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Abstract

Energy imbalances can represent a significant cost for agents transacting in markets that
penalize participants’ imbalances. In markets with increasing penetration of intermittent
renewable sources of energy (RES-E), system imbalances can not only be costly, but also
increase, as is the case for the Spanish power market. Market participants, especially
those trading non-dispatchable energy, are therefore interested in minimizing this cost

while simultaneously maximizing their profits.

A lot of work has been developed around the forecast accuracy and uncertainty of RES-
E production to determine bidding strategies that minimize imbalance costs, especially
for wind power trading. Challenges inherent to agents specialized in power trading
and/or retailing activities, especially wind power trading of energy produced by third
parties or retailing to small consumers means that applying strategies that rely on

production forecasts may not be sufficient.

In this master thesis we considers those challenges by developing an optimized bidding
strategy that reduces the expected imbalance cost for a real case-study of a Spanish
energy trader/retailer based on a forecast of the system’s imbalance volume and past
imbalance costs, while using new information available after the day-ahead market gate
closure for participation in the intra-day market to influence the imbalance volume of the
agent’s portfolio towards the direction that reduces their potential imbalance cost. This
strategy does not replace accurate forecasting but considers the practical aspects of
energy traders/retailers with numerous small clients who cannot operate production

units. The strategy can be applied from the perspective of both a trader and retailer.

We have developed an advanced model based on random forest technique to forecast the
system imbalance and used a genetic algorithm to apply the bidding strategy that
minimizes the imbalance costs based on system imbalance forecasts and past imbalance
costs. The proposed strategy application using new information available after the day-

ahead gate closure outperforms its application in the pre-day-ahead market.
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CHAPTER 1:
INTRODUCTION

1.1 MOTIVATION

The inability to efficiently store electricity for later consumption requires continuous
balancing of power supply and demand. With liberalization of the electricity sector came
the decentralization of activities, including the responsibility to balance the power
system. Within this decentralized context, electricity market designs have incorporated
mechanisms to ensure that the balance of the system is maintained at all times. The so-
called “Balancing Responsible Parties” (BRPs) are market agents responsible for ensuring
that the generation and/or consumption within their portfolio is balanced. The physical
balancing, however, is done by the Transmission System Operator (TSO). In European-
type markets, power balance management is achieved through market-based
mechanisms also referred to as “balancing markets” (van der Veen, 2012). The TSO can
procure balancing services and a range of other functions intended to guarantee system
security at the least cost (ENTSO-E, 2016). TSOs penalize BRPs for causing imbalance.

The high penetration of RES-E (renewable energy sources for electricity) has exacerbated
the challenge of balancing the electricity system. This is due to their intermittent nature
and uncertainty of production, in particular for wind energy production. As a result, the
participation of wind energy sources in the electricity market may imply large deviations
from the initial schedule. In the Spanish electricity system, as in certain other European
markets, these deviations are economically penalized, leading to a cost that has to be
borne by the market agent causing the imbalance. For wind energy producers and
traders! this is particularly challenging as their energy source is uncertain and their
production non-dispatchable, and although forecasting techniques have greatly

improved, these are still not perfectly accurate.

! Energy traders may engage in both procurement and selling of energy.

16



Chapter 1: Introduction

Considering that Spain has the second largest wind energy market in Europe, and the
fourth world wide?, and that these costs have also increased in the Spanish electricity
system since 2009 (Batalla-Bejarano, et al., 2015), managing imbalance costs is critical for

agents transacting in the Spanish electricity market.

Minimizing imbalance costs, and consequently maximizing their profits, is an objective

that all market agents strive to achieve.

Installed Wind power generation evolution 1996-2010
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Figure 1.1: Evolution of installed wind power generation evolution 1996-2010. Source: (de la Fuente,
2009)
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Figure 1.2: Evolution of net production from Renewable Energy in the Spanish Peninsula. Source: REE

2 REN21, Renewables 2015 Global status report. Available at http://www.ren21.net.



Chapter 1: Introduction

1.1.1 BIDDING STRATEGIES TO MINIMIZE COST

Agents trading wind power in the market seek to maximize profit and minimize the
imbalance costs, but uncertainties in the hourly available wind and forecasting errors
make the bidding risky. The BRP may choose from two different options to trade in the
market (Matevosyan & Soder, 2006):

1- assume wind power forecasts are certain and bid that amount in the market; or
2- bid the amount that minimizes expected costs for imbalances (considering

uncertainty, and possibly imbalance cost) .
Option 1: Wind Power Forecasting

Generally, the first option relies on estimating production using short-term term wind
power production tools, which usually provide the forecasted power level and the
associated uncertainty (Bueno-Lorenzo, et al., 2013). Commonly such tools provide the
future production of a wind farm for a period ranging from the next hours to the next
days, and are based on meteorological predictions, on onsite measurements and on wind
farm characteristics. The increase in accuracy of these predictions has been widely

documented to increase the closer the prediction horizon is to delivery time.

Despite significant progress in the accuracy of wind power forecasting with these tools
in recent years, they are still not perfect; deviations from forecasted and committed power

produce imbalances which have an economic impact on the traders/producers of such
RES-E.

Option 2: Develop an Optimized bidding strategy

In Pinson, et al., the authors show that option 2, when accompanied with optimal bidding
strategies in conjunction with accurate forecasts developed in option 1, outperform the
application of option 1 alone in reducing imbalance costs (Pinson, et al., 2007). Several
studies have been published proposing such optimal bidding strategies when trading
wind power to minimize the imbalance cost, as option 2 above suggests. As indicated in
Bueno-Lorenzo, et al., (Bueno-Lorenzo, et al.,, 2013), most of those optimal bidding
strategies have focused on considering the uncertainty of the forecast, and in some
instances, also the imbalance energy cost/price to minimize the imbalance cost as in
(Matevosyan & Soder, 2006). See Bueno-Lorenzo, et al (Bueno-Lorenzo, et al., 2013) for

an over review of certain approaches.
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In addition to the optimization strategy, some previous studies considered risk
management techniques to reduce the threat of high imbalance economic losses (e.g.,
applying VaR or CVaR risk measures) or to reduce the imbalances volumes. These
methods consider the variability of imbalance prices and/or production and address them

to reduce the risk of incurring excessive costs.

As reviewed in (Chaves-Avila, 2012), the strategies discussed in the literature differ in
the markets they considered (i.e. Dutch or Spanish market, day-ahead or intra-day
Market), the methodology (stochastic linear programming, mixed integer formulation,
time series, among others), and the assumptions on market behavior. Sse (Chaves-Avila,

2012) for a brief overview
Agents specialized in trading and/or retailing activities.

The strategies discussed above, however, don’t consider certain logistical challenges
specific to energy traders and retailers who 1- do not own or operate the generation units
in their portfolio (especially RES-E) in the case of the former, or 2- who retail to numerous
small consumption points (small customers) in the case of the latter. These cases present
unique challenges because their accessibility to real-time data and knowledge of specific
operational details vital to forecasting production may be limited, meaning that in reality
their portfolios will always have an imbalance. The literature review did not yield a
strategy based on considering a forecast of the system imbalance itself. In this project we
aim to develop a strategy based on forecasting the system’s imbalance volume which is
useful for any market agent who may not have reliable or can readily access site specific
wind production data. Energy traders or retailers who do not own and operate the units
whose energy they are trading may be faced with this situation. By forecasting the
direction and level of the system imbalance, the agent can inform their bid adjustment
decisions to influence their own imbalance volume towards the direction that reduces

their potential imbalance cost.

BRPs are able to influence their imbalance volume by means of over and under
contracting of energy before final gate closure of the last adjustment market (in Spain,
this ranges between 3.25 and 6.25 hours before real-time, through the intra-day market),
and by means of internal balancing in real-time. With both activities, a BRP can create an
‘intentional imbalance’, in order to hedge against the financial risks of imbalance

settlement, i.e.to limit imbalance costs (van der Veen, 2012).
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To determine this volume, an optimization tool that considers the historical balance costs

will be applied.

1.1.2 ADVANCED TOOLS

With increased complexity of competitive markets, traditional forecasting tools may no
longer be sufficient. Advanced modeling techniques, such as artificial-intelligence based
tools, have evolved enormously in recent years finding widespread application in many

industries, including the electricity sector.

1.1.3 PREDICTION AND STRATEGY HORIZONS

The day-ahead market is usually liquid and provides many trading possibilities for
market agents (Chaves-Avila, et al., 2013). However, the increase in accuracy of wind
production forecasts has been widely documented to increase the closer the prediction
horizon is to delivery time. Additionally, from the day-ahead market gate-closure until
real-time delivery, there is new information available, such as previous market results
and meteorological forecasts that can be used to increase the accuracy of forecasts to
further optimize an agent’s bidding strategy. Consequently intraday markets provide

agents an opportunity to incorporate that information.

The forecast horizon, the timing of intraday markets, and availability of market variables

are critical to developing any strategy.

1.2 PROJECT OBJECTIVES

1.2.1 GENERAL INTENTION

In this project we aim to develop a strategy that considers the challenges faced by agents
specializing in either power trading and/or retailing activities. The strategy is especially
applicable to RES-E trading and retailing to small customers as their portfolio imbalances
are unavoidable and will always exist. Yet their costs can be reduced by influencing the
direction of the imbalance. This strategy is not intended to replace those based on
production/load forecast accuracy, but instead intended to be a complementary tool for

small traders and/or retailers.

We seek develop a strategy based on forecasting the hourly system imbalance volume: a
variable that is is useful to all market agents who may or may not have reliable or easy
access to real-tieme data such as site specific wind production data. Energy traders or

retailers who do not own and operate the units whose energy they are trading may be
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tfaced with this situation. By forecasting the direction and level of the system imbalance,
the agent can inform their bid adjustment decisions to influence their own imbalance

volume towards the direction that reduces their potential imbalance cost.

1.2.2 SPECIFIC OBJECTIVE

The specific objective of this project is to:

Develop an optimized bidding strategy that reduces the
expected imbalance cost for a real case-study of a Spanish
energy trader/retailers, considering a forecast of the system’s
actual imbalance volume and past imbalance costs, while
using new information available after the day-ahead market
gate closure for participation in the intra-day market.

The strategy to reduce imbalance costs is developed from the point of view of an RES-E
trader transacting in the short-term Spanish electricity market, while assuming the agent
will bear all imbalance costs of its portfolio. However, the strategy can also be applied to
a retailer. The trader’s objective is to reduce its imbalance costs through possible
participation in the intra-day market in order to use new and updated information that
may increase the accuracy of the forecast and effectiveness of strategy. The strategy will
be based on influencing its imbalance volume by over and under contracting of energy

before final gate closure.

A model to optimize the bidding strategy will be developed, and it is based on

developing two main components using Al-based tools:

A. Forecasting model to predict the hourly net system imbalance volume
considering information available post-gate closure of day-ahead market;

B. Optimized strategy application to determine the hourly energy level to bid
in the intra-day market that will minimize the imbalance costs considering the

forecasted imbalance volume and past system imbalance costs.

3In the Spanish electricity market, RES-E producers designated as “special-regime” have the option of
selling their energy (portfolio or as a unit) in the wholesale market directly or to an energy retailer who
will submit sale bids to the day-ahead and intra-day markets, and execute bilateral contracts. They may
also do so through an energy trader who, by means of a contract, acts as representative and is responsible
for submitting sale bids to the day-ahead and intra-day markets, and executing bilateral contracts.
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Other elements that are considered in this include:

e Optimization of forecasting model parameters.

e Comparing of the strategy’s performance based on its implementation pre
and post day-ahead market gate closure.

e Evaluation of the effect of day-ahead and intra-day market price spread on

strategy.

1.3 DOCUMENT STRUCTURE
The first chapter serves as an introduction to the issues at hand motivating the project,

and lays out the objectives and scope of the project.

Chapter 2 describes the Spanish electricity market, concentrating on the short-term power
market and the mechanisms applied for balancing of the system. A brief overview of the
regulatory framework under which the market operates is included to provide further

context on the market’s evolution and environment.

Chapter 3 discusses the system imbalance and source of the imbalance, including the role
played by intermittent RES-Es. Previous work on forecasting the system imbalance is
discussed, along with a description of the mathematical tools applied to develop the

bidding strategy, and the data and programming tools used to support the strategy.

An analysis of potential predictor variables followed by description of the development
of the model are contained in Chapters 4 and 5, respectively. Chapter 5 includes a detailed
description of the two main components of the strategy: 1- the forecasting model and 2 -
the bidding strategy application. Details on the methods used to validate the model are
discussed at the end of that Chapter.

In Chapter 6 we present and review the results of the model’s performance. The final
chapter (Chapter 7) brings together the general conclusions derived from the different

analyses and suggests new directions.



CHAPTER 2:

THE IBERIAN ELECTRICITY MARKET

This chapter provides introduction to the Iberian Electricity Market (MIBEL)* with a brief
overview of the regulatory framework governing its operation, followed by descriptions
of the Spanish wholesale market focused on short-term energy procurement market and

adjustment services.

2.1 REGULATORY FRAMEWORK OVERVIEW

The electricity sector in Spain has been governed by its Electricity Sector Act 54/1997 (1997
Directive), which liberalized the electricity market and incorporated the European
Commission’s 96/92/EC Directive. Later, Directives 2003/54/EC and 2009/72/EC (2003 and
2009 Directives, respectively) concerning common rules for the internal electricity
market, were also incorporated into Spanish law as amendments to the original 1997
Directive. In 2013, a new Electricity Sector Act, 24/2013 was approved. It contains the
main electricity sector regulation in Spain aimed at providing regulatory certainty,
ensuring effective competition in the electricity sector and the economic and financial

sustainability of the electricity system (International Energy Agency, 2015).
As a result, today:

e A new management and regulatory system has been established.

e All consumers have free choice of electricity supplier.

e Development decisions for new generation plants are decentralized under the
context of a competitive market model.

e International electricity trade has been liberalized.

e Transmission and distribution are regulated activities and generation and retailing

are fully liberalized activities.

4 Mercado Ibérico de la Electricidad.
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2.1.1 HISTORICAL OVERVIEW

Following the worldwide liberalization trend of the 1990s, Spain began its own reform
process aimed at increasing competition and competitiveness. In terms of the electricity
sector, this process began in 19985 after adoption of the 1997 Directive, and 2007
integrated the Portuguese electricity market to makeup what is MIBEL today.

Although progress is still under way, following are some of the key aspects of this

process:

Privatization efforts of the previous state-owned electricity entities which dominated the

electricity sector. System assets were placed under private ownership (generation and

distribution) or under entities with minority state-ownership (i.e. transmission).

Spain decided to privatize the publicly owned generator Endesa — the system’s main
generator - but only after allowing it to absorb two other companies. The transmission
grid has been controlled by a separate partly state-owned entity, Red Eléctrica de Espafa
(REE).

Unbundling of activities® based on the principle of separating regulated activities

(distribution and transmission) from other segments of the electricity value chain (i.e.,
generation, and retailing activities). Prior to reform most Spanish electricity companies
were vertically integrated’, so a legally independent® transmission company — REE - was
created to separate generation from transmission activities. REE was created in 1985
(prior to the 1997 Directive) as the first company in the world exclusively involved in

electricity system operation and transmission (Red Electrica de Espana, 2016).

Unbundling of distribution activities was more lenient. Distribution activities required
legal and accounting separation (1997 Directive) followed by functional separation in
2007 (based on 2003 Directive).

5 Following approval of the Electricity Sector Act 54/1997.

¢ There are essentially four separate economic activities in electricity markets: generation, transmission,
distribution and retailing, and varying degrees of unbundling: legal, functional, accounting, and ownership
separation.

7 In the mid-1980’s the Spanish electricity industry was made up of eleven vertically integrated companies
operating in generation, transmission, and distribution, in addition to state-owned Endesa in generation.
8 The Spanish government continues to hold a minority ownership-stake in REE (approximately 20%).
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Companies performing regulated activities (transmission, system operation, or
distribution) cannot develop production, trading or energy recharge activities (as of 2010)
or make investments in companies engaged in these activities. However, and subject to
certain requirements, different companies engaged in any of aforementioned regulated
or unregulated activities can operate under the umbrella of the same holding company

or corporate group.

For retailing activities, the most significant unbundling occurred in 2010 when legal
unbundling of distribution system operators (DSOs)® from retailing activities was
required’®. DSOs are no longer able to supply electricity to their customers. Prior to that
date, consumers were able to choose between supply from distribution companies —
through end-user regulated prices — or from retailers under free market conditions. End-

user regulated electricity prices disappeared along with the DSO’s role as suppliers.
The unbundling process in Spain is an on-going effort.

Deregulation of generation and retailing!! activities intended to achieve economic

efficiency through free market competition. To foster competition at the generation level,
a wholesale electricity market was established for sellers (generators/traders) and buyers
(retailers/traders) to transact according to the principles of objectiveness, transparency,
and free competition. An integrated wholesale market for Spain and Portugal was
proposed, resulting with the MIBEL which began operating on July 2007.

A market operator — Operador del Mercado Eléctrico (OMEL) — was created to manage
economic transactions in the wholesale market. In an effort to promote and ensure fair
competition and transparent markets, an independent regulatory authority was to be
established. As of 2013, the National Markets and Competition Commission (CNMC)
tulfills that regulatory role after absorbing the duties of the National Energy Commission.
The CNMC maintains regulatory oversight of energy and other industry markets to
prevent and sanction abusive practices, among other duties. The MIBEL will be discussed

at greater length in the following sections of this Chapter.

° These DSOs are the owners of the networks they operate.

10 DSOs are permitted to belong to a group that undertakes other activities including: power generation,
electricity recharging services (for electric vehicles) and selling electricity provided that a separate company
performs the regulated activities

11 Electricity retailing refers to the act of purchasing energy for sale to end users.
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Deregulation of retailing activities has been more gradual. Following the 1997 Directive
only very large consumers were allowed to choose a supplier, which changed in 2003

after which all customers are now eligible and can freely choose their supplier.

Transmission and distribution activities, characterized as natural monopolies, remained
under regulation, but remuneration based on cost-of-service regulation was replaced by
incentive-based remuneration. The Ministry of Industry, Energy and Tourism, who has
the lead responsibility for formulating and implementing energy policy, approves the
electricity network access tariffs, regulated components of electricity prices and level of

access tariffs.

Regulated third party access (TPA) to ensure non-discriminatory access to the

transmission and distribution network. To this end, the roles of market operator and
system operator were created to manage the economic and technical activities at the
interface of competitive (generation) and regulated (transmission) businesses. As
mentioned earlier, OMEL was established as the market operator responsible for
economic operation of the system. The role of Transmission System Operator (TSO), who
is responsible for technical operation of the grid was absorbed by the owner of the

transmission grid (REE) under a TSO ownership unbundling model*2.

The CNMC sets out the methodology for calculating the network access tariffs, and the
Ministry of Industry, Energy and Tourism, approves the electricity network access tariffs

and the level of access tariffs.

2.2 THE SPANISH WHOLESALE MARKET

The Spanish wholesale market is part of the MIBEL and made up of 1- an organized
market (with day-ahead and intra-day activities managed by OMIE, the electricity market
operator) and 2- a non-organized market for bilateral trade (OMIP in Portugal manages
the futures market). The non-organized part consists of physical bilateral contracts,
whose economic terms and conditions are agreed between the signing parties. According
to the CNMC bilateral contracts represented 29% of the energy sold in the daily program

in 2014. This section will focus on the short-term electricity market.

12 Functional and accounting unbundling also separate transmission from system operation activities.
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Both OMIP and OMIE belong to the Iberian Market Operator’s ** (OMI'’s) corporate
group, where the Spanish and Portuguese wholesale market operators (OMEL and

OMIP, respectively) share equal ownership. Figure 2.1 below depicts the Spanish

Electricity
markets

electricity markets.

Energy markets Forward markets Capacity markets Ancillary services Bilateral contracts

I_I_I

Day-ahead

Intrad
market Tecay

Figure 2.1 Overview of electricity markets in Spain. Source: IEA, 2015

REE, the Spanish system operator, is responsible for the technical management, including
system security and balancing of the Spanish transmission grid. Balancing is a market-
based activity through a market of ancillary services which are discussed in greater detail
under Section Error! Reference source not found. of this Chapter .

In 2014, OMIE managed transactions amounting to almost 11 billion euros, accounting

for more than 80% of the electricity supplied in Spain and Portugal (OMIE, s.f.).

For 90 to 95% of the time MIBEL observes a single price for 90% to 95%, with market
splitting (into a Spanish and Portuguese price) the rest of the time when interconnections
are congested. According to the Spanish regulator, the spot market is very liquid; it
gathers 214 buyers and 110 sellers (CNMC, 2015). In its most recent country report the
International Energy Agency (IEA) assessed the Spanish wholesale market as “fairly
competitive”, with five main players each having a 15% to 24% market share

(International Energy Agency, 2015).

See Figure 2.2: Function separation between the market operator and the transmission

system operator.

13 Operador del Mercado Ibérico
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Electricity Market

4 4

Market Operator: Transmission System

OMIE =y Operator: REE
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Figure 2.2: Function separation between the market operator and the transmission system operator.

Spain’s short-term electricity market is further described below.

2.2.1 SPANISH SHORT-TERM ELECTRICITY MARKET

Short-term procurement of electricity in Spain is done through a spot market organized

as a sequence of markets:

A day-ahead market, where most of the physical production is traded, and intra-day
market consisting of six discrete auctions which operate closer to real-time for
agents to adjust their portfolio (the balancing mechanism). These energy markets
are managed and run by the market operator, OMIE, and described in the
following sections. These markets are fully integrated between Portugal and
Spain, thus implicitly allocate cross-border capacity.

The so-called adjustment services to resolve technical constraints (i.e. network
constraints and/or reserve requirements) and the market-based procurement of
ancillary services for balancing active power, namely secondary reserves, tertiary
reserves, and deviation management. Balancing of reactive power is another ancillary
service, but is not the focus of this paper. These market-based services are

managed by the system operator, REE, and discussed in Section 2.3 .

As agents can also trade electricity through bilateral contracts with physical delivery,

those parties holding bilateral contracts have to inform the system operator of the

electricity contracted before the day-ahead market is held. These contracts will not the

focus of this paper. A high-level sequencing of events for the short-term market in Spain

is further detailed in Figure 2.3.
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DAILY MARKET
Reference price

TECHNICAL
MANAGEMENT

Figure 2.3: Sequence of markets and processes in MIBEL. Source: OMIE

2.2.2 DAY-AHEAD MARKET
The day-ahead market is the main electricity trading market in Spain. It applies the
marginal pricing principle in which the price and trading volume in each hour are set

according to the point of equilibrium between supply and demand (Figure 2.4).

Every day, up until gate-closure at 12:00 pm, agents submit bids to purchase or sell
electricity for delivery every hour of the next day. These bids are aggregated and the
market cleared using a European algorithm called EUPHEMIA, based on economic merit
order. OMIE then publishes the market results of energy to be delivered each hour the
following day and the price clearing the market. This day-ahead price becomes a
reference price in other subsequent markets. In 2013, the daily market in 2013 traded an
average of approximately 71% of the energy consumed in the Iberian market (OMIE, s.f.).

As most energy is traded in this market, it considered very liquid.
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Figure 2.4: MIBEL aggregate demand and supply curves, 15/06/2016. Source: OMIE
Participating Agents

All available generation units, if not bound by physical bilateral contracts, are required
to submit bids to the day-ahead. Thermal generators must submit offer on a unit per unit
basis. From the day-ahead market on, all agents have to submit schedules on a per unit

basis, and not based on a portfolio aggregation.

Purchasing units, made up of retailers, re-sellers and final consumers of a certain size,

may procure electricity in the day-ahead market. According to OMIE:

e Reference retailers participate in the market to procure electricity for their
portfolio of consumers.

e Resellers participate in the market to purchase electricity to sell to direct
consumers.

e Final consumers may purchase electricity directly on the organized market,

through a reseller by signing a physical bilateral agreement with a producer.
Bid Formats

Multipart bidding is accepted in the day-ahead market, were participants can submit bids
containing so-called semi-complex conditions. These conditions can be technical or
economical to account for 1- minimum income conditions, 2- “indivisibility”, load
gradients, and/or scheduled stop. The introduction of these conditions was introduced as
a tool for generating units to mitigate risks faced by a simple auction with increasing

participation of variable RES-E. If a minimum average price is for a bid is not met for the
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time interval, the bid is removed from the matching process, creating a gap between the

accepted offers and the offers submitted, as shown in Figure 2.5.
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Figure 2.5: Effect of complex bid conditions on the aggregate demand supply curve of the MIBEL
market. Source: (OMIE, s.f.)

2.2.3 INTRADAY MARKET

Once the day-ahead market has cleared, six adjustment market sessions are held. These
intraday markets allow buyers and sellers to adjust their generation and consumption
schedules to their best forecasts for real-time needs by submitting bids for the purchase
and/or sale of electricity to modify their schedules. In Spain, these session are the means

that generators can adjust

The intraday markets end at 12:45 p.m. the following day, so adjustments are possible
only up until that time. On average, the intraday markets in 2013 traded 16.67% of the
total energy managed on the daily market (OMIE, s.t.).

3]

SESSIONM  SESSION  SESSION SESSION SESSION SESSION
2

48 = 9 4 5 £
Session Opening 17:00 21:00 01:00 04:00 08:00 12:00
Session Closing 18:45 21:45 01:45 04:45 08:45 12:45
Matching Results 19:30 2230 0230 05:30 09:20 13:30
Reception of Breakdowns 19:50 22:50 02:50 05:50 09:50 13:50
Publication PHF 20:45 2345 03:45 06:45 10:45 14:45
27 horas 24 horas 20 horas 17 horas 13 horas 9 horas

Schedule Haorizon (Hourly periods) (29943 (1-24) (5-24) (8-24) (12-24) (16-24)

Figure 2.6: Timing and structure of the Spanish intra-day session. Source: (Red Electrica de Espaia,
2016)
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2.2.4 OVERVIEW OF GENERATION SCHEDULING

The actual scheduling of generation is the result of a combined effort between the market
and system operator following a sequence of events that lead the process from economic
merit-order dispatch determined by the market operator, through to a technically feasible
dispatch and real-time balancing of the system conducted by the system operator. This

process is described below.

The market operator runs the day-ahead markets and intra-day markets without
consideration for technical network constraints, which are later handled through the
system adjustment service markets managed by each Iberian system operator (REE and
REN for Portugal). In Spain, if the production schedule resulting from the day-ahead
market, referred to as “PBF”, does not comply with technical restrictions, so if network
constraints exist and/or reserve requirements are insufficient, the system operator re-
dispatches generation based on a specific procedure detailing the management of
technical constraints!*. Re-dispatching results in a revised and technically feasible

schedule (or “PVP”) for each hour of the following day.

Based on the aforementioned procedure, the need to procure reserves that guarantee the
availability of sufficient on-line reserve margins to supply demand in real-time has
increased significantly. The need for more reserves is thought to be caused by the
growing penetration of RES-E generation which has increasingly displaced thermal
generators from the day-ahead marketInvalid source specified.. Thus, on May 2012, the
Spanish system operator began procuring additional reserves through a so-called market
of “Additional Upward Reserves” (RPAS)*®.

After obtaining a technically feasible schedule by resolving the technical network
constraints, the system operator holds several ancillary markets intended to assure that
sufficient regulating reserves (frequency) are available to balance the demand and
generation in real-time. These markets include the secondary regulation market, which
is a reserve market, as well as the tertiary regulation and the so-called deviation market,
both energy markets. Voltage control services are also ensured by the system operator

yet these will not be the focus of this discussion.

14 Red Eléctrica de Espania REE, Operation Procedure 3.2: Technical constraints.
15 Reserva de Potencia a Subir

32



Chapter 2: The Iberian Electricity Market

Once the day-ahead market is cleared and network/supply constraints are resolved,
agents can adjust their schedules in the intraday market to compensate for equipment
failures and energy forecast errors, or to apply strategic modifications. Traditionally, only
conventional generators could provide balancing services and intermittent RES-E could
participate in the balancing services markets'®, thus the intraday market is the last option
for these producers to adjust their production schedules according to updated generation
profiles. This opportunity is critical for non-dispatchable RES-E producers in Spain as
energy imbalances are strongly penalized and responsibility is allocated to all market

participants contributing to imbalance.

The day-ahead and intraday components of the spot market are further discussed below,
followed by Section Error! Reference source not found. with a description of the system

adjustment and ancillary services run by system operator.

Figure 2.7 below illustrates the sequence of processes and events in the short-term market
leading up to the real-time delivery of scheduled generation and load/generation

balancing. The timing of these processes is critical to agent’s bidding strategies.

Market Operator System Operator

 Shewis
”
@
=
=

[Information previous DM

Day Alead Market  piEEsmeserremee st A LTS FBC

1S b R T L - PBF

Solving technical S 1400h i
constraints (DM)
Secondary regulation A
Intraday Market: - : >
Seagions 1ah Solving technical L. L
constraints (IM)

Deviation management SRS
Tertiary Reserve

PHF

Solving technical
constraints (REAL TIME)

Figure 2.7: Sequence of events in the Spanish short-term electricity market. Source: (de 1a Fuente, 2009)

16 Jt is worth noting that by a Resolution dated December, 18 2015 adopted by the Spanish State Secretary
of Energy, certain criteria and processes were established for RES-E to participate in the provision of
balancing services (BOE-A-2015-13875, )

33



Chapter 2: The Iberian Electricity Market

2.3 SYSTEM ADJUSTMENT SERVICES
The system adjustment services!” managed by the Spanish system operator and address

the following activities through market-based mechanism for active power:

=>» Resolution of technical constraints (Technical Constraints Resolution Market)
=» Procurement of balancing services'® (deviations between scheduled and measured
energy are addressed through these markets):
i.  Secondary (regulation) Reserves (capacity and energy )"
ii.  Tertiary (regulation) Reserves (energy).
iii. =~ Management of large load deviations (energy, real-time).

iv.  Additional “upwards” reserve (market for capacity).

There are other markets managed by the system operator, such as balancing of reactive
power, which are not discussed herein. Figure 2.8 contains figures relevant to the the

management of these services in 2013-2014.

2013 2014 A%2014/2013 |

Upwards Downwards | Upwards Downwards | Upwards Downwards
Supply guarantee constraints 2 4.085 - 3.260 - -20,2 -
Technical constraints * 7.240 193 9.571 110 32,2 -42,9
Additional Upward Power
Reserve Y{GW) 3.010 - 4,279 = 42,2
Secondary reserve availability *
(Mw) 691 512 677 502 2,1 -1,9
Secondary reserve usage 1.806 1.070 1.746 995 3,3 -71
Tertiary reserve 3.330 1.812 3,066 1.765 -7.9 -2,6
Deviation management service 2.347 905 1.865 571 -20,5 -36,9
Real time constraints ® 558 1.701 556 1.274 -0,5 -25,1

Figure 2.8: System Adjustment Services in the Spanish peninsular electricity system (GWh), for years
2013-2014. Source: (Red Electrica de Espaifia, 2016)

The cost recovery of the balancing services procured by the system operator is designed
to provide appropriate incentives for market participants to balance their scheduled
generation and loads. This has led to the introduction of a dual imbalance charge to

determine the settlement of imbalances. Although schedules have to be submitted on a unit-

17 Official State Bulleting No. 303 from 19/12/2015 governing the regulation of system adjustment services
(ancillary services) and their related operational procedures.

18 Also referred to as ancillary services in some of the literature.

19 Referred to as Frequency Restoration Reserves under ENTSO-E’s Network Code’s definition.

20 Referred to as Restoration Reserves under ENTSO-E’s Network Code’s definition.
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by-unit basis, to enable system operator to manage system security, the settlement of

imbalances is done on an aggregate portfolio level.

As shown earlier, the processes managed by the market operator and system operator
are not co-optimized, thus close collaboration between them is required for final
scheduling of generation and real-time balancing and delivery. The timing of these
events indicate the availability of new information, which is critical for market agents’
bidding strategies and decisions, and as a result also of particular interest to this project.
A more detailed representation of the timing and sequence of events is shown by Figure

2.9: Timing of the market and System operator markets in Spain. Source: Figure 2.9 below.

1]2]3lals|6]7] 8] 2]10]11]12) 13 14| 15] 16| 17| 18] 19 20| 2] 22| 23] 24| 1] 2] 3| 4[5 |6 ] 7| 8] o|10]11]12]13] 14] 15| 16] 17] 18] 19| 20| 21] 22] 23] 24

Day Ahead Market .

Redispatches (Based on DAM-+Bilaterals)

Day Ahead TCRM - DAFFD
(constraints resolution) (DA feasible dispatch)

Balancing reserves

Additional Upward Reserve Market .

Secondary Reserve Market .

D-1DAY D DAY
1]2]alals|6]7]a]a]10]11]12] 13 14| 15] 16| 17| 18] 19 20| 2] 22| 23] 2a] 1] 2] 3| 4[5 |6 ] 7] &] o|10]11]12]13]14] 15] 16] 17] 18] 19| 20| 21] 22 23] 24
Intraday 1 S

L
Intraday 3 SNBSS
[
Intraday 5 J— —
. Intraday 1(D+1) HEOEEEE
Redispatches (ID and RT) v1({Ds1)
ID TCRM | | | | | |
Large Imbalance Management Mechanism | l l l l l
el time M [Ty

Balancing energy

Secondary and tertiary (energy)  EDUUDUDNUENDUDEROUOORORORNORORIONONOOIONONININ

I Timeinterval for MO process [ | Time horizon for schedules associated to each MO process
I Timeinterval for SO process [ | Time horizon for schedules associated to each SO process

Figure 2.9: Timing of the market and System operator markets in Spain. Source: Invalid source specified.

These market mechanisms are further discussed below.
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2.3.1 TECHNICAL CONSTRAINTS RESOLUTION MARKETS

Once the day-ahead market is cleared, the system operator must verify that those
economic transactions are actually physically. Upon receipt of the PBF schedule
published by the market operator, the system operator will determine its technical
feasibility by considering the network’s physical properties which may limit its delivery.
Such constraints represent any circumstance were delivery of the base schedule
negatively impacts the safety, security, and/or reliability of the system, according to pre-
established limits and criteria; for example: line overloads, low transmission grid
voltage, congestion of interconnections, or insufficient reserve power margins in the PBF
schedule. Resolution of the latter condition is discussed under the section corresponding

to additional upwards power reserve.

The system operator will modify the base schedule by increasing and/or decreasing the
scheduled generation, as necessary, to obtain a technically feasible delivery schedule
which maintains the demand-generation balance critical for real-time delivery. To do so,
a market mechanism is employed through a two-phase process were the technical
constraints are resolved using a least-cost approach. In this market - Technical
Constraints Market - generators offer to reduce their base production PBF schedule by
re-buying the energy in this market, while the remaining generators offer their additional
un-matched capacity. Due to the priority dispatch for RES-E, reductions in production

mainly affect thermal power plants.
The two-phase analysis of the technical constraints is as follows:

Phase 1

Resolves the technical constraints identified after the system operator performs a power
flow model of the system using the PBF. Energy is increased and/or decreased to resolve
the constraints. A least-cost economic criteria is, in principle, applied to resolving the
constraints. This means that if, for example, two units can resolve the constraint, the unit
which can do so imposing the least-cost to the system will be selected. Prices in this
market are based on a pay-as-bid system so the price settled for each awarded participant
is their bid price. In the case that units are withdrawn from the PBF schedule; the day-

ahead price is used.
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Phase 2

This phase is used to re-balance the generation and demand imbalances caused on the
PBF by the process in phase 1. As is done in Phase 1, a least-cost economic criteria
approach is applied to increase and/or decrease energy as necessary. In order to avoid
new technical constraints from arising in this re-balancing process, the system operator
imposes limitations on certain units” ability to modify their production program as part
of Phase 1. The price for increasing or decreasing electricity is again pay-as-bid.

Figure 2.10 graphically represents both phases of the process.

PHASE 1 PHASE 2
(DA market, ID market & Real Time Operation) (DA market & ID market)

RESTORATION BALANCE
BETWEEN GENERATION &
DEMAND

IDENTIFICATION OF CONSTRAINS:
SECURITY CRITERIA

T ENERGY

&Mwh SALE BIDS Mwn

1 ENERGY

PURCHASE BIDS
::::::

P, O#fer 2 Unit under a limit
in Phase 1
LRI

Schadulad enargy Mwn Hourh Scheduled enargy MWh

Hour H

i . o Economic criteria, according limits
Technical-economic criteria established in Phase 1

Figure 2.10 Phase 1 and 2 process. Invalid source specified.

It is important to emphasize that generators which have their day-ahead generation
schedule reduced by this procedure receive 15% of the day-ahead market price for this
energy reduction (or the bid price to participate in this procedure). In this situation, the
generators could offer energy to the intraday market at prices lower than their marginal
costs. Generators which reduce their scheduled production due to security of supply

constraints management are not financially compensated for that reduction.

Although not a technical constraint, the management of security of supply constraints is
another process that is considered by the system operator. It specifically pertains to the
priority dispatch guaranteed to select generation units powered by Spanish coal?!. It does

not affect RES-E as it can only replace production from other thermal power plants.

21 [t was established by the Spanish government through the Royal Decree 134/ 2010 of February 2010 and
published as an operational procedure of the Spanish system operator on October 2010.
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Generators which reduce their scheduled production due to security of supply

constraints management are not financially compensated for that reduction.

Figure 2.11 below shows the sequence of decisions faced by system operator to determine
the feasible production schedule (PVP).

Security criteria |

¥ PVP
i NO Phase 2:" il
LS
PBF_ -+ Aﬁ:ryrslg > ¢Const 7 Adjgsémg — +
T—— | security
l Sl limitations
Constraints Fé"‘l:ﬁ:ﬁ‘ é: =

Bids " constr.

Figure 2.11: Resolution of Technical Constraints. Invalid source specified.

Intraday - Units affected by dispatching may still participate in subsequent intraday
sessions as long as their participation does not create new constraints. Minimum and
maximum zonal production constraints determined from day ahead market resolution
process are attached to the operation of the intraday market. After each intraday session,
however, another short-term security analysis is performed to consider the program

changes resulting from that session.
The costs resulting from application of this process is entirely born by the demand.

2.3.2 BALANCING SERVICES
The secure operation of power systems requires that supply and demand are balanced
continuously. In order to guarantee this balance, the system operator procures balancing

services.

Four types of main reserves are utilized in Spain for balancing active power: primary,
secondary, tertiary and slow reserved (addressed through the deviation management
mechanism) Figure 2.12 provides a general definition of these regulation services. It is
worth noting that primary regulation is a mandatory, unpaid service in Spain. It is
important to note that in Spain, the provision of primary regulation is a mandatory and

non-remunerated service, and equivalent to 1.5% of the unit’s nominal power.
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Figure 2.12: Definition of System balancing services. Source (de la Fuente, 2009)

2.3.2.1 ADDITIONAL UPWARD RESERVE

The “additional upward reserve” market or RPAS?, as it is commonly referred to in
Spain, was established in 2012 by the system operator to address situations of low
running reserve margins* on an as-needed basis. Running or spinning reserve is the on-

line reserve that is synchronized to the grid system and ready to meet electric demand.

Through the technical constraints resolution process described earlier, the system
operator determines whether there are sufficient tertiary reserves will be available for

real-time operation.

If, after incorporating the re-dispatches necessary to resolve the technical network
constraints, the system operator identifies that tertiary reserve margins resulting from the
PBF are insufficient for real-time operation (since tertiary reserves are procured in real-
time), additional thermal unit groups will be brought online to satisfy the reserve margins

necessary. To do so, and since 2012, the system operator will call up the “additional

22 Red Electrica de Espafia Operation procedure 3.9 for the procurement of additional upward reserve (in
Spanish), Boletin Oficial del Estado 190. Ministry of Industry, Energy and Tourism; August 2013.
www.ree.es/sites/default/files/01 ACTIVIDADES/Documentos/ProcedimientosOperacion/RES%20PROO
PE%2020130801%20PO 3.1 2 8 9.10 Modificacion cambio hora cierre MIBEL.pdf

2 Red Electrica de Espana REE, Operation Procedure 3.2: Technical constraints.
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upward reserve” market to bring additional generators online and provide the necessary
level of running reserves for real-time operation. All available thermal units not
previously committed in the day-ahead market, and those with a program that declines

during the first 3 hours of the delivery day are eligible to participate in this market.

Those units who are assigned to provide the service are scheduled at their minimum
technical requirement because their cold start-up can often take longer and, should the
need arise, their production into the grid must be immediate and safe. Therefore they
must offer at least their minimum technical requirement in the intra-day market,
resulting in their submittal of offers as “price takers”, to ensure their availability to
provide the service, should it be needed. If they are not be committed in the intraday
market, the system operator must be made aware immediately of the situation so it can
carry out a re-dispatchInvalid source specified.. In this case their minimum technical
requirement not be committed in the market, the unit will be economically responsible

for the re-dispatching costs.

2.3.2.2 SECONDARY RESERVES

Eligible agents are able to submit offers for secondary regulation consisting of a band of
power (MW) and a price (€/MW) for each settlement period (24 hours) of the following
day. The secondary regulation band links upward and downward reserve. The
relationship between these bands should be equal to the ratio between the total upward
and the downward reserve required by system operator for the whole system. The offer
can contain different price-quantity blocks, with the possibility of defining one of these

blocks as “indivisible”.

Secondary reserve offers are selected based exclusively on the capacity price (no energy
price is taken into account). Units cleared in the auction receive the marginal price for

capacity reserve, which is the same for upward and downward reserves.
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Process Reserve allocation
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2.3.2.3 TERTIARY REGULATION

This is complimentary optional service but with a mandatory bid, managed and
remunerated through market mechanisms. When dispatched, the energy must be
sustainable for two hours. Tertiary regulation energy is dispatched in real time based on

submitted energy price bids (upward and downward).

The tertiary regulation bid consists of a price-quantity bid, where two additional
constraints can be included: a ramp-up/ramp-down limit and an indivisibility condition.
Bids are submitted right after the day-ahead market is closed. As mentioned earlier,
tertiary reserves bids are mandatory for all generators with tertiary energy is. Bids can be
updated up to 1 hour ahead of real time. The figure below shows the process and

allocation of this service.

Process Tertiary Allocation
Tertiary Bids €/MWh
»~
Secondany Tertiary bids

Marginal Pricg

Tertiary s

PHE IIocam;\\
real Ilm_/—l-
4 Marginal : :
Price :
Energy

Tertiary allocations MWh

Hour H

Figure 2.13: Tertiary Reserves procurement process and allocation. Source: (de la Fuente, 2009)

Generally speaking, demand cannot participate in balancing markets. That said,

demand service interruption can be used by the system operator to provide tertiary
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(upwards) reserves when certain conditions are met in real-time operation (both

technical and economical).

The settlement period is one hour. This is a long time step for the dynamics of electricity
systems in this time scope, because, for example the direction of the system
imbalance/energy needs can change within that time frame. This is represented in the

left part of the figure below Invalid source specified..

= | Upward reserve bids
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Figure 2.14: Determination of the tertiary regulation energy price. Source:Invalid source specified.

The hourly marginal prices (upwards and downward) correspond to the maximum
upwards and downward energy usage during the settlement period. Bids are selected
by merit order and receive the marginal price (upward or downward). The right part of

the figure illustrates the determination of the marginal price in each settlement period.

2.3.2.4 DEVIATION MANAGEMENT

In addition to primary, secondary and tertiary regulation, an additional reserve of active
power called deviation reserves can be used. Deviation reserve helps to balance large
differences (greater than 300 MWh) between scheduled generation and forecasted
demand. It covers the period between intraday market sessions, participation is optional,
and allocation is assigned on an economic merit order basis. An hourly marginal price is
offered to remunerate the service whose cost is paid by market players who deviate from

their schedule. The market’s procurement process is depicted in Figure 2.15.
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Figure 2.15: Deviation management market procurement process. Source: de la Fuente, 2009.

2.3.3 IMBALANCE PRICING MECHANISM

All generators, including wind and solar, are responsible for the costs of any schedule
deviations and for paying for the costs of the balancing energy necessary. A penalty is
applied if the individual unit’s scheduled deviations are opposite/against the system’s
needs. The Spanish electricity market applies a dual-pricing mechanism, where a higher
price is charged for market participants that are short of power in real time than is offered

to market participants that are long in the same instance.

The cost of procuring balancing services is allocated to the imbalanced market parties (i.e.
parties that deviate from their schedule) through the imbalance settlement. Balance
responsibility defines the obligation of market participants (generators, consumers and
traders) to send schedules (for both consumption and production) to the system operator
and the financial responsibility for deviating from those schedules. In this regard, market

participants are BRPs.
Therefore, if:

i.  Unit produces less than what it is scheduled for

a. If deviation supports the system - it pays the daily market price (DMP) for
balancing generation if the deviation supports the grid (i.e. system’s needs
where less production).

b. If the deviation is opposing the system’s needs- it pays the maximum
between average “upward” price of energy used to meet system needs or
DMP.

ii.  Unit produces more than what it is scheduled for.
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a. If deviation supports the system’s needs — it receives the DMP for the excess
energy produced;

b. If the deviation is opposing the system’s needs- it receives the average of
the “downward” price paid to generators not to produce or the DMP,

whichever is lower, for the excess energy produced.

For clarity, a graphic representation of these conditions is contained in Figure 2.16 and
Figure 2.17. Figure 2.16 can be used to interpret the sign convention used in the data
published by REE: 1- A positive system imbalance means that the system experienced an
energy deficit were (there was more consumption than production) and negative means
there was an excess of energy produced (more production than consumption); and 2-
Upwards unit imbalance means the generator produced more than its schedule, and
conversely, downwards unit imbalance means the produced less than its schedule. After
determining the unit imbalance condition (opposing or supporting) with respect the
system, Figure 2.17 can be used to determine the type of price (penalty or DMP) that
would be applied. As is shown in this latter figure, the balancing cost or “penalty”
assigned to the BRP who deviates from its schedule opposing the system will consider
the cost for energies used to provide secondary regulation (SR), tertiary regulation (TR),

and under the deviation management (DM) mechanism.

SYSTEM NEEDS SYSTEM NEEDS
IMBALANCE <0 l. I =0
less production more production
1
up :
1
AGAINST : FOR

more production I :

less consumption L e .

DOWN | |

FOR AGAINST

less production
more consumption

Figure 2.16: System Needs and imbalance direction.
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DOWNWARD Pay Maximum of:
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Figure 2.17 : Imbalance price settlement for units which deviate from their scheduled. Source: (de la
Fuente, 2009)

45



CHAPTER 3:

SYSTEM IMBALANCE AND
MATHEMATICAL TOOLS

In this Chapter, the system imbalance variable is introduced, along with the sources of
the system imbalance, and a brief description the influence that RES-Es may have on the
variable. An overview of previous efforts to forecast the system imbalance is provided,
along with a description of the mathematical tools based on machine learning
techniques (random forest and genetic algorithms) applied to develop the bidding
strategy model, ending with a description of the computing tools and data used to

support the model.

3.1 INTRODUCTION
The system imbalance is caused by both supply and demand side factors. In Spain,
intermittent renewables are considered to be the source of much the system’s

imbalance.

As a result of liberalization and, to another extent, the increasing integration of
intermittent RES-E, forecasting has not only become a more critical and larger topic for
the power industry, but also a more complex one. The system imbalance volume is a
highly non-linear, noisy, and unstructured variable. Given its complexity, traditional
tools may not be sufficient to accurately forecast the imbalance volume. Machine
learning techniques, such as random decision forests — an ensemble learning method
and the technique of choice in the forecasting component of this project — encompass
predictive modelling approaches which can improve on forecasts to further optimize a
market participant’s bidding strategy. Random forest is one of the most popular

learning methods and has many ideal properties, namely its robustness, stability, and
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competitive accuracy relative to other machine learning algorithms, which are of

interest to our project.

Another tool are genetic algorithms (GAs) as an alternative to traditional optimization
methods. It is possible to use GA techniques to consider problems which may not be
modelled as accurately using other approaches, making it a promising approach for our

project.

3.2 SYSTEM IMBALANCE

The schedule deviation, or imbalance volume of a BRP is the difference between the
planned net electrical energy exchange with the power grid over its entire energy
portfolio (as specified in the energy schedule) and the actual net electrical energy

exchange, which is measured in real-time.

Balancing power is used to stabilize the active power balance of integrated power
systems on short time scales from seconds to hours. In AC power systems, the demand-
supply balance has to hold at every instant of time to ensure frequency stability at,
usually, 50 Hz or 60 Hz. Frequency deviations have a number of problematic
consequences, one being that they can mechanically destroy rotating machines such as
generators. Technical procedures and economic institutions have evolved to prevent

frequency instability, and the most important of these is “balancing power”.

3.2.1 SOURCES OF IMBALANCE

There are several factors which cause imbalances in electricity systems, as classified in
Table 3.1. These variables are driven by either the supply or demand side of the
electricity value chain, and based on either forecast errors, as in the case of RES-E
generation and the load, unplanned outages from the supply side, and “schedule leaps”
from both sides (Batalla-Bejarano, et al., 2015). “Schedule leaps” refer to the deviations
of actual load and production from the scheduled load and production. One more source
are deviations from standard losses, as not all energy produced by generators arrives to
consumers: the energy metered at distribution entry points does not match energy at

metered distribution exit points due to network losses (Batalla-Bejarano, et al., 2015) .
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Variable Imbalance source

- Unplanned plant outages

Supply Conventional generation
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Figure 3.1: Sources of system imbalance. Source: Batalla-Bejarano, et al., 2015.

In Spain, the BRPs will slightly over contract because it is less risky to have overcapacity
than under capacity (as confirmed by our analysis of the imbalance cost in the next

chapter).

Since the 2009 disappearance of the DSO’s role as supplier in Spain, the grid energy
losses are estimated based on a regulated coefficient of losses which retailers use to
estimate the amount of energy necessary to supply their load (in Spain, losses are
allocated to each consumer taking into consideration their consumption characteristics).
However, that estimation does not necessarily coincide with the actual energy that is
dispatched, and an inherent imbalance exists. Batalla-Bejarano, et al., 2015 explain that,
from a regulatory perspective, “the electricity imbalances resulting from the differences
between the average transport and distribution losses and the standard losses used in

balancing the system as a whole are considered additional system deviations”.

3.2.2 IMBALANCE AND RES-E

Electricity generation from variable RES-E, such as wind and solar power, has grown
rapidly during recent years and is expected to continue to grow. The fact that these
generators are distributed, non-synchronous, and weather-dependent causes specific
challenges when integrating them into power systems (Grubb 1991, Holttinen et al.
2011, IEA 2014a). With increasing amounts of variable RES-E, in many countries, system
integration has become a major public policy debate with a particular emphasis on the

stress that forecast errors put on balancing systems.
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Some power systems with higher penetration levels of RES-E have observed an increase
in system imbalance volumes. In the event that market rules assign economic
responsibility to those market agents who contribute to the imbalance, bidding
strategies should consider this variable and its associated costs. In fact, in the Spanish
power system, wind generators are the source of much of system’s imbalance, as
indicated by the TSO (Bueno-Lorenzo, et al., 2013) (Gonzales-Aparicio & Zucker, 2015)
Figure 3.2 below shows an example of the wind power forecasting errors, with the

green circles highlighting areas of difference between the actual and forecasted energy.
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Figure 3.2: Time-series of forecasted and actual wind power generation in Spain for December
2013.Wind forecast by SIPREOLICO tool, developed by REE. Source: (Gonzales-Aparicio & Zucker,
2015)

3.3 FORECASTING SYSTEM IMBALANCE VOLUMES

Much of the literature and research efforts have focused on wind power forecasting and
its associated uncertainty; very few articles were found on forecasting of the system
imbalance itself. This is not to say that, in practice, market participants are not using
such forecasting modes, but the academic literature just has little documentation of
work with forecasting that vatiable.

Traditional forecasting methods, such as autoregressive integrated moving average
(ARIMA) and exponential smoothing, are limited to predicting values for one variable
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based on its previous values. The system imbalance, however, does not satisfy the
assumptions to predict with ARIMA technique (e.g. stationarity condition). As
demonstrated in their time series analysis of the system imbalance volume, Garcia et al
(Garcia & Kirschen, 2006) showed how this variable had no seasonality, no constant
mean, and a constant noisy structure, concluding that past imbalance volume data by
itself was not a good predictor of future values. Another disadvantage of traditional
methods is that they may not represent the nonlinear characteristics of complex
variables (Cheng, et al., 2012) such as the system imbalance volume. Traditional
multivariate techniques, such as least square linear regression models, are limited in
their ability to detect non-linear relationships of the predictor variables.

Addressing the above noted complexities, Garcia et al (Garcia & Kirschen, 2006) use
artificial neural network techniques to forecast the system imbalance volume. The
forecasts using neural networks, an advanced modeling technique based on artificial
intelligence, yielded better results than conventional forecasting techniques. Artificial
neural networks increase the forecasting accuracy because the models represent
nonlinear relations between the variable to be predicted and its influencing factors.

However, there are still some problems for artificial neural networks, such as slow
convergence in training and the need for manually determining the structure and
parameters (Cheng, et al., 2012). To overcome these and other challenges, Cheng et al
propose using random forest technique for forecasting of another time-series market
variable (the short-term load).

Garcia et al (Garcia & Kirschen, 2006) noted the system imbalance volume as being
“noisy, unstructured, changing, and normally distributed”. Random Forest

Learning approach methods are often referred to as artificial intelligence methods.
These advanced modelling techniques are called learning approaches because they
learn from the relationship between the observed values target variable (the variable we
want to predict) and the predictor variables (variables influencing the target variable).
Random forests are an increasingly popular machine learning method for classification
and regression problems. In this project, the technique has been selected for its
robustness, stability, and competitive accuracy relative to other machine learning

algorithms

3.3.1 CHARACTERISTICS OF DECISION TREES
For comparison purposes, Table 3.1 depicts some characteristics of learning methods,

including neural nets, super vector machines (SVM), decision trees (Trees), multiple
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additive regression tree (MART), and k-NN Kernels: the green symbol indicates good

performance, the yellow is fair performance and the red represents poor performance.

Characteristic Neural SVM Trees MARS  k-NN,
Nets Kernels

Natural handling of data v v \4

of “mixed” type

Handling of missing values v v

Robustness to outliers in v v v

input space

Insensitive to monotone v v v v

transformations of inputs

Computational scalability v v v

(large N)

Ability to deal with irrel- v v v

evant inputs

Ability to extract linear v v

combinations of features

Interpretability v v v

Predictive power v

Table 3.1: Some characteristics of different learning methods. Source: (Hastie, et al., 2008).

Decision trees come closest to meeting most of the criteria listed in the Table above. By
itself, a single decision tree is very easy to interpret, it handles mixed data types well
(i.e. mix of binary, quantitative, and/or categorical variables), it can handle missing data
which is often the case with large data sets, it is immune to the effects of predictor
outliers, and it is invariant under transformations of individual predictors (e.g. scaling
is not an issue) (Hastie, et al., 2008). However, its accuracy is noted as lower than the

other methods and it is relatively unstable.

As an ensemble method, a random forest is a collection of individual trees built based on
random samples of training data, whose output using new/test data is averaged to
obtain a prediction. The idea behind this was that many trees together have better
generalization capabilities than one tree. This approach satisfactorily improves on the
accuracy and stability of a single decision tree, while compromising only on its
interpretability (not easy to interpret). Its accuracy is competitive versus other state of
the art machine learning algorithms, and if the data changes, an individual tree may
also change, but the forest as a whole is relatively stable as the output is the

combination of the different trees. This has made random forest one of the most
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successful ensemble methods: it is fast, robust to noise, and is less prone to overfitting? -

an issue that has to be carefully considered with most learning methods.

3.3.2 RANDOM FOREST PROCESS

An ensemble method means a model with several “sub-models” within. Developed by
Leo Breiman at UC Berkley in 2001, the Random Forest technique is based on the
principle of decision (classification and regression) trees (Breiman, 2001). The idea is to
average many noisy but approximately unbiased models (each tree being a model,
many trees being a forest) and hence reduce the variance. The random forest algorithm

grows individual decision trees through randomization using a training data set.

This method was selected based on its robustness, stability and competitive accuracy
compared to other machine learning algorithms. It is today considered state-of —the —art

in forecasting.
Supervised vs Unsupervised Learning

In machine learning, supervised and unsupervised learning are two different
approaches selected based on the availability of real observed data for the element we
are trying to predict. In this project, supervised learning was used. The model learns
from identifying complex relationships between predictor variables and the actual
observed values of the variable we want to predict (referred to as the tfarget variable
herein). A separate set of data containig predictor variables only is used to obtain a

prediction of the target variable.
Randomeness

Randomness is a very important feature of these forests. Randomness is introduced in

the algorithm through its proccess of:

. data selection - random sampling of the training data; and
. node optimization — at each split a subset of the predictors is chosen and only
from this subset the best split variable is taken at each node of each individual

tree.

! Random Forest is less prone to overfitting because it uses a separate training set for each tree.
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Growing Decision Trees

The random forest technique is based on growing an ensemble of decision trees which
are completely independent from each other, so there is no interaction between them
(see Figure 3.3). This project uses regression trees (other objectives may use
classification trees — for binary predictions as in the case of image recognition,
clustering, semi-supervised learning, and others). In regression trees, each tree fits a
linear model, and each node optimizes a continuous function. Each tree can be a

piecewise linear function.

Tree 1 Tree 2 Tree 3
! L |
-0.1 0.5

D.Z\ Jr /

Figure 3.3: Example for regression trees in ensemble model
The process is as follows:

e Each tree is grown individually (no link with other trees).
e Each tree will only see a subset of the data (selected randomly, hence
“random” forest).
0 X =matrix with no. of observations.
0 Features are selected randomly.
0 m variables of the p variables (or features) are selected at random
0 The best variable/split point among the variables is selected for
each tree.
* For best information gain: node optimization is performed.
0 The node is then split into two children nodes.
e The endpoints/leafs of the tree have a probability.
e Output of algorithm is the trees
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Making a Prediction

Using a second subset of data known as the test data set, which includes only the

predictor variables, a prediction is made by:

e The same random process explained above, each vector in the matrix is
run through the previously built trees until the terminal leaf. See Figure

3.4 for example of a regression tree.

e This prediction is then averaged (sum of trees divided by the number of

trees): a mean prediction (see Figure 3.3);

0 This means high variance, low bias trees that are very different
from each other (uncorrelated to one another), thus averaging them
should provide a function closer to the true value. See Figure 3.5 for

a graphical example plot of the outcome of this process.
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Figure 3.4: Single regression tree example
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Figure 3.5: Example of 25 randomly selected decision trees in a random forest, prediction shown in red.

3.4 GENETIC ALGORITHM OPTIMIZATION

In the field of artificial intelligence Genetic algorithms (GAs) are stochastic search
algorithms inspired by the basic principles of biological evolution and natural selection.
GA'’s simulate the evolution of living organisms, where the fittest individuals dominate
over the weaker ones, by mimicking the biological mechanisms of evolution, such as
selection, crossover and mutation. GAs have been successfully applied to solve
optimization problems, both for continuous (whether differentiable or not) and discrete

functions (Scrucca, 2013).

At a certain stage of evolution a population is composed of a number of individuals,
also called strings or chromosomes. These are made of units (genes, features, characters)
which control the inheritance of one or several characters. Genes of certain characters
are located along the chromosome, and the corresponding string positions are called

loci. Each genotype would represent a potential solution to a problem.

The decision variables or phenotypes in a GA are obtained by applying some mapping

from the chromosome representation into the decision variable space, which represent
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potential solutions to an optimization problem. A suitable decoding function may be

required for mapping chromosomes onto phenotypes.

The fitness of each individual is evaluated and only the fittest individuals reproduce,
passing their genetic information to their offspring. Thus, with the selection operator,
GAs mimic the behavior of natural organisms in a competitive environment, in which
only the most qualified and their offspring survive. Two important issues in the
evolution process of GAs search are exploration and exploitation. Exploration is the
creation of population diversity by exploring the search space, and is obtained by
genetic operators, such as mutation and crossover. Crossover forms new offsprings from
two parent chromosomes by combining part of the genetic information from each. On
the contrary, mutation is a genetic operator that randomly alters the values of genes in a
parent chromosome. Exploitation aims at reducing the diversity in the population by

selecting at each stage the individuals with higher fitness.

Often an elitist strategy is also employed, by allowing the best fitted individuals to

persist in the next generation in case they did not survive.

The evolution process is terminated on the basis of some convergence criteria. Usually a
maximum number of generations is determined. Alternatively, a GA is stopped when a
sufficiently large number of generations have passed without any improvement in the

best fitness value, or when a population statistic achieves a pre-determined bound.

Figure 3.6 shows the flow chart of a typical genetic algorithm, as done with the GA
package for R programming language. A user must first define the type of variables and
their encoding for the problem at hand. Then the fitness function is defined, which is
often simply the objective function to be optimized. More generally, it can be any

function which assigns a value of relative merit to an individual.
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Define
- type of variables/encoding
- fitness function

Cenerate initial
population

- GA parameters
- COMVErgence criteria

n Fitness
evaluation

Convergence
check

Yes
GA output

Cenetic operators

Selection

Crossowver

1

Mutation

Figure 3.6: Flowchart of Genetic Algorithm. Source (Scrucca, 2013)

Genetic operators, such as crossover and mutation, are applied stochastically at each
step of the evolution process, so their probabilities of occurrence must be set. Finally,

convergence criteria must be supplied.

The evolution process starts with the generation of an initial random population of size
n. The fitness of each member of the population at any step k, is computed and
probabilities are assigned to each individual in the population, usually proportional to
their fitness. The reproducing population is formed (selection) by drawing with
replacement a sample where each individual has probability of surviving equal to its
probability. A new population is formed from the reproducing population using
crossover and mutation operators. Then, k =k + 1 is set and the algorithm returns to the

titness evaluation step. When convergence criteria are met the evolution stops, and the
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algorithm delivers the optimum. Figure 3.7 shows the fitness landscape with different

evolutionary paths.

& Randy Olson

Figure 3.7: Fitness landscape with different evolutionary paths. Source: Randy S. Olson2.

3.5 COMPUTING TOOLS AND DATA
R programming language and a range of library packages to perform specific functions

were used to develop the model. The main R library packages used include:

= Lubridate — to handle time series date and time data.
= RDOBC - to access SQL sever database
* RandomForest® - to generate the random forest.

* GA (Genetic Algorithm) — for optimization.

Publicly available data from published by REE, OMIE, and the Spanish metereological
agency (AEMET) were used, in addition to real-energy portfolio data specific to the
Trader in the case study.

The data was centrally stored in an SQL server database at the Trader’s facilities, and

accessed therefrom.

2 http://adamilab.msu.edu/research/

3 https://cran.r-project.org/web/packages/randomForest/index.html
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CHAPTER 4:
V ARIABLE ANALYSIS

This chapter presents the variables to be used and analysis if those variables as they

relate to the system imbalance and cost.

4.1 INTRODUCTION

The main components to developing the optimized bidding strategy can be broken

down as follows:

Exploratory data analysis of variables;

Development of forecasting model;

Development of optimized bidding strategy application tool;
Validation;

Assessment.

S

The objective of analyzing the system’s imbalance volume is to conduct an exploratory
analysis focused on understanding the behavior of variables (market or otherwise)
influencing or related to the power system’s balancing mechanism and understanding,
their behavior as they relate to the system’s imbalance volume and, in some instances,

the cost.

The above analysis may also be used as a discriminatory step to identify the input for

the forecasting model.

4.2 ANALYSIS OF SYSTEM IMBALANCE

4.2.1 SYSTEM IMBALANCE VOLUME

The system imbalance for the England and Wales pool was shown to have no
seasonality, no constant mean, a constant noisy structure, and normally distributed

(Garcia & Kirschen, 2006). Similar assumptions could be inferred from the time-series of
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the Spanish system imbalance volume depicted in Figure 4.1 and Figure 4.2, which
show fourteen months of the hourly net imbalance volume data published by the

Spanisg TSO; the time-series exhibits no obvious seasonality and appears highly-noisy.
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Figure 4.1: Hourly Imbalance Volume of the Spanish electricity system from Jan 1, 2015 to
April 1, 2016
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Figure 4.2: Histogram of system imbalance volumes in the Spanish electricity system from
Jan 1, 2015 to April 1, 2016.

60

5000

5200 o

5400 1

5600 —



Chapter 4: Variable Analysis

The hourly system imbalance volume, defined as the net energy needed by the system

in a specific hour, is calculated as follows:

APsys, = Y, SecReg™® + ). TerReg“? + ¥, DevMan™¢ (4.1)

where:
APsys;, = Net balancing energy needs of the system, MWh

SecReg = Secondary regulation energy used, MWh

TerReg = Tertiary regulation energy used, MWh
DevMan = Deviation Management energy used, MWh
h = hour

u = upwards energy (energy increase — > positive sign)

d = downwards energy (energy decrease —> negative sign)

As a result, the direction of the net system imbalance volume, IMBsys;, indicates
whether is system was short (needed more production), or “long” (needed less energy

production).

Therefore, the sign convention is as follows:

=>» “Short” = APsysy> 0 or POSITIVE - > system needs more energy

= “Long” = APsys, < 0 or NEGATIVE - > system needs less energy

Table 4.1 Sign convention for the direction of the system imbalance

Table 4.2 contains a summary of the system’s imbalance direction for the period of June
2015 through February 2016. The system is most likely to be need energy (positive
imbalance) than have an excess, with over 61% of the hours in that period having a
positive system imbalance, and only over 38% of the hours observing a negative

imbalance. With the exception of two months - September and February —-most months

61



Chapter 4: Variable Analysis

displayed the same tendency of more positive than a negative system imbalance hours.

This fact can be better appreciated in Figure 4.3.

No. Obs. Direction, %

Total APsys>0 APsys<0
June 618 78.80% 21.20%
July 648 82.41% 17.59%
August 696 58.76% 41.24%
September 696 44.83% 55.17%
October 744 63.58% 36.42%
November 657 55.56% 44.44%
December 576 59.38% 40.63%
January 574 59.41% 40.59%
February 204 40.20% 59.80%
9-months 5413 61.80% 38.20%

Table 4.2: Per month Summary of direction of hourly system imbalance for June 2015 -
February 2016.
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Figure 4.3: Graphical representation of monthly summary of system imbalance direction for
June 2015 - February 2016.
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The hourly deviation volume for each generating unit and agent’s portfolio is

determined as follows:
APunit, = PMESunit, — PHOunity (4.2)
APport, = Y, APunity (4.3)
where:

APunit, =
hourly deviation from scheduled program for a production unit, MWh
APport, = hourly deviation for portfolio of production units

PMESunit, =
hourly measure of actualy energy generated by production unit, MWh

PHOunity= final hourly program for production unit after intra-day market

adjustments minus energy restrictions, if any, from grid congestions, MWh.

The sign convention of the imbalance volume for a production unit or portfolio of units

(APunity, or APporty) indicates the type deviation:

=> “Long” = APunit, or APport,> 0 or POSITIVE - > more energy produced than the

program schedule; also referred to as a “upwards” (u) imbalance.

=>» “Short” = APunit, or APport,< 0 or NEGATIVE - > less energy produced than

program scheduled; also referred to as a “downwards” (d) imbalance

4.2.2 SYSTEM IMBALANCE COST

In the Spanish electricity market, the imbalance prices are highly variable and difficult
to forecast (Bueno-Lorenzo, Moreno, & Usaola, 2013). Due to the unavoidable
imbalance between scheduled and generated energy, the imbalance prices are very
important for a wind power producer because much of the source of the imbalance is
due to wind. Imbalance prices also have high volatility because the number of
participants and the amount of energy exchanged are relatively low and (in dual
pricing systems, as is the case for Spain) because of the random nature of the overall
imbalances (Hirth, Lion & Inka Ziegenhagen, 2015).
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The per-unit of energy imbalance cost for a market agent is based on the imbalance
price (see Chapter 2 for imbalance price determination): 1- if imbalance supports the
system (same direction), the day-ahead market price is applied (not penalized) or 2- if
the imbalance is against the system a price which includes a “premium” or cost in
relation to the day-ahead market price - based on the cost of the balancing energies used

—is applied.

This cost or “premium”, on a per-unit basis, for agents whose imbalance is

against/opposite the system’s balancing needs is the following:

COSTAP, = PRICEAP,‘} — PRICEAP# (4.4)
where:

COSTAP,, = per unit cost for unit or portfolio with imbalance against the system, €
/ MWh

PRICEAPY, PRICEAPY
= Hourly price for downwwards (d) and upwards (u)imbalance

The imbalance cost is generally highest when the system imbalance is negative,
meaning there was an excess of energy — the system was “long”. Below is a summary of
average imbalance costs for a nine-month period which shows the imbalance cost to

consistently be more than twice the cost applied to positive system imbalances.

No. Obs Average Hourly Imbalance Cost, €/ MWh

monthly APsys>0 APsys<0
June 618 9.67 7.95 16.05
July 648 7.50 6.11 13.99
August 696 12.25 7.33 19.27
September 696 11.12 5.62 15.58
October 744 10.43 6.07 18.04
November 657 11.66 8.24 15.92
December 576 10.04 5.88 16.11
January 574 12.10 7.95 18.19
February 204 11.43 13.29 10.18
9-months 5413 10.63 7.05 16.44

Table 4.3: Average monthly cost of market agent’s imbalance, per-unit of energy volume.
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4.3 DATA SELECTION

The variables selected in this project are based on their availability for adjustments in
the intra-day market, and include a combination of market and production variables.
These variables are defined in the table below, and ordered based on the time-frame

that they become available. Their values correspond to each hour of the day:
xp = hourly value for variable X corresponding to D

D = Represents the target day, encompassing its 24 hours of imbalances, for
which we seek to reduce the imbalance cost.

The variables in this section can considered as belonging to two types:

1. those available pre-day ahead market gate closure; and

2. those available post-day ahead market gate closure.

For target day D, values for variables 5 through 14 (xvsv14) are only available after gate
closure of the day-ahead market. For pre-gate-closure, those variables correspond to D-

1, (Xvivis,p-1).
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Variable LEGEND
v)
1 DF
2 WF
3 TEMP

4 WindRAMPS

5 DemandPBF

6 porcenDF

7 WindPBF

8 porcenWF

9 DAMP

10 TCEnergy
11 TCPrice
12 RPAS

13 SRBdown

14 SRBup

NAME

Demand Forecast, MWh

Wind Forecast, MWh

Temperature, °C

Wind RAMP Forecast ,
MW/h

Demand PBF, MWh

Demand Porcent, MWh

Wind in PBF

Wind Porcentage
difference in PBF, MWh

Day-Ahead Market
Price, €/ MWh

Constraints: Energy,
MWh

Technical Contraints:
Price, €/ MWh

Additional Upwards
Reserve

Secondary Regulation
Band: Downwards, MW

Secondary Regulation
Band: Upwards, MW

DEFINITION

Hourly forecast of demand.

Hourly forecast of wind
production.

Hourly actual and forecast
temperatures.

Hourly rate of
increase/decrease in forecasted
wind power output relative to
the hour prior

Hourly accepted bid volume in
day-ahead market (PBF).

Hourly porcent difference
between the demand forecast
and demand met by the day-
ahead market (PBF schedule)

Hourly accepted wind
production bid volume in day-
ahead market (PBF schedule).

The hourly porcentage
difference of forecasted wind
production and accepted

v olume of wind production bids
in day-ahead market (PBF
schedule ).

Hourly price clearing the day-
ahead market.

Energy v olume auctioned in
Phase Il of technical constraints
market.

Hourly price for congestion
energy in Phase Il of technical
confraints market.

Hourly occurrence of Additional
Upwards Reserv es market.

Hourly contracted capacity for
downwards secondary
regulation band.

Hourly Contracted capacity for
secondary upwards regulation
band.

Table 4.4: Variables description and availability.
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DATA SOURCE OR
EQUATION

Source: REE

Source: priv ate third- party
vendor

TEMP, = Tmean,
Source: AEMET

(Spain’s National
Meteorological Agency)

WindRAMPS
= WF, - WF,

Source: REE

porcenDF =
(DF - demandBF)/DF

Source: REE

porcenWF =
(WF-WindPBF)/WF

Source: OMIE

Source:

Source:

Source:

Source: REE

Source: REE

DATA AVAILABILITY

PRE-GATE CLOSURE
(V5-V14
correspond to
delivery day D-1)

Continuously
updated

Continuously
updated.

Forecast is
continuously
updated. Actuals
are av ailable
immediately.

Continuously
updated.

D-2 at approx 12-13
hrs

D-2 at approx 12-13
hrs

D-2 at approx 12-13
hrs

D-2 at approx 12-13
hrs

D-2 at approx 12-13
hrs

D-2 at approx 15-
1éhrs

D-2 at approx 15-
1éhrs

D-2 at approx. 16-
17hrs

D-2 at approx 21:30
hrs

D-2 at approx 21:30
hrs

POST-GATE CLOSURE
(V5-Vi4

correspond to
delivery day D)

Continuously
updated

Continuously
updated.

Forecast is
continuously
updated. Actuals
are av ailable
immediately.

Continuously
updated.

D-1 at approx 12-13
hrs

D-1 at approx 12-13
hrs

D-1 at approx 12-13
hrs

D-1 at approx 12-13
hrs

D-1 at approx 12-13
hrs

D-1 at approx 15-
16hrs

D-1 at approx 15~
16hrs

D-1 at approx. 16-
17hrs

D-1 at approx 21:30
hrs

D-1 at approx 21:30
hrs
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4.4 VARIABLE ANALYSIS

4.4.1 CROSS-CORRELATION
A nine-month cross- correlation of the variables was performed, reults under

Variable

Variable Correlation
No.

1 DF 0.040038565
WF -0.013376171

3.1 Temp (Forecast) 0.090739168
3.2 Temp (Actual) 0.089570937
4 WindRAMP 0.015570115
5 DemandPBF -0.02569405

6 porcenDF 0.37020217
7 WindPBF -0.021885455
8 porcenWF 0.101509643
9 DAMP 0.027242249
10 TCenergy -0.024040173
11 TCPrice 0.030559866
12 DF 0.024333969
13 SRBdown 0.060403179
14 SRBup -0.009596265

Table 4.5: Cross-correlation of Variables.
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Figure 4.4: Ordered graphical representation of variable’s cross-correlation.
67



Chapter 4: Variable Analysis

Annex A contains full cross-correlation results for all variables.

4.4.2 VARIABLES

4.4.2.1 DEMAND: FORECAST, IN PBF AND PERCENT IN PBF

As indicated earlier, the demand load is one the sources of the system’s imbalance. We
will consider three demand related load and market variables: the demand forecast,
demand load matched in the day-ahead market (PBF schedule), and the percent

difference of demand forecast matched in the PBF.

The figure below is a scatter plot matrix of these variables color-coded to highlight
positive imbalances in magenta and negative imbalances in cyan for the month of

January. A similar plot for the 14-month period is found in Annex B.1.

January, 2016: DEMAND Variables
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Figure 4.5: Matrix scatter plot of demand variables for January 2016.

68



Chapter 4: Variable Analysis

Demand Forecast (DF)

A scatter plot of the demand forecast and the system imbalance volume is shown in
Figure 4.6. Although no obvious relationship could be discerned, it can observed that
during the month of January, the very large negative imbalances (greater than -2,000

MWh) occurred alongside higher demand forecast volumes (exceeding 35,000 MWh).
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Figure 4.6: Scatter plot system imbalance volume and demand forecast for Jan 2016.
Demand met in PBF schedule (demandPBF)

As can be observed from Figure 4.7, which contains a blow up of the DF and
demandPBF variables plotted in Figure 4.5, some sort of relationship between these
variables and the direction of the system imbalance appears to exist. Aside from the
expected linear relationship between DF and demandPBF, it seems that the occurance of
negative system imbalances — in cyan - is greater the higher the value for demandPBF is
in relationship to the DF variable, and vice versa (the lower the demandPBF value in
relation to the DF value, the more occurrences of positive system imbalances — in
magenta).  This relationship is further accentuated through the analysis of the

percenDF variable below.
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Figure 4.7: Scatter plot of the demand forecast and the demand met in the day-ahead market.
Percent difference of demand forecast met in PBF schedule (percenDF)

The percenDF variable yielded particularly interesting results. As can be observed from
the histograms of this variable in Figure 4.8 and Figure 4.9 for the positive and negative
system imbalances occurring during the same 14-month period analyzed earlier
(January 2015 to April 2016), it appears that most of the positive system imbalances
occur when the percenDF is greater or equal to 2% (or when 98% or less of the demand
forecast is met in the day ahead market (PBF)). Similarly, most of the negative
imbalances appear to occur when the percenDF is less than 2% (or when the demand
forecast met in the day-ahead market (PBF) exceeds 98%).

Figure 4.10 is a scatter plot of the system imbalance volume and the demand forecast,

with each observation color coded to represent percenDF with a threshold of 2%. From
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that figure, it can be noted more positive imbalances appear to occur when 98% or less

of the demand forecast is met in the day-ahead market (PBF schedule).
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Figure 4.8: Histogram of percenDF for positive system imbalances.
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Figure 4.9: Histogram of percenDF for negative system imbalances
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Figure 4.10: Scatter plot of the system imbalance volume and demand forecast as they relate
to the percenDF variable.

4.4.2.2 WIND: FORECAST, IN PBF, PERCENT AND RAMPS

In Spain, as mentioned previously, wind production is one of the major causes of the
system imbalance. We will consider four wind related production and market
variables: the wind forecast, wind production bids accepted in the day-ahead market
(PBF schedule), percent excess/deficit of wind forecast matched in the day-ahead
market (PBF schedule), and wind ramps. Annex B.2 contains a matrix scatter plot of the

these wind related variables.
Wind Forecast (WF) & Wind in PBF (windPBF)

Wind forecasts contain uncertainty which could lead to the reasonable assumption of a
potential relationship between the level of the wind forecast and the system imbalance
volume itself. However, no obvious (linear) relationships could be discerned from the
scatter plot of those two variables as shown in the last plot in Figure 4.11 below.
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Following the structure of previous plots in this chapter, the direction of the imbalance
has been color coded with cyan for negative imbalances and magenta for positive

imbalances. Figure 4.12 contains the density distribution histograms for these variables.
windPBF percenWF windRAMP System Imbalance
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Figure 4.11: scatter plot matrix of wind forecast and wind demand met in day-ahead market
variable for Jan 2016.
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Figure 4.12: Density distribution histogram of the wind forecast and wind in PBF variables
for Jan 2015 through March 2016.

Wind Percent (percenWF)
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As with the “percenDF” variable, the wind production forecast in excess/deficit of the
aggregated wind production offers accepted in the day-ahead market and represented

by the PBF schedule, could provide indication of the system imbalance.

From the scatter plot of the wind forecast (and windPBF) with the percent difference of
the wind forecast met in the day-ahead market (percenWF), depicted as the third scatter
plot column in Figure 4.11, relationships could be discerned. It appears that the lower
the hourly wind forecast values is, the wind demand met in the day ahead market

(windPBF) will tend to exceed the wind forecast.

Basically, the percent of wind forecast met in the day-ahead market tends to increase
(negative percenWF value means windPBF exceeds WF) as the wind forecast value

decreases.
Wind Ramps (windRAMP)

Ramp events are a significant source of uncertainty in wind power generation. A ramp
represents a large increase or decrease in wind power within a limited time view, as

shown in the figure below.

Ramp End

Power Swing

Ramp Rate

Ramp Start__
Duration

= |

Figure 4.13 Ramp representation.
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The wind ramp variable used herein is calculated as follows:

windRAMPr = WFrn— WFna

(4.5)

Figure 4.1 below shows this density distribution of this variable.
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Figure 4.14: Density distribution histogram of windRAMPS variable from Jan 2015 to March

201e6.

From the scatter plot in Annex B.1, no obvious relationships could be identified for this

variable.

4.4.2.3 TEMPERATURE

It is commonly accepted and known that the temperature affects the demand load,

which itself has been identified as a source of the system imbalance.

To obtain one hourly temperature variable for the Spain, temperatures from (10)

different major geographical locations were considered:

Madrid
Santander
Barcelona

Valencia

M e

. Malaga
10. Albacete

0 0 N R

A Coruna
Badajoz
Valladolid

Zaragoza
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The average using each locations hourly temperature was used and calculated as
follows:

TEMP,,, = T %" (4.6)
where,
mean = = S Ton (47)
t = temperature type, measured (m)or forecast (f)
T), = hourly temperature, °C

l = gerographical location

n = number of geographical locations
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Figure 4.15: Scatter plot of measured temperature and net system imbalance.
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4.4.2.4 TECHNICAL CONSTRAINTS: ENERGY AND PRICE

On any particular day, increased wind production can be associated with increased
network constraints. For the technical constraints variable, the energy and price
resulting from the Phase II technical constraints resolution process managed by the TSO

was used. For ease of analysis, the magnitude (absolute energy value) was used.

From Figure 4.16 and Figure 4.17 it can be noted that the more extreme system
imbalance events, especially for negative system imbalances, occurred when the

technical constraints energy was around 500 MWh.
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Figure 4.16: Scatter plot of energy network constraints and positive system imbalance
volumes from Jan 2015 to March 2016.
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Figure 4.17: Scatter plot of network constraints and negative system imbalances.

4.4.2.5 DAY-AHEAD MARKET PRICE

The day-ahead market price is often an indicator of market conditions. It can provide
insight to the volume of demand and supply matched, and to the types of technologies
participating in the matching process through the economic merit order system, among
others. As an example, high levels of production from RES-E in any given hour are
associated with lower day-ahead market prices. The day-ahead market price is also the
benchmark by which the cost (not necessarily price) of the imbalance is determined. As
was explained in section 4.2.2, the imbalance price is related to the cost of the balancing
energy procured by the TSO (secondary and tertiary regulation, and deviation

management) to mitigate the system s imbalance.
DAMP, Imbalance Direction and Cost

From Figure 4.18, it can be observed that the negative imbalance cost tends to increase

as the day-ahead market price decreases. This relationship is further accentuated if we

consider the negative imbalance cost as a fraction of the day-ahead market price, as
done in Figure 4.19, where an exponential increase of the negative imbalance cost can be

observed as the day-ahead market price decreases.
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Figure 4.18: Scatter plot of the DAMP and the negative imbalance cost (when system
imbalance is positive) for February to March, 2016.
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Figure 4.19: Scatter plot of the DAMP and the negative imbalance cost (when system
imbalance is positive) as a fraction of the DAMP for February, 2016 to March, 2016.
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In terms of the positive imbalance cost (when system imbalance is negative and
portfolio imbalance is positive — actual production is greater than scheduled), no
obvious trends could be discerned. As the day-ahead price acts as a “ceiling” or
maximum of the possible positive imbalance cost, the apparent linear trend observed in

Figure 4.20 just represents that ceiling.
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Figure 4.20: Scatter plot of positive imbalance cost (negative system imbalance) and DAMP
for February, 2016 to March, 2016.

Of particular significance, is the finding that the imbalance cost (both positive and

negative), tended to be highest for the lower DAMPs. Figure 4.21 shows how, for the
month of January, 2016, the bottom quartile (25 percentile) of DAMP — below
32.09€/MWh — not only had the largest number of observations with the highest
imbalance costs — above 19.22€/MWh — but 1- the frequency (and likelihood) of these
occurrences consistently and rapidly decreased as the DAMP increased (bin within
dotted red line), and 2- within the lowest DAM prices (bottom quartile) the occurrence

of imbalance costs greater than the median was over 85%, of which over 60% of the

80



Chapter 4: Variable Analysis

observations corresponded the highest imbalance costs experienced in that month

(quartile with trend line).
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Figure 4.21: Quartile frequencies of Imbalance cost and DAMP for January, 2016

4.4.2.6 ADDITIONAL UPWARDS RESERVES (RPAS)

As described in Chapter 3, the additional upwards reserve is a market is called upon on
an as-needed basis, explaining the zero values in Figure 4.22 for the RPAS variable. For
only about 9.2% of the hours in the period studied was the additional upwards reserve

called upon.

No obvious trends were identified for this variable.
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Figure 4.22: Scatter plot of the additional upwards reserve and the system imbalance for Jan
2015 to March 2016.

For use in the model, this variable will considered as binary: 1 for market called upon

and 0 for absence of market.

4.4.2.7 SECONDARY REGULATION BAND

The secondary regulation band variable (MW), both downwards and upwards, are
represented in Figure 4.23 and Figure 4.24 with the system imbalance, respectively. The
band value seemed to be issued in steps of around 100 MW, and for the period studied,
ranged from around 400 to 700 MW.

From those two figures, we can observe that the downwards band exhibits somewhat
of a clearer trend in terms of the magnitude, and to a limited extent, to the direction of

the imbalance. More specifically, the larger negative imbalances (e.g. greater than 2,000

MWh) seemed to occur most frequently when the downwards regulation was around

500 MW. In fact, 89% of the negative imbalances with a magnitude greater than
2000MWh occurred when the secondary regulation band was between 450 and 550
MW. Given the larger costs implications associated with negative system imbalances,

this trend can be useful in implement a bidding strategy.
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On the other hand, around the lowest downwards band of 400MW, the magnitude of
imbalances generally remained under 2,000 MWh.

SRBdown
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Figure 4.23: Scatter plot downwards secondary regulation band and system imbalance for Jan
2015 to March 2016.
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Figure 4.24: Scatter plot upwards secondary regulation band and system imbalance.
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4.4.3 OBSERVATIONS

From the previous analysis, the main observation is as follows:

With the exception of percenDF, very weak liner-relationships were encountered,
if any.

However, certain trends and tendencies were observed. Most notably:

percenDF: There appears to be a relationship between the system imbalance
volume and the percentage difference of demand forecast met in the day-ahead
market - percenDF. This variable had a significantly higher correlation than all
other variables. Particularly noticeable is the trend of the system imbalance being
positive when the level of demand met by the day-ahead market (PBF schedule)
is lower than the forecasted demand.

Day-ahead market price and the imbalance cost: It was observed that the
imbalance cost (both positive and negative), tended to be highest for the lower
DAMPs.

Technical constraints energy:

Downwards secondary regulation band: the larger negative imbalances (e.g.
greater than 2,000 MWh) most frequently occured when the downwards
regulation band was around 500 MW. For the period studied, this was equivalent

to approximately 85% of those imbalances.

It is worth noting, however, that the lack of linear dependency does not negate other

types of relationships that could improve the model’s performance. Therefore, the

exploratory data analysis takes on more of an informational role.
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CHAPTER 5:
MODEL DEVELOPMENT

This chapter discusses the main components of the model, namely development of the
forecasting model and development of the optimized bidding strategy application,

followed by a description of the validation and assessment methodology.

5.1 INTRODUCTION

As mentioned in the previous Chapter, the main components to developing the

optimized bidding strategy can be broken down as follows:

Exploratory data analysis of variables;

Development of forecasting model;

Development of optimized bidding strategy application tool;
Validation;

Assessment.

I .

The exploratory variable analysis was detailed in the previous Chapter. That analysis
can also be used as a discriminatory step to identify the input for the forecasting model.
This second part consists of a multivariate forecast of the system’s hourly imbalance
volume using the random forest technique where non-linear relationships between past
values of the selected predictor variables and the system’s imbalance volume can be
represented. Several short-term time-frames for the training horizons will simulated to

determine the best performing time-frame.

The third part consists of developing an optimized bidding strategy application. Using the
forecasting model’s predictions as one of the input variables, a genetic algorithm
optimization is applied to determine an hourly bid amount to adjust the agent’s

schedule that minimizes the imbalance costs (maximizes the savings).
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Validation of the model is performed by running simulations for each training horizon.
Finally, assessment of the model’s performance is done to evaluate 1- the forecasting
model and 2- application of the bidding strategy. A sensitivity analysis is also

conducted.

5.2 DEVELOPMENT OF FORECASTING MODEL
The forecasting model was developed by applying the random forest technique
described in Chapter 3. The main development stages of the model are described

following sections.

5.2.1 FEATURE SELECTION

In machine learning, features refer to predictor variables, and we’ll refer to them as such
throughout this section. For feature selection it has been recognized that the
combination of the m best features does not necessarily lead to better performance!.
Moreover, in machine learning a variable that may appear of no use on its own may
provide significant performance improvement when taken into account with others,
even two different — and apparently useless — variables used together (Guyon &
Elisseeff, 2003). Therefore all variables were included in the model. Different variable

combinations were tested as part of the sensitivity analysis described later on.

5.2.2 DATA COLLECTION AND PREPARATION

Handling of large data sets often requires significant efforts related to acquiring and
preparing the data. For example, a one-year simulation using all the variables identified
in the preceding section (in addition to target variables) - could entail handling a data-
set of well over 130,000 data points. Such volume of data requires a systematic approach
were processes can be automated as much as possible. Some of the most critical

elements of this process are described below.

First, a database, if not already available, has to be created to store the feature data
necessary to conduct the forecasting portion. All external (i.e REE and OMIE) and
internal (specific to the Energy Trader in the case-study) data was stored in a central
SQL server database local to the Energy Trader. Obtaining and aggregating local

temperatures into national values, for both average forecast and measured values, is a

1 Peng H; Long F; Ding C: “Feature selection based on mutual information: criteria of max-dependency
max-relevance, and min-redundancy”, IEEE Trans. Pattern Anal. Mach. Intell. 27 (8) 1226-1238, 2005.
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lengthier process that requires processing data for specific geographical locations from

among a database containing dozens of different locations.

Next, formatting of data, especially for the handling of dates and times, was imperative
to creating a time-series based input dataset digestible in the programming language of

choice. For this task, the lubridate package available for R programming was used.

The data were merged into a single set with all the variables and respective dates/hours
corresponding to the simulation period. In order to run any simulation-type validation,
as was performed in this project and described later on in this section, all missing
values for the time-range in question had to be identified. For the sake of purity, no
substitution - by imputation or otherwise - was performed (which greatly reduced the

number of predictions made).

Finally, as the magnitude of the features selected differs widely, a certain amount of
data preparation is needed to normalize the data. Pre and post processing of the data is

necessary to:

i.  normalize input to the random forest algorithm for training,; and

ii.  transform prediction output to original data range.

5.2.3 MODEL PARAMETERS

The random forest model was fit with 1500 regression trees using the random forest
package available for the R programming environment. The package’s standard default
parameters were also applied (i.e. default value for the number of variables randomly
sampled as candidates at each split |p/3] and the minimum size of terminal nodes [5]
(Liaw & Wiener, 2015) ).

e Number of trees = 1500
e Default settings of R random forest library will be used.

5.2.4 TRAINING AND TESTING
Training

From observing the day-to-day evolution of the system’s imbalance volume it is
apparent that its behavior is more likely related with very short term indicators, as in
what happened yesterday or the last couple of days, as opposed to what happened

several weeks or even a month ago. Therefore very short to short-term training time-
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frame horizons were used to train the model. Eight time-frames, ranging from 1 to 8
days, were simulated as a separate training horizon case to determine which of these
parameters yields better model performance. The training horizons correspond to the
time-range represented in the training data set. The eight simulations are illustrated in

Figure 5.1, and formulated below.

Training Horizon =D - H (5.1)
where,
H =1:8 daysError! Not a valid link.
Training
Horizon,
Days
1 D
2 D D-1 D-2
3 D D1 D2 D-3|
4 D Dl D-2 D-3 D-4 |
5 D DI D2 D-3 D-4 D-5 |
6 D DI D2 D3 D-4 D-5 D-6|
7 D D-1 D-2 D -3 D-4 D -5 D -6 D-7 |
8 D D-1 D-2 D -3 D-4 D -5 D -6 D -7 D -8 |

Figure 5.1: Illustration of training horizon time-frames for post-gate closure model (pre-gate
closure

Test/Forecasting

For the post-gate closure forecasts, the test data set consisted of the predictor variables
for target day D, whereas these test data set for the pre-day ahead gate closure forecast

consisted of the predictor variables for D-1.

5.3 DEVELOPMENT OF BIDDING STRATEGY APPLICATION
The insight gained from obtaining a forecast of the system’s imbalance must be
translated into useful bidding activity by determining the optimal hourly bid that will

minimize the imbalance costs for the producer/trader.

To this end, a bidding strategy was defined through a function containing a set of
parameters that express bidding conditions and whose optimal values simultaneously

minimize the imbalance cost based on forecasts and outcomes for the preceding week.
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In order to implement this strategy, a genetic algorithm (GA) is applied to obtain a
solution set for the strategic parameters. The GA is based on an optimization function
(fitness function) that minimizes the imbalance cost based on hindsight consideration (7
days) of: a) the forecasting model’s past predictions, and b) the actual observed
variables (operational and market) of the system’s imbalance corresponding to those

predictions.

Along with an objective function minimizing the cost, the parameters describing the
bidding strategy conditions are incorporated as conditional constraints into the GAs
titness function. By doing so, the genetic encoding and the basic genetic operators will

include feasible members of the population.

Upon obtaining a solution set for the parameters, these are substituted into the strategy
function, which is subsequently applied to the target day variables, and an hourly bid

amount is obtained.

5.3.1 FORECAST CERTAINTY IN BIDDING STRATEGY

The fundamental idea behind the bidding strategy is to explore links between
indicators, the model’s forecasted values, and actual outcomes in order to identify
circumstances of increased (or decreased) certitude in the prospective outcome and

benefits from the bidding activity.

With that in mind, a preliminary simulation of the forecasting model, including
simulations for the different training horizons, was performed to gain insight on how a
potential bidding strategy could be based on certitude of the model’s accuracy. An
analysis of the model’s output, as it relates to the actual observed outcomes, was

conducted on the output data from the model with a training horizon of 5 days?.
PorcenDF

The percent difference of the demand forecast matched in the day-ahead market
(porcenDF) appeared to be one of the indicators providing the most promising insight to
the direction of the system’s imbalance volume. As can be observed from Figure 4.8 and

Figure 4.9 in the previous Chapter, the majority of positive system imbalances appear to

2 From preliminary runs, a training horizon of 5 days provided the best performance. The final results are
presented later on.
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happen when porcenDF is above 2% or higher, and conversely, most negative system

imbalances appear to occur when the porcenDF is below that level.

If we set a 2% threshold on the porcenDF variable to group the data in the simulation,
we obtain the results shown in Table 5.1. We observed that 65% of the system imbalance
volumes were positive when 98% or less of the forecasted demand (porcenDF>=2%) is
met by the PBF schedule. For over 71% of those occasions, the model accurately
forecasted the direction of the imbalance if the magnitude of the forecasted volume was
over 200 MWh.

Output Information No. Obs. Percent
Total Data 5685
Demand PBF < 0.98 x Demand Forecast 3135 55.14%
APsysy > 0; positive 3678 64.69%
APsysy <0; negative 2007 35.53%
Model predicts sign 3862 67.93%
Model output magnitude > 200 MWh 4325
Model predicts sign for output magnitude > 200 MWh 3098 71.63%
Demand PBF > Demand Forecast 969 17.04%

Table 5.1: Model output results, from April, 2015 to March ,2016.

If we only consider the hours were demand forecast met by the PBF schedule is less
than or equal to 98%, we get the results in Table 5.2 below. In this case, the model
accuracy in predicting the direction is just over 72%, increasing to almost 75% for
instances were the forecasted volume was of over 200 MWh. Although not indicated in
the table, this accuracy increases to over 80% for a magnitude of 300 MWh, but
decreases to around 71% for magnitudes of 150 MWh.
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Output Information No.Obs.  Percent
Demand PBF < 0.98 x Demand Forecast 3135
APsysy, > 0; positive 2292 73.11%
APsysy <0; negative 843 26.89%
Model predicts sign 2266 72.28%
Model output magnitude > 200 MWh 2642
Model predicts sign for output magnitude > 200 MWh 1978 74.86%

Table 5.2: Model output results for hours were the demand forecast met by the PBF schedule
is less than or equal to 98%.

The table below shows what happens with the model’s output when the demand
forecast met by the PBF schedule exceeds the forecasted demand (percenDF<0). For this
criteria the occurrence of negative imbalances increases from to over 55% from the
35.56% under Table 5.1. The model accuracy on predicting the imbalance sign decreases
by almost 7%.

Output Information No. Obs.  Percent
Demand PBF > 0.98 x Demand Forecast 969
APsysy, > 0; positive 428 44.16%
APsysy, <0; negative 541 55.86%
Model predicts sign 594 61.30%
Model output magnitude > 200 MWh 773
Model predicts sign for output magnitude > 200 MWh 495 64.03%

Table 5.3: Model output results for hours were the demand forecast met by the PBF schedule
is greater than 98%.

The results of this analysis is the basis of the bidding strategy.

5.3.2 BID VOLUME STRATEGY FUNCTION

The bidding strategy is based on setting a bid volume whose magnitude increases
linearly as the forecast imbalance magnitude also increases. In other words, a large
system imbalance may handle a larger bid value without flipping the imbalance’s
direction, while greater certainty on the imbalance direction is also represented.
Considering the analysis made in the previous section, among other factors, a set of

parameters that describe bidding conditions bounding the linear function, as is shown
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in Figure 5.2, are also incorporated to manage risks, express risk-appetite and portfolio

needs, and increase certainty.

a,= Max Bid

Forall t

a,= Lower Limit

Bid Volume, MWh

System Imbalance Forecast Volume, MWh

Figure 5.2: Graphic representation of bidding strategy for all hours where PercenDF >= ou.

Any bid activity must meet the following condition, otherwise bid volume is

null:
(PercenDFy = a,) (5.2)
where,

a, = optimal percent difference of the demand forecast matched in the PBF

schedule

For all hours meeting condition ((PercenDF;, > a,)

(5.2), the bid volume is determined as follows:
(APysys = a) — BV, = aj (5.3)

(IAPpsys|—a3)

(ag < APpsys < aq) — BV = aj
02— ag

(5.4)
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else,
BV,=0 (5.5)
where,
BV, = magnitude of hourly bid volume.

a1 = an upper limit on the magnitude of the system imbalance forecast

volume.

a, = a lower limit on the magnitude of the system imbalance forecast

volume.

a3 = maximum magnitude of the bid volume.

5.3.2.1 OPTIMAL PARAMETERS
To key about the strategic parameters is that their optimal values simultaneously
minimize the imbalance cost. To obtain a solution set for these strategic parameters, a

genetic algorithm (GA) is applied, as described in section 94

a; , a; : These are the optimal upper and lower bounds that represent the level of

comfort with the magnitude of the imbalance volume forecast.

1. A forecast volume may be uncharacteristically large and thus unlikely. This
can be an issue considering that the bid value increases linearly with the
forecast value, so an upper bound is established to mitigate the risk of error

with large bid values which can carry significant losses.

2. On the other hand, low forecast values also pose increased risk for being too
close to the opposite direction. This may represent a higher potential for the
actual outcome to be of the opposite sign. This risk will be mitigated by

placing a lower bound under which no bid will be placed.

a3: This parameter is the optimal maximum bid value and it represents the risk appetite

of the market agent and the properties of its portfolio’s imbalance.
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a4: Based on the analysis conducted in the preceding section, certainty on the outcome
may be increased by considering the optimal percent difference of the demand forecast
matched in the PBF schedule, and requiring that all bid activity correspond to hours

where its variables meet or exceed this parameter.

The bidding strategy was developed from the perspective of an energy trader assuming
its production portfolio’s hourly imbalance is always against/opposite the system’s
needs. This is a reasonable assumption considering that an imbalance that supports the
system’s needs is not penalized. However, it can also be applied from the perspective of
a retailer by just changing the sign convention discussed in the next section, and of
course, considering the specific agents own portfolio imbalance to determine the

maximum bid.

5.3.3 GENETIC ALGORITHM OPTIMIZATION
To key about the strategic parameters is that their optimal values simultaneously
minimize the imbalance cost. To obtain a solution set for these strategic parameters, a

genetic algorithm (GA) is applied.

The GA is based on an optimization function (the fitness function) that determines the
best solution set for the strategic parameters to be used for target day D, that would
minimize® the imbalance costs for the preceding week (7 days, from D-7 to D-1), using

as input variables listed in

Variable Name Equation or source

@hsys Forecast: system’s net

imbalance volume, MWh Source: Forecasting model output

Observed: system’s net

imbalance volume, MWh Source: REE

APy sys
Percent difference of the

percenDFx  demand forecast matched See Table 4.4
in the day-ahead market.

COSTAP, = PRICEAP{ —
TAP, Imbalance cost, €/ MWh h h
COSTAP, PRICEAP} (4.4)

33 It is worth noting that the GA package for R programming only offers a maximization feature option,
thus the trivial transformation to maximization was performed when implementing the optimization.
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Table 5.4: Input variables to determine optimal parameters.

The GA package available for the R programming environment was used with 150

iterations.

5.3.3.1 FITNESS FUNCTION
In GAs, an explicit objective function is not necessary. However, the specification of an
appropriate fitness function is crucial. The fitness function is a black box for the GA,

which in our case is achieved by specifying a mathematical function that incorporates:

e An objective function.

e Conditional constraint parameters.

A. The objective function minimizing the cost of the imbalances, from the perspective

of a producer/trader, is represented below.

N
min C, = Z(th x COSTAP, X by)
h=1

(5.6)
where,

by, =binary variable that denotes cost (1) or savings (-1), based on accurate
prediction of the imbalance direction. The sign of variable is equivalent to

the sign of - (AP,sys X AP,sys).
ﬂ’h Sys = forecast of system imbalance.

COSTAP,=see Eqn 4.4.
N = number of hours in W.
W = Week from D — 7 to D — 1, the optimization period.

B. Parameter Optimization. GAs have a flexible constraint handling method. In our

case the fitness function is built to search for a set of parameters that we have
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defined to describe the behavior of the bid activity, and whose solution minimizes

the objective function above.

through these parameters is the bidding strategy.

(a? < AP,sys) & (PercenDF > a?)— BV, = a’s?

(“12) < APpsys < all’) & (PercenDF > af) > BV, = a;.

else, BVP =0

5.3.3.2 OPTIMAL_PARAMETER RANGES

In other words, the bid activity behavior defined

(5.7)
(|APpsys|—a3)
b (5.8)

(5.9)

Based on the data summarized in Table 5.5, corresponding to the simulation period

range of April 1, 2015 — March 2016, the pre-determined value ranges for the strategic

parameters were selected, as are shown in Table 5.6. The portfolio values are based on

the Energy Trader’s own data.

Table 5.6 specifies the range of values for the strategic parameters. These ranges were

determined based on historical data, and portfolio imbalance data specific to the energy

trader in the case. For a summary of the data considered, see the table below.

Net Imbalance

Volume, MWh Min 1stQu Median Mean abs(Mean) 3rdQu Max
System: Observed -3283  -235.2 302.5 336.4 739.05 872.2 4011
System: Forecast -2545  -66.51 308.6 338 553.66 708.5 3172
Portfolio -819 -120.8  -20.36 -27.35 120.06 70.44 696.1

Table 5.5: Data summary, No. Obs = 5685 period range= April 1, 2015 — March 31, 2016.

. RANGE
Strategic Parameter
Min Max
lower limit aa 50 400
upper limit a2 550 1250
Max Bid as 10 150
Percen o input min input max

Table 5.6: Value ranges for strategic parameters.
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5.3.1 APPLICATION OF BIDDING VOLUME STRATEGY FUNCTION

Upon obtaining a solution set for the parameters, these are substituted into the strategy
function which is applied to the variables corresponding target day D. Each parameter
will have the same value for the 24 hours of day D. Subsequently, and hourly bid is
obtained for each hour of the day.

Bid Value sign convention

Market agent transactions to adjust production program will be conducted from the
perspective of a seller, therefore the sign convention depicted Table 5.7 is applied,

conditioned to the sign (direction) of the system imbalance forecast in the last column.

Bid Sign Transaction Effect on Portfolio System Imbalance
(BS) Forecast Sign Condition
+ Sell (S) Increase program schedule -
- Purchase (P) Decrease program schedule +

Table 5.7: Bid value sign convention for market agent transacting as seller.
The hourly bid value to be submitted, based on the type of transaction, is as follows:
B? = BV? xBS (5.10)
where,
B =Final hourly bid value.

BS = Binary variable that determines the type of transaction, S/sell (1) or
P/purchase (-1).

5.4 MODEL VALIDATION
5.4.1 SIMULATIONS
To validate the bidding strategy a series of simulations were performed for both

components of the model and hourly bids were estimated for a 12-month period from
April 2015 to March 2016.

(i) Forecasting component.
The model combinations to be simulated were first and foremost selected based on the

availability of information to transact in the intraday markets. Therefore two main
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models are considered based on the forecasting horizon, and a third sub-set related to
sensitivity analysis:
I.  pre-day (ahead market) gate closure (Model 5),
I.  post-day ahead market gate closure:
a. Pre- gate closure of first-intraday market session. For transacting in first
intraday market session without secondary regulation band information,

as it is not yet available. (Model 3)

b. Pre- gate closure of second-intraday market session, for transacting in second
intraday market session with secondary regulation band information
available by then. (Model 2)

c. As the wind RAMP variable was a later addition to the forecasting model,
a second set of simulations was run to for the post-day ahead models that
incorporated the variable (Model 7 to transact in first intraday session,
and Model 6 to transact in second intraday session).Other model
variations were run as part of the sensitivity analysis

d. Simulations for other model variations were also run as part of the

sensitivity analysis described in section 5.4.4.
Each training horizon case, from 1 to 8 days (8 per model type) were also simulated.

(ii)  Bidding strategy application component.
a. The bidding strategy was applied to all forecasting model typed and their
respective training horizon cases listed above.
b. A second bidding strategy was applied after review of the results, which
is discussed in the following chapter.

54.2 DATA

As specified earlier, all data is stored centrally at the Energy Trader’s local database.

The input variable data for the forecasting model corresponding to the simulation
period was merged into a single data-set after the required processing was performed
(see Section 4.3). However, due to missing data points, - particularly full days without
temperature forecasts - the actual input data set was reduced to 7782 obs for the 14
variables listed in Table 4.4. As training horizons of up to eight days were applied, the
number of model output points was further reduced, and more so in order to conduct

an equivalent pre and post day ahead market gate closure comparison.
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The input variables for the bidding strategy application are listed in Table 5.4.

5.4.3 PERFORMANCE ASSESSMENT WITH REAL-DATA.
To assess the performance of the model, a set of metrics were used for each model

component.

(i) Forecasting model results: RMSE, MAE
The main metric used to evaluate the forecasting model’s predictions is the root

mean square error (RMSE). This error measure gives more weight to larger residuals

N o~ _1 2
RMSE = /MTL%) (5.11)

y, = predicted value

than smaller ones.

where,

y; = observed value for the ith observation

n = number of observations

The mean absolute error (MAE) will be used a secondary metric. Although the MAE

gives equal weight to the residuals, it is relatively easier to interpret.
1 —_—
MAE = — Y 1lyi — yil (5.12)

(ii)  Bidding Strategy: Savings (€, €/ MWh)

As noted by Garcia et al (Garcia & Kirschen, 2006), “the true measure of improvement
when forecasting market imbalance volumes is not an abstract error index but rather
the savings in balancing costs that this improvement makes possible”, therefore the

bottomline net savings will be the evaluation metric for the whole strategy.

Savings, €

The main global metric used to evaluate the bidding strategy as a whole is the cost
reduction or savings that it achieves. The bidding strategy was applied to real data from
the Spanish Energy Trader and its portfolio imbalance volumes were used to estimate

the cost reduction/savings.
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The energy trader’s portfolio imbalance data required additional processing to remove
the effect of previous strategies implemented during the simulation period which

affected the portfolio’s imbalance volume.

Determining if a cost reduction resulted from applying the strategy to any given hour
depends on whether: a) the bid activity reduces or increases the portfolio’s (pre-
strategy) imbalance; and b) the portfolio’s imbalance (pre-strategy) is supporting or
opposing the system. Unless noted otherwise, the portfolio imbalance will always refer

to the pre-strategy volume.

a) The bid value with respect to the portfolio’s imbalance (BP):
BP , = SIGN( B,, X APporty)
BP;f = Bid activity reduces portfolio imbalances. (B, APport, — the same sign)

BP }, = Bid activity increases system imbalance. (B, APport, — opposite sign)

b) The portfolio imbalance with respect to the system’s imbalance:

PS ;, = SIGN( APporty, X APsysy)
PS; = pre-strategy portfolio imbalance supports system's balancing needs.
PS }, = pre-strategy portfolio imbalance opposes system’s balancing needs.

Four possible savings/cost scenarios arise from applying the bidding strategy having
different effects on savings, as depicted in Figure 5.3 (green arrows represent beneficial

relationship for the strategy).
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Bid strategy effect

i . . .
. Full or partial* savings (profit
1* i ’) * 1 r P gs (profit)

No savings or Partial* cost

| Full or partial cost (loss)
§2 0 ] 40

Neutral/No savings

Bid Activity Porifolio imbalance (pre-sirategy)

BP+ = reduces portfolio imbalance PS " = supports system balancing needs ﬂ

BP™ =increases portfolio imbalance l PS ™= opposes system balancing needs

Figure 5.3: Cost-reduction scenarios for outcome of bidding strategy.
Hourly savings/cost are calculated as follows:

|bnl < |[AP,port | — PNLy s = B;, X COSTAP, X CR (5.13)
where,

PNL, ¢ = hourly bidding strategy profit or loss/savings or cost for each cost-reduction

scenario.
S = Cost reduction scenario (1-4)

CR = binary variable representing the cost-reduction scenarios 1-4;

scenario 1 = 1; sensation 2= 0; scenario 3 =-1; scenario 4 =0

The partial cost or savings in scenarios 1 and 2 are due to the bid value flipping the
imbalance direction of the portfolio, so either partial savings are realized, or a partial

cost is incurred as represented in figure (5.6)
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e.g. scenario 1.2

partial savings

Portfolio Imbalance

-ve +ve

System

Partial cost

e.g scenario 2.2 D S—

Portfolio Imbalance \

System

+ve

Imbalance Volume

Figure 5.4: Partial cost or savings scenarios.
Ibu| > |AP,poTt | — PNLyg = Bys X COSTAPy ¢ X CRP, (5.14)
where,
CRP = binary variable representing the partial cost-reduction scenarios 1 and 2;

Scenario 1 =1, Scenario 2 =-1;

The total savings is estimated with PNLTot! = ?;‘1 Z];,IL PNLg
(5.15).
PNLTt = 30s S PNLg), (5.15)
where
PNLT°tl = Total profit/losses or savings/costs for applying bidding strategy, €.

Savings, € MWh

The savings per unit of energy adjustment will be used as a secondary metric.
PNLPertnit=PNL/ ¥N_, | By| (5.16)

where,
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PNLPeUnit = per ynit savings of applying bidding strategy, €/ MWh

5.4.4 SENSITIVITY ANALYSIS

As part of the assessment process, a sensitivity analysis was performed to evaluate the
relative importance of the input variables on the accuracy of the forecast and
performance of the bidding strategy application. This evaluation was based on the

effect of omitting a predictor/s from forecast model.

Predictors were omitted based on the variable importance information (%IncMSE)
calculated by the random forest package for R programming. According to (Liaw &
Wiener, 2015), the %IncMSE variable importance measure is computed from permuting
out-of-the bag (OOB): “for each tree, the error prediction for the out-of-bag portion of
the data is recorded (MSE for regression). Then the same is done after permuting each
predictor variable. The difference between the two are then averaged over all tress and
normalized by the standard deviation of the differences. If the standard deviation of the
differences is equal to O for a variable, the division is not done (the average is almost

always equal to 0 in that case)”.

The models were ranked based on the performance metrics described in the previous

section.
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CHAPTER 6:
RESULTS AND OBSERVATIONS

A total of 104 simulations were run, corresponding to 8 training horizon cases for 13
different models. Upon review of the first set of results, another 104 simulations were

run with a modification to the bidding strategy application.

This chapter presents the results of these simulation, starting with the variable
importance measure to select model variations, followed by a description of the model
variations, continued by the results of the forecasting model and the bidding strategy
applications (both original and modified), including a brief overview of the effects of

the intra-day market prices on the strategy, ending with observations.

6.1 VARIABLE IMPORTANCE

The variable importance measure (%IncMSE) was saved from running the post-day
ahead model with all the variables. The measure was obtained for each variable for each
forecasted value and aggregated to represent the full simulation period. A summary of
the results of this aggregation are presented in Table 6.1 for a training horizon of 4 days
(H=4). A plot of the mean %IncMSE ranking the variables in order of importance is

shown in.

The variables ranked in the top 10 all had a %incMSE between 15% to just over 20%,
with three more or less distinct groups that could be identified, as shown in Figure 6.1
which contains a plot of the mean %IncMSE ranking of the variables in order of
importance. Group 1 variables are primarily related to meteorological conditions —
wind and temperature-, group 2 variables are predominantly related to demand, group

3 variables to price, and the bottom variables to balancing services.

Group 1 is the top ranked group containing three very closely ranked variables: the
P P group & y y

wind forecast (WF) — top ranked variable-, the wind forecast matched in the day-ahead
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market (WindPBF) and the temperature (TEMP), followed by the percent of demand
forecast met/not met in the day-ahead market (percenDF). This group highlights the
connection between the wind related variables and the system’s imbalance, and

confirms the significance of percenDF as expected in the previous chapter.

The second group consists of the technical constraints energy (TCEnergy), demand load
met by day-ahead market (DemandPBF) and the demand forecast (DF), all with a very
close ranking. The third group of the top 10 variables is rounded of by the percent of the
wind forecast in excess/deficit of the wind production matched in the day-ahead

market.

The bottom 4 ranking variables were not grouped as their %IncMSE difference was
larger among them than it was within the top three groups. The wind ramps follows
group three, then secondary regulation band (upwards and then downwards, SRBBu

and SEBd, respectively). The additional upwards reserves (RPAS) was the lowest

jle

ranked variable trailing far behind all others.

WF
WindPBF
Temp
percenDF
TCEnergy
DemandPBF
DF
percenWF
TCprice
DAMP
WindRAMP
SRBUP
SRBdown
RPAS

1
"IN . = I Il . =N .. - = - = =

10 15 20 25

Figure 6.1: Aggregated variable importance (%IncMSE) plot for Model 6 with H=4.
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Mean Median .
Variable Tn‘:xs? %’l:?::/:‘se Tnﬁms% 7’: ::;\7:5 %lr?lz\ss
WE 07118515  20.122661  0.70927675  19.936942 6.5337547
WINdPBF 07042795 19.965151  0.71503654  20.098843 6.8167821
Temp 0.6955443  19.661687  0.67011663 18.836197 7.2820799
percenDF 04763435 19.118917  0.65257166  18.343029 8.4403636
TCEnergy 0426788  17.718081  0.59509307 16.727372 6.2629539
DemandPBF 4200425 17.527398  0.6021474]1 16.925662 5.8458833
DF 0.5981612 16908855  0.57937469  16.285547 5.2036697
percenWF 0554933 15686879  0.51935217 14.598384 6.3801681
TCprice 05474395 15.475053  0.52038418  14.627393 4.333044
DAMP 0.5448385 15.401527  0.52485156  14.752965 40168081
WINdRAMP 0 4907284  13.871939  0.45818808  12.879133 6.0537538
SRBUP 0.3827281 10.818981  0.35408954  9.9530441 5.1087571
SRBdown 03090343  8.7357983  0.28790322  8.0926238 4.8924408
RPAS 0.088657  2.5061601  0.05272413  1.4820138 3.4004251

Table 6.1: Summary of aggregated variable importance measure (%IncMSE) for Model 6 with H=4.

From the next section, Models 10 to 16! were selected based on the variable importance
ranking by omitting the lower ranked variables (Models 12-15), starting with the bottom
most variable first, then adding the second lowest to the omission and so no. Then,
group 2 variables were omitted (Model 16), followed by omitting group 2 as well, which

means only the top group of variables were used (Model 10).

6.2 MODEL VARIATIONS

The model variations were selected based on 1- their forecasting horizon (pre- vs post
day-ahead market) and 2- as part of the sensitivity analysis (discussed above). In order
to understand the potential intra-day market effect on savings, the post-day ahead
models were grouped into further categories: pre-intraday market (IM) session 1 and
pre-IM session 2 (based on time frame availability of secondary regulation band
information). The variable combinations for each model considered are contained in the
table below.

1 Model No. 11 is not included in the results of this Project.
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MODEL MODEL MODEL MODEL MODEL MODEL MODEL MODEL Model Model Model Model

VARIABLE 2 3 4 5 ) 10 12 13 14 15

Model
16

Demand Forecast
Demand PBF
DemandPercen
Wind Forecast
Wind PBF
WindPorcen
DayAhead Price
Constraints (price)
Constraints (energy
RPAS
SecondaryRegBand
SecundariaBand-Up

Temp

I N N N N N N N NN
s=3 IS SN SN IR IR 1SN B SN BN N B S
N N N N N N N S SR NN
X X X %X X %X %X % << <<
1Y Y BN AN BN BN S AN SN SN RN N N
S SRS S RS S
COUx X USSR
AN R A N2 IR IR N NE N NN
SOSN8 S SN A RS
USRS T S NS S
CAUx % x UL
AN R 2 YA N N N N NN NN

WindRAMP Forecasi

x

X UK X X X X X X << <X

A = Pre-day Ahead
B.1= Post day-ahead, pre-ID session 1
B.2= Post day-ahead, pre-ID session 2
Two main model categories were simulated based on the forecasting horizon. A third sub-category for the

post-day ahead category classifies forecasts as either pre intraday (ID) market session 1 or 2.

Table 6.2: Variable combinations for Models’ simulated.
These are summarized below:

A. Pre-DA model - Benchmark model:
e Model 5: all variables except windRAMPS.
B. Post-DA models:
e Model 2 & 3: Pre IM 1 and IM 2; all variables except windRAMPS?2.
e Model 6 & 7: PreIM1 and IM2; all variables.
e Model 10-16: Variations based on variable importance!.
0 Model 12 — omits bottom variable
0 Model 13- omits bottom 2 variables (RPAS, SRBdown)
0 Model 14 — omits bottom 3 variables (RPAS, SRBdown, SRBup)

2 As mentioned in the previous chapter, windRAMPS was identified after the first simulation set.
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0 Model 15 omits bottom 4 variables (RPAS, SRBdown, SRBup,
windRAMP). Includes group 1-3 variables.

0 Model 10: omits bottom and group 3 variables (RPAS, SRBdown,
SRBup, windRAMP, DAMP, TCprice, percenWF). Includes group 1
and 2 variables.

0 Model 16: omits bottom and group 3 and 2 variables (RPAS, SRBdown,
SRBup, windRAMP, DAMP, TCprice, percenWF, DF, DemandPBF,
TCenergy,). Includes group 1 only.

e Model 1, 4, Ad hoc variations pre-variable importance analysis.

0 Model 1: to gauge effect of omitting temperature.

0 Model 4: to incorporate demand and wind production variables only.

6.3 FORECASTING MODEL RESULTS

The results presented in this section correspond to the 128 simulations using input data
from April 2015 to March 2016, yielding 5,685 forecast hours — approximately 7.8
months” worth of forecast points for each simulation. The reduction in forecast points
from the number in the input data set data are a result of missing variable data needed
for the combination of training horizons with corresponding test data sets, reducing the

amount of forecast points.

The simulation results for the top performing training horizon for each model are
included in this section’s tables. The first column of the results” tables ranks the model
in order of performance, from highest to lowest, based on the value for the first listed
evaluation metric. As the performance ranking for the remaining metrics in the same
table may or may not coincide with the first metric, the highest and lowest
performances for each metric have been color coded, with green and red, respectively.
The median metric corresponds to the median value for all training horizon case results
of each model, whereas the horizon listed corresponds to the top performing case for

the metric and model in question.

6.3.1 MODEL FORECASTING PERFORMANCE
The simulation results for the top performing training horizon for each model are

included in Table 6.2 and Table 6.5, for error and forecast accuracy metrics, respectively.
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6.3.1.1 FORECAST VOLUME ERROR MEASURES

The RMSE and MAE included in Table 6.3 are error measures: the lower the value, the
higher the performance, and vice versa. All post-day-ahead market models
outperformed the benchmark Model 5 - the pre-day ahead gate closure model. The
post-day ahead market model using all 14 variables (Model 6) resulted in the highest
RMSE performance. The error slowly increased from there with each consecutive
omission of the bottom three variables (RPAS and Secondary band regulation in both
directions) based on the variable’s importance. Different omission variations of the
bottom variables deteriorated de RMSE only slightly, and not quite like the single
omission of TEMP or just keeping the top variables which yielded the highest error of
the post day ahead models.

Model 5, the pre-day ahead benchmark model was the lowest performer (higher error
value results in lower performance). Although the error variance among the post-day
ahead models is small, it is much higher when it comes Model 5 - an RMSE about 10%
higher than the top model. In terms of the median error for all of training horizon cases
simulated for each model, Model 7 exhibited the best performance (omits secondary
regulation band). In terms of training horizons, 8 days consistently yielded the better

results for all models.

A description of the model in ranked order for RMSE performance is given in Table 6.4

below.
Model RMSE MAE
H Value Median | H Value Median
Model 6 8 | 82532 859.54 8 644.23 664.44
Model 12 8 82555 860.89 8 644.05 664.76
Model 13 8 828.02 861.82 8 646.23 666.57
Model 14 8 82923 860.09 8 648.38 665.52
Model 2 8 829.46 863.54 8 648.44 667.98
Model 7 8 830.87 | 830.87 8 649.48 667.46
Model 10 8 831.51 860.36 8 650.24 665.85
Model 3 8 83271 864.53 8 652.98 669.56 st parfamrer
Model 15 8 834.48 867.04 8 654.19 670.81 -vmpafm
Model 4 8 843.34 863.97 8 658.96 667.26 H = Modd Training Haizion
Model 1 8 851.51 878.30 8 664.93 679.24
Model 16 8 85929 876.09 ] 670.27 682.67
Models | ¢ [00MENINO4OBIN & FINSHN7S8%eN
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Table 6.3: Forecasting model results metrics: RMSE and MAE

| RMSE
Model No. Variables
6 all variables

12 omission bottom variable (RPAS)

13 omission bottom 2 v ariables (RPAS, SRBdown)
14 omission of bottom 3 varibles (RPAS, SRBdown
2 omission of windRAMP

7 omission of SRBdown, SRBup

omission of botton half of variables (RPAS, SRBdown,
SRBup, windRAMP, DAMP, TCprice, percenWF)

3 omission of windRAMP, SRBdown, SRBup

18 omision of bottom 4 varibles (RPAS, SRBdown SRBup,
4 omission of all except wind and demand v ariables

1 omission of Temp

16 omission of all variables except top group

8 omission of all except (RPAS and DemandPBF)

9 omission of all except (RPAS, DemandPBF, SRBup)

5) BENCHMARK/Pre-day ahead

Table 6.4: Model description in order of RMSE performance.

6.3.1.2 FORECAST CORRELATION AND DIRECTION ACCURACY

Model 12 (omits RPAS) followed closely by Model 6 (all variables) results represent the
highest correlation between the forecasted value and the observed imbalance, although
only marginally better than the other post-day ahead models. On the other hand, Model
4 — which is a simplified post-day ahead model with only demand and wind related
variables (6 total) — was best at accurately forecasting the direction of the imbalance, at
over 68%m followed by Model 14 (omits the bottom three variables). The remaining
post-day ahead models followed closely behind all with percentages in the range of
67%. Yet again Model 5 exhibited the lowest performance in both metrics, with a
correlation at least 10% lower than all the post-day ahead models, and a decrease in
foresting accuracy of the imbalance direction of over 3% with respect to the other

models.

The longest training horizon (8 days) yielded the highest correlations, except for Models
1, 4 and 16 which were the exact opposite (1 day training horizons). However, in terms
of forecasting the imbalance direction, the shorter training horizons yielded the best

results.
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Model Correlation Accuracy of Forecast Direction,%
H Valve  Median H Valve Median
Model 12 8 0.4487  0.4183 9 67.810% 67.441%
Model 6 8 0.4474 | 0.4190 S) 67.933% 67.529%
Model 13 8 0.4463  0.4167 2 67.669% 67.318%
Model 7 8 0.4437  0.4151 4 67.792% 67.537%
Model 2 8 0.4433  0.4158 2 67.863% 67.432%
Model 14 | 8 0.4431 0.4155 4 68.056% 67.634%
Model 16 ! 0.4418  0.3881 ! 67.423% 66.095%
Model 4 ! 0.4406  0.4140 2 68.303% 67.590%
Model 10 8 0.4394  0.4165 g 67.968% 67.731%
Model 3 8 0.4388  0.4131 2 67.757% 67.546%
Model 15 8 0.4376 ~ 0.4131 4 67.704% 67.203%
Model 1 ! 0.4266  0.3951 ! 67.617% 67.010%
Models | & HOSISININOPSON s [ea7iaz s e

Table 6.5: Forecasting model results metrics: Correlation (forecast/observed) and accuracy of forecast

Table 6.6: Forecast accuracy of system imbalance direction for all model case simulations.

direction.

Accuracy of Forecast Direction

Case Rank All models:
(best=1 Average, H
worst=8)
1 3.08
2 3.67
3 3.83
4 3.17
S 4.67
6 4.42
7 6.58
8 7.7

6.3.2 BEST PERFORMING MODELS

Observed values and model output for Model 6 are contained in Figure 6.2.
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Observed Values
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Figure 6.2: Results for Model 6, Training Horizon 8.

The results for Model 6 (lowest RMSE) and Model

gain additional insight on properties of the forecast

12 (lowest MAE) were analyzed to
ing results. Table 6.7 and Table 6.8

contain the evaluation metrics for all the simulated training horizon cases, with each

metric ranked from top to bottom by highest to

lowest performing case, and the

corresponding horizon case listed in the column to the left of each metric. From the

error metrics we can observe a tendency for the error to generally increase — a total of

almost 6% for model 6 - as the training horizon shortens. No similar tendency could be
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inferred from the direction accuracy, although it would appear that mid to lower

horizons performed better.

MODEL 6
Direction
Horizon, H RMSE Horizon, H MAE Horizon, H Rorecast
Accuracy,
Y4
8 825.317 8 644.225 5 67.93%
7 838.172 7 652.476 2 67.88%
6 849.209 6 656.52 6 67.85%
5 855.506 5 662.691 1 67.53%
1 863.57 4 666.195 4 67.53%
4 864.113 2 667.766 3 67.37%
2 866.169 1 668.543 8 67.30%
3 876.796 3 676.539 7 67.07%

Table 6.7: Model 6 results metrics for all training horizon cases.

MODEL 12

Direction
Horizon, H RMSE Horizon, H MAE Horizon, H Forecast
Accurate, %

8 825.547 8 644.045 5 67.81%
7 839.376 7 653.5 2 67.72%
6 849.952 ) 657.355 6 67.69%
5 856.437 5 662.929 1 67.48%
4 865.349 4 666.584 3 67.41%
1 865.442 2 669.218 4 67.35%
2 868.264 1 669.827 8 67.14%
3 879.136 3 678.29 7 67.12%

Table 6.8: Model 12 results metrics for all training horizon cases.

Although in actuality positive imbalances were observed to be more common than
negative ones, the model forecasts overestimated the number of positive imbalances
(7% more than observed for Model 6). Yet it accurately forecasted the direction of
almost 73% of those positive imbalances. A data summary of these results is found in
Table 6.9 and Table 6.10. Conversely, the negative imbalances were underestimated and
the direction forecast accuracy was almost 18% lower than for the positive imbalances
for Model 6.
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MODEL 4, H=5
Imbalance No. Obs 5685
Direction Forecasted Observed
Positive
No. 4061 3678
% 71.43% 64.70%
MAE 786.6493
PredDir 72.84%
Negative
count 1642 2007
% 28.88% 35.30%
MAE 618.5461
PredDir 55.05%

Table 6.9: Data summary for Model 6.

MODEL 12
No. Obs 5685

Imbalance Direction Forecasted Observed
H=8 H=5 H=4

Positive _
No. Hours 4132 4050 3976 3678
% 72.68% 71.24% 69.94% 64.70%
MAE 634.78 670.91 674.86
PredDir No. Hour 2971 2949 2899
% 7190% 7281% 72.91%
Negative
No. Hours 1553 1635 1709 2007
% 27.32% 28.76% 30.06% 35.30%
MAE 668.69 643.15 647.32 _
PredDir No. Hour 846 906 930

% 54.48% 55.41% 54.42%
Table 6.10: Data summary for Model 12.

In terms of the actual level of imbalances, the forecast volumes tended to be lower than
the observed values. The frequency distribution of both value types can be seen in the

histogram below.
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Figure 6.3: Frequency distribution of forecasted and observed imbalance volumes: Model 12, Training

Horizon 8.

Finally, as the magnitude of the imbalance increases, the accuracy of forecasting the

imbalance direction appears to increase as well, as shown in Table 6.11.

MODEL 6, H=5

Forecast

Magnitude >  IMB >0 IMB<0 Total
0 0.728392 0.5566502 0.6793316
200 0.7565033 0.5720891 0.7163006
300 0.7648489 0.5915895 0.7312569
400 0.7845414 0.596926 0.7556799
500 0.7927412 0.6131997 0.7719228
600 0.7952846 0.6282311 0.7800995
700 0.8049793 0.6364709 0.7957055
800 0.8142123 0.6444543 0.8051044
900 0.8252119 0.6502848 0.8178332
1000 0.8236915 0.6581972 0.8212005
1100 0.825046 0.663944 0.8276451
1200 0.8333333 0.6672358 0.8329621
1300 0.858006 0.6682854 0.8502825
1400 0.8830645 0.6700386 0.8825758
1500 0.895288 0.6718238 0.8926829

Table 6.11: Forecasting accuracy of imbalance direction as forecast magnitude increases.
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6.3.3 OBSERVATIONS

The post-day ahead models in all instances outperformed the pre-day ahead model. The
improvement of post vs pre is significant enough that their application would most
certainly be warranted. Although by a small margin, the results obtained from using all
the variables (Model 6) generally yielded the lowest error index of all post-day-ahead
models. Removing a combination of the bottom ranked variables showed the lowest
impact on the error measures, with RPAS exhibiting the lowest impact. Omission of the
meteorological related variables — i.e temperature — has a larger impact on the error, but

preserving just top ranked variables results in the largest deterioration of the results.

The longest training-horizon was best at decreasing error, meaning more accurate
forecasts of volume magnitudes were obtained with their application. However, if we
consider the forecast as a classification problem instead, the shorter term horizons

proved superior at forecasting the direction of the system imbalance.

6.4 BIDDING STRATEGY RESULTS

Upon obtaining the forecast results, the bidding strategy component of the model was
applied. As noted by Garcia & Kirschen, 2006, “the true measure of improvement when
forecasting market imbalance volumes is not an abstract error index but rather the

savings in balancing costs that this improvement makes possible”.

The cost savings is used as the main evaluation metric for the strategy as a whole, and
presented as the “gross savings” in this section. The effects of transacting in the
different intra-day markets was evaluated separately (referred to as the net savings
herein) and intended as complementary information to further comprehend the

potential effect on gross savings.

A second bidding strategy was simulated after evaluating the results of the original

strategy, as modification of the first one.

The cost overruns resulting from the Trader’s portfolio imbalance are estimated at over
10€ million for the year 2015. The Trader’s actual portfolio cost overruns corresponding
to the hours evaluated in the simulation is 6,527,859 € providing further context to the

results presented in the following sections.

Real portfolio cost overruns (CO) without strategy:
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6.4.1 GROSS SAVINGS

Table 6.12 contains the imbalance cost reduction results from applying the bidding
strategy component to the imbalance forecast results. As with the results tables for the
forecasting model, the results presented in this sections correspond to the best
performing case for each model type, and ranked in order of highest to lowest
performance based on the “Value” column for the first metric presented in table. The

median is also provided in the same manner as was done earlier.

Other complementary metrics provided are the savings in euros (€) per each energy
unit (MWh) transacted through this bidding strategy and percentage savings the cost
reduction represent to the Trader’s real cost overruns. The former metric enables us to
gauge the efficiency of the strategy, while the latter provides further real —world
context. The final column shows the potential yearly savings estimated by escalating the
calculated savings to a yearly amount. Although not quite as insightful as having hard

results for the full year, it does at least provide an idea of the potential.

Est. Yr. Gross
Model Total Gross Savings! Improv. over Savings

% of lowest % of

H Value, € Median, € €/MWh2 CO perfomance* € CcO
Model 12 | 4 | 483,457 378,717 1.1842 7.41 88.75 739,404 11.33
Model 16 | 1 470,476 196,920 1.1209 7.21 83.68 719,552 11.02
Model 6 | 4 459,497 379,494 1.1530 7.04 79.39 702,761 10.77
Model 13 | 4 420,511 377,354 1.0275 6.44 64.17 643,134 9.85
Model 7 | 4 406,538 386,789 0.9974 6.23 58.72 621,764 9.52
Model 10 | 4 405,110 365,934 1.0164 6.21 58.16 619,580 9.49
Model 14 | 7 399,897 363,800 1.0580 6.13 56.13 611,607 9.37
Model4 | 4 387,606 322,987 0.9576 5.94 51.33 592,810 9.08
Model 2 ] 387,201 345,264 0.9612 5.93 51.17 592,189 9.07
Model 15 | 4 371,047 310,987 0.9142 5.68 44.86 567,483 8.69
Model3 | 1 365,066 318,037 0.9133 5.59 42.53 558,336 8.55
Model1 | 5 360,606 315266 [10:7580° 5.53 40.79 551,514  8.45

Model 5 | 8 0.7645

1. Gross Savings do not consider the intraday market cost/benefit.
2. € of savings per MWh of energy applied to correct the portfolio”s imbalance.
4. Based on Gross Savings.

Table 6.12: Bidding strategy application results: Gross savings.

Once again all post-day ahead models outperformed the day-ahead model, with savings
over 88% higher for the top performing model. Model 12, which excludes the RPAS
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variable, yielded the greatest savings at $483,457, or approximately 7.41% of imbalance

cost overruns, whereas the day-ahead market model yielded almost half that amount.

Model 12 was also superior in the per unit savings measure, saving on average 1.18€ for
every MWh transacted through this strategy. Interestingly, the two models that
followed in ranking included either 1- just the top 4 variables (group 1, Model 16) or all
variables (Model 6). Table 6.12 shows the variance in savings from the top to bottom
performing post-day ahead models to be around 25%.

Four days appeared to be the training horizon case yielding the highest savings for the
majority of models. Only two models achieved its highest results by using a longer

training horizon, of which two are the bottom ranked models.
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Figure 6.4: Plot of performance improvement (gross savings and per unit savings results
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Model No.

Gross Savings

Variables

12
16
6
13
7
10
14
4
2
15
3
1
)

omission bottom variable (RPAS)

omission of all variables except top group

all variables

omission bottom 2 v ariables (RPAS, SRBdown)
omission of SRBdown, SRBup

omission of botton half of variables (RPAS,
omission of bottom 3 varibles (RPAS, SRBdown
omission of all except wind and demand v ariables
omission of windRAMP

omission of bottom 4 varibles (RPAS, SRBdown
ommisison of windRAMP, SRBdown, SRBup
omission of Temp

BENCHM ARK/Pre-day ahead

Table 6.13: Ranked model description for Gross Savings.

From observing the plot of the daily evolution of the profits and losses obtained by
applying the strategy, as done in Figure 6.5, the outcome can be perceived as volatile.
Except for the pre-day ahead model (Model 5), the general shape appears to be similar

for all models. The beginning of the simulation experiences fast gains which peak twice

before two significant drops.
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Figure 6.5: Daily cumulative evolution of gross savings results for all models.

— Model 1
— Model 10
— Model 12
— Model 13
— Model 14
— Model 15
— Model 16
— Model 2
— Model 3
— Model 4
~— Model 5
— Model 6
— Model 7

120



Chapter 6: Results and Observations

5e+05-

4eg+05-

w

3e+05-

2e+05-

Curnulative Gross Savings

1e+05-

Oe+00-

Jul 2015 Oct 2015 Jan 2016 Apr 2016
Date

Figure 6.6: Daily cumulative evolution of gross savings results for top half of models.

6.4.2 INTRA-DAY MARKET EFFECTS ON SAVINGS

Model 10
— Model 12
— Model 13
— Model 14
— Model 16

Model 6

Model 7

To gain better understanding of the potential effects that the intra-day market prices

could have on the savings, the net savings were determined based on the spread of the

intra-day market price (IDMP) with respect to the day-ahead market price. This will

have no impact on the day ahead model as adjustments would be internalized within

the bid in that market.
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There are four different scenarios that can occur when adjusting the program in the

intra-day market:

1- DAMP <IDMP
a. If increasing program/selling more energy — the spread is a per unit profit.
b. If decreasing the program/buying more energy — the spread is a per unit
loss.

And vice versa,

2- DAMP>IDMP
a. If increasing program/selling more energy — the spread is a per unit loss.

b. If decreasing the program/buying more energy — the spread is a per unit
profit.

The net savings incorporating the spread of the intraday/day-ahead market, as
represented by the cases above, was calculated each model and case, and top results for
each model are shown in Table 6.14. All the savings results were reduced. For example,
the highest gross savings achieved were reduced to by about 18%. The models that
required transacting in the second ID market session experienced the greatest reduction
from the ID effect, as shown in Table 6.15 which contains the savings reduction ordered
from highest to lowest reduction in gross savings. The impact for those models was an
average reduction in savings of around 47%. Savings from the ID session 1 models were
reduced on average by 18%. Considering that market liquidity in Spain is often reduced
with each consecutive ID market session, it is not surprising that the first ID session

models would experience lower impact than the second ID session.

Model 16 (only group 1 variables) and Model 12 (excepting RPAS) still round up the top
spots. However, Model 6 -which yielded the largest gross savings - experienced a

reduction of over 32%
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Model Total Net Savings?

H Value Median
Model 16 ] 394,904 € | 149,102 €
Model 12 4 342,983 € 195,251 €
Model 10 4 327,265 € 258,442 €
Model 4 4 326,524 € 256,622 €
Model 14 4 324,863 € 271,810 €
Model 7 4 324,263 € | 295,980 €
Model 6 4 308,791 € 181,053 €
Model 15 4 283,658 € 214,872 €
Model 3 ] 273,253 € 229,550 €
Model 13 4 268,831 € 181,074 €
Model 5 8 256,137 € 175,657 €
Model 2 4 225,712 € 173,264 €
Model 1 5

3. Net Savings internalize the IM market price
cost/benefit w/ respect to the day ahead price.

Table 6.14: Strategy results: Total Net Savings.

ID market Effect on Savings

Model Gross, € Net,€ A€ A%
Model 1 360,606 195355 -165,251 -45.83%
Model 2 387,201 225,712 -161,489 -41.71%
Model 13 420,511 268,881 -151,630 -36.06%
Model 6 459,497 308,791 -150,706 -32.80%
Model 12 483,457 342,983 -140,474 -29.06%
Model 3 365,066 273,253 -91,813  -25.15%
Model 15 371,047 283,658 -87,389  -23.55%
Model 7 406,538 324,263  -82,275  -20.24%
Model 10 405,110 327,265 -77,845  -19.22%
Model 14 399,897 324,863 -75,034 -18.76%
Model 16 470,476 394,904  -75,572  -16.06%
Model 4 387,606 326,524 -61,082 -15.76%
Model 5 256,137 256,137 0 0.00%

A = Pre-day Ahead
B.1= Post day-ahead, pre-ID session 1
B.2= Post day-ahead, pre-ID session 2

Table 6.15: Effect of ID market price on Gross Savings.

Even after considering the savings reduction from the ID effect, the strategic bids result

in savings that outweigh the ID cost effect. Although the pre-day ahead model is not
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affected by the ID prices, its results are also outperformed by the vast majority of the
post-day ahead models.
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Figure 6.7: Daily cumulative evolution of Net Savings results for all models

6.4.3 MODEL 12 AND 16
Model 12 and Model 16 yielded the highest net savings, despite the fact that the former
transacts in the second ID market session. Additional details about their results are

presented in this section.
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6.4.3.1 RESULTS OF ALL HORIZONS
Table 6.16 contains results of all the training horizons for Model 12 (excludes RPAS

variable).

The best performing horizon is 4 days, and the difference between its and the next best
results are quite significant: 17% improvement in Gross Savings and over 36%

improvement in Net Savings from using a day training horizon,

MODEL 12

Horizonte S(?Vrizsg;s Horizon, % of Horizon, Savings, Horizon, Solx\/liifgs
€ ' H OoC H €/MWh H € ’

4 483,457 4 7.41% 4 1.1842 4 342,983
1 401,033 1 6.14% 8 1.0370 5 250,392
8 393,463 8 6.03% 1 0.9828 6 197,222
5 385,815 5 5.91% 5 0.9585 8 195,652
2 371,619 2 5.69% 2 0.9252 1 194,850
3 346,688 3 5.31% 7 0.9034 7 166,497
7 345,591 7 5.29% 6 0.8916 2 151,907
6 338,984 6 5.19% 3 0.8825 3 147,115

Table 6.16: Strategy results for Model 12.

The daily evolution of profit and losses for the gross savings, ID market effects (referred
to as IM savings in the graph) and the resulting net savings are plotted in Figure 6.8.
Aside from the steep rise in savings at the beginning of the period, the losses from the
intraday market are evident from the blue curve, as are two peaks followed by losses
continuous losses. The latter peaks are circled in the plot below. These characteristics
are better appreciated with the plot in Figure 6.9 which smooths out the daily

fluctuations into monthly savings-
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Cummulative Daily Savings, €
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Figure 6.8: Cumulative Daily Gross and Net Savings for Model 12.

Monthly Cum.
No.Obs, Approx. Gross Gross
Month hrs. No.Days Savings Savings

Apr-15 240 10 33,183 33,183
may-15 744 31 102,087 135,270
jun-15 714 30 253,068 388,337
jul-15 504 21 -1,334 387,004
aug-15 528 22 9,829 396,833
sep-15 720 30 59,737 456,570
oct-15 334 14 11,008 467,578
nov-15 624 26 -56,133 411,445
dec-15 237 10 -32,512 378,933
jan-16 95 4 -2,757 376,176
feb-16 443 18 36,257 412,433
mar-16 502 21 71,024 483,457

Table 6.17: Monthly savings for Model 12
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Figure 6.9: Cumulative gross monthly savings from strategy application for top 4 performing models.

6.5 MODIFIED BIDDING STRATEGY RESULTS
Upon identifying the peaks and consequent falls in savings brought up in the previous
section, in addition to continually observing the system’s imbalance data on day to day

basis, a second or modified strategy was applied

With the intent to reduce continued day-after-day losses, the strategy was modified to
bid only bid half of the amount suggested by the strategy function following a day of
losses. This also means that benefits following a day of losses, should they occur, would

also be reduced in half.
The results of simulating the modified strategy are presented in this section

6.5.1 GROSS AND NET SAVINGS

Table 6.18 contains the gross savings results for the modified strategy. The modification
results in increased of savings of up to 8.17% of cost overruns for the Trader. Table 6.19
contains the net savings results. The top performing models are the same as those in the

in the original strategy.
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Model Gross Savings!
H Value Median €/MWh2 % of OC
Model 12 | 4 | 533,476 € 423209 € | 1.5405  8.17%
Model 16 | 2 521,6432€  303237€ 1.4494  7.99%
Model 6 | 4  498332€  420,884€ 1.4631  7.63%
Model 13 | 4 472,749€ 416,657 € 13649  7.24%
Model 10 | 4 460,886 €  413,894€ 13644  7.06%
Model7 | 4 455567€ | 429331€ 13192  6.98%
Model 4 | 2 454079€ 377,385€ 13092  6.96%
Model 14 | 6  449.953€  415788€ 13983  6.89%
Model2 | 4  431,330€  399.938€ 12427  6.61%
Model 15 | 4 427,719 € 367999 € 12421  6.55%
Model 1 | 5 412,461€ 354,151 € [N900Y 6.32%
Model 3 | 6 407,706 €  379.517€ 12747  6.25%
Model 5 | & [IIGEIZSAEN [948694€N 12580 [II6I8E7%N

1. Gross Savings do not consider the intraday market cost/benefit.
2. € of savings per MWh of energy applied to correct the portfolio”s imbalance.

Table 6.18: Modified Bidding strategy application results: gross savings.

Model Net Savings®

H Value Median
Model 16 | 8 | 4585,745€ @ 257,344 €
Model 10 | 8 391,252€ 337,227 €
Model 12 | 5 389,601 € 259,404 €
Model7 |4 382575€ | 350,316 €
Model 14 | 7 381,355€ 349818¢€
Model4 | 2 378,773€ 323,191 €
Model 5 | 8 351,734€ 248,694 €
Model 15 | 5 351,652€ 289,536 €
Model 6 | 4 344,840€ 250,947 €
Model3 | 6 334,030€ 302,907 €
Model 13 | 3 318,222€ 254,946 €
Model2 | 4 294,807 € 220,561 €
Model 1 5

2. Net Savings internalize the IM market price cost/benefit
w/ respect to the day ahead price.

Table 6.19: Modified Bidding strategy application results: Net Savings.

6.5.2 COMPARISON TO ORIGINAL STRATEGY

The modified strategy resulted in improved gross savings and net savings for all
models. The improvement in gross savings for the post day-ahead models ranged from
10% to 17% (10% for the top performing model) and increasing to a range of 12 to 31%
for net savings. The pre-day ahead model saw the greatest improvement, yet in terms
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of gross savings, all other models still outperformed it. The improvement results are
contained in Table 6.20.

Model Improvem?nt in Improverr!ent in Net
Gross Savings Savings
A€ % A€ %

Model 12 50,019 € 10% 46,618 € 14%
Model 16 51,156 € 1% 60,841 € 15%
Model 6 38,835 € 8% 36,049 € 12%
Model 13 52,238 € 12% 49,341 € 18%
Model 10 55,776 € 14% 63,987 € 20%
Model 7 49,029 € 12% 58,312 € 18%
Model 4 66,473 € 17% 52,249 € 16%
Model 14 50,056 € 13% 56,492 € 17%
Model 2 44,129 € 1% 69,095 € 31%
Model 15 56,672 € 15% 67,994 € 24%
Model 1 51,855 € 14% 61,332 € 31%
Model 3 42,640 € 12% 60,777 € 22%
Model 5 95,597 € 37% 95,597 € 37%

Table 6.20: Modified strategy improvement

6.5.3 MODEL 12:

Model 12 also yielded the best results under this strategy. The evolution its daily profits
and losses for the gross, IM, and net savings, are shown in the figures below. From
comparing the evolution of the profit and losses for the original and modified strategy,
as plotted below, it can be seen how the first strategy yields greater savings for few first
months of the simulation. However, it also shows how the losses surrounding the two
peaks of concern are reduced (see items no. 1 and 2 blown up for additional detail). At
the first peak the second strategy outpaces the first one and remains as such through the

end of the simulation period.
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Figure 6.10: Cumulative Daily Gross and Net Savings for Model 12, H=4, with Strategy 2.
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Figure 6.11: Evolution of Gross Savings comparison for Strategy 1 and Strategy 2.
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Figure 6.12: Loss reduction details for peaks 1 and 2 of profit and loss evolution.

6.6 OBSERVATIONS

From review of the simulation results, the following observations were inferred:

Sufficiently significant imbalance cost reductions can be achieved by applying

the bidding strategy developed in this project, even when using all the

forecasting horizons within the scope. Considering both 1- the potentially large
magnitude of the imbalance costs for certain market participants (estimated over
10€ million for the Trader in 2015) and 2- the small margins typically associated
with pure trading and/or retailing activities, the potential savings of 8.71% in
portfolio imbalance costs for the Trader in the case-study are sufficiently
significant.

The post-day ahead models results consistently outperformed the day-ahead

model, doing so by a very large margin for the main strategy evaluation metric.

When compared to the day-ahead models, the post-day ahead models achieved:
0 Volume Error decrease of up to 9.2%
0 Accuracy in forecasting imbalance direction increase up to 5%
0 Correlation increase by up to 43%
0 Gross savings increase to 51% and 89%, depending on the strategy applied
The effect of transacting in the intra-day markets negatively impacts the savings,

especially when transacting in the second intra-day market session. However,

the imbalance cost reduction achieved with the strategy still outweighs the cost
of transacting in the intraday- markets.
In terms of forecasting results:

0 The variable importance metric appears to provide useful insight into the

importance of the variables in forecasting the system imbalance.
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*= All of the higher performing models included the higher ranked
variable groups (in ranking order):

1. Meteorological (wind and temperature related, except
WindRAMP and percenWF) variables,

2. Demand and network constraints (energy only) related
variables.

3. Price related variables (day ahead and constraints)

* Onmission of the lower ranked variables (balancing services and
WindRAMP), especially the additional upwards reserve variable,
had the least negative impact on the forecasting error.

* Omission of the temperature — from top ranked group variable -
has the greatest negative impact on the accuracy of the forecast
relative to the other variable combinations.

0 Increasing the training horizon consistently decreased the error in
forecasting the imbalance volume. However, the shorter training horizons,
resulted in increased accuracy of

0 The accuracy of forecasting the imbalance direction increases as the
magnitude of the forecast volume increases, which supports the bidding
strategy approach.

Excluding the additional upwards reserve variable (RPAS) consistently provides

better results. Based on both the main evaluation metric — gross savings — and
from a holistic point of view considering forecasting and secondary performance
measures, Model 12 (omits RPAS) provides the higher and more consistent
performance. Considering intraday market effects, this model ranks 2°¢ with net
savings 12% lower than model 16. However, model 16, which uses only the top 4
variables ranked near the bottom in terms of forecasting performance. It is worth
noting, however, that variance in forecasting performance measures between the
two models may be viewed as small, ranging from 1.4 to 3.7%.

The modified bidding strategy, which reduces the bid volume following a day of

losses, increases the both the gross and net savings.
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CONCLUSIONS AND FUTURE
WORK

7.1 CONCLUSIONS

Portfolio imbalance penalties can represent a significant cost for market participants.
This Master Thesis is focused on developing a bidding strategy that minimizes the
imbalance costs of an energy trader and/or retailer’s portfolio. Although the strategy
was developed with the latter agents in mind, the strategy can be applied by any
market participant. We have developed an artificial-intelligence based model that takes
into account information available after gate-closure of the Spanish day-ahead market
to forecast the system’s energy imbalance and incorporate the forecast information into
a bidding strategy that adjusts the scheduled program through intraday markets in
order to influence the direction of the portfolio’s agent’s imbalance towards the

direction that is not economically penalized.

For the first component, we have developed a black box model based on random forest
technique to predict the hourly system imbalance. We have chosen random forest
technique due to its robustness, stability, and competitive accuracy when compared to

other state of the art machine learning algorithms.

For the second component we developed an optimization model based on a genetic
algorithm to determine the optimal parameter values that minimize the cost for a

strategic bidding function that we also defined.

Although bidding strategies to reduce imbalance costs, have been widely discussed in

the literature, especially for wind power trading, none - that we are aware of - do so
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based on forecasting the system imbalance. The literature is very limited on system

imbalance forecasting and random forests was not one of the techniques applied.

We used publicly available data as input for the model and actual data from an energy
trader to evaluate the strategy’s performance. After examining the results, we can

conclude that:

e It is entirely feasible to use the random forest technique to forecast system
imbalances and to base a bidding strategy on those results.

e Using new information available post-day ahead market gate closure increases
both the accuracy of forecasting the system imbalance and the savings derived
therefrom.

e Although forecasting error measures may higher than those of some other
market variables, the savings derived from applying the strategy to the forecasts
are sufficiently valuable to justify its application.

e The impact of intraday markets does not outweigh or invalidate the savings
potential of the strategy.

e In general, we can conclude that advanced modelling techniques are inexpensive
and effective tools to forecast system imbalances and optimize bidding strategies

to reduce imbalance costs.

7.2 FUTURE WORK
As long as intermittent RES-E sources continue to increase in penetration and balancing
mechanisms continue to apply economic penalties on imbalances, imbalance cost

reduction will remain a focus for many market participants.

Several matters of interest arose during and after the development of this thesis project.
One such area deals with the actual imbalance cost. From analyzing the imbalance cost
as it relates to day-ahead market prices, some interesting trends were identified which
could be used to expand the strategy to consider bids conditioned on price. Also

consider the intraday market prices.

Also, to lessen the impact of the intraday market on savings, forecasts of the D-1 system
imbalance could be used as input to the forecast model and a pre-adjusted day-ahead
bid placed. Further adjustments can be made in the intraday market by running the

models with new information, as done in this thesis project.
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Finally, different time horizons for optimizing the function parameters could be

applied.

135



References

Batalla-Bejarano, J., Costa-Campi, M. T., & Trujillo-Baute, E. (2015). Unexpected
Consequences of Liberalisation: Metering, Losses, Load Profiles and Cost
Settlement in Spain’s Electricity System. Barcelona Insititute of Economics.

Breiman, L. (2001). Random Forest. University of California at Berkley.

Bueno-Lorenzo, M., Moreno, M., & Usaola, J. (2013). Analysis of the imbalance price

scheme in the Spanish electricity market: A wind power test case. Energy Policy.
Chari, R. (2015). Life After Privatization (First Edition ed.). Oxford University Press.

Chaves-Avila, J., Hakvoort, A., & Ramos, A. (2013). Short-term strategies for Dutch

wind power producers to reduce imbalance costs. Energy Policy.

Cheng, Y.-Y., Chan, P., & Qiu, Z.-W. (2012). Random Forest based ensemble system for
short term load forecasting. Proceedings of the 2012 International Conference on

Machine Learning and Cybernetics.
CNMC (2015). National Report to the European Commission.

de la Fuente, 1. (2009). Anscillary Services in Spain: dealing with High Penetration of
RES. Red Electrica de Espafia. Retrieved from http://www.reshaping-res-policy.eu/

ENTSO-E. (2016). Retrieved from Balancing and ancillary services markets:
https://www.entsoe.eu/about-entso-e/market/balancing-and-ancillary-services-

markets/Pages/default.aspx

Garcia, M. P., & Kirschen, D. S. (2006). Forecasting System Imbalance Volumes in
Competitive Electricity Markets. IEEE Transactions on Power Systems.

Gonzales-Aparicio, 1., & Zucker, A. (2015). Impact of power uncertainty forecasting on
the market integration of wind energy in Spain. Applied Energy, 159, 334-349.

136



References

Guyon, I, & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection.
Journal of Machine Learning Research, 1157-1182.

Hastie, T., Tibshirani, R., & Friedman, ]. (2008). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction (Second ed.). Stanford, California:

Springer.

Hirth, L., & Ziegenhagen, 1. (2015). Balancing Power and Variable Renewables: Three
Links. Renewable & Sustainable Energy Reviews , 50, 1035-1051.

International Energy Agency. (2015). Energy Policies of IEA Countries: Spain, 2015
Review. Paris: OECD/IEA.

Liaw, A., & Wiener, M. (2015, 10 06). Package ‘randomForest’: Breiman and Cutler’s
Random Forests for Classification and Regression. CRAN.

Matevosyan, J., & Soder, L. (2006). Minimization of Imbalance Cost Trading Wind
Power on the Short-Term Power Market. IEEE Transactions on Power Systems,
VOL. 21.

NREL. (2010). Operating Reserves and Wind Power Integration: An International
Comparison. 9th Annual International Workshop on Large-Scale Integration of
Wind Power into Power Systems as well as on Transmission Networks for

Offshore Wind Power Plants Conference.
OMIE. (2016). Retrieved 2016, from http://www.omie.es/

Pinson, P., Chevallier, C., & Kariniotakis, G. N. (2007). Trading Wind Generation From
Short-Term Probabilistic Forecasts of Wind Power. IEEE Transactions on Power

Systems.
Red Electrica de Espana. (2016). Retrieved from http://www.ree.es

Scrucca, L. (2013). GA: A Package for Genetic Algorithms in R. Journal of Statistical
Software, Vol 53 Issue 4.

van der Veen, R. A. (2012). Agent-based analysis of the impact of the imbalance pricing
mechanism on market. Energy Economics.

137



Annex A

Annex

A. CROSS-CORRELATIONS OF ALL VARIABLES

First Variable | Second Variable Correlation
DAMP TCPrice 0.995496533
WEF WindPBF 0.988907502
DF DemandPBF 0.985034099
TCPrice TCenergy -0.702968359
WindPBF TCPrice -0.694363866
WEF DAMP -0.690628723
WindPBF DAMP -0.690626509
WEF TCPrice -0.690445266
DAMP TCenergy -0.660600232
WindPBF TCenergy 0.452480994
DF DAMP 0.440207768
SRBdown SRBup 0.437909625
DemandPBF DAMP 0.437852215
DemandPBF TCPrice 0.422591927
DF TCPrice 0.422269674
WEF TCenergy 0.42195802
DF SRBdown 0.373143491
porcenDF System Imbalance | 0.37020217
DemandPBF SRBdown 0.356358532
WF porcenWF 0.352003922
DF SRBup 0.347751036
DemandPBF SRBup 0.346662585
DF RPAS 0.299755293
DF porcenDF 0.285290913
porcenDF RPAS 0.28526486
DAMP SRBup 0.263829043
TCPrice SRBup 0.252443894
WindPBF porcenWF 0.25238499
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DemandPBF RPAS 0.251527583
DemandPBF TCenergy -0.250930377
DF TCenergy -0.223267749
RPAS SRBup 0.191714893
DAMP SRBdown 0.186230683
TCPrice SRBdown 0.176744328
porcenWF RPAS -0.172286062
porcenDF SRBdown 0.170568098
porcenWF DAMP -0.150643933
porcenWF TCPrice -0.136866484
TCenergy SRBdown -0.133891284
porcenWF SRBup -0.124433054
DemandPBF porcenDF 0.118297621
DF porcenWF -0.116782854
porcenDF DAMP 0.113719702
DemandPBF porcenWF -0.112173738
TCenergy SRBup -0.107348368
porcenWF System Imbalance | 0.101509643
porcenDF TCPrice 0.095355365
porcenDF TCenergy 0.094810654
DAMP RPAS 0.091960853
porcenWF SRBdown -0.081726348
porcenDF SRBup 0.08167499
TCPrice RPAS 0.079589854
RPAS SRBdown 0.078908486
WEF SRBup -0.075958764
System SRBdown 0.060403179
Imbalance

WindPBF SRBup -0.05574432
TCenergy RPAS 0.054632141
porcenDF porcenWF -0.053933537
WindPBF SRBdown 0.047211376
DF System Imbalance | 0.040038565
porcenDF WF -0.038361835
WindPBF RPAS 0.032264109
System TCPrice 0.030559866
Imbalance

DemandPBF WindPBF 0.02825709
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System DAMP 0.027242249

Imbalance

DF WindPBF 0.026346892

DemandPBF System Imbalance | -0.02569405

System RPAS 0.024333969

Imbalance

System TCenergy -0.024040173
Imbalance

WEF SRBdown 0.023562313

WindPBF System Imbalance | -0.021885455
porcenDF WindPBF -0.013606038
WF System Imbalance | -0.013376171
System SRBup -0.009596265
Imbalance

DemandPBF | WF 0.003055181

DF WEF -0.00211777

porcenWF TCenergy 0.001946092

WEF RPAS -0.000760361
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B.1 SCATTER PLOT MATRIX OF DEMAND VARIABLES
Jan 2015 = March 2016: DEMAND Variables
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B.2 SCATTER PLOT MATRIX OF WIND VARIABLES: JAN 2016
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