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ABSTRACT IN ENGLISH LANGUAGE

Driven by economic growth, changing life-styles and increasing penetration of electric
vehicles, demand for electricity is continuously growing worldwide, and so are the
global concerns of climate change, sustainability and energy security. The current
energy production paradigm heavily depends on conventional energy sources i.e. fossil
fuels. This is unsustainable because these sources of energy are quickly running out,
leading to deep concerns of medium- and long-term energy security throughout the
world. In addition, the heavy dependence on fossil fuels for power generation in the
power industry has been substantially contributing to the increased level of greenhouse
gas emissions. Because of all these and other techno-economic as well as structural
issues, the electric energy industry is expected to undergo a paradigm shift with a
considerably increased level of renewables (mainly, variable energy sources such as
wind and solar), gradually replacing conventional power production sources. The scale
and the speed of integrating such sources of energy are of paramount importance to
effectively address the aforementioned concerns. As it is witnessed in recent years, wind
and solar power have been attracting large-scale investments in many countries,
especially in Europe. The favorable agreements of states in the recent climate
conference in Paris (COP21), along with other driving factors, will further accelerate the
renewable integration in power systems.

Renewable energy resources—RESs (wind and solar, in particular) are abundant almost
everywhere on earth despite the fact that they are widely distributed and their energy
intensities vastly differ from one place to another. Because of this, the global drive for
high level integration of such energy sources can be realized by undergoing heavy
investments in transmission infrastructures. In other words, transmission expansion
planning (TEP) has to be carried out over geographically wide and large-scale networks.
This helps to effectively accommodate the RESs and optimally exploit their benefits
while minimizing the side effects. However, the stochastic nature of most of the
renewable sources, along with the size of the network systems, results in a complex and
combinatorial optimization problem, requiring a huge computational effort. The
resulting problem can eventually become harder to solve, if not intractable. Thus, this
demands that the models and the tools pursued to be computationally very efficient and
reasonably accurate. At the same time, they should feature aspects that are believed to
play a non-negligible role in TEP. To this end, this thesis presents solution strategies,
tools and methods that collectively contribute to an effective and efficient resolution of
such a complex problem within a finite simulation time.

From a modeling perspective, firstly, a new formulation is proposed for a long-term
planning of transmission infrastructures under uncertainty with a multi-stage decision
framework and considering a high level renewable integration. Secondly, recognizing
the significant impacts network losses have on TEP solutions (which are often neglected
in most TEP studies because of computational limitations), this thesis contributes new
linear losses models, some of which strike the right balance between accuracy and



computational effort, particularly, in the context of medium to long-term TEP in large-
scale power systems accommodating high level variable energy sources.

The integration of variable energy sources in the power systems introduces vast
uncertainty and operational variability. This along with the uncertainty of electricity
demand and other sources of uncertainty makes such a problem more complex. Hence,
developing effective uncertainty and variability management tools is a very critical
issue, especially in terms of computational requirements. A significant part of this
uncertainty and variability is often handled by a set of operational states, here referred
to as “snapshots”, generation-demand patterns of power systems that lead to optimal
power flow (OPF) patterns in the transmission network. A large set of snapshots, each
one with an estimated probability, is then used to evaluate and optimize the network
expansion. In long-term TEP of large networks, the number of operational states must
be reduced. Hence, from a methodological perspective, this thesis shows how the
snapshot reduction can be achieved by means of clustering, without relevant loss of
accuracy, provided that a good selection of classification variables is used in the
clustering process. The proposed method relies on two ideas. First, the snapshots are
characterized by their OPF patterns (the effects) instead of the generation-demand
patterns (the causes). This is simply because the network expansion is the target
problem, and losses and congestions are the drivers to network investments. Second, the
OPF patterns are classified using a “moments” technique, a well-known approach in
Optical Pattern Recognition problems.

The entire TEP problem is kept as a stochastic mixed-integer linear programming (S-
MILP) optimization, an exact solution method. This helps one to use effective off-the-
shelf solvers and obtain expansion results within a finite simulation time, overall
enhancing problem tractability. Furthermore, in order to significantly reduce the
combinatorial solution search (CSS) space and hence facilitate the computation, a new
heuristic solution strategy is devised. This approach works by primarily decomposing
the problem into successive optimization phases. The foremost phases use relatively less
complex optimization models than the following ones. And, each phase uses the results
of the previous one. Hence, the main objective of this solution approach is to reduce the
combinatorial solution search space, which in turn enhances tractability. Each
optimization phase could be defined and solved as an independent problem, thus,
allowing the use of specific decomposition techniques, or parallel computation when
possible. A relevant feature of the solution strategy is that it combines both
deterministic and stochastic modeling techniques on a multi-stage modeling framework
with a rolling-window planning concept.

The planning horizon is divided into two sub-horizons: medium- and long-term, each
having multiple decision stages. The first one is characterized by a set of investments
which are good enough for all scenarios in the first sub-horizon while scenario-
dependent decisions are sought in the second one.
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The developed models, methods and solution strategies are tested on small-, medium-
and large-scale network systems. This thesis also present numerical results of an
aggregated 1060-node European network system obtained considering multiple RES
development scenarios. Generally, test results show the effectiveness of the proposed
TEP model, and the proposed methods and solution strategy are very effective in
facilitating the solution process, and contribute to a significant reduction in
computational effort while fairly maintaining optimality of the solutions.
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|. INTRODUCTION



This chapter gives a brief introduction to the research topic, describes the scope and
outlines the main as well as the specific objectives of this thesis. The thesis organization
and structure is also presented at the end of this chapter.

1.1. BACKGROUND

Most of the energy that we consume today, in one form or another, comes from
unsustainable energy sources. In particular, the electric industry is highly dependent on
fossil fuels for power production. This has led to a series of questions from energy
dependence and sustainability concerns to climate change issues, which are some of the
major drivers of renewable energy source (RES) integrations in many power systems
across the world. It is now widely recognized that integrating RESs in power systems
brings about a lot of economic, environmental, societal and technical benefits to all
stakeholders. Among the wide-range benefits of RESs is their significant contribution in
combating climate change and abating its dire consequences. Most RES technologies
(wind and solar PV, for instance) have very low carbon footprints, making them very
suitable for solving such emission-induced health and environmental problems. Hence,
integrating RESs in power systems partly replaces polluting (conventional) power
generation sources, resulting in a “cleaner” energy mix i.e. one with lower emission
levels.

The potential of RESs is colossal because, in principle, they can meet several times the
world demand. RESs such as wind, solar, hydro, biomass and geothermal can provide
sustainable energy services based on available resources in all parts of the world. The
transition to renewable energy based power systems tends to increase, while their costs
continuously decline as gas and oil prices continue to oscillate. In the last half century,
the demand for wind and solar energy systems has been continuously increasing,
experiencing a reduction in capital costs and generated electricity costs. There have
been continuous performance improvement and R&D undergoing in the sector in the
past decades. As a result, the prices of renewable energy and fossil fuels, as well as
social and environmental costs are to diverge in opposite directions. Economic and
political mechanisms are expected to massively support the wide spread of sustainable
markets for the rapid development of RESs. At this point, it is clear that the present and
future growth will occur mainly in renewable energy and in some natural gas-based
generation systems, and not common sources like coal or oil-fired power plants. The
progress of RESs can increase diversity in the electricity markets, contributing to obtain
long-term sustainable energy, helping to reduce local and global greenhouse gas (GHG)
emissions, promote attractive trade options to meet specific energy needs, and create
new economic growth opportunities.

With climate change, sustainability, energy security, continuously increasing demand
for electricity and socio-economic factors as the main drivers, the level of global RES
integration has been steadily growing during the past decades, as indicated in a 2015
report by the International Energy Agency (IEA) [1]. The report further shows that, in
2013 alone, an approximately 19.1% of global electric energy consumption came from



RESs, most of which was from hydropower [1], [2]. After several decades of efforts in
research and continuous development in RES, the yearly growth in the capacity of these
plants is becoming greater than the total investment capacity added in power plants
based on coal, natural gas and oil all combined together [3]. Nowadays, RESs have
reached a significant level of share in energy supply options, becoming one of the
prominent global alternative power supply sources. The latest global trends in
renewable energy investment status reports indicate that renewables represented a
58.5% of net additions to global power capacity in 2014, with significant growth in all
regions, which represents an estimated 27.7% of the world’s power generating capacity,
enough to supply an estimated 22.8% of global electricity. Investments in wind and
solar power sources continue to outpace other technologies. Figure 1.1 shows the trends
cumulative wind and solar power additions in Europe as well as globally. These trends
nothing but reflect the growing interest in developing renewables. The overall cost-
cutting achieved to date has helped to ensure such a strong momentum in 2014,
reaching an investment boom up to 29% in solar, and 11% in wind technologies
globally [4]. These figures are further strengthened in 2015 [4] with more than 33% and
16% new investments made globally in solar and wind technologies.
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Fig. 1. 1 Cumulative installed capacity of wind and solar [4]-[7] .

These remarkable growths have been against a number of odds such as the recent global
financial crisis, the dramatically falling fuel prices and the slowdown of increasing
global electricity consumption that have been thought to decelerate or stall this trend
[4]. The recent developments in the 2015 Paris climate conference (COP-21), overall
trends in international policy on RESs, energy dependence concerns, the falling capital
costs of several matured RES technologies, and other techno-economic factors are all
favorably expected to further accelerate the level RES integrated into power systems. In
general, there is a general consensus globally that RESs will cover a significant amount
of electricity consumption in the years to come [2].



It can be inferred from Figure 1.1 that Europe, as the leading advocate of renewables,
accounts for nearly half of the total installed capacities of these resources worldwide.
European countries have set forth ambitious targets for emissions reductions and RES
integrations. As in Figure 1.2, the renewable share in the final energy consumption in
Europe is expected to reach 20%, 27% and 80% by 2020, 2030 and 2050, respectively.
As a result, the integration of wind and solar is especially expected to increase
significantly in the years to come.
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Fig. 1. 2 Historical and targeted trends of renewable energy share in gross final energy
consumption in Europe [8].

Despite these interesting figures, several challenges remain in place pertaining to the
tapping of large-scale RESs, their integrations and their efficient utilization. A growing
effort in pursuing innovative approaches to increase RES participation is required to
guarantee a clean energy future. Most of the challenges are related to the nature of such
resources (especially wind and solar), which are abundant almost everywhere on earth
despite the fact that they are widely distributed and their energy intensities vastly differ
from one place to another. Their intermittent nature also poses significant challenge in
operation and planning of power systems because of the vast uncertainty and variability
such resources introduce to the system. In addition, power systems are subject to many
more sources of uncertainties with different levels such as uncertainty in generation
expansion/retirement, fuel prices, demand growth, component outages, carbon
emissions, demand response, etc. The compound effect of all these creates considerable
challenges, which increase with level of RES integration. The global drive for high level
integration of such energy sources can be realized by undergoing heavy investments in
transmission infrastructures among others, which help to even out the negative
consequences of RES integration. In other words, because of their distributed nature,
unprecedented transmission expansion planning (TEP) has to be carried out over a



geographically wide area and large-scale networks to meet the short- to long-term
objectives of integrating renewables (particularly, variable energy sources). This helps
to effectively accommodate the RESs and optimally exploit their benefits while
minimizing the side effects. In the context of Europe, for instance, there is an ambitious
plan to develop massive RESs in the coming decades in a bid to curb GHG emissions,
promote clean energy technologies and meet the increasing demand for electricity
among other reasons. However, these energy sources are usually located in places of
low demands. For instance, the West Coast and the North Sea are among the best
locations in Europe for large-scale wind power developments. There are also initiatives
to import huge amount of solar power from Middle East and North Africa (MENA) [9].
With these and other scenarios in mind, the European network will have to be
adequately reinforced and expanded to support the integration of such developments
[10], [11]. However, the high level uncertainty and variability inherent to such such
resources [12], along with the size of such network systems and temporal scope, results
in a complex and combinatorial optimization problem, requiring a huge computational
effort.

Generally speaking, computational complexity of TEP problem dramatically increases
with the size of the network dealt with. The resulting problem can eventually become
harder to solve, if not intractable. Extensive literature survey reveals that existing
planning models are not adequate to handle such a problem; they cannot seamlessly be
extended to long-term TEP of large-scale networks with high level integration of
variable energy sources mainly because they are not properly equipped with the
necessary strategies and methods to systematically handle the vast uncertainty and
operational variability inherent to such a problem. In addition, given the size of the
problem, most traditional solution methods, which have been designed at most for
national networks, have computational limitations, leading to tractability issues. All this
explains the need for new strategies, tools and methods that effectively cope with a
problem of this magnitude, which is the main theme of this thesis.

1.2. RESEARCH MOTIVATION AND PROBLEM DEFINITION

As introduced in the above background, the renewables’ share in the total energy
consumption will keep on increasing strongly. However, this will require tapping
variable energy sources such as wind and solar in geographically wide and remote areas,
far away from major demand centers and existing transmission infrastructures, leading
to network expansion planning problems of exta-large network systems. This is highly
needed to meet striving RES integration targets and global environmental-related
obligations as well as balance out the negative effects of RES integration in power
systems. However, the unprecedented uncertainty, temporal and spatial scopes of such a
problem pose a significant computational challenge. This is the main motivation of the
present work. Framed in this context, this thesis endeavors to address three main
research questions emanating from a modeling and methodological perspectives of such
a problem.



Network fidelity: From the context of long-term planning of large-scale networks
under high penetration of variable energy sources, what are the levels of details that
can be included in a network expansion model that strikes the right balance between
accuracy and computational requirement? This question mainly relates to the modeling
aspects of network systems. This is discussed in detail in Chapter 3, and modeling
aspects of network losses is covered in our published work [13].

Uncertainty and variability: From the same context, how should the different sources
of uncertainty and variability be captured in such a way that ensures the right balance
between problem tractability and solution accuracy? To address this question, a new
uncertainty and variability management tool is presented and thoroughly discussed in
Chapter 4 and in [14].

TEP Model: The high temporal and geographical scope of the problem as well as the
need for combining short- to long-term planning decisions demands a new TEP model.
From this perspective, how should the TEP model be formulated so that it meets the
demands? What investments should be made now (in the short and medium term) and
where should these be? What/where are the strategic investment decisions to be made
considering different possible evolutions of the system? These and other related issues
are addressed in Chapter 5.

Managing combinatorial problem: Given the size of the problem, how should the
combinatorial solution search space be handled? The present work proposes a heuristic
solution method which includes a systematic way of decomposing the TEP problem into
successive optimization phases. This is partly presented and discussed in [15].

1.3. THESIS OBJECTIVES

Main Objective—The main objective of this research is to develop mathematical
optimization models, uncertainty and variability management methods, and solution
strategies that support the complex decision-making process of long-term expansion
planning of large-scale transmission grids under high level renewable integrations.

Specific Objectives —The specific objectives of this thesis are:

e To formulate a tractable long-term TEP model for very large-scale network
under high level uncertainty and massive integration of variable energy sources;

e To propose methods for managing uncertainty and variability introduced by
intermittent energy sources such as wind and solar power generators, electricity
demand and price as well as component availabilities;

e To devise a new solution strategy for enhancing the tractability of the TEP
problem in view of reasonably reducing computational time without
significantly compromising the optimality of the solution;

e To test the proposed solution techniques on a realistic network under high
penetration of renewables.



1.4. RESEARCH METHODOLOGY

In order to achieve the main research objective, this thesis develops simulation models,
methods and solution strategies to analyze the long-term expansion of electricity grids
under uncertainty and dramatically changing power generation scheme over time. In
other words, the TEP problem is formulated from the perspective of long-term
expansion planning and under high penetration level of renewables. Under these
circumstances, the proposed model should sufficiently emulate the anticipated complex-
decision making process planners have to face in relation to network expansion needs of
especially large-scale power systems. This indicates that the tractability of such a model
is of a paramount importance. On one hand, it is desired that the developed model
embrace the inherent characteristics of the electrical systems in a reasonably accurate
manner. On the other hand, the complex nature of the problem means that certain
accuracy related issues should be compromised to ensure tractability. A tradeoff
mechanism reconciles these two conflicting requirements. To this end, first, existing
models are critically reviewed and compared in terms of their mathematical
complexities, accuracy and possible applications to such a complex problem. Based on
the results of the extensive analysis and comparisons, a tractable mathematical
optimization model, based on an improved “DC” network flow model, is then proposed.

The main objective of the resulting TEP optimization is to meet the growing demand for
electricity at the lowest cost possible (seen from the system perspective) while
respecting all technical, economic and environmental constraints. This leads to a
constrained optimization framework with an overall cost minimization as an objective.
Hence, the resulting TEP model includes multiple cost terms such as investment,
operation and maintenance, emission and reliability costs, which are combined to form a
single objective function (the total cost in the system) in a stochastic programming and
multi-stage planning framework.

In order to efficiently handle the uncertainty and the variability inherent to such
problems, the thesis also introduces a new problem-specific methodology based on the
theory of moments, which clusters operational situations based on their expected impact
on expansion needs. Moreover, the research work proposes a new heuristic solution
strategy that is proven to significantly facilitate the solution process. This strategy
works by decomposing the original problem into successive optimization phases, which
is structured in a manner that the output of given phase is the input for the subsequent
phase.

The proposed optimization model as well as the solution strategy is implemented in
GAMS® and mainly solved using CPLEX™ algorithm mostly with default parameters.
Whereas, the clustering methodology is programmed in MATLAB® programming
environment and Visual Basic™ with Excel® used as an interface for this purpose. The
whole work here aims to provide a reliable expansion solution containing short-,
medium as well as long-term decisions that can effectively cope with the rapidly
changing environment in the power industry.



1.5. THESIS OUTLINE AND ORGANIZATION

This thesis is organized as follows. The first chapter presents a brief overview of the
problem and motivation of the research work, and outlines the research objectives and
methodology. The subsequent chapter presents an extensive review of the literature by
organizing previous related works to highlight the research questions and objectives.

Chapter 3 begins by reviewing existing and modified TEP models, from the network
representation perspective, and describing the modifications made in order to ultimately
develop a reasonably accurate network representation which is to be used in the
formulation a TEP model from the context of large-scale network applications. From
computational requirement and accuracy standpoint, a comprehensive comparison of
total of six TEP models, and thirteen variants of these models with different network
fidelity levels, is discussed both theoretically and numerically to further motivate the
need to develop a reasonably accurate TEP model for the stated problem. This chapter
also presents a detailed modeling of network losses, which encompasses an extensive
comparison of existing and novel losses models ones both from computational burden
and accuracy viewpoints.

Chapter 4 introduces the novel methodology developed in this thesis for managing
uncertainty and variability inherent to the problem at hand. The methodology is
described in detail and its efficacy is demonstrated with a numerical example.

Chapter 5 presents detailed descriptions of the mathematical formulations of the TEP
optimization problem in a multi-stage planning horizon and stochastic programming
framework. This chapter also introduces the proposed solution strategy. In the
subsequent chapter, the proposed strategy, tools and methods are verified by carrying
out numerical studies on a realistic 1060-node European network system.

The last chapter gathers the main findings of this thesis in the form of conclusions,
summarizes the main contributions of the thesis by revisiting the thesis objectives, and
finally draws some directions for extending this work.



2

ll. LITERATURE
REVIEW



This chapter presents a comprehensive review of existing literature focusing on the
relevant previous works in relation to transmission grid expansion planning.

2.1. CHAPTER OVERVIEW

In power systems, grid expansion planning is always one of the most critical issues that
has to constantly be addressed for meeting the demand while maintaining system
integrity and reliability. In other words, transmission expansion planning (TEP) is
mandatory in every electric power industry which continually undergoes rapid changes
in structure, management and operation [16] regardless of the electricity markets:
traditional or competitive. The literature on the subject area of TEP includes several
decades of research works, dating back to 1970. Recently, there have been a dramatic
increase in the number of publications on this, especially in the past decade, indicating
the growing concerns and challenges. This could be partly explained by the deregulation
of power systems which increased the level of uncertainty in such systems, increasing
the complexity of the problem, and increasing penetration level of non-conventional
generation sources. A detailed review of existing literature on TEP as of 2003 is
presented in [17], which has been recently complemented in [18], [19]. From the
context of TEP, the following relevant issues define the structure of this literature
review:

o fidelity of network representation (alternating current—AC, “direct current”—
DC models, etc.),

¢ solution methods employed (mathematical, heuristic and meta-heuristic),

e nature of the electricity market (regulated vs. deregulated),

e objective function considered (investment cost, investment cost +operation
costs, etc.),

o flexibility of expansion plans computed (static vs. dynamic), and

e methods adopted to handle uncertainty and variability inherent to the TEP
problem (probabilistic, stochastic, etc.).

2.2.  NETWORK REPRESENTATION FIDELITY

Power systems are characterized by their complex nature whose components are
generally described by highly nonlinear and nonconvex models. The complexity of such
systems are often systematically handled in complex power systems analysis, operation
and planning problems mainly by using “proxy” models. Fidelity then refers to the level
of details (i.e. actual physics describing the characteristics of the system) captured by
such proxy models i.e. in relation to accuracy and complexity levels. This is especially
the case in TEP problems, where the network is represented using various models such
as the customary non-linear AC [20]-[22], the classic “direct current” (DC) [23]-[27],
[28], “pipeline” [29], [30] and [31], hybrid (which combines the DC and the pipeline
models) [30], or linear variants of these models and disjunctive models [10], [32], [33].

The AC network model is the most realistic model and it implicitly models network
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losses but its mathematical complexity, nonlinear and nonconvex nature means its
application in TEP problems is very limited. The DC model, which is derived from the
AC model by making use of a number of simplifying assumptions, respects the physical
laws that govern power flows in power systems. It is currently the most commonly used
network model in TEP studies because of its appealing computational performance
while delivering reasonably “accurate” solutions. However, the simplifying assumptions
made in its formulation (which include flat voltage, zero resistance and very small
voltage angles) leaves this model lossless. Moreover, the existence of reactive power
flows is not acknowledged in the DC model. In a pipeline model, flows are only
required to respect the capacity and nodal balance constraints. This model effectively
treats the lines as flow networks. In other words, flows in a line can assume any value
independent of its parameters and system variables (voltage and angles). Because of
this, expansion solutions obtained from TEP models employing this model can be
suboptimal or may sometimes be incompatible with the original network system.
Hybrid network models combine both DC and pipeline models, and are generally better
than the pipeline models in terms of accuracy. Some other network models, formulated
by relaxing or linearizing the AC network model, have been proposed recently by
researchers [34]-[36], [37], [38]. Authors claim that their models can bridge the AC and
the DC network models, yet, their applicability in large-scale networks have not been
demonstrated.

From computational viewpoint, the network models reviewed here have different
computational requirements. Generally, the higher the fidelity level is, the more
accurate the solution is but the higher the computational burden is. In Chapter 3,
different TEP models formulated using these models and their variants are further
reviewed and compared in terms of solution accuracy and their computational
requirements, from which some conclusions are drawn.

2.3. SOLUTION METHODS IN TEP

The solution methods employed in TEP can be generally classified as exact and non-
exact methods.

2.2.1. Exact Solution Methods in TEP Optimization

The TEP problem is formulated into a constrained mathematical optimization with a
certain objective function which is then solved by making use of pure mathematical
procedures and algorithms. The solution obtained should therefore satisfy several
technical, economic, and reliability criteria constraints imposed in the optimization
process. As early as 1970, authors in [39] and [40] proposed mathematical optimization
techniques using linear programming and dynamic programming, respectively, to solve
the transmission expansion problem. The vast literaute on the TEP problem is
dominated by mixed integer linear programming (MILP) optimization which embeds a
DC network model, as in [41]-[43]. In general, the solution approaches adopted in such
problems can be categorized as convex and nonconvex optimization techniques. The
first category includes linear programming—LP [39], [44], [45], [46], mixed integer
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linear programming [41]-[43], and quadratic programming—QP [47], [48]. Non-
convex optimization techniques include nonlinear programming—NLP [49], [50] and
mixed integer non-linear programming [51], [52]. There are also solution techniques
that can exhibit characteristics of both categories such as dynamic programming [53],
[40], [54], decomposition techniques [55], [55]-[57], and branch and bound methods
[58], [59]. Other mathematical optimization techniques like Benders [60], [61], [62] and
hierarchical decompositions [63], [64] have been also extensively used. Unlike others,
LP- and NLP-based TEP optimization models do not take account of the lumpiness of
investments because the investment variables are relaxed to assume continuous values.

A MILP model has been formulated to solve a long-term TEP problem in a competitive
pool-based electricity market by maximizing social welfare and considering
uncertainties in electricity demand [65]. The work utilizes a set of decision-making
metrics such as changes in aggregate social welfare, generator surplus, demand surplus
and merchandizing surplus to obtain an optimal TEP solution, as a guide to make
investment decisions. Similarly, a static MILP for long-term TEP model based on
disjunctive formulation, incorporating losses and N-1 security criteria has been
developed in [66]. Authors in [66] characterize uncertainties due to contingencies and
inflows to hydropower plants by using multiple scenarios.

Authors in [36] have introduced the concept of transmission expansion with ‘redesign’.
It is based on the notion of “a transmission network may be efficient after cutting off
some of its circuits”. Thus, a MILP TEP model based on disjunctive formulation has
been developed where all transmission lines including existing ones are taken to be as
candidates, while the cost of cutting off a line is considered to be zero. Authors have
also presented a fair comparison of the disjunctive model with other variants of TEP
mathematical formulations in terms of their performances. The analysis has also
included N-1 contingency and a discussionon on how to handle uncertainties in demand
and generation. TEP and network switching problems have been developed into a
combined MILP problem in [67] and authors indicate that “there can be some savings
upon switching off some lines in a system”.

Acknowledging the complexity of the problem (and/or being motivated by the structure
of the TEP problem), some researchers have resorted to the use of mathematical
decomposition techniques to enhance its tractability and “speed up” the solution
process. Benders decomposition technique is especially the most commonly used
approach in TEP studies [55], [56], [61], [68]. Reference [68] presents a methodology to
increase the robustness of TEP solution by incorporating a detailed contingency
analyses (adequacy and N-1 security criteria), and considering uncertainties in load and
wind generation via Monte Carlo simulations. Authors in [64], [69] develop a bi-level
mathematical programming, where the TEP problem is split into two levels: upper and
lower levels. The upper level minimizes the investment cost; whereas, the lower-level
maximizes aggregate social welfare for a given investment decision (obtained from the
upper level). The duality theory is employed to link the two levels.
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The work in [70] proposes a mathematical method based on a network topological
synthesis to investigate the impact of power-flow patterns on transmission planning in a
competitive market environment. TEP based on some economometric approaches has
also been reported in the literature. Decision analysis scheme based on min-max regret
criteria in future plan has been methodically employed to make the TEP solution robust
and flexible enough in the face of uncertainty. The work in [71] adopts real options
analysis. The main idea behind this approach stems from evaluating the worth and the
risk of transmission expansions by constructing binomial trees (and Monte-Carlo
Simulation as a second approach) to represent all possible paths for investments.

In general, the solution obtained by exact solution methods is usually accurate, which
can be regarded as one of the advantages of using such solution methods. If the problem
is fully convexified, global optimality is guaranteed within a finite simulation time.
However, the use of such solution methods in complex power systems may be
sometimes complicated.

2.2.2. Non-exact TEP Solution Methods

The complexity and combinatorial nature of the TEP problem prompted researchers to
seek for various heuristic [59], [72] and meta-heuristic optimization methods [73]-[76]
that can provide an expansion solution within a reasonable simulation time. Heuristic
methods, mainly based on sensitivity analyses or invented engineeric methods, are often
used when the structure or size of the problem makes it impossible or prohibitively
expensive to use exact solution methods. Metaheuristics improve the performance of
low level heuristic algorithms by employing higher level algorithms that increase the
chance of avoiding or escaping locally optimal solutions.

In [39], a heuristic method is proposed to form fictitious overload paths in the network.
Then, the approach makes use of guiding numbers to penalize those without initial
transmission lines. Heuristic procedures based on sensitivity analysis are also proposed
in [77]. This methodology has been later extended to multistage TEP with constructive
heuristic algorithm applied to the problem [78], [79]. Least-effort algorithm has been
also proposed in [80] where a heuristic index tries to identify the circuits that provide
better power-flow distributions in the system. In [81], flow sensitivity-based TEP has
been proposed where the expansion decision has been made based on a value given by
the ratio of cost of a line and flow distribution factor (sensitivity across a corridor). In
[82], a model for a static long-term TEP is developed, and possible investments are
heuristically ranked in accordance with their effectiveness in increasing the system’s
load supplying capability or reducing unserved power. Similar approaches were applied
to short-term TEP models in [20], [59].

In [83], a heuristic static TEP model with an objective of minimizing aggregate
investment and operation costs has been developed. In this work, integer expansion
variables have been represented by continuous sigmoid functions and the expansion
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decision have been made using a heuristic model based on a sensitivity given by the
values of the sigmoid function. In [72], an expansion decision has been made by
analyzing the heuristic ratio of load shedding reduction as a result of investment and the
investment cost of the line under consideration.

Meta-heuristic optimization methods have been also widely applied in TEP in a bid to
further tackle the computational burden of TEP problems and improve the solution
accuracy by avoiding local optima which is thought to be a common problem with
heuristic solution techniques. These methods are often inspired by nature. The most
common ones are simulated annealing (SA), genetic algorithm (GA), tabu search (TS),
game theory (GT), expert systems (ES), fuzzy set theory (FS), ant-colony optimization
(ACO), particle swarm optimization (PSO) and greedy randomized adaptive search
procedure (GRASP) [84]. Meta-heuristic methods integrate the features of optimization
and heuristic methods. Compared to heuristic methods, meta-heuristics usually yield
high quality solutions within a relatively lower computational time.

The literature in this area includes neural network hybridized with genetic algorithm
[85], genetic algorithm [86], [87], [88], [89] and [90], differential evolution algorithm
[91]-[92], tabu search [93], [94], greedy randomized search algorithm [60], [76],
simulated annealing [95], ant colony optimization[96], [74], particle swarm
optimization [97]-[98], chaos quantum honey bee algorithm [99], expert systems [100]
and scatter search [101].

The concept of object-oriented programming paradigm has been applied to model
dynamic TEP in a deregulated environment [102]. Reference [103] reports a method
based on evolutionary programming for solving a MINLP TEP problem which
minimizes aggregate cost: investment, generation and penalty for unserved power. The
proposed solution method has been compared with other methods such as GA, TS and
SA.

Genetic algorithm has been applied to solve a least-cost and reliability base TEP
problem in [104]. The work in [105] also uses GA to solve the same problem and
proposes a methodology based on Taguchi’s orthogonal arrays to handle uncertainty in
renewable generation and demand. Authors in [106] propose a Niche GA (NGA) based
algorithm for solving a stochastic MINLP TEP model. In [107], a combination of
Benders decomposition and differential evolution algorithm (DEA) has been used to
solve a multi-stage MILP TEP model based on a disjunctive formulation. Limited
discrepancy local search (LDLS), a tree-search meta-heuristic optimization technique,
has been proposed to solve TEP model in [108]. Here, the complex power system is
encapsulated in a black-box which is then queried for information about the quality of a
proposed expansion. Authors in [108] claim that the LDLS method can be applied
flexibly to a power system of any size even if this has not been substantiated in their
study. A GA-based ‘overload minimization’ instead of the classical ‘unserved power
minimization approach’ has been proposed in [109] to solve TEP model. In this case,
the fitness function includes investment cost, overload and underload penalties.
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2.4, TEP IN REGULATED AND DEREGULATED POWER SYSTEM STRUCTURES

Despite the fact that the main aim of expanding the power transmission network in both
environments is to better serve growing demand for electricity while satisfying a
number of economic and technical constraints, different ways are followed in order to
achieve such an objective [110]. For instance, TEP in regulated environment is usually
carried out in coordination with generation expansion hence the level of uncertainties is
relatively low. Deregulation of the power systems has generally increased the level of
uncertainty in the system, introduced additional objectives some of which can be
conflictngr, and increased the requirements for transmission expansion problem. Under
competitive market structure, the naturally regulated transmission utility needs to
provide non-discriminatory access to all the market players and facilitate fair
competition [111]. Because of these reasons, TEP in deregulated environment is more
challenging than in regulated (traditional) environment. References in [12] and [112]
present a detailed review of existing TEP models as well as methods adopted for
incorporating uncertainties in a deregulated market environment. In addition, a
comparison of centralized vs. deregulated expansion plan, and the need for new
methodologies in the restructured power industry has been pointed out in [110].

The literature on TEP in regulated environment, whose objective is to meet the demand
while satisfying certain reliability and quality standards, includes [39], [113], [46], [17],
[114], [115], [60]-[61], [55], [77], [80], [30], [83], [116], [88] [100], [117] and [118].
Previous works on TEP in a deregulated environment include [62], [65], [70], [119] and
[120] is not only very complex to solve but also usually accompanied by high
uncertainties in load, generation and market associated with price volatilities. Methods
employed for handling such uncertainties introduced as a result of deregulation fall
either into deterministic or non-deterministic approaches. Deterministic approaches are
usually based on the trivial worst-case-scenario analysis while non-deterministic
approaches such as probabilistic load flow, probabilistic based reliability criteria,
scenario techniques, decision analysis (a method for dynamic programming), fuzzy
decision-making, etc have been employed [111]. A detailed review of issues related to
uncertainty management in TEP is presented in Section 2.7.

Authors in [121] propose a mid-term transmission expansion model in a liberalized
electricity market with an objective of maximizing the aggregate benefits of the whole
system and considering power exchange deviations, N-1 security criteria and unsupplied
power. Investment decisions are taken based on computing and analyzing investment
sensitivities which are determined from dual variables and reduced costs as a result of
the investment.

Authors in [122] propose a meta-heuristic based static TEP model in restructured power
industry which included N-1 security criteria, and uncertainties in demand as well as in
generation and consumer bids. The model minimizes investment and congestion costs
and uncertainties are handled via Monte Carlo simulations [122]. A congestion driven
TEP model is proposed in [123], [124] in the context of restructured markets. In [112]
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and [125], a multi-stage TEP model is proposed for deregulated environments.
Simulated annealing algorithm is then used to solve the resulting problem, and fuzzy
models incorporate uncertainties due to load evolution along a planning horizon, and
system component availabilitities.

2.5. OBJECTIVE FUNCTION OF TEP

Traditionally, the objective of TEP has been to minimize the investment cost of lines
subject to a number of operational and technical constraints [55], [126]-[128]. In other
words, a centralized approach of TEP is mainly to meet current and future demand with
adequate reliability and at a reasonable cost. However, the continuously changing
environment of power systems is forcing reconsideration of this approach. In a
deregulated environment, TEP has to satisfy multiple objectives set by the regulatory
body and/or other stakeholders, some of which can be conflicting. In addition to
minimizing the investment cost of lines, TEP in a deregulated environment should aim
to provide non-discriminatory access, create a conducive environment for fair
competition, increase network reliability, meet the demand at a minimum operation cost
possible, mitigate transmission congestion, minimize risk, increase operation flexibility,
and minimizing environmental impacts among others. From this context, the objective
function used in TEP problems in the literature include minimizing operation and
investment costs [22], [42], [56], [118], [129]-[131], costs of operation, investment and
load shedding [16], [94], [125], [132], [133], congestion and load shedding costs [134],
[135], and maximizing welfare [56] among others.

2.6. TEMPORAL ScorPe OF TEP

From the temporal scope of planning, TEP can be categorized as static and dynamic.
Static planning framework does not recognize the dynamic nature of the problem; a
single target year is instead considered, for which the optimal expansion solution is
determined. All investments are assumed to be made in the same year. The fact that
decisions can be postponed is not acknowledged in such framework, answers only the
TEP questions of where and what investments are to be made on the system. Majority of
the literature falls into this category, some examples are [16], [22], [25], [42], [55], [56],
[94], [126], [128], [129], [134]-[137]. In contrast, dynamic planning involves a multi-
year decision framework, emulating the dynamic nature of the problem. Dynamic
planning obtains not only the type and the location of investments to be made but also
the timing of each investment. Recent works on dynamic TEP include [23], [27], [118],
[125], [127], [130], [132], [133], [138]-[140].

The dynamic planning is a more orthodox planning framework than the static
counterpart, and it generally leads to a better expansion solution at a lower cost when
compared to the static planning approach. However, dynamic planning is very complex,
requiring higher computational effort. To overcome this, some researchers employ
meta-heuristic approaches such as GA [118], SA [125], ordinal optimization [140] and
others.
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2.7. TREATMENT OF UNCERTAINTY AND VARIABILITY IN TEP

Traditionally, TEP has been carried out deterministically, often for the worst-case
scenario (peak-load) in many power systems in a centralized approach. Even if network
investments have been often oversized to meet the worst case scenario, the deterministic
approach has been operational in most cases where the system’s conditions are
relatively predictable. However, recent developments in the power industry
(deregulation, increasing level of variable energy sources, etc.) have increased the level
of uncertainty and variability in the system, and made it impossible to exactly
distinguish what the worst-case scenario is. All this adds extra complexity to the
decision-making process of grid expansions.

The vast literature on TEP is base on deterministic planning, but the review in this
section is limited to the techniques applied to address some of the limitations of
deterministic planning models by considering the effects of uncertainty on TEP
solutions. So far, various methods have been employed for managing such uncertainty
in network expansion planning problems. A comprehensive review of some of the
techniques adopted for modeling uncertainty in such problems can be found in [18].
Authors in [141] also excellently present the uncertainty management techniques so far
suggested or applied by researchers in the generic subject of energy systems. In the
context of TEP, the techniques can be generally classified into probabilistic, stochastic
and parametric methods, depending on how uncertainty is described in the input
parameters.

The first category includes probabilistic-power-flow and probabilistic-reliability-based
methods. Both methods are based on sensitivity analyses, which are often carried out by
varying one uncertain input parameter at a time. But it may also include the combined
variations of several uncertain inputs. Either way, to perform sensitivity analysis, all
uncertain input parameters considered should have known PDFs so that some instances
of the corresponding parameters can be sampled. The PDFs themselves are
approximated from the respective historical data of uncertain parameters.

The principal goal of probabilistic approaches is to estimate the statistical parameters
(e.g. mean values, variances, PDFs, etc) of relevant output variables such as the network
expansion solution, the combined investment and operation cost, the loss of load
probability, and the expected level of unserved energy. This can be achieved either
numerically, analytically or a combination of both. Monte-Carlo simulation (MCS) is
the most widely used numerical approach in estimating the PDFs of output variables. It
involves an iterative process including generation of samples and running simulations.
First, a sample containing realizations of the uncertain input parameters involved is
generated using their respective PDFs. Second, considering this sample as an input, a
deterministic optimization is run and corresponding values of random variables of
interest are computed and recorded. This process is repeated until a sufficiently large
number of samples are computed for the random output variables of interest so as to
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estimate their PDFs. Note that during the iterative process, sampling can be carried out
either sequentially or non-sequentially depending on the type of MCS used.

In particular, MCS has found wide applications in a TEP optimization framework to
deal with various sources of operational uncertainty. For example, the authors in [12]
developed a market-based TEP model which embeds MCS for generating different
samples using the PDFs of various random inputs (load, component availability,
generator bid prices and wheeling transactions), and then ultimately compute PDFs of
locational marginal prices (LMPs). Similarly, uncertainties related to load, renewable
power generation, fuel and emission allowance prices are considered in [142]. And the
solution approach used in [142] combines optimization with MCS. In [129], uncertainty
in CO, emission price is accounted for and simulated using MCS while other sources of
uncertainties are largely ignored except demand uncertainty, which is represented by
only two load levels. In [143], uncertainties associated to load and wind power
generation are also simulated using MCS. In addition, the forced outage rates (FORS) of
individual lines are used to randomly simulate line contingencies. Similarly, authors in
[144] also consider uncertainties in load and wind power generation, as well as line
outages using the so-called deterministic N-1 analysis. Even if correlations among most
uncertain parameters naturally exist, they are not explicitly modeled in [143], while in
[144], only a correlation factor of 0.75 is assumed between two wind speed regimes
considered in the analysis. In [145], load uncertainty is considered and MCS is used to
generate a large number of samples which are later reduced by employing a scenario
reduction technique. In [146], MCS is used to simulate load and market price
uncertainties and estimate the probability distribution of the adaptation cost of various
candidate plans. The authors in [147] also use MCS to include wind power production
uncertainty under a large-scale wind integration framework; and this work is further
extended in [148] to include uncertainty in solar power production. Generator and
transmission line availabilities are simulated using MCS in [149], and reference [150]
applies a similar approach to handle uncertainties associated with load, generator and
line outages. Since MCS is a generic approach in uncertainty handling, it has been
widely applied in other fields than TEP. For instance, in a generation expansion
planning framework, MCS has been used in [151] to capture uncertainties related to fuel
prices, generator availability, and availability and price of electricity imports and
exports. Also, in a unit commitment problem, [152] considers wind power generation
uncertainty, and an MCS based on Latin hypercube sampling has been used to generate
sufficiently large wind power output samples. Then, a conventional sample reduction
algorithm is applied to reduce the size of the samples.

Generally, the MCS approach can be feasible in small-scale problems or when a small
set of uncertain input is considered. However, it is worth noting here that the
applicability of MCS-based analyses is limited in long-term TEP problems with high
RES generation due to the following reasons. First, it naturally requires too many
optimization runs which may cause long execution times before estimates of PDFs
corresponding to the variables of interest are obtained. Second, the high level

18



uncertainty in such problems, and the correlations among uncertain parameters, further
makes the MCS intricate and computationally expensive. Thus, the MCS approach may
not be a practical and viable option for such huge problems. In an effort to overcome
computational issues (convergence problem, in particular), variance reduction
techniques such as importance and stratified sampling (e.g. see [146]) are sometimes
applied to drastically reduce the samples required to estimate the PDFs of the output
variables. However, since the variance reduction process is applied prior to the TEP
optimization, it is very difficult to draw conclusions about whether the considered
samples are reasonably good representatives of all the samples that are discarded,
particularly from the network expansion strategy viewpoint. In some cases, in an effort
to reduce the computational burden, all uncertain input parameters are simply replaced
by their expected values, and subsequently, a deterministic mathematical problem
(which can be stated as the expected value problem) is solved. However, this again
could result in poor solutions, as it is very conservative and may not be well suited to
extreme situations.

Analytical methods are also applied as alternatives or complements to MCS approaches.
They are used to systematically approximate the statistical properties of random output
variables of interest, which are themselves functions of one or more random input
variables. These include methods such as cumulant, Gram-Charlier expansion, Taylor
series expansion, first-order second-moment method, point estimation methods (PEMs),
etc [153]. In comparison to MCS approaches, the analytical methods (the PEMs, in
particular) are generally claimed to yield comparable results to MCS-based techniques
with lower computational effort. But their merits highly depend on the dimension of the
input uncertainty set considered. Intuitively, the higher this dimension is, the higher the
computational cost will be, and it is harder to estimate the statistical behavior of random
output variables. Furthermore, the assumptions and mathematical simplifications (e.g.
linear approximations) required by most of these methods to simplify the problem may
render non-negligible inaccuracy.

Among the aforementioned analytical methods, PEMs have been applied in TEP to the
estimation of PDFs of certain output variables. For example, PEM is used in [23] to
account for uncertainty associated with load and wind power output. A two point
estimate method (2PEM), a variant of PEMs, is adopted in [154] to quantify uncertainty
in transfer capacity by considering uncertainties in network parameters and bus
injections. The same approach is further extended in [134] to handle wind power output
uncertainty in a TEP problem incorporating large-scale wind power. The work in [135]
presents an experimental analysis to show the versatility of the PEM-based approach
theoretically developed in [134]. The authors in [155] use another variant of PEM
approach, called 2-micro PEM, to handle uncertainties in load and wind power
generation and estimate PDFs of desired output variables. The idea of PEM is to
represent each uncertain input by its first statistical moments (e.g. mean, variance,
skewness and kurtosis) and concentrations in either side of the mean value. In most
cases, the mean and other two values (one below and another above this mean) are used,
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which means this would require runnings* deterministic optimizations (wherew is the
total number of uncertain parameters considered). The 2PEM even considers only two
concentrations selected from either side of the mean (which may not necessarily be
symmetric)For example, 2PEM is used to represent uncertainties related to transfer
capacity [154] and wind power output [134]. This reduces the computational effort
significantly, but with a relevant loss of accuracy. In the same way as in MCS
approaches, the optimization problem is run a number of times (but with largely lower
number of iterations than that required by MCS). This way, the expected value and
higher order moments of output variables are determined, and using analytical methods,
their PDFs are then estimated. Note that the number of iterations required in PEM-based
approaches depends on how the uncertain input parameters are represented. For
example, the 2PEM requiresz* iterations wherew is the total number of uncertain
parameters.

While analytical methods based on PEM may be successfully applied in small (even
medium-scale) problems with a few uncertain parameters, and may deliver useful
estimates of PDFs, their application becomes of limited use (or computationally
expensive) when the scale of the problem and the level of uncertainty under
consideration increase (such as in long-term TEP problems with strong penetration of
RESs on large-scale systems). Moreover, the existence of both spatial and temporal
correlations among random input variables complicates the practical application of PEM
in TEP.

Sometimes, a combination of MCS and analytical methods is used in power system
analyses. In particular, the authors in [156] combine MCS with analytical methods to
account for uncertainties in load and wind power output. They first use MCS to estimate
the PDF of wind power output. Then, discrete samples of the wind power output are
simulated by combining analytical and probabilistic methods in a chance-constrained
TEP framework. The authors claim their approach is computationally more efficient
than MCS. Similarly, the combination of MCS and PEM is also adopted in a two-paper
work [134] and [135] when considering uncertainties in load and wind power
generation. The authors in [157] develop an analytical methodology to consider
uncertainty in wind power generation and generator availability. Their methodology is
compared with MCS, and it is reported that the results obtained using both approaches
largely coincide.

Stochastic methods, on the other hand, assume a given number of operational states is
available, each one with a certain probability. All these operational states are then
jointly considered in the analysis, the outcome being the expected values of relevant
output variables. The quality of the solution based on this approach depends on how
thoroughly the operational situations are explored and how representative the selected
operational states are. In general, a good TEP solution is computed when a large number
of operational states is considered. Nevertheless, this increases the computation burden.
Because of this, the number of operational states must be significantly reduced before
the stochastic programming model is run by using certain algorithms such as forward
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and backward selection [158] (for example, see the previous works in the context of
substation and TEP [145], joint generation and TEP [149], generic TEP [150] and
power management [159] problems). Very often this number is predetermined. For
instance, the authors in [160] represent the uncertainty related to pool price by
considering three realizations of pool price per day corresponding to three periods, each
with an 8-hours interval. But the number of operational states to be considered can also
be iteratively estimated by monitoring some accuracy indices (for example, see [161]).
The authors in [162] develop a methodology based on the roulette wheel technique to
randomly generate a large number of samples with certain probabilities of occurrence,
and employ backward scenario reduction algorithm before a stochastic optimization
problem is solved. This technique uses the corresponding PDFs of load demand and
wind power generation. In [163], uncertainties in demand and fuel price are modeled
using a binomial Markov chain as a stochastic process. The work in [164] only
considers uncertainty in CO, allowance price, and the “carbon” price uncertainty is
modeled via samples generated from a set of PDFs obtained using Geometric Brownian
Motion and MCS.

Under the auspices of stochastic methods, although not common, the variability of
uncertain parameters may be individually aggregated to a predefined number of values
with approximate probabilities or weights, such as the load aggregation technique in
TEP [129] and joint substation and TEP problems [145]. In stochastic methods, data-
mining techniques are also applied to drastically reduce an initially large number of
operational states to be considered, prior to running the optimization. These include
different supervised and unsupervised clustering techniques used in contingency and
reliability [165] and electricity supply analyses [166]. In [161], authors use such
techniques in order to take into account the uncertainties related to wind power output
and load in a stochastic TEP model, a reduced number of clusters are formed from a
two-dimensional random input dataset (i.e. containing load and wind power output
series). Here, the input datasets themselves are generated using Gaussian copula, a
multivariate probability distribution capable of describing the dependence of random
variables. Instead of working with a fixed number of clusters (like in traditional
clustering), the authors in [161] adopt a mechanism to iteratively determine the
minimum number of clusters needed, by increasing the number of clusters until the
marginal improvement in the objective value is sufficiently small. Note that, in addition
to working on data series generated using joint PDFs, it is also possible to perform the
clustering process on historical data samples (if available), forecast data series or
samples generated from individual PDFs.

In general, the clustering algorithm uses uncertain parameters (the causes) as clustering
variables (hereinafter, clustering based on causes or CbC). The entire clustering process
involves grouping “similar” snapshots together, selecting representative snapshots per
cluster and assigning probabilities to each one of them. Similarity is measured by the
distance among snapshots in the uncertain input space. However, such clustering is not
efficient because it is carried out without acknowledging the effects of the snapshots on
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the target problem. This significantly conditions the outcome of the optimization,
especially in the context of TEP. As it shall be explained in detail in the following
Chapters, clustering based on effects (CbE), which is advocated by this work, is
superior to CbhC.

Both the probabilistic and the stochastic methods depend on the availability of historical
data or PDFs of random variables. But sometimes the relevant random parameters may
not have sufficient information (historical data) to formulate their PDFs. This is
especially the case in deregulated power systems where information asymmetry is
rampant. Inspired by such knowledge gap, parametric (non-probabilistic) methods [167]
such as info-gap decision theory (IGDT), robust optimization (RO) and fuzzy systems
theory (FST) are used to systematically account for random as well as non-random
uncertainties. They all model uncertainty by characterizing the uncertain input
parameters’ space using parametric ranges, i.e. by forming parametric input datasets
such as polyhedral (formed by upper and lower bounds of uncertain parameters),
ellipsoidal (an approximate uncertainty space), etc.

As stated above, the IGDT tool is inspired by the severe lack of information about
uncertain parameters. It requires only the definition of ranges of uncertain parameters
over which the parameters may have certain values, which can be seen as an advantage
over probabilistic and stochastic methods. In general, IGBT-based TEP models such as
[168] seek robust solutions in the face of severe uncertainty, where the robustness of the
solution is measured by “immunity” to a range of operational situations defined by the
uncertainty set. But the theory itself has been the subject of strong criticism [169], citing
its weaknesses such as conservativeness, localized and poor solution approximation, etc.
Instead, robust optimization has been praised as a good alternative to decision making
under severe uncertainty [170], [171].. The concept of RO is similar to IGDT. Like in
IGDT, uncertainty comes from a known uncertainty set. In [172], uncertainties in
renewable power generation and demand are considered and represented by their
corresponding uncertainty sets in an RO-based TEP model. The solution obtained by
RO should, in principle, be robust under the worst-case situation in the uncertainty set,
which also makes RO highly conservative. Reference [173] presents a slight
modification to ordinary RO by adding features to minimize conservatism i.e. by
characterizing uncertainties using ellipsoidal constrained uncertainty sets and
incorporate correlation factors of considered uncertain parameters by means of the
variance-covariance matrix. Recently, there are also some ongoing research works (e.g.
adjustable RO in [170]) to address the conservativeness of RO. These normally work by
adjusting the uncertainty sets depending on how much uncertainty one desires to
capture. But RO still remains to be a hot research area in mathematical optimization
which requires further refining to solve robust problems.

On the other hand, FST is inspired by linguistic expressions such as “high”, “medium”,
“low”, etc. Each uncertain parameter is considered as a fuzzy variable and is
represented by a certain membership function (often a trapezoidal membership
function). For example, generator and consumer bid prices are modeled using this
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method in [174]. Some of the major disadvantages with FST-based methods is the
absence of clear guidelines to select appropriate membership functions, and the
fundamental difficulty to prove the accuracy of the solutions.

A long-term TEP problem, with investment horizons spanning over 30 or more years
and increasing RES penetration, demands extensive management of uncertainty and
operational variability. This is the subject area of this thesis. The subsequent chapters
describe in detail how the two types of uncertainties (random and nonrandom, according
[12]) are handled. In general, high level uncertainties (also labeled as random in [12])
are modeled by considering a sufficiently large number of operational situations, also
known as “snapshots” in this thesis. Then, a new clustering methodology based on
moments technique [14], a tailor-made approach for TEP problems, is then used to
substantially reduce the original set of snapshots by grouping them into a predefined
number of clusters. The low level uncertainties on the other hand are characterized by a
number of storylines (probable future scenarios), each with an estimated probability of
realization.

2.8.  SIGNIFICANCE OF THIS RESEARCH

There is no question about the importance of TEP in every electric power industry. It
has always been mandatory, as a part of the changes needed to face the ever increasing
demand for electricity within a reliable operational frame [16]. The power industry is
expected to further experience rapid changes and transformations to meet
environmentally-friendly, sustainable, secure and affordable energy to growing demand
for electricity. Nowadays, there is a general consensus that this objective can be
achieved by aggressively promoting the deployment of renewables, particularly variable
energy sources, in particular. In the coming decades, because of the aforementioned
techno-economic and environmental reasons, large amount of such energy resources are
expected to integrated in power systems. However, such resources are often abundantly
available in remote locations broadly dispersed across a geographically wide area, and
far away from major demand centers. This will require huge transmission investment
needs. This poses a huge challenge for network planners because the complexity of the
resulting TEP problem. Both the size of the system and the level of uncertainty are
huge. The intermittent nature of variable energy resources (such as wind and solar) also
introduces significant uncertainty and variability to the system, further complicating the
TEP problem. Exiting transmission networks should be largely reinforced and expanded
to balance the extra operational uncertainty introduced by such energy sources. In
general, solving a TEP problem for such a big system under high levels of uncertainty
demands an exceptionally huge computational effort when using reasonably precise
network expansion models.

In the European context, for instance, there is a huge potential of large-scale wind
power in the North Sea, West Coast and Baltic areas. In addition, a huge amount of
solar power is expected to be imported from the Middle East and North Africa (MENA)
[9]. Under these circumstances, a pan-European electricity network expansion [9] has to
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be adequately reinforced and expanded to support full integration of these large-scale
RESs and fully ship the power generated from such sources to meet the ever increasing
demand for electricity [11]. This is an extremely challenging task because of the
unprecedented geographical, temporal and uncertainty scope, albeit there is a need for
TEP tools to help in such a complex decision-making process.

Despite the extensive literature on TEP, the problem still remains very challenging
especially with network instances of this magnitude. In other words, there has been little
progress on a TEP problem which considers large-scale integration of RESs on a
network of continental or intercontinental size. The literature is vastly composed of
solving TEP problems in small- to medium-scale networks. In such networks,
introducing any level of complexity (in modeling, solution strategy or both) may be
affordable, but this is not the case with networks of a continental size. The size of the
TEP problem have been getting more complex because of the ever-increasing size of the
networks being dealt with, uncertainties growing from time to time, etc., increasingly
becoming computationally demanding. As a result, traditional solution strategies and
more detailed TEP models (such as the AC power flow based one) are no longer
computationally affordable. Technically speaking, the geographically wide TEP
optimization model should be as simple as possible to make sure that the problem is
computationally and practically tractable but at the same time it should deliver reliable
and robust solutions. In general, currently adopted TEP models and solution approaches
cannot be seamlessly applied to such a huge problem, principally due to their
computational limitations. Computational complexity of a TEP problem dramatically
increases with the size of the network dealt with. Unless handled systematically,
pursuing optimal expansion solutions in continental scale TEP problems such as the EU
network deems to be impossible. This justifies the fact that the problem needs to be
approached in a way different from the conventional ones. In general, new “algorithmic
and computational methods are needed to address (1) the high dimensionality of an
optimization problem having a long decision horizon, large geographic scale and high
uncertainty; (2) a need to provide solutions in terms of tradeoffs among multiple
objectives; and (3) the discrete nature of the investment decisions” [175].

In view of the complex nature of the problem, this thesis proposes a global strategy,
methods and tools to solve this kind of problems, as outlined and discussed in [13],
[14], [15]. This strategy comprises:

e Successive optimization problems, that reduce the space of combinatorial
solution search while gradually using more detailed and accurate models.

e Multi-stage planning, to find short-term decisions that consider long-term
scenarios.

e Two-period planning framework to combine short-term decisions and long-term
strategies.

e Stochastic models combined with alternative deterministic storylines.

e Mathematical programming, empowered by heuristic and expert knowledge.
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Effective methods for handling the vast uncertainty and variability inherent to
such a problem.
Network models that adequately capture the physical characteristics of the
network system.



3

[1l. MODELING
ASPECTS



Both the tractability of a TEP problem and the accuracy of an expansion solution largely
depend on the level of system details captured by the expansion model. This is associated
with the characterization of physical network variables, in particular, flows and losses.
This chapter thoroughly reviews a number of TEP models, commonly used in grid
planning studies, in terms of accuracy and mathematical complexity levels. In addition to
the systematic comparisons of various existing models both theoretically and numerically,
this chapter contributes some improvements to the mathematical modeling of existing
TEP models.

3.1. CHAPTER OVERVIEW

The transmission grid is the backbone of any power flow analysis, planning and
operation. This is particularly indispensable in TEP studies because the expansion
solutions are conditioned by the topology, the strength and the level of modeling details of
the network which constitutes existing and candidate lines. Therefore, modeling the
network (grid) should be an integral part of any TEP study. As extensively reviewed in
Chapter 2, TEP models based on a number of network models, each with a different
fidelity level, have been adopted. Here, the context of fidelity should be understood as the
extent to which the physical characteristics of the system are captured. This Chapter
reviews some of the most commonly used network models in the context of TEP studies,
and discusses in detail the pros and the cons of each one from modeling complexity and
computational performance.

3.2. TEP MODEL FIDELITY—THEORETICAL VIEW

The TEP problem can be considered as an optimal power flow problem consisting of a
number of discrete constraints. A number of existing TEP models as well as improved
and new ones are reviewed and discussed here. Theoretical and experimental
comparisons of the different models are also presented. This is motivated by the
conflicting accounts of existing network models in the literature [176]-[179] as well as by
the need to build the right network model that balances the tradeoff between accuracy and
computational requirement. Note that, for the sake of simplicity, a number of notations
are suppressed.

3.3.1.  An AC based TEP Model (ACTEP)

Current transmission networks are predominantly AC systems. The ACOPF, which is
based on the customary AC power flow equations (1) and (2), employs the most accurate
network model but the resulting optimization problem is highly nonlinear and nonconvex.

P = VZ gk — ViV;(grcosby + bysinby) 1)
Qi = —V{by + ViVj(bycosby — gisinby) (2

An ACOPF-based TEP (ACTEP) model minimizes a user-defined objective function as
in (3) subject to a number of technical constraints given by Equations (4) through (15).
Note that extending the ACOPF problem to a TEP problem only requires adding the
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discrete variables to the power flow equations in (4)—(7) and corresponding capacity
constraints in (8) and (9). Note that the flow equations related to existing lines are
generalized to indicate the switching statuses/utilizations of the lines. Equations (4) and
(5) represent the active and reactive power flows in existing lines, respectively; whereas,
Equations (6) and (7) are the corresponding flows in candidate lines. The flow limits for
existing and candidate lines are given by (8) and (9), respectively. Equations (10) and (11)
represent the active and the reactive power balances at each node i.e. Kirchhoff’s current
law (KCL), respectively. Equations (12) and (13) provides the permissible bound for the
active and the reactive power generation of a unit, respectively. VVoltage and angle bounds
as well the corresponding reference values are given by (14) and (15), respectively. As it
can be seen, the resulting ACTEP model is a mixed integer programming (MINLP)
problem, which is highly non-linear and non-convex. According to computational
complexity theory, MINLP problems are regarded as NP-hard or even NP-complete
problems [180], [181]. Generally, despite there are some advances in MINLP solvers in
recent years, employing the AC flow equations in power system planning applications
(especially for large-scale TEP problems) is yet increasingly difficult. For this reason,
ACTEP is rarely employed in the literature. The few ACTEP models proposed in the
literature are practically limited to small-scale systems, and often use heuristic and
metaheuristic methods for solving the resulting problem. For instance, authors in [20]
propose a constructive heuristic algorithm, guided by interior point method, for solving an
ACTEP problem. Reference [182] proposes a genetic algorithm for solving a similar
problem while Benders decomposition is applied to an ACTEP problem by decomposing
it into a master involving only integer programming problem and a sub-problem with a
nonlinear programming nature.

As mentioned in the previous Chapter, the heuristic and metaheuristic solution methods
neither guarantee optimality nor give a measure to the optimal solution. Equations

Minimize Z = Objective Function (3)
Subject to:
P, = uy (Vizgk — V;V;(grcosby, + bksinek)) (4)
Qr = uy, (—Vizbk + V;V;(bycos6), — gksinek)) (5)
P, = z (Vizgk — V;V;(gxcosby + bksinHk)) (6)
Qr = zg (_Vizbk + ViV;(bycosOy — nginek)) (7
P{ + Qi < WeSimax 8)
P{ + Qk < ZiSitmax )
Ykei Pk + Xgei PGy + i — Xaei PDg = 0 (10)
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Dkei Ok + 2gei @Gy + qi — Xaei @Dg = 0 (11)

UgPGymin < PGy S ugPGymax (12)
UgQGgmin < QGy < UGQGg max (13)
Vinin < Vi < Vinax 5 Veer = Vnom (14)
Omin < 0; < Omax 5 Orer =0 (15)

In some cases, it is suggested that decoupling the products of binary (u, and z;) and
continuous variables in (4)—(7) by means of disjunctive (also called big-M) formulation
as in (16)—(19) may facilitate the computational process. However, choosing suitable
values for the big-M parameters is not straightforward as there is no clear guideline so far
used for selecting the right values to such parameters that ensure tight relaxations of the
original equations. Inappropriate values may lead to numerical difficulties which can
further impede the solution process.

|Pk — (Vizgk — V;V;(gxcosOy, + bksian))| < MP,(1—uy) (16)
|0k = (~V2bic + ViV (bicosby, — gisingio) )| < MQu(1 = w) (17)
|Pe = (V2gi — ViV (gicosby. + besind,) )| < MP(1 - z) (18)
|0« — (=V2bi + ViV (becosty — gisind))| < MQ(1 - z) (19)

Because of the computational issues associated with the AC-based TEP models, a number
relaxed ACTEP models [34] have been proposed, and compared in terms of their
computational requirement and solution quality. Even if the relaxed models are interesting
and demand relatively lower computational effort when compared to ACTEP one, the
authors concluded that they are not feasible for large-scale TEP applications. From this
perspective, further reductions and mathematical simplifications are needed to solve such
problems. Several computationally less-intensive linearized models, with different levels
of fidelity and computational complexity, have been employed in TEP applications. They
are derived from the AC power flow equations under simplifying assumptions. The most
common used models are reviewed below.

3.3.2.  ALinearized AC based TEP Model (LinACTEP)

The formulation of this model, denoted as LINACTEP, includes the objective function (3)
and constraints (8)—(15) as well as linearized forms of the AC power flow equations in
(1) and (2). The linearization process is based on two practical assumptions, which is
explained as follows. The first assumption is concerning the bus voltage magnitudes,
which in power transmission systems are expected to be very close to the nominal value
Vhom- Hence, without loss of generality, a flat voltage profile is assumed throughout the
system. The second assumption is in relation to the angular difference 6, across a line,
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which is practically small because of stability reasons, leading to the trigonometric
approximations sinf, = 6, and cos@, = 1. Note that this assumption is valid in
transmission systems, where the active power flow dominates the total apparent power in
lines. The LINACTEP model, which is based on the two assumptions and a Taylor series
expansion, is first introduced in [131] in the context of transmission expansion planning.
In this model, the voltage magnitude at bus i can be expressed as the sum of the nominal
voltage and a small deviation AV, as in (20).

Vi = Vyom + AV;, where AV™™ < AV; < AV™* (20)

Note that the voltage deviations at each node AV; are expected to be very small.
Substituting (20) in (1) and (2) and neglecting higher order terms, one gets:

P = (V;lzom + 2VomAV) gi — (Vnzom + VaomAV; + VnomAVj)(gk + by Oy (21)
Qk = _(Vnzom + ZVnomAVi)bk + (Vnzom + VnomAVi + VnomAVj)(bk - .gkek) (22)

Note that Equations (21) and (22) still contain nonlinearities because of the products of
two continuous variables—voltage deviations and angle differences. However, since these
variables (AV;, AV; and 6)) are very small, their products can be neglected. Hence, the
above flow equations become:

Pk ~ Vnom(AVi - A‘/}')gk - Vnzombkgk (23)

Qk ~ _V;Lom(AVi - A‘/}')bk - Vnzomgkgk (24)

When the investment planning problem includes network switching, reinforcement,
replacement and expansion of transmission lines, Equations (23) and (24) must be
multiplied by the corresponding binary variables as in (25)—(28). This is to make sure
that the flow through an existing or a new line is zero when the associated
switching/investment variable is zero; otherwise, the flow in that line should obey the
Kirchhoff’s law. Note that the models here are generalized to include network redesign
(switching) via the switching variable wuy i.e. existing network can be redesigned by
cutting off some lines that improve the overall economic efficiency.

Py = uk{Vnom(AVi - AVj)gk - Vnzombkek} (25)
Qi = We{—Voom (AV; — AV)) by, — Vi2m 91 Osc} (26)
Pe = zi{Vnom(AV; — AV}) gk — Vidmbi i} (27)
Qr = Zk{—Vnom(AVi - AVj)bk - Vnzomgkek} (28)

The bilinear constraints, involving products binary (v, and z;) with voltage deviation and
angle difference variables, introduces undesirable nonlinearity to the problem. This
nonlinearity can be avoided using the big-M formulation i.e. by reformulating the above
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equations into their respective disjunctive equivalents as in (29)—(32). As a rule-of-
thumb, the big-M parameter is often set to the maximum transfer capacity in the system.

|Pk - {Vnom(AVi - AVj)gk — Vilombi O )}l < MP,(1 —uy) (29)

|Qk - {_Vnom(AVi - AV]’)bk - Vnzomgkek} | < MQk(l - uk) (30)

[P — (Vnom (AV; — AV;) gxe — ViZmbi6i}| < MP(1 - z,) (31)
|0k — {—Vnom (AV: — AVj)bk —VimdkOi}| < MQ,(1 - z,) (32)

The apparent power flow S through a line is given by /PZ + Q2 and this has to be less
than or equal to the rated value which is denoted as:

P¢ + Qi < (S7)? (33)

Considering line switching/investment, Equation (33) can be rewritten as:
2
PIE + QI% = Uk (Sk,max) (34)

2
PI? + Ql% = Zy (Sk,max) (35)

The quadratic expressions of active and reactive power flows in (34) through (35) can be
easily linearized using piecewise linearization, considering a sufficiently large number of
linear segments, L. There are a number of ways of linearizing such functions such as
incremental, multiple choice, convex combination and other approaches in the literature
[183], [13]. Here, the first approach (which is based on first-order approximation of the
nonlinear curve) is used because of its relatively simple formulation. To this end, two
non-negative auxiliary variables are introduced for each of the flow variables P, and Q;
such that P, = P — P; and Q, = Q% — Q, and by implication |P,| = P{ + P; and
|Qx| = Q¢ + Qi . Note that these auxiliary variables (i.e. P{ , Py, Qi and Qj) represent
the positive and the negative flows of P, and Q,, respectively. Expressing a variable as
the difference of its positive and negative parts, which is called a bijection, is widely
applied technique in linear programming problems. Bijection guarantees the equivalency
the reformulated problem with the original problem, and a proof of this can be found in
[184]. Bijection helps one to consider only the positive quadrant of the nonlinear curve,
resulting in a significant reduction in the mathematical complexity and by implication the
computational burden. In this case, the associated linear constraints are:

Pi ~ Xi=1 @i iApr, (36)
Qi¢ = Xi=1Pr1Aqx, (37)
P¢ + Pg = Xio1 Apiy (38)
Qi + Qi = Xi=1 4Gk, (39)
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where Apy,; < S /L, Aqyy < S /L, Aprivr < Apgg and Aqy 41 < Aqy.

Note that at most one of the two auxiliary variables introduced per active and reactive
flows through a line should be zero at a time. This condition is implicitly enforced by the
theory of optimality because, as it can be inferred from (38), network losses are a function
of (P + P;), and should be minimized. Setting both of them to be greater that zero does
not only make sense but contradict with the notion of optimality. A small penalty can
alternatively be included in the objective function to ensure at most one of them is zero at
a time. As shall be described in the following section, this losses model can in some
situations result in “fictitious” losses [13]. Several existing and proposed losses models
are compared theoretically as well as numerically in Section 3.5 and [13].

The active and reactive power losses in line k can be approximated as follows:
PLy = Pyij + P ji = 2Viomgi(1 — cosOy) = Vit gi 07 (40)
QLy = Quij + Quji = —2Vilomby (1 — cos6y) =~ —by Vi 65 (41)

Clearly, Equations (40) and (41) are nonlinear and nonconvex functions, making the
problem nonconvex and more complex to solve. This can be overcome by having the
quadratic angle differences piecewise-linearized, as it is done in [131] by introducing
additional binary variables and big-M formulation to avoid unnecessary constraints on the
angle differences when binary variable associated to an existing or candidate line is zero.
A major disadvantage of the linear models of (40) and (41) in [131] is that the additional
binary variables required as well as the introduction of the big-M method increase the
complexity to the TEP problem. Instead of doing this, this thesis proposes flow-based
losses, which has substantial benefits from the computational point of view, which will be
explained shortly. The angle-based losses models in (40) and (41) are expressed in terms
of the active and the reactive power flows as in (42) and (43). Note that Equation (42) can
be easily obtained by multiplying the squared expressions of both sides of the equations in
(23) and (24) by the resistance of the branch, combining the resulting equations,
neglecting higher order terms and reordering both sides of the resulting equation.
Equation (43) can also be obtained in a similar fashion but by multiplying the squared
expressions by the reactance the line. More details about the derivation of Equations (42)
and (43) is provided in Appendix A.

PL, = rk{PI? + QI%}/VnZom (42)

QL = xk{PI? + QI%}/V;*zZom (43)

Note that expressing the losses as a function of flows has two advantages. First, doing so
reduces the number of nonlinear terms that has to be linearized, which in turn results in a
model with a reduced number of equations and variables. For example, if Equations (41)
and (42) are used instead, in addition to the quadratic power flow terms PZ and QZ, the
quadratic angle differences 87 need to also be linearized to make the problem linear and
convex. On the contrary, when Equations (43) and (44) are used, one is only required to
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linearize PZ and Q7. Second, it avoids unnecessary constraints on the angle differences
when a line between two nodes is not connected or remains not selected for investment.
This is often avoided by introducing binary variables and using a so-called big-M
formulation [131]. However, this adds extra complexity to the problem.

Losses are often treated as “virtual” loads connected to the buses. In this respect, the
losses in a given line are equally distributed to the nodes connecting the line. The load
balance equations in (10) and (11) should be slightly modified to take account of these
changes as in (44) and (45). The line capacity constraints in (34) and (35) may also be
extended as in (46) and (47). The quadratic terms in these equations can be linearized in
the same way as in the quadratic flow functions. However, even if this is an elegant
approach, the additional linear constraints needed to do this leads to further computational
complexity. Because of this reason, Equations (34) and (35) are adopted in the analysis
throughout this work. Note that the absolute value flow terms in (46) and (47) are
replaced by the linear expression |P| = Py + Py .

Yikei Pk + Xgei PGy + pi — Laei PDa + 0.5 Xkei PLi = 0 (44)
Ykei Ok + 2gei QGy + qi — Xaei @Dg + 0.5 X ke; QL = 0 (45)
(Pl + 0.5PL)? + (1Qi] + 0.5QLi)? < Uy (Simax)” (46)
(Pl + 0.5PL)2 + (1Qx + 0.5QL1)? < 24(Siomax) (47)

Computationally speaking, the LINACTEP problem (either lossy or lossless) is relatively
less complex when compared with the full ACTEP model. The entire LinACTEP model
is a MILP optimization problem, for which efficient and of-the-shelf solvers are available,
and optimal solution is guaranteed in a reasonable simulation time.

3.33. A “DC” based TEP Model (DCTEP)

This model, which is denoted as DCTEP, is the most commonly used model in technical
and economic analyses of complex power systems [32], [51], [79], mainly because of its
relatively lower computational requirement compared to the models discussed previously.
This TEP model often minimizes a certain objective function (48), and is based on the
classic “direct current” (DC) branch flow model in (49) [178]. It is derived from the well-
known AC network flows under the simplifying assumptions (i.e. the assumptions related
to the unity voltages, and small angular differences across lines) described above in
Subsection 3.3.2 and zero resistance. Further details of the DC network model including
its full derivation and related details can be found in [178].

The DCTEP model respects constraints related to the Kirchhoff’s voltage law (KVL) of
existing (51) and candidate (52) lines and the corresponding network capacity limits given
by (53) and (54), nodal active power balance (55), the generation limits (56) and the
voltage angle related constraints (57). However, the assumptions means that information
regarding reactive power and voltage magnitude variations among nodes are not provided.
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Minimize Z = Objective Function (48)

Subject to:
Py = —V.2. . byuyBy ; where — b, = 1/xy (49)
Py = —V,2,,by 2,0y ; where — b, = 1/x; (50)
[Py + Vi2bOi| < M, (1 —uy); where — by = 1/x,, (51)
|Pe + V2 bkl < My (1 —z); where — b, = 1/xy (52)
—UpSkmax = Pr < UkSkmax (53)
—ZkSkmax = Pk < ZikSk,max (54)
Ykei Pk + Xgei PGy + i — Xaei PDg = 0 (55)
UgPGymin < PGy < UgPCymax (56)
Omin < 0 < Omax; Orer =0 (57)

As described in the preceding Section, the bilinear terms in Equations (49) and (50) are
separated by the method of disjunctive formulation as in (51) and (52). Sufficiently large
values should be selected for the big-M parameters involved in this formulation to make
sure that reformulated problem is tight enough and that numerical problems are avoided.
The approach presented in [184] can be used to approximate the minimum value for each
corridor.

Basically, the underlining assumptions make the DC model lossless. However, losses are

often approximated by the quadratic expression in (40) [178], or some proxy of it, and
combined with the DC power flow model. Some of the existing linear losses models
(presented in the next subsection) are derived from (40).

Notice that Equation (40) is both nonlinear and nonconvex. In complex problems such as
large-scale TEP, linear models are welcome. The expression in (40) could be linearized in
order to include losses in DCTEP models. The most common approach in this case is to
perform a piecewise linearization of the expression in (40) as proposed in [42], and
further applied in formulating a long-term TEP problem of deregulated power systems
[65]. As explained before (see Section 3.3.2), the main drawback of such linearization
when used in TEP problems, is that angular differences between nodes are inappropriately
constrained to be zero for those nodes connected by lines selected for contingency
screening or candidate new lines that are not built, since in common piecewise-linearized
models, angle differences are formulated in terms of the line flows (zero flow implies
equal angles). To avoid this problem, the corresponding linear constraints are
reformulated into their respective disjunctive equivalents (described as the big-M
approach as in [42]) to guarantee that these constraints are not binding for lines that are
not built or not operative. However, the big-M approach creates some numerical
difficulties during the OPF solution process, such as ill-conditioning of matrices
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representing the system topology. To avoid the use of the big-M approach, losses can be
expressed as a function of flows (as in the case of LinACTEP) instead of angle
differences. The relationship between a line flow and its losses can be readily derived
using the DC flow model equations or directly from Equation (42) by simply neglecting
the reactive power flow, which leads to:

PLy = rkPI?/Vnzom (58)

Unlike angle differences, line flows are bound to be zero in lines that are not built
(candidate lines) or not operative (because of contingency screening or maintenance).
Another advantage of Equation (58) is its possible application to model losses in HYDC
lines or, generally, in lines where flows are independent of the voltage angles at the buses
they are connected to. The linearization of the quadratic flow function in (58) is as
described in the preceding Section, and includes the constraints given in (36) and (38).

Like in the case of lossy LInACTEP model formulation, losses in each line are treated as
“virtual” loads connected to the two end nodes of the line. In other words, losses in a
given line are equally distributed to the nodes connecting the line. When formulating a
lossy DCTEP model, the line capacity constraints (53) and (54) as well as the load
balance equation in (55) need to be slightly modified to take account of the losses as in
(59)—(61), respectively.

|Pk| + OSPLk < ukSk'maX (59)
|Pk| + OSPLk < ZkSk,maX (60)
Ykei P + Xgei PGy + pi — Xaei PDg + 0.5 X kei PLy = 0 (61)

In Equations (59) and (60), the absolute flow terms |P,| are easily linearized by
introducing two non-negative continuous auxiliary variables P and P, such that
P, = P — P;. This implies |P,| = P + P, . These two auxiliary variables correspond
to the forward and the backward flows in a line. Note that at most one of them will be
zero at a time. This condition is implicitly enforced by the theory of optimality because
network losses are a function of (P + P;)? and should be minimized. Setting both of
them to zero does not only make sense but contradict with law of optimality. A small
penalty can alternatively be included in the objective function to ensure at most one of
them is zero at a time. Computationally speaking, the DCTEP problem (either lossy or
lossless) is relatively less complex when compared with the LInACTEP model. Since the
entire formulation keeps the problem linear, like in the case of LinACTEP, commercially
available solvers can solve problems of this type efficiently.

3.34. A Modified “DC” based TEP Model (M-DCTEP)

It has been stated that the formulation of DC network model is anchored on the basic
assumption that the voltage magnitudes are close to the nominal one, which effectively
leads to a flat voltage profile in the system. This assumption is valid in most cases
especially in electrical networks spanning over small geographical areas because in such
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networks, the transmission lines are often short and low impedances, leading to low
voltage drops. However, in bigger networks, which is the subject of this thesis, the
voltage drops may be very high as long lines are very common in such networks.
Moreover, since RESs are often available in remote areas, very far from major demand
centers, long lines are expected to be constructed to tap the available sources. Because
of these reasons, it can be appealing to modify the DC model to include some of the
interesting features of LINACTEP model. In this model, denoted as M-DCTEP, the
customary flow equations in the DC model, which solely depend on angular differences,
are replaced with the following equations:

|Pe — (Vom (BV; — AV;) g — Vibmbie6i )} < MP(1 — wy.) (62)
|Pe — (Vo (AV; — A‘/}')gk —VZmbi0i}| < MP,(1 - z,) (63)

where Equations (62) and (63) stand for the disjunctive flow models in existing and
candidate lines, respectively, and AV™" < AV; < AV™3*, The remaining constraints in
DCTEP are also retained here. The full list of constraints can be found in Appendix C.

3.3.5.  Relaxed “DC” based TEP Model (R-DCTEP)

The relaxed DC TEP (R-DCTEP) model can be considered as an alternative formulation
of the DCTEP model. As explained before, the DC model relies on disjunctive
formulations for decoupling bilinear terms. Selecting appropriate big-M parameters can
be problematic in most cases, and this directly influences the solution process. Unlike
the DCTEP, this model does not require big-M formulation in the case of candidate
lines, which can be regarded as a significant computational advantage. Instead of using
the disjunctive model, the DC model is relaxed by replacing the bilinear terms with new
continuous auxiliary variables. In other words, the proposed R-DCTEP model is
linearized by transforming the bilinear terms in the DC power flow equations into
separable functions [185]. Here, we show how this is done for the bilinear terms in
Equation (46). First, two auxiliary continuous variables ¢, , and ¢, are introduced
such that ¢,y = (zx + 6;)/2 and ¢, == (zx — 6;)/2. This means the product of
discrete and continuous variables u; 8, appearing in the DC flow equation (46) can be
transformed into separable functions given by ¢, — ¢3 . as in (66). The linearization of
these quadratic terms is straightforward; the incremental approach (described in the
preceding Section) is adopted here. Like in the DCTEP, this model minimizes a given
objective function (64) subject to a number of technical constraints. Equation (65)
corresponds to the big-M equivalent formulation of the DC power flow model in
existing lines while the relaxed form of such a model for candidates is shown in (66).
Constraints (67)—(70) form the set of additional constraints required to make the
linearization approach complete. Further details of the linearization technique adopted
here can be found in an optimization modeling book [185]. The rest of the constraints
correspond to the power flow limits (71) and (72), load balance (73), generation
capacity limits (74) and voltage angle bounds (75).
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Minimize Z = Objective Function (64)

Subject to:

|Py + Vi2mbiOk| < My (1 —uy); where — by, = 1/x;, (65)
Pi = ~Vlombi(¢%x — $3x) ; where — by = — (66)

Puie =220 py =D (67)

0 < Z < Z max (68)

< gy < Hemariomes (69)

TR <y < Phmax Imin (70)
—USkmax = Pr < UkSkmax (71)

—ZkSkmax = P = ZpSkmax (72)

Ykei Px + Xgei PGy + i — Xaei PDg = 0 (73)

UgPGymin < PGy < UgPGymax (74)

Omin < 0; < Omax; Orer =0 (75)

When it is desired to include network losses in the TEP study, they can be modeled in a
similar way as in the DCTEP model described before i.e. by including the constraints
(58)—(61).

Note that the investment variables in this model need not be only be discrete variables;
this model equally works for continuous as well as discrete variables. As one of its salient
features, this model avoids big-M formulation; and hence, demands relatively less
computational effort when compared with its DC counterpart. Unlike the DC model, the
investment variables can be relaxed to hold continuous values instead of discrete ones
while respecting the physical laws of flows, which is another feature of this model. This
is relevant because, sometimes, a first-hand estimate of the network expansion needs
may be required. In such cases, it is desirable that such information be made available
as fast as possible to deliver the results for carrying out the required analysis. One way
to do this is by relaxing the discrete investment variables to continuous ones. Thus, the
R-DCTEP model with continuous investment variables can be used in this regard. We
will demonstrate the usage of such models in the following Chapters.

3.3.6. A Hybrid TEP Model (HTEP)

Due to the computationally intensive nature of the problem, researchers have resorted to
further simplify the DC model. A hybrid TEP model (HTEP), which has been used in
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network expansion problems [10], [30], is formulated by exempting the candidate lines
from obeying KVL. In other words, candidate lines only respect load balance and
capacity limits. On the other hands, flows in existing lines are governed by both
Kirchhoff’s laws. Since the DC flow equations are not in this model, the discrete variables
can be relaxed to continuous ones. Although the simplifications and assumptions made in
this model lead to a more manageable TEP model (computationally speaking), it has a
major drawback associated with “reverse” flows (i.e. flows in a direction opposite to that
determined by the law of physics). In power systems, physical laws dictate that power
always flows from high potential to low potential. In the case of DC models, this should
be from nodes with high voltage angles to those with low voltage angles. However, when
HTEP is used as a transmission investment model, the flows in the newly added lines (i.e.
candidates) could unfortunately be in the opposite direction in certain circumstances,
violating the physical laws that govern power flows in AC systems. To further clarify this
problem, consider the system in Figure 3. 1. All corridors can be reinforced with the same
line characteristics as the existing one. Assume the generator connected to node 1 is
renewable type with very low cost of power production. As we can see, there are two
electrical paths to the high-load node 5 namely 1-2-3-4-5 and 1-6-5. Suppose the former
path is congested, with all lines along the path reaching their respective maximum
capacity, and suppose the latter path has sufficient capacity for sending more power to the
load node. However, the congestion in the parallel path (1-2-3-4-5) makes it impossible to
send more power to this node. When the system is expanded by making use of the HTEP
model, instead of investing in all lines in this path, the model may instead result in
investment in corridor 1-2 to allow reverse flow in the new line. This temporarily relieves
the congestion and enables to send more power to node 5. The sum of investment cost of
line 1-2 and operation of cost of the power injected by G2 (in the form of counter flow in
the newly added line) may in the end be lower than the overall investment cost the four
lines along the path (1-2-3-4-5). This phenomenon is detected in the numerical analysis of
all models, which will be discussed shortly.

Fig. 3. 1 lllustrative example of counter flows
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3.3.7. A “Pipeline” TEP Model (PTEP)

This model, denoted as PTEP, is sometimes referred to as the “flow” or transportation
model which has been used in TEP studies in [31]. The lines are regarded as pipelines,
which respect only the capacity limits and nodal balance. PTEP does not obey the
Kirchhoff’s voltage law. This means that a particular line can carry any desired amount of
power flow independent of the impedance of that line and the angular differences. A
PTEP model can be formed with any of the models presented and discussed before by
excluding the KVL constraints related to both existing and candidate lines. As an
example, a lossless PTEP model can be formulated from the DCTEP model in Subsection
3.3.3 by considering only the constraints in (53)—(57). The PTEP model is
mathematically less complex and computationally less-intensive when compared to any
other model discussed so far. However, given the overly simplified network model to
form the PTEP model, the expansion solutions obtained by employing this model can be
largely suboptimal. Like HTEP model, this may also be prone to problems of reverse
flows.

3.3.8. A “Copper Sheet” TEP Model (CSTEP)

The copper sheet TEP (CSTEP) model regards existing lines as if they did not have flow
limits i.e. by relaxing the flow limits. This model can be alternatively understood as a
TEP model without flow limit constraints. CSTEP can be formulated with any of the TEP
models presented and discussed so far by excluding the capacity constraints of existing
lines or relaxing the binary switching variable associated to these lines to have continuous
values with no bounds imposed. For instance, a lossless CSTEP form of the DCTEP
model would include the constraints in (51), (52) and (55)—(57) as well as the constraints
in (53), where u;, € R and u;, = 0. Such a model can be a very handy tool in quickly
analyzing corridors that are prone to congestion so that preventive measures can be
undertaken. In addition, it can be very useful in identifying corridors that may need
reinforcements/investments. This application is especially relevant when carrying out
TEP on large-scale networks, where the huge geographical scope makes it difficult to
short-list candidate lines for investments. In such network systems, planners cannot rely
on expert knowledge (unlike in small- to medium-scale systems) for the candidate
selection procedure. In the following chapters, we will further show its application in this
regard.

3.3. TEP MoDEL FIDELITY—NUMERICAL COMPARISONS

3.3.1.  Input Data and General Description

The TEP models briefly described and discussed under Subsection 3.2 have been
compared numerically by running case studies constituting of the Garver’s 6-bus, IEEE
24- and 118-bus test systems in terms of computational requirement as well as solution
accuracy. As mentioned earlier, the motivation of such a comparative analysis is to find
the model that strikes the right balance between accuracy and computational demand in
the context of large-scale TEP applications.
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For the analysis here, a deterministic model with an objective function given by (76) is
considered which is subject to the constraints corresponding to each model. Equation (76)
Is composed of the net present values (NPV) of investment cost, operation as well as load
shedding costs.

The investment cost of a line is amortized in fixed annual installments throughout its
lifetime LT}, which is considered to be 30 years here. It should be noted that operation
and load shedding costs are incurred every year during and after the planning horizon,
leading to infinite payments of these costs annually. To further clarify this, consider the
illustrative example in Figure 3.2. It is understood that investments are made in a specific
year within the planning horizon (the second year in this case) and the investment costs
are amortized throughout its lifetime. However, the operation and load shedding costs are
incurred every year within and after the planning horizon. To balance these cost terms and
to take account of the long-term impact of network investments, a perpetual planning
horizon, i.e. an endless payment horizon of fixed installments is assumed here. In other
words , the concept of perpetuity described in detail in [186] is adopted. Based on the
finance theory in [186], the present value of perpetuity, which is the sum of the net worth
of infinite annual fixed payments, is determined by dividing the fixed payment at a given
period by the interest rate . Based on this, the operation and load shedding costs include
the associated annual costs within (part I) and outside the planning horizon (part 11). The
latter (part Il) are determined by the perpetuity of the costs in the last planning stage
updated by NPV factor in this case (1 + o)~3. Note that after the lifetime of the line
elapses, it is assumed that investments will be made in the same lines with the same cost
and technical characteristics in agreement with the concepts of a perpetual planning
horizon.

min Z
Zk,t,PGg b ePibt

1+ o)tk
= 22(1 + T')_t (10-5_ O-)LO'I-gc — 1Zk,tICk/0-

t k
+ Z Z Z(l + O-)_tAbPGg'b'tlg
t g b
1
+ Z Z(l + O')_lAbPGg,b't/lg/O' (76)
g b
11
+ Z Z Z(l +0) T APy
t g b
1
£ A+ ) hypied/o
t g b

1y
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Fig. 3. 2 Illustration of cost components within and outside the planning

For the sake of simplicity, the duration of planning horizon is assumed to be one year.
Hence, Equation (70) becomes:

in 7 = 2(1 poyr JUH T
Zk,PrCIilgllI;;l,pi’b - o (1 + O')LTk - 1 Zk k/o-

k
+ Z Z(l + O')_lAbPGg,b/’{g + Z Z(l + O')_lAbPGg,blg/O'
g b g b

1 11
+ Z 2(1 + O’)_lAbpi‘bA + Z 2(1 + O’)_lAbpi'bA/O'
g b g b
I

11

(77)

The constraints of lossy TEP models presented before can be extended to a multi-load
level planning framework. For quick reference, a summary of each of the models is
presented in Appendix B. All simulations are carried out in HP Z820 Workstation with
E5-2687W processor, clocking at 3.1 GHz. GAMS 24.0™ is used to code and run the
optimizations. Throughout the analysis in this section, CPLEX 12.0™ is called to solve
the problems with default parameters. A 5% interest rate is considered, and the number of
partitions for all sorts of linearization is set to 10 but five segments are sufficient
according our extensive analysis on this issue [13]. The range of permissible node voltage
deviations is between +10% and -10% of the nominal voltage; voltage angles are allowed
tovary 1.5 and -1.5 radians.

An hourly demand series for one year is aggregated dividing the load duration curve into
30 load blocks, as shown in Figure 3.3. The duration (in hours) of each load block is
indicated in Figure 3.4. Further input data used in the simulations can be found in
Appendix C.
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3.3.2.  Numerical Results and Comparisons

Numerical performance of each model is assessed by carrying out simulations on the
aforementioned test systems. Simulations results are summarized in Tables 3.1 through
3.4 and Appendix D. Table 3.1 presents the investment decisions obtained by each model
with and without losses. As can be observed, neglecting losses generally leads to
underinvestment or even a different expansion solution. The overall costs for the lossless
cases seem lower than those computed with losses. However, these are unrealistic because
of the cost and impact of losses are unaccounted for. In the following section, we shall see
a detailed analysis of losses and their influences in expansion results.
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Comparing the expansion results with that of an AC solution reveals that all lossy models
provide very similar results. This is especially the case with LInACTEP and DCTEP as
well as the modified DCTEP models. The expansion results of lossy LInACTEP model
only differ by one from the solutions of AC and lossy DC-based TEP models. Yet, the
total investment costs for the three models are the same in all three models, as can be seen
in Table 3.2. Figure 3.5 compares the losses in each load level computed by each TEP
model. It can be inferred from this figure that the DCTEP results in the lowest losses,
followed by LinACTEP and the remaining models.

Table 3. 1 Network expansion solutions for different TEP models — 6-bus case

Investment solution

From |11 |1 |1 (1 |2 21212 |3 |3 3 141|415
To 213 (4 |5 |6 |3 4/5/6 |4 |5 6 [5|61(6
Lossy 1 |1 1 1 111
PTEP
Lossless 1 1 1 11
Lossy 1 ]1 1 1 11
HTEP
Lossless 1 1 1 11
Lossy 1 |1 1 1 1 111
R-DCTEP
2 Lossless 1 1 1 111
2 Lossy 1|1 1 11 (1] 11
O |DCTEP
Lossless 1 |1 1 (1 1 11
M-DCTEP | Lossy 1 |1 1 |1 |1 1 1|1
) Lossy 1 |11 |1 1 |1 1 1|1
LinACTEP
Lossless 1 |1 1 (1 1 11
ACTEP* 1 |1 1 |1 |1 1 1|1
Lossy 0.1/1 |0.17 1 01 |1 1|1
PTEP
Lossless 1 1 1 1|1
(7]
S Lossy 0.1]1 [0.26 1 02 [1] [1]2
£ |HTEP
= Lossless 1 1 1 111
o
© Lossy 0.1|/1 |0.26 1 02 |1 111
R-DCTEP
Lossless 1 1 1 11

* Best solution after a number of restarts

Computational burden generally increases with model fidelity i.e. PTEP, HTEP,
R-DCTEP, DCTEP, M-DCTEP, LinACTEP and ACTEP. Despite its solution accuracy,
the LInACTEP demands nearly 5 times more computational effort to solve the problem
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than the DCTEP model. Interestingly, the modified lossy DCTEP models (R-DCTEP, M-
DCTEP) perform well. The computational requirement of R-DCTEP is significantly
lower than that DCTEP while the increase in simulation time when using the M-DCTEP
is marginal compared with the simulation time of DCTEP. Figure 3.6 demonstrates this
phenomena. In general, from the simulation results, one can see that the models which
strike the right balance between accuracy and computational demand are lossy DCTEP
and its derivative M-DCTEP.

Another observation in Tables 3.1 and 3.2 is that the models, whose investment variables
are converted to continuous ones, yield interesting expansion outcomes. The values of
those lines make up optimal solution set are significant, which is very relevant
information which can exploited in reducing the combinatorial solution search space,
which will be discussed in detail in Chapter 5.

Table 3. 2 Costs and simulation times for different TEP models — 6-bus case

Investment CPU time
cost (€) Total cost (€) |(S)

orep Lossy 284987239.4 | 1316109950.0 0.764
Lossless 260205740.3 | 1073807336.9 0.078
= Lossy 284987239.4 | 1316174242.8 2.855
Lossless 260205740.3 | 1073807337.0 0.125
SR [V 3110078134 | 1316174242.8 1372
Discrete Lossless 260205740.3|1073807337.0 0.234
I Lossy 382874160.8 | 19195027052 | 34.991
Lossless 358092661.7 | 1661650011.6 3.697
M-DCTEP | Lossy 3828741608 | 1844384854.2|  36.442
. Lossy 3828741608 | 1844384838.0|  166.375
LINACTEP - esless 358092661.7 | 1658033570.6| 116532
ACTEP Lossy 358092661.7 | 16580336019 | 434087.045
orep Lossy 269495228.7 | 1297679459 3 0.187
Lossless 260205740.3 | 1073807336.9 0.015
. Lossy 269767517.4 | 1298477815 1 0.172
Continuous | HTEP Lossless 260205740.3 | 1073807337.0 0.031
~DcTEp oSS 269767517.4 | 1298477815 1 0.359
Lossless 260205740.3 | 1073807337.0 0.094
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Table 3. 3 Network expansion solutions for different TEP models — 24-bus case

Investment solution (values shown in brackets)
PTEP Lossy 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1)
Lossless 2-4 (1), 4-9 (1)
o |HTEP Lossy 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1)
© Lossless 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1)
(&)
2 Lossy 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1)
O |R-DCTEP
¢ Lossless 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1)
DCTEP Lossy 1-2 (1), 2-4 (1), 2-8 (1), 4-9 (1), 10-11 (1), 16-17 (1)
Lossless 1-2 (1), 1-8 (1), 2-4 (1), 4-9 (1), 16-17 (1)
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. Lossy 12 (1), 2-4 (1), 2-8 (1), 4-9 (1), 10-11 (1), 16-17 (1)
LINACTEP T ossless 1-2 (1), 1-8 (1), 2-4 (1), 49 (1), 16-17 (1)
ACTEP* 12 (1), 2-4 (1), 2-8 (1), 4-9 (1), 10-11 (1), 16-17 (1)

Loy | 1202).18(02),24(10), 28 (03) 49 (10), 14-16
PTEP (0.2), 16-17 (0.6), 16-19 (0.1), 17-18 (0.1)
Lossless 2-4 (1.0), 4-9 (1.0)
) 12 (0.2), 1-8 (0.2), 2-4 (1.0), 2-8 (0.3), 4-9 (1.0), 9-10
2 Lossy | (0.03),10-11 (0.02), 14-16 (0.2), 15-21 (0.07), 16-17 (0.8),
2 |HTEP 16-19 (0.13), 17-18 (0.11)
g Lossless|  1-2 (L.0), 2-4 (L.0), 2-8 (0.47), 4-9 (1.0), 16-17 (0.77)
1-2 (0.2), 1-8 (0.2), 2-4 (1.0), 2-8 (0.3), 4-9 (1.0), 9-10
npeTEp |10V | (0.03),10-11 (0.02), 14-16 (0.2), 15-21 (0.07), 16-17 (0.9)
16-19 (0.13), 17-18 (0.11)
Lossless|  1-2 (L.0), 2-4 (1.0), 2-8 (0.47), 4-9 (1.0), 16-17 (0.77)

*Best solution after multiple restarts

The simulation results pertaining to the 24-bus case, shown in Tables 3.3 and 3.4, and
Figure 3.7, largely support the analysis and conclusions made in the 6-bus case. The
expansion outcome of lossy LINACTEP and DCTEP models exactly match with AC
expansion solution; however, the simulation times of these models significantly differ.
Like in the 6-bus case, LINACTEP is a lot more computationally demanding than any
other model. about five times and 41 times more expensive computationally than DCTEP
in the 24-bus and 118-bus cases. Hence, DCTEP balances well accuracy with
computational requirement. Figure 3.8 plots the losses computed by selected models. It
can be observed that the difference in these losses curves is not significant mainly because
of the similarity in the expansion outcomes.

Table 3. 4 Costs and simulation times for different TEP models — 24-bus case

Investment Simulation

cost (€) Total cost (€) |time (S)
PTEP Lossy 1375373.199 | 3916428514.8 6.973
Lossless 743444.972313913114138.0 0.219
HTEP Lossy 1375373.199 | 3916554450.2 16.069
Lossless 1375373.199|3913746068.8 1.95
Discrete | perep Lossy 1375373.199 |3916554450.2|  15.741
investement Lossless 1375373.199 | 3913746068.8 1.529
variable DCTEP Lossy 1660360.438 | 3917018556.0 62.556
Lossless 1437326.947 | 3913885370.5 4.368
. Lossy 1660360.438 | 3916449214.4 362.562
LINACTEP I ossless | 1437326.947 | 3913873912.4| 148,501

ACTEP Lossy 1660360.438 | 3916450118.3 | -

Continuous |[PTEP Lossy 1195667.085| 3916117546 0.952
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investment Lossless 7434449723 | 3913114138 0.063

variable L 1314158.391| 3916253139
0SS .
HTEP y ° > 3.775
Lossless 1145970.474| 3913516667 0.156
Loss )
R.DCTEP y 1314158.391| 3916253139 2 76
Lossless 1145970.474 | 3913516667 0.39

As explained in the preceding sections, a major concern with the hybrid and pipeline
models is the occurrence of reverse flows. These are not observed in the first two case
studies but they are detected in the IEEE 118-bus system in corridors 34—37, 84—85,
85—89, 88—89, which have been part of the expansion solution. This is corrected by
excluding the candidate lines in these corridors. Alternatively, this can be avoided by
including a small penalty in the objective function. The penalty factor should however be
selected carefully not to influence the outcome.
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Fig. 3. 7 Performance comparison of selected TEP models — 24-bus case

It has been stated from the outset that the main motivation of doing this analysis is to
identify and/or propose an improved TEP model that balances the tradeoff between
accuracy and computational requirement from the context of large-term TEP problems
under uncertainty in large-scale networks. From this perspective, the computational
requirement can be roughly estimated from the simulation results in this section. As the
plots in Figures 9 and 10 show the simulation times appear to follow polynomial trends.
Holding other parameters the same, the expected simulation times for a system with 1000
nodes or 1000 candidates are computed. These are depicted in Table 3.5. Note that these
values only give rough estimates. Yet, the figures show the stark differences in the
computational complexity of the models. With the same computing machine, in a 1000-
node system, LINACTEP would likely take astoundingly 85 and a half days (nearly three
months) before it returns the solution; whereas, the DCTEP model would finish within
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approximately 2 days. The observations with the number of candidates is the same. This
strengthens the previous argument that DCTEP or its “equivalent” formulations, R-
DCTEP and M-DCTEP, are the most feasible models that can be extended to TEP
problems of a significant network size. Based on the comprehensive analysis made in this
section, these models strike the right balance between computational requirement and
solution accuracy.
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Fig. 3. 8 Losses computed by selected TEP models — 6-bus case
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Table 3. 5 Estimating the computational burden (measured in days) of selected lossy

TEP models
System size
TEP Model 1000 Nodes | 1000 Candidates
PTEP 0.025 0.013
HTEP 1.794 0.814
R-DCTEP 1.219 0.553
DCTEP 1.742 0.792
LinACTEP 85.500 38.750

3.4. REPRESENTATION OF TRANSMISSION LOSSES

Most of the existing losses models fall into one of the categories reviewed in the
following subsection. It should be noted here that we have slightly modified the common
formulations of those models. First, the flow-based losses expression in (58) is used
instead of the angle-based one in (40) when formulating the linear models. Second,
additional features and constraints are included in some of these models to improve their
computational performance and accuracy in representing losses. We also subsequently
present some alternative losses models.

3.4.1. Motivation and Overview

The global push for the integration of renewable energy sources (RESSs) involves planning
the expansion of the transmission grid over geographically wider areas. Moreover, the
expected high penetration of RESs introduces significant uncertainties in the development
and operation of the system, which need to be accounted for. In most cases, large-scale
renewable generation projects will be located far away from major demand centers. Due
to the intermittency of their production, ensuring an acceptable level of guarantee of
supply in systems with very high RES penetration will require a well-developed
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transmission network with sufficient capacity to transport the renewable power produced
at remote areas to any other area where renewable production is very low. Depending on
the availability of RESs, the power flow patterns of the system are expected to undergo
dramatic changes over time.

As a result, to properly address a TEP study, a large number of operational states
(snapshots) and network investment candidates must be considered, together with several
timeline scenarios (or storylines) to represent the uncertainty about the evolution of the
system in the future. This leads to a very complex combinatorial TEP optimization
problem, requiring a large number of optimal power flow (OPF) computations, which can
eventually become intractable. The common practice of considering only the OPF for the
peak demand scenario is no longer valid in such power systems, particularly in the context
of TEP, where operational states stressing different parts of the network may be largely
different. Thus, the OPF formulation considered in TEP should be computationally very
efficient to ensure tractability while delivering results with an acceptable level of
accuracy. For instance, using a full alternating current optimal power flow (AC-OPF)
model, similar to the model used in [187], is not computationally affordable for such a
problem, while the classic direct current optimal power flow (DC-OPF) [178] may not be
a good solution either because it neglects transmission losses. In general, the OPF
formulation should feature all aspects that are believed to play a non-negligible role in
TEP, especially in large-scale systems.

Network losses may change the economic generation dispatch and affect optimal
solutions for the development of the network; see in [30] and more thorough analyses in
[42]. In spite of this, losses are frequently neglected in TEP models or treated in an overly
simplified way, mainly to reduce the computational burden when dealing with systems of
a significant size. Finding an appropriate representation of losses is critical when the
scope of the considered system becomes as wide as the full European transmission
network [188]. Moreover, as mentioned previously, large power flows are expected in
large-scale network of systems with high penetration of RESs, leading to higher losses
which could in turn play a more relevant role in TEP.

When using the conventional AC-OPF model, network losses (both active and reactive)
are implicitly modeled because such a model includes all network parameters. However,
the resulting problem is highly nonlinear and non-convex which makes computing the
optimal solution very demanding. Acknowledging the complexity of the AC-OPF
problem, distributed and parallel computation schemes are proposed in [189]. But in some
cases, the AC-OPF problem is directly solved via mathematical optimization techniques
(for example, the interior-point method in [190]). Due to the nature of the problem, such
techniques often rely on a series of approximations to reduce its complexity. Moreover,
the nonlinear and non-convex nature of the problem means global optimality could be
highly compromised because the solution algorithm could get stuck at local optima. This
limitation, combined with the complexity of the AC-OPF problem, led researchers to
resort to different heuristic and meta-heuristic solution methods which are based on
different nature-inspired algorithms such as: harmony search [191], evolutionary
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programming [192], imperialist competitive [187], chaotic invasive weed optimization
[193], particle swarm optimization [194], shuffle frog leaping [195] and many others
[196]. Such solution approaches are claimed to find “good” solutions within an acceptable
computational time but provide no guarantee of achieving global optimality. Generally,
even if the AC-OPF network model is the most detailed and accurate modeling approach,
its practical application is only limited to flow analysis pertaining to single or very few
system snapshots due to its mathematical complexity. In other words, it is
computationally expensive, if not impossible, to carry out multi-faceted analysis using an
AC-OPF based network model and given the sheer size of current power system networks
with a high level uncertainty (for example, long-term TEP problems). Therefore, a full
modeling of losses (i.e. using an AC power flow model) is not computationally
affordable, especially in the TEP context. Therefore, a tradeoff between accuracy in losses
representation and efficiency (in computational terms) of the OPF model becomes critical
to address TEP studies with high renewable generation penetration scenarios and large-
scale networks. This work addresses this objective and contributes losses formulations
and a strategy to solve the resulting problem that best achieves this trade-off. The
proposed losses models and other existing ones are compared in terms of accuracy in
losses representation and computational efficiency.

A review of some of the existing linear modeling approaches of losses is provided in
[197]. A losses model based on mixed integer linear programming is reported in [42],
applying a piecewise linear approximation of the quadratic expression of losses. And, the
same model is applied in TEP studies in [65]. An iterative way of adding linear
constraints is adopted in [197] using a dynamic piecewise linear model. In this case, the
fully accurate expression of losses is iteratively approximated by adding linear cuts of
actual transmission losses. A further extension of this iterative approach is reported in
[198], where losses are approximated by progressively adding linear cuts of equally
distributed nodal losses, instead of line losses. The node-based approach in [198] is
reported to take advantage of the fact that there are fewer nodes than lines in a typical
power system. Iterative or dynamic methods to compute losses are feasible in small to
medium-scale systems, but in very large-scale systems, performing several iterations may
be computationally unaffordable.

In some cases, a single linear losses equality constraint determined by curve fitting is used
[199], but this may either overestimate or underestimate transmission losses, depending
on the parameters of the constraint (i.e. slope and intercept). In a similar manner, the
authors in [142] simply represent losses in a given line as a certain percentage of its flow.
In other cases, a quadratic function of losses is merely added to a DC branch flow model
to account for losses in TEP [83]. But this adds nonlinearity to the problem, thus,
negatively influencing the convergence speed of the computation process. Elsewhere, in
problems other than TEP such as locational marginal price calculations, transmission
losses are modeled by a fictitious load either concentrated at a single node (often the slack
bus) or distributed among all nodes of the system. The distribution of losses is based on
either predefined [200] or adaptive coefficients (alternatively termed as distribution
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factors of losses) [201]. In reference [200], the entire system losses are distributed among
all nodes based on fixed losses distribution factors obtained from an AC power flow
analysis; whereas, the authors in [201] assume the losses in each line are distributed as
additional loads between its terminals. In the latter case, the distribution factors are
computed by means of a DC power flow analysis and losses are iteratively estimated. A
further extension of the work proposed in [200], with adaptive coefficients instead of
fixed ones, is presented in [202], and authors in [203] combine and extend the methods
developed in these works, i.e. an iterative linear approximation of losses with adaptive
coefficients is employed in [203]. These coefficients are modified iteratively based on
information obtained from an AC power flow analysis, the operational system states, the
operation point of generators and the network parameters.

In generation expansion planning (GEP) frameworks, transmission losses and hence their
associated impacts on the system are mostly neglected because GEP is often carried out
without considering transmission networks. A few works in the GEP subject area
incorporate losses by using certain loss allocation methods. For example, losses in
transmission and distribution networks are simply considered to be a certain percentage of
the demand to be supplied at each node in [204]. The authors in [205] account for losses
by multiplying the total power generation at each node with a predefined coefficient
(which ranges from 1.08 to 1.10). Similarly, power injections at each node are assumed to
comprise a certain ratio of losses [151]. Losses estimated using such approaches may be
sufficient in the GEP context; however, such a rough estimation method cannot be
extended to TEP, which must consider the entire network system.

Another losses modeling approach, mostly common in economic dispatch (ED) problems,
is Kron's loss formula [206], which is based on the concept of marginal transmission
losses allocation. Here, losses are represented as a function of levels of power injections
(i.e. power generation levels of generating units). This can be understood as an approach
which calculates the marginal increase in transmission losses due to an increase in the
load or generation level. The so-called B-loss coefficients [206] capture such sensitivity
factors i.e. the transmission loss coefficients. These coefficients are determined once
using power flow analysis and often considered to remain unchanged over a large set of
operational situations, which seems to be a very conservative assumption. In [207],
Kron’s loss formula is used to estimate losses in an ED problem which minimizes the
total cost of power generation. Transmission losses are also modeled using the same
formula in a stochastic [208] and a deterministic [209] multi-objective ED optimization
framework considering wind power generation. The differences between these two works
lie in the solution algorithms employed and the level of details in handling uncertainty.
Reference [208] presents a stochastic programming framework to better handle
uncertainties in load and wind power generation. And, particle swarm optimization is
used to solve the resulting problem; whereas, reference [209] uses a variant of firefly
algorithm for the same purpose. Most recently, the authors in [210] embed the Kron’s loss
formula in a reliability constrained unit commitment problem to estimate the total
transmission losses. The application of Kron’s loss formula in the subject area of ED is
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not limited to the aforementioned works. In [211], this formula is embedded in an ED
optimization model which has the cost of power generation as an objective function, and
an imperialist competitive algorithm is employed as a solution method to the resulting
problem. Authors in [212] use a different heuristic method (charged system search
algorithm) to solve the same problem as in [211], but including emission costs. Other
works related to ED, incorporating Kron’s loss formula, employ point estimate method
(analytical) [213] and a derivative of genetic algorithm (meta-heuristic) [214] to solve the
ED problem. Both works consider wind power integration, and an objective function that
jointly minimizes the costs associated to power generation and emissions.

In [215], with an apparently different strategy, losses are represented by incorporating
penalty functions in the objective function. Similarly, the authors in [216] include a linear
cost term in the objective function in order to account for the cost of losses and solve a
constrained TEP optimization problem which is based on a modified DC-OPF. The
authors in [187] also extend this concept by considering a nonlinear formulation for the
cost of losses, which is to be minimized in a multi-objective TEP framework based on an
AC-OPF. The penalty method may significantly reduce overall losses computed in the
system if a large penalty factor is used. Finding an appropriate penalty factor is not easy.
Hence, there is a tendency to over-condition the system through the application of large
factors, which may lead to sub-optimal results. In many DC-OPF based TEP problems,
transmission losses are altogether neglected (for instance, see in [136]), mainly for
computational reasons.

The main motivation of our study is as follows. As we shall explain in more detail in the
subsequent sections, most of the linear losses models currently used in TEP applications
have certain accuracy and/or computation related drawbacks. Of a particular interest here
is the estimation accuracy of losses. Most of the linear losses models in TEP do not have
the capability to effectively limit “artificial losses” (i.e. extra losses which do not exist in
reality, but computed by some models to increase the economic efficiency of the optimal
solution under specific circumstances). This means that the computation of such losses
leads to an artificial increase in cheap power generation, yet reduce the overall operation
cost in the system. Models that do not appropriately limit “artificial” losses normally rely
on linear inequality constraints that mainly form an unbounded feasible losses space.

Aurtificial losses normally involve spilling cheap energy produced in an exporting area to
ease network congestion between this area and an importing one, thus allowing some
extra demand in the importing area to be supplied with the remaining cheap energy.
Congestion occurs because there are several parallel paths between the exporting and the
importing area, one of which has very low transfer capacity. Then, spilling some cheap
energy along the constrained path in the form of artificial losses eases the network
congestion and allows more power to be transported along the other paths while
complying with Kirchhoff’s laws in AC systems. Generally, “artificial” losses are
computed when overly simplified losses models with an unbounded feasible solution
space are used in the OPF analyses of a system with a lot of cheap generation from RESs.
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Based on what has been explained, one can conclude that artificial losses are not
exclusive of systems where RES generation exists. However, given that these losses
normally make economic sense only when large amounts of cheap power production are
available, some of which are to be spilled (in the form of artificial losses), the
computation of artificial losses is especially worrisome when there is abundant,
intermittent, and non-controllable RES generation in the system.

Another important factor is the computational complexity of the resulting linear losses
model. As mentioned earlier, this work is written in the context of large-scale and long-
term network expansion planning under high penetration of renewable generation, where
there is no room for detailed or complex models of losses. Long term network expansion
planning problems are of a huge size when formulated for large systems like the European
one or the eastern or western interconnections in the USA. Therefore, our main goal in
the present study is to seek a losses representation that is accurate enough to appropriately
address problems like the avoidance of artificial losses, while not imposing a significant
computational burden. All in all, the main purpose of our study is to find a good linear
model for losses in such problems, considering computational efficiency, accuracy of
losses estimation, and especially effective limits to “artificial losses”.

In our work, two novel linear losses models that represent an alternative to currently
existing ones, and two variants of existing models, are compared to one another. The
losses models considered here are compared in terms of their accuracy and the increase in
the computational time as a result of including them in the OPF formulation; always from
the perspective of their application to large TEP problems. Case studies including small,
medium and large-scale networks are used to illustrate the performance of the models.

3.4.2. Transmission Network Losses in TEP

3.4.2.1. Impact of Losses on TEP Results

As mentioned earlier, neglecting transmission losses in TEP studies significantly reduces
the computation burden of the problem. However, this can jeopardize the accuracy of
TEP solutions, especially in large-scale power systems (where power may flow over long
distances).

According to the analyses in [30] and more thoroughly in [42], accounting for losses in a
TEP problem influences expansion decisions, often resulting in a higher number of line
investments. The following three points summarize the impact of losses on optimal
transmission expansion.

o “Free” power transfer. Neglecting network losses in TEP problems involves
ignoring the operational cost of transporting power. Therefore, a lossless TEP
results in a network configuration with a lower expansion cost but higher network
losses. Considering network losses allows balanced expansion plans that minimize
overall costs.
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e Hiding congested lines: Actual losses imply not only additional generation, but
also additional power flows all over the network. If losses are neglected, lines that
would in fact be congested may seem to be uncongested, resulting in such lines
being excluded from the set of possible expansion decisions and; hence, leading to
a different expansion solution.

e Changes to generator dispatch profile: Network losses can considerably affect the
dispatch order of generators. In large systems or those with large flows, this may
in turn affect the network expansion solution.

The aforementioned effects have been verified in two case studies as we shall present in
the results section. Generally, a TEP model with losses leads to a network configuration
with lower overall system costs, where a trade-off is achieved between all considered cost
components. When losses are considered, some extra investments may be undertaken to
reduce congestion and losses.

3.4.2.2. Modeling Aspects: Artificial Losses and Their Consequences

In losses models, another important aspect that should be appropriately handled is the
presence of so-called “artificial losses”. The term “artificial losses” is used here to refer to
the amount of losses exceeding the real ones which may be computed if the losses model
(used to solve economic dispatch -ED- or TEP problems) does not provide an appropriate
upper bound for the estimation of losses. Therefore, the word “artificial” is used here to
indicate that such losses do not occur in reality, and the related power flows are not
realistic. Such inaccuracy in modeling losses is due to the use of an overly simplified
formulation of losses, with the purpose of making the problem computationally tractable
(i.e. by keeping all formulations linear).

In a convex cost-minimizing optimization problem such as the ED or the TEP problems,
computed losses in each line should normally be very close to their real values even if the
“feasible” region defined for losses is unbounded. This is because minimizing losses
normally makes economic sense. However, under special circumstances, an artificial
increase of losses may result in a reduced operation cost. A simple example of this case is
provided in the system shown in Figure 1. Note that, in linear ED and TEP problems,
losses in each line are effectively treated as demand by equally distributing them to both
extreme ends of the line (i.e. nodes).

Artificial losses may appear in areas where there is power production available at a very
low cost, such as solar or wind power, and network congestion prevents this cheap energy
from being exported to other areas. There may be several parallel paths to transport power
from the exporting to the importing areas, while the capacity of one of these parallel paths
is significantly lower than that of the remaining paths. Note that congestion in power
systems is caused by the physical limitations of the grid, i.e. power transmission capacity
limits. A power transmission line, for example, has a maximum level of power carrying
capability that should not be exceeded for its healthy operation. Otherwise, it could get
overheated due to the resistive losses in the line. This may eventually lead to not only
malfunctioning and irreparable damages to the line but also operational and technical
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problems in the system. In interconnected AC systems, power flows predominantly
depend on angle differences between nodes, when the system tries to increase the power
flow in a particular line, other power flows increase as side-effects. We clearly
demonstrate this by using a three-node AC system, shown below.

To understand how losses models with unbounded feasible losses space can result in
artificial losses, let us assume an AC network, so power-flows must comply with both
Kirchhoff's laws. Then, some artificial losses along the congested path would result in
some extra amount of power being shifted along the remaining ones without violating the
power flow capacity constraint for the former path. Recall that losses in every line are
treated as demand by equally distributing the losses to both extreme ends of the line (i.e.
effectively considered as “virtual loads”). Since the power produced in the exporting area
is very cheap (i.e. energy produced at zero or very low cost from intermittent, renewable,
energy sources), consuming extra power at some nodes to supply an artificial demand
would make economic sense i.e. in reducing the overall operation cost in the system. This
occurs when the incremental supply costs computed at these nodes turn out to be
negative. Then, creating an artificial demand in the form of artificial losses in lines
connected to these nodes would be efficient from an economic point of view
(unrealistically lowering operation costs, and/or avoiding network investments).

Note that artificial losses are higher in congested paths than in uncongested ones because
this is a means to artificially “reduce” or “control” the amount of power flowing in
congested paths so that the capacity limit and flow constraints are not violated. In other
words, spilling energy in the congested paths in the form of artificial losses would keep
(though this is not realistic) the flow in these paths within the limits set by the capacity of
the congested lines, while still complying with the 2" Kirchhoff’s law, which rules the
distribution of power flows in the system. Thus, by reducing the amount of power flowing
in congested paths, more power can be transferred over uncongested paths while
complying with the laws of physics and keeping flows within line capacity limits.

Therefore, inaccurate losses models may result in artificial losses. Additional losses in
lines adjacent to congested ones may relax some active constraints, and thus lower the
overall system cost [217]. Negative incremental supply costs rarely happen in properly
developed networks. However, in TEP problems, the currently existing network will be
exposed to demand and generation scenarios only occurring in the (long term) future,
sometimes including much higher demand and generation levels than now. As a result,
the original network system may be very heavily loaded and stressed, and therefore, not
well-adapted to the operation situations being represented in the TEP problem. In some
scenarios, losses might be artificially increased to reduce operation costs while avoiding
certain network investments. Therefore, the losses model used in a TEP problem should
prevent artificial losses by setting appropriate upper bounds or relevant constraints.

It has been already stated that some existing losses models do not properly limit artificial
losses. Here, we use a fictitious three node AC system [217] to demonstrate that such
losses may exist in expansion planning studies if not properly handled. We shall present
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below how some of the existing losses models deal with such losses. The system
considered includes a low-cost (renewable wind power) generator at node 1 whose
installed capacity is1000 MW and an expensive (conventional) generator at node 2 with a
capacity of 400 MW, as shown in Figure 3.5 (a). Their associated marginal costs of power
production are depicted in Figure 3.5.The demand at each node is also shown in Figure
3.5. The power transfer capacity limits of the lines 1-2, 1-3 and 3-2 are 1000, 500 and 200
MW, respectively The data for this system, including impedances of the three lines, can
be found in [217].
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Fig. 3. 11 An illustrative three-node system.

Suppose the economic dispatch (ED) of this AC system, which is based on a DC-OPF
model, minimizes the total cost of generation while meeting the following technical
constraints: both Kirchhoff’s laws and generators’ minimum and maximum power
production limits. First, the resulting DC-OPF based ED problem is solved by neglecting
losses. And, Figure 3.5(a) shows the economic dispatch results corresponding to this case.
Here, one can easily observe that line 3-2 is loaded to its full capacity. Second, a quadratic
losses model is embedded in the DC-OPF based ED problem. This is needed for
comparing the losses computed by an existing losses model [197]. The ED problem
(which encompasses the aforementioned constraints and the nonlinear losses model) is
then solved by including the transmission capacity constraints. The corresponding OPF
results (i.e. the actual power generations, line flows and corresponding losses) are
presented in Figure 3.5(b). Note that the two values associated with each line, shown in
Figure 3.5, correspond to losses (upper) and power flow (lower) in MW through the line,
respectively. It should also be noted that the mismatches in load balance at each node in
Figure 3.5 correspond to the losses in the lines connected to the node, which are
represented by a quadratic losses model.
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Third, the quadratic losses model is replaced by the linear losses model in [197]. In this
case, the resulting ED problem is solved excluding and including transmission capacity
constraints. The dispatch solutions corresponding to these cases are shown in Figure 3.5
(c) and (d), respectively. Clearly, the solution in Figure 3.5(c) dictates that if there were
no transmission capacity constraints, the cheaper generator at node 1 would produce its
maximum allowable power (1000 MW) and literally cover all the demand. The expensive
generator at node 2 would only contribute a small amount of power to cover the
remaining balance (in this case example, the losses in the system). In addition, artificial
losses would not be computed in the transmission system. This is because it would be
possible to increase flow through link 3-2 beyond its rated capacity, which would remove
the congestion (or, alternatively speaking, the bottleneck), and also allow more flows to
go through the parallel path 1-2. In other words, it would not make sense to spill power in
the form of artificial losses when it is possible to send as much power through the lines as
needed to the other side of the network (i.e. node 2). However, the ED results
(considering line capacity constraints) show that this link is congested in reality. Hence,
an ED model which excludes the transmission capacity constraints does not lead to a
realistic OPF solution. In other words, given the physical limitations of the lines, i.e. the
power transfer limits shown in Figure 3.5(a), the dispatch solution in Figure 3.5(c) is not
practically feasible. This is because, as shown in Figure 3.5(c), lines 1-3 and 2-3 are
loaded above their physical limits. And, this is not acceptable because of the previously
stated reasons. In order to correct this, generator 1 should step down its power production
while generator 2 should step up power production so that a feasible dispatch solution as
in Figure 3.5(b) is obtained. As it can be seen in Figure 3.5(b), such rearrangement of
nodal injections increases the operation cost of the system but this is required if feasible
solution is pursued in such instances. In fact, it does not make sense at all to run ED
neglecting line capacity limits. We brought this argument here only to demonstrate the
relationship between congestion and artificial losses. The consideration of line capacity
limits is always crucial to obtain a realistic solution. But the underlying point here is that
artificial losses will be computed if improper losses models are used in systems where
congestion and massive low cost generation are present.

Generally, when low cost generators are unable to deliver power to a particular consumer
because of congestion, other expensive generators located elsewhere on the grid are
dispatched. For instance, as shown in Figure 3.5(b), the power production by the
expensive generator is increased by nearly 70% of its rated capacity while that of the
cheaper generator is reduced by about 275 MW. As a result, this temporarily relieves the
congestion in the lines, and effectively avoids its consequences. The re-dispatching
process, explained here, is one of the tools commonly used for congestion management in
real power systems. Others remedies of congestion include line reinforcements or
switching. In general, most of the congestion management tools rely on ED or TEP
optimization models, and the transmission losses model embedded in such models plays a
relevant role in the final solution. We will now explain why some of the existing linear
losses models do not behave well in certain circumstances.
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As stated earlier, the dispatch solution in Figure 3.5(d) corresponds to the solution of an
ED problem, embedding the linear losses model proposed in [197] and considering the
line capacity limits. Here, it can be observed that the losses computed in line 1-3 are
artificially high, nearly 40 times higher than the actual value in Figure 3.5 (b). This can be
explained as follows. As in Figure 3.5 (b), line 2-3 is fully loaded to its rated capacity
(200 MW) while the other lines are only partially loaded. One can see that the demand at
nodes 1 and 3 is easily met making use of the output of the cheaper generator at node 1.
The problem arises when we try to supply the demand at node 2 with cheap energy
produced at node 1. Since line 2-3 is loaded to its full capacity, it is not possible to
transport as much cheaper power from generator 1 as we would like to fully serve the load
at node 2. This is due to the Kirchhoff’s laws that govern the distribution of energy flows
among lines. According to Kirchhoff’s law, part of each MW of power injected at node 1
to supply the load at node 2 would flow through the other parallel path connecting
nodesl, 3 and 2 to reach node 2. As a result, the flow through line 2-3 would increase
beyond its rated capacity. Hence, it is not technically possible to send more flow through
line 1-2 instead of using lines 1-3 and 2-3, trying to avoid the congestion at the latter.
Thus, the only feasible solution here is to dispatch the more expensive generator located
at node 2 to supply part of the load at the same node, as shown in Figure 3.5(b). However,
some losses models with an unbounded ‘“feasible” solution space of losses (see the
models reviewed in Section 3, especially those based on linear inequalities), may result in
artificial losses.

For instance, in the considered example, using the losses model in [197] leads to losses as
high as 100 MW in line 1-3, as illustrated in Figure 3.5 (d). From an economic point of
view, this reduces the overall dispatch cost (even if it is not technically possible). This is
because extra losses come at a nearly zero cost (i.e. the cost of producing power from
primary wind energy is zero), allowing the congestion in line 2-3 to be (artificially)
relieved; and thus paving the way to transfer about 12 MW of cheaper power through line
1-2 to meet the demand at node 2. Losses computed with the aforementioned model for
line 1-3 amount to 20% of the capacity of this line, and are nearly 40 times higher than the
losses that would actually exist in the line (which should be about 2.5 MW). As a result,
the overall system cost is lowered by nearly 14% with respect to the situation where
losses computed in the ED for line 1-3 are limited to their actual level. This is a feasible
solution from a mathematical point of view, but it makes no sense from a physical point
of view (this is why these losses are called “artificial”). As already pointed out, such
unrealistic results arise from the imperfect modeling of losses, and this is not unique to
the losses model in [197]. It happens with many of the commonly used existing losses
models, where the “feasible space” considered for losses in the OPF problem is not
effectively bounded (i.e. because of the “bigger than™ linear inequality constraints
commonly used in the losses models). The results of the entire economic dispatch for this
small illustrative example can be found in Table 3.6, in the following section.

Furthermore, if artificial losses are allowed in the solution, conducting the TEP on this
system would not lead to reinforcing line 2-3. However, reinforcing line 2-3 might in fact
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reduce the overall system cost when real losses are considered because this could relieve
the existing network congestion and allow the expensive power produced by the generator
at node 2 to be replaced with the low-cost power produced at node 1.

The following section reviews some of the formulations of existing losses models,
focusing on their modeling accuracy (artificial losses, in particular) and computational
requirements. Since existing models do not achieve an adequate compromise between
accuracy and computational efficiency in the context of TEP, this thesis contributes two
alternative losses models, which are able to adequately deal with this problem. The
performance of different models is analyzed and compared in the subsequent sections.

3.4.3.  Review of Existing Linear Transmission Losses Models

3.4.1.1.  Model 1—Single Linear Equality Constraint

A rare, but possible, option is assuming losses to be proportional to flows, i.e.
representing them using a single equality constraint. The parameters (i.e. slope and
intercept) of such a linear constraint can be determined by minimizing the mean squared
error (MSE) for values of losses that range from zero to the maximum flow capacity of
the line. This results in the expression in equation (78), which is similar to that of the
model proposed in [199] apart from the fact that a non-zero intercept is assumed here.
Note that the coefficients included in (78), 1 and-o.165, correspond to the optimized
slope and intercept parameters of the linear losses equality constraint that best “fits” the
scaled quadratic function of losses (P, /Si*®*)?achieving an MSE value as low as 0.006.

| P |

PLy = 13 * (Sg*%%)? {1 * <max
Sk

— 0.165} (78)
In equation (5), S*** denotes the capacity of the line k connecting nodes i and j.
Considering the absolute value of flow in line k, |P|, in (78) may seem to add non-
linearity to the problem, but this can be easily linearized by introducing two non-negative
auxiliary variables, representing the flow in the positive and the negative direction for the
line, as explained in the preceding sections.

This model avoids artificial losses, which is a relevant feature. However, representing
losses with a single equality constraint is not accurate enough for TEP problems, since it
results in a significant underestimation or overestimation of losses depending on its
parameters (i.e. the slope and the intercept). At least four to five linear constraints are
needed for the error in losses estimation to be acceptable. Numerical examples will be
given at the end of this section to justify this argument.

3.4.1.2. Model 2a—Tangent or Traversing Linear Inequality Constraints

This is a linearization method in which a series of lines are defined as linear constraints
which set a lower limit to losses, as shown in Figure 2a [197]. This model can be
formulated either using L tangent lines or L lines traversing the quadratic losses curve
whose equations are given by the right hand side of the linear constraints in (73) and (74),
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respectively. The parameters of each of these lines (the slope and the intercept) are
determined using the values of flow, “real” losses and derivate at the intersection points of
the quadratic losses curve and the corresponding line representing a linear constraint. For
example, for the first tangent line, its slope is given by evaluating the first derivative of
the quadratic losses function (4) at P, = Ap;*®* which becomes 21, Apy*®*; while its
intercept can be determined by substituting the values of P and PL, at the Cartesian
coordinate (Ap*®, i, (Ap***)?) in the linear equation of the line. In general, the linear
expressions of the I™ constraint (wherei < (1, 2,..., L) ), which corresponds to the I tangent

or traversing line, are given by (73) and (74), respectively.

PLy = 1 {21Ap** | P, | — (1ApT*¥)?} (79)
PLy = 1 {(21 — AP | P, | — (12 — D) (Ap[¥)?} (80)

where |Pi| = P; + Py ; Apt™ = S** /L is the maximum step-size used in the
representation of losses, and L is the number of linear constraints. Note that, for the sake
of simplicity, Figures 2a and 2b show only two partitions (i.e. L = 2) but the formulation
is valid for any desired number of partitions.

The main drawback of both modeling approaches is that the feasible solution space of
losses is not bounded from above, potentially resulting in artificial losses. However, when
artificial losses do not occur in the system, four or five steps should provide a reasonably
accurate value of losses (see in the results section).

3.4.1.3.  Model 3a—Piecewise Linear Approximation

This model, which is described in [42] and further used in a long-term TEP problem in a
deregulated environment [65], is based on the piecewise linearization of the nonlinear
losses term. It should be noted here that we have modified the originally developed
piecewise linear models. Line flows—instead of angle differences—are discretized here
when computing losses, for the reasons already mentioned above. In other words, we
compute here a piecewise linear approximation of the quadratic term of the losses
expression in equation (40). In order to do this, we represent the absolute value of the line
flow variable by the sum of positive step-size flow variables Ap,, associated with each
partition of line losses computed using the corresponding linear expressions. This can be
understood as a piecewise linear fitting (or first order approximation) of the quadratic
losses function, as depicted in Figure 2b. Generally, the model includes constraints (81)—
(84).

PL, =1y ZZL 10(,(,1 Apy,; where ay,; = (21 — 1) Ap™* (81)
0 < Apy,; < Ap'™* (82)

|Pel = P + P = lelAPk,l (83)

PL, =0 (84)
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Note that Apy,is a discrete flow variable associated to the I™ linear constraint used to
represent the losses curve. Equation (81) provides the expression of linearized losses,
which are computed as the accumulated sum of step-size losses; equation (82) ensures
that the step-size variables do not exceed a preset value. According to equation (83), the
discrete flow variables should add up to the absolute value of flows in line k. Equation
(84) ensures losses are non-negative.

Note that it is also possible to piecewise—linearize the losses curve by using secants
(which allow positive and negative errors in losses representation) as reported in [43]
instead of chords (which allow only positive errors) as in this model. Under normal
conditions, the former may result in a slightly lower estimation error of overall losses than
the latter provided that the expressions of the secants are properly optimized. This is
because of the partial cancelation of the positive and the negative errors. However, this
has to be weighed in the context of TEP, where losses computed on an individual line
basis have more relevance than the overall system losses. Transmission investment
decisions are especially sensitive to the underestimation of losses.

) Quadratic losses curve (b)
. 4 .
- — ,’ - —
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= =
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Absolute flow in branch i-j Absolute flow in branch i-j

Fig. 3. 12 Method of linearizing losses by (a) tangent or traversing linear inequality
constraints with or without an upper bound and (b) piecewise linear approximation.

The main drawback of this model is the large number of additional flow variables needed
to represent losses. This model limits artificial losses, since the equality constraints in (8)
and (10) guarantee that computed losses are bound to be less than or equal to 7;, (S7*¥)2.
The authors in [36] acknowledge that artificial losses computed with such a losses
model can sometimes have a dramatic impact on the optimality of the transmission
expansion solution. In order to avoid this effect, they reformulate the above model by
introducing binary variables to ensure that the angle difference and the losses pair fall
exactly on either of the linear segments. However, they conclude that introducing binary
variables makes the problem highly complex to solve. The same model has been used in
an ED problem [218], and with numerical results of the ED problem which embeds this
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model, the authors have showed that “the optimization arrives at an infeasible solution
from the physical point of view” [218]. They have demonstrated that the solution
algorithm “tries to optimize losses” (referred to artificial losses here) in one of the lines
to send more power through other links. And, computed losses in their study are 3.4
times higher than the actual ones. Note that even if Model 3a is based on equality linear
constraints, artificial losses can still be computed under certain circumstances.
Alternatively speaking, losses can be optimized, but not as high as the losses that would
be computed by Model 2a. In Model 3a, losses cannot be higher than r; (S7***)2.

3.4.4.  Coping with Artificial Losses

We have already stated that, unless properly addressed in the TEP optimization model,
artificial losses may negatively affect the optimality of a TEP solution. We use the results
of the simple system shown in Figure 3.5 to illustrate how the models already described
above deal with artificial losses.

We can see in Table 3.6 that Model 2a results in high artificial losses because of the
reasons mentioned in Section 2. With Model 3a, losses in line 1-3 are reasonably limited,
yet they are 50% higher than the actual ones. Model 1 avoids artificial losses, but it
underestimates losses, in this case, producing a value of losses that is 35% lower than
actual one. Such inaccuracy (which can even be higher in large-scale systems) is not
acceptable in the TEP context.

When conducting a TEP optimization for this system, Model 2a does not result in the
reinforcement of the network, since it is cheaper to assume high artificial losses than to
reinforce line 2-3. With Model 3a, line 2-3 is chosen to be reinforced because the
computed artificial losses in this illustrative example are too small to influence the result.
But it should be noted that, when using Model 3a, the resulting expansion solution
depends on the amount of artificial losses computed (the higher their level is, the fewer
the network investments will most probably be). Model 1 also results in the reinforcement
of line 2-3. Note that reinforcing corridor 2-3 relieves the congestion and allows the full
use of the low-cost generator at node 1, reducing the overall system cost.

Table 3. 6 Economic Dispatch Results Considering Different Losses Models

System Generated power (MW)
Models losses (MW) | G1 G2 Total cost (€)
Model 1 2.109 720.900 281.210 55,168,454.68
Model 2a’ 100.689 833.370 267.319 48,286,036.20
Model 2a° 100.731 833.391 267.340 48,291,302.83
Model 3a, 2b°, 3b | 4.646 725.410 279.236 56,065,934.04

"With tangent linear constraints ° With traversing linear constraints

These results show that some of the customary models provide artificial losses that may
significantly influence expansion plans. Moreover, in long-term TEP problems stated for
large-scale systems, the level of penetration of renewable sources is normally relevant.
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Together with the computing time (due to the size of the system), the presence of large
amounts of low-cost generation is of great concern because large artificial losses may
make economic sense.

In conclusion, an appropriate linear model for losses is needed in large-scale TEP
problems. This should be chosen considering:

e Computational efficiency
e Estimation accuracy of losses, and especially
e Effective limits to artificial losses

In the next subsection, we present some models that can represent losses more accurately
(and reduce artificial losses) and more efficiently (from computational point of view) than
the ones already described. A comparative analysis of all these models is included in
Section 3.5.

3.4.5.  Proposed Linear Losses Models

3.4.5.1. Model 2b—Tangent or Traversing Linear Inequality Constraints with an Upper
Bound

We have already stated that when using Model 2a, artificial losses may appear in some
lines for economic reasons. This can be partially avoided by including an additional linear
constraint in the formulation of Model 2a that sets an upper limit to the feasible losses
region, as shown in Figure 3.6a (using two constraints). Including such a constraint may
also accelerate convergence because it further shrinks the feasible region.

The expression of the upper bound constraint is given by PLj, < 1 S7**|Py|, where
|P,| = Pi + P . Note that the inclusion of such a constraint does not fully avoid artificial
losses, but limits their value (see Table 3.6) to the polygon area depicted in Figure 3.6a.

3.4.5.2. Model 3b—Piecewise Linear Approximation

This is a modified version of Model 3a. When using Model 3a, it is desirable that the
losses segments be “filled up” successively, i.e. in increasing order of the segment
indices. Otherwise, under the circumstances that lead to artificial losses, upper segments
(with larger slopes leading to higher losses) would be filled up first and to a greater extent
than lower segments (with smaller slopes). Despite this fact, Model 3a lacks a constraint
that enforces the right behavior in the filling of losses segments. For this reason, we add
here the constraint (85) to guarantee that at least upper segments are not filled to a greater
extent than lower ones.

Apk,y = Apki+1 (85)
Including (85) helps to limit artificial losses but does not fully eliminate them, since all
step-size variables Ap,, ,could be made equal, instead of forcing a given step variable to be
at its maximum before the following step is allowed to be non-zero (see Table 3.6). As a
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result, this development achieves a reduction in the level of artificial losses computed but
does not manage to fully avoid them.

3.4.5.3. Model 4—Traversing Linear Equality Constraints

The problem of computing artificial losses (when using existing models) can be
completely avoided if we can (i) convert the inequality constraints in Model 2a into
equality constraints, and (ii) stipulate that no more than one constraint in Model 2 can be
active simultaneously. The condition in (ii) can be met by introducing binary variables, as
many as the number of linear constraints. Only one of these binary variables will have a
value equal to 1, while the others will be set to 0. This can be expressed mathematically as
in (86) or (87), where losses are made equal to the expression of the particular linear
constraint whose binary variable is 1.

bra (1| Pl + 1) + bra( @2 |Pel + cr2) + -
L-1

+by (@ | Pel + cpp) + -+ (1 - zl_lbk,z) (s L|Pel + cir)
L-1 L-1
PL, =1 {21—1 bri (it Pl + cxy) + (1 - 21—1 bk,l) (gL Pel + Ck,L)} (87)

L-1
Z by < 1 (88)
=1

Equation (88) ensures that at most, one of the binary variables has a value equal to 1.
Although this formulation is mathematically correct, it is non-linear because it includes
products of binary and flow variables. These products can be easily expressed using an
alternative linear expression by replacing the equations (86) and (87) above with their
disjunctive equivalents as in (89) and (90). One of the drawbacks of the big-M
formulation is the complication associated with the selection of the right value of the big-
M parameter. Very large values may lead power flow matrices to be ill-conditioned, while
low values may cause convergence and inaccuracy problems [55]. To avoid such
problems, equations (89) and (90) are reformulated as in (91) and (92), respectively.
Equations (93) and (94) are included as well to ensure that the line segment considered to
represent losses corresponds to the one defined for an interval that includes the value of
the flow variable.

PLk =Tk (86)

|PLy — rie(@iei| Pl + cir)| < My (1 — byy) (89)

L-1
|PLk — Tk(ak,Llpkl + Ck,L)l < Mk (1 — (1 — Zl_lbk’1)> (90)
—LB (1 —by,) < PL — 1 (ar | Pl + ciy) < UB(1 — byy) (91)
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=1

L-1
—LBk <1 - (1 - Z bk,l)) < PLk - rk(ak’Llpkl + Ck,L)

L (92)
<UB.[1- (1 _ z bk,l>
=1
L-1 L-1
1Pl <) bl dpP 457 (1= by (93)
=1 =1
L-2 L-1
P2 ) bl 0P+ (L= DAPP (1) b (94)

where
Apt™* = S /L is the step-size of each linear constraint; |P| = P + P ; ay,
and cy, are the slope and the intercept of the I™ constraint in Model 2, which are
given by (21 — 1)Ap**and (I — 12)(Apj®)?, respectively;
by, is the binary variable associated with the ™ constraint;
M, is a big-M parameter;
UBis an upper bound constant given by:

max (PLk — (@ | Pl + Ck,z)) ~ (@ ST + )
LB, is a lower bound constant whose value in this case is zero; and
L is the total number of linear losses constraints.

In this case, the model includes constraints (88) and (91)—(94). The disadvantage of this
model is its mathematical complexity. It is easy to understand that the higher the number
of constraints and binary variables, the larger the computational burden of the model is.
Regarding artificial losses, test results obtained for the system in Figure 3.5 show they are
effectively avoided.

3.4.54. Model 5—S0OS2 Approach

We have already mentioned earlier that the first three losses models have certain
drawbacks, particularly in terms of their accuracy in estimating losses. The
improvement achieved as a result of the additional constraints included in Models 2b
and 3b may not be sufficient to properly limit artificial losses in some situations.
Moreover, despite the fact that it provides a more accurate estimate of losses than the
first three models, Model 4 cannot be suitably applied to large-scale TEP problems
because of its computational complexity. Because of this reason, we propose a new
modeling approach based on the use of Special Ordered Sets of type 2 (SOS2) [219]
(also discussed in detail in [220]), which is explained in detail in the following
paragraphs.

Piecewise linear functions, as in Figure 3.13, can be modeled by introducing a set of
positive variables 4, ;, where 1< (0,1,...,L), that form an SOS2 (see [219]). These

variables can be understood as weights associated to the points where the linear losses
constraints cross the quadratic losses curve, here called intersection points. The main
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property of SOS2 variables, as described in [219], is that at most, two consecutive
variables among them can have non-zero values. As we shall explain below, this property
leads to the fact that losses are computed by carrying out a linear interpolation between
two consecutive intersection points.

The formulation of this losses model is as follows. First, the absolute flow in a line is
expressed as the sum of the products of the flow values at the partitions defined on the
flow axis in Figure 3.13 {i.e. P, where 1< (0,1,...,L) } and the corresponding lambda

variables, as in equation (95). Without loss of generality, the intersection points can be
assumed to be equally spaced on the horizontal (flow) axis, where the distance between
two consecutive points is given by Ap*®*, as in the previous models. Thus, the flow at
the I" intersection point becomes I * Ap*®*. Substituting this in (40) gives the line losses
at this point as 7, (I * Ap***)?, where 1 € (0,1,...,L). Then, the flow expression in (96) is

derived accordingly.

Similarly, the line losses can be expressed as in (97), from which (98) is derived by
considering the quadratic expression of losses at each intersection point. Equation (15) is
a general upper bound for the lambda variables. Note that P, o and PLy, o are both zero
since they correspond to the flow and the losses at the first intersection point (i.e. the zero
coordinates as in Figure 3.13). Elsewhere, the SOS2 approach has been applied for
dealing with nonlinear functions in a mixed integer programming gas network
optimization [221]. The authors in [220] also extend this concept to linearization of a
two-dimensional function.

Remember that in this model, it is additionally required that at most two consecutive
lambda variables are non-zero. This requirement combined with (99) makes the lambda
variables have the same properties as SOS2 variables, thoroughly described in [219].
Adding this condition ensures the values of the flow and the losses for each line are linked
and correspond to a point that lies exactly on one of the linear segments between two
consecutive intersection points (see Figure 3.13).

|Pe| = Pyey * Ay (95)
1=0
L
| Py | ZAPITaxZ L* A (96)
1=0
L
PLk = PLk,l * Ak,l (97)
1=0
L
PLy = 1, (Apg***)? Z L* Ay (98)
1=0
L
/1](,1 =1 (99)
1=0

To further clarify how this linearization works, an example is provided next. Suppose the
value of the line flow lies between p; and p4 (see Figure 3.13). In this case, all but 4, and

4, variables would be zero, forcing the flow-losses pair to lie on the fourth segment. This
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Is because, due to constraints represented by equations (95) and (97), the line losses are
computed by linearly interpolating the value of the losses function (the expression for PL;,

for a value of the line flow, p_ 1 + p,4,, lying between the two extreme flow values in the
corresponding segment, ps and ps. Then, the expression of losses is computed as
p A, +¢,A, . Sincea, + 2, =1from (15), p.4, + p,4, and ¢ 2, + ¢ 2, can be equivalently
expressed asp. 2, + p,(1-2,) ande 4, + ¢, (1- 4,), respectively, which clearly implies that
line losses are computed by linear interpolation.

As an example of the computation of the parameters of the expression used here to
approximate actual losses, suppose the actual flow PL,, is 75 MW for a given line with a
rated capacity and a resistance of 100 MW and 0.1 per-units, respectively. Note that the
above formulations are based on per-units. But if one wants to instead work with

megawatts, the per-unit flows and losses should be multiplied by the base power s (here,

assumed to be 100 MVA). Based on this, multiplying the value of per unit losses PL; in
equation (40) by s, gives the value of losses in megawatts ¢, i.e. ¢, = Sp * PL;, which

is also equal to Sg * 1, pZ. We know by definition the per-unit flow p,, is obtained by
dividing the MW flow P, by the base powers  i.e. P,/Sg. Therefore, we can rewrite the

losses expression as Sp7, PZ/S2 or equivalently as &, PZ where &, is a coefficient given
by 1. /Sg. For the example case, & is equal to 0.001/MW.

Taking five equally spaced partitions, the set of evenly distributed flow steps taken in the
losses representation {p_,p,. p,.p, p,.p.} becomes{0,20,40,60,80,100} . Clearly, we

can see that the line flow, 75, lies in the fourth partition (i.e. between 60 and 80). Actual
losses corresponding to the flows 60 and 80 MW, computed using the quadratic
expression, are 3.6 and 6.4 MW, respectively. In the losses model presented here, only the
lambda variables corresponding to the intersection points (60, 3.6) and (80, 6.4) should be
different from zero. Thus, equations (13)—(15) become:75=604, +804,,PL; =

3.61; +4.6A, and 2, + 4, =1, respectively. Solving these equations simultaneously, we
geti, =0.25,4, =0.75and PL, = 5.7 MW. In this case, the difference between the losses

value computed with the proposed model (5.7 MW) and those that would be computed
using the quadratic losses function (5.625 MW) is practically negligible, clearly showing
the accuracy of this model. It is also interesting to observe that the point (75, 5.7) lies
exactly on the linear segment which passes through the intersection points (60, 3.6) and
(80, 6.4), thus resulting in the linear equation for losses PL;, = 0.14P, — 4.8.

The number of additional variables required to represent losses using this model may
create a considerable computational burden, but this is counterbalanced by the fact that
this model is fully based on the use of equality constraints. Artificial losses are not a
concern here since the lambda variables are SOS2. In other words, constraints (96) and
(98), together with SOS2 properties, guarantee that losses are not oversized for economic
reasons.
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It should be noted, however, that even if the SOS2 stipulation is not explicitly included in
the model, losses should be bounded to be lower than r, (S7***)2. This has been
experimentally proven by applying this losses model to the 3-node test system in Figure
3.5. The results of the economic dispatch for this system, when employing this SOS2-
based losses model, confirm its ability to effectively eliminate artificial losses. Calculated
losses coincide with the actual losses (3.222 MW), with generators G1 and G2 producing
721.456 and 281.766 MW, respectively. The total system operation cost in this case is
€ 56,217,891.45.
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Fig. 3. 13. Piecewise linearization of losses in the SOS2 approach

3.5. NUMERICAL COMPARISONS OF THE LOSSES MODELS

Case studies including small, medium and large-scale networks are used here to analyze
the performance of the models considered in this work. For this purpose, a static version
of the DC-OPF based TEP model, described in Section 3.3 and in [15], is considered. In
addition, the hourly forecast of electricity demand at each node is assumed to be given for
the whole target (planning) year and a load duration curve is used to aggregate the
demand at each node into 5 load blocks by means of piecewise approximation. The
demand level and number of hours in each load block are determined in such a way that
the peak hours are modeled more precisely than the off-peak and shallow ones. All case
studies have been solved using a computing machine Core 2 Duo SU7300 processor with
4 GB RAM clocking at 1.3 GHz.
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3.5.1.  Impact of Losses on TEP Results—Numerical Results

For the analyses here, a static version of the DC-OPF based TEP model in [15] is
employed. The considered TEP model minimizes the sum of operation and transmission
investment costs while simultaneously satisfying a number of customary technical
constraints. The operation cost includes generation and reliability costs. The latter are
simply modeled by including a factor in the objective function which penalizes unserved
power computed at each node. The standard Garver’s 6-bus [39], shown in Figure 3.14,
and the IEEE 118-bus [222] test systems are used in the analyses.
49
1

Fig. 3. 14 Garver’s 6-bus test system

Table 3. 7 Impact of Network Losses on Expansion Results

Garver’s 6-bus System Lossless TEP  |Lossy TEP
Total cost (investment + operation costs) [0.9157° 18
Investment cost (as a fraction of total 0.1468 0.2244
costs)

Losses (MW) 0 110.0089
#Corridors with investments 3 5

IEEE 118-bus system

Total costs (investment +operation costs) [0.9047" 17
Investment cost (as a fraction of total cost)|0 0.1024
Losses (MW) 0 501.1706
#Corridors with investments 0 11

$ Expressed as the ratio of the total costs of lossy TEP in Garver’s system
T Expressed as the ratio of the total costs of lossy TEP in IEEE 118-bus system
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Table 3.7 summarizes the results of the analyses, showing the values of the most relevant
output variables of the TEP problem with and without losses. Here, lossy TEP and
lossless TEP refer to the TEP optimization problems with and without considering
transmission losses, respectively. The total costs in Table 3.7 correspond to the optimal
values of the objective function in the corresponding TEP optimization problems, which
is given by the sum of the operation and the transmission investment costs. Comparing
the total cost figures under lossy and lossless TEP (see in Table 3.7); the latter apparently
results in a network expansion solution at a lower overall cost. However, this does not
include real costs as the effect of losses is not accounted for in the lossless TEP problem.
We shall explain next why this is the case.

Let us define lossy ED as the economic dispatch (ED) problem, where the total operation
cost is minimized taking into account transmission losses and considering the network
configuration computed in the lossless TEP problem (i.e. the network consisting of lines
in the base-case system plus the network reinforcements computed by running the lossless
TEP optimization).

In order to determine how good the network investment decisions obtained by lossless
TEP are, it suffices to compare the following two cost figures: (i) the objective function
value (operation cost) of the lossy ED plus the cost of network investments computed in
the lossless TEP, and (ii) the total costs (i.e. network investment plus operation costs)
computed in the lossy TEP problem. Note that the full operation costs, including
transmission losses, resulting from the network configuration (investments) computed
taking into account losses are the ones already computed in the lossy TEP problem. As
expected, the total costs corresponding to the first and the second case studies, computed
as in (i), are found out to be approximately 16% and 14% higher than those computed as
in (i), respectively. In other words, the total costs of a system—including operation and
transmission investment—resulting from lossy TEP can be significantly lower than that of
the system expanded according to lossless TEP. This is because lossless TEP
underestimates the operation cost of the system (since it does not take into account the
extra costs related to the existence of losses) and results in underinvestment which, in the
end, turns out to be significantly more costly. Generally, incorporating network losses in
TEP shifts the costs incurred from operation to line investments, resulting in different
expansion results. We can also observe in Table 3.7 (especially for the second case study)
that the reduction of losses achieved in lossy TEP may, by itself, justify network
investments. This is because of the corresponding reduction achieved in operation costs.
Related to this, the losses computed in the lossy ED case are nearly 5.3% higher than
those computed in the lossy TEP for the Garver’s case study. This figure even gets as high
as 29% in the second case study. The costs corresponding to these extra losses amount to
approximately 11% and 23% of the total costs computed in the lossy TEP problem,
respectively.

The optimal network expansion strategy for the Garver’s system in the lossless TEP case
comprises investments in corridors (2,4), (3,5) and (4,6). However, when the network is
expanded taking into account losses, two more lines are built in corridors (2,3) and (2,5).
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It should be noted here that the network expansion results obtained by the lossy TEP
agree with the full AC-OPF network expansion results reported in [36]. This shows that a
DC-OPF TEP model with losses can result in a realistic and reasonably accurate TEP
solution.

Analyzing the lossy DC-OPF results for the lossless TEP solution (i.e. lossy ED) clarifies
the reasons for the higher costs compared to the lossy TEP solution. The results show that
corridor 3-5 is congested in the first case, forcing the curtailment of about 30 MW of load
at node 5. In addition, losses in the system are 5.3% higher than those in the system
expanded according to lossy TEP. As expected, the increase in losses along with the
increase in non-served energy causes an increase in the operation cost of the system
which exceeds the savings in network investments.

The overall cost reduction achieved by considering losses in TEP can be obtained by
subtracting the total system costs computed for the system expanded according to the
lossy TEP from those of the system expanded according to the lossless TEP. In this case,
the operation cost reduction achieved when considering losses is approximately 20%
higher than the cost of the two extra investments in the lossy TEP. As a result, net savings
achieved in this particular case are about 2.3% of the total system costs obtained for the
lossy TEP.

Similarly, the results of the second case study, i.e. the IEEE 118-bus system [222], also
highlight the undesirable consequences of ignoring losses. Given the data in [222], this
system does not require investments regardless of which TEP model is used (lossy TEP or
lossless TEP). However, in order to create a need for line investments, the base case
electricity demand of 3733.07 MW has been increased by 90% to 7092.83 MW.

Even in this case, no line investment is deemed necessary when the lossless TEP model is
used. But in the lossy TEP exercise, up to 11 network reinforcements are planned, mainly
due to the substantial 29% reduction in losses they bring about. This is a good example of
reinforcements solely justified by the reduction of losses.

3.5.2.  Numerical Comparison of the Losses Models

The level of accuracy of the results provided by different losses models is evaluated by
two criteria: (1) the relative error in the estimation of losses, and (2) the impact of such
error on the intermediate and final results of the TEP problem, i.e. the differences
occurring due to losses computation in the set of network investment decisions and in the
overall system cost (investment + operation). To this end, three test systems including the
Garver’s 6-bus, IEEE 118-bus and a 425-node Spanish network systems are employed.
The results for the first case study are presented here. Test results and further discussions
can be found in [13].

The standard Garver’s 6-bus test system (a complete description and data can be found in
[39]), is used as a case study. This system comprises eleven candidate lines across
different corridors, and is shown in Figure 3.14.
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One of the goals of this work is to test the accuracy and computational burden of different
linear losses models in a TEP context. Table 3.8 shows the accuracy in the computation of
system losses and system costs for each model for various numbers of linear losses
constraints, or segments. Note that the system costs in this table refer to the investment
plus the operation costs computed after running the TEP optimization model which
embeds each losses model.

The total resistive losses value computed using an AC-OPF of the expanded system (in
this case, 109.19 MW) is taken as a reference when assessing the relative accuracy of
each model. Given that artificial losses do not make economic sense in this small system,
the results obtained by all models are found out to be very similar in terms of their
accuracy in estimating losses, no matter how many linear constraints or segments, L, are
considered. As it can be seen in Table 3.8, when L is larger than 5, the relative error
induced when computing the overall system losses falls below 5%, which is practically
negligible from a TEP perspective. Table 3.8 also shows that considering a single linear
constraint (i.e. L=1) can result in greatly overestimated losses.

Table 3. 8 Effect of Number of Partitions in Losses Linearization on System Costs and
Relative Error in the Estimation of Losses for the Garver’s System

Number of losses constraints (L)

1 2 3 5 10 15 20

Model 2a" |26.740 | 5712 [3.322 [1.270 [0.354 [0.089 |0.052

Model 2a° |46.549 |10.866 |6.102 |2.212 |0.538 |0.209 |[0.110

Model 2b° |46.549 |10.883 [6.102 |2.212 [0.538 |0.209 |[0.110

Model 3b | 46.549 | 10.883 |6.102 |2.212 |0.538 |0.209 |O0.110

losses (%)

Model 5 46.549 |10.883 |6.102 |2.212 |0.538 |0.209 |0.110

Relative error of

Model 4 46.549 | 10.883 |5.278 |1.387 |0.505 |0.027 |0.030

Model 2a" |286.29 |291.11 |291.67 |292.21 |292.41 |292.48 |292.49

Model 2a° |305.21 |295.60 |294.21 |293.13 |292.66 |292.56 |292.54

Model 2b° |305.21 |295.60 |294.21 |293.13 |292.66 |292.56 |292.54

Model 3b | 305.21 | 295.60 |294.21 |293.13 | 292.66 | 292.56 | 292.54

Cost, in M€

Model 5 305.21 |295.60 | 294.21 | 293.13 | 292.66 | 292.56 |292.54

Model 4 305.21 | 295.60 | 294.50 | 293.51 |293.02 | 293.05 |292.94

TWith tangent linear constraints ® With traversing linear constraints

As depicted in Table 3.8, losses have a considerable impact on the overall system cost
(which includes the operation and the network investment costs). For small values of L,
the system costs tend to be overestimated in all the models, except for Model 2a (the one
based on tangent constraints), in which the total system costs are underestimated. As L
increases beyond 5, the effect of the model choice on the total system costs becomes
insignificant because losses are represented accurately.
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The performance of models related to their computational requirements can be assessed
based on the figures provided in Table 3.9. In this table, we show the time elapsed when
running the TEP problem for the Garver’s system using each of the losses models
considered. As L increases, Model 4 becomes computationally very demanding compared
to the others, because its formulation includes binary variables.

Table 3.9 also shows there are small differences among the computational performances
of the considered models. Model 2b behaves very well despite the fact that it is
mathematically more complex due to the additional constraint added as an upper limit to
the feasible losses space. This suggests that shrinking the feasible space by adding an
upper bound has a substantial contribution to speeding up the solution process.

Table 3. 9 Effect of Numbers of Partitions in Losses Linearization on TEP’s
Computation Time in the Garver’s System

Computation times for each model (in seconds)
Model | Model | Model | Model | Model | Model | Model
L |2af 2a° 2b° 3b 3a 5 4
1 0.875 |0.953 |0.813 |0.829 |0.833 |0.823 |0.906
2
5

0.900 0.984 0.875 0.925 0.834 0.838 1.188
0.930 1.010 | 0.899 1.078 0.855 |0.872 1.688
10 1.010 1.050 0.954 1.110 0.870 0.928 2.186
15 1.050 1.080 0.985 1.172 0.901 0.963 3.016
20 1.091 1.130 1.020 1.192 0.923 0.981 6.226
TWith tangent linear constraints ° With traversing linear constraints

In general, it seems that Model 5 is attributed with the lowest computational requirements,
with the exception of model 3a. In this particular case, the savings in computing time
achieved by Model 5 with respect to the other models, apart from 3a, ranges from 3% to
24% when L is set to 5, as depicted in Table 4. Using Model 3a in a TEP optimization
may result in a faster convergence of the algorithm than using Model 5. However, in
order for the solution provided by model 3a to be acceptable, either of the following two
conditions must be met: (i) there should not be any operational condition in the
considered system that can lead to artificial losses, or (ii) the effects of artificial losses
should be deliberately neglected. However, knowing a priori (i.e. before solving a TEP or
an OPF problem) whether artificial losses make economic sense in a system is very
difficult.

When planning the expansion of the grid in this test system for the set of data in [39] (i.e.
in the base-case scenario), artificial losses are not computed regardless of which losses
model is used in the TEP optimization. . This may be related to the fact that the original
generation in this system does not include any renewable generation. For the purposes of
assessment here, another scenario with some specific changes to the data in [39] has been
defined. Changes made to the original data are as follows:
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e A low-cost wind power generator is included at node 1, with a capacity five times
greater than the original capacity of the generator at that node. This leads to a 45%
penetration level of wind power in terms of installed capacity.

e The capacity of line 1-4 is upgraded from 100 MW to 500 MW

e The capacity of line 2-4 is derated by 50%

e Demand at node 2 is decreased by 50% and

e Demand at node 4 is increased by 400%

Note that apart from the above changes, the remaining data (including demand, generation
and network parameters) are kept the same as in the base-case scenario. In the new
scenario, artificial losses as high as 5 times the actual losses are computed for line 1-2
using Model 2a. Thus, the only network investment found optimal when using Model 2a
is in corridor 3-5. In contrast, using Models 4 and 5, which avoid artificial losses, result in
reinforcements in corridors 2-4, 3-5 and 4-6.

As expected from previous analyses, using Model 2b, 3a or 3b significantly reduces
artificial losses to about 89, 74, and 72% of the actual value of losses, respectively. This
indicates that the features added to Models 2b and 3b manage to effectively limit artificial
losses. However, sometimes, artificial losses computed in these three models also have an
impact on the optimal network expansion solution. Thus, in the case of this test system,
the optimal expansion solution computed when using either of these losses models differs
from that computed when using Models 4 and 5. Thus, if Models 2b, 3a, or 3b are used,
network investments computed do not concern corridor 2-4. Reinforcing this corridor is
avoided by artificially increasing losses.

Even though Model 1 avoids artificial losses as well, its use in TEP or OPF problems
results in significant errors in losses estimation. In this case, losses computed with this
model are about 37% lower than real ones, which is not acceptable. The impact of such a
deviation on the network expansion solution computed can also be substantial. This
occurs when using Model 1 in the new scenario defined above, in which reinforcing
corridor 4-6 is not deemed optimal.

To support the conclusions drawn from the analyses of the previous case study, similar
tests have been carried out on a system featuring a medium-scale network: the IEEE 118-
bus system. Data used in this analysis can be found in [222]. Since the analysis conducted
is basically the same as in the previous case study, the results are skipped in this
document but can be found in [13]. In order to assess the accuracy of losses computed by
each model, the benchmark level of losses is obtained by solving an AC-OPF problem.
Note that the AC-OPF problem is formulated for the network configuration which
includes the truly optimal network investments. This benchmark value amounts to 489.52
MW. The relative error made in the estimation of losses, with respect to this reference
value, drops below 10% in all models for L greater than or equal to 5. Having a 10% error
in losses estimates may be deemed acceptable in many cases because an error of this
magnitude normally do not have a relevant impact on the network expansion solution
computed. The results here support the choice of Model 5, or Model 3a, since the savings
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achieved by Model 5 in the computation time with respect to other models, apart from
model 3a, ranges from 17% to 40%, as shown in Table V. However, given the inability of
Model 3a to sufficiently limit artificial losses, it should be considered as a reasonable
option only in systems where artificial losses are not relevant.

To further validate the findings in this work, a real-life large-scale system featuring the
Spanish system has been considered. The electricity network in this case-study comprises
425 nodes and 628 transmission lines. Both wind and solar power generation existing in
the Spanish system are included. All in all, a 25% penetration level of power generation
from RES is considered in the case study. Test results from this system generally shows
that Model 3a demands the least computation effort while delivering similar results to
other models in terms of accuracy. Model 5 appears to be, computationally speaking, the
second best performing model. Differences in computation times between Model 5 and
Model 3a are nevertheless insignificant. As pointed out earlier, using Model 3a in TEP
studies makes sense only if one can anticipate that artificial losses computed by any
model will be negligible, and/or the system considered in the studies is unlikely to result
in artificial losses.

Talking about the accuracy in the computation of losses and the resulting overall system
costs, it can be observed that all models provide quite similar values for losses and system
costs when L is greater than or equal to 5. Regarding the computational time, Model 5 and
Model 3a clearly outperform the rest of the models, achieving savings in computation
time as high as 25% with respect to the third best performing model in this regard.

All this suggests that Model 5 is the most appropriate losses model for large-scale
network expansion optimization problems, since it strikes a good trade-off between
accuracy in losses representation (including avoidance of artificial losses), and
computation time required to solve the TEP problem.

3.5.3. Effects of Number of Partitions on TEP Solutions

Since the estimation accuracy of losses by the linear models depends on the value of L, it
can also be expected that the choice of L affects network expansion planning outcomes.
For the Garver’s system, the optimal network investment plan involves the reinforcement
of corridors 2-3, 2-5, 2-6, 3-5 and 4-6, in line with the AC network expansion solution
reported in [36]. When artificial losses are not computed, using any of the models
assessed here find the same optimal network expansion solution for any value of L greater
than or equal to 3.

However, the threshold value for L in the two larger test systems is 5, beyond which the
investment decisions do not change. When L is set to a value lower than the threshold (i.e.
3 in the Garver’s system or 5 in the other two), investment decisions depend on which
losses model is used. Generally, Model 2a (the one based on tangent constraints)
underestimates both losses and line investments required. The remaining models
overestimate losses and, consequently, result in overestimated network expansions.
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3.5.4.  Concluding Remarks

The main motivation behind this study is the need to choose or develop an adequate
losses model for large-scale TEP applications. Such a model should be computationally
efficient, provide a reasonably accurate estimate of losses in every line and in particular,
avoid the computation of artificial losses aimed at alleviating network congestion (a
common drawback of many linear models).

The compliance with these requirements has been separately analyzed for several losses
models. Besides, and most importantly, the impact of the use of each model on the
outcome of network expansion planning has also been assessed. In particular, four
alternative linearization methods have been evaluated together with other four variants of
existing methods. The performance of these methods has been assessed by embedding
each method in TEP problems pertaining to small, medium and large-size systems.

The results show how the accuracy of estimated losses increases with the number of linear
partitions L considered in the linearization of nonlinear losses curve. However, increasing
L beyond a certain threshold has no significant effect on losses estimates and TEP results.
Then, it is not worth the extra computational burden. It seems that 5 partitions are
sufficient to compute a reasonably accurate estimate of losses for medium and large-scale
systems. Higher number of partitions (greater than or equal to 5) results in relative errors
below 10% and 5% in the estimates of losses for the medium-scale system, respectively.
This is acceptable from the TEP context since such small deviations in the estimation of
losses are not likely to influence TEP results.

Regarding the computational results, the SOS2-based linear losses model is found out to
be the most efficient, having computational advantage over the other assessed models
with as high as 40% reduction in solution time. In contrast, models which involve regular
binary variables are certainly the most computationally intensive, which makes them
inappropriate for large-scale expansion planning problems.

The additional features included in Models 2b and 3b achieve some improvements in the
accuracy and/or the computational efficiency of their original versions, Models 2a and 3a.
For instance, the inclusion of an upper losses constraint in Model 2a makes the resulting
Model 2b perform better than the former in terms of computational efficiency while
yielding similar results. On the other hand, adding the logical precedence constraint in
Model 3a when deriving Model 3b results in an increase in the computation time required
to solve the TEP problem but achieves an increase in the level of accuracy of the
representation of network losses.

The results also show the importance of avoiding, or at least limiting, artificial losses
computed. This is especially true when the problem being dealt with is the computation of
long-term network expansion of large-scale systems featuring large amounts of RES
generation because, in such a problem, having artificial losses may make economic sense.

Models which make use of inequality constraints to represent losses define an unbounded
feasible space of losses. As a result, such models fail to limit artificial losses. However,
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those models that include an upper bound constraint for the feasible losses space, as well
as the piecewise-linearized losses models, largely suppress artificial losses. The SOS2-
based model, on the other hand, avoids them completely. Despite their complexities,
models based on additional binary variables guarantee that artificial losses are effectively
avoided.

All in all, the proposed SOS2 based approach balances accuracy very well with
computational burden of the resulting TEP problem. For instance, in the large-scale
system considered in the present work, using this model demands lower computational
effort than using any other model considered in the study (with reductions in time
achieved higher than 33%). This makes the SOS2 based approach the best candidate for
modeling losses in very large-scale TEP problems.

3.6. SUMMARY

Both the tractability of a TEP problem and the accuracy of an expansion solution largely
depend on the level of system details captured by the expansion model. This is associated
with the characterization of physical network variables, in particular, flows and losses.
From this angle, this chapter has presented an extensive review of the most commonly
used TEP optimization models with different mathematical complexity levels, theoretical
and numerical comparisons of these models from the viewpoint of expansion solution
accuracy and computational requirements. Contributions from this chapter include the
systematic comparisons of various existing TEP models, and some improvements and
proposed changes to the mathematical modeling of existing TEP models that can speed up
the computational process. Some of these include two variants of the DC expansion
planning model and flow-based losses representations in all TEP models. Instead of the
angle-based losses representation commonly used in TEP studies, this work proposes a
flow-based losses model which has a significant computational advantage over the angle-
based equivalent losses model.

The comparative analyses of linear TEP models also includes the effect of network losses
on the expansion outcome. Analysis results have showed that neglecting network losses
can lead to underestimation of network investment needs. Hence, modeling losses should
be an integral part of TEP models. The fact that network losses are a function of quadratic
flow adds complexity to the TEP model because of its nonlinear and nonconvex nature. It
should be linearized to keep the entire problem linear. In this regard, the provision of
rigorous theoretical and technical analyses, and exhaustive performance comparisons, of
several losses models has been presented in this chapter. Existing linear losses models are
thoroughly assessed in terms of their accuracy in losses representation as well as the
contribution in computational burden. Generally, this assessment has revealed that
existing models are not adequate because of either their accuracy related issues or
computational limitations. Motivated by this, this thesis has proposed two novel linear
losses models as well as two modified versions of existing ones that address accuracy and
computational issues inherent to the existing losses models.
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A

V. UNCERTAINTY
AND
OPERATIONAL
VARIABILITY
MANAGEMENT



This chapter introduces the novel method developed in this thesis for handling the
uncertainty and variability in a very efficient manner. Numerical results as well as the
computational implications from applying this method in TEP problems are presented
and discussed at the end of this chapter.

4.1. INTRODUCTION
4.1.1. Description of Terminologies

The terminologies uncertainty and variability are sometimes incorrectly used
interchangeably in the literature despite the fact that they are different. Variability, as
defined in [223], refers to the natural variation in time of a specific uncertain parameter,
whereas uncertainty refers to “the degree of precision with which the parameter is
measured” or predicted. For example, wind power output is characterized by both
phenomena; its hourly variation corresponds to the variability while its partial
unpredictability (i.e. the error introduced in predicting the wind power output) is related
to uncertainty. The schematic illustration in Figure 4.1 clearly distinguishes both
terminologies. As demonstrated in this figure, the hourly differences in wind power
outputs are due to the natural variability of primary energy source (wind speed);
whereas, the likelihood of having different power outputs at a given hour is a result of
uncertainty (partial unpredictability) in the wind speed.

Other terminologies used in this thesis are snapshot and scenario. A snapshot refers to
an hourly operational situation. Alternatively, it can be understood as a demand—
generation pattern at a given hour. A scenario, on the other hand, denotes the evolution
of an uncertain parameter over a given time horizon (often yearly). For example, the
hourly variations of wind power production and electricity consumption collectively
form a group of snapshots; whereas, the annual demand growth (which is subject to
uncertainty) and emission price uncertainty are represented by a number of possible
storylines (scenarios).
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Fig. 4. 1 Illustration of variability and uncertainty in wind power output

4.1.1. Overview of the Chapter

80



The global drive for integration of renewable energy sources (RESs) means they will
have an increasing role and a profound impact on power systems. On one hand, it is
inevitable that such resources introduce more variability and uncertainty to the system
operation because of their intermittent nature. On the other hand, achieving large shares
of RES power production results in a more relevant the role of electricity networks since
the variability of the power production from such energy sources involves the need to
develop larger amounts of interconnection capacities among zones to ensure security of
supply at zones where RESs (wind and sun, for example) are scarce or not available.
Hence, Transmission Expansion Planning (TEP) becomes a more relevant issue since
the variability and uncertainty of RES power production significantly increase the
amount of operational situations to be considered.

TEP involves solving an optimization problem subject to multiple sources of
complexity, such as the use of discrete variables, its non-linear behavior, and the
existence of several levels of uncertainty. As aforementioned, this problem is especially
hard to solve when the goal is the long-term expansion of a large network in a power
system featuring large amounts of generation from RESs, since in this case the size of
the problem increases very substantially. Moreover, the addition of new transportation
load such as electric vehicles, railways, etc. also brings in more operational uncertainty
to the system. It is therefore mandatory that long-term TEP tools consider the
operational impact of such uncertainties and variability in system conditions, since
additional investments may be required to expand the network. In principle, such
objective can be met by considering a large number of operational states but this leads
to a computationally intractable TEP problem. Improving the management of such kind
of uncertainty in TEP problems is one of the main focus areas of this thesis, contributing
therefore, to a more cost efficient penetration of RES energy in power systems.

The different sources of uncertainties in long-term TEP that are related to the variability
and unpredictability of situations are usually classified as random and nonrandom [12].
The random ones are also known as high-frequency uncertainties because they
correspond to situations that occur repeatedly. Hence, they can be characterized by
probability distribution functions (PDFs), estimated by fitting historical data. Such
uncertainties have a profound impact on the operation of power systems. Demand
variability is one example of random uncertainty. On the other hand, nonrandom
uncertainties do not occur repeatedly; so they cannot be estimated by PDFs. A good
example here is generation expansion.

In light of this, an appropriate long-term TEP tool should account for both types of
uncertainties. Because of their aforementioned differences, different methodologies are
employed to effectively deal with each type of uncertainty. Nonrandom uncertainties are
often modeled by a set of possible future scenarios, each with a certain probability of
realization. This will not, however, be the subject of this thesis; instead, the work here
focuses on the art of dealing with the variability of operational states and the associated
random uncertainties (i.e. sources of operational uncertainty). Therefore, it should be
noted here that the literature review is also limited to this subject area.
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As introduced above, this thesis focuses on a particular aspect of the global TEP
problem, namely the operational variability and uncertainty of the system which is
introduced by the so-called random uncertainties. This is the level of uncertainty that
remains when one considers known and constant factors of nonrandom uncertainties
such as generation investments, costs and prices, economic growth (average demand
growth level) and policy-related parameters. Operational variability and uncertainty
include, for instance, component outages or availability, demand variability, and wind
and solar power output variability. If such uncertainties are not properly managed, the
quality of network expansion planning solutions could be significantly jeopardized.

In spite of the aforementioned facts, the network expansion planning of power systems
has often been solved using a deterministic approach, where the effect of operational
uncertainty and variability is not accounted for, or represented in an overly simplified
way, such as planning for the worst-case state —traditionally peak demand (i.e. the
most stressful state from network point of view), or a proxy of this (for instance, dealing
with a very limited number of operational states). However, this is not valid in current
power system planning, especially in long-term TEP problems because of the large
variability in operation conditions that can result in added stress to the system. The
variation of operation conditions throughout the planning horizon, which cannot be
predicted appropriately, is the main source of the operational uncertainty. Even if
planning the network expansion for the most-stressful (worst-case) operation situation
were an elegant approach, it would be very difficult to identify the “worst-case”, since it
would be unrealistic to expect it to happen at the peak load time. In relation to this, it
has been particularly reported in [224] that transmission investment decisions made
under uncertainty are more robust than their deterministic counterparts. Authors in the
former work highlight the benefits of including uncertainty in TEP studies. However,
mainly because of computational reasons, many sources of uncertainty and variability
are frequently ignored, partially addressed, or represented by few predefined operational
states in TEP models. It is obvious that handling large instances of operational
situations is not computationally feasible and/or efficient in power systems planning. On
the other hand, inadequate consideration of operational situations could adversely affect
decision-making. Therefore, an operational variability and uncertainty management tool
that balances accuracy with computational burden is needed in TEP studies. Given that
operational uncertainty and variability resulting in the need to consider a multiplicity of
operational states in TEP studies are very much linked, and largely related to the
existence of RES generation, we shall deal with both of them jointly in the remainder of
this chapter under the name of operational uncertainty management.

4.2. PROPOSED METHOD OF OPERATIONAL UNCERTAINTY MANAGEMENT

Despite the vast literature on TEP, current modeling and planning practices have some
limitations with regards to handling operational uncertainty because: (1) they tend to
incorporate only a few sources of operational uncertainty (often one or two) while many
sources of uncertainty are unaccounted for; and (2) spatial and temporal correlations
among the uncertain parameters are largely neglected. In general, currently available
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network expansion planning methods are not adequate to handle large-scale systems
while appropriately taking account of operational uncertainty. Therefore, there is still a
need to develop a scheme to accurately represent uncertainty in the context of TEP
applied to large scale systems. The scheme adopted for uncertainty treatment should be
able to capture the variability of relevant uncertain parameters and correlations existing
among them, especially for long-term TEP with high penetration levels of renewable
generation. The work in this thesis may be deemed a probabilistic method as explained
above in detail. As it shall be explained in the following paragraphs and sections,
differences with existing approaches are related to the criteria employed to select the set
of operational states considered in the TEP problem, and the level of detail considered
in representing the system.

As mentioned above, operational uncertainty can be handled as the variation of
stochastic parameters which are repeatable in time (often hourly) and exhibit a random
behavior with known approximate probability distributions. It can broadly be
represented by a set of operational states, here referred to also as “snapshots”, each
containing a generation—demand pattern (i.e. with different levels of demand at each
node and generator outputs). Each operational state can be considered as a generation—
demand pattern of the power system, which leads to an OPF pattern in the network. A
large set of snapshots, each one with an estimated probability of occurrence, is assumed
to be already available to evaluate and optimize the network expansion. In particular,
hourly generation—demand data for a given target planning year (8760 snapshots, in
total) are considered in this work. All snapshots are assumed to have the same
probability of occurrence, therefore given by 1/8760. It should be noted here that this
can be scaled to any number of snapshots.

A common practice to handle such uncertainty is to perform a clustering process over
the multi-dimensional stochastic input dataset (i.e. generation—demand patterns) [165].
Clearly, the overall accuracy of the TEP solutions in this regard depends on the
selection of the clustering variables. The accuracy is indeed determined by how
representative the clusters are with respect to the original set of operational situations or
snapshots. Usually, a large number of clusters are required to achieve a reasonable level
of accuracy.

This thesis shows how to reduce the number of clusters, corresponding to operation
snapshots considered in the TEP problem, without a relevant loss of accuracy in the
TEP results, using an adequate selection of the classification variables in the clustering
process. The proposed method relies on two ideas. First, the snapshots are characterized
by their OPF patterns (the effects) instead of generation—demand patterns (the causes).
This is because the network expansion planning is the target problem, and losses and
congestions (resulting from the OPF) are the drivers of network investments. Second,
OPF patterns, after some processing to represent their relevant features as
“fingerprints”, are classified using a “moments” technique, a well-known approach to
address Optical Pattern Recognition problems. To the best knowledge of the authors,
this is the first time this technique has been applied in a TEP problem.
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The proposed clustering method is conceptually illustrated in Figure 4.2. This Figure
illustrates the process to follow in order to compute, for each snapshot « taken from the
generation—demand dataset, the values of classification variables, the relevant
moments, to be considered in the clustering analysis. A description of this process
follows:

1) The OPF of the snapshot is computed neglecting transmission line capacities.

2) The transmission lines with more relevant congestions (overloads) and losses are
selected.

3) The selected lines are represented as graphical objects, with properties such as
location, orientation, thickness (overload or losses) and length. This arrangement
of objects can be deemed the “fingerprint” of the snapshot.

4) The graphical pattern, or snapshot’s fingerprint, is then coded into a reduced-
dimension space defined by moments. This technique is common in Optical
Pattern Recognition problems.

Hourly generation— Network system
demand patterns
d|d, |- ]9, |-~
1 d1,1 d2,1 91,192,1

Moments

Apply t (1]
moments

Z C

and losses in snapshot s;
Fingerprints of overloads

and losses in snapshot s, Cluster snapshots using
. - moments as clustering
@ Identify a representative snapshot for each cluster

. MR . variables
in the original input data (medoids, for example)

Fig. 4. 2 Conceptual illustration of the proposed clustering methodology

Snapshots where network investment needs are similar have similar fingerprints of
network overloads caused by non-capacity constrained economic flows. Similar
fingerprints should result in similar “moments”. Thus, if the set of moments is properly
selected, non-similar snapshots should result in different moments. This means that the
snapshots can be effectively clustered using their moments as clustering variables, i.e.,
computing the distances in the moments space as measures of similarity.

Once the clustering process is completed, the last step involves choosing from the
original dataset a representative snapshot for each cluster. This can, for example, be the
medoid of the set of snapshots grouped together in the corresponding cluster. Note that

d (vte Q™ andvieQ™)andg, (vte Q™ andvieQ™)in Figure 4.2 represent the demand
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and the generation levels at nodei for snapshot: ; whereas, I, (vte Q™ andvmeQ"™),

x. (Vte Q™) etc. are the corresponding computed moments.

In general, the main contributions of this work include:

e The definition of a novel method for clustering operational states, including a
detailed description of the process being followed, and the provision of
formulations of each stage in the process. The main features of this clustering
method are listed next:

o The method is a tailor-made approach for TEP problems;

o It involves systematic management of operational uncertainty in TEP
problems, leading to an accurate representation of uncertainty, which
makes this approach suitable to be applied in TEP of systems with
significant share of generation from RESSs;

o It allows compact representation of snapshots via a new set of clustering
variables, and the compactness of the set of the clustering variables
derived leads to a significant reduction in computational burden, which
makes this method suitable for the TEP of large systems.

e The comparative analyses of results produced by our method and other snapshot
clustering methods that, contrary to the former, are based on the causes of
optimal power flows.

Other contributions in this chapter include the new quasi-linear losses model used in the
capacity unconstrained economic dispatch problem, and the nonlinear optimization
approach developed to estimate the geographical coordinates of a test system.

4.3. NETWORK CAPACITY UNCONSTRAINED ECONOMIC DISPATCH

In order to characterize the snapshots by their OPF patterns (the effects or results of
system operation), a Network Capacity Unconstrained Economic Dispatch (NCUED)
model is used. This model is similar to the “copper sheet” TEP model described in
Chapter 3. In this model, transmission capacity constraints are neglected (relaxed),
leading to the assumption of having a flexible network. Technically speaking, this
means that the constraints corresponding to the power transfer capacity limits of
existing corridors are not active in the NCUED model. As a result, each existing
corridor has the flexibility to accommodate any amount of flows that increase the
overall system welfare as far as the flows respects the Kirchhoff’s laws. For example,
suppose a given line has a capacity of 100 MW. In an ordinary economic dispatch
problem, this constraint has to be included, which means the line cannot carry more than
100 MW of power. However, in the NCUED problem, the capacity constraint is not
imposed, allowing the line to transport more than 100 MW of power. This assumption
makes sense in order to detect TEP investment needs, since the latter are closely related
to the corridors of the system in which investments would have the largest impact on
system operation by allowing the largest increase in flows that are efficient from an
economic point of view. In this way, the aim here is to consider the relevance of each
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snapshot on prospective expansion needs. Snapshots that result in similar patterns of
overflows in lines may then be grouped together, because this means that similar
network investments will be needed to increase the efficiency of the system operation.

The NCUED model minimizes the total operation cost in (100), which includes the
costs of generation (I), unserved power (II), and emissions (III), subject to the set of
DC-OPF based constraints in (101) and the losses model provided by the set of
constraints in (102). Issues related to the formulation of these cost terms are discussed
in Chapter 3.
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If required, an additional term may be added to Equation (100) to factor in the
investment cost of the “would-be” lines capable of accommodating the extra flows in a
corridor (i.e. for flows beyond S 4, ) by multiplying the net extra MW needed in each
line by a fixed capital cost per MW. This should be then weighted by the capital
recovery factor and amortized in fixed installments during the lifetime of the line.
Should this be adopted, Equation (100) need to be modified to account for the
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associated costs during and after the planning horizon. This is extensively discussed in
Chapters 3 and 5.

In equation (102), L1, L2, L3 and L4 represent the linear constraints of the losses model
considered in the NCUED model. Note that the set each scenario in a given planning
stage contains a certain number of operational samples (or at least 8760 hourly demand-
generation samples corresponding to the total number of hours in a given year). Note
that the constraints in (101) in the NCUED model, are applicable only for existing lines.
In order to obtain proper estimates of the losses in overloaded lines, the losses model
formulation for each individual line in Chapter 3 is replaced here with the quasi-linear
losses model in (102). This is based on the following plausible assumption: in a
congested corridor, there “exist” parallel lines (able to transport all flow in the corridor)
whose capacity limits are identical to that of the existing line in that corridor. This is
based on the nature of the NCUED model (also known as the “copper sheet” model).
Note that the coefficients in L2 are obtained by minimizing the mean squared error as a
result of representing losses by a linear curve. The quasi-linear losses model used here
is illustrated in Figure 4.3. This figure shows the losses model considering the
installation of four parallel lines in a given corridor. It is straightforward to extend this
to a higher number of parallel lines.

04 T T T T T T T

035 Ry

03

0.2

0.15

Losses in pu, case forr = 0.1

. Actual losses
. =eseseses |inear approximation

0.05

25 3 3.5 4
Flows (ratio of maximum capacity)

Fig. 4. 3 Losses model for the NCUED model (with potentially 4 parallel lines)

4.4. DEFINITION OF CLUSTERING VARIABLES

This thesis proposes the use of new classification variables in the clustering process of
operation states (snapshots), which is especially devised for TEP analyses. These
variables may then be used in any clustering algorithm, and the standard k-means
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algorithm has been applied in the test cases. This section describes the criteria applied
for the selection of clustering variables.

44.1.  Selection of Operation Variables for Network Expansion Planning

Power production and demand patterns are used as clustering variables in many power
system planning applications such as contingency and reliability analysis [165],
electricity supply analysis [166], TEP [130] and medium-term thermal scheduling [225]
problems. However, such an approach (hereinafter, clustering based on causes, CbC), is
not appropriate for TEP because some snapshots, apparently different, may result in the
same transmission investment needs.

Instead of considering the production/demand patterns (the causes), the clustering
process proposed here is based on the effects of such patterns on the transmission grid,
because the effects (congestions and losses) are more closely related to network
investments needs.

For the sake of simplicity, we use the two node system in Figure 4.4 to illustrate the
proposed clustering methodology. Let us assume that we have two intermittent
generation sources connected at each node. The electricity demand at each node is
assumed to be 100 and this remains the same for the seven snapshots which we will
consider here (see Table 4.1). Assume further that the capacity of the transmission line
is 50, and 40 considering a 20% security margin.

y
1
100 100
X_
1 2

Fig. 4. 4 A system for illustrating the methodology

Given the snapshots in Table 4.1 for this system, we want to obtain four clusters using
the generation patterns as clustering variables (the conventional approach) and the
proposed method, and compare the results. In this regard, when we apply the
conventional clustering method, we obtain the clusters in column 7 of Table 4.1.
Statistically, these clustering results make sense. However, one can observe some
inconsistency in the clusters when measured in terms of expansion needs. They are not
generally representative because the effect of each snapshot on the system is lost. For
instance, the first two snapshots have the same effect in terms of expansion needs
because both result in congestion in the line with an overload of 60 in either direction.
Yet, they are grouped into two different clusters. Snapshots 3 and 4 also have the same
effect in terms of TEP, both creating an overload of 10 MW in the line, but these
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snapshots again fall into different groups. This means that the first four snapshots result
in an overload in the line (noting the difference in magnitudes of the overloads). The
last three snapshots do not overload the line; hence, they are non-overloading snapshots.

Table 4. 1 lllustrative example

Classification Variables Unbalances Clustering Results

Absolute D1- D2- Clustering | Proposed

overflow Gl G2 Based on | Clustering
Snapshots Gl G2 Gland G2 Method
Snapshot 1 200 0 60 NA NA 1 1
Snapshot 2 0 200 60 NA NA 3 1
Snapshot 3 150 50 10 NA NA 2 2
Snapshot 4 50 150 10 NA NA 3 2
Snapshot 5 100 | 100 0 0 0 4 3
Snapshot 6 125 75 0 -25 +25 4 4
Snapshot 7 75 125 0 +25 -25 3 4

NA: Not Applicable

If we cluster the snapshots by taking into account their effects instead of the causes, we
obtain very realistic clusters. Note that we can determine the moments of overloads
about any axis as per the proposal and the clustering results do not change. However, it
is not necessary to do so here because we only have one line. As far as the non-
overloading snapshots are concerned, we can see that the last two snapshots have the
same effect when it comes to losses in the line. As a result, it makes sense from TEP
point of view that they should be grouped together. Figures 4.5 and 4.6 compare the
clustering results obtained by classical and the proposed method, respectively.

Genertor 2

>
100 1 @ A3
o 04
o e
0 T T T
0 50 100 150 200 250

Generator 1

Fig. 4.5 Clustering results using conventional approach
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Fig. 4. 6 Clustering results using proposed method

Generally, comparison results of this simple example demonstrate how effective the
proposed clustering methodology is in obtaining representative clusters in terms of
network expansion needs.

In network expansion planning, the benefits of investing in a certain corridor can be
measured in terms of reduction of network congestion, either under normal conditions
or in a contingency situation, and/or the reduction of overall losses. Since both
congestion and losses are directly related to power flow patterns, these patterns are the
subjects of the proposed classification method.

Power flow patterns should identify the areas of the network where reinforcements have
the largest potential to reduce operation costs. They may also show the estimated size of
the reinforcements to be made. Thus, snapshots with similar power flow patterns should
also lead to similar investment solutions, and when clustered together (with
accumulated probability), a reduced set of clusters representing a reduced set of flow
patterns may be successfully used in a TEP problem, instead of the large original set of
operational states.

According to the features of flow patterns leading to investments, snapshots may be
grouped into two big categories: overloading snapshots (those which lead to relevant
network congestion), and non-overloading ones.

In overloading snapshots, where network congestion is relevant, making flows
compatible with existing line capacities probably causes a significant increase in
operation costs. Then, one should expect that network reinforcements are largely related
to the need to reduce congestion. On the other hand, in non-overloading snapshots, only
those reinforcements that are able to significantly reduce network losses can make
economic sense.
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Line overloads in the NCUED model, whose formulation has been provided in the
previous section, reflect the size of the extra flow of power in each line, beyond its
capacity, that would make economic sense given the current topology of the grid.
Hence, network investment needs associated with overloading snapshots are closely
related to the size and location in the network of overloads resulting from the NCUED.
Therefore, in overloading snapshots, only the flows in lines that are close to congestion
are taken into account in the clustering process.

On the other hand, the pattern of losses in the transmission allows characterizing
potential network investments related to non-overloading snapshots. Losses in the
network are the result of flows created by unbalances of power production and demand
in the network. Therefore, different patterns of transmission losses should be the result
of different patterns of unbalances of power production and demand in the system.
Given that the location of conventional generation available to produce power is
relatively stable across operation snapshots, non-overloading snapshots can reasonably
be clustered using the pattern of demand and available RES power production.

It can, therefore, be concluded that the size and the location of line overloads caused by
economic power flows in the NCUED of the system are probably the most relevant to
cluster those snapshots that result in congestion-relieving investment needs. For the rest
of the snapshots, the pattern of unbalances of demand and available renewable
electricity production can be used as clustering criteria since their related investment are
aimed at reducing losses.

4.4.2.  The Use of Moments of Relevant Network Expansion Drivers

In overloading snapshots, considering line overloads and their location as clustering
variables would define a number of clustering variables equal to three times the number
of overloaded lines (~, ), which may be a relevant fraction of total lines.

In non-overloading snapshots, considering net demands in system nodes (demand minus
net available RES power)-and their location—as clustering variables, would define a
number of clustering variables equal to three times the number of system nodes (n~ ).

Then, grouping all the hourly snapshots of a year into clusters would require managing
a matrix of samples ofs7eo>n_ +3 ands7eo= N =3, respectively. In order to overcome
this dimensionality problem, methods such as principal component analysis may be
applied.

Along with these methods, the theory of moments provides a powerful tool to represent
information, both for overload patterns and net demand patterns (unbalances between
demand and gross RES power production).

The theory of moments, widely used in statistics and mechanics, describes the
geometrical properties of physical objects. The basic two-dimensional Cartesian
moment,m , of order p+qand with a density function of 1 (x,y), is given by (103)

[226].
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where (x, y) stand for the Cartesian coordinates.

A reduced set of Cartesian moments can be used to characterize the pattern followed by
a much larger set of variables distributed throughout a certain space. For this reason,
pattern recognition and classification techniques based on moments are widely used.
The low-order moments starting from the zeroth to the fourth orders are often employed
for such purposes. A review of the method of moments and significant research works
on this issue are reported in [226]. For the clustering purpose considered in this work,
the first and the second order moments are sufficient.

Both line overloads in the system and net demands can be represented as masses of a
size proportional to their actual values, placed in those locations where these overloads
and power unbalances occur. By making use of the moments technique in [226], the
pattern (location and size) of these masses can be accurately characterized using a
reduced set of moments. The first and the second order moments of these masses are
used for obtaining the clusters of operation snapshots in a year.

Overloads in lines are represented as bars, with a distributed mass proportional to the
overload, while net demands are represented as punctual masses (positive or negative).

The first order moments determine the center of mass of equivalent objects representing
the relevant network expansion drivers (overloads and net demands); whereas, second
order moments describe the “inertia” of these equivalent objects to rotate about a given
axis.

45. DETAILS OF THE PROCESS OF DEFINING CLUSTERING VARIABLES

Practical implementation details of the definition of clustering variables employed to
choose operation snapshots in TEP problems are described here. Since the classification
variables considered for overloading and non-overloading snapshots are different, the
definition of both sets of variables is discussed separately.

45.1.  Overloading Snapshots

The direction of flows in overloaded lines does not have any influence on expansion
needs. Hence, the absolute value of excess flows is considered when computing
clusters.

Moments are computed considering normalized distances among nodes and normalized
levels of overloads in lines, so that magnitudes are comparable (i.e. in “per unit”
quantities).

For instance, in the case example considered here, coordinates of nodes are all divided
by the maximum length of a line between two nodes in the system, while the overloads
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are divided by the system base power used in power flow computations. In this way,
one can make sure that variables representing overloads and distances range between
similar values.

Given that network expansion needs should also be computed taking contingency
conditions into account, overloads have been defined as the excess of flows in lines over
80% of their rated capacity. This is a common technique used to consider contingencies
through some safety margin in the absence of a detailed model to represent N-1
operation conditions.

The next paragraphs describe the computation of moments to be chosen as classification
variables, which, as already mentioned, are first and second-order ones. The description
and derivation of these moments can be found in [226]. In this case, the mass density
Yy, in per unit values is given by:

|P,| — 0.8S74%; i |P,| > 0.8

— . EL 1 4
Vi { 0 ;. otherwise ke (104)

Thus, the total mass is given by the product of mass density and length ¢ i.e. Y ?y.
Based on this, the centroid, or the first order moment (FOM), of a group of masses can
be determined by equations (105) and (106).
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The second order moments (SOM), i.e. moments of inertia about different axes can be
derived similarly from the general moment expression. For instance, the SOM about a
given vertical, horizontal and perpendicular axes can be determined using (107)—(109),
respectively.
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where 1, ,, is the moment of inertia of a set of overloads about a given axis a, for
snapshot w, whereas d,, d, and d, represent the distances from each line to the

particular axis of rotation, in this case, d, = /d2 + d%; whereas, ¢, denotes the angle
in which a particular line forms with the vertical axis.
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4.5.2.  Non-overloading Snapshots

The density functions used to compute moments for non-overloading snapshots are the
positive and the negative net demands of system nodes, i.e. the unbalances between
demand and RES power production available at each node. The moments of negative
and positive power unbalances are calculated separately to avoid the canceling out of
net-demands of opposite signs in those nodes that are located symmetrically with
respect to the axes considered in the computation process.

The demand and RES power production dispatched at each node should result from the
NCUED, as for the case of overloading snapshots. After all, the amount of demand that
can be served, and the RES power that can be used, will be conditioned by the
expansion of the network, and should be as large as possible.

The equations (110)—(114), analogous to (105)—(109), are some of the expressions
used here for computing the relevant moments.
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In the above equations, Q¥%Sdenotes the set of non-overloading snapshots, andp, and
p..., represent the demand and the total renewable power output at node i , respectively;

whereas, dy;, dyi and d;; represent the distances from node i, whose Cartesian
coordinate is (x,..y,.), to a particular axis of rotation, and here, d =d; +d . Inthe

case study, 23 moments shown in Table 4.2 are calculated for each type of unbalances
(positive or negative), resulting in a total of 46 moment variables.

4.6. NUMERICAL RESULTS AND DISCUSSIONS

46.1. Considered Moments

Moments considered in this thesis correspond to FOM and SOM about several axes, as
tabulated in Table 4.2. The selected moments must correspond to features that
altogether distinctly represent each overload pattern of the network under consideration.

94



The overall number of moments considered may vary with the power system analyzed.
However, there is a threshold beyond which adding more moments only adds redundant
information. Arbitrarily, a total of 23 moments are computed for each snapshot in our
analysis though, as it shall be seen in the results section, not all of them are necessary to
accurately represent the snapshots in the TEP problem. The selection of the appropriate
number of moments for each power system is a separate problem by itself that needs to
be addressed. However, since it depends on the particular system to be expanded, it can
be determined off-line before the TEP process starts, and kept constant for all the
snapshots.

Table 4. 2 Considered Moments

. : # of
Information about moments Considered moments (features) ©
moments
Center of masses (FOM) XY, 2
o
About vertical axes (SOM) o 6
where x* =-100, -60, 0, 40, 80 *
1o,
About horizontal axes (SOM) 5
where y: =-10, 0, 70, 90 **
1, and 1,
About perpendicular-axes where = (0,-10); (-60,0); (40,70); 10
(SOM) (0,90); (0,0); (-100,-10);(80,-10);
(-100,90); (80,90) ***

* Vertical axis, ** horizontal axis
*** axis perpendicular to the x-y plane at a given (x,y) coordinate

4.6.2.  Modeling System Operational Uncertainties

This thesis focuses on efficiently handling operational uncertainties in TEP by
considering their expected influence in the final TEP solutions. The uncertainties
considered here are discussed separately in the following subsections.

4.6.1.1. Demand Variability and Uncertainty

To capture demand variability, load aggregated models are often used, as in [227],
based on the load duration curve. In real life, there exist spatial variations in demand
which may significantly influence TEP solutions. Therefore, to account for this impact,
demand correlations ranging from 0.7 to 1 are factored in to generate the demand series
at different locations.

4.6.1.2.  Conventional Generator Outages

A two-state model (online or offline) is used to represent the state of conventional
power units based on their respective forced outage rates (FOR) , which range from 0.05
to 0.15 depending on the technology type of each generator. Then, a discrete random
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binomial distribution is applied to generate availability patterns for different generators,
obtained from their corresponding forced outage rates.

4.6.1.3.  RES Output Variability and Uncertainty

The outputs of wind and solar power plants are subject to the wind speed and solar
radiation regimes, respectively. A common approach to handle uncertainties in RES
output is MCS, in which a number of samples are generated randomly from probability
distributions. For the present analyses, historical hourly wind speed and solar irradiance
data have been used. These are taken from publicly available meteorological websites
(see[228], and[229], respectively).

Wind and solar power productions are correlated in space and time, and this effect is
taken into account in the generation of input samples. In addition, the complementary
nature of wind and solar power sources is also captured by taking correlations between
them ranging from -0.3 to -0.1, which comply with the results in [230]. Note that wind
and solar power outputs are determined by plugging in the hourly values of the primary
renewable resource available in the wind [231] and solar [232] power output
expressions (also known as power curves) . For instance, the hourly wind power output
Pynaw Of each wind farm is determined by the nonlinear model of a typical wind
turbine model as in (115).

0 ;OSUWSUCi
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In the above equation, A and B are parameters represented by the expressions in [233].
Similarly, the hourly solar power output Py, ,, is determined by plugging in the hourly
solar radiation levels in the solar power output expression given in (116), [234].

PyR

Rsta*Rc ;O = RW = RC
Psol,w = I;Tﬂ iR, <R, < Ryy (116)
std

b i Rw = Rgeq

4.6.3. Test Results and Discussion

The standard IEEE 24-bus Reliability Test System (RTS) [235] has been used to show
the behavior of the proposed clustering approach and test its performance in the target
TEP problem. The data used in this study can be found in [235].

The clustering method requires information about the location of each transmission line
and node, but the information available in [235], as in many other standard test systems,
does not include node coordinates. Because of this, estimates of the geographical
coordinates of nodes in the system of the case study have been generated by computing
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a geographical map of the network system. Distances among neighboring nodes are as
close to the lengths of the lines linking these nodes as possible. And these distances, i.e.
the lengths of the lines, are assumed to be proportional to their corresponding
impedances. A non-linear optimization problem has been solved to generate the system
network map including the required geographical information. Figure 4.7 shows the
resulting map of the standard IEEE 24-bus system. Note that nodes 9 to 12 are in one
substation which has 4 transformers, linking these nodes, and so are nodes 3 and 24
connected by a transformer (see Appendix C).
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Fig. 4. 7 Generated map of IEEE 24-bus system

Our test system comprises 24 buses, 33 existing corridors, and 19 potential new ones,
totaling 52 candidate corridors for potential investments. In addition to the existing
generation capacity in the considered test system, three RES generators with a combined
installed capacity of 3000 MW are added to the system, including a 500 MW solar farm
connected to node 4 and two 1500 and 1000 MW wind farms connected to nodes 13 and
22, respectively. The hourly production time series of wind and solar farms for the
planning year are determined as explained in section 2, as well as the hourly demand
profile at each node and the availability profile of conventional generators. In total,
8760 samples, corresponding to hourly combinations of the regarded uncertain
parameters, are subject to the clustering process. In particular, each sample includes the
availability state of 11 conventional generators, the load level of 16 electricity
consumers and the available power output of three RES generators, bringing the total
dimension of the samples in the “uncertainty space” to 30. The dimension of samples
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significantly increases with the network size, and the number and types of uncertain
parameters being considered, leading to the curse of dimensionality and creating
problems in the clustering process. The proposed clustering technique overcomes such
problems by mapping high-dimensional samples to relatively lower-dimensional ones.
Note that throughout this analysis, both terms—samples and snapshots—refer to operation
states.

4.6.2.1. Clustering Results for Overloading Snapshots

The NCUED problem is solved for all snapshots to obtain the corresponding patterns of
overloads. Figure 4.7 shows that there are a total of 13 overloaded lines, obtained by
combining the sets of overloaded lines in all snapshots. In the considered case study, in
a total of 4741 snapshots (out of the 8760 samples), there is at least one overloaded line
that is congested (shown in Figure 4.7). This means that each overloading snapshot
includes a subset of overloaded lines among those shown in Figure 4.7. In the remaining
4019 snapshots, there is no congestion in the system.

Once the fingerprint of each sample is obtained, the subsequent step is to compute the
features of snapshots that are used as clustering variables in a TEP problem. In this case,
the features considered are the moments of overloads, and groups of patterns are
determined according to the set of moments. As mentioned before, the set of moments
has to be adjusted to each power system under analysis, but only once and for all the
further optimization processes to take place. The moments considered are selected here
for the given case study using some performance metrics. One of these metrics is the
similarity ratio, which is the ratio of average intra-cluster to average inter-cluster
distances, in the space of moments. These are given by equations (117) and (118),
respectively. The average intra-cluster distance measures the compactness of clusters;
whereas, the average inter-cluster distance measures the cluster discrimination. The
former should be as small as possible, while the latter should be as large as possible,
resulting in a minimum value of the ratio.

Xavg = %Zfﬂl\%{z;{emknx - )?Ksk”z (117)

2 _ ~ ~
Xavg = K(K-1) £=112{(=k+1”XKSk - XKsl”2 (118)
In equations (117) and (118), ||, represents the Euclidean distance.

This ratio has been calculated for several numbers of moments and clusters, as
illustrated in Figure 4.8. For each set and number of clusters, the evolution of the
considered ratio with the number of moments taken has been represented in a separate
curve. It can be observed in Figure 4.8 that adding more moments beyond 15 seems to
have little significance since the similarity ratio remains stable. This corresponds to a
50% reduction in the dimension of the clustering space. Another important conclusion is
that adding more clusters does not improve the similarity ratio beyond some threshold.
Here, the threshold seems to be close to 40 clusters.
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Fig. 4. 8 Variation of similarity ratio with number of moments and clusters (for
overloading snapshots)

As stated earlier, the application of our clustering technigue involves mapping the high-
dimensional input dataset into the space of moments, which is quite convenient because
it makes working with a relatively lower number of parameters possible when clustering
the corresponding snapshots, thus reducing the dimension of the data set. The 4741x30
overloading dataset is, for example, clustered using the computed 4741 moment
samples each including 15 moment values. Figure 4.9 displays the hourly time series of
values for two of the moments considered. Each series comprises 4741 hourly values,
and the hour for each value of the moment in the series is represented in the horizontal
axis. The thick line represents the values of the “dominant” moment variable. The
concept of dominance here should be understood in the following context. A moment
variable about a given axis is dominant when the variance of its values is larger in
magnitude than the variance of any of the other considered moment variables, which
correspond to moments computed about different axes from that of the dominant
moment variable. In the case study, the dominant moment variable is the moment about
the corner point (-100, 90) of the network map in Figure 4.7. Here, it should be noted
that the moment samples (snapshots) in Figure 4.8 are sorted by increasing index of the
cluster they belong to.
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Fig. 4. 9 Patterns of moment values in the overloading snapshots sorted by increasing
order of cluster indices (horizontal axis represents the number of samples)

The moment pattern about the origin is also shown in Figure 4.9 for comparison
purposes. Basically, the remaining moments, which are not shown in Figure 4.9 for the
sake of simplicity, follow similar patterns. The width of each discrete step in the
cumulative clusters’ curve is proportional to the number of snapshots grouped in that
particular cluster. Generally, Figure 4.9 helps to observe whether the clustering results
are accurate enough. Clearly, one can see that there is some discernible pattern in the
plot i.e. some homogeneity in the values of the moments in each cluster and large
differences among the values of the moments in different clusters, which validates the
clustering approach.

4.6.2.2. Clustering Results for Non-overloading Snapshots

As mentioned earlier, the non-overloading snapshots are clustered according to
variables related to line losses and their locations. The selected variables are the net
demand at each node along with its geographical location. As in the previous case, the
standard k-means algorithm is used for clustering the moments of these variables.
Moments considered here correspond to those listed in Table 4.2 except for the fact that
the positive and the negative power unbalances (net demands) are treated separately,
resulting in a total of 46 moments i.e. 23 moments for unbalances of each sign.

The number of clusters is decided based on the Elbow method, as in Figure 4.10, which
allows balancing the accuracy of the clustering analysis (given by the objective value of
the k-means algorithm) displayed on the primary vertical axis) and the number of
clusters. The evolution of the objective value (minimized by the k-means clustering
algorithm) with the number of clusters is shown in a curve. When plotting this curve, 46
moments have been considered. In this case, one can see that using 10 clusters seems a
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reasonable trade-off. The evolution of similarity ratio (shown on the secondary vertical
axis, in Figure 4.10) with the number of moments is depicted in another curve. For the
analysis here, note that the moment variables have been taken from the set of moments
of the positive and the negative power unbalances. One can see in Figure 4.10 that the
changes in the similarity ratio are negligible when 15 or more moments are taken. Then,
15 is an appropriate number of moments.
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Fig. 4. 10 Estimating an appropriate number of moments and clusters for non-
overloading clusters

4.6.2.3. Clustering in the Principal Components Space

As discussed in the previous subsection, moments of overloads and net-loads are used
as clustering variables, and the results presented in this thesis are based on this. For the
test system considered here, it has been already stated earlier that when clustering
snapshots in the space of moments, a reasonably good balance between accuracy and
computation burden is achieved using 15 to 20 moments, both in the case of
overloading and non-overloading snapshots. However, this may not be the case for
larger systems. Intuitively, the number moments required to distinguish properly the
respective patterns may be higher for larger systems, potentially leading to a size
problem. Therefore, additional ways may be required to reduce the number of clustering
variables.
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Fig. 4. 11 First principal component values sorted by increasing order of cluster indices
(for overloading shapshots)

An interesting idea is to apply the Principal Component Analysis (PCA) to find the
most relevant moments that represent most of the desired information regarding the
variability of moment samples. For instance, in the considered system, using only 6
principal components as clustering variables of the overloading snapshots is enough to
get the same results as with 15 moments (see Figure 4.8). It is even lower (4 principal
components) in the case of non-overloading snapshots. This shows the capability of
transforming the moment space into a principal component space in tackling the
dimension problem.

Table 4. 3 Eigenvalues of Covariance Matrices of Moments

Overloading snapshots Non-overloading snapshots

Cumulative Cumulative

Principal sum of sum of

component Eigenvalues eigenvalues Eigenvalues eigenvalues

1 58.854 85.02% 399.451 65%

2 9.002 96.59% 179.280 94%

3 1.839 99.35% 31.360 100%

4 0.510 99.93% 1.225 100%

Figure 4.11 shows a plot of the first principal component values (PC1), sorted by
increasing order of cluster indices. One can see that the first principal component
captures nearly 85% of the required information in terms of data variability in the
principal components space. It is also interesting to note that this pattern closely
resembles the pattern of the dominant moment variable in Figure 4.8. As shown in
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Table 4.3, the first two principal components account for 97% and 94% of the variance
of the principal component values of the moments taken in the case of overloading and
non-overloading snapshots, respectively. In general, PCA can be a handy tool in
reducing the dimension of the set of clustering variables without losing significant
information.

4.6.2.4. Comparisons in terms of TEP Results

Since the clustering approach proposed here is to be applied to TEP, its efficiency
should be verified in this context. This can be accomplished by running a DC-based
TEP model (presented in the preceding Sections and Chapter 3) considering the set of
snapshots identified as representatives of the clusters, and comparing TEP results with
those of the full-scale (brute-force) problem that considers all the 8760 snapshots.

In this respect, investment decisions considering all the 8760 snapshots include new
lines in corridors (2,4), (4,9), (9,11), (11,13), (13,23) and (21,22). Overall, investment
costs in this brute-force problem amount to 82.8 M€. Now, one can check the evolution
of network investment costs with the number of clusters, as shown in Figure 4.12.
Investment costs with only 50 clusters, obtained using the moment-based clustering
approach, are the same as those of the brute-force TEP solution. However, one can see
in Figure 4.12 that selecting clusters according to generation—demand patterns, results
in underinvestment even for higher number of clusters. This reveals a lack of
representativeness of the snapshots selected according to this set of clustering variables.

In addition to investment decisions, one should also compare the total dispatch
(operation) costs. Operation costs are computed by solving the economic dispatch
problem for the whole target year considering investment decisions. Regarding
clustering methods, it has been already stated from the outset that the method proposed
here is denoted as clustering based on effects (CbE); while the traditional method based
on generation—demand patterns is identified as clustering based on causes (ChC).

Figure 4.13 shows the evolution of the global dispatch costs with the number of clusters
for both clustering approaches. Comparison of the total system dispatch costs in both
cases (i.e. CbE and CbC) also strengthens the previous statement on the required
number of clusters. In order to obtain the same results as in the brute-force problem in
terms of investment solution and deviation in operation costs, CbC requires 310 or more
clusters, while CbE only needs about 40 clusters of overloading snapshots along with 15
clusters of non-overloading ones.
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Fig. 4. 13 Evolution of total dispatch costs with number of clusters

In Figs. 12 and 13, the variations of costs with the number of clusters can be explained
as follows. It is generally accepted in clustering theory that when increasing the number
of clusters, the level of accuracy increases. When varying the number of clusters, two
important parameters are affected: the representative snapshots and the cumulative
probability of each cluster ,_ . Note that the representative snapshot in a given cluster is

selected among the snapshots, grouped to that same cluster, based on certain criteria (for
example, being the closest to the centroid which means the medoid in the cluster). The
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parameter ,_is the cumulative probability of all snapshots grouped together. Assuming
the probability of occurrence of each snapshot is the same, , _should be proportional to
the number of snapshots in cluster s. This means,_ is the sum of all individual

probabilities in the same cluster. Both these parameters define the accuracy level of the
clustering outcome. The higher the number of clusters are, the more similar the
snapshots grouped together will be (in terms of their effects on network expansion
needs), and therefore the higher the clustering accuracy will be. On the other hand, a
lower number of clusters increase the chance of clustering “dissimilar” snapshots
together. Chances are also high that the representative snapshots selected for each
cluster may not accurately represent their companions in their respective clusters.
Therefore, when using a smaller number of clusters, the variability of operation
situations is likely to be underestimated, potentially resulting in underinvestment, as
shown in Figure 4.12. Obviously, the ultimate price of such inadequate network
reinforcements in the system is an increase in operation cost due to the presence of
congestion and unserved power. This is reflected in Figure 4.13, where one can easily
see very high dispatch costs associated to smaller number of clusters. When the number
of clusters is slowly increased, all curves gradually approach the benchmark one,
showing an increasing trend of accuracy. Here, it is interesting to observe that the CbE-
based method approaches the benchmark before the CbC-based one, showing the
former’s excellent performance and clear advantage in terms of computational burden
—which is further increased by the compact representation of the snapshots. Another
important result observed in Figure 4.13 is the decreasing trend in the dispatch costs
achieved when one increases the number of clusters for non-overloading snapshots
while keeping the number of clusters of overloading snapshots constant. This can be
attributed to the better estimation accuracy of transmission losses achieved in this way,
which may increase the accuracy of the computation of operation costs and justify some
more line reinforcements. This is particularly shown in the case study, also depicted in
Figure 4.13 by the two curves in the middle.

Therefore, the main conclusions from these analyses are two. First, it is much better to
cluster snapshots based on relevant power flow effects (overloads and losses) than
clustering them based on input system variables (generation—demand patterns).
Second, the moments approach is an effective way to reduce the dimension of the
clustering space.

These results are in line with those shown in Figs. 4.8 and 4.10, where the threshold for
the number of clusters of overloading and non-overloading snapshots seems to be also
40 and 15, respectively, when the proposed clustering approach is applied.

4.7. COMPUTATIONAL IMPLICATIONS

Some computational implications of the proposed approach are discussed here. The
efficacy of the proposed method has been already verified on the 24-bus test system.
The results are very interesting in that the moment-based clustering using power flow
variables results in a very compact optimization problem (because of the significant
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reduction of snapshots) without considerable loss of accuracy. In addition, the results
also show that using the generation—demand patterns (the causes, CbC) instead of
power flow patterns (the effects, CbE) would require a far higher number of snapshots
to achieve the same level of accuracy in the TEP context.

The method can generally be extended to large-scale TEP problems. As it is known, the
main limiting factor in such problems is the computation burden. The computing time is
directly related to the problem complexity. In this regard, given the DC-based TEP
optimization problem [14], the marginal impact of reducing the number of snapshots on
its computational burden can be quantified. This depends on complexity of the problem
being considered, i.e., the number of equations, variables, non-zeroes, etc. For example,
in the TEP problem presented in [14], the total number of equations and continuous
variables can be determined by (119) and (120), respectively.

14 S*[2(N, + N+ N )+ (N +N_)(5E+2L)] (119)

RES cL

S*[N,+N_ +4(N, +N_+N_)] (120)
where L corresponds to the number of partitions in the losses modeling [15].

The above expressions, (119) and (120), clearly indicate that the impact of the number
of snapshots on the problem size is linear i.e. a reduction in the number of snapshots by
a certain fraction results in the same level of reduction in the number of equations and
variables. One can observe in (119) and (120) that reducing the number of snapshots
marginally (i.e. by one snapshot) leads to a reduction in the number of equations and
continuous variables by an amount given by:

[2(N, +N_+N_)+(N_ +N_)G+20)]and[N, + N +4(N, +N_ +N_)], respectively.

Such a reduction in complexity of the problem can indeed result in a huge difference in
computing time. The impact can even be more noticeable in large-scale problems. For
instance, for a 1000-node system, assume there are 2000 existing and 2000 candidate
lines, five conventional generators of different technologies and five types of renewable
energy sources at each node. Suppose the number of losses partitions, L, is set to 5.
Under these assumptions, the reductions in the number of equations and continuous
variables, with respect to the marginal reduction of one snapshot, amount to 82,000 and
30,000 respectively. Computationally speaking, such a huge reduction in complexity
significantly enhances the tractability of the TEP problem.

Furthermore, it has already been stated that, when using the proposed method, the
minimum number of clusters required for obtaining an optimal TEP solution in the test
system is 50 (see Figure 4.13). However, up to 310 clusters are required to get the same
solution using conventional clustering variables. This means that the resulting TEP
optimization problem may have 6 times fewer equations and variables. Considering all
the benefits, the proposed method seems to be very promising and can be extended to
large-scale TEP problems which consider high uncertainty and a long temporal scope.
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From a computational perspective, the implementation of the proposed clustering
method is not burdensome. This is because it is formulated over a very fast NCUED
model, and also because the OPF for each snapshot can be individually computed. This
allows parallel computation, which further facilitates the computation process.

4.8. SUMMARY

This chapter has introduced a novel way of clustering operational states, or snapshots,
based on classification variables that are closely related to TEP problems, instead of
using the customary generation and demand variables.

In the proposed approach, snapshots are characterized according to their effects on the
network, i.e. the congestions (overloads) and losses that will in fact create expansion
needs. In the non-overloading snapshots, net power unbalances are instead used as
significant variables. The effects on the network are then translated into a much more
compact representation, namely a moments-based space of variables. Moments translate
both the geographical location and the power-related parameters of potential investment
needs into a reduced reference system.

The method has been tested comparing its results against both the original brute-force
problem (using the whole original set of snapshots) and a clustering method based on
generation and demand patterns.

For identical results of the TEP problem, the test results show that the proposed method
reduces the number of required snapshots in almost 200 times with respect to the
original problem, and in 6 times regarding the generation—demand pattern based
clustering method. This work also estimates the savings in computing time related to the
marginal reduction in the number of snapshots.

As a global conclusion, it can be stated that the proposed power-flow clustering criteria
(the effects on the network), combined with the moments-based compact representation
of those effects, seems to be an adequate and promising method to handle operation
uncertainty in the context of TEP problems.

In addition to the new clustering method, contributions from this chapter include the
losses model used in the NCUED model as well as the nonlinear optimization approach
developed to generate a network map by making use of network parameters
(impedances, in particular).
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This chapter presents the algebraic formulation of the stochastic TEP (STEP) model
and a description of the proposed solution solution strategy.

5.1. THE TEP PROBLEM
5.1.1.  Overview of the Multi-stage and Stochastic Programming Framework

A TEP problem is naturally dynamic because the solution has to explicitly provide
necessary information regarding not only where and what but also when line
investments are needed. Regarding the planning horizon and decision stages, on account
of the dynamic nature of TEP, a more realistic approach would be to formulate the
problem with multiple decision stages (i.e. multi-year decision framework). This
modeling framework assumes that there are n probable future storylines (or scenarios)
each associated with a probability of realization pgthat stochastically represent major
long-term uncertainties. This modeling framework is, on one hand, the building block of
complex dynamic models, and on the other hand, an appropriate model to combine
short-term (first stage) and long-term strategic decisions (second stage). It also makes
sense considering the nature of transmission planning practice, which often requires
short- to medium-term decisions accompanied by long-term strategic plans for
exploring future possible developments.

The length of the first period can be taken as 5 to 15 years because transmission
expansions are planned well in advance (often within this range). Moreover, the
construction permit process of lines is often accompanied by significant delays; most of
the time, it takes several years (often in this range). Likewise, the length of the second
period can be set in the range between 20 and 35 years long depending on the planner’s
choice. Overall this leads to a 50-years long planning horizon.

Figure 5.1 schematically illustrates the two-period TEP modeling framework and the
form of its expansion solution. Each of these sub-horizons (periods) may have multiple
planning stages. In the first period, we obtain a single and robust expansion strategy for
each stage which is good enough for all scenarios. It should be noted here that the
decisions made in the first stage are obtained considering the future scenarios. The long-
term investment decisions made in the second-stage are adapted to each scenario,
guaranteeing sufficient flexibility in the planning process by allowing the ability to
postpone or alter decisions in the future.

As stated in the previous Chapters, the TEP problem is formulated considering its
dynamic nature i.e. featuring multiple decision stages. In addition, in order to combine
“here and now” and “wait and see” investment decisions, a two-period stochastic
optimization framework is proposed in this work. This modeling framework assumes
that there are n probable future storylines (or scenarios) each associated with a
probability of realization pg that stochastically represent relevant sources of
uncertainties. The whole modeling scheme adopted in this thesis (i.e. the multi-stage
and multi-scenario DGIP modeling framework and the expansion solution structure) is
illustrated in Figure 5.1. The formulation is based on the assumption that there are two
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investment pools, one for each period, from which the potential lines can be selected.
Investments in the first period can be postponed to the second period if deemed
necessary.
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Fig. 5. 1 A schematic representation of (a) possible future scenario trajectories and (b) a
decision structure

Figure 5.1 schematically represents the possible future scenario trajectories with
multiple scenario spots throughout the planning horizon, along with the decision
structure in the 7™ stage of the first planning period, showing a single investment
decision z; (where T = 1, 2, ..., T'1) in every stage of the first period which are common
(or good enough) for all scenarios, and flexible or strategic decisions z's. and y,,
(where ( =T1+4+1,T1+2,...,T) in every stage of the second one [15]. Note that the
first-period decisions are more relevant than those made in the second period because
they are implementable straightaway before uncertainties are uncovered i.e. “here and
now” decisions. However, the second-period decisions can also be very useful if seen
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from the flexibility/strategic planning perspective. In order to broaden the investment
options, two investment pools are considered one for each period, in which it is possible
to postpone the investments in the first z; to the second period z's .. The mathematical
formulation of the model developed here is presented and explained in detail in the
following sub-sections.

5.1.2.  Algebraic Formulation of the TEP Model
The stochastic TEP model developed in this thesis is described as follows.
5.1.2.1.  Objective Function

As mentioned earlier, this work develops a generalized optimization model that
simultaneously determines the optimal location, time and size of transmission line
investments under high penetration level of RESs. In other words, the objective is to
expand the transmission network at a minimum cost possible from the system
perspective. The resulting problem is formulated as a multi-objective stochastic MILP
with an overall cost minimization.

The objective function in (121) is composed of NPV of six cost terms each weighted by
a certain relevance factor a;; vj € {1,2,...,5}. Note that, in this work, all cost terms are
assumed to be equally important; hence, these factors are set to 1. However, depending
on the relative importance of the considered costs, different weights can be adopted in
the objective function. The first term in (121), TInvC, represents the total investment
costs under the assumption of perpetual planning horizon [186]. In other words, the
investment cost is amortized in annual installments throughout the lifetime of the
installed component. Here, the total investment cost is the sum of investment costs of
candidate lines as in (122).

The second term, TMC, in (121) denotes the total maintenance costs, which is given by
the sum of individual maintenance costs of new and existing lines and generators, at
each stage and the corresponding costs incurred after the last planning stage, as in (123).
Note that the latter costs depend on the maintenance costs of the last planning stage.
Here, a perpetual planning horizon is assumed. The third term TEC in (121) refers to the
total cost of energy in the system, which is the sum of the cost of power produced by
new and existing generators at each stage as in (124). Equation (124) also includes the
total energy costs incurred after the last planning stage under a perpetual planning
horizon. These depend on the energy costs of the last planning stage. The fourth term
TENSC represents the total cost of unserved power in the system and is calculated as in
(125). The last term TImiC gathers the total emission costs in the system, given by the
sum of emission costs for the existing and new generators as well that of power
purchased from the grid at the substations.

min TC = a; *TInvC + a, * TMC + a3 xTEC + a4 * TENSC + as
zZy,Z,... (121)
* TImiC
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nv 5 nv(y (122)
teQl

NPV of investment cost

T™MC = z (1 +0)~t (MntCN: + MntCEL)
teQt

NPV of maintenance costs (123)

1+0)T
g(MntC?’L + MntCE")

NPV maintenance costs incured after stage T

TEC = Z (1+0)7t (EgyCN¢ + EgyCE®)

teQt
NPV of operation costs (124)
1+0)T
SRl (EgyCr'® + EgyCF©)
NPV operation costs incured after stage T
TENSC Z(1+ )"t ENSC, + (1+0)_TENSC
= O’ —————————

t o ’ (125)

teQt
NPV of reliability costs

NPV reliability costs incured after stage T

TEmIC = Z (1+0)7t (EmiCN® + EmiCE®)
teQt

NPV emission costs (126)

14+0)T
a+o)” (EmiCY® + EmiCE®)

NPV emission costs incured after stage T

The individual cost components in (122)—(126) are computed by the following
expressions. Equation (127) represents the investment costs of lines. Notice that all

o(1+0)LT
o1 The

formulations in (127), along with the logical constraints which are described in the
constraints section, ensure that the investment cost of each line added to the system is
considered only once in the summation. For example, suppose an investment in a
particular feeder k is made in the second year of a three-year planning horizon. This
means that the feeder should be available for utilization after the second year. Hence,
the binary variable associated to this feeder will be 1 after the second year while zero
otherwise i.e. z, . = {0,1,1}. In this particular case, only the difference (zx, — Zp 1)
equals 1, implying that the investment cost is considered only once. Equations (128) and
(129) stand for the maintenance costs of new and existing lines at each time stage,
respectively. The maintenance cost of a new/existing lines is included only when its
corresponding investment/utilization variable is different from zero. The maintenance
costs of new and existing generators at each stage can also be similarly formulated but
this information is not often available for network planners.

investment costs are weighted by the capital recovery factor,
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o(1+ o)tTak
moct =Y ooy o =1 ok ik = 2k
kenk aen?

o(1+ o) Tak ,
+ Z Ps Z z (1 + O—)LTa,k —_ 11C(11\{]%(Z IC\l],}c,s,(

SENS  kenk aena
/N1
—Z pksi-1

0(1+a)LTak
+ Z Ps Z z (1+O-)LTa,k k(yaksg'

SENS kENkK aeN®

_ycllvlzcsf 1) ) VTE'QTl; VZE-QTZJ Zp,k,0
- 0 yaknsTl 0
MGl = ' N MCYEzlhn+ D ps DT ) MCME 2
kenk aena SENS  kenk aena

+ Z Ps z z MCY%yi% s ;s V€05 V€ N

SENS kenk aena

MntCE: = z MCE" ul1Bh + z o, z MCEu2EL , ; vz € 0™ V¢

kenkEL SENS  kenEL

EgyCL{VG = Zps Z Ty z OCéVSGWT

SENS  wenvw genNNG

+Zps Z T, Z 0C)S, c; VT €N™; v e n™

SENS  wenvw genNG

EgthEG= Zps z Ty Z 0 gsthVtEQt

SENS  wenvw gENEG

ENSC, = Z Ps Z Ty Z T[WAS,W,tpi,S,W,t ; VEE 0t

SENS  jent wenw
EmiCf = EmiCN¢ + EmiCE¢ ; vt e 0t

EmiCN¢ = 2 Ds Z T, Z ACZEERNGPGNS, 5 vt € 0

SENS  wenvw geQNG

EmiCE¢ = Z Ds Z T, Z A2 ERESPGES, 5 vt € 0t

SENS  wenw gENEG

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

The total operation costs given by (130) and (131) for new and existing generators,
respectively, depend on the amount of power generated for each scenario, snapshot,
stage and generator type. Therefore, these costs represent the expected costs of
operation. Similarly, the penalty term for the unserved power, given by (132), is
dependent on the scenarios, snapshots and time stages. Equation (132) therefore gives
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the expected cost of unserved energy in the system. Equations (133) gathers the
expected emission costs of power generated by new and existing generators, which are
computed using (134) and (135), respectively. Note that, for the sake of simplicity, a
linear emission cost function is assumed here. In reality, the emission cost function is
highly nonlinear and nonconvex, as in [44]. Moreover, the cost of power generation
ch,s,w,ti vt € Nt is often modeled using a linear cost curve, where the marginal cost
of power production is constant. Should there be a need to use more detailed generation
cost curves (quadratic cost curves, for instance), nonlinear terms should be linearized
using one of the linearization techniques, extensively discussed in Chapter 3. For the
sake of simplicity, a linear cost curve is adopted throughout this thesis.

5.1.2.2. Constraints

Kirchhoff’s Laws: Flows in AC systems are governed by Kirchhoff’s voltage and
current laws, abbreviated as KVL and KCL, respectively. The “DC” network model,
described in Chapter 3, is reproduced here by extending the multi-load level equations
to fit the proposed TEP framework. Inequality (136) and (137) represent the KVL
constraints in existing lines in the first and the second investment sub-horizons,
respectively. The corresponding constraints for candidate lines are given by (138)—
(140), respectively.

|Prswt + V2mbiOksmwe| < Mi(1—uly,); VEEQT s€QS5; weQv (136)
|Peswie + VidmbiOkswe| < M (1 —u2p5.); VEEQS; s €QS; we QY (137)
|Pokswe + ViombiOkswe| < Mpp(1—2gp,); VEE QS s€Q5; we QY  (138)
|Paswi + VibmbiOkswe| < Map(1—2'040); VI EQS; s€Q; we QY (139)
|Paiswi + ViombiOrswe| < Map(1 —yi% ) VO EQS s €Q5; we Q¥ (140)

As mentioned in Chapter 3, the DC network model does not provide voltage magnitude
information because one of the underlining assumptions in deriving this model is the
consideration of flat voltage throughout the system. This can be somehow corrected by
using the linearized active AC power flow equation, presented in Chapter 3, instead of
the DC power flow equations described above, as in (141)—(144). Notice that these
equations reduce to (136)—(140) if the voltage deviations (from the nominal value) at
each node and line resistances are very small. These are among the simplifying
assumptions in DC formulation.

|Pk,s,w,t - {V;wm (AVi,S,W,t - AVj,s,w,t)gk - Vnzombkgk,s,w,t )}l

141
S Mp(1—uly,); VteEQ'; seQ’; we Q¥ (141)

|Pk,s,w,t - {V;lom (AVi,s,w,t - AV}',s,w,t)gk - Vnzombkek,s,w,t )}l

142
< M(1—u2isp); VEEQS; sEQS; we QY (142)

114



|Pa,k,s,w,t - {Vnom(AVi,s,w,t - AV}',s,w,t)gk - Vnzombk gk,s,w,t )}l

(143)
SMyp(1—2gke); VEE Q% seNs; weQ”

|Pa,k,s,w,t - {Vnom (AVi,s,w,t - AV}',s,w,t)gk - Vnzombkek,s,w,( )}l (144)
SMyp(1—2Zgpe); VO EQS s€EQS; we Q¥

|Pa,k,s,w,t - {Vnom (AVi,s,w,t - AV}',s,w,t)gk - Vnzombkek’s’w’( )}l (145)

< Map(1—yiis0) VO EQS s €05 we QY

KCL constraints dictate that the load balance at each node should be respected all the
time i.e. the sum of all injections should be equal to the sum of all withdrawals. This is
enforced by adding the following constraints:

z Pa,k,s,w,t + z Pk,s,w,t + Z PGg,s,w,t + pi,s,w,t

(a,k)eQNL kei kei;keQEL gEi

- Z PDd,s,w,t + Z z 0.5 * PLa,k,s,w,t (146)
dei (a,k)eQNL kei
+ z 0.5%PLyswe=0; VtEQ,; s€Q; we QY

kei;keQEL

Constraints Related to Network Losses: The real power losses in line k can be
approximated as follows:

PLk,s,w,t = Vnzomgkglg,s,w,t (147)

Clearly, Equation (147) is nonlinear and nonconvex function. Since keeping the
linearity of the TEP problem is critical for computational reasons, Equation (147) need
to be linearized. The most common linearization approach in the literature piecewise-
linearizing the quadratic angular difference. However, instead of doing this, the
expression in (147) can be expressed in terms of active power flows as in (148), as
thoroughly described in Chapter 3. Issues related to network losses and linearization are
extensively discussed in Chapter 3 and also in our published work [13].

PLk,s,w,t = rkplg,s,w,t/w’tzom (148)

The quadratic expressions of active power flow in (148) can then be easily linearized
using piecewise linearization, considering a sufficiently large number of partitions, L.
There are a number of ways of linearizing such functions such as incremental, multiple
choice, convex combination and other approaches in the literature [13], [183]. Here, the
convex combination approach, which is implemented making use of special ordered sets
of type 2 (SOS2). This losses modeling technique is described in Chapter 3. Further
details can also be found in our published work [13]. For the sake of completeness, the
model is reproduced here. For the linearization, two non-negative auxiliary variables are
introduced for each of the flows Py, such that Py gw e = Pisw: — Peswe ThIS
implies |Pesw.t| = Piswe + Prsw,e Note that these auxiliary variables (i.e. P{; . and
Py s, represent the positive and negative flows of Py, ., respectively. This helps one

115



to consider only the positive quadrant of the nonlinear curve, resulting in a significant
reduction in mathematical complexity, and by implication the computational burden. In
this case, the associated linear constraints are:

L
P2 = Z DesweD[Peswe D]’ 5 VEE QL s €05 we vk
=0

(149)
€ {QNL U QEL}
L
|Pk,b| = Pl:s,w,t + Pk_,s,w,t = z Ak,s,w,t(l)Pk,s,w,t(l) ; Vt € Qt? seEQ’; w (150)
=1
€ O%; k € {QF U QFL}
L
Z)lk,s,w,t(l) =1;VteseQ’;weQ”; ke {QV vk} (151)
=1
Aiswie(l) €50S2 ; vt € Qf s € Q% w e Q¥; k € {QV U OFL} (152)

S]T(n ax

where Py g, (1) =1 — Note that this has to be done for both existing and

candidate lines. Further details about this model can be found in [13]. The losses in
candidate lines are also linearized in a similar way.

Note that expressing the losses as a function of flows has a clear advantage over the
angle-based losses. It avoids unnecessary constraints on the angle differences when a
line between two nodes is not connected or remains not selected for investment. In the
linearization of losses based on Equation (147), such problem is avoided by introducing
additional binary variables and using a so-called big-M formulation [131]. However,
this adds extra complexity to the problem.

Line Flow Limits: Flows in any line should lie within the permissible range i.e. within
its thermal capacity limits. In existing lines, these constraints are enforced by (153) and
(154) in the first and the second sub-horizons, respectively. The corresponding
constraints in the case of candidates are given by (155)—(157).

|Piswe| + 0.5PLiswe < UlELS) max 5 VEE QT s€QS; we Q¥;k € QFL (153)
|Peswe| + 0.5PLisw: < U2Eh Simax 5 VEE QS s €Q5; w e Q% k € QFL (154)

|Paiswe| + 05PLakswe < ZaktSaxmax ; VE € QF; s € Q5 w € Q¥; (a, k)

i (155)
|Pakswt| + 0.5PLg gswi < Z aptSakmax s VEE 0% s €05 weQY; (a, k)
e (156)
€ QNl
|Pajeswi| + 0.5PLojswe < VarstSapmax i VE € QS5 s €Q5; w € Q¥; (a, k) (157)

Active Power Limits of generators: The generation capacity limits of existing and
candidate generators are given by (158) and (159), respectively. In the case of candidate
generators, the corresponding constraints are (60). Note that the binary variables u, s, ;
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are required to indicate whether an existing generator is available or not. This makes
sure that the power generation variable is zero when the generator is not being used.

PGES mmugswt < PGgSyr < PGES i Ugswes YVt € QL seQ’; weQv; g

g,sw,t g,s,w,t (158)
QEG
NG, NG,
Ggsur,ntmxg,slwlt S PGYewe S PGyowi T Ugswe 5 VE € QY s€Q°; we¥; g (159)

It should be noted that, in the case of intermittent power source, the lower generation

limits PG, o™ and PG)S™ are often set to O while the corresponding upper limits

are set equal to the actual power output of the variable generation source corresponding
to the level of primary energy source (wind speed and solar radiation, for instance).
Hence, the upper bound in this case depends on the operational state (i.e. the snapshot)
and the scenario.

Logical Constraints: Investment-related logical constraints (160)—(165) are included.
These set of constraints ensure that an investment made at time stage t cannot be
reversed or divested in the subsequent time stages; instead, the asset should be available
for utilization immediately.

2k =28k 5 VTENRT; ke’ aen® (160)

Zhh: = Zdkr 3 VCENT k€N aen® (161)

2 kss 2 Zoksc-1 s VO ENTE s €N ke Nk aent (162)
2N ksri =28k 3 SENS kEN S aen® (163)
Yaiss = Varsc—1 i V(€N s €05 ke nk; aen® (164)
Vi1 =0 ;s€NS; keN aen® (165)

Budget Constraints: A budget constraint for line invests is enforced by adding
constraint (166) for the first period and (167) for the second one.

Z z Ictlzvk(zakr ak'[ 1) < Inlem‘L" VT € Q'Tl (166)
kenk aena

z Z Ctlzvk(yaks( yaks{ )+ Z Z Icévk(zlg}c,s,( ’g}cs( 1)

kenk aena kenk aena (167)

< InvLims; ; V(€ Qrz: s e Qs

Unserved Power Limits: The unserved power at any given node cannot exceed the
demand at that node, and this is enforced by:

0<Diswe <diswe ;VIiEQ; VEEQ, sEQS; we QY (168)

Emission Related Constraints: Emission reduction targets can be achieved by imposing
strict control, check and balance emission regulations. In this regard, constraint (169) is
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added here which caps the expected emission levels at a given year t below a preset
target.

Z Ds Z T, z (ERJCPGJ¢, + ERECPGSS, ) < TEEL,; Vt € 0* (169)

SENS  wenv geENNG

Angle and Voltage Related Constraints: For stability and power quality reasons, the
voltage magnitude and its angle at each bus are bounded by:

Omin < Oiswit < Omax; Orey =0;Vi € QL VEE QS s € Q5 we QY (170)
AV < AV, < AV i € QF Ve € QF s € Q5; w e QY (171)

HVDC Line Constraints: DC lines are modeled as “flow” networks, which means that
power flows in such lines are not goverened by Kirchhoff’s voltage law. Unlike flows in
AC lines, flows in DC ones are independent of the voltages and angles at the nodes
where the DC lines are connected to. DC lines only respect load balance and capacity
constraints and; hence, share the flow constraints, node balance as well as the losses
constraints in (146)—(157) with their AC counterparts.

5.2. TEP MODEL REVISITED

From a computational standpoint, the TEP model presented Section 5.1, which is based
on a yearly temporal planning scope, may not be sometimes affordable when applied to
extra-large systems of the European network scale. Given the sheer size of such network
systems, computing optimal power flow calculations for each time stage and scenario
over a long planning horizon (often 30 to 50 years) renders significant computational
challenge. To overcome this, the TEP problem can be re-formulated based on a reduced
number of intermediate planning stages in each sub-horizon (planning period). In a two-
period planning framework, assume the first period has two decision stages, one
intermediate and one final stages, which are denoted as 7 and T'1, respectively, and, the
second period is represented by one stage at the final planning horizon, as shown in
Figure 5.2. This leads us to a three-stage problem. Note that an intermediate stage is
intentionally added to the first period to somehow account for the investment lag
inherent to TEP projects induced by the often lengthy permission process.

One way to formulate the objective function of such a three-stage problem with three
stages is to minimize the total NPV sum of costs in each of the considered years (i.e. the
three planning stages), as in (121a). The composition of these costs the same as the
original model in Section 5.1, and are computed using Equations (122a)—(135a). The
cost terms here differ from those described before in that they do not reflect the
operation, maintenance, emission and reliability costs incurred outside these stages. In
other words, these costs are not spread throughout and beyond the planning horizon to
capture the short to long term impacts of expansion decisions on the levels of these
costs.
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Fig. 5. 2 A schematic representation of (a) possible future scenario trajectories and (b) a
decision structure

min TC = a; *TInvC + a, * TMC + a3 *TEC + a4, * TENSC + a5
zy,z',.. (121a)
* TImiC

TInvC = Z (1+ o)t InvCEN

) (122a)
teQt
NPV of investment cost
TMC = Z (1+0)7t (MntCM + MntCEY)
) (123a)
teQt
NPV of maintenance costs
TEC = Z (1+0)t (EgyCN + EgyCE®)
(124a)

teqt’

NPV of operation costs
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TENSC = Z (1+0)"t ENSC,

teqt’
NPV of reliability costs

TEmIC = z (1 +0)t (EmiCNC + EmiCES)

teqt’

NPV emission costs

o(1+ o)tTak )
InvC*t = Z z ( ) I1C3k(Zake = Zajke-1) 3Vt € {T,T1}

kenk aens L+ o)tk -1

o(1+ o)tTak /N1 4N
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SENS  kenEL
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The constraints to this optimization problem are the same as the ones in the original
formulation except for the domain of variables and parameters related to the stage t =
{r,T1,T2}.

As stated above, the major disadvantage of this formulation is the misbalancing of
investment and other costs. Because the real costs throughout the planning horizon are
not properly captured by this modeling, the resulting expansion solution can be
suboptimal.

The above problem can be corrected by finding an estimate to the costs incurred on the
“missing” years I.e. the years apart from the target years. By making use of the annuity
concept [186], the operation, maintenance, emission and reliability costs incurred
between the intermediate stages considered in the formulation can be approximated
from the corresponding known quantities at these stages. This is further demonstrated in
Figure 5.3. In this figure, suppose the first sub-horizon (period) spans over 15 years and
the duration of the second one is 25 years. Furthermore, let us assume we have two
target years for making investments in the first period i.e. one intermediate stage (5™
year) and the last planning stage (15" year). The second sub-horizon (i.e. from the 16
year to the 40™ one) have only one planning stage, which in this case is considered to be
the last one. In effect, instead of having 40 yearly stages (15 in the first period and 25
in the second one), the whole planning horizon has now 3 decision stages. For this
planning framework, the operation costs corresponding to these years are explicitly
known. Now, the issue is to approximate the costs incurred in the years other than those
explicitly considered i.e. the costs corresponding to Part I—IV in Figure 5.3.

Without loss of generality, the fixed payments in the years leading to stage 5 can be
assumed to be the same the costs at this stage OCs. Similarly, the annualized costs
between the six and the 15 years can be assumed to be equal to those at the 15" year
0C,s, while the annual costs in each year of the second period can be regarded to be
equal to 0C,,. Given all this, the concept of annuity [186] can be applied. Hence, the
costs in Part | are assumed to be accrued and paid in full at the end of the fifth year,
those in Part 1l at the fifth year and those in Part 11l at the last stage of the planning
horizon. the total operation costs in each range (part) can be estimated by the difference
of the perpetuity of the corresponding two known operation costs, updated by the NPV
factor. Note that the present value of perpetuity, which is the sum of the net worth of
infinite annual fixed payments, is determined by the ratio of the fixed payment at a

given time by the interest rate o. For the illustrative example, the total costs for the
0Cs  0Cs _ 0Cys
I o(1+0)5’ o(1+0)5

“missing” years can be estimated using: OC; = =
0Cyo 0Cyo

0Cys _ _ . .
T ror and 0Cy; = pre T s v It is rather straightforward to express the
costs incurred after the planning horizon, which depend on the costs in the final
planning stage. Assuming perpetual planning horizon, OC;, can be expressed as
0Cy0
o(1+0)40°
function then minimizes the sum of all cost cost terms formulated in this way.

The remaining costs can be formulated in a similar manner. The objective
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Fig. 5. 3 lllustration of cost components in the formulation

The complete formulation of the objective function of the TEP model with reduced
number of stages is presented in (121b)—(135b). The constraints are for this
optimization are the same as those in the original formulation with the exception of time
stage domain, which in this case is {r, T1, T2}.

min TC = a; *TInvC + a; * TMC + a3 *TEC + a4, * TENSC + a5
zy,2',.. (121b)
* TImiC

1+0)7t
TInvC = g]nthLN
o (122b)

teqt’
NPV of amortized investment cost

1 (1+0)"
TMC = (E — %) (MntC-LI-VL + MnthL)

N ((1 +0)7" _ (1+0) ™
o o

) (MntCNE + MntCEE (123b)

11

1+0) T
+ a+ao)” (MntCPt + MntCE")
HIi+1v
1 (14+0)°
TEC = <g‘ a+o” - ) )(EgyC{VG + EgyCF®)

N <(1 +0)7" _ (1+0) Tt
o o

) (EgyCt{ + EgyCry (124b)

11

1+0)T
+———(EgyCy¢ + EgyCF©)

Hi+1v
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1 (14+0)" 1+0)" (1+0)T
TENSC = (~—~———ENSC, + -— ENSCy,

o o
! u (125b)
1+0)T
+ — ENSCy
HI+1V
1 14+0)7"
I
(1+0)" (1+0)™
_ E CNG E 'CEG
+ < - > (EmiCyy + EmiCry) (126h)
11
14+0) T
+ (T)(EmiC + EmiCE®)

HI+1V

o(1+ o) Tak )
InvCi*t = Z Z (1+ 0)LTak — 1 ICtlzvk(Zakt a,llc,t—1) Ve € {7, T1}
kenk aen?

0-(1 + O-)LTak N1 ,Nl (N1
ITLUCT Z Ps Z Z (1 + o) Tak — ICak aksT — Z aksT1 (127h)

SeNS  kenkaena

o(1+ o)tTak
+ Z Ps Z Z (1+O-)LTa,k ICN (yaksT yCIXIZC,S,Tl)

SENS kenk aen?® J

~—

— (. N2 —
p,k,O =0 i yp,k,n,s,Tl =0

MntCN = Z Z MCNEZNL 5 v e {1,T1) )
kenk aena L ( b)
, 128
MntCTIYL:ZpsZ Z MC I%Zg}csT-l'zpsz z MCcllvlzc cllvlzcsTJ
sens  kenkaena seNS  kenkaena

MntCEL = Z MCE ulfh; vt e {r,T1}

kea™t (129b)
MntCF" = Z Ps Z stT

SENS  kenElL

EgycN¢ = 2 Ps z Ty, Z 0Cjlgwe; YVt €{tr,T1,T} (130b)
SENS  wenw geEQNG
EgyCE® = z Ps Z Ty, Z 0CiSwe ;s Vt €{t,T1, T} (131b)
SENS  weaw gENEG
ENSC, = Z Ds Z Ty z TwlswDiswe 5 YVt €{T,TLT} (132b)
SENS ient wEeEnNw
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EmiCf = EmiCN® + EmiCE® ; vt € {r,T1,T} (133b)

EmiCN¢ = Z o Z ., z A ERYOPGYS, e s VEE(LTLT)  (qaap)

SENS wENW genNG

EmiCES = Z o z ., Z A0 EREGPGES Vit € {1,T1,T} (135b)
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5.3. ROLLING WINDOW OF PLANNING

Power systems is subject to continuous changes and high level uncertainty. Because of
this, it is almost impossible to exhaustively characterize its possible evolutions only in
the form of a predefined storylines (scenarios). Moreover, the number of scenarios
should be limited to ensure tractability. Yet, expansion decisions have to cope with the
envitable changes in system evolutions. To adapt the decisions to a changing
environment, the concept of a rolling window of planning is introduced in this thesis.
This lays a quasi-dynamic planning framework which is attractive in intuitive terms
because it recognizes the fact that the plan will be effectively readjusted as new data
becomes available and tries to accommodate the effect of uncertainty by constantly
readjusting the probabilities of realization of the scenarios. This is demonstrated in
Figure 5.4. This planning framework uses the three-stage planning model developed in
the preceding section. Figure 5.4 (a) shows the possible future scenario trajectories
{s1,55,...,5,} with three scenario spots along the planning horizon, in the three-stage
and two-period planning framework. Whereas, Figure 5.4 (b) illustrates the decision
structure in each stage, showing a single investment decision z; common for all
scenarios in the first period, and scenario-dependent decisions{y;,ys, ..., ¥,}in the
second period. Figure 5.4 (c) depicts new possible future scenario trajectories
{si1,s5,...,sn} after new information is unveiled or made available. A new TEP
optimization is carried out accounting for these changes, and as illustrated in Figure 5.4
(d), a new set of decisions are obtained. Note that Figures 5.4 (c) and (d) both
demonstrate the moving window of planning.

It is understood that as time passes by, the scenarios unfold or new information becomes
available that changes the probabilities of realizations of the scenarios under
consideration. Either way, the planning can be repeated by rolling the planning window
and new investment decisions are obtained. This process can be repeated as many times
as desired. In doing so, there will be some overlaps in the planning windows, and as in
the decisions. Of particular interest in this case are the decisions made in the first stage.
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Fig. 5. 4 A schematic representation of the quasi-dynamic planning framework
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In general, the quasi-dynamic planning framework helps to explore new expansion
solutions as a result of dramatic changes in system evolution and/or obtain possible
adjustments to a previously made expansion strategy for minor changes in the
storylines. Experience shows that the first-stage expansion decisions are not built all
overnight (i.e. at the same time). Considering the current practice in construction of
lines, the permit process can be shorter for some, longer for others or even indefinite for
some “unlucky” ones. This gives the planner an opportunity to revise the decisions
taken in the first stage of the preceding planning window by comparing them with the
decisions in the current window. Based on this, he can make some adjustments to the
lines planned in the previous window. For instance, the lines in common can be
understood as robust and retained in the current planning process. On the other hand,
part of the lines of the first stage decisions of the previous window may not appear in
the current planning window which may be taken as a reason to cancel them. This
process somehow emulates the dynamism involved in TEP.

5.4. DESCRIPTION OF THE SOLUTION STRATEGY

TEP is a naturally combinatorial optimization problem because it includes several
discrete (binary or integer) investment decision variables, which often pose significant
computational burden. When the size of the system is not large, available solvers can
explore the combinatorial search space and find the best expansion topology within a
reasonable simulation time. However, for large-scale network systems, this is not
possible. Suppose a given system has 2000 candidate corridors for line investments.
Assume we have 5 transmission technologies to select from for the investment in each
corridor. This would result in a combinatorial search space of 2(*2000) possible
combinations, which is “maddeningly” huge. Currently available MILP solvers may not
be able to efficiently handle a problem of this magnitude; or else, this may take
unacceptably long simulation times even if the simplest TEP model is used. Because of
this, the resolution of such a complex combinatorial problem needs to be supported by
heuristic methods, which is one of the main aims of this work. This thesis proposes an
effective solution strategy involving a gradual reduction of the combinatorial solution
search (CSS) space, and parallel computation, largely discussed in [15]. The main of
this approach is to significantly enhance the tractability of the TEP problem. Further
details and descriptions of the proposed solution strategy is presented as follows.

The computational complexity of TEP is especially pronounced when the considered
network is of a continental size, as this work aims to address, where one has to consider
thousands of candidate lines in the expansion planning model.

Potential candidate lines for an expansion strategy have been traditionally
identified/selected based on expert knowledge. Thus, a short list containing this
information has been often made available for carrying out TEP studies. Sometimes, the
candidate list by experts is complemented using some heuristic procedures such as the
copper sheet method [237] or economic indicators such as locational marginal prices
[237], [238] and [239], etc. However, given the huge network size (continental), such
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information is unfortunately not available. This means that one cannot rely on expert
knowledge; instead, consider a lot of candidates to complete this missing information.
In addition, using a huge list of candidates intorudces sufficient flexibility in the search
for the most economical expansion strategy.

Unfortunately, as mentioned earlier, increasing the number of candidate lines increases
the CSS space, rendering significant burden to the solution process. In other words,
given the network size and the huge number of candidates needed in the planning, the
size of the optimization problem quickly increases and its computational complexity
becomes beyond acceptable level. Unless the CSS space is sufficiently reduced, the
resulting optimization can be intractable or demand an exceptionally huge
computational effort. This makes it important to reduce the size of the problem without
significantly compromising the quality (accuracy) of the solution. In light of this, the
present work uses a successive decomposition technique to reduce the CSS space. The
proposed solution strategy is schematically illustrated in Figure 5.5, summarizing the
procedures followed.

The technique works by decomposing the problem into a number of successive
optimization phases as illustrated in Figure 5.5. Each phase uses the results of the
previous one to reduce the search space. This reduction in complexity allows each phase
to use more complex models with a similar computational load. Moreover, each
optimization phase could be defined and solved as an independent problem; thus,
allowing the use of specific decomposition techniques, or parallel computation
whenever possible.

Generally, as shown in Figure 5.5, this solution strategy can be understood as an
approach that refines the large size of initial candidate list (ICL) by employing a
mathematically simplified optimization model (in this case, MODELS I and Il) before
applying a more accurate and advanced optimization model (which in this case is
MODEL Ill) to produce the final optimal investment decisions from the reduced
candidate list (RCL), obtained by MODELS 1| and Il. In effect, this approach
signinificantly reduces the CSS space, facilitating the computational process.
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Fig. 5.5 An illustration of the search space reduction approach and parallel
implementation

In general, a significant computational gain is achieved by using this technique. This is
because, on one hand, a relatively simplified optimization model (designated by
MODEL I in Figure 5.5 and whose formulation can be found in Chapter 3 and [15]), is
employed in the early phases before gradually switching to a more detailed and complex
optimization models (designated as MODEL Il and MODEL Ill). On the other hand,
parallel computation is implemented wherever it is possible. In addition, MODEL |
makes use of continuous investment variables which helps to further reduce the
computation burden. Converting the naturally discrete investment variables into
continuous ones might seem a coarse assumption but numerical results in Chapter 3 and
[15] have demonstrated the effectiveness of this methodology.

In the context of the developed TEP problem, the first phase involves deterministic
problems as many as the number of scenarios that can be independently solved. In the
second phase, the reduced candidate list is further refined by MODEL Il which involves
a fully stochastic optimization model with continuous investment decision variables.
This is followed by a final stochastic optimization, based entirely on an improved DC
network model, but this time, considering only the lines selected after Model 11 of the
second phase.

Since the foremost optimization phases assumes continuous investment variables, a set
of investment decisions with fractional values is thus obtained for each scenario. A
threshold is, therefore, set to limit the list of candidates that would be passed on to the
second phase. The present work considers all candidates whose investment variables are
different from zero after the optimization. And, these would be selected to eventually
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form a reduced candidate list (RCL). This may rather seem very conservative
assumption. Setting this threshold a little bit higher than zero as a selection criterion will
hardly change the solution, rather it can help to further disregard lines with small
investments, that are unlikely to appear in the final and optimal solution.

In the final stage of the first stage, the solution sets of each scenario (i.e. those lines
whose investment decision variables are greater than zero) are combined to obtain
reduced set of candidates i.e. RCL. In other words, for a candidate line to be considered
in the RCL, the line should be selected at least in one of the scenarios i.e. its investment
variable should be greater than zero; otherwise, it is rejected.

The second phase has two stochastic optimization processes sequenced one after
another (i.e. MODELS 1l and Ill). The difference between the two models is that
MODEL Il is formulated based on the hybrid or the relaxed DC TEP model (see in
Chapter 3), which allow continuous investment decisions, while MODEL Il is fully
based on an improved DC TEP model, in which only discrete investment variables are
feasible. The optimization process in MODEL Il is carried out considering all the
scenarios together but only taking into account the lines in RCL. This optimization
results in an intermediate solution comprising some of the lines in RCL. MODEL I
further reduces the search space because not all the lines in the RCL are selected for an
expansion plan. Therefore, we can also use here the same threshold to get rid of the
lines which do not appear in the solution after running MODEL Il of the second phase.

As a final step, the second optimization process is run with the intermediate solution as
an input. This process finally obtains the required TEP solution.

It should be noted that MODELS | and Il can be based on the hybrid or relaxed DC TEP
model described in Chapter 3 including network losses. The main property of the hybrid
model is that it exempts candidate lines from obeying the second Kirchhoff’s law while
the rest is the same as the DC network model in [240]. This property makes the hybrid
model fit for the CSS space reduction process because it allows the use of continuous
transmission investment variables. The relaxed DC TEP model (R-DCTEP), proposed
in Chapter 3, also permits the use of continuous variables. This model fares better than
the hybrid TEP model (HTEP) because flows in R-DCTEP are forced to obey the law of
physics unlike in HTEP where reverse flows can occur in candidate lines. These issues,
including numerical results (Tables 3.1—3.4 and Appendix D) are discussed in detail in
Chapter 3.

5.5. SUMMARY

This chapter has presented the algebraic formulation of the stochastic TEP model in a
multi-stage planning framework and considering multiple objectives including cost of
operation and maintenance, emission, energy production, load shedding and line
investments. The model is formulated in such a way that it combines mandatory short-
to medium-term network expansion decisions with long-term (strategic) decisions both
determined in the face of uncertainty. Another salient feature of the proposed model is

129



its account for the long-term impact of line investments on the overall system costs by
means of econometric concepts. Since, a long-term TEP problem spans over 30 or more
years, performing a yearly evaluation of the system operation and investment decisions
throughout the planning horizon may render significant computational burden. Because
of these reasons, a compact formulation, with fewer number of decision stages, is
developed for large-scale TEP applications. The concept of rolling window of planning
is also introduced to emulate the continuously changing evolution of the system. To
address the combinatorial nature of such a problem, an effective solution strategy is
described in full. The method works by decomposing the original problem into
successive optimization phases, which use TEP models with increasing fidelity levels.
This strategy dramatically reduces the combinatorial solution search space, which has a
considerable influence on the solution process.
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This chapter presents numerical results from case study on a reduced 1060-node
European network system. The proposed methods and solution strategy are tested on this
system.

6.1. CHAPTER OVERVIEW

Solving a TEP model of extra-large network systems (the European network, for
example) under high level temporal and uncertainty scope is prohibitively expensive or
it can even be impossible. In other words, network planning has to be carried out
considering the enormous variability of expected system conditions (described as
operation states or snapshots in the preceding chapters) and the high level uncertainty
about the evolution of the system in the future (referred to as scenarios or storylines),
demanding a new dimension of thinking to solve the resulting huge problem.

Here, the techniques proposed in the previous chapters are employed to reduce the
complexity of the problem and enhance tractability. First, the moment-based technique
that has been intorudced in Chapter 4 and dissemintated to the research community in
[15] to cluster the operational states based on their effects on expansion needs. Second,
the uncertainty regarding the evolution of the system is represented by a number of
scenarios (or storylines) unfolding as time passes by. The number of storylines is
limited, often defined according to expert knowledge. For the sake of brevity, three
storylines are defined and used in this case study as the aim of the analysis in this
chapters is to demonstrate the versatility of the proposed models, methods and solution
strategy.

6.2. A 1060-NoDE EUROPEAN SYSTEM

The TEP model, uncertainty and variability management methods and the solution
strategy developed in this thesis have been tested on a reduced European transmission
system. The analysis of the test results is presented as follows.

6.2.1. Data Preparation and Assumptions

In order to run a TEP on a continental scale, a great deal of data is required. For
instance, hourly series of demand and generator output for each technology should be
available for each node. In addition, network parameters (including transfer capacity
and electrical parameters) of both existing and candidate lines should be known.
However, most of this information is not publicly available for obvious reasons. We
explain in the following subsections how we have extracted the information and data
needed for the case study from various sources, and the corresponding assumptions that
we have made to complement some missing information.

6.2.1.1. Base-case Network

Electricity network is a backbone for any TEP optimization process. Apparently, the
required information about the existing European network is not readily available. For
this reason, we relied on Enipedia database (which is developed by TUDelft, accessible

132



via http://enipedia.tudelft.nl) to generate a European network model, used here in the
case study. The database contains plenty of information, yet incomplete when it comes
to electricity networks (especially in countries of the Northern and Eastern Europe,
where we had to almost generate the networks from scratch). Also, we have observed
that a lot of details are missing especially at lower resolutions. In other words, those
lines which carry power over relatively longer distances seem to be sufficiently
available, but some lines that connect local electricity demand or generator are largely
missing in the database. Because of this, we have decided to aggregate the demand and
generation capacities by the smallest socio-economic regions of Europe (officially
referred to as NUTS-3). And, we have developed a network model considering only the
interconnections among these regions (with voltage levels higher or equal to 220 and
150 kV for AC and DC lines, respectively). The network connections within a NUTS-3
region are simply disregarded regardless of the type or voltage level; instead,
represented by a single node located at the geographical center of the considered region.
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Fig. 6. 1 Network model aggregated by NUTS-3 regions
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The network model, developed based on the data extracted from Enipedia database, is
not yet complete because a large number of important links are missing (especially in
the Balkan and Nordic countries). The missing network links are recovered by visually
inspecting the network extracted from Enipedia database, and painstakingly comparing
it with the ENTSO-E’s paper map of European networks.

Once we know the number and the type of lines interconnecting the NUTS-3 regions,
we represent those lines with a corresponding equivalent line, whose transfer capacity
and electrical parameters are approximated as follows. First, standard values of
transmission line parameters [241] are used for each type and voltage level. In some
cases, lines connecting two specific areas can be of the same type and voltage level but
their lengths can be generally different. Therefore, the standard values need to be
readjusted to account for the effect of distance. For instance, the transfer capacity of a
line gets substantially lower when the distance increases. On the other hand, the
impedance of a line increases with distance. With this in mind, the maximum transfer
capacity of each of the lines connecting two areas is determined, the sum of which gives
the total (maximum) transfer capacity between the two given areas. This can be
understood as the transfer capacity of an artificial line connecting the two areas.
However, because of N-1 security criterion, the actual transfer capacity is often far less
than the arithmetic sum. As a proxy to this criterion, we deduct the maximum transfer
capacity of a line among those connecting the two areas, and obtain the effective (net)
transfer capacity between those areas. And, the corresponding electrical parameters
(resistance and reactance, in particular) are determined by fitting a curve with known
transfer capacities and electrical parameters. Figure 3 shows the final European network
model developed this way.

6.2.1.2.  Generation Capacity by Technology

The Enipedia database contains a huge list of generators of different technologies
associated with their geographical coordinates and relevant tags such as generation
capacity (in MW), annual MWh-production and emission intensity among others.
Unfortunately, the database is not complete. Only a fraction of the generators have the
generation capacity information, prompting us to devise other ways to recover the
required data. For instance, the technology type (if missing in the database) of a
generator is identified by its emission intensity because each technology has a
comparatively unique carbon footprint. In addition, we have mapped the annual
production values to capacities by using regression models to recover the generation
capacities of the generators. The regression models (see Figure 6.2, for example) are
technology-specific, and in some cases, are even different for the same technology
situated in different countries. They are obtained from already known quantities.
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Fig. 6. 2 An example of a linear relationship between MWh-production and MW-
generation capacity in nuclear technology.

When the generation capacities of all generators is determined, obtaining the total
generation capacity corresponding to each technology in each NUTS-3 areas (hodes) is
straightforward. Since we know the location of each generator, we add the capacities of
the generators of the same technology which are located within the same region. This
way, we get the total generation capacity for each technology and region.

6.2.1.3.  Electricity Demand

The total demand per country is available in the ENTSO-E website. We redistribute this
aggregate demand among all nodes in the country in proportion to their respective
population sizes. For instance, suppose country X has a total electricity demand of 100
MW and four NUTS-3 regions, with its population distributed across the regions in the
following proportion {40%, 30%, 20%, 10%}. For this country, the corresponding
electricity demand consumed by the population in each region would be {40, 30, 20,
10} MW, respectively.

ENTSO-E also regularly publishes records of hourly electricity demand aggregated at
country level. We use this information in order to generate the demand series at all the
nodes in each country. This is needed because electricity consumption varies with
geographical locations and weather patterns. For instance, geographically dispersed
demand regimes, particularly those in different time horizons, are likely to be less
correlated. Therefore, spatial demand correlations ranging from 0.9 to 1 are factored in
to account for such spatial variations of electricity demand within each country. This
can be achieved by generating different time-lagged demand series or using Cholesky
factorization to create different demand series with a given correlation matrix, whose
entries depend on the distance among the nodes.

Electricity demand is assumed to grow by 1% annually, and this is kept the same for all
scenarios. Accordingly, the demand growth at the end of first and second stages is10%
and 30%, respectively.

6.2.1.4. Time-Series of Wind and Solar Power Sources
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Solar irradiance and wind speed data are the most useful components in determining
wind and solar power outputs. Because of this, historical records of solar irradiances
with different time resolutions are collected from multiple sources such as
http://project.mesor.net/web/guest/solemi-free and http://www.soda-
is.com/eng/index.html. Similarly, wind speed data series have been collected from
various sources. Majority of the meteorological websites in Europe have historical
records of wind speed, spanning over several years, publicly available. Some missing
information is complemented from the daily data provided by the European Climate
Assessment and Dataset (ECA&D), available online on http://eca.knmi.nl/. In some
cases, wind speed series for different years are used because the inter-annual wind speed
variations are often very small (less than six percent of the mean [242]).

It should be noted here that whenever wind speed or solar irradiance information is not
available for a specific place or country, the corresponding series are either generated
from approximate probability distributions (given that the corresponding mean values
are known) or simply assumed to be the same as that of neighboring nodes, where this
information is already known. This has been the case for some nodes in the Balkan and
Baltic countries.

Once the hourly series of wind speed and solar irradiance are known for each node in
the test system, the corresponding power outputs are determined by plugging in these
values in the respective power output expressions in [243] and [244].

6.2.1.5. Time-Series of Conventional Power Sources

The conventional power sources considered here are nuclear, gas- and coal-fired power
plants. In order to generate the time-series for these technologies, we use a two—state
model (online or offline) to represent the state of conventional power units based on
their respective forced outage rates (FOR) , which range from 0.05 to 0.15 depending on
the type of generator. This way, a discrete random binomial distribution is employed to
generate availability patterns for different generators, obtained from their corresponding
forced outage rates.

6.2.1.6. Other Power Sources

The time series of hydro power plants are generated based on the assumption that hydro
power outputs are closely related with rainfall pattern (which can be found in national
meteorological sites). In this way, the highest power output from hydropower plants is
assumed to occur at the same time with the highest rainfall, and for lower rainfalls,
production is reduced proportionally and kept at its minimum during dry seasons (i.e.
when there is no rainfall).

Power plants that generate electricity from municipal solid waste, biomass and
geothermal at each node (if any) are assumed to be available year-round.

6.2.2. Scenario Definitions
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The process of defining scenarios is in itself a very challenging task. A large number of
scenarios are often required to fully explore the plausible future states. For the sake of
simplicity, we only use three scenarios in the EU-1060 node system. These scenarios
are characterized by large-scale power production from either wind in the Northern
Europe, where a large portion comes from the North Sea area, distributed renewable
energy (mainly, wind and solar), or solar resources in the MENA and Southern Europe.
From now on, we refer the above scenarios as North-Wind, Distributed-RES, and
South-Solar, respectively.

6.2.2.1. North-Wind Scenario

This scenario can be considered as a pro-wind scenario. By the end of the first stage, a
35 GW of wind power is assumed to be generated from the North Sea, West Coast and
Baltic Sea areas. This amount is injected at 88 strongly connected nodes bordering these
areas. It is distributed among the nodes in proportion to their corresponding average
wind speeds. Another 15 GW of wind power is distributed among all the nodes in the
system proportionally to the primary energy source (i.e. average wind speed) and total
area suitable for wind turbine installations in each region. Hence, the total wind capacity
in the first stage is 50 GW.

In the second stage, wind power with a total capacity of 200 GW is expected to be
installed, 140 GW of which comes from the North Sea, West Coast and Baltic Sea
areas. As in the first stage, this is assumed to be injected at the same nodes (i.e. the 88
strongly connected nodes bordering these areas), distributed among the nodes in the
same manner. The remaining 60 GW balance is distributed among all the nodes in the
system in proportion to the average wind speed and total area suitable for wind turbine
installations in each region.

6.2.2.2. Distributed-RES Scenario

The amount of generation capacities is assumed to be added in the first and the second
stages is the same as in the North-Wind scenario. However, in this scenario, large-scale
wind or solar installations is limited; instead, distributed generation of wind and solar
power is favored. It is assumed that 30% (i.e. 15 GW and 60 GW in the first and the
second stages, respectively) of the total power comes from a total of 53 sunny and 125
windy regions identified across Europe, as in Figure 6.3. Equal amount of the 30%
power is generated the wind and the solar sources. Again, distribution of the installed
wind or solar among each set of nodes is made in proportion to the primary energy
resource (either wind speed or solar radiation), and suitable areas for wind turbine or
solar PV installations. The remaining balance (i.e. 70%) is redistributed among all
nodes proportionally to the existing installed wind or solar power capacity at each node.

137



Us Dept of State Geographer.
Image Landsat
Data SIO, NOAA, U.S: Navy, NGAY

Fig. 6. 3 Hotspots for distributed solar (orange circle) and wind (blue circle) generation
6.2.2.3.  South-Solar Scenario

This scenario is mainly characterized by large-scale solar power imports from MENA.
The total amount of installed capacity is the same as in the above two scenarios (i.e. 50
and 200 GW in the first and the second stages), of which 70% is to be imported from
MENA via 10 nodes, selected based on proximity and connectivity strength criteria. The
remaining balance is redistributed among all nodes according to existing installed solar
power at each node.

6.2.3. Candidate Lines For Expansion

The candidate selection involves selecting corridors to be possibly reinforced,
technology and its cost structure.

6.2.3.1.  Identifying Corridors to Be Reinforced
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It is a daunting challenge to create an initial candidate pool for expansion at continental
or inter-continental level. This is because, on one hand, from the transmission
investment perspective, there are several technological options, which make the
problem even more difficult. On the other hand, there is generally a lack of expert
knowledge on the set of potential corridors to be investigated for future investments in
such a big system. Because of this, some heuristic candidate selection methods have
been used such as the copper sheet method in [237] and methods in [237] and [239]
which makes use of marginal prices as economic indicators for the selection process of
candidates. An extended and automatic version of the marginal prices —based candidate
selection methods in [237] and [239] is reported in [238]. Yet, it is likely that such
methods eventually end up with a huge list, because, in such a big system, there can be
many possibilities which satisfy the conditions for the selection. In any case, a
sufficiently large set of candidates (potentially encompassing some existing and new
corridors) are required for TEP optimization. For the sake of simplicity, we consider
each corridor as a candidate for reinforcement, resulting in a total of 1654 candidate
lines in existing corridors (which comprise AC and DC connections). In addition, ten
new HVDC submarine connections (in new corridors) are included in the initial
candidate list, bringing the total number in the initial candidate list to 1664.

6.2.3.2.  Cable-Overhead Proportion, Selecting Technology and Construction Cost

Recent study shows that underground cables with 315 kV higher voltage levels
constitute less than 5% of the total circuit length in Europe [245]. However, there is a
general consensus that this will significantly change in the future (mainly caused by the
lack of right of ways for overhead lines and increasing urbanization). Because of this,
we assume that one fifth of a given line being added to the network in the first stage will
be underground, and a 50% is assumed by the end of the second stage. The total
installation cost of a line is calculated by taking these assumptions into account. It
should be noted here that these assumptions do not take effect on undersea power
transmissions, where it is assumed that only HVDC cables are the only viable options
(particularly, for distances higher than 50 km).

Nowadays, there are a number of proven transmission technology options. In this
regard, selecting the most economically viable option is in itself a separate problem. In
this work, we only focus on selected technologies. Of a special importance here is the
DC technology. The share of DC connections (in terms of length) in modern power
system networks is very small. This will, however, significantly change in the future
because DC technology alleviates some of the technical limitations of AC lines [241].
For instance, it is generally accepted that HVDC technology is more attractive for bulk
power transmission over longer distances than HVAC one. Concerning this, different
references report different break-even distance ranges between HVDC and HVAC
connections, mostly beyond 100 km. But it also depends on the amount of power to be
transmitted. It is usually about 50 km for submarine cables and 400 km (in some cases,
as low as 200 km) for overhead lines. We have used the cost structure of different
transmission technologies given in [241] for our calculations and analyses.
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To select an appropriate transmission technology in a given corridor, we have set a
criteria based on the value of an investment decision variable after the first phase of the
solution process, size of excess flows in that corridor (i.e. higher than the maximum
capacity), and its length. This is summarized in Table 6.1 below.

Table 6. 1 Transmission technology selection

Extra flows in a
Investment decision corridor after Distance of Transmission
variable after PHASE | PHASE | (MW) corridor (km) technology
+e600kv HVDC
1 >4 >3000 > 250 .
bipolar
2 >1and< 4 < 3000and > 250 zsookv HVDC
> 2000 bipolar
3 . < 2000 and < 250 and sookv HVAC
>1000 >150 double circuit
400kv HVAC
4 >1 <1000 and > 500 <150 -
double circuit
5 >1 > 3000 <150 400kv H.VA?
B Up to 4 circuits
5 >1 <500 <150 sookv HVAC
B double circuit

6.3. OPTIMIZATION RESULTS AND DISCUSSION

It should be noted that the optimization is carried out by a computing machine with Intel
Xeon E5520 at 2.27 GHz frequency and with 32 GB RAM memory. First, using the
moment-based technique clustering technique in [15], 8760 operation states (hourly
snapshots) are reduced into 60 representative snapshots. Accordingly, we have obtained
60 representative snapshots for each spot in the scenario tree shown in Figure 6.1.

With these snapshots, the proposed solution methodology is tested on this system. The
successive optimization process described earlier, is run starting with 1654 elements in
the ICL. Consequently, in the first phase, which involves fully deterministic
optimization based on the hybrid network model with continuous investment variables,
the number of candidate lines is reduced from 1654 to 687. Moreover, this is further
reduced to 640 using MODEL Il of the second phase. With this reduced set of
candidates and the ten proposed lines across new corridors as inputs (i.e. a total of 650
candidate lines), the two-stage stochastic discrete optimization (i.e. MODEL IIl) is run
and the final investments are obtained. It should be noted here that the same number of
candidates are used in both stages. The solution time (i.e. the total CPU time that the
whole optimization process took) was about 25 hours, which is rather small for such a
complex problem. An attempt to run the Brute-force TEP optimization problem (i.e.
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without the implementation of the search space reduction methodology) was not
successful due to computational limitation.

Regarding the resulting investment decisions, a total number of 331 are built in the first
stage, approximately 11% of which are HVDC lines. This is shown in Figure 6.5. As
mentioned earlier, these investments are considered to be good enough for all three
scenarios. It is interesting to see that most of the biggest investments in the first stage
are made across the borders of the European countries, where the main bottlenecks
exist.

<4US Dept of State‘(;iegrapnef
5 © 2014 Google
Image Landsat S
Data SIO, NOAA, U.S. Navy, NGA| GEB‘G@

Fig. 6. 4 First stage expansion results (shown in bold)
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Fig. 6. 5 Second stage expansions in North-Wind scenario (shown in bold)

Likewise, the investments corresponding to each scenario in the second stage are shown
in Figures 6.5—6.7. The number of investments is 431, 349 and 423 in North-Wind,
Distributed-RES and South-Solar scenarios, respectively. As expected, the number in
each scenario here is a lot higher than in the first stage, especially in the North-Wind
and South-Solar scenario. This is rather expected because large-scale renewable
development prospects inevitably require huge network investments. On the other hand,
we can observe that, with distributed generation, line investment requirements are much
lower than in the case of highly dispersed large-scale renewable generations.
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Fig. 6. 6 Second stage decisions in Distributed-RES scenario (shown in bold)
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Fig. 6. 7 Second stage decisions in South-Solar scenario (in bold)

Another interesting observation here that the scenarios have a lot of investment
decisions in common. The North-Wind and South-Solar scenarios, in particular, seem to
use the same corridors in the central Europe for transporting power either south or north
direction, respectively. This is contrary to the perception that different scenarios result
completely different investment strategies. In fact, there are some differences in the
investment decisions of both scenarios. Especially in the Southern and Northern Europe,
where the power for each comes from, there seems to be shift in investments from north
to south or vice versa.

Worth mentioning here is the substantial reduction in computation time. The reduction
here is equivalent to a reduction of the combinatorial solution search space from 21654
to 2640. This is indeed significant from computational scale point of view.

6.4. SUMMARY

Transmission expansion planning at continental level is a very dimensionally huge and
mathematically complex combinatorial problem which makes it difficult to solve by
currently available computational machines. Obtaining optimal expansion solutions
within a reasonable computation time is vital. To enhance tractability, we have
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employed a solution strategy which effectively reduces the combinatorial solution
search space, as a result, leading to a faster computation without significantly
compromising the optimality of the solution. It is based on simple yet effective heuristic
solution method which works by decomposing the complex problem into successive
phases and making use of parallel implementation. It employs relatively fast
optimization models whose formulations are based on the hybrid network model in
order to refine a huge initial candidate list before switching on to a more accurate
optimization model based on the DC network model. The results of the case study show
the effectiveness of the proposed solution strategy in considerably reducing the
computational complexity.
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VIl. CONTRIBUTIONS
. CONCLUSIONS
AND FUTURE
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This final chapter concludes the research carried out in this dissertation by
summarizing its main contributions point-by-point, and drawing some conclusions from
the case studies carried out throughout this thesis. In addition, this thesis points out the
limitations of the developed approaches and suggests possible extensions as future
work.

7.1. MAIN CONTRIBUTIONS

The contributions of this thesis include methodological and modeling aspects of the
TEP problem. The main contributions are briefly summarized as bullet points below. It
should however be noted that this summary does not include the contributions
associated with the improvements and the modifications made to existing mathematical
modeling techniques of TEP formulations. These are clearly stated in the body of this
thesis.

e From a modeling perspective,

o A new TEP model has been proposed for a long-term planning of
transmission infrastructures under uncertainty with a multi-stage decision
framework and considering a high level renewable integration. One of
the salient features of the developed TEP model is its ability to capture
the long-term impact of network investments on system costs. This has
been partly published in [15].

o Recognizing the significant impacts network losses have on TEP
solutions (which are often neglected in most TEP studies because of
computational limitations), new linear losses models have been
proposed, some of which strike the right balance between accuracy and
computational effort, particularly, in the context of medium to long-term
TEP in large-scale power systems accommodating high level variable
energy sources. An extensive analysis on this issue has been published in
[13].

e From a methodological perspective,

o A new clustering methodology is introduced to effectively and efficiently
handle uncertainty and variability pertaining to the problem at hand. This
contribution has been published in [14].

o The entire TEP problem is formulated as a stochastic mixed-integer
linear programming optimization, an exact solution method, for which
efficient solvers are available and an optimal solution is guaranteed in a
finite simulation time.

o In order to significantly reduce the combinatorial solution search space
and hence facilitate the computation, a new heuristic solution strategy
has been devised. This approach works by primarily decomposing the
problem into successive optimization phases.

e The extensive experimental and theoretical analysis made throughout the thesis.

7.2. CONCLUSIONS
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A long-term expansion planning of large-scale transmission grids under high level
renewable integrations has unprecedentedly huge uncertainty, temporal and geographical
scope as well as the network size. Framed in this context, the main objective of this
research has been to develop mathematical optimization models, uncertainty and
variability management methods, and solution strategies that support the complex
decision-making process of such a problem. To this end, first, a new TEP model has been
developed which has the following salient features:

e Itis a MILP optimization model, based on an improved “DC” network model, for
which efficient off-the-shelf solvers are available and optimality is guaranteed
within finite simulation time.

e It captures the uncertainty and/or variability of various uncertain parameters
inherent to a long-term TEP problem with renewable generation via stochastic
programming.

e It has a weighted sum of relevant costs such as emission, operation and
maintenance, reliability and investment costs as its main objective.

e It provides a realistic measure of all cost terms during and after the planning
horizon so that a proper comparison of the different costs is estabilished.

e Its formulation is based on a two-period planning framework which helps to
combine/determine short- to medium-term decisions and long-term (strategic,
adaptive) expansion decisions.

Second, a new methodology has been proposed in order to effectively manage the
uncertainty and variability introduced by different uncertain parameters such as RES
output and demand. A significant part of this uncertainty and variability is handled by a
sufficiently large set of operational snapshots, which can be understood as generation-
demand patterns of power systems that lead to OPF patterns in the transmission
network. A large set of snapshots, each one with an estimated probability, is then used
to evaluate and optimize the network expansion. In long-term TEP of large networks,
the number of operational states must be reduced. Hence, the proposed methodology
reduces these snapshots by means of clustering, without relevant loss of accuracy from
the TEP solution perspective, by selecting classification variables is used in the
clustering process. The proposed method relies on the following main ideas:

e The snapshots are first characterized by their OPF patterns (the effects) instead
of the generation-demand patterns (the causes). This is simply because the
network expansion is the target problem, and losses and congestions are the
drivers to network investments.

e The OPF patterns are then classified using a “moments” technique, a well-
known approach in Optical Pattern Recognition problems.

Third, to address the combinatorial nature of such a problem, an effective solution
strategy has been proposed. This solution method works by decomposing the original
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problem into successive optimization phases, which use TEP models with increasing
fidelity levels. The proposed strategy dramatically reduces the combinatorial solution
search space, which has a considerable influence on the solution process.

The developed models, methods and solution strategies has been tested on small-,
medium- and large-scale network systems. In addition, to further validate the proposed
TEP model, methods and solution strategies, an aggregated 1060-node European
network system has been employed as a case study considering multiple RES
development scenarios. Generally, numerical results show the versatility of the
proposed TEP model. Moreover, the proposed methods and solution strategy are very
effective in facilitating the solution process, and result in a significant reduction in
computational effort while fairly maintaining optimality of the expansion solutions.

7.3. DIRECTIONS FOR FUTURE WORKS

The research work presented in this thesis has certain limitations, most of which can be
translated into future directions of research. The methods, models and strategies
developed in this thesis can be further extended or improved to support future works.
Some of the shortcomings are listed below.

Transmission Technology Selection: There are several matured transmission
technologies each having different physical and economic characterstics. Further
technological advances in R&D will further add new transmission technologies that are
expected to mature in due time. In addition, transmission lines have very long economic
lifetimes, and the TEP problem is characterized by strong economies of scale. From the
AC context, for instance, the cost per MW per km decreases with increasing voltage
level. This, in the current work, is handled by associating a binary variable for each
technology. However, this considerably increases the complexity of the problem, by
implication increasing the computational requirement. From this perspective, devising a
methodology (possibly heuristic) that can effectively determine which transmission
technology to consider for investment and which to discard, at the same time reflecting
the uncertainty in the maturity level of the transmission technology.

TEP from the Smart-grid Context: The present work focuses mainly on the
development of models, methods and tools to handle wide-area and long-term grid
expansion planning under high penetration level of variable energy sources. The effect
of smart-grid technolgies large-scale deferrable loads, demand side management, energy
storage technologies (centralized and/or distributed) and others on the network
investment needs as well as on the system is not analyze. These technologies, along
with substantial network expansions, are expected to be deployed in the system to
support large-scale integration of variable energy sources, minimize the impact of high
level variability and unpredictability of such energy sources, maintain system integrity,
stability and power quality. Hence, this line of research can be very interesting for
future works.
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Integrated approach: The coordination of different sectors of energy infrastructure
expansion and developments is becoming increasingly imprortant. Because of this,
developing a multi-sectoral optimization problem is of paramount importance. It would
be interesting to analyze this from the perspectives of coordinating different forms of
energy consumption, improving overall system efficiency, enhancing energy security,
optimally integrating and exploiting RESs, reducing GHGs, etc.
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APPENDIX A: DERIVATION OF THE FLOW-BASED ACTIVE AND REACTIVE POWER
LOSSES

The derivations related to the losses equations in (40) and (41) are provided here.
Squaring both sides of the flow equations in (23) and (24) and dividing each by V,2,,,
we get:

(P)? 2

VT%I:)m ~ [(AVl — AI/j)gk] = 2 % gy Vaombi Oy * (AVi - AV}) + (V;wmbkgk)z (A1)
I 11

(Qi)* 2

Vr%,;m ~ [(AV; = AV))bi]” + 2 * biVnomgi Ok * (AVi = AV}) + (Vaomgibi)* (A.2)

I 11

Since the variables 6y, AV; and AV; are very small, the second order terms (i.e. bilinear

products of these variables) can be regarded to be close to zero. Hence, the first and the
second terms in (A.1) and (A.2) can be neglected, leading to the following expressions,
respectively.

(Py)?

ViZom ~ (V;Lombkek)z (A.3)
(Qi)?
Vr%I:m ~ (Vnomgkek)z (A4)

Multiplying both sides of (A.3) and (A.4) by r;, and adding both sides gives:

Pr \? Qr \?
T () 47 () % rieCombii)® + 1(Vaom@k6)®  (AS)

After rearranging Equation (A.5), we get:

(br)?
e (PE + QD) /Vibm ~ G Vom0 *ric (%= + g1 (A6)
) . (bp)? _ . . .
One can easily verify that ( o + gk) = 1, reducing Equation (A.6) to:
rk(Plg + Ql?)/Vnzom ~ gk(Vnomek)2 (A-7)

Recall that the right hand side of (A.7) corresponds to the active power losses
expression in (40), which proves the derivation. The flow-based reactive power losses in
(41) are derived in a similar way. Multiplying both sides of Equations (A.3) and (A.4)
by x, instead of r;, adding both sides and rearranging the resulting equation leads to:

rk(Pl? + QI?)/Vnzom ~ _kanZomelgxk[_bk + (gk)z/(_bk)] (A.8)

Note that, in Equation (A.8), x,[—by + (gx)?/(—bx)] = 1. Hence, the equation reduces
to:
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rk(PI? + QI%)/V;lzom ~ _bkv;lzomel% (A9)

And, observe that the right hand side of Equation (A.9) is equal to the reactive losses
expression in (41).
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APPENDIX B: MULTI-LOAD LEVEL TEP MODELS

For quick reference, this section presents compact forms of the lossy TEP models
described in Chapter 3. The objective function in Equation (B.1) is common for all
models.

min Z
Zk,t:PGgb,t:Dibt

1 LTy
22(1 (]"j:— -;L;?( Zk,tICk/r

+ z Z Z(l + T') tAb g,b,tlg
t g b
1
+ z Z(l + 1) AL PGy Ag /T (B.1)
g b
11
+ z Z 2(1 + 1) AP p A
t g b
1
+ Z Z Z(l + 1) Ay AT
t g b

11

Vib = Viom + AV, where AV™™ < AV, < AV
P — (Vnom(&Vyp — AV'b)gk ~ ViombiOip )} < MP(1 — uy)
Qb = {=Veom(AVip = AV )by = VitomGiOkp}| < MQpe(1 — 1)

|Pics = (Vrom(AVip = AV ) gk = VidombiOk,p}| < MP(1 = z)
Qs — {(=Voom(AVip — AV )b = VitomGiOiep}| < MQi(1 — 2;.)
Piy+Qip < uk(Sk,max)z
Pey+Qip < Zk(Sk,max)z
PLyy = 1i{Pip + Qi p}/Viom LinACTEP
QLip = xi{Pp + Qi p}/ Viom
Peb = Péy — Py = |Pis| = Péy + Picy
Qb = Qi — Qicp = |Quen| = Qicp + Qic

L
2
Pep = Z Q. b, 1Ak, b1

=1

Pip + Py = Z Aprp
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L
2 _
Qkp = Z Br.b,1AGk b1
=1

L
Qkp+ Qrp = z Aqyp,
=1

Aprp) < P /L5 Aqyp, < Q /L

APrpi+1 < DPrpis Adkpiv1 < AQkp,

zpk'b +zPGg,b+pi,b_ZPDd,b+0'SZPLk,b =0

Kei gei dei kei
D Qo+ ) QGyp+ip— ) QDap+05 ) Qlyp =0
kei gei dei kei

UgPGymin < PGy p < UgPGymax
UgQGgmin < QGgp < UgQGg max
Omin < 0ip < Omax
Vier = Vaom s Oref =0

Aot = Prpy = 2L —1) S/L
[Py + Vi mbrwOip| < Mi(1 —wuy); where — by = 1/x,
|Pep + ViZmbiziOp| < My (1 — z;) ; where — by, = 1/x;

|Peb| + 0.5PLyp < UpSkmax

|Pis| + 0.5PLy py < 2 Sk max

Zpk'b +ZPGg,b+pi,b_ZPDd,b+O-SZPLk,b =0

Kei gei dei kel
UgPGymin < PGy < UgPGy max
Omin < ei,b < Omax; eref =0 DCTEP

PLyp = rkplg,b/Vnzom

_ p+ - _ p+ -
Pk,b—Pk,b_Pk,b—’|Pk,b|—Pk,b+Pk,b

L
2
Pep = Z Qe b, 1Ak, b1

=1

L
Pip + Pep = Z Apip
=1

Aprpy < Sg™ /L 5 Apgpisr < Dby 5 Arpy = (21— 1) ST /L
Vio = Viom + AV,  where AV™™ < AV, < AV™
1Py — (Vom (AV;p — AV; )9k — VidmbiOr.p )} < MP(1—w)

M-DCTEP
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1P — (Vom (AV;p — AVj,b)gk — VZmbiOip}| < MP.(1 — z)
|Pk,b| + O.SPLk‘b < ukSk,maX
|Pep| + 0.5PLyp < 23Sk max

zpk’b +ZPGg’b +pi,b _ZPDd’b +OSZPLk,b =0

kei gEi dei kei
ugPGg,min < PGg,b < ugPGg,max
Omin < ei,b < Omax eref =0
— 2 2
PLyp = 1Pgp/Viom
Py =P, — Py = |Pip| = P, + P2
k,b k,b k,b k,b k,b k,b
L

2 _
Pip = Z A1 APk b1

=1

L
Py + Py = Z AP,
=1

Aprpy < Sg™ /L 5 Apkpisr < BDkpy 5 Arpy = (21— 1) ST /L

Pep + V2 mbiwOrp| < M (1 — w); where — by, = 1/x;,

1
b = _Vnzombk(d)ik,b - ¢§,k,b)i where — by, = X_k

_ Zkt Oy _ Zg = Okp
1,k,b - 2 ) ¢2,k,b - 2

0 < Zk < Zk,max

Zk,min + gk,min < ¢ < Zk,max + Hk,max
= {1 =
2 kb 2

Zk,min — ek,max Zk,max — Hk,min
> S Pop < >

|Pis| + 0.5PLy b < upeSkmax

R-DCTEP

|Pk,b| + O.SPLk’b < ZkSk,maX
PLip = 11PE b/ Vitom
Pep = Py — Py = |Pep| = PEp + P

L

2 _ §
Pep = b, 1Ak b1
1=1

L
Péy + Ppy = z Apip,i
=1
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Aprpy < P /L 5 Aprpivr < APip

zpk'b +ZPG‘g’b +pi,b _ZPDd’b +OSZPLk,b =0

kei gEl dei kei
UgPGymin < PGy < UgPGymax

Omin < Hi,b < Omax; Href =0

_ Zt Oy é _ Zg = Okp
L = o 5 Pakh T T
Grip = DPirp — Prrp = |¢1,k,b| = ¢ rp T Piks
L
¢fk.b = Z A1 AP kb1
=1

L
Gy + Piry = Z Ay b1
=1

Adipps < (Zg™ +60)/(2L) 5 Adiipr = Ad1ipi+1

Bokd = Pary — Pokn = |Pokn| = Pakp + Pis

L

¢§,k,b = z A p,1AD2 kb1

=1

L
+ -
bakp + DPokp = Z Ady kb
=1

Apyppy < (Z0% — ™) /(2L) 5 Adoipr = Adojpisr
|Pk,b aF Vnzombkuk9k,b| < Mk(l — uk); where — bk = 1/xk
|Peb| + 0.5PLy p < WSk max
|Pis| + 0.5PLy y < 2 Sk max

zpk'b +2PGg,b+pi,b_ZPDd,b+O-SZPLk,b =0

kEi gEi dei kel
ugPGg’ml-n < PGg,b < ugPGg’max
Omin < ei,b < Omax; eref =0
_ 2 2

PLy, = Tkpk,b/Vnom
Pep =Pty — Py = |Pep| = P, + PR
k,b k,b k,b k,b k,b k,b

L
2 _
Pep = Z A1 APk b1

=1

L
Pip + Py = Z Aprp
=1

HTEP*



Aprpr < S /L 5 Aprpier < DPrpy 5 Arpy = (21— 1) ST /L
|Peb| + 0.5PLyp < WSk max
|Pe.b| + 0.5PLyp < 1Sk max
Z Ppp+ Z PGyp +pip — Z PD4p, + 0.5 Z PLy, =0
kEi gEi dei KEi
UgPGymin < PGy < UgPGymax

Omin < glb < Omax gref =0

PLip = 1P b/ Viom PTEP*
Pyp = Py — Pep = |Pk,b| = Pip + Py
L

2
Pep = § b, 1Ak, b1
=1

Py + Py = Z Apipi
=1

Apipy < SE/L 5 BPipier < Bprpy 5 ks = (21— 1) S /L
Pip + ViombruxOyp = 0; where — by, = 1/x;,
zpkb +ZPng +pip— ZPDdb +OSZPLkb =0
KEi gEi dei kei
UgPGymin < PGy < UgPGymax
Omin < 0ip < Omax; Orer =0
PLyp = 7”kplf,b/Vnzom
Pen = Py — Py = |Pin| = Py + Picy CSTEP®

L

2 _
Pep = Z b, 1Ak b1

=1

Py + Py = Z Apip,i
=1

Aprpy < Sg™ /L 5 Aprpisr < DPkpy 5 Qrpy = (21— 1) ST /L

* This model can also be formulated from models other than the DCTEP.
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APPENDIX C: INPUT DATA

The data for the test systems used in the analysis throughout the thesis are provided
here. Base power in all cases is 100 MVA.

C. 1. Garver’s 6-bus System

Table C. 1 Garver’s 6-bus data

Generator data

PGmax PGmin QGmax QGmin Marginal cost
Node (MW) (MW) (MVA) (MVA) (€/MWh)
1 150 0 65 -65 30
3 360 0 150 -150 40
6 600 0 200 -200 5
Load data
Node PDmax (MW) QDpax (MW)
1 80 16
2 240 48
3 40 8
4 160 32
5 240 48
6 0 0

Existing lines data

From To r(pu) x(pu) Smax (MVA)
1 2 0.1 0.4 100
1 4 0.15 0.6 80
1 5 0.05 0.2 100
2 3 0.05 0.2 100
2 4 0.1 0.4 100
3 5 0.05 0.2 100

Candidate lines data

Smax
From To r (pu) X(pu) (MVA) IC (M€)
1 2 0.1 0.4 100 40
1 4 0.15 0.6 80 60
1 5 0.05 0.2 100 20
2 4 0.1 0.4 100 40
1 3 0.09 0.38 100 38
1 6 0.17 0.68 70 68
2 5 0.08 0.31 100 31
2 6 0.08 0.3 100 3
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2 3 0.05
3 4 0.15
3 5 0.05
3 6 0.12
4 5 0.16
4 6 0.08
5 6 0.15

0.2
0.59
0.2
0.48
0.63
0.3
0.61

100
82
100
100
75
100
78

C. 2. IEEE 24-bus System (Base power 100 MVA)

®,

18
-] } 21

20

20
59
20
48
63
30
61

23

Fig. C. 1 Single line diagram of IEEE 24-bus test system
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Generator data

1
2
7
13
15
16
18
21
22
23
4
17

Demand data

Node PDmax (MW)

1

© 00 NO Ol & WDN

10
13
14
15
16
18
19
20

Existing lines data

Table C. 2 IEEE 24-bus data

80
80
180
240
110
80
200
200
96
310
0

0

QGmaX
Node PGpax(MW) PGpin (MW) (MVA)
192 62.4
192 62.4
300 75
591 207
215 66.3
155 54.3
400 100
400 100
300 60
660 248.6
1500 0
1000 0
QDmax (MW)
108 22
97 20
180 37
74 15
71 14
136 28
125 25
171 35
175 36
195 40
265 54
194 39
317 64
100 20
333 68
181 37
128 26
To r(pu) x(pu) Smax(MVA)
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From
1

1
1

2 0.0026 0.0139 175
3 0.0546 0.2112 175
5 0.0218 0.0845 175

QGmin
(MVATr)

Marginal cost

(€/MWh)

16
16
43
48
58
12
4
4
0
12
0
0
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0.0328
0.0497
0.0308

0.0023
0.0268
0.0228
0.0139
0.0159
0.0427
0.0427
0.0023
0.0023

0.0023
0.0023
0.0061
0.0054
0.0061
0.0124
0.0111
0.005
0.0022

0.0027
0.0067
0.0033
0.003
0.0018
0.0135
0.0016
0.0025
0.0014
0.0087

Candidate lines data
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From

[EEN

O B W WNDNDN PP B

To

O© o b orTwWN

10

r (pu)
0.0026
0.0546
0.0218
0.0328
0.0497
0.0308
0.0023
0.0268
0.0228

0.1267
0.192
0.119

0.0839
0.1037
0.0883
0.0605
0.0614
0.1651
0.1651
0.0839
0.0839

0.0839
0.0839
0.0476
0.0418
0.0476
0.0966
0.0865
0.0389
0.0173

0.029
0.0519
0.0259
0.0231
0.0144
0.1053
0.0129
0.0198
0.0108
0.0678

X (pu)
0.0139
0.2112
0.0845
0.1267
0.192
0.119
0.0839
0.1037
0.0883

175
175
175

400
175
175
175
175
175
175
400
400

400
400
500
500
500
500
500
500
500

1000
500
500
500
500
500

1000

1000

1000
500

Smax (MVA)
175
175
175
175
175
175
400
175
175

IC (M€)
0.03
0.55
0.22
0.33
0.5
0.31
0.2
0.27
0.23
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8
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23
23
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21
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8
8
7
14
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0.0427
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0.0023
0.0023
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0.0023
0.0061
0.0054
0.0061
0.0124
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0.005
0.0022

0.0027
0.0067
0.0033
0.003
0.0018
0.0135
0.0016
0.0025
0.0014
0.0087
0.0348
0.0328
0.0497
0.0057
0.008
0.0105
0.0078

0.0605
0.0614
0.1651
0.1651
0.0839
0.0839

0.0839
0.0839
0.0476
0.0418
0.0476
0.0966
0.0865
0.0389
0.0173

0.029
0.0519
0.0259
0.0231
0.0144
0.1053
0.0129
0.0198
0.0108
0.0678
0.1344
0.1267

0.192
0.0447

0.062
0.0822
0.0606

175
175
175
175
400
400

400
400
500
500
500
500
500
500
500

1000
500
500
500
500
500

1000

1000

1000
500
175
175
175
500
500
500
500

0.16
0.16
0.43
0.43
0.2
0.2

0.2
0.2
0.33
0.29
0.33
0.67
0.6
0.27
0.12

0.68
0.36
0.18
0.16
0.1
0.73
0.36
0.55
0.3
0.47
0.35
0.33
0.5
0.62
0.86
1.14
0.84

IEEE 118-bus System (Base power 100 MVA)
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Table C. 3 IEEE 118-bus network data

r (pu)

0.0303
0.0129
0.0018
0.0241
0.0119
0.0046
0.0024

0
0.0026
0.0209
0.0203

0.006
0.0187
0.0484
0.0086
0.0223

0.0215
0.0744
0.0595
0.0212
0.0132
0.0454
0.0123
0.0112
0.0252

0.012
0.0183
0.0209
0.0342
0.0135
0.0156

0
0.0318
0.0191
0.0237

0
0.0043

0.008
0.0474

X (pu)
0.0999
0.0424
0.008
0.108
0.054
0.0208
0.0305

0.0267
0.0322
0.0688
0.0682
0.0196
0.0616
0.16
0.034
0.0731

0.0707
0.2444

0.195
0.0834
0.0437
0.1801
0.0505
0.0493

0.117

0.0394
0.0849
0.097
0.159
0.0492
0.08
0.0382
0.163
0.0855
0.0943
0.0388
0.0504
0.086
0.1563

Smax (MVA)
115

115
400
115
115
115
400

400
400
115
115
115
115
115
115
115

115
115
115
115
400
115
115
115
115

115
115
115
115
115
400
400
400
115
115
400
115
400
115

IC (M€)
18

7.6
1.8
16.2
9.7
4.7
5.5

6
5.8
12.4
12.3
4.4
111
24
6.1
13.2

12.7
36.7
29.3
15
7.9
27
9.1
8.9
17.6

7.1
15.3
17.5
23.9

8.9
14.4

6.9
24.5
154

17

9.1
155
23.4
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29
23
31
27
15

19
35
35
33
34
34
38
37
37
30
39
40
40
41
43
34
44
45
46
46
47
42
45
48
49
49
51
52
53
49
54
54
55
56
50
56
51
54

31
32
32
32
33

34
36
37
37
36
37
37
39
40
38
40
41
42
42
44

43
45
46
47
48
49
49
49
49
50
51
52
53
54
54
55
56
56
57
57
58
58
59

0.0108
0.0317
0.0298
0.0229

0.038

0.0752
0.0022

0.011
0.0415
0.0087
0.0026

0.0321
0.0593
0.0046
0.0184
0.0145
0.0555

0.041
0.0608

0.0413
0.0224
0.04
0.038
0.0601
0.0191
0.0358
0.0684
0.0179
0.0267
0.0486
0.0203
0.0405
0.0263
0.0365
0.0169
0.0028
0.0049
0.0343
0.0474
0.0343
0.0255
0.0503

0.0331
0.1153
0.0985
0.0755
0.1244

0.247
0.0102
0.0497

0.142
0.0268
0.0094
0.0375

0.106

0.168

0.054
0.0605
0.0487

0.183

0.135
0.2454

0.1681
0.0901
0.1356

0.127

0.189
0.0625
0.1615

0.186
0.0505
0.0752

0.137
0.0588
0.1635

0.122
0.1445
0.0707
0.0096
0.0151
0.0966

0.134
0.0966
0.0719
0.2293

115
115
115
115
115

115
115
115
115
115
400
400
115
115
115
115
115
115
115
115

115
115
115
115
115
115
230
115
115
115
115
115
115
115
230
115
115
115
115
115
115
115
115

17.3
17.7
13.6
18.7

37.1
2.3
8.9

21.3

2.1
6.8
15.9
25.2
9.7
10.9
8.8
27.5
20.3
36.8

25.2
16.2
20.3
19.1
28.4
11.3
97
27.9
9.1
13.5
20.6
10.6
24.5
18.3
87.1
12.7
2.1
3.4
17.4
20.1
17.4
12.9
344
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56
55
59
59
60
60
61
63
63
64
38
64
49
62
62
65
66
65
47
49
68
69
24
70
24
71
71
70
70
69
74
76
69
75
77
78
77
79
68
81
77
82
83
83

59
59
60
61
61
62
62
59
64
61
65
65
66
66
67
66
67
68
69
69
69
70
70
71
72
72
73
74
75
75
75
77
77
77
78
79
80
80
81
80
82
83
84
85

0.0413
0.0474
0.0317
0.0328
0.0026
0.0123
0.0082

0.0017

0.009
0.0027
0.009
0.0482
0.0258

0.0224
0.0014
0.0844
0.0985

0.03
0.0022
0.0088
0.0488
0.0446
0.0087
0.0401
0.0428
0.0405
0.0123
0.0444
0.0309
0.0601
0.0038
0.0055
0.0108
0.0156
0.0018

0.0298
0.0112
0.0625

0.043

0.1255
0.2158
0.145
0.15
0.0135
0.0561
0.0376
0.0386
0.02
0.0268
0.0986
0.0302
0.0456
0.218
0.117
0.037
0.1015
0.016
0.2778
0.324
0.037
0.127
0.4115
0.0355
0.196
0.18
0.0454
0.1323
0.141
0.122
0.0406
0.148
0.101
0.1999
0.0124
0.0244
0.0332
0.0704
0.0202
0.037
0.0853
0.0367
0.132
0.148

230
115
115
115
400
115
115
400
400
400
400
400
800
115
115
400
115
400
115
115
400
400
115
115
115
115
115
115
115
400
115
115
115
115
115
115
800
115
400
400
115
115
115
115

73.6
324
21.8
22.5

10.1
6.8
6.9
4.5

17.7
5.4
33
32.7
17.6
6.7
15.2
3.6
41.7
48.6
6.7
19.1
61.7
6.4
29.4
27
8.2
19.8
21.2
18.3
7.3
22.2
15.2
30
2.8
5.5
24.5
12.7
4.5
6.7
15.4
6.6
19.8
22.2
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84
85
86
85
85
88
89
90
89
91
92
92
93
94
80
82
94
80
80
80
92
94
95
96
98
99
100
92
101
100
100
103
103
100
104
105
105
105
106
108
103
109
110
110

85
86
87
88
89
89
90
91
92
92
93
94
94
95
96
96
96
97
98
99
100
100
96
97
100
100
101
102
102
103
104
104
105
106
105
106
107
108
107
109
110
110
111
112

0.0302
0.035
0.0283
0.02
0.0239
0.0139
0.0163
0.0254
0.0079
0.0387
0.0258
0.0481
0.0223
0.0132
0.0356
0.0162
0.0269
0.0183
0.0238
0.0454
0.0648
0.0178
0.0171
0.0173
0.0397
0.018
0.0277
0.0123
0.0246
0.016
0.0451
0.0466
0.0535
0.0605
0.0099
0.014
0.053
0.0261
0.053
0.0105
0.0391
0.0278
0.022
0.0247

0.0641
0.123
0.2074
0.102
0.173
0.0712
0.0651
0.0836
0.0383
0.1272
0.0848
0.158
0.0732
0.0434
0.182
0.053
0.0869
0.0934
0.108
0.206
0.295
0.058
0.0547
0.0885
0.179
0.0813
0.1262
0.0559
0.112
0.0525
0.204
0.1584
0.1625
0.229
0.0378
0.0547
0.183
0.0703
0.183
0.0288
0.1813
0.0762
0.0755
0.064

115
400
400
115
115
400
800
115
800
115
115
115
115
115
115
115
115
115
115
115
115
115
115
115
115
115
115
115
115
400
115
115
115
115
115
115
115
115
115
115
115
115
115
115

11.5
18.5
311
15.3
26
12.8
46.1
15
32.8
19.1
15.3
23.7
13.2
7.8
27.3
9.5
15.6
16.8
16.2
30.9
44.3
10.4
9.8
15.9
26.9
14.6
18.9
10.1
16.8
9.5
30.6
23.8
24.4
344
6.8
9.8
27.5
12.7
27.5
6.5
27.2
13.7
13.6
115
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17
32
32
27
114
68
12
75
76

113
113
114
115
115
116
117
118
118

0.0091
0.0615
0.0135
0.0164
0.0023
0.0003
0.0329
0.0145
0.0164

0.0301
0.203
0.0612
0.0741
0.0104
0.0041
0.14
0.0481
0.0544

115
400
115
115
115
400
115
115
115

5.4
30.5
11
13.3
2.3
0.9
21
8.7
9.8



APPENDIX D: SIMULATIONS RESULTS — 118-BUS CASE

This section presents simulation results corresponding to the IEEE 118-bus case study.

Table D. 1 Comparison of expansion decisions obtained by different TEP models — 118-

bus case
Type .
Model Investment solution
PTEP Lossy 34-43 (1), 43-44 (1), 44-45 (1), 82-83 (1), 85-86 (1), 86-87 (1)
34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83 (1), 83-85 (1), 85-
HTEP Lossy 86 (1), 86-87 (1)
& R-DCTEP 34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83 (1), 83-85 (1), 85-
S Lossy 86 (1), 86-87 (1)
a DCTEP 34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83 (1), 83-85 (1), 85-
Lossy 86 (1), 86-87 (1)
Lin ACTEP 1-3 (1), 2-12 (1), 34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83
Lossy (1), 83-85 (1), 85-86 (1), 86-87 (1)
15-17 (0.2), 23-25 (0.1), 25-27 (0.1), 26-30(0.3), 34-37 (0.1), 34-
PTEP 43 (0.7), 38-65 (0.1), 43-44 (1.0), 44-45 (1.0), 60-61 (0.1), 63-64
Lossy (0.1), 64-65 (0.2), 65-68 (0.1), 68-81 (0.06), 69-70 (0.1), 69-75
(0.1), 77-78 (0.2), 82-83 (0.4), 83-85 (0.2), 85-86 (0.6), 85-88
(0.2), 86-87 (0.6), 100-103 (0.07)
4-5 (0.02), 8-5 (0.07), 8-9 (0.07), 8-30 (0.2), 9-10 (0.07), 15-17
(0.15), 23-25 (0.1), 25-27 (0.1), 26-30 (0.3), 30-17 (0.09), 34-37
@ HTEP (0.1), 34-43 (0.8), 38-37 (0.4), 38-65 (0.1), 43-44 (1.0), 44-45
S Lossy (1.0), 60-61 (0.1), 63-59 (0.3), 60-64 (0.2), 64-65 (0.2), 65-66
S (0.1), 65-68 (0.1), 69-70 (0.1), 68-81 (0.1), 69-75 (0.1), 77-78
5 (0.2), 82-83 (0.6), 83-85 (0.2), 85-86 (0.6), 85-88 (0.07), 86-87
o (0.6), 100-103 (0.07)
4-5 (0.02), 8-5 (0.07), 8-9 (0.07), 8-30 (0.2), 9-10 (0.07), 15-17
(0.15), 23-25 (0.1), 25-27 (0.1), 26-27 (0.3), 30-17 (0.09), 34-37
R-DCTEP (0.1), 34-43 (0.8), 38-37 (0.4), 38-65 (0.1), 43-44 (1.0), 44-45
Lossy (1.0), 60-61 (0.1), 63-59 (0.3), 60-64 (0.2), 64-65 (0.2), 65-66
(0.1), 65-68 (0.1), 69-70 (0.1), 68-81 (0.1), 69-75 (0.1), 77-78
(0.2), 82-83 (0.6), 83-85 (0.2), 85-86 (0.6), 85-88 (0.07), 86-87
(0.6), 100-103 (0.07)

Table D. 2 TEP model performances in terms of costs and simulation times—118-bus

case

Type Model In:j::r(r‘;e)nt Total cost (€) CPL(JS;Ime
PTEP Lossy 166531673.8 | 13787863085 48.173
HTEP Lossy 197508547.7 | 13835854730 | 1452.432
Discrete | R-DCTEP Lossy 197508547.7 | 13835854730 1542.35
DCTEP Lossy 197508547.7| 13843756116 | 1928.329
LinACTEP Lossy 198679473.5| 13895952854 | 78495.506
. PTEP Lossy 162317520.7 | 13729793181 5.647

Continuous
HTEP Lossy 174961933.2 | 13774538987 10.467
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R-DCTEP Lossy 174961933.2 | 13774538987 23.883
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Fig. D. 1 Comparison of losses at each load level computed by different models 118-bus

case
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The main set of computational tools employed in the presented research is the numerical
decision support system jointly designated as STEP. These decision support models
have been developed for this thesis and are documented mainly in Chapters 3-6, as well
as the associated publications. Model code and all input parameters are freely available
under CreativeCommons (CC) BY-SA 3.0 license, allowing free copies and
redistribution of the material in any medium or format, as well as remixing,
transforming, and building upon the material for any purpose, even commercially. The
code can be requested directly from the author via email. STEP model is formulated and
implemented in the General Algebraic Modeling System (GAMS©) BUILD 23.7-
24.1.2. For handling input and output data, all calculations were performed using
Microsoft Excel©. The optimization problems were for the most part solved with the
CPLEX™ 12.5.1 solver for linear programming (LP) problems.

For more information about licensing and the public domain, please consider the CC
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