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SUMMARY 
The current thesis project studies the price forecasting procedures used nowadays by the 
electricity market and try to contribute by providing a stochastic pricing model that can 
be used for the Iberian power market as well as other power markets after certain 
adjustments. At first the project examines the past work that has been done in the field 
of pricing models, examining their different methodologies and assumptions and 
analyzing their strong as well as their less important points. Then the actual models used 
in this thesis projects are examined. The above mentioned study of the Iberian power 
market through a stochastic model was achieved by initially creating a simple 
deterministic pricing model, that level evolved into being able to examine multiple 
deterministic (independent) scenarios at the same time and finally reached its stochastic 
form, in which each scenario is accompanied by a corresponding probability and results 
were found examining different cases. Additionally, a simplified company 
representation was created in order to examine the effect of the above mentioned 
models in companies that own different thermal generation assets and operate at the 
same market. In that respect, three representative companies were created, owners of 
nuclear, coal and CCGT plants, and their incomes and productions were examined both 
for the multiple deterministic and the stochastic representation. Finally, ideas and 
suggestions for future improvements and expansions of the model are provided, in order 
to cover possible weaknesses and make it produce even more accurate and realistic 
results.  

RESUMEN  

La presente tesis estudia diferentes procedimientos para determinar previsiones de 
precios de mercados eléctricos y trata de ofrecer un modelo estocástico de 
determinación de precios con aplicación al mercado ibérico de electricidad así como a 
otros mercados tras la realización de determinados ajustes. En primer lugar el proyecto 
examina otros trabajos realizados con el fin de llevar a cabo previsiones de precio, 
examinando las diferentes metodologías y consideraciones y analizando su fortaleza así 
como los factores menos importantes. A continuación se examinarán los modelos 
actuales empleados en la presente tesis. El previamente mencionado modelo estocástico 
para la previsión de precios en el mercado ibérico de electricidad se ha conseguido tras 
haber desarrollado en primer lugar un modelo simple determinista que ha permitido 
examinar varios escenarios (independientes) al mismo tiempo hasta conseguir la forma 
estocástica, bajo la cual a cada escenario le acompaña una valor de probabilidad. 
Adicionalmente se desarrollo un modelo de compañía simplificado para examinar el 
efecto de los modelos previamente mencionados en compañías eléctricas que poseen 
plantas de generación térmicas y que operan en el mismo mercado. Se crearon tres 
compañías representativas dueñas de plantas de carbón, nucleares y ciclos combinados 
con el fin de analizar la energía producida e ingresos bajo una representación 
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determinística y estocástica. En ultimo lugar, se han propuesto ideas de mejoras y 
futuros trabajos del presente 
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CHAPTER ORGANISATION 
 

The thesis project has been organized in the following chapters: 

Chapter 1 – Introduction 

 Purpose/Motivation of the thesis – Reference to preliminary works  
 Thesis’ objectives 
 Structure of assignment 

 
Chapter 2 - State of the art 
 

 A survey of the literature (journals, conferences, book chapters) on the areas that 
is relevant to the research question. 

 Original conclusions deriving from the above surveys. 
 Gaps/problems to be overcome with this thesis. 

 
Chapter 3: Problem setting, description, etc. 
 

 Presentation of the problem 
 Description of system used  
 Data sources & initial assumptions 

 
Chapter 4: Proposed Method (model, analysis, solution, etc.) 
 

 Modeling : mathematical / review of optimization techniques 
 Use of GAMS (General Algebraic Modeling System) 
 Deterministic vs stochastic models 
 Stochastic modeling of certain variables 

 
Chapter 5: Results 
 

 Scenarios to be examined 
 Presentation-analysis of numerical results 
 Comparison with theoretical expectations - comments 

 
Chapter 6: Conclusions 
 

 Summary of the problem, main findings and overview  
 Feedback for further research & analysis 
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CHAPTER 1 - INTRODUCTION 

Since the early 1990s, two main events have been reshaping the landscape of the 
traditionally monopolistic and government-controlled power sectors – these are the 
process of deregulation and the introduction of competitive markets. In a number of 
countries worldwide, electricity is now traded under market rules using spot and 
derivative contracts. However, electricity is a very special commodity because of 
certain characteristics, not individually unique but quite uncommon when it comes to 
their combination: it is economically non-storable, and power system stability requires a 
constant balance between production and consumption. At the same time, electricity 
demand strongly depends on the weather conditions (temperature, wind speed, 
precipitation, etc.) as well as the intensity of business and everyday activities (on-peak 
vs. off-peak hours, weekdays vs. weekends, holidays and near-holidays, etc.). On the 
one hand, these unique and specific characteristics lead to price dynamics not observed 
in any other market, exhibiting seasonality at daily, weekly and annual levels, and also 
abrupt, short-lived and generally unanticipated price spikes. On the other hand all the 
above have encouraged researchers to intensify their efforts in the development of better 
forecasting techniques. 

At the corporate level, electricity price forecasts have become a fundamental input to 
energy companies’ decision-making mechanisms. As several worldwide events have 
shown, electric utilities are the most vulnerable, with the main reason being the fact that 
they generally have difficulty in transferring their costs on to the retail consumers. The 
costs of over-/under-contracting and then selling/buying power in the balancing (or real-
time) market are typically so high that they can lead to huge financial losses or even 
bankruptcy. Also, extreme price volatility, which can be up to two orders of magnitude 
higher than that of any other commodity or financial asset, has forced market 
participants to hedge not only against volume risk but also against price movements. 
Price forecasts from a few hours to a few months ahead have become of particular 
interest to power portfolio managers and not only. A generator, utility company or large 
industrial consumer who is able to forecast the volatile wholesale prices with a 
reasonable level of accuracy can adjust its bidding strategy and its own production or 
consumption schedule in order to reduce the risk or maximize the profits in day-ahead 
trading. 

A variety of methods and ideas have been tested regarding the electricity price 
forecasting (EPF), with varying degrees of success. This part of the thesis project aims 
to explain the complexity of the available solutions, with a special emphasis on the 
strengths and weaknesses of the individual methods. 
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Purpose / Motivation for thesis project  

The importance and basic advantage of using stochastic models in the calculation of 
electricity pricing, compared to deterministic ones, is the ability to simultaneously 
examine  different scenarios for the market, related to the variation of certain variables 
(stochastic variables) – this is a far more realistic representation of the market than the 
one offered by the deterministic model, as the real world is buffeted with stochasticity 
and cannot be described by a unique set of circumstances. What is more, and with 
regards to the electricity market, the variations that demand as well as non thermal 
generation present are nowadays even more important because of the increased 
penetration of RES technologies as well as a global economic crisis affecting recent 
demand patterns. Summing up, the pre-mentioned facts are indicative of the urgent need 
for further development of stochastic pricing models, through the use of which it will be 
possible to reach more realistic and significant results, to be used also as signals from 
generators and consumers.  

The above constitute a major motivation for the current thesis project, whose practical 
applications are multiple and it can also be further evolved to include more complex 
cases, such as balancing markets , connected electricity markets or/and more technical 
constraints. 

Objectives of the Master Thesis 

The objectives of the thesis project are the followings: 

1. Development of a stochastic model of electricity market prices in the medium – 
term horizon  

 
 Given the uncertainty of demand, fuel prices and renewable resources 
the goal is to develop a model using stochastic techniques to forecast 
price of electricity market. 

The above will be achieved by performing the following steps: 

 Development of an initial deterministic model, to be used as a basis for the 
development of the stochastic one. The system to be used in that stage will be 
simplified and based on the generation mix currently existing in the Spanish 
market. 
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 Review of the "state of the art" stochastic optimization techniques. 

 

 Development of a stochastic model for forecasting electricity market prices  
in the medium - term in an environment of uncertainty. 

After the completion of the above steps, the next objective is to: 

 

2. Apply to an example of a simplified system with companies  
owners of different generation assets, with a data set that resembles the Spanish 
power market.  

 

3. Commenting on the final results and proposals about future improvements and 
expansions of the model in order to depict even more accurately the evolution of 
prices and help them work as a signal for future uses. 

CHAPTER 2 – STATE OF THE ART 
 

The most significant change regarding electricity markets in the last decades has been 
the start of liberalization of the electric market; prices are now determined on the basis 
of contracts on regular markets and their behavior is mainly driven by usual supply and 
demand forces. Because of the importance of their evolution, a large body of literature 
has been developed in order to analyze and forecast them: it includes works with 
different aims and methodologies depending on the temporal horizon being studied 
(short, medium or long term). 

As a conclusion, from the studying of the different kinds of models, six fundamental 
points arise: the peculiarities of electricity market, the complex statistical properties of 
prices, the lack of economic foundations of statistical models used for price analysis, the 
primacy of uni-equational approaches, the crucial role played by demand and supply in 
prices determination and the lack of clear-cut evidence in favor of a specific framework 
of analysis. 

As it has been analyzed above, the importance of a stochastic pricing model is 
extremely big for various reasons. Specifically referring to the electricity market, whose 
volatility concerning demand as well as RES production can be significantly high, a 
stochastic approach is more than necessary. It allows to examine a number of different 
scenarios simultaneously, giving them the corresponding probability – the choice of that 
parameter is crucial, since it should be somehow matched to the real data of the market.  
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2.1. General Contributions 
 

Except for a few isolated cases, EPF (Electricity Price Forecasting) publications did not 
appear in the literature before the year 2000. The next major breakthrough occurred in 
the years 2005 and 2006, when the number of publications first doubled and then tripled 
with respect to 2002–2004 figures. Initially, this increased inflow of EPF publications 
was due mostly to proceedings or conference papers; journal articles followed with a 
delay. The overall publication rate increased until 2009/2010 and then dropped to 2006–
2008 levels because of a reduced number of conference papers. As of 2013, the topic 
seems to have saturated the research community, although the number of citations is 
still increasing. Possibly a new fundamental impulse–like the deregulation of the late 
1990s or the increased volatility of electricity spot prices in the mid-2000s–is needed in 
order to propel electricity price forecasting to a new level of publication intensity. 

EPF is mostly addressed in the three books presented as follows:  

 Shahidehpour et al. : discuss the basics of electricity pricing and forecasting  

(price formation, volatility, exogenous variables), describe a price forecasting 
module based on neural networks, and comment on performance evaluation. 

 

 Weron : provides an overview of modeling approaches, then concentrates on 
practical applications of statistical methods for day-ahead forecasting (ARMA-
type, ARMAX, GARCH-type, regime-switching), discusses interval forecasts,  

and moves on to quantitative stochastic models for derivatives pricing (jump-
diffusion models and Markov regime-switching). 

 

 

 Zareipour  : begins by reviewing linear time series models (ARIMA, ARX, 

ARMAX) and nonlinear models (regression splines, neural networks), then uses 
them for forecasting hourly prices in the Ontario power market. 

 

There are a few more books which touch upon the topic of electricity price forecasting, 
but they generally concentrate on modeling the stochastic price dynamics for risk 
management and derivatives valuation, rather than on day-ahead price forecasting; some 
examples Benth et al., 2008, Bunn, 2004, Burger et al., 2007, Eydeland and Wolyniec, 
2003, Fiorenzani, 2006, Huisman, 2009, Keppler et al., 2007 and Lewis, 2005, and 
Weber (2006). There is also a recent monograph by Yan and Chowdhury (2010a), based 
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on the master’s thesis of the first author, but it considers only mid-term electricity price 
forecasting, with a time frame of between one and six months. Although mid-term EPF 
is important for resource reallocation, maintenance scheduling, bilateral contracting, 
budgeting and planning purposes, it is beyond the few hours to few days ahead 
forecasting horizons that are typically considered in the EPF literature. 

Regarding review and survey articles, the situation looks a little better: the first review 
papers were already being published in the early 2000s. In an invited paper that 
appeared in the Proceedings of the IEEE, Bunn (2000) reviews some of the main  

In an IEEE Power & Energy Magazine discussion article on real-world market 
representation with agent-based models, Koritarov (2004) argues that the purpose of 
ABM is not necessarily to predict the outcome of a system; rather, it is to reveal and 
explain the complex and aggregate system behaviors that emerge from the interactions 
of the heterogeneous individual entities. At the same time, he concludes that the ABM 
approach is positioned well for performing short- and long-term electricity price 
forecasting, resource forecasting and asset valuation. Unfortunately, he does not provide 
any examples of EPF applications of ABM. Weidlich and Veit (2008) also fail to find 
any examples of EPF in a survey of agent-based wholesale electricity market models in 
Energy Economics. 

In another IEEE Power & Energy Magazine discussion article, Amjady and Hemmati 
(2006) explain the need for short-term price forecasts, review problems related to EPF, 
and put forward proposals for such predictions. They argue that time series techniques 
(AR, ARIMA, GARCH) are generally only successful “in the areas where the frequency 
of the data is low, such as weekly patterns. Furthermore, they advocate the use of 
artificial (or computational) intelligence and hybrid approaches (neural networks, fuzzy 
regression, fuzzy neural networks, cascaded architecture of neural networks, and 
committee machines), which are “capable of tracking the hard nonlinear behaviors of 
hourly load and especially price signals”. In a later publication, Amjady (2012, Chapter 
4) briefly reviews EPF methods, then focuses again on artificial intelligence-based 
methods, and in particular feature selection techniques and hybrid forecast engines. He 
also discusses forecast error measures, the fine tuning of model parameters, and price 
spike predictions. 

In the year 2009, two similar survey articles, co-authored by the same three researchers, 
appeared in parallel in the International Journal of Electrical Power and Energy 
Systems and the International Journal of Energy Sector Management. Aggarwal, Saini, 
and Kumar (2009a) review 47 ‘time series’ and ‘neural network’ papers published 
between 1997 and 2006 in terms of the model type and architecture, forecast horizon(s), 
model input and output variables, preprocessing and datasets used. They conclude that 
“there is no systematic evidence of out-performance of one model over the other models 
on a consistent basis”, which may be attributed to “the large differences in price 
developments (...) in different power markets”. In a more recent–in terms of the 
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publications reviewed–article, Aggarwal, Saini, and Kumar (2009b) also compare ‘time 
series’ and ‘neural network’ papers. They classify EPF models as falling into one of 
three categories (although differently from Aggarwal et al., 2009a): heuristics (naïve, 
moving average), simulations (production cost and game theoretical) and statistical 
models, where the last category–somewhat surprisingly–includes both time series 
(regression) and artificial intelligence models. They expand the analysis to include 
quantitative comparisons of (i) the forecasting accuracy and (ii)  the computational speed 
of different forecasting techniques. In our opinion, the value of (i) is disputable. Even if 
the forecasting accuracy is reported for the same market and the same out-of-sample 
(forecasting) test period, the errors of the individual methods are not truly comparable if 
different in-sample (calibration) periods are used. Moreover, the implementation of the 
algorithms differs between software packages, and is generally very sensitive to the 
initial conditions in the case of nonlinear or multi-parameter models. It may be 
impossible to replicate the results, even given the exact model structure, as was reported 
by Weron (2006) for the case of the multi-parameter transfer function (ARMAX) model 
of Nogales, Contreras, Conejo, and Espinola (2002). On the other hand, a table with the 
computation speeds of different forecasting techniques is interesting. Unfortunately, 
though, it cannot be used to draw quantitative conclusions, due to the differences in 
processors used, software implementations, calibration periods, etc. Finally, Aggarwal 
et al. (2009b) conclude that “there is no hard evidence of out-performance of one model 
over all other models on a consistent basis” and that longer “test periods of one to two 
years should be used”. We cannot argue with these conclusions. 

In a recent survey article published in the IEEE Signal Processing Magazine, Chan et 
al. (2012) review neural networks, support vector machines, time series models 
(ARMA, ARMAX, GARCH), and functional principal component analysis (FPCA) 
models for electricity prices/load, wind and solar forecasting. They advocate the use of 
multivariate factor models, and especially of the robust FPCA, which is shown to 
outperform both the standard FPCA and an AR model with a time varying mean in a 
limited forecasting study. 

In a chapter in the Wiley Encyclopedia of Electrical and Electronics Engineering, 
Garcia-Martos and Conejo (2013) review short- and medium-term EPF, with a focus on 
time series models. Specifically, they consider ARIMA and seasonal ARIMA models 
calibrated to hourly prices for day-ahead predictions, and vector ARIMA (essentially 
VAR) and unobserved component (i.e., factor) models for medium-term horizons. 
Sadly, in the most novel part on factor models, the authors limit the discussion to their 
own approach ( Garcia-Martos et al., 2011 and Garcia-Martos et al., 2012), and neither 
review nor compare other relevant publications. Interestingly, though, the chapter 
includes an introduction to the computation of prediction intervals, a topic which is 
addressed very rarely in the EPF literature. 

In a short review article, Hong (2014) briefly discusses spatial load forecasting, short-
term load forecasting, EPF, and two ‘smart grid era’ research areas: demand-response 
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and renewable-generation forecasting. He classifies EPF models into three groups: 
simulation methods (which require a mathematical model of the electricity market, load 
forecasts, outage information, and bids from market participants), statistical methods, 
and AI methods. Perhaps the most important contribution of the paper is that the author 
emphasizes the need for rigorous out-of-sample testing of the different methods 
proposed in the literature.  

In the most recent survey of structural models, published as a chapter in the book 
Quantitative Energy Finance, Carmona and Coulon (2014) present a detailed analysis 
of the structural approach for electricity modeling, emphasizing its merits relative to 
traditional reduced-form models. Building on several recent articles, they advocate a 
broad and flexible structural framework for spot prices, incorporating demand, capacity 
and fuel prices in several ways, while calculating closed-form forward prices 
throughout. 

The above-mentioned articles, book chapters and Ph.D. thesis are complemented by a 
few survey conference papers of varying quality. Niimura (2006) studies over 100 
papers and classifies them as either simulation models (production cost and game 
theoretical) or statistical models (which again include time series, regression, and 
artificial intelligence models). Haghi and Tafreshi (2007) construct a different 
classification in which they categorize ‘time series’ models as either ‘stationary’ 
(including ARIMA, ARIMA-Wavelet, ARX and ARMAX models) or ‘non-stationary’ 
(including neural networks, regime-switching models, GARCH, jump-diffusions and 
mean-reversion models). This is a very confusing classification, as some of the 
‘stationary’ models are non-stationary in a statistical sense (for instance, ARIMA), 
while some of the ‘non-stationary’ models are stationary (for instance, mean-reversion 
models) Daneshi and Daneshi (2008) consider over 100 papers and classify them as 
time series models, neural networks, fuzzy set models, fuzzy neural networks and other 
techniques. Similar in scope are the papers of Hu, Taylor, Wan, and Irving (2009) and 
Negnevitsky, Mandal, and Srivastava (2009), together with the more recent survey of 
Cerjan, Krzelj, Vidak, and Delimar (2013). 

To start with, the stochastic pricing of the electricity market has been studied by 
institutions like the MIT, in whose study an interconnected, multi-market system was 
taken into account. This is by far a more complex system than the one examined in the 
current thesis project and the conclusions deriving from this paper are mainly related to 
the effect that the connection among markets has on prices. In the “An Ambit Stochastic 
Approach to Pricing Electricity Forward”, of Luca Di Persio and Isacco Perin (2015), 
the writers acknowledge the need for including stochasticity in the pricing of the 
electricity market – starting from the market liberalization and moving on to the 
creation of new markets, e. g the NordPool, they state that “There is no doubt that such 
markets will play a vital role in the future given the constant expansion of global 
demand for energy. From the financial point of view, standard products traded on 



 

15 

 

energy markets are spot prices, forward and futures contracts, and options written on 
them.”  

An overview of all the candidate models suitable to describe the features of the 
electricity market is provided by Misiorek, Trueck, and Weron (2006). The aim of their 
paper is to assess the short-term point and interval forecasting performance of different 
time series models of the electricity spot market during normal (calm), as well as 
extremely volatile, periods. Since the authors want to mimic a typical practitioner 
praxis, adopting a truly real time forecasting approach, they chose as test ground the 
California power market, that offers freely accessible high quality electricity price and 
load data; moreover this is a quite interesting market, since it provides the ideal 
framework for studying those behaviors typically leading to a market crash (really 
occurred in winter 2000/2001) 

 
2.2. The State of the Art - Summarizing Major and Minor Issues 
 
Six fundamental points arise from the analysis of the theoretical and empirical literature 
on electricity prices: 

 The electricity market retains absolutely peculiar characteristics: it is an auction 
market that, although liberalized, is not strictly a spot one, but it requires both 
price and quantity of equilibrium to be defined one day in advance on the basis 
of expected supply and demand. This guarantees a good match among supply 
and demand that due to the non-storability of electricity, to unexpected peaks in 
demand and to congestions over the distribution network, could fail, causing 
jumps in prices and leading in extreme cases to the system blackout. 

 The series of electricity prices have complex statistical properties that vary 
depending on spectral frequency to which data are measured and on sample size. 
Depending on the cases, it is possible to notice phenomena of seasonality at 
different frequencies, trends which are more or less linear at low frequencies, 
phenomena of auto-correlated volatility at high frequencies, and combinations of 
outliers apparently managed by non standard distributions. 

 A wide range of models dedicated to the analysis of the properties of price series 
follow an approach that can be defined as being agnostic from the point of view 
of economic interpretation, meaning they do not foster the inference on 
(economic) factors that influence prices, but they limit the analysis to only their 
statistical properties. 

 Despite the above, it seems evident that the evolution of prices over time is 
driven by the interaction between supply and demand of electricity, that is, from 
two phenomena not directly measurable and in some way latent. Therefore, in 
order to effectively model demand and supply it would be suitable to include in 
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the model those factors that determine their trend: for example, climatic factors 
or the business cycle state that affect demand; productivity, size of the plant and 
costs of production concerning supply. It is a insidious approach, as these 
determinants play a role at different frequencies and usually statistical data on 
them are characterized by significant measurement errors, which makes more 
difficult the correct identification of the effects caused by each phenomenon on 
prices. 

 Even for the hidden dangers previously mentioned, the econometric models 
dedicated to the analysis of electricity prices adopt very simplified 
specifications, often uni-equational, taking into account only a few aspects of the 
issue at a time. 

 Among the models proposed by the literature, none of them seems to be 
characterized by a uniformly better capability of fitting the data and by an 
outperforming forecasting behavior; depending on the market taken as reference, 
on the sample of data being considered and on the measure of forecasting 
performance chosen, now prevail very simple autoregressive models, whereas 
other times Markov switching models with changing regimes. 

2.3. Gaps / Problem to be overcome by this thesis project 

By thorough examination and careful choice among the scenarios that were used so as 
to test both possible extreme situations and also the normal ones in terms of demand and 
also renewable production, this thesis project is a model that will provide the user with 
the ability to work with multiple scenarios of different probabilities (that can be 
adjusted depending on the kind of analysis the user wants to provide) and obtain results 
that correspond to the real life ones – this can be proven valuable for example for 
companies who wish to realize the impact of the unit commitment decisions to final 
results and adjust their bidding decisions accordingly. 

As mentioned before, at the corporate level electricity price forecasting has become a 
fundamental input to energy companies’ decision-making mechanisms. The high level 
of vulnerability that the companies face because of the variations in the prices is an 
important factor in determining their (quite often high) costs. Moreover, specifically 
referring to the Iberian electricity market, the great amount of CCGT plants, the lower 
cost of coal plants and also the increased availability of hydro and wind production at 
certain year periods lead to great diversification of the prices, increasing the level of 
difficulty for model developers to obtain realistic and interpretable results. In the current 
thesis project there has been an effort to capture this effect to the final results, and also 
to provide a deep analysis of them in correlation to extreme variations in the thermal 
demand estimation – by this we refer to the diversity of the scenarios used, that have 
been selected through clustering of an initial big amount of scenarios. Finally, for 
greater analysis purposes, model companies of different generation assets have been 
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created and their contribution to the final prices has been examined and explained. All 
these will be further discussed at chapter 5.  

 

CHAPTER 3 – SYSTEM ANALYSIS 
Description of system used 

In the current chapter, the thermal generation system used for the model is presented 
and analyzed – this includes description of the demand data, the power plants used, their 
selected characteristics and the inclusion of any other parameter important within the 
system settings (e. g fuel and plant cost).  

The sub-chapters to be analyzed are: 

- Demand 
- Power plants (capacities, costs, maintenance) 

 

DEMAND 

The final model that was created is formulated in 3 different stages – these include a 
simple deterministic model with a single scenario, the same model but running 
independently and simultaneously a number of scenarios and finally a probabilistic 
model that uses different probabilities for a number of scenarios and runs them all 
together. While the demand used in each one of these cases is a bit differentiated 
(mainly in terms of data presentation, for example periods instead of single hours used), 
the basis is the same and it includes hourly data for the time horizon between January 
2017–December 2017. These data were provided by Gas Natural Fenosa, and are 
mainly predictions calculated from available historical data. The analytical demand data 
table is given at the end of the thesis project (Appendix). 

In the next step certain characteristics of the demand will be examined such as its peak 
and lowest value, comparison with the installed system capacity and also a monthly 
representation that can provide greater insight to the variations that the final prices 
presented after running the scenarios. 

Also, there will be a preliminary reference to the clustering procedure that took place 
regarding the demand as well wind and solar production scenarios from the 
corresponding technologies. This clustering was necessary in order to decrease the 
initial number of available scenarios from 200 down to 5 that could be used for the 
purposes of the model. More detail about this process is provided in chapter 5. 

As it will be mentioned in the next sub-chapter the total installed system capacity 
(including nuclear, coal and CCGT plants) is around 36 GW, in comparison to the peak 
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demand that is 30 GW. More details regarding the exact percentage each technology 
covers will be also given to the next sub-chapter. 

In the diagram following a monthly representation of the demand is given, where its 
lowest and highest values can be seen. (values of the vertical axis are provided in MW). 
That is: 

 

Monthly average representation of annual demand 

As expected, demand presents its highest value around February, while it reaches its 
lowest at October. Summer months also present a relatively high demand value, while 
spring and autumn have with a significantly lowered demand, as is reflected in the 
diagram. 

Regarding the clustering procedure that will be analyzed in detail in chapter number 5, 
this process took place in order to obtain a limited number of different final scenarios 
(in terms of demand as well as wind and solar production) that could be used, followed 
by their corresponding probabilities so as to test the stochastic model that has been the 
purpose of the thesis. Specifically, it was considered essential to take into account 
medium demand scenarios that follow the Norma of a usual system as well as extreme 
situations meaning extremely high or low demand values. The initial number of the 200 
scenarios was obtained through a suitable software called ALEA, and was later 
clustered through use of XLSTAT (excel software application) in order to obtain five 
final scenarios – the clustering took account of similar values among scenarios and 
created groups of common characteristics, followed by their corresponding 
probabilities. 
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The next diagram presents monthly values for the final five (demand) scenarios that 
were used in our model. It is important to mention that for the initial deterministic 
model(s) the demand shown in diagram () was used. 

 

 

Final demand scenarios – probabilistic model 

The main differences among these scenarios are significantly obvious in high demand 
months such as January and December. For example, in December scenarios 1,3 present 
a difference of 5% in their corresponding values. The fact of extreme variations 
appearing mainly in high and low demand months is logical because the clustering 
procedure has to deal with realistic scenarios, meaning that not extreme variations exist 
in the non peak-bottom values.  

POWER PLANTS 

Capacities 

Three different kinds of thermal power plants compose the system under examination - 
nuclear plants, coal plants and CCGT plants. For these three categories, fixed values 
that correspond to real ones were decided and are shown in the following matrix: 

Plants – Capacities KIND N.1 KIND N.2 KIND N.3 

Nuclear 1000 - - 
Coal 200 350 550 
CCGT 400 800 - 
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As one can notice, all selected nuclear plants have a fixed capacity of 1000 MW, which 
is also the actual value of nuclear plants in a thermal system. On the other hand, for coal 
and CCGT plants it was decided to use a certain variety over their capacities, and for 
this reason we chose to include plants of 200, 350 & 550 MW in the case of coal plants 
and 400 & 800 MW for CCGT ones. This gave certain flexibility to our system, since 
demand could be satisfied by different kinds and bigger number of plants, which 
provides support and stability to the system. Apart from this fact, this variation also 
affects the final prices because of different marginal plants within the year 
representation of the model, which also accounts for different final monthly average 
values. 

As it is known, thermal power plants operate within a certain limit, where the maximum 
is usually set as their capacity (or a small percentage above it, e. g 105% of their 
nominal capacity), and the minimum is an important thermal limit, below which the 
operation of plants presents a lot of problems and can prove harmful to the system. 
Because of this, it is extremely important to set the minimum technical for the operation 
of the plants, and use this limitation as a constraint to the mathematical formulation of 
the operation of the system, to ensure a stability at all times. The technical limits, as set 
for each one of the above kinds of plants, are shown in the following matrix: 

PLANTS-
TECHNICAL 
MINIMUM 

KIND 
N.1 

KIND N.2 KIND N.3 

Nuclear 800 - - 

Coal 100 150 170 

CCGT 175 350 - 

 

Regarding general characteristics of the system, the total number of thermal plants it 
includes is 70, with a total installed thermal capacity equal to 36,2 GW. As it is 
mentioned above, the maximum thermal demand appearing in the system is 
approximately 30 GW, so this installed capacity responds well to covering the demand 
plus a security limit (almost 20% above maximum demand). Out of this installed 
capacity, 13 GW are produced by coal plants, 6 GW come from nuclear plants and the 
remaining almost 17 GW from CCGT plants. Graphically, these are shown as follows: 
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Finally, regarding the characterisation of the plants the following coding was applied: 

- Nuclear plants are all adressed as NUC, following by a number (NUC1, NUC2 etc). 
They are 6 in total. 

- For coal plants, the three different kinds are named as CA, CB, CC, followed by their 
corresponding number as in the case of nuclears. In total they are 29, out of which 4 
belong to the ‘CA’ category, 10 to the ‘CB’ one and the remaining 15 are of ‘CC’ type. 

- Lastly, CCGT plants are under the coding CGA & CGB, again followed by an 
indicative number. Out of the total 35 CCGT plants 8 belong to the second category and 
27 to the first one. 

A matrix containing all the thermal plants of the system, with their corresponding 
capacities and technical limits can be found at the Annex at the end of the project. 

Costs 

Moving on to one of the most important parameters of the system that is the thermal 
plants cost, in this subchapter the detail calculation of cost for all plants is given and any 
assumptions made within it are thoroughly explained. The estimation of the plants´ cost 
is crucial since through them the model is able to provide us with the system price per 
period, equal to the price of the last plant participating in covering the system demand 
(marginal plant). Each one of the three categories of the thermal plants the system 
contains will be analyzed. 
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1. NUCLEAR PLANTS 
 

These kind of plants only present a fixed cost (that is as a general rule quite high 
compared to other kinds of plants), but on the contrary a variable cost almost equal to 
zero. For simplification reasons, it was considered equal to zero for all the hours, 
throughout the examined yearly horizon, and for all the plants. 

For both coal & CCGT plants, the estimation of their cost was done through calculating 
the fuel cost, and changing certain parameters to diversify among the different plants 
and provide a variety to the system as far as final price is concerned. Specifically: 

2. COAL PLANTS 
 

The calculation of fuel cost is provided for the 12-month period starting at January 2016 
and finishing at December 2016. The results for the different parameters of fuel cost as 
well as total cost, without including any premiums, are presented right below:  

 

COAL PLANTS Jan Feb Mrh Ap May Jn Jl Aug Sep Oct Nov Dec 

API2 Index ($/t) 45,4 43,5 45,95 45,3 44,15 44,15 41,9 41,9 41,9 41,1 41,1 41,1 

Cambio  1,09 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,09 1,08 1,08 1,09 

Efficiency 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 

Electrical tax 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 

O&M 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 

Transport cost 0 0 0 0 0 0 0 0 0 0 0 0 

Emission factor 0,97 0,97 0,97 0,97 0,97 0,97 0,97 0,97 0,97 0,97 0,97 0,97 

Green tax 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 

EUA 6,8 5,15 5,14 5,07 5,07 5,07 5,07 5,07 5,07 5,07 5,07 5,12 

OMIP 43,65 39,25 41,94 40,29 39,24 42,81 46,19 43,73 43,73 44,72 39,53 43,41 

Clean Dark Spread 19,98 18,05 19,83 18,49 17,87 21,49 25,7 23,24 23,06 24,21 19,02 22,99 

Dark Spread 26,6 23,06 24,84 23,43 22,81 26,42 30,64 28,18 27,99 29,14 23,95 27,97 

CARBON COST  17,05 16,19 17,1 16,86 16,43 16,39 15,55 15,55 15,74 15,58 15,58 15,44 

CARBON COST & EM. 23,67 21,2 22,11 21,8 21,37 21,32 20,49 20,49 20,67 20,51 20,51 20,42 

TOTAL COST 35,15 32,51 33,48 33,15 32,69 32,64 31,75 31,75 31,95 31,78 31,78 31,68 

MARGINAL COST 8,5 6,74 8,46 7,14 6,55 10,17 14,44 11,98 11,78 12,94 7,75 11,73 

 

Each one of the above parameters in the cost calculation process is used is analyzed 
right above: 

API2 Index ($/t)  The API 2 index is the benchmark price reference for coal 
imported into northwest Europe. It is calculated as an average of the Argus cif ARA 
assessment and the IHS McCloskey NW Europe Steam Coal marker. The Argus 
component of the price is published each day in Argus Coal Daily International. The 
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Argus/McCloskey’s Coal Price Index report is published every Friday and includes 
daily, weekly and monthly average prices. Daily prices are also available as a data feed. 
The API 2 price is the primary price reference for physical and over-the-counter (OTC) 
coal contracts in northwest Europe. Some 90% of the world’s coal derivatives are priced 
against the Argus/ IHS McCloskey API 2 and API 4 indexes. The Argus/McCloskey’s 
Coal Price Index service also includes the API 4 index, which is the benchmark for coal 
exported out of Richards Bay in South Africa. For the purposes of the thesis, the API2 
index prices estimations for the year 2016 were found at (??) 

Exchange (cambio)  Change is the concept that denotes the transition occurs from 
one state to another, for example: the concept of change of state of matter in physics 
(solid, liquid and gas) or persons in marital status (single, married , divorced or 
widowed); or crises, or revolutions in any field studied by the social sciences, 
particularly history, which can be defined as the science of change. 

Efficiency  For the case of coal plants a level of efficiency equal to 35% is 
considered, which reflects the level of efficiency of the fuel used in regards to the final 
outcome 

Electrical tax  Set accordingly to current market values equal to 7%, fixed 
throughout the year 

O&M   Operation and maintenance costs. Set as 2,5 () for every coal and CCGT 
plant, fixed within the yearly horizon  

Emissions factor  It corresponds to the level of CO2 emissions of coal plants, which 
is generally very high, in our case a value of 97% is assumed 

Green Tax  Tax paid by consumers for products or services that are not 
environmentally friendly. Intended purpose of the green tax is to offset the negative 
impact resulting from the use of non-green products and services. 

EUA  EU allowance (EUA) refers to the carbon credits traded under EU emission 
trading scheme. One EUA represents one ton of CO2 that the holder is allowed to emit. 
Allowances are freely allocated to firms which can be traded in carbon market. The 
firms should surrender EUAs equivalent to their emissions at the end of each 
compliance period. Those companies that emit more than their permitted allowance has 
to buy the extra allowances from the open market, while those firms that emit less can 
sell the balance allowance units to those firms that are in need of the same. 
 

Dard Spread  The spark spread is the theoretical gross margin of a gas-fired power 
plant from selling a unit of electricity, having bought the fuel required to produce this 
unit of electricity. All other costs (operation and maintenance, capital and other 
financial costs) must be covered from the spark spread. Dark spread is the spark spread 
for coal. Instead of betting on the difference between the prices of gas and electricity, 
dark spread bets on the difference of coal and electricity prices. 
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Clean dark spread or dark green spread  is dark spread adjusted for the cost of 
carbon emissions 

The formula used for the calculation of the total in the case of coal plants is the 
following: 

T.C = (carbon cost&emissions + (green tax/efficiency)*3,6 + O&M) * (1 + electrical 
tax) 

The carbon cost, including emissions, is calculated based on the next formula : 

C.C = (((API2 /Cambio+Transport Cost)/6000)*(1+ef./4,1868*3,6))*1000 + 
(EUA*emiss factor) 

For the final formation of the plants’ costs a premium was considered additionally to the 
above formula. For the case of coal plants the three different premiums considered were 
0, 15 and 30, and the final results after including the premium are shown to the next 
matrix : 

      
Jan 

  
Feb 

  
Mrh 

   
Apr 

May     
Jn 

     
Jl 

   
Aug 

    
Sep 

    
Oct 

   
Nov 

   
Dec 

Premium 1 0 0 0 0 0 0 0 0 0 0 0 0 

CARBON 
COST 

17,05 16,19 17,1 16,86 16,4
3 

16,3
9 

15,5
5 

15,55 15,74 15,58 15,58 15,44 

plus emissions 23,67 21,2 22,11 21,8 21,37 21,32 20,49 20,49 20,67 20,51 20,51 20,42 

Premium 2 15 15 15 15 15 15 15 15 15 15 15 15 

CARBON 
COST 

22,69 21,78 22,69 22,45 22,0
2 

21,9
6 

21,1
2 

21,12 21,37 21,27 21,27 21,07 

plus emissions 29,3 26,78 27,69 27,38 26,95 26,89 26,06 26,06 26,31 26,2 26,2 26,06 

Premium 3 30 30 30 30 30 30 30 30 30 30 30 30 

CARBON 
COST 

28,32 27,36 28,27 28,03 27,6 27,5
3 

26,6
9 

26,69 27,01 26,96 26,96 26,71 

plus emissions 34,93 32,37 33,27 32,96 32,53 32,46 31,62 31,62 31,94 31,89 31,89 31,69 

Premium 4 30 30 30 30 30 30 30 30 30 30 30 30 

CARBON 
COST 

28,32 27,36 28,27 28,03 27,6 27,5
3 

26,6
9 

26,69 27,01 26,96 26,96 26,71 

plus emissions 34,93 32,37 33,27 32,96 32,53 32,46 31,62 31,62 31,94 31,89 31,89 31,69 

Premium 5 30 30 30 30 30 30 30 30 30 30 30 30 

CARBON 
COST 

28,32 27,36 28,27 28,03 27,6 27,5
3 

26,6
9 

26,69 27,01 26,96 26,96 26,71 

plus emissions 34,93 32,37 33,27 32,96 32,5
3 

32,4
6 

31,6
2 

31,62 31,94 31,89 31,89 31,69 

 

 

 

3. CCGT PLANTS 
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The calculation of gas cost is provided for the 12-month period starting at January 2016 
and finishing at December 2016. The results for the different parameters of gas cost as 
well as total cost, without including any premiums, are presented right below: 

GAS PLANTS Jan Feb Mrh Ap May Jn Jl Aug Sep Oct Nov Dec 

Efficiency 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 

Transport cost 2 2 2 2 2 2 2 2 2 2 2 2 

O&M 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 

ATR & Transport 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 

Electrical tax 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 

Green tax 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 

Emission factor 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 

EUA 6,8 5,15 5,14 5,07 5,07 5,07 5,07 5,07 5,07 5,07 5,07 5,12 

Reference price 
gas 

14,8 13,4 12,1 12,1 13,4 14,1 12,8 13,8 14 15,9 13,47 14,79 

OMIP 43 39,2 41,9 40,2 39,2 42,8 46,1 43,7 43,7 44,7 39,5 43,4 

Clean Spark 
Spread 

4,64 3,75 8,94 7,37 3,68 5,91 11,8 7,4 7,03 4,15 3,97 5,18 

Spark Spread 7,09 5,6 10,79 9,2 5,51 7,74 13,66 9,22 8,86 5,98 5,8 7,02 

GAS COST  36,56 33,65 31,15 31,09 33,73 35,07 32,53 34,51 34,87 38,74 33,73 36,39 

GAS COST & 
EM. 

39,01 35,5 33 32,92 35,56 36,9 34,35 36,33 36,7 40,57 35,56 38,23 

TOTAL COST 49,95 46,2 43,52 43,43 46,26 47,69 44,97 47,08 47,47 51,62 46,25 49,11 

MARGINAL 
COST 

-6,3 -6,95 -1,58 -3,14 -7,02 -4,88 1,22 -3,35 -3,74 -6,9 -6,72 -5,7 

 

Following the same procedure as in the case of coal plants, we consider certain 
premiums for the CCGT plants, this time equal to 0, 10 and 15.  

After including the considered premiums for each one of the five supposed plant 
categories, we obtain the following final results: 

  Jan Feb Mrh    
Apr 

  May    Jn      Jl    
Aug 

  Sep    Oct   Nov      Dec 

Premium 1 0 0 0 0 0 0 0 0 0 0 0 0 

GAS COST 36,56 33,7 31,2 31,1 33,73 35,1 32,5 34,5 34,9 38,7 33,7 36,39 

plus emissions 39,01 35,5 33 32,9 35,56 36,9 34,4 36,3 36,7 40,6 35,6 38,23 

Premium 2 5 5 5 5 5 5 5 5 5 5 5 5 

GAS COST 46,56 43,7 41,2 41,1 43,73 45,1 42,5 44,5 44,9 48,7 43,7 46,39 

plus emissions 49,01 45,5 43 42,9 45,56 46,9 44,4 46,3 46,7 50,6 45,6 48,23 

Premium 3 10 10 10 10 10 10 10 10 10 10 10 10 

GAS COST 56,56 53,7 51,2 51,1 53,73 55,1 52,5 54,5 54,9 58,7 53,7 56,39 

plus emissions 59,01 55,5 53 52,9 55,56 56,9 54,4 56,3 56,7 60,6 55,6 58,23 

Premium 4 10 10 10 10 10 10 10 10 10 10 10 10 

GAS COST 56,56 53,7 51,2 51,1 53,73 55,1 52,5 54,5 54,9 58,7 53,7 56,39 

plus emissions 59,01 55,5 53 52,9 55,56 56,9 54,4 56,3 56,7 60,6 55,6 58,23 
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Premium 5 10 10 10 10 10 10 10 10 10 10 10 10 

GAS COST 56,56 53,7 51,2 51,1 53,73 55,1 52,5 54,5 54,9 58,7 53,7 56,39 

plus emissions 59,01 55,5 53 52,9 55,56 56,9 54,4 56,3 56,7 60,6 55,6 58,23 

 

Maintenance 

In order to have a realistic system representation, it was essential to provide 
maintenance schedule for the thermal plants, which was introduced to the system and 
was an important parameter affecting the final result. 

The maintenance schedule corresponded, in terms of duration and frequency, to actual 
maintenance plans that can take place in a real life situation. The mathematical 
formulation of the maintenance used binary variables, meaning variables that can only 
take 0/1 values, indicating in this case whether the unit is connected or disconnected 
from the system for maintenance reasons. These kind of variables are the reason why 
the models created (both deterministic and its probabilistic evolution) are characterized 
as MIP (Mixed Integer Problems). Further details about the mathematical background 
of the model will be given in chapter () 

  

CHAPTER 4: METHODS & TECHNIQUES 
Use of GAMS  

INTRODUCTION 

The General Algebraic Modeling System (GAMS) that is also used as part of the 
current thesis project is a high-modeling system for mathematical programming and 
optimization. Specifically, it is designed to be able to solve linear, non linear as well as 
mixed integer optimization problems. It can be proven to be really helpful when dealing 
with large, complex problems – it also allows the user to build them in such a way that 
can be adapted quickly to new situations. GAMS is available for use by personal 
computers, workstations, mainframes and supercomputers.  

GAMS allows the user to concentrate on the modeling problem by making the setup 
simple. The system takes care of the time-consuming details of the specific machine and 
system software implementation.  

As mentioned above, it is especially useful for handling large, complex, one-of-a-kind 
problems which may require many revisions to establish an accurate model. The system 
models problems in a highly compact and natural way. The user can change the 
formulation quickly and easily, by using for example different solvers, and can even 
make converts from linear to nonlinear with little trouble.  
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SYSTEM FEATURES 

The important advantage of GAMS is that it allows the user to concentrate on modeling. 
By minimizing the need to think about purely technical machine-specific problems such 
as address calculations, storage assignments, subroutine linkage, and input-output and 
flow control, GAMS increases the time available for conceptualizing and running the 
model, and analyzing the results. GAMS structures good modeling habits itself by 
requiring concise and exact specification of entities and relationships. The GAMS 
language is formally similar to commonly used programming languages. It is therefore 
familiar to anyone with programming experience.  

Using GAMS, data are entered only once in a list and table form. Models are described 
in concise algebraic statements which are easy for both humans and machines to read. 
Whole sets of closely related constraints are entered in one statement. GAMS 
automatically generates each constraint equation, and lets the user make exceptions in 
cases where generality is not desired. Statements in models can be reused without 
having to change the algebra when other instances of the same or related problems arise. 
The location and type of errors are pinpointed before a solution is attempted. GAMS 
handles dynamic models involving time sequences, lags and leads and treatment of 
temporal endpoints.  

GAMS is flexible and powerful. Models are fully portable from one computer platform 
to another when GAMS is loaded to each platform. GAMS facilitates sensitivity 
analysis. The user can easily program a model to solve for different values of an 
element and then generate an output report listing the solution characteristics for each 
case. Models can be developed and documented simultaneously because GAMS allows 
the user to include explanatory text as part of the definition of any symbol or equation.  

Deterministic vs. Stochastic Models  

GENERAL INFORMATION 

A simulation model is property used depending on the circumstances of the actual world 
taken as the subject of consideration. A deterministic model is used in that situation 
where the result is established straightforwardly from a series of conditions. In a 
situation where the cause and effect relationship is stochastically or randomly 
determined, the stochastic model is used.  

A deterministic model has no stochastic elements and the entire input and output 
relation of the model is conclusively determined. A dynamic model and a static model 
are included in the deterministic model.  

A stochastic model has one or more stochastic elements. The system having stochastic 
elements is generally not solved analytically and, moreover, there are several cases for 
which it is difficult to build an intuitive perspective. In the case of simulating a 
stochastic model, a random number is normally generated by some method or the other 
to execute trial. Such a simulation is called the Monte Carlo method or Monte Carlo 
simulation. In case the stochastic elements in the simulation are two or more persons 
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and there is a competitive situation or some type of game being reproduced, this is 
specifically known as gaming simulation. Simulation by the deterministic model can be 
considered one of the specific instances of simulation by the stochastic model. In other 
words, since there are no random elements in the deterministic model, simulation can 
well be done just once. However, in case the initial conditions or boundary conditions 
are to be varied, simulation has to be repeated by changing the data. One the other hand, 
in Monte Carlo simulation, once the value has been decided by extracting a random 
number the simulation does not differ from deterministic simulation.  

By gathering up the main characteristics of the two types of models, the following 
important points can be noted: 

Deterministic Models:  

o Model processes which are often described by differential equations, with a 
unique input leading to unique output for well-defined linear models and with 
multiple outputs possible for non-linear models;  

 

o Equations can be solved by different numerical methods (after discretization: 
modification to run on a grid or a mesh, and parametrization: setting parameters 
to account for sub-grid processes): 

1. Finite difference   
2. Finite element  
3. Path simulation  

o Models describe processes at various levels of temporal variation 

1. Steady state, with no temporal variations, often used for 
diagnostic applications 

2. Time series of steady state events, computed by running a 
steady state model with time series of input parameters, 
this approach is commonly used for estimation of long 
term average spatial distributions of modeled phenomena  

3. Dynamic, describing the spatial-temporal variations during 
a modeled event, used for prognostic applications and 
forecasting  
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Stochastic Models:  

o Model spatial-temporal behavior of phenomena with random components  

 

o Unique input leads to different output for each model run, due to the random 
component of the modeled process, single simulation gives only one possible 
result 

 

o Multiple runs are used to estimate probability distributions  

Conditional simulations combine stochastic modeling and geostatistics to improve 
characterization of geospatial phenomena  

Behavior of dynamic stochastic systems can be described by different types of 
stochastic processes, such as Poisson and renewal, discrete-time and continuous- time 
Markov process, matrices of transition probabilities, Brownian processes and diffusion.  

Deterministic Models “Vs” Stochastic Models:  

A deterministic model assumes that its outcome is certain if the input to the model is 
fixed. No matter how many times one recalculates, one obtains exactly t he same result. 
It is arguable that the stochastic model is more informative than a deterministic model 
since the former accounts for the uncertainty due to varying behavioral characteristics.  

In nature, a deterministic model is one where the model parameters are known or 
assumed. Deterministic models describe behavior on the basis of some physical law.  

Deterministic models are usually developed by statistical techniques such as linear 
regression or non-linear curve fitting procedures which essentially model the average 
system behaviors of an equilibrium or steady/state relationship. In a live transportation 
system, a totally deterministic model is unlikely to include various dynamic random 
effects (or uncertainties). The uncertainty is commonly understood as factors related to 
imperfect knowledge of the system under concern, especially those being random in 
nature. It is closely related to heterogeneity, which denotes the state when entities 
within a given system are of non-uniform character. For example, when the 
heterogeneity is not faithfully recognized, the uncertainty increases. Conversely, a 
decrease in uncertainty, means that the system is better understood and thus the 
heterogeneity is better recognized.  
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All gathered:  

Advantages  
 

o Demand and generation are independent random variables 
o Computation of units’ output 
o Computation of reliability measures 
o Computation speed 

 
Disadvantages  
 

o Single loading order (heuristically obtained) 
o No minimum load, no startup or shutdown 
o No extensions for electricity markets 

 

Stochastic Modeling 

A quantitative description of a natural phenomenon is called a mathematical model of 
that phenomenon. Examples abound, from the simple equation S = Zgt2 describing the 
distance S traveled in time t by a falling object starting at rest to a complex computer 
program that simulates a biological population or a large industrial system. In the final 
analysis, a model is judged using a single, quite pragmatic, factor, the model's 
usefulness. Some models are useful as detailed quantitative prescriptions of behavior, as 
for example, an inventory model that is used to determine the optimal number of units 
to stock. Another model in a different context may provide only general qualitative 
information about the relationships among and relative importance of several factors 
influencing an event. Such a model is useful in an equally important but quite different 
way 

Stochastic Processes  

Stochastic processes are ways of quantifying the dynamic relationships of sequences of 
random events. Stochastic models play an important role in elucidating many areas of 
the natural and engineering sciences. They can be used to analyze the variability 
inherent in biological and medical processes, to deal with uncertainties affecting 
managerial decisions and with the complexities of psychological and social interactions, 
and to provide new perspectives, methodology, models, and intuition to aid in other 
mathematical and statistical studies. 

 

Given a probability space and a measurable space , an S-valued 
stochastic process is a collection of S-valued random variables on , indexed by a 
totally ordered set T ("time"). That is, a stochastic process X is a collection 
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where each is an S-valued random variable on . The space S is then called the state 
space of the process. 

 

 

Finite-dimensional distributions 

Let X be an S-valued stochastic process. For every finite sequence 

, the k-tuple is a random 

variable taking values in . The distribution of this random 
variable is a probability measure on . This is called a finite-dimensional distribution 
of X. 

Under suitable topological restrictions, a suitably "consistent" collection of finite-
dimensional distributions can be used to define a stochastic  

Mixed integer programming (MI P) 

Mathematically, the Mixed Integer Linear Programming (MIP) Problem looks like: 

Maximize or Minimize c1t + c2u + c3v +  c4w + c5x + c6y + c7z 

subject to     A1t + A2u + A3v + A4w + A5x + A6y + A7z 

       t               >= 0 

      u         >=0 & <=L2 & integer 

       v             ∈ሺͲ,ͳሻ 
        w                   ∈ SOS1 

         x           ∈ SOS2 

                 y          =0 or >= L6 

          z        =0 or >=L7 & integer 

    

where the 
 
t variables are continuous real numbers 
u variables can only take on integer values bounded above by L2 

v variables can only take on binary values 
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w variables fall into SOS1(*) sets exhibiting one nonzero 
x variables fall into SOS2(**) sets exhibiting no more than two, adjacent non-zeros 
y variables are semi-continuous being zero or in excess of L6 

z variables are semi-integer being zero or in excess of L7 and integer 
c1t + c2u + c3v +  c4w + c5x + c6y + c7z is the objective function 
A1t + A2u + A3v + A4w + A5x + A6y + A7z represents the set of constraints of various 

equality and inequality forms. 
 

 
 
Specially ordered set variables of type 1 (SOS1) (*)  
 
At most one variable within a specially ordered set of type 1 (SOS1) can have a non-
zero value. This variable can take any positive value. SOS1 variables are declared as 
follows: 
 
SOS1 Variable s1(i), t1(k,j), w1(i,k,j) ; 
The members of the right-most index for each named item are defined as belonging to 
the SOS1 group or set of variables of which at most one of which can be non zero. 
 
For example, in the SOS1 variables defined above:  
 

o s1 forms one group of mutually exclusive SOS1 variables which contains 
elements for each member of the set i and thus only one variable for one of the 
cases of i can be nonzero with the rest being zero. 

 
o t1 defines a separate SOS1 set for each element of k and within each of those 

sets the variables indexed by j are SOS1 or mutually exclusive. 
 

o w1 a separate SOS1 set for each pair of elements in i and k and within each of 
those sets the variables indexed by j are SOS1 or mutually exclusive. 

Notes 
 

 By default each SOS1 variable can range from 0 to infinity. As with any other 
variable, the user may set these bounds to whatever is required. 

 
 One is required to utilize a mixed integer (MIP) solver to solve any model 

containing SOS1 variables. However, the SOS1 variables do not have to take on 
integer solution levels. 

 
 The MIP solver is required because the solution process needs to impose mutual 

exclusivity and to do this it implicitly defines an additional set of zero one 
integer variables, then solves the problem as a MIP. 

 
The user can provide additional constraints say requiring the sum to the SOS1 
variables in a set to be less than or equal to a quantity (often 1 for convexity). 
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In the following example : 
 
SOS1 Variable s1(i) ; 
Equation defsoss1 ; 
defsoss1.. sum(i,s1(i)) =l= 3.5 ; 
 

Here the equation defsoss1 defines the largest non-zero value that one of the 
elements of the SOS1 variable s1 can take. 
 

 A special case of SOS1 variables is when exactly one of the elements of the set 
has to be nonzero and equal to a number. In this case, the defSoss1 equation will 
be 

 
defSoss1.. sum(i,s1(i)) =e= 10 ; 
 

A common use of the use of this type of restriction is for the case where the right 
hand side in the equation above is 1. In such cases, the SOS1 variable is 
effectively a binary variable. In such a case, the SOS1 variable could just have 
been binary and the solution provided by the solver would be indistinguishable 
from the SOS1 case. 
 

 Not all MIP solvers allow SOS1 variables. Furthermore, among the solvers that 
allow their use, the precise definition can vary from solver to solver. A model 
that contains these variables may not be perfectly transferable among solvers. 

 
Specially ordered set variables of type 2(SOS2) (**)  
 
At most two variables within a specially ordered set of type 2 (SOS2) can take on 
nonzero values. The two non-zero values have to be for adjacent variables in that set. 
 
Specially ordered sets of type 2 variables are declared as follows: 
SOS2 Variable s2(i), t2(k,j), w2(i,j,k) ; 
 

The members of the right-most index for each named item are defined as belonging to a 
special (SOS2) group or set of variables of which at most one of which can be non zero. 
For example, in the SOS1 variables defined above, 
 

o s2 forms one group of SOS2 variables of which at most 2 can be non zero and 
they must be adjacent in terms of the set i. The adjacency means if the set i has 
elements /a,b,c,d,f,g/ that one could have any 2 variables like the ones associated 
with set elements a and b but never a and c since the set elements are not 
adjacent. 

 
o t2 defines a separate SOS2 set for each element of k and within each of those 

sets no more than 2 variables can be non zero. Further, they they must be 
adjacent in terms of the set j. The adjacency means if the set j has elements 
/j1,j2,j3,j4,j5,j6/ that one could have any 2 variables like j3 and j4 but never j1 
and j6 since the set elements are not adjacent.  

 
o w2 defines a separate SOS2 set for each pair of elements in i and k. Within each 

of those sets no more than 2 variables can be non zero and they must be adjacent 
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in terms of the set j. The adjacency means if the set j has elements 
/j1,j2,j3,j4,j5,j6/ that one could have any 2 variables like j3 and j4 but never j2 
and j4 since the set elements are not adjacent.  

 
Notes 
 

 The most common use of SOS2 sets is to model piece-wise linear 
approximations to nonlinear functions using separable programming. 

 
 One must use a mixed integer (MIP) solver to solve any model containing SOS2 

variables. But, the SOS2 variables do not have to take on integer solution levels. 
 

 The MIP solver is required because the solution process needs to impose both 
adjacency restrictions and the restrictions that no more than 2 nonzero level 
values can be present and to do this the solvers implicitly defines an additional 
set of zero one variables, then solves the problem as a MIP. 

 
 The default bounds for SOS2 variables are 0 to plus infinity. As with any other 

variable, the user may set these bounds to whatever is required. 
 

 Not all MIP solvers allow SOS2 variables. Furthermore, among the solvers that 
allow their use, the precise definition can vary from solver to solver. Thus a 
model that contains these variables may not be perfectly transferable among 
solvers.  

 
Relaxed mixed integer programming (RMIP) 
 
The relaxed mixed integer programming (RMIP) problem is the same as the mixed 
integer programming (MIP) problem in all respects except all the integer, SOS and semi 
restrictions are relaxed: 
 

Maximize or Minimize c1t + c2u + c3v +  c4w + c5x + c6y + c7z 

Subject to     A1t + A2u + A3v + A4w + A5x + A6y + A7z 

       t               >= 0 

      u                      >=0 & <=L2  

       v            >=0 & <=1 

        w                   >=0 

         x           >=0 

                 y          >=0 
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          z                  >=0 

This problem type is sometimes helpful when one is having trouble attaining a feasible 
integer solution. 
  
The final model to be formed is the stochastic one, examining simultaneously a number 
of multiple scenarios. In our case, the number of scenarios we chose to examine is 15, 
and it was chosen for multiple reasons. Theoretically, an increased number of scenarios 
could improve the quality of the results, in the sense that it could become more obvious 
how small or bigger changes affect the final outcome. This is in general very important 
but it has been proven hard to apply it in the specific case – the most important problem 
to be faced is the limited system memory that significantly reduced the number of 
scenarios that could be tested at the same time. Moreover, a further examination among 
the different possible scenarios indicated that picking “characteristic ones” (referring to 
the ones that can be seen as the mean scenarios of others with small differences), can be 
proven a better option than having a big number of scenarios that result into similar 
prices (the final outcome of our scenarios). 

In the matrixes following below, a detailed representation of the scenarios is given, 
including explanations on the different parameters as well as on the results obtained by 
them. In the context of the stochasticity of the model, each one of these scenarios is 
regarded with a different probability. While the initial test considered an equal 
probability for each one of the scenarios, for a better understanding and control of the 
results, the probabilities were matched to the “actual probability” of the scenario – by 
this, it is assumed that scenarios presenting a higher probability have an actual higher 
chance of happening in a real situation. With this kind of match, it is expected to have a 
as-much-as-possible realistic final picture for the system price in the different time 
periods in the annual horizon. 

To start with, the first matrix is regarding the three different hydro scenarios that were 
taken into consideration. As in a real system situation, these scenarios are about a wet, 
dry or normal year. Presented in an hourly basis, the three scenarios in this case are : 

System Description (summary) 

The system created for the deterministic model is simplistic and resembles the Spanish 
market in a quite general way. It includes: 

1. The thermal generation plants include nuclear, CCGT & coal plants. Also, 
renewable technology is included in the system and is divided among the 
companies in a random way. For the initial, deterministic model, the renewable 
generation was not taken into account. Also, the final representation of the 
generation does not include the concept of companies at any point – this was 
only applied for means of simplification at the early stages of the problem 
formation. 
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2. One important element is that the generation mix was created in order to exceed 
the maximum demand by approximately 20%, while the real data of the Iberian 
market present a higher differentiation (more than 100%!). This assumption was 
made to achieve greater differences among prices coming from applying 
different demand and generation scenarios. 

 

 

MAIN DATA FILES TO BE USED TO THE SYSTEM 

The models use a great amount of data, that are passed to them through excel files. As 
follows we will refer to each one of them and the kind of information they contain.  

Plants_Capacities_Coal 

A file containing all the capacities for the different coal plants of the system. The total 
number of coal plants in the system is equal to 71 and they appear into three different 
capacity categories, as will be shown below. 

Plants_Capacities_Others 

A file containing all the capacities for the different nuclear and CCGT plants of the 
system. The  nuclear plants have a fixed capacity of 1000 MW, while the CCGT plants 
come into two types – plants of either 400 or 800 MW. The system accounts for 7 
nuclear plants, while the total number of CCGT plants is 78. 

ThermalDemand_Final 

This file contains the total information about the thermal demand of the system. As far 
as the calculation of this demand is concerned, historical data were used.  

Plants_min 

For each one of the plants of the system, this file contains their technical minimum , to 
be used as a constraint in the model regarding the plants operation. 

CostEstimation_plants 

In the following matrix, the plants of our system, as well as their capacities are 
presented. The plants are divided into two categories – coal plants and CCGT/nuclear 
plants. This is because of their different technical characteristics that made it easier for 
the formation of the model equations, to have them in separate categories. The exact 
formation of the costs and the analysis of their separate elements will be analyzed 
further below. 
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In the matrix provided in the Appendix we present all the thermal plants used in our 
system, by code name and corresponding capacity. 

As one can notice, all nuclear plants have a fixed capacity of 1000 MW, the CCGTs 
appear in two different capacities, 400 or 800 MW, and for the coal plants we have 
considered plants of 200, 350 or 550 MW.  

 

 

 

MAIN CHARACTERISTICS OF THE MODEL 

Information about the sets 

For the yearly horizon, all 12 months from January to December were used. Each month 
was considered with its normal days (e. g 28 days for February) and there was no 
discrimination between working and labor days. Regarding the hour periods, we 
separated the 24 hours of the day into six 4-hour period, so as to have an easier analysis 
and also to help the model run in that point by reducing the amount of used data. 

Data for thermal demand, plant names – capacities – technical minimum – cost, are 
taken from excel files. The formation of the data within the excel files matches the 
corresponding equations’ formation within the model so as to automate the process of 
retrieving data from the files and using them in the calculation processes.  

At this point, we will write down and analyze the equations that were used for the 
deterministic model, and remained quite the same at the stochastic one. 

These are:  

E_DMND (mt,da,p)                                   Meeting the demand 

E_FOBJ                                        Objective cost Function 

E_QMAXG1(mt,da,coal)                            Maximum power of generators that are coal  

E_QMAXG2(mt,da,p,others)                 Maximum power of nuclear/CCGT generators 

E_QMING1(mt,da,coal)                          Minimum power of generators that are coal 

E_QMING2(mt,da,p,others)                   Minimum power of nuclear/CCGT generation 

As it can be seen, these equations do not include the probability within their identifiers. 
When formulating the stochastic problem this was altered in the needed equations. By 
this we mean that a new parameter pr(i) was included in the model, that is the 
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probability that each scenario presents (the calculation of the probabilities is analyzed in 
a next chapter). After including this new parameter, all equations now added i within 
their identifiers, since they are all dependent on the probability of each scenario 
examined. This also applies to the objective function that is now formulated as follows: 

E_FOBJ  

fobj=E= 
SUM[i,SUM[coal,SUM[(mt,da),SUM[p,cost1(coal,mt)*qa(mt,da,coal,i)*pr(i) ]]] + 
SUM[others,SUM[(mt,da),SUM[p,cost2(others,mt)*qb(mt,da,p,others,i)*pr(i) ]]]]; 

In this point, it is important to address two matters:  

As one can notice, there is a separation in all kinds of calculations for coal plants (that 
form the one group), and nuclear / CCGT plants (that form the other). The reason for 
that can be made clear when the domains for the equations (which are also the domains 
of the variables used in the equations), are seen – when we refer to coal plants, no 
hourly period is taken into account, but only months and days, whereas that is not the 
case for nuclear and CCGT plants, where everything is taken into account. The reason 
for that is because for the operation of the coal plants we do not consider that changes in 
their operative status (on/off) can be made on consecutive hourly periods but only in 
consecutive days. Also, nuclear plants because of their zero variable cost operate as 
base plants for the whole time period apart from the hours contained into their 
maintenance schedule, that are set by proper binary variables. (analyzed further down). 

For the stochastic approach to the problem, the first step was to change the demand 
excel sheet, to consider stochasticity and examine a number of different scenarios. The 
thermal demand, used in our model, will be calculated now as follows: 

 

1. Obtain scenarios´ data (initial number of demand scenarios equal to 5, combined 
with the 3 basic scenarios for hydro, will give us a total of 15 scenarios to work 
with). 
  

2. An assumption to be made at these first stages is that there are no imports – 
exports from our system to others and vice-versa. That is a reference to 
interconnections, which will be considered as zero, with a view to increase the 
complexity by including them, in the future.  
 

3. For the renewable technology: we will consider 3 different types of renewable 
technology to be existent in our system, wind, sun and a category that is co-
generation and others, and refers to independent producers of renewable energy. 
For the first two, also 5 scenarios will be examined, but this will not increase 
the number of scenarios in that stage, since these 5 scenarios will comply with 
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the 10 demand scenarios we mentioned before, so they will pair in that stage. 
For the co-generation, we will consider it constant among the different 
scenarios. 
 

4. Considering all the above, thermal demand will be calculated by the formula : 
 

THERMAL DEMAND  = DEMAND +/- INTERCONNECTIONS – HYDRO 
– RENEWABLES  

 

 

More important things to be mentioned 

The data will be analyzed for the time period of a year, with hourly data, in the same 
format that we followed when processing the deterministic model. For making the 
calculations easier, as mentioned above time periods of 4 hours are considered Moving 
on to the probabilistic formation of the problem, the first aspect that was handled, was 
the demand. Demand includes a high level of stochasticity, and so multiple scenarios 
had to be taken into account. 

Thermal demand in our model is formulated in the following way : 

From the total amount of demand for the system, which is given in an 4-hour period 
form, for every day of the year (that makes 6 periods per day), we subtract the outputs 
of the hydro plants in our system, outputs of wind and sun and finally what we get from 
renewable. The final result is the thermal demand. Stochasticity appears in the 
consideration of different scenarios – specifically, we will consider 3 different kinds of 
hydro scenarios (wet, normal, dry) and 5 different scenarios for the initial demand, as 
well as for the outputs of wind and sun. A very important thing to be mentioned in that 
point is the fact that the 5 scenarios of the demand are correlated with the scenarios of 
the sun and wind production – by that way, we do not increase, in that stage of the 
problem, the complexity by having to consider numerous scenarios. The scenarios to be 
examined in that point are the result of a commercial program called ALEA, that is able 
to receive data and through correlation and matching procedures, to end up in a number 
of possible scenarios. As a final goal, the model will be examined for 200 scenarios.  
For the scenarios of the hydro units, in the driest year (or drier year series) demand has 
to be satisfied (deterministically) 

Type of Model Results 

The results to be obtained to this first stage of the problem are the following ones: 
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 For every month, day and period the production of each one of the plants of the 
system is presented, plus the total thermal demand of this period, and most 
importantly the marginal cost for this period that equals the cost of the last plant 
that entered in order for the demand to be covered.  

 

In this point, it is important to go back to chapter 2 where a thorough analysis of the 
cost of the power plants is given, since these costs are strongly connected to the final 
prices received by the model. Calculations took place independently from the GAMS 
environment and were passed to the program, through an excel file.  

 

CHAPTER 5 – RESULTS 
Different Cases Analysis 

5.1 DETERMINISTIC SCENARIO 

To start with, we will analyze the data used in this initial stage of the problem 
formation, where a simple deterministic model was created and only one scenario was 
considered. The system structure as well as any other planning such as the maintenance 
of the plants, is the same for the three stages of the problem, and the same accounts for 
costs, capacities etc. In the next diagram we represent, per month, the demand that was 
taken into account for the initial model. 
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As it can be seen, demand within the year presents a fair amount of variation, 
corresponding to real data in the sense that the months presenting lowest values (May, 
October) as well as the ones with the highest values (February, December) are the ones 
that in reality also present values like the above. This is a good indicator of the realistic 
representation of the system used in the thesis model. 

The above diagram shows the total demand, from which thermal demand was obtained 
by subtracting hydro, wind, sun and renewable production. The   

In a previous chapter we have been analyzing the exact process followed for the 
formation of the final costs of the power plants used in the system. Also, the technical 
aspects of the power plants as well as procedures like the plant maintenance have been 
explained. All these taken into account, the final results for this model are shown in the 
following diagram: 

  

 

 

Prices present a variation of almost 40% (minimum to maximum price) throughout the 
year. As someone can notice, there is a kind of correlation between the demand values 
and the final prices of the corresponding month. Specifically, the spring season around 
May presents very low demand (bottom value) and the price also presents a somewhat 
common behavior, in the sense that it significantly decreased from its previous and 
future values.  
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5.2 MULTIPLE DETERMINISTIC SCENARIOS 

As an evolution to the previous model, we rerun the model, considering a number of 
different scenarios, totally independent one from another (equals to a probability of 
100% per scenario). This procedure was a middle step between the initial deterministic 
and the final probabilistic model, vital for gaining a better insight on the way prices are 
affected by variations in the demand, fuel cost and RES production and for building the 
data base for the probabilistic model. 

The number of scenarios that was decided to be examined was 15, matching the 
combinations of the three available hydro scenarios (wet, mean, dry) with the five 
scenarios that were created through the clustering procedure also analyzed in a previous 
chapter. In the next matrix we present the yearly values per scenario corresponding to 
demand, wind and solar production.  

  

 

One very important conclusion to be drawn from the above diagram is the pretty small 
variation that the different scenarios present in all three categories. There are mainly 
two reasons for which this can be happening: to start with, an annual representation is 
not that much indicative of the real situation, meaning that it misses the actual variations 
that can be much more clearly shown in an hourly representation, or even daily. 
Because of lack of bigger computer memory, it was decided to do the clustering 
procedure taken monthly data into account – this probably resulted in a less accurate 
final result than if the clustering had used hourly data. It was in either way expected to 
have very small variations since the comparison was made in an annual horizon. 
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In order to obtain a better insight on the actual differences of the final scenarios that 
occurred from the clustering, we performed the same analysis as above but taking into 
account the extreme cases, meaning the months that demand, wind and solar production 
presented their maximum and minimum values.  

These were: 

 MAXIMUM MINIMUM 
DEMAND January April 
SOLAR 
PRODUCTION 

July December 

WIND 
PRODUCTION 

February September 

 

And the graphical representation is shown in the next diagrams:  

 

 

 

Now, this representation reveals in a way the differentiations among the chosen 
clustered scenarios, which cannot be made obvious when we consider an annual 
horizon.  
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By running independently the scenarios (considering a 100% probability to each one of 
them), the results we receive are the ones following: 

 

For means of simultaneous representation of all the scenarios, we chose to represent 
annual prices. As it can be noticed, the prices have a variation of almost 14%, 
comparing minimum and maximum prices. Comparing the above results with the 
annual price of the initial deterministic scenario (equal to 34,8), what is noticed is that is 
corresponds to a medium value with regards to the ones comi 

5.3 PROBABILISTIC SCENARIO 

The final model to be formed is the stochastic one, examining simultaneously a number 
of multiple scenarios and resulting to one unique result. In our case, the number of 
scenarios we chose to examine is 15, and it was chosen for multiple reasons. 
Theoretically, an increased number of scenarios could improve the quality of the results, 
in the sense that it could become more obvious how small or bigger changes affect the 
final outcome. This is in general very important but it has been proven hard to apply it 
in the specific case – the most important problem to be faced is the limited system 
memory that significantly reduced the number of scenarios that could be tested at the 
same time. Moreover, a further examination among the different possible scenarios 
indicated that picking “characteristic ones” (referring to the ones that can be seen as the 
mean scenarios of others with small differences), can be proven a better option than 
having a big number of scenarios that result into similar prices (the final outcome of our 
scenarios). 

In the matrixes following below, a detailed representation of the scenarios is given, 
including explanations on the different parameters as well as on the results obtained by 
them. In the context of the stochasticity of the model, each one of these scenarios is 
regarded with a different probability. While the initial test considered an equal 
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probability for each one of the scenarios, for a better understanding and control of the 
results, the probabilities were matched to the “actual probability” of the scenario – by 
this, it is assumed that scenarios presenting a higher probability have an actual higher 
chance of happening in a real situation. With this kind of match, it is expected to have 
as-much-as-possible a realistic final picture for the system price in the different time 
periods in the annual horizon. 

To start with, the first matrix is regarding the three different hydro scenarios that were 
taken into consideration. As in a real system situation, these scenarios are about a wet, 
dry or normal year. Presented in an hourly basis, the three scenarios in this case are: 

 

 

 

 

 

 

 

 

 

 

Graphically, the above are represented as follows: 

 

 

 WET MEAN DRY 

JANUARY 6728,50914 3133,294 2193,228 
FEBRUARY 5843,570238 4810,693 1669,506 
MARCH 7354,491398 4660,923 1689,179 
APRIL 5862,945354 3467,741 2138,442 
MAY 4557,814631 3298,007 2782,412 
JUNE 4235,443611 3022,114 2540,351 
JULY 3559,55745 2741,554 2022,774 
AUGUST 1899,8 1660,9 1077,8 
SEPTEMBER 2002,033773 2126,013 1538,182 
OCTOBER 2100,627383 2122,231 1860,034 
NOVEMBER 3193,397781 3013,099 2553,824 
DECEMBER 4863,293289 3606,654 3099,468 
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For means of simplification, the hydro scenarios are represented by their average 
monthly values. These three scenarios were generated by specific software called 
ALEA, that uses a combination of historical data and predictions available. The same 
software was used for the generating of demand and wind/solar scenarios that are 
presented as follows. 

Next step was to obtain the scenarios for demand as well as solar and wind production. 
As already mentioned, for this purpose ALEA was again used, but some certain 
assumptions needed to be made in this stage. The reason for this is the huge amount of 
data and final scenarios that we would result into in case we kept all the scenarios 
generated for demand, for wind as well as solar. So, an important decision was taken at 
this level – scenarios generated for demand, and scenarios generated for solar and wind 
production is to be considered correlated. By this, it was meant that the first scenario 
corresponding to demand would ´match´ the first scenario for wind production and also 
the first one for solar production. This significantly reduces the number of combinations 
that can be made among scenarios for hydro and the ones for demand, wind and solar. 
This decision is not without a logical base – by analyzing the corresponding scenarios 
of demand, wind and solar, one can notice that there is an important level of correlation 
among them, so considering them correlated does not so highly alternates the final 
results in terms of quantity, but rather decreases their quantity. 

More specifically, the software generated a number of 200 scenarios for demand, 200 
for wind and 200 for solar. In order to have a relative small number of final scenarios, 
which would cover all different market situations, the next step in the data analysis 
process described above, was to prepare a clustering of these 200 scenarios, in 5 final 
groups, with the corresponding probabilities – this was a very important stage, since 
the calculations of these probabilities is crucial for running the probabilistic model. The 
clustering procedure was achieved through the algorithm of the program XL stat that 
simultaneously generated the clusters and the corresponding probabilities. What is 
more, the initial data that were to be clustered were presented (again for means of 
decreasing volume) in a monthly basis, with values per month representing the sum of 
the values for the hours corresponding to each month. Also, because of the assumption 
mentioned above regarding the correlation among the demand, wind and solar 
scenarios, the above clustering procedure was only applied to demand, and its results 
were used for the clustering of wind and solar data 

After running all the above, we receive the following results: 

CLUSTERING RESULTS 

Final 
scenarios 

1 2 3 4 5 

      
 SIM1 SIM2 SIM3 SIM5 SIM13 
 SIM7 SIM11 SIM4 SIM6 SIM23 
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In the above 
matrix, the initial 
200 scenarios 

(SIM1-SIM200), 
are clustered in 5 

final scenarios. The exact same clustering was assumed for the wind and solar 
scenarios. In terms of probabilities used within the probabilistic model, they are shown 
in the following board: 

 SIM9 SIM14 SIM8 SIM10 SIM28 
 SIM16 SIM15 SIM12 SIM17 SIM29 
 SIM24 SIM19 SIM21 SIM18 SIM30 
 SIM25 SIM20 SIM22 SIM41 SIM35 
 SIM32 SIM26 SIM27 SIM46 SIM38 
 SIM39 SIM33 SIM31 SIM47 SIM42 
 SIM43 SIM34 SIM36 SIM52 SIM49 
 SIM53 SIM40 SIM37 SIM57 SIM51 
 SIM61 SIM45 SIM44 SIM59 SIM64 
 SIM62 SIM50 SIM48 SIM60 SIM68 
 SIM69 SIM55 SIM54 SIM63 SIM71 
 SIM81 SIM65 SIM56 SIM70 SIM75 
 SIM86 SIM72 SIM58 SIM73 SIM76 
 SIM88 SIM77 SIM66 SIM74 SIM96 
 SIM89 SIM79 SIM67 SIM78 SIM98 
 SIM90 SIM85 SIM80 SIM84 SIM101 
 SIM93 SIM94 SIM82 SIM92 SIM102 
 SIM108 SIM97 SIM83 SIM99 SIM105 
 SIM120 SIM103 SIM87 SIM100 SIM106 
 SIM124 SIM107 SIM91 SIM116 SIM111 
 SIM126 SIM113 SIM95 SIM122 SIM117 
 SIM128 SIM123 SIM104 SIM125 SIM121 
 SIM131 SIM132 SIM109 SIM127 SIM136 
 SIM134 SIM139 SIM110 SIM130 SIM138 
 SIM135 SIM141 SIM112 SIM144 SIM140 
 SIM147 SIM143 SIM114 SIM145 SIM142 
 SIM151 SIM150 SIM115 SIM146 SIM154 
 SIM156 SIM152 SIM118 SIM159 SIM155 
 SIM160 SIM153 SIM119 SIM162 SIM157 
 SIM163 SIM168 SIM129 SIM167 SIM158 
 SIM165 SIM170 SIM133 SIM180 SIM164 
 SIM166 SIM171 SIM137 SIM187 SIM176 
 SIM169 SIM175 SIM148 SIM194 SIM181 
 SIM173 SIM179 SIM149 SIM197 SIM182 
 SIM186 SIM188 SIM161  SIM185 
 SIM192 SIM190 SIM172  SIM189 
 SIM193 SIM196 SIM174  SIM191 
 SIM195 SIM198 SIM177   
 SIM200 SIM199 SIM178   
   SIM183   
   SIM184   
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PROBABILITIES MATRIX 

 

Final 
Scenarios 

Probability 
s1_hydro s2_hydro s3_hdro s1_others s2_others s3_others s4_others s5_others 

S1 0,0175 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S2 0,0172 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S3 0,0333 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S4 0,0154 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S5 0,0167 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S6 0,1400 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S7 0,1376 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S8 0,2661 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S9 0,1232 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S10 0,1333 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S11 0,0175 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S12 0,0172 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S13 0,0333 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S14 0,0154 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
S15 0,0167 0,1 0,8 0,1 0,175 0,172 0,333 0,154 0,167 
  

For these results, the probability of each scenario is calculated by multiplying the 
probability of each hydro scenario with the probability of demand (same for wind and 
solar), for each one of the three hydro scenarios – for example, the probability of 
scenario 13 is calculated by multiplying the probability of the s3 hydro scenario (dry), 
with the probability of the s3 scenario for demand/wind/solar. The final values are the 
ones marked in bold, for each one of the 15 final scenarios.  

For purposes of better understanding of the final results, we chose to represent both the 
results of the multiple deterministic scenario case with the results of the probabilistic 
case, in a common diagram. This is what we obtain: 
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Again, the results are represented in an annual basis, with the values corresponding to 
average values. Among the 15 scenarios compared, some seem to have almost the same 
annual price value (e.g S1, S15), while others present quite a high variation (e.g S6, 
S13). While the differences in the first case are neglectable, we chose also to represent 
these 2 scenarios in new diagrams that contain the monthly average values, and can 
provide a better insight in any possible differences these two scenatrios can have within 
the year.  

This is what we obtain : 
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It seems that also in the case of monthly representation, not a great deal of 
differentiation can be noticed – still, s15 has a certain variation between the two cases in 
spring and summer months. The most possible reason for this is that tha data for 
demand, hydro, wind and solar in these cases were very similar between the two cases, 
which lead to a very similar final result. One the other the scenarios 6,13 present a great 
deal of variation in the annual horizon considered – especially for the latter, the 
probabilistic models leads to a significantly decreased value comparing to the 
deterministic one, because of multiple factors that include the high probability of the 
specific scenario (0,0333 as can be seen from the probability matrix) but also lowered 
demand and perhaps increased penetration by renewable technologies.  

5.1 DIFFERENT APPROACH 

In order to examine the results under a different perspective and obtain more 
information regarding the kind of signal that these final prices could be in terms of 
companies, a different approach was also applied regarding the system under 
examination.  

For this approach three companies of different thermal generation assets were 
considered. For these companies, whose specific assets will be analyzed as follows, we 
examined their final production and also incomes, taking into account the corresponding 
prices from the deterministic and stochastic model. After this, a comparison was made 
in order to determine the possible advantages of using a stochastic model in the 
calculation of prices. 

More specifically, the total amount of thermal plants that have been mentioned above 
were divided into ten separate companies which for the purposes of the thesis were 
strictly considered as generation companies. There has been an effort to diversify these 
companies in terms of the kind of thermal plants used as well as regarding their final 
capacity. The model does not enter into great detail analyzing the bidding process of the 
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companies into the daily and intra-day market, since this has not been the purpose of 
this thesis project. However, the results presented below can be used as a valuable price 
signal for companies with an alike generation mix, when it comes to bidding decision 
and in the long term investment ones. 

The companies used for this reason were the following: 

COMPANY 1    

COAL CCGT1 CCGT2 NUCLEAR 

CB8 CGA4   

 CGA5   

 CGA10   

 CGA11   

 CGA12   

 

 

 

COMPANY 2   

COAL CCGT1 CCGT2 NUCLEAR 

CC3  CGB3  

CA2    

CB14    

CB17    

 

COMPANY 3    

COAL CCGT1 CCGT2 NUCLEAR 

CB18 CGA20  NUC3 

CB20 CGA21   

 CGA22   
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The reason for choosing to examine the results of the models for these three models is 
their differentiation in terms of the thermal generation mix – specifically, one company 
was chosen so as to contain all kinds of thermal plants (nuclear, coal and CCGT ones), 
another is focused on production from coal plants and the last one on thermal generation 
from CCGT plants. The different costs of these thermal plants are expected to lead to 
diversified incomes per scenario and some useful conclusion could be made regarding 
the stability of the incomes as well as regarding how including stochasticity can affect 
the accuracy of the predictions and consequently improve or not the decisions taken by 
the companies. 

In order to perform the above, we will first examine the results from the second stage of 
the running of the model, meaning the results coming from the running of multiple 
deterministic models. For each one of the scenarios the daily production coming from 
the unit commitment results is multiplied by the corresponding price and final annual 
incomes are found and presented in the following graph. 

 

At the next step we perform the same procedure for the stochastic model, for each one 
of the scenarios, following the steps described above. The results are as follows: 
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The above results show the annual income variation for the companies 1,2,3 for the 15 
scenarios taken into account. Some important assumptions are to be made from the 
above graph: 

 The company with the greatest variation and at the same time lowest incomes at 
all the examined scenarios is company 1, which is the company that owns an 
amount of CCGT plants. This kind of result was expected because of multiple 
reasons – this mainly refers to the high cost of CCGT plants, comparing to the 
one of coal and nuclear plants combined with a generally low demand in the 
majority of the scenarios. By this it is meant that CCGT are in general the last 
to be dispatched in the daily unit commitment and for this reason a company 
based mainly on them takes of risk of receiving lower incomes at periods of low 
demand or even increased hydro and RES generation. 
 

 Companies 2 and 3 present a relative low variation between their results. There 
is a certain peculiarity at this point regarding the fact that company 3 is also the 
owner of a number of CCGT plants and it could be expected from it to have 
maybe lower incomes, because of the reason described above. However, the 
coal plants the same company owns as well the nuclear one, seem to provide 
importantly increased incomes comparing to company 1 and also a significant 
stability regarding variations among the different scenarios. This is also the case 
for company 2 – the combination of (in majority) coal plants with a CCGT one 
gives the company a high income for all scenarios and at the same time keeps 
the variation in relative low levels. 

 

 A very important point to be mentioned in this stage is that when examining 
only the income of the company coming from its generation assets dispatch, not 
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very clear conclusions can be drawn regarding the actual profit of the company 
and these kind of results cannot be used as the most efficient signal in order to 
organize a strategy and future investments. However, it still presents a good 
indicator of how a company of certain assets will perform in the market and of 
how variations in the demand as well as RES penetration should be predicted as 
accurately as possible in order to provide the company with the needed signals 
to adjust its behavior most efficient.   

 

 When comparing the results from the multiple deterministic and the probabilistic 
model, a lot of remarks can be made regarding the importance of using a 
stochastic model in contrast to a stochastic one. One of the most important point 
is the accuracy of the results in the case of the stochastic model – as it can be 
noticed, the results provided by the deterministic one are more flat and this can 
be an indicator of the lack of accuracy and precision by the deterministic model. 
By taking into account the probabilities corresponding to variations in demand, 
hydro, wind and solar production it becomes obvious that a company could 
have a better insight on how its incomes are affecting by the multiple variable 
factors appearing in the volatile electricity market. 

 

 For this kind of approach we chose to work with the companies´ income as an 
indicator of the good function of the stochastic model and its excellence against 
the deterministic one. It is however obvious that this goal could be achieved 
even more accurately if we worked with the companies´ margin instead – for 
that reason their corresponding costs should be taken into account. On the other 
hand, not extreme cases were expected even in the case of examining margin, in 
the sense that final patterns and changes among the companies remain more or 
less the same. It would in any case important to perform also this different kind 
of analysis as it is expected to give even better and more realistic results. 
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CHAPTER 6 – CONCLUSIONS 
Assumptions & further research 

6.1 Main findings  

Summarizing the results and the conclusions drawn from the application of the three 
models to a market resembling a real one and up to a point specifically the Iberian one, 
we obtain the following: 

 Pricing is an important feature of the market, and presents high level of 
correlation with the generation mix existing in the market. What is more, the 
kind of plants as well as the level of coverage of the demand is very important in 
terms of achieving efficiency and effectiveness regarding the unit commitment 
process. 

 Regarding the specific market created for the current thesis project, its high 
resemblance to the Iberian one is also obvious by the fact that because of the 
over-capacity offered by the system, compared to the demand, not big variation 
of the price is achieved when applying the different demand/production 
scenarios. 

 The above fact can also be a signal (for the short and medium term at least) of 
the relative stability that prices are going to present in the future for the Iberian 
power market. 

 A stochastic approach to the calculation of prices within a market provides 
greater insight because of its ability to simultaneously examine different 
combinations of demand and renewable generation scenarios – specifically for 
the RES, taking into account the corresponding probability is vital, because of 
their level of uncertainty in real life situations. 

 Despite of possible great changes in parameters such as the demand or the fuel 
cost (that was for example diversified among plants of the same kind as it has 
been described in a previous chapter), the achieved final diversification is not as 
big as might expected. This is equal to the fact that prices are in fact determined 
by a number of parameters and so it takes a simultaneous big change in all of 
them so as for a great variation to be achieved (15%-20%). 

After applying the model that we created in the case of 10 companies of different 
generation assets (that we separated into two groups of similar characteristics), some 
further conclusions can be made. 
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 A company has to be able to adjust to variations of the market, that used to be 
uniquely linked to the variable demand but nowadays is mostly a matter of the 
increasing RES penetration and also a matter of inaccurate future demand 
prediction, which led to exaggerate investments. 

 Companies owning nuclear plants operate more ‘safely’ comparing to the group 
assumed in the current thesis that only owns coal and CCGT plants. This refers 
mainly to the fact that nuclear plants are the first to be dispatched because of 
their zero variable cost, and so in cases of low demand or of high hydro 
availability coal and CCGT plants reduce their probability of being dispatched. 

 In all cases it is very important for a company to be diversified in terms of its 
generation assets and try to interpret in a correct way the signals obtained for 
example by models as the one described in the thesis project.     

6.2 Further research – expansion opportunities  

With the current thesis project the goal was the creation of a stochastic pricing model to 
be used in an environment of uncertainty, within a market created in a realistic way (in 
terms of demand, generation mix, etc). This model was based on an initial deterministic 
model, later evolved into a deterministic one that could simultaneously run a number of 
scenarios of 100% each.  

In terms of evolution of this project, certain steps can be taken in the direction of 
improving the model structure as well as the data that were used for running it. 
Specifically: 

1.  The final model could be changed in order to include a higher level of 
complexity, mainly when it comes to its constraints or to technical limits 
regarding the operation of the plants. 

2.  An important element that could be also differentiated so as to have a more 
detailed and realistic model, is to include the whole of the hydro operation 
process, which means formulating the needed equations for flows, reserves, 
different types of basins etc. By this procedure it will be able to have a greater 
control on the production variables and maybe achieve even more realistic 
results.  

3.  In terms of the data used, it is important to apply the model to markets with a 
higher level of differentiation in terms of generation so as to examine more 
thoroughly the effect of RES production to the final prices, and provide the 
market with insight of how to achieve a more successful operation. Also, it can 
be proven useful to give more detail to the market structure possibly by 
providing the model with further information on maintenance and operational 
issues of the plants. 
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4. One other aspect of the model that could change its final results and give a 
further realistic sense to them is increasing even more the penetration of 
renewable technologies that is one major future expectation by EE countries and 
if applied it shall transform the current market situation into a new one in which 
companies should be able to settle in as fast as possible. 

5. In its current form the model is quite simplified in the sense that the interactions 
among agents operating in the market are not taken into account and decisions 
are only based to calculated thermal plants costs. By providing the model with 
this kind of interaction companies could also gain insight on how to adjust their 
particular strategies more than the simple unit commitment decisions or future 
investments.   

6.  One certain assumption made at this thesis project was the correlation among 
demand and RES production scenarios during the clustering procedure. While 
this was essential for simplification reasons in terms of the current thesis 
project, operating the model without taking the above assumption into 
consideration might lead to a more exact final result and a greater insight on the 
exact formation of final prices, which significantly improves the model 
function.   

7. As mentioned also above regarding the companies approach, what could be a 
good idea for improving the results both in accuracy and also in terms of being 
signals for the future is to examine the effects of the different models in the 
companies´ final margin, instead of incomes. By this way companies are 
expected to be helped even more in taking decisions because costs is an 
important factor and vital to know how it affects decisions when in need to. 
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APENDIXES 

 

1. Thermal power plants of the system – capacities (MW) 

NUCLEAR PLANTS CAPACITY COAL PLANTS CAPACITY CCGT PLANTS CAPACITY 

NUC1 1000 CA1 200 CGA3 400 

NUC2 1000 CB1 350 CGA4 400 

NUC3 1000 CB3 350 CGA5 400 

NUC5 1000 CB6 350 CGA10 400 

NUC6 1000 CB8 350 CGB1 800 

NUC7 1000 CB9 350 CGB3 800 

  CC3 550 CGA11 400 

  CA2 200 CGA12 400 

  CB14 350 CGA13 400 

  CB17 350 CGA15 400 

  CB18 350 CGA16 400 

  CB20 350 CGA20 400 

  CC8 550 CGB6 800 

  CC11 550 CGB8 800 

  CC12 550 CGA21 400 

  CC13 550 CGA22 400 

  CC14 550 CGB10 800 

  CB22 350 CGA23 400 

  CB23 350 CGB12 800 

  CB25 350 CGA24 400 

  CB27 350 CGA25 400 

  CC16 550 CGA27 400 

  CC21 550 CGA30 400 

  CB28 350 CGA32 400 

  CC24 550 CGB16 800 

  CA4 200 CGA33 400 

  CB30 350 CGA37 400 
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  CB31 350 CGA41 400 

  CC31 550 CGA43 400 

    CGB21 800 

    CGA44 400 

    CGA48 400 

    CGA50 400 

    CGA51 400 

    CGA53 400 

 

 

 

2. Thermal power plants of the system – technical minimum capacities (MW) 

NUCLEAR PLANTS CAPACITY COAL PLANTS CAPACITY CCGT PLANTS CAPACITY 

NUC1 350 CA1 100 CGA3 175 

NUC2 350 CB1 150 CGA4 175 

NUC3 350 CB3 150 CGA5 175 

NUC5 350 CB6 150 CGA10 175 

NUC6 350 CB8 150 CGB1 350 

NUC7 350 CB9 150 CGB3 350 

  CC3 170 CGA11 175 

  CA2 100 CGA12 175 

  CB14 150 CGA13 175 

  CB17 150 CGA15 175 

  CB18 150 CGA16 175 

  CB20 150 CGA20 175 

  CC8 170 CGB6 350 

  CC11 170 CGB8 350 

  CC12 170 CGA21 175 

  CC13 170 CGA22 175 

  CC14 170 CGB10 350 

  CB22 150 CGA23 175 

  CB23 150 CGB12 350 

  CB25 150 CGA24 175 

  CB27 150 CGA25 175 

  CC16 170 CGA27 175 

  CC21 170 CGA30 175 

  CB28 150 CGA32 175 

  CC24 170 CGB16 350 

  CA4 100 CGA33 175 

  CB30 150 CGA37 175 

  CB31 150 CGA41 175 

  CC31 170 CGA43 175 
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    CGB21 350 

    CGA44 175 

    CGA48 175 

    CGA50 175 

    CGA51 175 

    CGA53 175 

 

 

 

 

 

 

3. Code used for formulating the model 

$title Probabilistic Pricing Model 

*Statement of sets to be used 

SET 

mt       Months of the year 

/Jan, Febr, Mrh, Apr, May, Jn, Jl, Aug, Sep, Oct, Nov, Dec/ 

da       Days of month 

/1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31/ 

p        periods of the day 

/P1*P6/ 

i        different scenarios 

/S1*S15/ 

*S16,S17,S18,S19,S20,S21,S22,S23,S24,S25,S26,S27,S28,S29,S30/ 

; 
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SET 

coal/ 

$call =xls2gms r=BX1:BX71 
i=C:\Users\90038718\Desktop\Vasiliki_project\Data\plants_avail_coal.xls 
o=C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\coal.inc 

$include C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\coal.inc 

/; 

 

SET 

others/ 

$call =xls2gms r=CK1:CK85 
i=C:\Users\90038718\Desktop\Vasiliki_project\Data\plants_avail_others.xls 
o=C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\others.inc 

$include C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\others.inc/; 

*Statement of parameters 

 

 

PARAMETERS 

qmin1(coal)      Minimum gross power of coal generators [GW] 

qmin2(others)    Minimum gross power of nuclear & ccgt generators [GW] 

; 

 

VARIABLES 

fobj             Value of objective function 

; 

 

POSITIVE VARIABLES 

qa(mt,da,coal,i)           Net power dispatched by coal generator  [GW] 
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qb(mt,da,p,others,i)       Net power dispatched by other generators (nuclear and CCGT)  
[GW] 

q1a(mt,da,coal,i)          Net power dispatched by coal generator above minimum stable 
load [GW] 

q1b(mt,da,p,others,i)      Net power dispatched by other generator above minimum 
stable load [GW] 

; 

*System Demand 

 

TABLE 

d(mt,da,p,i) 

$call =xls2gms r=B3:U2235 
i=C:\Users\90038718\Desktop\Vasiliki_project\Data\Demand_prop_initial3.xls 
o=C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\d.inc 

$include C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\d.inc 

; 

*Generators´ capacity 

 

TABLE 

cap1(mt,da,coal) 

$call =xls2gms r=A1:BV366 
i=C:\Users\90038718\Desktop\Vasiliki_project\Data\plants_avail_coal.xls 
o=C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\cap1.inc 

$include C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\cap1.inc 

; 

 

TABLE 

cap2(mt,da,others) 
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$call =xls2gms r=A1:CJ366 
i=C:\Users\90038718\Desktop\Vasiliki_project\Data\plants_avail_others.xls 
o=C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\cap2.inc 

$include C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\cap2.inc 

; 

 

PARAMETER 

min1(coal)/ 

$call =xls2gms r=A2:B72 
i=C:\Users\90038718\Desktop\Vasiliki_project\Data\Plants_min.xls 
o=C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\min1.inc 

$include C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\min1.inc/; 

 

PARAMETER 

min2(others)/ 

$call =xls2gms r=D2:E86 
i=C:\Users\90038718\Desktop\Vasiliki_project\Data\Plants_min.xls 
o=C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\min2.inc 

$include C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\min2.inc/; 

 

PARAMETER 

pr(i)/ 

$call =xls2gms r=A2:B16 
i=C:\Users\90038718\Desktop\Vasiliki_project\Data\Scen_prop.xls 
o=C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\prop.inc 

$include C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\prop.inc/; 

 

*Generators´ Costs 
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TABLE 

cost1(coal,mt) 

$call =xls2gms r=A2:M72 
i=C:\Users\90038718\Desktop\Vasiliki_project\Data\plants_costs.xls 
o=C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\cost1.inc 

$include C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\cost1.inc; 

 

TABLE 

cost2(others,mt) 

$call =xls2gms r=O2:AA87 
i=C:\Users\90038718\Desktop\Vasiliki_project\Data\plants_costs.xls 
o=C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\cost2.inc 

$include C:\Users\90038718\Desktop\Vasiliki_project\Data\INC\cost2.inc; 

 

BINARY VARIABLES 

u(mt,da,p,others,i)         Binary variable indicating whether unit gen is connected (1) or 
disconnected (0) in each period (where unit can be NUCLEAR or CCGT) 

u1(mt,da,coal,i)            Binary variable indicating whether COAL unit gen is connected 
(1) or disconnected (0) in each period; 

 

EQUATIONS 

E_DMND(mt,da,p,i)                 Meeting the demand 

E_FOBJ                            Objective cost Function 

E_QMAXG1(mt,da,coal,i)            Maximum power of generators that are coal 

E_QMAXG2(mt,da,p,others,i)        Maximum power of generators that are nuclear or 
ccgt 

E_QMING1(mt,da,coal,i)            Minimum power of generators that are coal 

E_QMING2(mt,da,p,others,i)        Minimum power of generators that are nuclear or 
ccgt 

; 
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*Formulation of equations : 

E_DMND(mt,da,p,i) .. 

                 SUM[coal, qa(mt,da,coal,i)] + SUM[others, qb(mt,da,p,others,i)] =E= 
d(mt,da,p,i); 

 

E_QMAXG1(mt,da,coal,i) .. 

 

                q1a(mt,da,coal,i)   =L=  (cap1(mt,da,coal)-min1(coal))*u1(mt,da,coal,i); 

 

E_QMAXG2(mt,da,p,others,i) .. 

 

                q1b(mt,da,p,others,i) =L=  (cap2(mt,da,others)-
min2(others))*u(mt,da,p,others,i); 

 

E_QMING1(mt,da,coal,i) .. 

 

                qa(mt,da,coal,i) =E=  u1(mt,da,coal,i)*min1(coal) + q1a(mt,da,coal,i); 

 

E_QMING2(mt,da,p,others,i) .. 

 

                qb(mt,da,p,others,i) =E=  u(mt,da,p,others,i)*min2(others) + 
q1b(mt,da,p,others,i); 
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E_FOBJ .. 

 

                fobj=E= 
SUM[i,SUM[coal,SUM[(mt,da),SUM[p,cost1(coal,mt)*qa(mt,da,coal,i)*pr(i)]]] + 
SUM[others,SUM[(mt,da),SUM[p,cost2(others,mt)*qb(mt,da,p,others,i)*pr(i)]]]]; 

 

MODEL Char 

/ 

E_FOBJ 

E_DMND 

E_QMAXG1 

E_QMAXG2 

E_QMING1 

E_QMING2 

/ 

; 

 

OPTION solvelink=0; 

Char.dictfile=0; 

OPTION sysout = on; 

Option RMIP = CPLEX; 

$onecho > cplex.opt 

names no 

threads 1 

memoryemphasis 1 

lpmethod 1 

nodefileind 2 
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nodesel 0 

varsel 3 

cuts -1 

$offecho 

Char.OptFile = 1; 

Solve Char USING MIP MINIMIZING fobj; 

 

Display qa.l, qa.m, qb.l, qb.m ; 

 

FILE     Results/C:\Users\uf763286\Desktop\stochastic_model\Results.dat/; 

Results.pw = 100000; 

PUT Results; 

PUT 'UNIT PRODUCTION[MW]'/ 

PUT '*':10; 

PUT '*':10; 

PUT '*':10; 

PUT '*':10; 

PUT '':5; 

LOOP(others,PUT others.TL:10); 

LOOP(coal,PUT coal.TL:10); 

PUT 'Dem. Térm.':10; 

PUT 'C.Marg.':10; 

PUT /; 

PUT '*':10; 

PUT '*':10; 

PUT '*':10; 
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PUT '*':10; 

PUT '':5; 

 

LOOP(others,PUT 'MW':10); 

LOOP(coal,PUT 'MW':10); 

PUT 'MW':20; 

PUT '€/MWh':10; 

PUT /; 

loop(i, 

       loop(mt, 

                 loop(da, 

                         loop(p, 

                         if(d(mt,da,p,i)>0, 

                                      put i.tl:10; 

                                      put mt.tl:10; 

                                      put da.tl:10; 

                                      put p.tl:10; 

                                      loop(others, 

                                         put qb.l(mt,da,p,others,i):10:0; 

                                      ); 

                                      loop(coal, 

                                         put qa.l(mt,da,coal,i):10:0; 

                                      ); 

                                      put d(mt,da,p,i):10:0; 

                                      put E_DMND.m(mt,da,p,i):10:2; 

                                      put/; 
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                                 ); 

                         ); 

                  ); 

          ); 

put/; 

put/; 

); 
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