind turbine installations in each region. Hence, the total wind capacity 

in the first stage is 50 GW. 

In the second stage, wind power with a total capacity of 200 GW is expected to be 

installed, 140 GW of which comes from the North Sea, West Coast and Baltic Sea 

areas. As in the first stage, this is assumed to be injected at the same nodes (i.e. the 88 

strongly connected nodes bordering these areas), distributed among the nodes in the 

same manner. The remaining 60 GW balance is distributed among all the nodes in the 

system in proportion to the average wind speed and total area suitable for wind turbine 

installations in each region. 

6.2.2.2. Distributed-RES Scenario 

The amount of generation capacities is assumed to be added in the first and the second 

stages is the same as in the North-Wind scenario. However, in this scenario, large-scale 

wind or solar installations is limited; instead, distributed generation of wind and solar 

power is favored. It is assumed that 30% (i.e. 15 GW and 60 GW in the first and the 

second stages, respectively) of the total power comes from a total of 53 sunny and 125 

windy regions identified across Europe, as in Figure 6.3. Equal amount of the 30% 

power is generated the wind and the solar sources. Again, distribution of the installed 

wind or solar among each set of nodes is made in proportion to the primary energy 

resource (either wind speed or solar radiation), and suitable areas for wind turbine or 

solar PV installations. The remaining balance (i.e. 70%) is redistributed among all 

nodes proportionally to the existing installed wind or solar power capacity at each node. 
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Fig. 6. 3 Hotspots for distributed solar (orange circle) and wind (blue circle) generation 

6.2.2.3. South-Solar Scenario 

This scenario is mainly characterized by large-scale solar power imports from MENA. 

The total amount of installed capacity is the same as in the above two scenarios (i.e. 50 

and 200 GW in the first and the second stages), of which 70% is to be imported from 

MENA via 10 nodes, selected based on proximity and connectivity strength criteria. The 

remaining balance is redistributed among all nodes according to existing installed solar 

power at each node. 

6.2.3. Candidate Lines For Expansion 

The candidate selection involves selecting corridors to be possibly reinforced, 

technology and its cost structure.  

6.2.3.1. Identifying Corridors to Be Reinforced 
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It is a daunting challenge to create an initial candidate pool for expansion at continental 

or inter-continental level. This is because, on one hand, from the transmission 

investment perspective, there are several technological options, which make the 

problem even more difficult. On the other hand, there is generally a lack of expert 

knowledge on the set of potential corridors to be investigated for future investments in 

such a big system. Because of this, some heuristic candidate selection methods have 

been used such as the copper sheet method in [237] and methods in [237] and [239] 

which makes use of marginal prices as economic indicators for the selection process of 

candidates. An extended and automatic version of the marginal prices –based candidate 

selection methods in [237] and [239]  is reported in [238]. Yet, it is likely that such 

methods eventually end up with a huge list, because, in such a big system, there can be 

many possibilities which satisfy the conditions for the selection. In any case, a 

sufficiently large set of candidates (potentially encompassing some existing and new 

corridors) are required for TEP optimization. For the sake of simplicity, we consider 

each corridor as a candidate for reinforcement, resulting in a total of 1654 candidate 

lines in existing corridors (which comprise AC and DC connections). In addition, ten 

new HVDC submarine connections (in new corridors) are included in the initial 

candidate list, bringing the total number in the initial candidate list to 1664. 

6.2.3.2. Cable-Overhead Proportion, Selecting Technology and Construction Cost 

Recent study shows that underground cables with 315 kV higher voltage levels 

constitute less than 5% of the total circuit length in Europe [245]. However, there is a 

general consensus that this will significantly change in the future (mainly caused by the 

lack of right of ways for overhead lines and increasing urbanization). Because of this, 

we assume that one fifth of a given line being added to the network in the first stage will 

be underground, and a 50% is assumed by the end of the second stage. The total 

installation cost of a line is calculated by taking these assumptions into account. It 

should be noted here that these assumptions do not take effect on undersea power 

transmissions, where it is assumed that only HVDC cables are the only viable options 

(particularly, for distances higher than 50 km).  

Nowadays, there are a number of proven transmission technology options. In this 

regard, selecting the most economically viable option is in itself a separate problem. In 

this work, we only focus on selected technologies. Of a special importance here is the 

DC technology. The share of DC connections (in terms of length) in modern power 

system networks is very small. This will, however, significantly change in the future 

because DC technology alleviates some of the technical limitations of AC lines [241]. 

For instance, it is generally accepted that HVDC technology is more attractive for bulk 

power transmission over longer distances than HVAC one. Concerning this, different 

references report different break-even distance ranges between HVDC and HVAC 

connections, mostly beyond 100 km. But it also depends on the amount of power to be 

transmitted. It is usually about 50 km for submarine cables and 400 km (in some cases, 

as low as 200 km) for overhead lines. We have used the cost structure of different 

transmission technologies given in [241] for our calculations and analyses. 
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To select an appropriate transmission technology in a given corridor, we have set a 

criteria based on the value of an investment decision variable after the first phase of the 

solution process, size of excess flows in that corridor (i.e. higher than the maximum 

capacity), and its length. This is summarized in Table 6.1 below. 

Table 6. 1 Transmission technology selection 

 

Investment decision 

variable after PHASE I 

Extra flows in a 

corridor after  

PHASE I (MW) 

Distance of 

corridor (km) 

Transmission 

technology 

1 4  3000
 

250  
600 kV HVDC 

bipolar 

2 1 and 4  
3000 and 

2000
 250  

500 kV HVDC 

bipolar 

3 1  
2000 and 

1000  
 

250 and 

150  

500 kV HVAC 

double circuit 

4 1  1000 and 500  
 

150  
400 kV HVAC 

double circuit 

5 1  3000
 

150  
400 kV HVAC 

Up to 4 circuits 

5 1  500
 

150  
400 kV HVAC 

double circuit 

 

6.3. OPTIMIZATION RESULTS AND DISCUSSION 

It should be noted that the optimization is carried out by a computing machine with Intel 

Xeon E5520 at 2.27 GHz frequency and with 32 GB RAM memory. First, using the 

moment-based technique clustering technique in [15], 8760 operation states (hourly 

snapshots) are reduced into 60 representative snapshots. Accordingly, we have obtained 

60 representative snapshots for each spot in the scenario tree shown in Figure 6.1. 

With these snapshots, the proposed solution methodology is tested on this system. The 

successive optimization process described earlier, is run starting with 1654 elements in 

the ICL. Consequently, in the first phase, which involves fully deterministic 

optimization based on the hybrid network model with continuous investment variables, 

the number of candidate lines is reduced from 1654 to 687. Moreover, this is further 

reduced to 640 using MODEL II of the second phase. With this reduced set of 

candidates and the ten proposed lines across new corridors as inputs (i.e. a total of 650 

candidate lines), the two-stage stochastic discrete optimization (i.e. MODEL III) is run 

and the final investments are obtained. It should be noted here that the same number of 

candidates are used in both stages. The solution time (i.e. the total CPU time that the 

whole optimization process took) was about 25 hours, which is rather small for such a 

complex problem. An attempt to run the Brute-force TEP optimization problem (i.e. 
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without the implementation of the search space reduction methodology) was not 

successful due to computational limitation.  

Regarding the resulting investment decisions, a total number of 331 are built in the first 

stage, approximately 11% of which are HVDC lines. This is shown in Figure 6.5. As 

mentioned earlier, these investments are considered to be good enough for all three 

scenarios. It is interesting to see that most of the biggest investments in the first stage 

are made across the borders of the European countries, where the main bottlenecks 

exist.  

 

Fig. 6. 4 First stage expansion results (shown in bold) 
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Fig. 6. 5 Second stage expansions in North-Wind scenario (shown in bold) 

Likewise, the investments corresponding to each scenario in the second stage are shown 

in Figures 6.5—6.7. The number of investments is 431, 349 and 423 in North-Wind, 

Distributed-RES and South-Solar scenarios, respectively. As expected, the number in 

each scenario here is a lot higher than in the first stage, especially in the North-Wind 

and South-Solar scenario. This is rather expected because large-scale renewable 

development prospects inevitably require huge network investments. On the other hand, 

we can observe that, with distributed generation, line investment requirements are much 

lower than in the case of highly dispersed large-scale renewable generations.  
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Fig. 6. 6 Second stage decisions in Distributed-RES scenario (shown in bold) 
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Fig. 6. 7 Second stage decisions in South-Solar scenario (in bold) 

Another interesting observation here that the scenarios have a lot of investment 

decisions in common. The North-Wind and South-Solar scenarios, in particular, seem to 

use the same corridors in the central Europe for transporting power either south or north 

direction, respectively. This is contrary to the perception that different scenarios result 

completely different investment strategies. In fact, there are some differences in the 

investment decisions of both scenarios. Especially in the Southern and Northern Europe, 

where the power for each comes from, there seems to be shift in investments from north 

to south or vice versa. 

Worth mentioning here is the substantial reduction in computation time. The reduction 

here is equivalent to a reduction of the combinatorial solution search space from 21654 

to 2640. This is indeed significant from computational scale point of view. 

6.4. SUMMARY 

Transmission expansion planning at continental level is a very dimensionally huge and 

mathematically complex combinatorial problem which makes it difficult to solve by 

currently available computational machines. Obtaining optimal expansion solutions 

within a reasonable computation time is vital. To enhance tractability, we have 
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employed a solution strategy which effectively reduces the combinatorial solution 

search space, as a result, leading to a faster computation without significantly 

compromising the optimality of the solution. It is based on simple yet effective heuristic 

solution method which works by decomposing the complex problem into successive 

phases and making use of parallel implementation. It employs relatively fast 

optimization models whose formulations are based on the hybrid network model in 

order to refine a huge initial candidate list before switching on to a more accurate 

optimization model based on the DC network model. The results of the case study show 

the effectiveness of the proposed solution strategy in considerably reducing the 

computational complexity.  
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This final chapter concludes the research carried out in this dissertation by 

summarizing its main contributions point-by-point, and drawing some conclusions from 

the case studies carried out throughout this thesis. In addition, this thesis points out the 

limitations of the developed approaches and suggests possible extensions as future 

work. 

7.1. MAIN CONTRIBUTIONS 

The contributions of this thesis include methodological and modeling aspects of the 

TEP problem. The main contributions are briefly summarized as bullet points below. It 

should however be noted that this summary does not include the contributions 

associated with the improvements and the modifications made to existing mathematical 

modeling techniques of TEP formulations. These are clearly stated in the body of this 

thesis. 

 From a modeling perspective,  

o A new TEP model has been proposed for a long-term planning of 

transmission infrastructures under uncertainty with a multi-stage decision 

framework and considering a high level renewable integration. One of 

the salient features of  the developed TEP model is its ability to capture 

the long-term impact of network investments on system costs. This has 

been partly published in [15]. 

o Recognizing the significant impacts network losses have on TEP 

solutions (which are often neglected in most TEP studies because of 

computational limitations), new linear losses models have been 

proposed, some of which strike the right balance between accuracy and 

computational effort, particularly, in the context of medium to long-term 

TEP in large-scale power systems accommodating high level variable 

energy sources. An extensive analysis on this issue has been published in 

[13]. 

 From a methodological perspective,  

o A new clustering methodology is introduced to effectively and efficiently 

handle uncertainty and variability pertaining to the problem at hand. This 

contribution has been published in [14]. 

o The entire TEP problem is formulated as a stochastic mixed-integer 

linear programming optimization, an exact solution method, for which 

efficient solvers are available and an optimal solution is guaranteed in a 

finite simulation time. 

o In order to significantly reduce the combinatorial solution search space 

and hence facilitate the computation, a new heuristic solution strategy 

has been devised. This approach works by primarily decomposing the 

problem into successive optimization phases.  

 The extensive experimental and theoretical analysis made throughout the thesis. 

7.2. CONCLUSIONS 
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A long-term expansion planning of large-scale transmission grids under high level 

renewable integrations has unprecedentedly huge uncertainty, temporal and geographical 

scope as well as the network size. Framed in this context, the main objective of this 

research has been to develop mathematical optimization models, uncertainty and 

variability management methods, and solution strategies that support the complex 

decision-making process of such a problem. To this end, first, a new TEP model has been 

developed which has the following salient features: 

 It is a MILP optimization model, based on an improved “DC” network model, for 

which efficient off-the-shelf solvers are available and optimality is guaranteed 

within finite simulation time.  

 It captures the uncertainty and/or variability of various uncertain parameters 

inherent to a long-term TEP problem with renewable generation via stochastic 

programming. 

  It has a weighted sum of relevant costs such as emission, operation and 

maintenance, reliability and investment costs as its main objective. 

 It provides a realistic measure of all cost terms during and after the planning 

horizon so that a proper comparison of the different costs is estabilished. 

 Its formulation is based on a two-period planning framework which helps to 

combine/determine short- to medium-term decisions and long-term (strategic, 

adaptive) expansion decisions. 

Second, a new methodology has been proposed in order to effectively manage the 

uncertainty and variability introduced by different uncertain parameters such as RES 

output and demand. A significant part of this uncertainty and variability is handled by a 

sufficiently large set of operational snapshots, which can be understood as generation-

demand patterns of power systems that lead to OPF patterns in the transmission 

network. A large set of snapshots, each one with an estimated probability, is then used 

to evaluate and optimize the network expansion. In long-term TEP of large networks, 

the number of operational states must be reduced. Hence, the proposed methodology 

reduces these snapshots by means of clustering, without relevant loss of accuracy from 

the TEP solution perspective, by selecting classification variables is used in the 

clustering process. The proposed method relies on the following main ideas: 

 The snapshots are first characterized by their OPF patterns (the effects) instead 

of the generation-demand patterns (the causes). This is simply because the 

network expansion is the target problem, and losses and congestions are the 

drivers to network investments. 

 The OPF patterns are then classified using a “moments” technique, a well-

known approach in Optical Pattern Recognition problems. 

Third, to address the combinatorial nature of such a problem, an effective solution 

strategy has been proposed. This solution method works by decomposing the original 
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problem into successive optimization phases, which use TEP models with increasing 

fidelity levels. The proposed strategy dramatically reduces the combinatorial solution 

search space, which has a considerable influence on the solution process. 

The developed models, methods and solution strategies has been tested on small-, 

medium- and large-scale network systems. In addition, to further validate the proposed 

TEP model, methods and solution strategies, an aggregated 1060-node European 

network system has been employed as a case study considering multiple RES 

development scenarios. Generally, numerical results show the versatility of the 

proposed TEP model.  Moreover, the proposed methods and solution strategy are very 

effective in facilitating the solution process, and result in a significant reduction in 

computational effort while fairly maintaining optimality of the expansion solutions. 

7.3. DIRECTIONS FOR FUTURE WORKS 

The research work presented in this thesis has certain limitations, most of which can be 

translated into future directions of research. The methods, models and strategies 

developed in this thesis can be further extended or improved to support future works. 

Some of the shortcomings are listed below.  

Transmission Technology Selection: There are several matured transmission 

technologies each having different physical and economic characterstics. Further 

technological advances in R&D will further add new transmission technologies that are 

expected to mature in due time. In addition, transmission lines have very long economic 

lifetimes, and the TEP problem is characterized by strong economies of scale. From the 

AC context, for instance, the cost per MW per km decreases with increasing voltage 

level. This, in the current work, is handled by associating a binary variable for each 

technology. However, this considerably increases the complexity of the problem, by 

implication increasing the computational requirement. From this perspective, devising a 

methodology (possibly heuristic) that can effectively determine which transmission 

technology to consider for investment and which to discard, at the same time reflecting 

the uncertainty in the maturity level of the transmission technology.  

TEP from the Smart-grid Context: The present work focuses mainly on the 

development of models, methods and tools to handle wide-area and long-term grid 

expansion planning under high penetration level of variable energy sources. The effect 

of smart-grid technolgies large-scale deferrable loads, demand side management, energy 

storage technologies (centralized and/or distributed) and others on the network 

investment needs as well as on the system is not analyze. These technologies, along 

with substantial network expansions, are expected to be deployed in the system to 

support large-scale integration of variable energy sources, minimize the impact of high 

level variability and unpredictability of such energy sources, maintain system integrity, 

stability and power quality. Hence, this line of research can be very interesting for 

future works.  
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Integrated approach: The coordination of different sectors of energy infrastructure 

expansion and developments is becoming increasingly imprortant. Because of this, 

developing a multi-sectoral optimization problem is of paramount importance. It would 

be interesting to analyze this from the perspectives of coordinating different forms of 

energy consumption, improving overall system efficiency, enhancing energy security, 

optimally integrating and exploiting RESs, reducing GHGs, etc. 
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APPENDIX A: DERIVATION OF THE FLOW-BASED ACTIVE AND REACTIVE POWER 

LOSSES 

The derivations related to the losses equations in (40) and (41) are provided here. 

Squaring both sides of the flow equations in (23) and (24) and dividing each by 𝑉𝑛𝑜𝑚
2 , 

we get: 

(𝑃𝑘)
2

𝑉𝑛𝑜𝑚
2 ≈ [(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘]

2

⏟          
𝐼

− 2 ∗ 𝑔𝑘𝑉𝑛𝑜𝑚𝑏𝑘𝜃𝑘 ∗ (∆𝑉𝑖 − ∆𝑉𝑗)⏟                  
𝐼𝐼

+ (𝑉𝑛𝑜𝑚𝑏𝑘𝜃𝑘)
2  (A.1) 

(𝑄𝑘)
2

𝑉𝑛𝑜𝑚
2 ≈ [(∆𝑉𝑖 − ∆𝑉𝑗)𝑏𝑘]

2

⏟          
𝐼

+ 2 ∗ 𝑏𝑘𝑉𝑛𝑜𝑚𝑔𝑘𝜃𝑘 ∗ (∆𝑉𝑖 − ∆𝑉𝑗)⏟                  
𝐼𝐼

+ (𝑉𝑛𝑜𝑚𝑔𝑘𝜃𝑘)
2  (A.2) 

Since the variables 𝜃𝑘, ∆𝑉𝑖 and ∆𝑉𝑗 are very small, the second order terms (i.e. bilinear 

products of these variables) can be regarded to be close to zero. Hence, the first and the 

second terms in (A.1) and (A.2) can be neglected, leading to the following expressions, 

respectively. 

(𝑃𝑘)
2

𝑉𝑛𝑜𝑚
2 ≈ (𝑉𝑛𝑜𝑚𝑏𝑘𝜃𝑘)

2       (A.3) 

(𝑄𝑘)
2

𝑉𝑛𝑜𝑚
2 ≈ (𝑉𝑛𝑜𝑚𝑔𝑘𝜃𝑘)

2       (A.4) 

Multiplying both sides of (A.3) and (A.4) by 𝑟𝑘 and adding both sides gives: 

 𝑟𝑘 (
𝑃𝑘

𝑉𝑛𝑜𝑚
)
2

+ 𝑟𝑘 (
𝑄𝑘

𝑉𝑛𝑜𝑚
)
2

≈ 𝑟𝑘(𝑉𝑛𝑜𝑚𝑏𝑘𝜃𝑘)
2 + 𝑟𝑘(𝑉𝑛𝑜𝑚𝑔𝑘𝜃𝑘)

2 (A.5) 

After rearranging Equation (A.5), we get: 

𝑟𝑘(𝑃𝑘
2 + 𝑄𝑘

2)/𝑉𝑛𝑜𝑚
2 ≈ 𝑔𝑘(𝑉𝑛𝑜𝑚𝜃𝑘)

2𝑟𝑘 (
(𝑏𝑘)

2

𝑔𝑘
+ 𝑔𝑘)   (A.6) 

One can easily verify that 𝑟𝑘 (
(𝑏𝑘)

2

𝑔𝑘
+ 𝑔𝑘) = 1, reducing Equation (A.6) to: 

𝑟𝑘(𝑃𝑘
2 + 𝑄𝑘

2)/𝑉𝑛𝑜𝑚
2 ≈ 𝑔𝑘(𝑉𝑛𝑜𝑚𝜃𝑘)

2                       (A.7) 

Recall that the right hand side of (A.7) corresponds to the active power losses 

expression in (40), which proves the derivation. The flow-based reactive power losses in 

(41) are derived in a similar way. Multiplying both sides of Equations (A.3) and (A.4) 

by 𝑥𝑘 instead of 𝑟𝑘, adding both sides and rearranging the resulting equation leads to: 

𝑟𝑘(𝑃𝑘
2 + 𝑄𝑘

2)/𝑉𝑛𝑜𝑚
2 ≈ −𝑏𝑘𝑉𝑛𝑜𝑚

2 𝜃𝑘
2𝑥𝑘[−𝑏𝑘 + (𝑔𝑘)

2/(−𝑏𝑘)]  (A.8) 

Note that, in Equation (A.8), 𝑥𝑘[−𝑏𝑘 + (𝑔𝑘)
2/(−𝑏𝑘)] = 1. Hence, the equation reduces 

to:  
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𝑟𝑘(𝑃𝑘
2 + 𝑄𝑘

2)/𝑉𝑛𝑜𝑚
2 ≈ −𝑏𝑘𝑉𝑛𝑜𝑚

2 𝜃𝑘
2     (A.9) 

And, observe that the right hand side of Equation (A.9) is equal to the reactive losses 

expression in (41). 
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APPENDIX B: MULTI-LOAD LEVEL TEP MODELS 

For quick reference, this section presents compact forms of the lossy TEP models 

described in Chapter 3. The objective function in Equation (B.1) is common for all 

models. 

min
𝑧𝑘,𝑡,𝑃𝐺𝑔,𝑏,𝑡,𝑝𝑖,𝑏,𝑡

𝑍     

= ∑∑(1 + 𝑟)−𝑡
𝑟(1 + 𝑟)𝐿𝑇𝑘

(1 + 𝑖)𝐿𝑇𝑘 − 1
𝑧𝑘,𝑡𝐼𝐶𝑘/𝑟

𝑘𝑡

+∑∑∑(1+ 𝑟)−𝑡Δ𝑏𝑃𝐺𝑔,𝑏,𝑡𝜆𝑔
𝑏𝑔𝑡⏟                    

𝐼

+∑∑(1 + 𝑟)−1Δ𝑏𝑃𝐺𝑔,𝑏,𝑡𝜆𝑔/𝑟

𝑏𝑔⏟                    
𝐼𝐼

+∑∑∑(1+ 𝑟)−𝑡Δ𝑏𝑝𝑖,𝑏,𝑡𝛬

𝑏𝑔𝑡⏟                  
𝐼

+∑∑∑(1+ 𝑟)−1Δ𝑏𝑝𝑖,𝑏,𝑡𝛬/𝑟

𝑏𝑔𝑡⏟                    
𝐼𝐼

 

(B.1) 

 

𝑉𝑖,𝑏 = 𝑉𝑛𝑜𝑚 + ∆𝑉𝑖,𝑏 , 𝑤ℎ𝑒𝑟𝑒 ∆𝑉𝑚𝑖𝑛 ≤ ∆𝑉𝑖,𝑏 ≤ ∆𝑉
𝑚𝑎𝑥 

|𝑃𝑘,𝑏 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑏 − ∆𝑉𝑗,𝑏)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑏 )}| ≤ 𝑀𝑃𝑘(1 − 𝑢𝑘) 

|𝑄𝑘,𝑏 − {−𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑏 − ∆𝑉𝑗,𝑏)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘,𝑏}| ≤ 𝑀𝑄𝑘(1 − 𝑢𝑘) 

|𝑃𝑘,𝑏 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑏 − ∆𝑉𝑗,𝑏)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑏}| ≤ 𝑀𝑃𝑘(1 − 𝑧𝑘) 

|𝑄𝑘,𝑏 − {−𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑏 − ∆𝑉𝑗,𝑏)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘,𝑏}| ≤ 𝑀𝑄𝑘(1 − 𝑧𝑘) 

𝑃𝑘,𝑏
2 +𝑄𝑘,𝑏

2 ≤ 𝑢𝑘(𝑆𝑘,𝑚𝑎𝑥)
2
 

𝑃𝑘,𝑏
2 + 𝑄𝑘,𝑏

2 ≤ 𝑧𝑘(𝑆𝑘,𝑚𝑎𝑥)
2
 

𝑃𝐿𝑘,𝑏 = 𝑟𝑘{𝑃𝑘,𝑏
2 + 𝑄𝑘,𝑏

2 }/𝑉𝑛𝑜𝑚
2  

𝑄𝐿𝑘,𝑏 = 𝑥𝑘{𝑃𝑘,𝑏
2 + 𝑄𝑘,𝑏

2 }/𝑉𝑛𝑜𝑚
2  

𝑃𝑘,𝑏 = 𝑃𝑘,𝑏
+ − 𝑃𝑘,𝑏

− → |𝑃𝑘,𝑏| = 𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

−  

𝑄𝑘,𝑏 = 𝑄𝑘,𝑏
+ − 𝑄𝑘,𝑏

− → |𝑄𝑘,𝑏| = 𝑄𝑘,𝑏
+ + 𝑄𝑘,𝑏

−  

𝑃𝑘,𝑏
2 =∑𝛼𝑘,𝑏,𝑙Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

− =∑Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1
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𝑄𝑘,𝑏
2 =∑𝛽𝑘,𝑏,𝑙Δ𝑞𝑘,𝑏,𝑙

𝐿

𝑙=1

 

𝑄𝑘,𝑏
+ + 𝑄𝑘,𝑏

− =∑Δ𝑞𝑘,𝑏,𝑙

𝐿

𝑙=1

 

Δ𝑝𝑘,𝑏,𝑙 ≤ 𝑃𝑘
𝑚𝑎𝑥 𝐿⁄ ;  Δ𝑞𝑘,𝑏,𝑙 ≤ 𝑄𝑘

𝑚𝑎𝑥/𝐿 

Δ𝑝𝑘,𝑏,𝑙+1 ≤ Δ𝑝𝑘,𝑏,𝑙 ;  𝛥𝑞𝑘,𝑏,𝑙+1 ≤ 𝛥𝑞𝑘,𝑏,𝑙 

∑𝑃𝑘,𝑏
𝑘∈𝑖

+∑𝑃𝐺𝑔,𝑏
𝑔∈𝑖

+ 𝑝𝑖,𝑏 −∑𝑃𝐷𝑑,𝑏
𝑑∈𝑖

+ 0.5∑𝑃𝐿𝑘,𝑏
𝑘∈𝑖

= 0 

∑𝑄𝑘,𝑏
𝑘∈𝑖

+∑𝑄𝐺𝑔,𝑏
𝑔∈𝑖

+ 𝑞𝑖,𝑏 −∑𝑄𝐷𝑑,𝑏
𝑑∈𝑖

+ 0.5∑𝑄𝐿𝑘,𝑏
𝑘∈𝑖

= 0 

𝑢𝑔𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔,𝑏 ≤ 𝑢𝑔𝑃𝐺𝑔,𝑚𝑎𝑥 

𝑢𝑔𝑄𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑄𝐺𝑔,𝑏 ≤ 𝑢𝑔𝑄𝐺𝑔,𝑚𝑎𝑥 

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑏 ≤ 𝜃𝑚𝑎𝑥 

𝑉𝑟𝑒𝑓 = 𝑉𝑛𝑜𝑚 ;  𝜃𝑟𝑒𝑓 = 0 

𝛼𝑘,𝑏,𝑙 = 𝛽𝑘,𝑏,𝑙 = (2𝑙 − 1) 𝑆𝑘
𝑚𝑎𝑥 𝐿⁄  

|𝑃𝑘,𝑏 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝑢𝑘𝜃𝑘,𝑏| ≤ 𝑀𝑘(1 − 𝑢𝑘);  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘 

|𝑃𝑘,𝑏 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝑧𝑘𝜃𝑘,𝑏| ≤ 𝑀𝑘(1 − 𝑧𝑘) ;  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘 

|𝑃𝑘,𝑏| + 0.5𝑃𝐿𝑘,𝑏 ≤ 𝑢𝑘𝑆𝑘,max   

|𝑃𝑘,𝑏| + 0.5𝑃𝐿𝑘,𝑏 ≤ 𝑧𝑘𝑆𝑘,max   

∑𝑃𝑘,𝑏
𝑘∈𝑖

+∑𝑃𝐺𝑔,𝑏
𝑔∈𝑖

+ 𝑝𝑖,𝑏 −∑𝑃𝐷𝑑,𝑏
𝑑∈𝑖

+ 0.5∑𝑃𝐿𝑘,𝑏
𝑘∈𝑖

= 0 

𝑢𝑔𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔,𝑏 ≤ 𝑢𝑔𝑃𝐺𝑔,𝑚𝑎𝑥 

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑏 ≤ 𝜃𝑚𝑎𝑥;  𝜃𝑟𝑒𝑓 = 0 

𝑃𝐿𝑘,𝑏 = 𝑟𝑘𝑃𝑘,𝑏
2 /𝑉𝑛𝑜𝑚

2  

𝑃𝑘,𝑏 = 𝑃𝑘,𝑏
+ − 𝑃𝑘,𝑏

− → |𝑃𝑘,𝑏| = 𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

−  

𝑃𝑘,𝑏
2 =∑𝛼𝑘,𝑏,𝑙Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

− =∑Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

Δ𝑝𝑘,𝑏,𝑙 ≤ 𝑆𝑘
𝑚𝑎𝑥 𝐿⁄   ;   Δ𝑝𝑘,𝑏,𝑙+1 ≤ Δ𝑝𝑘,𝑏,𝑙  ;   𝛼𝑘,𝑏,𝑙 = (2𝑙 − 1) 𝑆𝑘

𝑚𝑎𝑥 𝐿⁄  

DCTEP 

𝑉𝑖,𝑏 = 𝑉𝑛𝑜𝑚 + ∆𝑉𝑖,𝑏 , 𝑤ℎ𝑒𝑟𝑒 ∆𝑉𝑚𝑖𝑛 ≤ ∆𝑉𝑖,𝑏 ≤ ∆𝑉
𝑚𝑎𝑥 

|𝑃𝑘,𝑏 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑏 − ∆𝑉𝑗,𝑏)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑏 )}| ≤ 𝑀𝑃𝑘(1 − 𝑢𝑘) 
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|𝑃𝑘,𝑏 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑏 − ∆𝑉𝑗,𝑏)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑏}| ≤ 𝑀𝑃𝑘(1 − 𝑧𝑘) 

|𝑃𝑘,𝑏| + 0.5𝑃𝐿𝑘,𝑏 ≤ 𝑢𝑘𝑆𝑘,max   

|𝑃𝑘,𝑏| + 0.5𝑃𝐿𝑘,𝑏 ≤ 𝑧𝑘𝑆𝑘,max   

∑𝑃𝑘,𝑏
𝑘∈𝑖

+∑𝑃𝐺𝑔,𝑏
𝑔∈𝑖

+ 𝑝𝑖,𝑏 −∑𝑃𝐷𝑑,𝑏
𝑑∈𝑖

+ 0.5∑𝑃𝐿𝑘,𝑏
𝑘∈𝑖

= 0 

𝑢𝑔𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔,𝑏 ≤ 𝑢𝑔𝑃𝐺𝑔,𝑚𝑎𝑥 

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑏 ≤ 𝜃𝑚𝑎𝑥;  𝜃𝑟𝑒𝑓 = 0 

𝑃𝐿𝑘,𝑏 = 𝑟𝑘𝑃𝑘,𝑏
2 /𝑉𝑛𝑜𝑚

2  

𝑃𝑘,𝑏 = 𝑃𝑘,𝑏
+ − 𝑃𝑘,𝑏

− → |𝑃𝑘,𝑏| = 𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

−  

𝑃𝑘,𝑏
2 =∑𝛼𝑘,𝑏,𝑙Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

− =∑Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

Δ𝑝𝑘,𝑏,𝑙 ≤ 𝑆𝑘
𝑚𝑎𝑥 𝐿⁄   ;   Δ𝑝𝑘,𝑏,𝑙+1 ≤ Δ𝑝𝑘,𝑏,𝑙  ;   𝛼𝑘,𝑏,𝑙 = (2𝑙 − 1) 𝑆𝑘

𝑚𝑎𝑥 𝐿⁄  

  

|𝑃𝑘,𝑏 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝑢𝑘𝜃𝑘,𝑏| ≤ 𝑀𝑘(1 − 𝑢𝑘);  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘 

𝑃𝑘 = −𝑉𝑛𝑜𝑚
2 𝑏𝑘(𝜙1,𝑘,𝑏

2 − 𝜙2,𝑘,𝑏
2 ) ;  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 =

1

𝑥𝑘
 

𝜙1,𝑘,𝑏 =
𝑧𝑘 + 𝜃𝑘,𝑏

2
    ;      𝜙2,𝑘,𝑏 =

𝑧𝑘 − 𝜃𝑘,𝑏
2

 

0 ≤ 𝑧𝑘 ≤ 𝑧𝑘,max 

𝑧𝑘,min + 𝜃𝑘,𝑚𝑖𝑛
2

≤ 𝜙1,𝑘,𝑏 ≤
𝑧𝑘,max + 𝜃𝑘,𝑚𝑎𝑥

2
 

𝑧𝑘,min − 𝜃𝑘,𝑚𝑎𝑥
2

≤ 𝜙2,𝑘,𝑏 ≤
𝑧𝑘,max − 𝜃𝑘,𝑚𝑖𝑛

2
 

|𝑃𝑘,𝑏| + 0.5𝑃𝐿𝑘,𝑏 ≤ 𝑢𝑘𝑆𝑘,max   

|𝑃𝑘,𝑏| + 0.5𝑃𝐿𝑘,𝑏 ≤ 𝑧𝑘𝑆𝑘,max   

𝑃𝐿𝑘,𝑏 = 𝑟𝑘𝑃𝑘,𝑏
2 /𝑉𝑛𝑜𝑚

2  

𝑃𝑘,𝑏 = 𝑃𝑘,𝑏
+ − 𝑃𝑘,𝑏

− → |𝑃𝑘,𝑏| = 𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

−  

𝑃𝑘,𝑏
2 =∑𝛼𝑘,𝑏,𝑙Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

− =∑Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1
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Δ𝑝𝑘,𝑏,𝑙 ≤ 𝑃𝑘
𝑚𝑎𝑥 𝐿⁄   ;   Δ𝑝𝑘,𝑏,𝑙+1 ≤ Δ𝑝𝑘,𝑏,𝑙 

∑𝑃𝑘,𝑏
𝑘∈𝑖

+∑𝑃𝐺𝑔,𝑏
𝑔∈𝑖

+ 𝑝𝑖,𝑏 −∑𝑃𝐷𝑑,𝑏
𝑑∈𝑖

+ 0.5∑𝑃𝐿𝑘,𝑏
𝑘∈𝑖

= 0 

𝑢𝑔𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔,𝑏 ≤ 𝑢𝑔𝑃𝐺𝑔,𝑚𝑎𝑥 

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑏 ≤ 𝜃𝑚𝑎𝑥;  𝜃𝑟𝑒𝑓 = 0 

𝜙1,𝑘,𝑏 =
𝑧𝑘 + 𝜃𝑘,𝑏

2
  ;    𝜙2,𝑘,𝑏 =

𝑧𝑘 − 𝜃𝑘,𝑏
2

 

𝜙1,𝑘,𝑏 = 𝜙1𝑘,𝑏
+ − 𝜙1,𝑘,𝑏

− → |𝜙1,𝑘,𝑏| = 𝜙1,𝑘,𝑏
+ + 𝜙1,𝑘,𝑏

−  

𝜙1,𝑘,𝑏
2 =∑𝛼𝑘,𝑏,𝑙Δ𝜙1,𝑘,𝑏,𝑙

𝐿

𝑙=1

 

𝜙1,𝑘,𝑏
+ + 𝜙1,𝑘,𝑏

− =∑Δ𝜙1,𝑘,𝑏,𝑙

𝐿

𝑙=1

 

Δ𝜙1,𝑘,𝑏,𝑙 ≤ (𝑧𝑘
𝑚𝑎𝑥 + 𝜃𝑘

𝑚𝑎𝑥) (2𝐿)⁄   ;   Δ𝜙1,𝑘,𝑏,𝑙 ≥ Δ𝜙1,𝑘,𝑏,𝑙+1 

𝜙2,𝑘,𝑏 = 𝜙2𝑘,𝑏
+ − 𝜙2,𝑘,𝑏

− → |𝜙2,𝑘,𝑏| = 𝜙2,𝑘,𝑏
+ + 𝜙2,𝑘,𝑏

−  

𝜙2,𝑘,𝑏
2 =∑𝛼𝑘,𝑏,𝑙Δ𝜙2,𝑘,𝑏,𝑙

𝐿

𝑙=1

 

𝜙2,𝑘,𝑏
+ + 𝜙2,𝑘,𝑏

− =∑Δ𝜙2,𝑘,𝑏,𝑙

𝐿

𝑙=1

 

Δ𝜙2,𝑘,𝑏,𝑙 ≤ (𝑧𝑘
𝑚𝑎𝑥 − 𝜃𝑘

𝑚𝑖𝑛) (2𝐿)⁄   ;   Δ𝜙2,𝑘,𝑏,𝑙 ≥ Δ𝜙2,𝑘,𝑏,𝑙+1 

|𝑃𝑘,𝑏 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝑢𝑘𝜃𝑘,𝑏| ≤ 𝑀𝑘(1 − 𝑢𝑘);  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘 

|𝑃𝑘,𝑏| + 0.5𝑃𝐿𝑘,𝑏 ≤ 𝑢𝑘𝑆𝑘,max   

|𝑃𝑘,𝑏| + 0.5𝑃𝐿𝑘,𝑏 ≤ 𝑧𝑘𝑆𝑘,max   

∑𝑃𝑘,𝑏
𝑘∈𝑖

+∑𝑃𝐺𝑔,𝑏
𝑔∈𝑖

+ 𝑝𝑖,𝑏 −∑𝑃𝐷𝑑,𝑏
𝑑∈𝑖

+ 0.5∑𝑃𝐿𝑘,𝑏
𝑘∈𝑖

= 0 

𝑢𝑔𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔,𝑏 ≤ 𝑢𝑔𝑃𝐺𝑔,𝑚𝑎𝑥 

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑏 ≤ 𝜃𝑚𝑎𝑥;  𝜃𝑟𝑒𝑓 = 0 

𝑃𝐿𝑘,𝑏 = 𝑟𝑘𝑃𝑘,𝑏
2 /𝑉𝑛𝑜𝑚

2  

𝑃𝑘,𝑏 = 𝑃𝑘,𝑏
+ − 𝑃𝑘,𝑏

− → |𝑃𝑘,𝑏| = 𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

−  

𝑃𝑘,𝑏
2 =∑𝛼𝑘,𝑏,𝑙Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

− =∑Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1
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Δ𝑝𝑘,𝑏,𝑙 ≤ 𝑆𝑘
𝑚𝑎𝑥 𝐿⁄   ;   Δ𝑝𝑘,𝑏,𝑙+1 ≤ Δ𝑝𝑘,𝑏,𝑙  ;   𝛼𝑘,𝑏,𝑙 = (2𝑙 − 1) 𝑆𝑘

𝑚𝑎𝑥 𝐿⁄  

|𝑃𝑘,𝑏| + 0.5𝑃𝐿𝑘,𝑏 ≤ 𝑢𝑘𝑆𝑘,max   

|𝑃𝑘,𝑏| + 0.5𝑃𝐿𝑘,𝑏 ≤ 𝑧𝑘𝑆𝑘,max   

∑𝑃𝑘,𝑏
𝑘∈𝑖

+∑𝑃𝐺𝑔,𝑏
𝑔∈𝑖

+ 𝑝𝑖,𝑏 −∑𝑃𝐷𝑑,𝑏
𝑑∈𝑖

+ 0.5∑𝑃𝐿𝑘,𝑏
𝑘∈𝑖

= 0 

𝑢𝑔𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔,𝑏 ≤ 𝑢𝑔𝑃𝐺𝑔,𝑚𝑎𝑥 

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑏 ≤ 𝜃𝑚𝑎𝑥;  𝜃𝑟𝑒𝑓 = 0 

𝑃𝐿𝑘,𝑏 = 𝑟𝑘𝑃𝑘,𝑏
2 /𝑉𝑛𝑜𝑚

2  

𝑃𝑘,𝑏 = 𝑃𝑘,𝑏
+ − 𝑃𝑘,𝑏

− → |𝑃𝑘,𝑏| = 𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

−  

𝑃𝑘,𝑏
2 =∑𝛼𝑘,𝑏,𝑙Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

− =∑Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

Δ𝑝𝑘,𝑏,𝑙 ≤ 𝑆𝑘
𝑚𝑎𝑥 𝐿⁄   ;   Δ𝑝𝑘,𝑏,𝑙+1 ≤ Δ𝑝𝑘,𝑏,𝑙  ;   𝛼𝑘,𝑏,𝑙 = (2𝑙 − 1) 𝑆𝑘

𝑚𝑎𝑥 𝐿⁄  

PTEP* 

𝑃𝑘,𝑏 + 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝑢𝑘𝜃𝑘,𝑏 = 0;  𝑤ℎ𝑒𝑟𝑒 − 𝑏𝑘 = 1/𝑥𝑘 

∑𝑃𝑘,𝑏
𝑘∈𝑖

+∑𝑃𝐺𝑔,𝑏
𝑔∈𝑖

+ 𝑝𝑖,𝑏 −∑𝑃𝐷𝑑,𝑏
𝑑∈𝑖

+ 0.5∑𝑃𝐿𝑘,𝑏
𝑘∈𝑖

= 0 

𝑢𝑔𝑃𝐺𝑔,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔,𝑏 ≤ 𝑢𝑔𝑃𝐺𝑔,𝑚𝑎𝑥 

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑏 ≤ 𝜃𝑚𝑎𝑥;  𝜃𝑟𝑒𝑓 = 0 

𝑃𝐿𝑘,𝑏 = 𝑟𝑘𝑃𝑘,𝑏
2 /𝑉𝑛𝑜𝑚

2  

𝑃𝑘,𝑏 = 𝑃𝑘,𝑏
+ − 𝑃𝑘,𝑏

− → |𝑃𝑘,𝑏| = 𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

−  

𝑃𝑘,𝑏
2 =∑𝛼𝑘,𝑏,𝑙Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

𝑃𝑘,𝑏
+ + 𝑃𝑘,𝑏

− =∑Δ𝑝𝑘,𝑏,𝑙

𝐿

𝑙=1

 

Δ𝑝𝑘,𝑏,𝑙 ≤ 𝑆𝑘
𝑚𝑎𝑥 𝐿⁄   ;   Δ𝑝𝑘,𝑏,𝑙+1 ≤ Δ𝑝𝑘,𝑏,𝑙  ;   𝛼𝑘,𝑏,𝑙 = (2𝑙 − 1) 𝑆𝑘

𝑚𝑎𝑥 𝐿⁄  

CSTEP* 

* This model can also be formulated from models other than the DCTEP. 
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APPENDIX C: INPUT DATA 

The data for the test systems used in the analysis throughout the thesis are provided 

here. Base power in all cases is 100 MVA. 

C. 1. Garver’s 6-bus System 

Table C. 1 Garver’s 6-bus data 

Generator data 

Node 

PGmax 

(MW) 

PGmin 

(MW) 

QGmax 

(MVAr) 

QGmin 

(MVAr) 

Marginal cost 

(€/MWh) 

1 150 0 65 -65 30 

3 360 0 150 -150 40 

6 600 0 200 -200 5 

      Load data 

Node PDmax (MW) QDmax (MW) 

  1 80 16 

   2 240 48 

   3 40 8 

   4 160 32 

   5 240 48 

   6 0 0 

   

      Existing lines data 

    From To r (pu) x (pu) Smax (MVA) 

1 2 0.1 0.4 100 

 1 4 0.15 0.6 80 

 1 5 0.05 0.2 100 

 2 3 0.05 0.2 100 

 2 4 0.1 0.4 100 

 3 5 0.05 0.2 100 

 

      Candidate lines data 

   

From To r (pu) x (pu) 

Smax 

(MVA) IC (M€) 

1 2 0.1 0.4 100 40 

1 4 0.15 0.6 80 60 

1 5 0.05 0.2 100 20 

2 4 0.1 0.4 100 40 

1 3 0.09 0.38 100 38 

1 6 0.17 0.68 70 68 

2 5 0.08 0.31 100 31 

2 6 0.08 0.3 100 3 
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2 3 0.05 0.2 100 20 

3 4 0.15 0.59 82 59 

3 5 0.05 0.2 100 20 

3 6 0.12 0.48 100 48 

4 5 0.16 0.63 75 63 

4 6 0.08 0.3 100 30 

5 6 0.15 0.61 78 61 

 

C. 2. IEEE 24-bus System (Base power 100 MVA) 
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Fig. C. 1 Single line diagram of IEEE 24-bus test system 
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Table C. 2 IEEE 24-bus data 

Generator data 

   

Node PGmax (MW) PGmin (MW) 

QGmax 

(MVAr) 

QGmin 

(MVAr) 

Marginal cost 

(€/MWh) 

1 192 62.4 80 -80 16 

2 192 62.4 80 -80 16 

7 300 75 180 -180 43 

13 591 207 240 -240 48 

15 215 66.3 110 -110 58 

16 155 54.3 80 -80 12 

18 400 100 200 -200 4 

21 400 100 200 -200 4 

22 300 60 96 -96 0 

23 660 248.6 310 -310 12 

4 1500 0 0 0 0 

17 1000 0 0 0 0 

      Demand data 

   Node PDmax (MW) QDmax (MW) 

  1 108 22 

   2 97 20 

   3 180 37 

   4 74 15 

   5 71 14 

   6 136 28 

   7 125 25 

   8 171 35 

   9 175 36 

   10 195 40 

   13 265 54 

   14 194 39 

   15 317 64 

   16 100 20 

   18 333 68 

   19 181 37 

   20 128 26 

    

Existing lines data 

From To r (pu) x (pu) Smax (MVA)  

1 2 0.0026 0.0139 175  

1 3 0.0546 0.2112 175  

1 5 0.0218 0.0845 175  
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2 4 0.0328 0.1267 175  

2 6 0.0497 0.192 175  

3 9 0.0308 0.119 175  

3 24 0.0023 0.0839 400  

4 9 0.0268 0.1037 175  

5 10 0.0228 0.0883 175  

6 10 0.0139 0.0605 175  

7 8 0.0159 0.0614 175  

8 9 0.0427 0.1651 175  

8 10 0.0427 0.1651 175  

9 11 0.0023 0.0839 400  

9 12 0.0023 0.0839 400  

10 11 0.0023 0.0839 400  

10 12 0.0023 0.0839 400  

11 13 0.0061 0.0476 500  

11 14 0.0054 0.0418 500  

12 13 0.0061 0.0476 500  

12 23 0.0124 0.0966 500  

13 23 0.0111 0.0865 500  

14 16 0.005 0.0389 500  

15 16 0.0022 0.0173 500  

15 21 0.0027 0.029 1000  

15 24 0.0067 0.0519 500  

16 17 0.0033 0.0259 500  

16 19 0.003 0.0231 500  

17 18 0.0018 0.0144 500  

17 22 0.0135 0.1053 500  

18 21 0.0016 0.0129 1000  

19 20 0.0025 0.0198 1000  

20 23 0.0014 0.0108 1000  

21 22 0.0087 0.0678 500  

Candidate lines data 

From To r (pu) x (pu) Smax (MVA) IC (M€) 

1 2 0.0026 0.0139 175 0.03 

1 3 0.0546 0.2112 175 0.55 

1 5 0.0218 0.0845 175 0.22 

2 4 0.0328 0.1267 175 0.33 

2 6 0.0497 0.192 175 0.5 

3 9 0.0308 0.119 175 0.31 

3 24 0.0023 0.0839 400 0.2 

4 9 0.0268 0.1037 175 0.27 

5 10 0.0228 0.0883 175 0.23 
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6 10 0.0139 0.0605 175 0.16 

7 8 0.0159 0.0614 175 0.16 

8 9 0.0427 0.1651 175 0.43 

8 10 0.0427 0.1651 175 0.43 

9 11 0.0023 0.0839 400 0.2 

9 12 0.0023 0.0839 400 0.2 

10 11 0.0023 0.0839 400 0.2 

10 12 0.0023 0.0839 400 0.2 

11 13 0.0061 0.0476 500 0.33 

11 14 0.0054 0.0418 500 0.29 

12 13 0.0061 0.0476 500 0.33 

12 23 0.0124 0.0966 500 0.67 

13 23 0.0111 0.0865 500 0.6 

14 16 0.005 0.0389 500 0.27 

15 16 0.0022 0.0173 500 0.12 

15 21 0.0027 0.029 1000 0.68 

15 24 0.0067 0.0519 500 0.36 

16 17 0.0033 0.0259 500 0.18 

16 19 0.003 0.0231 500 0.16 

17 18 0.0018 0.0144 500 0.1 

17 22 0.0135 0.1053 500 0.73 

18 21 0.0016 0.0129 1000 0.36 

19 20 0.0025 0.0198 1000 0.55 

20 23 0.0014 0.0108 1000 0.3 

21 22 0.0087 0.0678 500 0.47 

1 8 0.0348 0.1344 175 0.35 

2 8 0.0328 0.1267 175 0.33 

6 7 0.0497 0.192 175 0.5 

13 14 0.0057 0.0447 500 0.62 

14 23 0.008 0.062 500 0.86 

16 23 0.0105 0.0822 500 1.14 

19 23 0.0078 0.0606 500 0.84 

 

C. 3. IEEE 118-bus System (Base power 100 MVA) 
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Fig. C. 2 Single line diagram of IEEE 118-bus test system 
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Table C. 3 IEEE 118-bus network data 

Network data 

From To r (pu) x (pu) Smax (MVA) IC (M€) 

1 2 0.0303 0.0999 115 18 

1 3 0.0129 0.0424 115 7.6 

4 5 0.0018 0.008 400 1.8 

3 5 0.0241 0.108 115 16.2 

5 6 0.0119 0.054 115 9.7 

6 7 0.0046 0.0208 115 4.7 

8 9 0.0024 0.0305 400 5.5 

8 5 0 0.0267 400 6 

9 10 0.0026 0.0322 400 5.8 

4 11 0.0209 0.0688 115 12.4 

5 11 0.0203 0.0682 115 12.3 

11 12 0.006 0.0196 115 4.4 

2 12 0.0187 0.0616 115 11.1 

3 12 0.0484 0.16 115 24 

7 12 0.0086 0.034 115 6.1 

11 13 0.0223 0.0731 115 13.2 

12 14 0.0215 0.0707 115 12.7 

13 15 0.0744 0.2444 115 36.7 

14 15 0.0595 0.195 115 29.3 

12 16 0.0212 0.0834 115 15 

15 17 0.0132 0.0437 400 7.9 

16 17 0.0454 0.1801 115 27 

17 18 0.0123 0.0505 115 9.1 

18 19 0.0112 0.0493 115 8.9 

19 20 0.0252 0.117 115 17.6 

15 19 0.012 0.0394 115 7.1 

20 21 0.0183 0.0849 115 15.3 

21 22 0.0209 0.097 115 17.5 

22 23 0.0342 0.159 115 23.9 

23 24 0.0135 0.0492 115 8.9 

23 25 0.0156 0.08 400 14.4 

26 25 0 0.0382 400 6.9 

25 27 0.0318 0.163 400 24.5 

27 28 0.0191 0.0855 115 15.4 

28 29 0.0237 0.0943 115 17 

30 17 0 0.0388 400 7 

8 30 0.0043 0.0504 115 9.1 

26 30 0.008 0.086 400 15.5 

17 31 0.0474 0.1563 115 23.4 
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29 31 0.0108 0.0331 115 6 

23 32 0.0317 0.1153 115 17.3 

31 32 0.0298 0.0985 115 17.7 

27 32 0.0229 0.0755 115 13.6 

15 33 0.038 0.1244 115 18.7 

19 34 0.0752 0.247 115 37.1 

35 36 0.0022 0.0102 115 2.3 

35 37 0.011 0.0497 115 8.9 

33 37 0.0415 0.142 115 21.3 

34 36 0.0087 0.0268 115 6 

34 37 0.0026 0.0094 400 2.1 

38 37 0 0.0375 400 6.8 

37 39 0.0321 0.106 115 15.9 

37 40 0.0593 0.168 115 25.2 

30 38 0.0046 0.054 115 9.7 

39 40 0.0184 0.0605 115 10.9 

40 41 0.0145 0.0487 115 8.8 

40 42 0.0555 0.183 115 27.5 

41 42 0.041 0.135 115 20.3 

43 44 0.0608 0.2454 115 36.8 

34 43 0.0413 0.1681 115 25.2 

44 45 0.0224 0.0901 115 16.2 

45 46 0.04 0.1356 115 20.3 

46 47 0.038 0.127 115 19.1 

46 48 0.0601 0.189 115 28.4 

47 49 0.0191 0.0625 115 11.3 

42 49 0.0358 0.1615 230 97 

45 49 0.0684 0.186 115 27.9 

48 49 0.0179 0.0505 115 9.1 

49 50 0.0267 0.0752 115 13.5 

49 51 0.0486 0.137 115 20.6 

51 52 0.0203 0.0588 115 10.6 

52 53 0.0405 0.1635 115 24.5 

53 54 0.0263 0.122 115 18.3 

49 54 0.0365 0.1445 230 87.1 

54 55 0.0169 0.0707 115 12.7 

54 56 0.0028 0.0096 115 2.1 

55 56 0.0049 0.0151 115 3.4 

56 57 0.0343 0.0966 115 17.4 

50 57 0.0474 0.134 115 20.1 

56 58 0.0343 0.0966 115 17.4 

51 58 0.0255 0.0719 115 12.9 

54 59 0.0503 0.2293 115 34.4 
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56 59 0.0413 0.1255 230 73.6 

55 59 0.0474 0.2158 115 32.4 

59 60 0.0317 0.145 115 21.8 

59 61 0.0328 0.15 115 22.5 

60 61 0.0026 0.0135 400 3 

60 62 0.0123 0.0561 115 10.1 

61 62 0.0082 0.0376 115 6.8 

63 59 0 0.0386 400 6.9 

63 64 0.0017 0.02 400 4.5 

64 61 0 0.0268 400 6 

38 65 0.009 0.0986 400 17.7 

64 65 0.0027 0.0302 400 5.4 

49 66 0.009 0.0456 800 33 

62 66 0.0482 0.218 115 32.7 

62 67 0.0258 0.117 115 17.6 

65 66 0 0.037 400 6.7 

66 67 0.0224 0.1015 115 15.2 

65 68 0.0014 0.016 400 3.6 

47 69 0.0844 0.2778 115 41.7 

49 69 0.0985 0.324 115 48.6 

68 69 0 0.037 400 6.7 

69 70 0.03 0.127 400 19.1 

24 70 0.0022 0.4115 115 61.7 

70 71 0.0088 0.0355 115 6.4 

24 72 0.0488 0.196 115 29.4 

71 72 0.0446 0.18 115 27 

71 73 0.0087 0.0454 115 8.2 

70 74 0.0401 0.1323 115 19.8 

70 75 0.0428 0.141 115 21.2 

69 75 0.0405 0.122 400 18.3 

74 75 0.0123 0.0406 115 7.3 

76 77 0.0444 0.148 115 22.2 

69 77 0.0309 0.101 115 15.2 

75 77 0.0601 0.1999 115 30 

77 78 0.0038 0.0124 115 2.8 

78 79 0.0055 0.0244 115 5.5 

77 80 0.0108 0.0332 800 24.5 

79 80 0.0156 0.0704 115 12.7 

68 81 0.0018 0.0202 400 4.5 

81 80 0 0.037 400 6.7 

77 82 0.0298 0.0853 115 15.4 

82 83 0.0112 0.0367 115 6.6 

83 84 0.0625 0.132 115 19.8 

83 85 0.043 0.148 115 22.2 
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84 85 0.0302 0.0641 115 11.5 

85 86 0.035 0.123 400 18.5 

86 87 0.0283 0.2074 400 31.1 

85 88 0.02 0.102 115 15.3 

85 89 0.0239 0.173 115 26 

88 89 0.0139 0.0712 400 12.8 

89 90 0.0163 0.0651 800 46.1 

90 91 0.0254 0.0836 115 15 

89 92 0.0079 0.0383 800 32.8 

91 92 0.0387 0.1272 115 19.1 

92 93 0.0258 0.0848 115 15.3 

92 94 0.0481 0.158 115 23.7 

93 94 0.0223 0.0732 115 13.2 

94 95 0.0132 0.0434 115 7.8 

80 96 0.0356 0.182 115 27.3 

82 96 0.0162 0.053 115 9.5 

94 96 0.0269 0.0869 115 15.6 

80 97 0.0183 0.0934 115 16.8 

80 98 0.0238 0.108 115 16.2 

80 99 0.0454 0.206 115 30.9 

92 100 0.0648 0.295 115 44.3 

94 100 0.0178 0.058 115 10.4 

95 96 0.0171 0.0547 115 9.8 

96 97 0.0173 0.0885 115 15.9 

98 100 0.0397 0.179 115 26.9 

99 100 0.018 0.0813 115 14.6 

100 101 0.0277 0.1262 115 18.9 

92 102 0.0123 0.0559 115 10.1 

101 102 0.0246 0.112 115 16.8 

100 103 0.016 0.0525 400 9.5 

100 104 0.0451 0.204 115 30.6 

103 104 0.0466 0.1584 115 23.8 

103 105 0.0535 0.1625 115 24.4 

100 106 0.0605 0.229 115 34.4 

104 105 0.0099 0.0378 115 6.8 

105 106 0.014 0.0547 115 9.8 

105 107 0.053 0.183 115 27.5 

105 108 0.0261 0.0703 115 12.7 

106 107 0.053 0.183 115 27.5 

108 109 0.0105 0.0288 115 6.5 

103 110 0.0391 0.1813 115 27.2 

109 110 0.0278 0.0762 115 13.7 

110 111 0.022 0.0755 115 13.6 

110 112 0.0247 0.064 115 11.5 
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17 113 0.0091 0.0301 115 5.4 

32 113 0.0615 0.203 400 30.5 

32 114 0.0135 0.0612 115 11 

27 115 0.0164 0.0741 115 13.3 

114 115 0.0023 0.0104 115 2.3 

68 116 0.0003 0.0041 400 0.9 

12 117 0.0329 0.14 115 21 

75 118 0.0145 0.0481 115 8.7 

76 118 0.0164 0.0544 115 9.8 
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APPENDIX D: SIMULATIONS RESULTS – 118-BUS CASE 

This section presents simulation results corresponding to the IEEE 118-bus case study. 

Table D. 1 Comparison of expansion decisions obtained by different TEP models – 118-

bus case 

Type 
Model Investment solution 

D
is

cr
et

e 

PTEP Lossy 34-43 (1), 43-44 (1), 44-45 (1), 82-83 (1), 85-86 (1), 86-87 (1) 

HTEP Lossy 
34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83 (1), 83-85 (1), 85-

86 (1), 86-87 (1) 

R-DCTEP 

Lossy 

34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83 (1), 83-85 (1), 85-

86 (1), 86-87 (1) 

DCTEP 

Lossy 

34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83 (1), 83-85 (1), 85-

86 (1), 86-87 (1) 

Lin ACTEP 

Lossy 

1-3 (1), 2-12 (1), 34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83 

(1), 83-85 (1), 85-86 (1), 86-87 (1) 

C
o
n
ti

n
u
o
u
s 

PTEP 

Lossy 

15-17 (0.2), 23-25 (0.1), 25-27 (0.1), 26-30(0.3), 34-37 (0.1), 34-

43 (0.7), 38-65 (0.1), 43-44 (1.0), 44-45 (1.0), 60-61 (0.1), 63-64 

(0.1), 64-65 (0.2),  65-68 (0.1),  68-81 (0.06), 69-70 (0.1), 69-75 

(0.1), 77-78 (0.2), 82-83 (0.4), 83-85 (0.2), 85-86 (0.6), 85-88 

(0.2), 86-87 (0.6), 100-103 (0.07) 

HTEP 

Lossy 

4-5 (0.02), 8-5 (0.07), 8-9 (0.07), 8-30 (0.2), 9-10 (0.07), 15-17 

(0.15), 23-25 (0.1), 25-27 (0.1), 26-30 (0.3), 30-17 (0.09), 34-37 

(0.1), 34-43 (0.8), 38-37 (0.4), 38-65 (0.1), 43-44 (1.0), 44-45 

(1.0), 60-61 (0.1), 63-59 (0.3), 60-64 (0.2), 64-65 (0.2), 65-66 

(0.1), 65-68 (0.1), 69-70 (0.1), 68-81 (0.1), 69-75 (0.1), 77-78 

(0.2), 82-83 (0.6), 83-85 (0.2), 85-86 (0.6), 85-88 (0.07), 86-87 

(0.6), 100-103 (0.07) 

R-DCTEP 

Lossy 

4-5 (0.02), 8-5 (0.07), 8-9 (0.07), 8-30 (0.2), 9-10 (0.07), 15-17 

(0.15), 23-25 (0.1), 25-27 (0.1), 26-27 (0.3), 30-17 (0.09), 34-37 

(0.1), 34-43 (0.8), 38-37 (0.4), 38-65 (0.1), 43-44 (1.0), 44-45 

(1.0), 60-61 (0.1), 63-59 (0.3), 60-64 (0.2), 64-65 (0.2), 65-66 

(0.1), 65-68 (0.1), 69-70 (0.1), 68-81 (0.1), 69-75 (0.1), 77-78 

(0.2), 82-83 (0.6), 83-85 (0.2), 85-86 (0.6), 85-88 (0.07), 86-87 

(0.6), 100-103 (0.07) 

 

Table D. 2 TEP model performances in terms of costs and simulation times—118-bus 

case  

Type Model 
Investment 

cost (€) 
Total cost (€) 

CPU time 

(s) 

Discrete 

PTEP Lossy 166531673.8 13787863085 48.173 

HTEP Lossy 197508547.7 13835854730 1452.432 

R-DCTEP Lossy 197508547.7 13835854730 1542.35 

DCTEP Lossy 197508547.7 13843756116 1928.329 

LinACTEP Lossy 198679473.5 13895952854 78495.506 

Continuous 
PTEP Lossy 162317520.7 13729793181 5.647 

HTEP Lossy 174961933.2 13774538987 10.467 
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R-DCTEP Lossy 174961933.2 13774538987 23.883 

 

 

Fig. D. 1 Comparison of losses at each load level computed by different models 118-bus 

case  

 

 

Fig. D. 2 Computational requirement of PTEP as a function of number of nodes and 

number of candidate lines 
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Fig. D. 3 Computational requirement of HTEP as a function of number of nodes and 

number of candidate lines 

 

 

Fig. D. 4 Computational requirement of R-DCTEP as a function of number of nodes and 

number of candidate lines 
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ATTRIBUTIONS 

The main set of computational tools employed in the presented research is the numerical 

decision support system jointly designated as STEP. These decision support models 

have been developed for this thesis and are documented mainly in Chapters 3-6, as well 

as the associated publications. Model code and all input parameters are freely available 

under CreativeCommons (CC) BY-SA 3.0 license, allowing free copies and 

redistribution of the material in any medium or format, as well as remixing, 

transforming, and building upon the material for any purpose, even commercially. The 

code can be requested directly from the author via email. STEP model is formulated and 

implemented in the General Algebraic Modeling System (GAMS©) BUILD 23.7-

24.1.2. For handling input and output data, all calculations were performed using 

Microsoft Excel©. The optimization problems were for the most part solved with the 

CPLEX™ 12.5.1 solver for linear programming (LP) problems. 

For more information about licensing and the public domain, please consider the CC 

homepage under: http://creativecommons.org/. 
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