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RESUMEN DEL PROYECTO
1. INTRODUCCION

El problema de la expansion de la red eléctrica de transporte (TEP por sus siglas
en inglés), determina las nuevas lineas eléctricas que hay que afadir al sistema existente
y cuando. Con la instalacion de nuevas lineas se busca poder satisfacer el incremento de
demanda estimado para el futuro a la vez que se minimiza la suma del coste de operacién
y de inversion del sistema. Se trata de un problema combinatorio estocastico cuya
complejidad se ha incrementado con la liberalizacion del mercado eléctrico y la
introduccidn de plantas de produccion de energia renovable.

Para resolver el TEP se han utilizado tanto métodos de resolucion clésicos,
basados en programacion matematica, como no clasicos, destacandose los
metaheuristicos. Entre estos dltimos destacan los Algoritmos Genéticos (GA). El GA se
presenta como una herramienta que permite obtener soluciones de alta calidad con un
bajo coste computacional. Los recursos computacionales requeridos en este tipo de
problemas suponen la principal restriccién a la hora de seleccionar el algoritmo de
resolucion. Esta es la principal desventaja que presenta la descomposicién de Benders
(BD), la cual permite obtener resultados con una garantia de optimalidad. Ambos
algoritmos se encuentran implantados para su utilizacion en el modelo TEPES,
desarrollado en el 1IT.

Una vez que la efectividad del GA y BD ha sido probada, se busca determinar
cuando es mejor utilizar un algoritmo u otro. Esta decisién estd basada en coste
computacional y bondad de la solucién obtenida.

La referencia (Smith-Miles, Baatar, Wreford, & Lewis, 2014) propone un modelo
teorico que permite discernir qué algoritmo utilizar para resolver un problema de
optimizacion, basandose en que la bondad de un algoritmo estd relacionada con las
caracteristicas que definen el problema. Para aplicar esta metodologia a TEP, es necesario
trabajar con un nimero de instancias elevado, es decir, con muchos casos particulares,
para poder extraer conclusiones generales. Al existir pocos sistemas eléctricos con sus
datos disponibles, es necesario generar instancias artificialmente, esto es, redes eléctricas
de transporte aleatorias cuyas caracteristicas sean similares a posibles redes reales
existentes.



El problema de la generacion aleatoria de redes eléctricas no ha sido abordado hasta
ahora. Las leyes fisicas que rigen este tipo de redes hacen que los modelos de generacion
usados en redes sociales u otro tipo de redes complejas no se puedan utilizar para los
sistemas eléctricos. Ademas, las redes eléctricas son redes espacialmente embebidas, esto
significa que la disposicidn geografica de sus elementos es esencial para comprender el
funcionamiento del sistema, lo cual plantea problemas adicionales. Los algoritmos
utilizados en redes sociales no consideran tampoco esa caracteristica.

Este proyecto ha partido de un modelo para redes espacialmente embebidas
propuesto inicialmente en la referencia de sus directores (Patania et al. 2015),
denominado modelo Epsilon-disc.

Este modelo epsilon-disc todavia presenta alguna deficiencia para obtener
resultados similares a las redes eléctricas reales. Por ejemplo, no permite ajustarse a las
distribuciones estadisticas de grado de conectividad que describen a estas redes. El
modelo tampoco tiene en cuenta, de momento, la informacion econémica del problema,
relacionada con el coste variable de generacion o fijo de desarrollo de la red.

A la vista de estos inconvenientes, el principal objetivo del proyecto se centra en el
desarrollo de un nuevo modelo que sea capaz de generar redes eléctricas de transporte
aleatorias que emulen a las redes reales solventando los inconvenientes previos.

2. METODOLOGIA

El nuevo modelo, denominado trade-off model, consta de dos pasos: casacion
eficiente de la demanda (1) y ajuste de la distribucion de grado (2).

En el primer paso, el modelo representa las etapas iniciales de desarrollo de un red
eléctrica donde cada nodo de demanda busca la central de generamon capaz de suministrar
su energia demandada al minimo precio.

El coste de suministro tiene en cuenta, el coste de
instalacion de la linea y el coste de la energia
suministrada. El coste de instalacion de una linea varia
linealmente con la distancia entre nodos. EI modelo
elige la opcion mas barata entre conexion directa entre
nodos o la conexidn de éste a la red existente. Cuando
dos nodos no son conectados directamente, se puede
necesitar mas de una linea para satisfacer la demanda.

El método busca el camino mas corto entre los
nodos. Al no estar inicialmente los nodos conectados
entre ellos, es necesario definir un grafo auxiliar en el
que los nodos estén unidos con posibles conexiones. Figura-1. Distribucion de
En este grafo, el peso de los arcos sera la distancia grado deseada y distribuicion

obtenida tras la primera etapa
entre dos nodos. del trade-off.
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Para evitar un alto coste computacional, se define un grafo donde la probabilidad de
que dos nodos estén conectados esta inversamente relacionada con la distancia entre ellos.
Para ello se utiliza el modelo Epsilon-disc.

El segundo paso se basa en la instalacion de nuevas lineas con el objetivo de
conseguir una funcion de distribucion de grado definida.

El modelo analiza las diferentes uniones entre nodos para elegir qué lineas se afiaden
al sistema. Se establecen limitaciones relacionadas con longitudes de lineas maximas para
distintas tecnologias.

Durante su desarrollo, el algoritmo analiza el grado (nimero de conexiones) de los
nodos candidatos a ser unidos, viendo si la union de éstos contribuye a alcanzar la
distribucion de grado objetivo (la que se toma como modelo de una red real). En caso de
que la unidn facilite alcanzar esa distribucion, seréa asignada una probabilidad de unién
estrictamente positiva. Si la instalacion de esa linea no contribuye a alcanzar la funcion
objetivo, la probabilidad de unir esos dos nudos sera cero.

Al tratarse de redes espacialmente embebidas, se asume que la probabilidad de unir
dos nodos esta directamente relacionada con la longitud de la linea. Al considerar
distancias se esta tomando de manera implicita el coste de instalacion de la misma.

Si tanto la probabilidad de instalar una linea como la de que exista una linea de esa
longitud son positivas, el algoritmo decidird la instalacion aleatoriamente.

3. RESULTADOS

Para comprobar la validez del modelo se generara una red aleatoria que se comparara
posteriormente con una red eléctrica real. La red real es la resultante de la union de las
redes de 14 paises europeos. Las caracteristicas que se evallan son: grado, centralidad,
longitudes de linea, camino mas corto Yy coeficiente de apuntamiento.

Figura-2. Ejemplo de red generada en la primera etapa del modelo trade-off.



Figura-3. Ejemplo de red generada tras la segunda etapa del modelo trade-off.

La figura 4 muestra la distribucion de grado para la red real y artificial. Ambas
distribuciones presentan un grado de similitud elevado.

En el caso de la centralidad, ambas distribuciones son similares, en ambos casos el
valor mas frecuente es cero. Esto refleja que la mayor parte de los nodos no se encuentran
camino mas corto entre otros dos.

Si se compara la longitud de lineas, se observa que ambas distribuciones son muy
similares. En este caso tanto la media como la desviacion tipica tienen valores similares.
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Figura-4. Distribucion de grado de la red artificial (izquierda) y la red real (derecha)



Se puede observar que en la red artificial las distancias entre nodos son menores que
en la red real.

El coeficiente de agrupamiento es la medida estadistica que mas difiere. Su valor
medio es el doble en el caso de la red real. Los vecinos de un nodo estan mas unidos entre
ellos.

CONCLUSIONES

El Trade-off Model se basa en un modelo de unién preferente que permite ajustar
la distribucion de grado a una funcion definida. Para ello afiade lineas en el sistema de
manera que los nodos de bajo grado vean incrementado su grado, mientras que los de
grado elevado ya no ven afiadidas nuevas lineas.

La primera conclusion es que el modelo se puede utilizar para crear redes que sean
similares a las existentes. Las distribuciones de grado son similares. Ambas redes son
muy parecidas desde el punto de vista de centralidad, longitud de lineas y camino mas
corto de la red. La mayor diferencia se encuentra en el coeficiente de agrupamiento. Se
considera que esta diferencia es debida a la forma en que la red esta mallada. Si se observa
la red real, no se puede encontrar un patrén seguido durante el mallado del sistema.
Dependiendo de si la red esta mallada uniformemente, o sélo se encuentran malladas
partes concretas de la misma, el coeficiente de agrupamiento seré similar o no. Esto puede
justificar el hecho de la pequefia diferencia en la distribucion de caminos mas cortos.

El modelo también puede generar redes con diferentes propiedades dependiendo
de la zona. En el caso estudiado, la red artificial ha sido la unién de las 14 redes nacionales
que forman la red real. Se pueden generar redes aleatorias completamente independientes
que se pueden unir posteriormente. De esta manera se puede solventar el problema de
redes en el que el mallado no se encuentra distribuido uniformemente.

Este proyecto no trata de generar redes que sean exactamente iguales a las redes
reales. Se crean redes artificiales cuyos descriptores estadisticos son similares a los de
redes reales. En este proyecto sélo se han considerado las caracteristicas mas relevantes
de una red, pudiéndose utilizar para generar redes aleatorias que permitan su uso en el
estudio del problema de expansién de la red eléctrica de transporte.
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GENERATION OF RANDOM ELECTRICITY TRANSMISSION
NETWORKS

1. INTRODUCTION

Transmission Expansion Planning (TEP) tries to solve the problem of what lines
should be added to the existing network and when, to satisfy forecasted demand in the
long-term and minimizing operation and investment costs. This is a combinatorial
stochastic problem that has become more complicated due to market liberalizations and
the integration of renewable energy sources.

As for other optimization problems, to solve the TEP problem classical and non-
classical methods have been applied. Researchers find in metaheuristic methods, as
Genetic Algorithm (GA), an attractive tool to generate solutions to the TEP problem.
They give high-quality solutions with lower computational resources. Computational
requirements are the main problem for TEP due to the size of the instances, where a huge
number of variables and constraints are considered. This is also the main weakness of
Benders’ Decomposition (BD) in some cases, while this algorithm is able to provide
solutions with any desired level of accuracy. Both algorithms are implemented in the
model TEPES developed by IIT.

Once the effectiveness of GA and BD for the TEP problem have been tested; it
would be interesting to find in which instances it is better to use one algorithm or another.
It is based on computational cost and solution goodness.

Reference (Smith-Miles, Baatar, Wreford, & Lewis, 2014) proposes a framework
to evaluate different algorithms for optimization problems. The theoretical framework is
based on the concept that the hardness of an algorithm is related to the features of the
problem. To apply it to the TEP problem, it is necessary to work with a high number of
instances, real and random ones. There is a necessity to generate random transmission
networks that should be consistent with the real ones.

The generation of random networks has not been studied in depth in the case of
power grids. The physical laws that govern power networks imply that the network-
generation techniques used in social or other types of networks cannot be used in this
context. Furthermore, power grids are a spatially embedded network. This means that the
geographical placement of its elements is essential to understand the behaviour of the
system. This makes it more difficult to apply already existing techniques that do not take
this characteristic into account.

This work has implemented a state-of-the-art method for generating spatially
embedded networks applied to the power grid (Patania et al. 2015), the Epsilon-disc
model, proposed by the supervisors of this project.
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This project has identified the flaws of the Epsilon-disc model in terms of not fitting
the descriptive distributions of the network and not taking into account economic
information such as generation cost in the development of the network.

The main objective of this project is to develop a new model that will be able to
generate random power systems that emulate real ones.

2. METHODOLOGY

The new model, which has been named Trade-off model, can be described in two
steps: meeting demand efficiently (1) and fitting a degree distribution (2).

The first step of the algorithm simulates a trade-off between demand (customers)
and generators (suppliers). Each sink node will try to find the generator that is able to
supply their energy needs at the lowest cost.

The cost of linking two nodes considers the cost of line installation and the cost of
generation. The cost associated to installing a line is linear with the length of the line,
modelled as the Euclidean distance between two nodes. The model chooses the lowest-
cost option between direct connections between two nodes or connecting them through
already existing lines. When nodes are not connected directly, more than one line could
be required.

The algorithm will look for the shortest
path between nodes. As nodes are not connected
yet, it is necessary to define an imaginary graph.
In this network, the weight of edges will be the
geographical distance, if there is no line or ‘1’ if
there is a line connecting two nodes.

To avoid high computational requirements, .
the imaginary graph cannot be a network where -
all nodes are linked among them. It is necessary -
to define a graph where it is more probable to find
a connection between closed nodes than between ‘ }
those which are located far away. This is _ - i
performed with the epsilon-disc model.

The Second Step can be summarized as F|gure-1 Target (-jegree dlst”but'on and
. . . . degree distribution after step 1 in the
adding new lines smartly to obtain a defined trade-off model.

distribution.

The algorithm will analyse all the possible combinations of nodes to decide if a line
is added to the system. Constraints related to distance can be introduced to avoid studying
lines that are too long.

The process will analyse the current degree of the two candidate nodes to be linked.
If the line contributes to reach the target distribution, it is assigned a positive probability
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of being installed. If that connection will not contribute to the fitting process, the
probability of linking those nodes will be zero.

As power networks are spatially embedded, we assume that the probability of linking
two nodes is correlated to the distance between them. We will condition the connection
between two nodes not only to its contribution to the fitting process but also to a fitness
function based on distance. By considering distance we are taking into account the cost
of installing a line. The fitness function can be defined as the probability of installing a
line of a specific length.

If a line contributes to fitting the degree distribution and has a positive probability to
be installed based on length of line, the algorithm will decide whether to install it or not
based on generating a random number.

3. RESULTS

A real case of the European network will be used to test the algorithm explained. The
real network used is a combination of 14 European countries. It is evaluated: degree,
betweenness centrality, length of lines, shortest-path and clustering coefficient.

Figure 4 shows the degree distribution for the real and artificial networks. The degree
of accuracy is high, both histograms are quite similar. This similarity is reflected in the
results that are shown in the table 1.

Figure-2. Example of network generated after first step.

In the case of betweenness centrality, in both cases the most frequent value is zero.
Most part of the nodes are not in the shortest path between other two.

Comparing length of lines, we observe that the shape of both functions is really
similar. In this case, mean and standard deviation have identical values.
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If we compare the real and artificial networks we can observe that in the artificial one
distances are shorter than in the real one. In the real network usually there are two edges
more than in the artificial one in the shortest path length. Standard deviation is also lower
for the artificial network.

Figure-3. Example of network generated after second step.

The clustering coefficient is the most different metric among the ones we have
analyzed. The mean value is the double in the real network. Neighbors of a node are more
linked in that case.
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Figure-4. Degree distribution for artificial (left) and real (right) European networks.



4. CONCLUSIONS

The Trade-off Model is based on a preferential attachment model that effectively
shifts low-degree nodes towards the high degree region by adding edges smartly .The
results proved that the algorithm is able to fit a general degree distribution that is taken
from input data.

Our first conclusion is that the algorithm can be used to create networks that are
similar to existing ones. Degree distributions are almost identical. They are also similar
from the point of view of betweenness centrality, length of lines and shortest path length.
There was a larger difference in the case of the clustering coefficient. We think that this
difference is due to the way the grid is meshed. If we see the real network there is not a
pattern in the mesh of the network. Depending on whether the mesh is spread across the
space or is concentrated in specific areas, we will have more or less similar networks.
This can justify the fact that in the artificial network the shortest path length between
nodes is lower.

We also concluded that we can create networks that have different properties
depending on the area. We applied this to Europe, where the network is a set of 14 small
different networks. We can create completely independent random networks that can be
linked, resulting a network with clear differenced areas. This could be a way to avoid the
problem of some networks in which the degree of meshness depends on the zone.

It is clear that we are not going to create networks that are exactly equal to the one
that we are using as a template. That is not the objective of the project. We try to create
artificial networks that are consistent with the real ones. There is not only one pattern that
have been follow in the generation of the existing network. There are a lot of properties
that should be considered. We have only considered the ones we think have more relevant
in the process of network design. They are good to recreate existing ones, and to be used
in studies about the expansion of existing networks.
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1. INTRODUCTION

Author: Chad Lewis

In late 1880s and early 1890s, the War of Currents between Edison and
Westinghouse (who bought Tesla’s patents) made the beginning of power transmission
systems a rocky start.

In 1882 Edison established the first power generation plant in Manhattan, New
York, which was able to supply energy for 400 incandescent lamps. This was a 110 V
direct-current (DC) power system. With such a low voltage, generation plants had to be
close to demand because of power losses.

With the first alternating current (AC) transformer in Europe, Westinghouse
noticed that large power plants could be built far from the demand using AC and
transformers. With this combination, losses could be reduced. The first AC power system
was installed in Massachusetts in 1886.

DC and AC power systems were installed in different cities in North America
while both businessmen were involved in an embarrassing struggle. Topsy, an elephant,
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was electrocuted as Harold Brown (one of Edison’s employees) tried to demonstrate the
risks of AC. In 1893 at the Chicago World Fair, Westinghouse developed an AC grid with
100,000 electric lights. This system, cheaper than Edison’s DC proposal, led to the final
AC supremacy we see today.

The power system has since then evolved from those small city grids to become the
largest engineering system developed by humankind.

1.1. The Power System

In an electric system, generation plants are connected to demand through the
transmission and distribution grids. The transmission system plays a key role to ensure
the reliability and effectiveness of the electric system.

Spain has more than 42.000 km of high voltage lines! with a capacity of 84.539
MVA. It is connected to France, Portugal and Morocco, being part of an international
network. Although almost the entire network is built with AC technology, one of the
connections with France is DC and other to the Balearic Islands. Transmission System
Operators (TSO) are installing DC technology for long distances using high-voltage
connections (HVDC). This technology requires HVDC converter stations to transform
from AC to DC and back.

Power systems have to face new challenges as an increase in the degree of
interconnection among countries or the integration of new renewable plants. These goals
need new tools for Transmission Expansion Planning.

GENERATION TRANSMISSION DISTRIBUTION

Figure 1-1. Power system structure. Source: Institute for Energy Research

1.2. Transmission Expansion Planning

Transmission Expansion Planning (TEP) tries to solve the problem of which lines
should be added to the existing network and when, to satisfy forecasted demand in the
long-term and minimizing operation and investment costs, including security of supply.

! Information available at Red Eléctrica de Espafia, www.ree.es.
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This is a combinatorial stochastic problem that has become even more complicated due
to market liberalizations and integration of renewable energy resources, placed far from
existing transmission lines.

‘Desertec’, ‘MedGrid’ or ‘Beyond 2020’ are examples of TEP projects. In these
cases, the aim is to develop a large and well-connected network to encourage renewable
generation and international exchanges.

New transmission lines are high-capital investments with long useful lives: the
decision of which lines will be built will have an enormous impact on the whole system.
For instance, the budget of ENTSO-e countries for the period 2012-2020 is over EUR
100 bn (Chaniotis, 2012). ENTSO-¢ is the European Network of Transmission System
Operators. It represents 45 TSO of 35 countries in Europe, in the case of Spain the TSO
is Red Eléctrica de Espafia. The objective of ENTSO-e is to set-up a European energy
market, supporting its functioning and helping to achieve the European climate and
energy agenda?.

k-
“'—

Figure 1-2. TEP PROBLEM Author: S. Lumbreras

As for other optimization problems, to solve the TEP optimization problem
classical and non-classical methods have been applied. Figure 1-3 shows a classification
of solution techniques.

Classical techniques have been applied with the TEP problem as Linear
Programming (LP), although it assumes important simplifications its low computational

2 Who is ENTSO-¢, https://www.entsoe.eu/about-entso-e/
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effort requirements makes it a practical tool to solve large systems. Linear Programming
(LP) assumes a DC power flow model and ignores the discrete nature of investment
variables. Quadratic Programming is used to take into account losses from the DC model.
With Mixed-Integer Programming (MIP) the binary nature of investment decision
variables is considered. Non Linear Programming (NLP) and Mixed-Integer Non Linear
Programming (MINLP) are used in when modelling problems with AC power flow
(Lumbreras, 2014).

When uncertainties are added to the decision process, decomposition techniques,
as Benders Decomposition (BD), have an important role to solve the TEP problem
(Lumbreras, 2012).

Researchers find in metaheuristic methods, as Genetic Algorithm (GA), an
attractive tool to generate solutions to the TEP problem. They give high-quality solutions
with lower computational resources. Computational requirements are the main problem
for TEP due to the size of the instances, where a huge number of variables and constraints
are considered.

MATHEMATICAL
PROGRAMMING
SENSITIVITY
- ANALYSI
NLP sls
STOCHASTIC | EQUILIBRIUM
o DECOMPOSITION | FORMULATION METAHEURISTICS
MINLP EXPERT SYSTEMS
MIP

Figure 1-3. Solution techniques for TEP problem.

1.2.1. Benders’ Decomposition

Benders’ Decomposition (BD) is one of the most applied algorithms in the
Stochastic Optimization domain. Developed by the mathematician J.F. Benders, BD is a
multistage optimization algorithm that divides the problem into multiple smaller
problems, solving them iteratively. The first step is to solve the master problem giving a
value to a subset of variables, the rest of variables are valued in the sub-problem. In a
second stage, the sub-problem studies the optimality of the solution proposed by the
master problem and the gives feedback to the master problem, adding new constraints
(cuts). Figure 1-4 shows the flow chart followed in Benders’ decomposition.
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Start
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Convergence bounds Master problem
reached? solution

YES

Stop

Figure 1-4. Benders’ Decomposition Flow Chart

1.2.2. Genetic Algorithms

GA are evolutionary algorithms that generate solutions for an optimization
problem based on natural evolution theory. It was proposed by J.H. Holland in the
seventies.

The algorithm starts with an initial population of candidate solutions. Each
candidate solution has a set of properties (chromosomes) which can be mutated and
altered.

The evolution starts from a population of randomly generated individuals, and is
an iterative process. In each generation the fitness of every individual in the population is
evaluated; the fitness is usually the value of the objective function in the optimization
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problem including some penalty term associated to the evaluation of the feasibility of the
solution. The fittest individuals are selected from the current population, and each
individual’s genome is modified.

Initialise population

Evaluate

Selection

Crossover

Mutation

Termination NO
criterion?

YES

Solution Set

Figure 1-5. Genetic Algorithm flow chart.

The algorithm terminates when a satisfactory fitness level has been reached for
the population or after a certain number of iterations.

The process that follow the algorithm is shown in the Figure 1-5.

1.2.3. TEPES, Transmission Expansion Problem for an Energy System

The Institute for Research in Technology of ICAI (11T) developed a model to solve
the TEP problem, TEPES (Transmission Expansion Problem for an Energy System),
based on BD. This model evaluates the future network’s needs in a tactical level,
supporting the decision of future investments for the long term.
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Based on a DC model flow, the objective function of the model is to minimize
investment and operational costs. A cost related to reliability of the system is also taken
into consideration. The master problem proposes investing in new lines and the sub-
problem gives it feedback with the operation cost, and unserved power due to
transmission contingencies. BD is the main algorithm used in classical method,
nevertheless, depending on the size of the problem, the number of lines, the integrality
conditions or the number of cuts added can make the resolution of the problem slow.

A Genetic Algorithm model was coded for TEPES in reference (Duro, 2014)

The TEPES software cannot decide which algorithm should choose depending on
the instance that will be solved. The user decides when to use each one, thinking on
computational time and quality of results.

1.2.4. Choosing the best algorithm

Once the effectiveness of GA and BD for the TEP problem have been tested; the
minimization of time spent and computational resources required make necessary to find
in which instances it is better to use one algorithm or another.

Reference (Smith-Miles, Baatar, Wreford, & Lewis, 2014) proposes a framework
to evaluate different algorithms for optimization problems. It has been tested for the
‘Traveling Salesman Problem’ (TSP), where two variants of the Lin-Kernigan heuristic
(proposed for the TSP problem more than thirty years ago) were tested. The theoretical
framework is based on that the hardness of an algorithm is related to the features of the
problem. It can be described in five steps.

Summarising Instances

Each instance, where the algorithm will be tested, has some properties that are
correlated with the difficulty of solving the optimization problem with a specific
algorithm. Not only generic properties like the number of variables or number of
constraints, but also specific properties such as the number of candidate lines, number of
sinks, or average distance between a pair of nodes in the case of TEP problem.

These properties can be represented in the instance space (R"). It is assumed that
two instances that are closely located, are similar and will have a similar behaviour
(except if they define a boundary between regions).
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Figure 1-6. Steps followed in classification of optimization algorithms.

Generating Instances

To assess the performance of both algorithms and to establish a relationship
between the features of the instances and the future behaviour, a large number of instances
is required. It is necessary that they will be well spread across the feature space, for
statistical generalization.

The author proposes the idea of using evolutionary algorithms to evolve instances
from the existing ones. In this way you can ensure that you will have instances that the
algorithm will solve ‘goodly’ and ‘badly’. The definition of goodness and badness used
when an algorithm solved a case is defined below.

The number of real instances that are available in the case of power networks is
very low. This is the case because there are very few power systems worldwide with
publicly available data. Therefore, in order to apply the framework in (Smith-Miles,
Baatar, Wreford, & Lewis, 2014), new instances should be generated.

The physical laws that govern the TEP problem make this step a critical one.
Visualising Instances in the Feature Space

Once there is a sufficient number of instances and their features have been
described, they will be reduced from R™™ (m instances, n measurable features for each
instance) to R?, or R3. Not all the measurable features have the same weight when an
instance is defined. With this reduction a couple of new variables (combination of the
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most important ones) will describe each instance. This can be achieved using Principal
Components Analysis (PCA). This will allow visualizing them in 2-D or 3-D space. With
this reduction, the instances space is obtained.

An analysis of PCA can be also useful to understand better the TEP problem
supporting other research projects.

Visualising the Algorithm Footprint in the Instance Space

To compare the performance of the algorithm, both methods will be evaluated for
all the instances. First of all, it is necessary to define when algorithms have a good or bad
performance, it will be based on solution time criterion and the accuracy of the algorithm.
An algorithm will be good to solve an instance if the resolution time is inside a predefined
optimality gap.

After running all candidate algorithms, instances will be labelled as good or bad,
making it easy to visualize the result in the instance space.

Figure 1.-7 displays this step for the case of the TSP problem. As we said two
algorithms were tested, A and B. In the figure we can identify four areas, these areas
correspond to:

Algorithm A is good and B is bad.
Algorithm B is good and A is bad.
Algorithms A and B are good.
Algorithms A and B are bad.

O i r 4 ) /s | O ~

Figure 1-7. An example of two algorithm footprints Source: (Smith-Miles et al., 2014)
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Measuring the size of Algorithm Footprints

In this step different regions will be defined in the instance space based on good
and bad performance. Clustering classification allows us to establish boundaries in the
instance space and develop a model that can evaluate which algorithm is better depending
on the instance features. Each region will be related to a specific algorithm. The algorithm
to solve a new instance will be chosen depending on where the new instance is located in
this space.

In the previous figure it is easy to identify some areas where the decision of
choosing an algorithm is clear (in the perimeter area). Nevertheless, in the centre the
algorithm cannot provide an accurate answer, as boundaries of the clusters are not well
defined. We could potentially define a new dimension to try to identify better limits
between two regions.

It should be stressed that this framework has only recently been proposed for
algorithms in general and therefore it has never been applied to TEP.

1.3. Objectives:

Lot of studies have been focused on TEP problem. While GA and BD’s have been
modelled and tested to solve this problem, it is not clear when they should be used. The
necessity of using the most accurate algorithm make that to know when one is better than
the other is the next step in the researching process. Computational requirements remarks
the importance of that study. To answer the previous question we can use the theoretical
framework proposed by K.S. Miles exposed above. To apply it to the TEP problem, it is
necessary to work with a high number of instances, real and random ones. As we know
the number of real networks is really low, we can assume there are no more than one
network for country. Nevertheless if we are studying the network from an international
point of view, as in the case of Europe, the number of real networks is reduced to a few
of them. There is a need to generate new ones.

The generation of random network (that should be well spread across the feature
space) has not been studied deeply and there are not good results. The physical laws that
govern power networks, make that networks generation techniques used in social or other
types of networks cannot be used for it. Furthermore power grids have a special
consideration, they are embedded network. It means that the place where the elements of
the grid are located are essential to understand the behaviour of the system.

The main objective of this project is to develop a model that will be able to generate
random power systems which should emulate a real one. This model should be
parametrical and should guarantee a certain degree of randomization for fixed inputs. For
the same node location and features, the algorithm should be able to link them differently.

Once the algorithm is developed we will need to test if random networks could be
used as real ones. A statistical approach will be used to know the degree of accuracy of
the artificial networks.

10
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Creating a huge number of instances we will be able to test them in the TEPES
software, comparing results for the Genetic Algorithm and the Benders” Decomposition.
This is not the scope of this project. Results can also be tested to know if the algorithm
could be used in the generation of real network. Emerging countries are trying to find
optimal power networks, nevertheless as in the TEP problem, the main problem are
computational constraints.

11






2. NETWORK STUDY

A network or graph can be defined as a set of vertices (nodes) connected by edges
(Figure 1-5). The internet or human societies are two particular instances of networks. In
the case of the Internet, each computer can be seen as a node and edges represent data
connections. Many objects of interest in the physical, biological, and social sciences can
be thought of as networks. Using networks, the system is reduced to an abstract structure
where the most relevant information is the pattern of connection between vertices. The
pattern of connections among nodes will condition the behavior of the network. The
transmission power system can be thought as a network.

Reference (Newman, 2010) is the best-known book about networks. In this section
we will make a brief analysis of some network generation models based on this book.

) Y Edge .

'} ) I \ Vertex

Y

Figure 2-1. Undirected graph composed of 11 nodes and 10 edges.

2.1.1. Network Generation

In general, the structure of a realized network is the result of a series of processes
where there is some sort of randomness involved.

All the algorithms described below can be used for all types of networks. Although
the internet, social networks or the transmission grid can be seen as graphs, they have
different properties that make them really different. For instance, while in the case of
human networks it is not important where people are located, when we talk about power
networks it is a fundamental feature, as they are spatially embedded networks.

This state of the art is basically divided in two parts. The first one is related to
generative models in classical network theory, where they try to create an ‘optimal’ graph

13
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for a given number of nodes. The second part is based on complex networks where some
new algorithms are proposed to obtain networks with specific features.

2.1.1.1. Generative models in classical network theory
First of all, it is necessary to define the minimum weight spanning tree of

connected and undirected graphs. This tree is the set of edges that link all the vertices
with the minimal total weighting for its edges (See Figure 2-2).

8 7

Figure 2-2. Minimum weight spanning tree

Two main algorithms to create a minimum weight spanning tree for a given graph
are the following ones:

Prim’s Algorithm:

This algorithm was proposed by Prim in 1957 (Prim, 1957). It tries to find the
minimum weight spanning tree in three steps:

1. - Initialize the minimum weight spanning tree with one randomly chosen vertex.

2. - Find the edge of minimum weight that connects a new vertex with the current graph
(in the first iteration the first node).

3. - Repeat step 2 until all the nodes are in included in the graph.

Figure 1-7 displays the process the algorithm follow for a set of nine nodes.

14
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Figure 2-4. Kruskal’s Algorithm

Kruskal’s Algorithm:

This algorithm also looks for the set of edges which connect all the vertices of a
graph creating a minimum-weight spanning tree (Kruskal, 1956). Steps:

1. - Initialize the minimum-weight spanning tree looking for the minimum weight edge.
This edge and the two vertices, which are linked, are added to the new graph.

2. - Look for the next edge with the minimum weight. Add it to the new graph if at least
one of the two nodes linked by the edge are not in the new graph.

3. - Repeat step two up to all vertices are add to the minimum weight spanning tree.

Figure 1-8 shows the steps followed to obtain the minimum weight spanning tree
for a given set of nodes and edges.

15
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The minimum-weight spanning tree can be used for network design. In the case
of power networks, the TSO knows where nodes are located and the weight of edges can
represent the cost of installing a line. Using this algorithm we can obtain a network,
nevertheless two main limitations for power networks are identified. The first one is that
not only the cost of a line should be considered when you create a power network, it also
should take into account the cost of energy supplied (cost associated to generation). In
addition, in a real power network nodes have redundant lines to ensure security of supply
as we will see later.

2.1.1.2. Generative models for Complex Networks:
This part is based on reference (Newman, 2010).

These models try to reproduce the mechanisms by which networks are created.
Their main objective is not always to find optimal networks but to generate networks that
exhibit some given properties. Preferential Attachment and Vertices-Copying are two
particular generative models for scale-free networks. Optimization models generate
networks that are created to achieve a specific goal.

Scale-free networks are those which degree distribution follows a power law (at
least in the tail). The degree of a graph is the number of edges attached to each node.

Preferential Attachment:

This is the best-known algorithm for networks with a power-law degree
distributions (scale-free networks).

In the 1970s Price (PRICE, 1965) tried to explain why a network could have that
distribution. The explanation was based in Herbert Simon’s idea of ‘rich-get-richer’ (the
more money you have to invest the higher the return on your investment). Simon showed
mathematically that the idea gives rise to a power-law distribution.

This idea adapted to network analysis was called by Price: cumulative advantage.
Barabési and Albert in reference (Barabasi & Albert, 1999) developed this theory under
the name of Preferential Attachment.

Barabési and Albert is a generative model for undirected graphs. When a vertex
is added to the network, this will be linked to a set of candidates vertices based on a
probabilistic function. The probability of linking to a node is proportional to the nodes’
degree (number of edges attached to a vertex). Barabasi and Albert’s model established
the number of connections for each new node added. The probability of a new edge
attaches to a vertex is linear in the degree of the vertex (equation 1-1).

ks 2-1)

Where k; is degree of node “i” (to which new node would be added), and ¥ k; is
the overall number of edges in the graph.
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The networks generated with Barabasi-Albert algorithm follow a power-law
degree distribution (equation 1-2). The value of a is usually 3.
(2-2)

%4

Pk = k

Figure 2-5. The steps of the growth of the network according to the Preferential Attachment model
(m=m0=2). Author: Arpad Horvath.

Some relevant extensions to the Preferential Attachment model have been
proposed.

Addition of extra edges:

There are certain types of networks where extra edges are added after the graph is
created. There is still a power-law degree distribution. In power networks it can be used
to ensure the reliability of the system, where redundant lines are added.

At each step, in addition to new edges linked with new vertices, some edges are
added linking existing nodes. Both ends of edges are chosen based on degree. As in the
general model, the number of edges for new vertices and for existing ones can be defined.

Removal of edges:

In the same way, while some networks add new edges, others remove them when
they grow. The probability of losing an edge is proportional to the degree of each node.
It can be understood like an inverse preferential attachment model.

Non-linear preferential attachment:

Barabasi-Albert proposed a model in which the probability of attaching with an
existing vertex is proportional to the degree. There may are some processes in which this
relationship is non-linear. For instance, it can also depend on the network size.

Using a non-linear function, the outcome cannot follow a perfect power-law
degree distribution.

Vertices of varying quality or attractiveness:

In the model described above, it is assumed that all vertices are equally likely to
be linked by a new edge (based on degree). The quality or attractiveness of some nodes
can be higher than the rest. When we refer to the power network, nodes will be
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characterized by size and technology in case of generators. It is clear that the higher the
size of the node in terms of power, the higher its attractiveness to be linked.

Biaconi and Barabasi (Bianconi & Barabasi, 2001a; Bianconi & Barabasi, 2001b)
proposed a model where nodes could have different quality or fitness.

New nodes will be linked to a defined number of vertices as in the general model.
Each node is assigned a fitness (a real number which values follow a given distribution).
The probability of linking a new node to an existing one depends on both its degree and
fitness.

As in any non-linear preferential attachment, the overall degree distribution may
not have a power-law tail. This will depend on the fitness distribution that has been used.

Vertex-copying models:

When new nodes are added, instead of selecting another node to link, the new
node will copy all the existing edges of the node selected. To avoid that only nodes which
have connections can increase their degree, the copy only happens with a probability ‘p’.
With a probability ‘1-p’, the new vertex is added based on degree (preferential attachment
algorithm).

Depending on this probability, it can be shown that the network follows a power-
law degree distribution.

Figure 2-6 shows an example of the algorithm when a vertex is copied.

Figure 2-6. Example of vertex copying. Light blue node is chosen to be copied.

Network Optimization models:

Some networks (like a transportation network) have a specific goal to achieve.
The design of the network can therefore be based on an optimization process, for instance
to reduce the investment cost or the distance between nodes.
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There are different models to generate this type of networks, one of the most
simple is proposed in reference (i Cancho & Solé, 2003) by Ferrer | Cancho and Solé.

Before thinking on the goodness of this type of algorithms to replicate real grids,
we should consider that power networks are not always designed based on optimization
process. Nevertheless these algorithms can be really interesting when networks are being
developed from scratch (which is known is some contexts as greenfield problems).

The small-world model:

O A small-world network is a graph in which

® although most nodes are not neighbors, the distance

o (number of edges between two vertices) among
® them is low. See Figure 2-7:

® There are different mechanisms to build
® small-world networks, such the proposed by Watts-
Strogatz or Barmpoutis. (Watts, Dodds, &

® Newman, 2002), (Barmpoutis & Murray, 2010).

® These algorithms have been applied to

O generate different types of networks. Nevertheless,

® L as we said in Section 1, this is not applicable to

power networks. In the next chapter we will explain

and implement one of those algorithms, the epsilon

Figure 2-7. An example of small-world  disc model which was proposed in reference
graph. (Patania et al., 2015).
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3. GENERATING RANDOM POWER NETWORKS

Figure 3-1. Spanish Power Network. Source: Red Eléctrica de Espafia.

3.1. Power Grids

In a traditional power system, generation plants are connected to demand through the
transmission and distribution grids. This project will only consider the high-voltage
transmission network.

As mentioned above, the transmission grid is a special type of undirected graph, in
which nodes are geographically distributed. Therefore, it is a spatially embedded network.
The graph is undirected because capacity does not impose any direction in the physical
flows that will traverse the network.

21



Generation of Random Electricity Transmission Networks UNVERSIOAD S PONTIEC,

ICAI 68/ ICADE

CoMILLAS

M A D R 1 D

Generating random power networks

There can be two main types of nodes in
the power system: sinks and sources. In this
Line O text, as it can be seen in Figure 3-2, an orange
circle represents a generator (source), and a
blue one represents demand (sink). The
network  can  include interconnection
substations; they will be modeled as a sink with
4 no load. Nodes have different attributes depend
on their nature, such as generation technology,

capacity, or operating cost.

Sink

Source

We assume that the length of lines is the
Euclidean distance and their capacity is limited.
The power flow through the lines is governed
by Kirchhoff’s circuit laws (we will use a
linearized DCOPF to model them)

Figure 3-2. Power Grid Graph

Figure 3-3. Spanish Power Grid.
3.1.1. Node & Line Attributes

In this chapter, the power transmission network (generation, demand and lines) will
be characterized following the attributes in reference (Pereda et al., 2015).

Source nodes will be characterized following Table 3-1. The number of nodes in
each technology will depend on their relative abundance.

Sinks are exponentially distributed with an average value of 66 MW for each node.
Table 3-2 shows these line characteristics. We suppose that the reactance is the same for
all line types and the electrical resistance is assumed zero, as power losses are not
considered.
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Table 3-1. Generation Characteristics
TECHNOLOGY RELATIVE CAPACITY CAPACITY MARGINAL
ABUNDANCE LOWER UPPER COST
(%) BOUND [MW] BOUND [MW] [EUR/MWh]
WIND 14.10% 10 500 0
SUN 9.10% 10 500 0
HYDRO 15.50% 10 500 0
NUCLEAR 13.40% 1000 1500 15
COAL 18.40% 500 1000 20
CCGT 22,00% 100 500 25
OCGT 4.80% 100 500 50

Table 3-2. Line Characteristics

VOLTAGE [KV] NTC? COST [MEUR/km] REACTANCE [Q pu/km]
400 100 0.08 0.008
400 250 0.15 0.008
400 500 0.3 0.008
400 1000 0.5 0.008
400 2000 1 0.008
400 4000 20 0.008

3 NTC, Net transmission capacity.
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3.1.2. Epsilon-Disc Model Description

The first mechanism to generate random networks that was tested in the context of this
project was the Epsilon-Disc Model, used in (Patania et al., 2015). Nodes are connected
only based on their placement. The algorithm can be described in three steps:

e Node location is randomly fixed according to a probabilistic distribution function.
This work uses a uniform distribution. The inverse transform method assigns the
attributes (Table 3-1), using a uniform distribution. It is necessary to define the
area where the network is located and the number of nodes (sinks and sources). The
number of sinks and sources is related through equation 3-1. Demand must be lower
than the upper generation limit, and higher than the lower generation limit. The
lower generation limit depends on the availability of the generation commitment.

Zﬁ-xiSZDiSZG_i 2-1)

e Node connections will depend on the Euclidean distance between two nodes. The
idea that provides the basis of the algorithm is to consider discs of epsilon radius
centered around each node. The radius will grow ¢ units at each step, from a
minimum value &,,;,, up to a maximum value &,,,,. Nodes that are inside the disc
will be connected to the central node.
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Figure 3-4. Epsilon-disc model process.
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e Line capacity will be determined solving a power flow, in this case, a DC power
flow model. An approximation of unit commitment is required and it will be applied
as a simple economic dispatch. Although the power flow results are continuous
values, line capacity will be set following a discrete distribution (see table 3-2) in
order to reflect the discrete capacities of transmission lines (a line can either be
installed or not). The result will be quasi-optimal line capacities for a given network.
If the flow through a line becomes less than a threshold, this line is removed and
the DC power flow is recalculated.

3.1.3. Epsilon-Disc Model Simulation

Figure 3-5 shows four graphs of 166 nodes (146 sinks and 20 sources) in a square
of 5000 km with different values for the parameter &,

A first conclusion from the figure below is that the number of lines will depend
0N &,,45- This parameter will condition the supply, since with a low ¢,,,, there may not be
enough line capacity to meet demand. The election of the maximum radius has therefore
deep implications, as we will obtain graphs with varying properties, from less to more
meshed.

Figure 3-5. Network of 166 nodes with different &,,,,, 100 km (top-left), 150 km (top-right),
200 km (bottom-left) and 500 km (bottom-right).
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Figure 3-6. Relationship &,,,,,, — Number of lines. Case 166 nodes (146 sources and 20 sinks).

To see the relationship between number of lines set by the epsilon-disc model and
the maximum radius specified, we run the algorithm fixing only the number of nodes. We
can see in figure 3-6, that this relationship follows a power law.

This model does not consider the electrical properties of the network. This will
make that one node with a low demand can be linked to a high number of nodes if they are
placed in the latest disc. To avoid nodes connected to a high number of lines, a new step is
introduced in the algorithm. Before fixing capacities, some lines are removed.

As Figure 3-7 shows, in a case of three nodes, power supply is ensured with only
two lines, so one line is redundant. The reference (Patania et al., 2015) establishes a flow
criterion to remove redundant lines. However, if there are two nodes linked by two similar
lines, the flow will be similar in both lines and it will be difficult to remove one line strictly
following a flow criterion.

In this text, the algorithm has been modified to obtain basic networks where all the
nodes are linked. After that, new lines will be added following a reliability criterion. The
new step removes one line when three nodes are linked by three edges. The algorithm
chooses the line which has the longest distance.
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Figure 3-7. Different ways of linking three nodes ensuring the power supply.

In Figure 3-8 we can see the effect of the new step introduced in the algorithm. In
an instance of 166 nodes, with a maximum radius of 150 km, the number of lines is reduced
from 902 to 278. Despite these removals, there are some areas where the number of lines
per node is still intuitively too high compared to real networks.

Figure 3-8. Power network where triangles are removed.

As previously explained, the degree of a node in a network is the number of lines
linked to it. We will use it to compare a random grid generated with a real one (in this
section, the Spanish network).

In Figures 3-9 and 3-10, we can see how the pattern followed in the three cases is
not similar. In the second histogram (epsilon-disc model), the degree reaches higher values
than the Spanish network (first histogram). After removing triangles (third histogram), the
highest degrees have been reduced.

The main difference among the three histograms is the most frequent degree. While
in the Spanish instances is around 1, in random networks is over 3. The epsilon-disc model
requires new steps to remove lines from extremely linked nodes.
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The algorithm links nodes that are close without taking into account their current
degree. We can think that the higher the degree of a node, the lower the number of new
lines should be added to that node.

One option is to link nodes based not only on distance but also on degree. This idea
is developed in the preferential attachment model (See section 2). This algorithm,
introduced by reference (Barabasi & Albert, 1999), proposes a growth model where the
probability of linking two nodes depends on their current degree. This idea is also
developed in (Manna & Sen, 2002), where the probability of linking two nodes decreases
with the Euclidean distance between them.
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Figure 3-9. Degree frequency histogram of Spanish network. Source: (Patania et al., 2015).
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Figure 3-10. Degree frequency histogram of random networks.
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We adapt the epsilon-disc model to take into account not only distance but also
degree. Now the distance between two nodes will be increased with the number of lines
attached to each one. If one node is inside the disc of radius & (considering only euclidean
distance), it will be attached depending on how connected to other lines they are. The
distance will be increased based on the degree and also on a weighting factor.

Count
Co

Lﬁ f‘ | M I o=l

Figure 3-11. Random networks generated and their degree histogram.

Figure 3-11 shows different networks for the same node definition (same node
capacities and locations). The higher the weighting factor, the lower the node’s degree.
These results are quite similar to the previous ones. There are only a few nodes with low
degree and the most frequent degree is 3 or 4 depending on the case. More lines should be
removed again. As we can see in the third network, some areas are isolated and there are
even two sinks that are not linked to any source. There is also the problem that the algorithm
does not take into account the features of the generators. Some areas can be supplied only
with renewable energy, which means that demand will not be met in the cases where
renewable power availability is not sufficient. In addition, there is not an objective criterion
to follow as lines are removed. However, it is easier to think in a growth model.

Based on the state-of-the-art of Section 2, where some algorithms used to create
networks are described, we can think on a new model that combines the best ideas of them.
From preferential attachment we can take that the higher the degree the higher the
possibilities to be linked to another node. It is also clear that the connection should be
conditioned to the features of the nodes, so the process should take into account a fitting
function. At the same time, the process should try to look for a network that minimizes the
cost, although it should not be considered an optimization problem. We are not looking for
the minimum cost network but to a process that can generate a wide range of reasonable
power networks.
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After analyzing the epsilon-disc model, we have seen its strength in taking into
account that the transmission network is spatially embedded. This geographical aspect also
should be considered in a new algorithm to generate power networks.

The ideas described above can be combined into a single algorithm. We propose to
ensure the power supply in a first step and support the reliability of the system in a second
step. In this way, we cover one of the main weakness of the epsilon-disc- model where we
could not be sure when demand is met. For meeting the demand we can think that it is not
necessary to have a high number of lines per node, so we will avoid the problem of high
degree for most of the nodes. This new algorithm is explained and implemented in the next
chapter.
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4. THE TRADE-OFF NETWORK MODEL

The Epsilon-disc model only considers the spatial component but no other features that
are relevant to power networks. For instance, we should consider generation technology in
order to avoid having sinks which demand is only met with renewable sources with no other
backup technology.

In addition, the Epsilon-disc algorithm takes into account the cost of installing a line
(cost is directly related with distance €/km) but it does not take into account the generation
cost. In general, we can say that customers try to meet demand at the lowest cost.
Generators that are cheaper should be preferable.

In a real network, nodes are not only linked to satisfy their demand, they are also
connected to reach a suitable level of reliability of the system. Transport System Operators
(TSO) apply an N-1 redundancy criterion to ensure the reliability of the power network
when all elements but one (hence the name N-1) are available. This criterion tries to answer
the question: What happens if a line or a generator fails?

@-

Figure 4-1. N-1 criterion where a node is removed.

To answer the question, we can simulate the behaviour (power flows) of the system
after removing one edge or one node as we can see in Figure 4-1. In case of removing a
generator, a new dispatch is required. Once the generation is fixed, the power flows through
the network are estimated. If power flows respect the line capacity limits, it means that
neither lines nor nodes should be added to the system. If any line is overloaded or demand
cannot be met, it is necessary to study which line or power plant should be added to the
system to satisfy it.
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Figure 4-2.- Process followed in the N-1 criterion

We propose the Trade-off model as the generation algorithm for spatially embedded
power networks. This model exhibits properties that are more consistent with the ones of
actual power networks. The algorithm is not only able to ensure energy supply but also to
create networks that follow specific degree distributions. This is the main contribution of
this research, as it can be used for other types of networks. To reach a degree distribution,
we propose a preferential attachment model that effectively shifts low-degree nodes
towards the high-degree region by adding edges in a guided fashion.

The model can be described in two steps: meeting demand cost-effectively (1) and
fitting a degree distribution (2).

The algorithm has been implemented in Matlab®, using existing Matlab functions to
work with graphs.

4.1. Meeting demand efficiently

The first step of the algorithm simulates a clearing process between demand
(customers) and generators (suppliers). Each sink will try to find the generator that is able
to supply its energy needs at the lowest cost.

The priority of finding an available generator is based on size, in terms of power
demand. The bigger the node the higher the priority to find a source node.

Before starting the trade-off model, nodes are generated as described in the Epsilon-
disc model (Chapter 3). Sinks are defined by their location and power demand. Power
plants are characterized by location, maximum and minimum generation limits, generation
variable cost and type of technology.

4 Matlab, http://www.mathworks.com/products/matlab/index.html
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The cost of linking two nodes considers the cost of line installation and the cost of
generation (equation 4-1). The cost is the net present value of future cash flows. Therefore,
it is necessary to define a period of time and a discount rate to evaluate the cost.

C = Zn Cinstallation+ Cgeneration (4-1)
t=1 (1+1)¢

When a single generator is not able to supply all the demand of a node, it will supply
as much as it can. New iterations linking other generators to that sink will be required until
demand is satisfied.

The cost associated to installing a line is linear with the length of the line, modelled
as the Euclidean distance between two nodes. The model chooses the lowest-cost option
between a direct connection between two nodes or connecting them through already
existing lines. When nodes are not connected directly, more than one line could be required.

The algorithm will look for the shortest path between nodes. As nodes are not
connected yet, it is necessary to define an imaginary graph. In this network, the weight of
edges will be the geographical distance, if there is no line or 1 if there is a line connecting
two nodes.

To avoid high computational requirements, it is necessary to define a graph where
is more probable to find a connection between closed nodes than between those which are
located far away.

This is performed with the epsilon-disc model. As we saw in the previous section,
all the nodes that are inside the disc of a node will be linked to it. The disc will grow until
a maximum radius. The problem of defining the maximum radius does not affect to this
case. If the maximum epsilon is not big enough, some areas will be isolated, nevertheless
the algorithm will ensure the supply connecting two nodes directly. If the maximum value
is high, there are more possible paths to check and the algorithm will be slower. It has been
tested that there is not linear correlation between computational time and number of edges
of a graph. The algorithm is much slower when the graph increases in size.

Figure 4-3 shows the base network for a given example. The maximum radius has
been defined as the minimum of the maximum distance between nodes. It is supposed that
all nodes should be connected. As we can see in the figure, some areas are more meshed
than others.
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Figure 4-4. An example of the first step in the trade-off model.
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Figure 4-4 displays the result of this first step for a random network. Nodes have
been generated following the parameters defined in Section 3. Grey bubbles represent
demand. The colour of source nodes is related to the generation cost of that node, with
green representing relatively cheap and red representing relatively expensive generation.

As we can see, all the sink nodes have at least one connection. We suppose that all
the demand can be supplied. We can check this assumption with the proportion
generation/demand. If there is more power available than demand this ratio will be higher
than 1. In this case, the algorithm can ensure all the demand is met. In cases in which the
ratio is lower than 1 the system will not able to satisfy its demand. Networks with energy
not supplied are interesting from the point of view of the optimization algorithms but in
fact they are not realistic.

In addition, it is important to consider the resource availability in the case of
renewable generation: it is necessary to introduce an improvement to ensure nodes will
meet demand in all scenarios.

If we want to create a network similar to a real one, we need to consider the time
evolution of the network. To do this, the trade-off model can be subdivided in different
stages. Each stage represents an increase in power demand and generation. Stages can be
based on generation technologies, as the historical development of the power system
seemed to be articulated around periods where there was one single dominant technology
that was more extensively deployed

The simplest division would be to split generation expansion in two stages. In the
first one, thermal and hydroelectric plants are used while in the second stage renewable
generation is introduced. This implies that sink nodes seek to satisfy their demand using
conventional generation first, and only then are linked to renewable generators as well.
These stages can be generalized to consider other technology waves, as it has happened in
Spain with coal, nuclear or CCGT units. The stages can also be used to consider national
versus international connections.

Another possibility is to consider that renewable plants only supply a percentage of
the total demand. The sink node will have more generation available than what it needs.
These kind of model would be useful for a greenfield expansion, where new plants (most
of the renewable power plants) are being developed at the same time that the lines.

From the point of view of demand, if we consider different stages, each stage can
represent a growth in demand. The demand increase trajectory is pre-specified at the
beginning.

Line capacity is fixed based on the theoretical flow through the line after the trade-
off model is executed. It also considers the limits of the biggest line that can be installed
(which is an input). If the flow is higher than the maximum line capacity, the algorithm will
look for a new way to supply demand.

A typical degree distribution after the first step in the trade-off model is shown in
Figure 4-5. The distribution is similar to the shown in Chapter 3 for the Spanish network.
The most frequent degree is one (that is, most of the nodes are only linked to another one).
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Nevertheless, it does not fit well to the simplified European Network where degree does
not follow an exponential distribution.

Depending on the specific network, different distributions will be required. It is
necessary to define a new step to make it possible to follow any type of degree distribution.
We propose a method to do this by adding lines in a specific way. We can shift the
distribution to the right (increasing degree) stablishing new lines. If we need to shift it to
the left (decreasing degree) is necessary to remove existing lines. If lines are removed, we
should check if demand is still met. For the sake of simplicity, we only consider the
possibility of adding lines, and therefore we implicitly assume that we will not need to shift
the distribution to the left. The number of lines added in step 1 is considered relatively
small with respect to the total number of lines.
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Figure 4-5. Typical degree distribution for the network obtained in the first step of the algorithm.

4.2. Fitting a degree distribution

This step can be summarized as adding new lines smartly to obtain a defined distribution.
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Figure 4-6. Current degree distribution (in orange) and target function (blue line).

An input of the algorithm is the degree distribution that is wanted to achieve. This can
be given from the distribution for an existing system, for instance. It can be also defined
randomly. The distribution can be introduced as an equation or as a histogram. We use a
bin for each value of degree in order to get the most accurate results.

The algorithm also requires setting a tolerance level for the fitting. The process ends if
the difference between the target and the current distribution is smaller than the tolerance
or if after a specific number of iterations the model does not add any line. The lower the
tolerance the most accurate the histogram and the greater computational time spent.

The algorithm will analyse all the possible combinations of nodes to decide if a line is
added to the system. Constraints related to distance can be introduced to avoid studying
lines that are too long.

As in the first step of the algorithm, there is a priority to analyse if a line is installed.
It is based on size.

The process will analyse the current degree of the two candidate nodes to be linked. If
the line contributes to reach the target distribution, it is assigned a positive probability of
being installed. If that connection will not contribute to the fitting process, the probability
of linking those nodes will be zero.

Equation 4-2 defines when a line contributes to reach a desired distribution based on
the degree of two nodes.
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(number of nodes ( degree (node)) > target) N (4-2)
(number of nodes (degree (node i) + 1 = < target)

The objective is to shift the degree distribution to the right. We assume that the
number of nodes with a low degree is much higher than the number of nodes with a high
degree.

When the connection between two nodes is studied, their degree is analyzed. If the
number of nodes with a given degree is higher than the target value, then the distribution
must be shifted to the right.

As we have explained, power networks are spatially embedded. We assume that the
probability of linking two nodes is related to the distance between them. We will condition
the connection between two nodes not only to its contribution to the fitting process but also
to a fitness function based on distance. Considering distance we are taking into account the
cost of installing a line.

The fitness function can be defined as the probability of installing a line. For instance,
we can use a Gaussian distribution. Another possibility is to introduce a desired distribution
for length of lines. Knowing the maximum number of lines in a gap, the algorithm will
decide if the probability of connecting a line that contributes to the reach the target
distribution is high or low. If the difference between the target number of lines in an interval
and the current interval is zero, that lines will not be installed.

If a line contributes to fitting the degree distribution and has a positive probability to
be installed, the algorithm will decide whether to install it or not based on generating a
random number.

After a new line is installed, it is necessary to update the difference between the target
distribution and the current one.

When the fitness distribution is defined it is necessary that it is in accordance to the
properties of the case. Otherwise, lines will not be added and the algorithm will not be able
to reach the desired distribution.

If after the Step 2 there are still isolated nodes, they will be linked randomly to one of
their closest neighbours.

The result of this second step will be shown in the next chapter. This will be used also
to check the degree of accuracy of the algorithm, testing it with a real case of the European
network. Node features will be introduced as inputs. The objective will be to know the
goodness of the algorithm to link nodes. The artificial network will be compared to the real
one from a statistical point of view.

If the same nodes are used in different simulations, the result of the first step will be
identical. There will not be any difference between the lines installed in different cases.
Nevertheless, the second step will give different results for each simulation.
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5. STATISTICAL ANALYSIS

A real case of the European network will be used to test the algorithm explained in the
previous section. The objective is to check if the result, that is, the artificial networks
generated with the trade-off model, are consistent with the real ones.

5.1. European network

The simplified network used is a combination of 14 countries in Europe. Each
country has a different number of nodes, Table 5-1 shows the number of nodes per country.
Nodes have their geographical position defined. At each node we can find demand, one or
more generator or a combination of demand and generators. Figure 5.1 shows the network
that will be the benchmark. Grey bubbles represent demand. Generation is represented with
different colors based on generation cost (red represents more expensive and green shows
cheaper plants). Lines can be classified as international connections and national
connections. All nodes are connected in the same graph.

Table 5-1. Number of nodes considered in each country.
COUNTRY NUMBER OF

NODES

1 32
2 29
3 15
4 218
5 92
6 245
7 162
8 7
9 53
10 20
11 30
12 22
13 32
14 68
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Figure 5-1. Simplified European network.
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5.2. Random European network generated with Trade-off model

Node location and features (power demand, power supplied and type of generation)
have been introduced based on the real case. Only lines will be generated randomly by the
algorithm.

In attempt to mimic the real historical development of the network, two stages have
been considered. As in the real network renewables were only installed later, we have
distinguished between conventional and renewable power plants. Conventional plants are:
nuclear, coal, gas, hydro and oil. Renewables include wind and solar. We have considered
the growth in demand when renewables were installed was small, so all the demand was
considered in the first stage. As there is not an increase in demand during the second stage,
renewable plants will be linked randomly in the second step of the algorithm, where all the
demand is met.

In the first step the algorithm will try to ensure that all the demand is supplied, in
this case only with conventional power plants. Sink nodes will look for the cheapest power
plant that is able to supply all their demand. Generation cost for each type of power plant
is shown in Table 5-3. The present value is calculated considering a discount rate of 10 %
for the next 40 years. Line power losses have not been considered. Table 5-2 shows the
cost of installing a line.

Figure 5-2 displays the network generated after the first step. In this instance, ratio
between total conventional generation power and total power demand is 1.4353, which is
reasonable compared to existing system. We can observe that all sink nodes are connected
to at least one line.

Table 5-2. Lines cost in European case.

CAPACITY (MW) COST (MEUR/KM)
100 0.08
250 0.15
500 0.3
100 05
2000 1
4000 2

Table 5-3. Generation cost in European case.

TECHNOLOGY COST (EUR/MWH)

Gas 50

Oil 110
Biomass 16

Peak 120
Nuclear 14
Coal 50
Hydro 0
Wind on-shore 0
Wind off-shore 0
Solar 0
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With the second step, the algorithm will try to fit the desired degree distribution. In
this step, nodes with renewable plants have been introduced.

During step 1, sinks are connected to sources only considering generation cost. No
geographical constraints were taken into account. Nevertheless, in the second step the
connection of two nodes will be conditioned by the country of location of the nodes.

As the algorithm will try to reach a degree distribution connecting nodes of the same
country, we can say that the algorithm is fitting not only one-degree distribution but also
fourteen distributions, one for each country. This is more representative of the European
network given that the national networks were created independently only to be
interconnected relatively later.

Although we lose the possibility of mimicking international connections, we think is
the best way to have a good approach.

The fitness function considered in this step is based on the length of the line. For each
candidate line the probability of installing it is correlated to the distances between the two
nodes. There will be a different fitness function for each country, as length of lines cannot
be considered similar in the case of Spain or Sweden for instance.

Figure 5-3 shows the artificial network for Europe obtained with the Trade-off model.
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Figure 5-2. Artificial European network after the first step of Trade-off mode.
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Figure 5-3. Artificial European network obtained with the Trade-off model.
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Figure 5-4 shows the degree distribution after the first step and the target distribution.
We can observe that there is a high number of nodes whose degree is zero. Nodes with no
lines are those which have renewable plants or have not been linked in the first step
(remember that the ratio between power generation and power demand was higher than 1).

The most frequent degree is one, as most of the nodes can met its demand only with
one power plant. There are no nodes with a very high degree; the most connected node has
8 lines connected to it. This is far from the 16 lines that some nodes have in the real network.

S

Figure 5-4. Degree distribution after the first step and target distribution for the European case.

Although the tolerance for this case is only 2, the error in the overall degree
distribution can be high as international connections have not been considered. The degree
will be adjusted based on ten bins: nodes with 1, 2, 3, 4, 5, 6, 7, 8, 9, >9 lines per node.

The fitness distribution for the length of lines has been defined as the difference
between the number of lines in the real network and in the artificial network for a length
interval. If that difference is positive, the probability of installing that line is also positive.
This difference is updated after a new line is added. This function is divided in ten classes
equally distributed from the minimum and up to the maximum length of a line in each
country.

5.3. Statistical analysis

We can observe that the real and the artificial network are very similar. Different
measures are used to compare them from a statistical point of view.
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5.3.1. Degree distribution

The degree distribution, as explained, is the main descriptor of a network used in
network science. As we saw in Section 3, in the case of a power network degree is the
number of lines linked to a node (a demand or a power plant).

Figure 5-5 shows the degree distribution for the real and artificial networks. Both
histograms are quite similar. As a consequence of the inputs used we can observe that there
are no nodes with more than ten incident lines. If we wanted to avoid this, we could divide
the degree distribution into a larger number of bins (in this case we used one single bin for
all degrees higher than 9). Although the tolerance for the algorithm was 2, we can observe
that the error is bigger than this. This was to be expected, as the fit will not always be
possible. For nodes with one connection, the difference between the target and the current
degree distribution is almost 20. We should consider that the algorithm has been adjusted
by country, so for the whole network the error is the sum of the errors of each country.

Another cause that justify that the algorithm does not adjust perfectly the distribution
is that international connections are considered in the target distribution but we did not take
them into account for fitting the curve. Adding international connections the curve will
shift to the right so the difference with the real distribution will be lower.

A solution to improve this error can be to divide the network in different areas that
do not correspond to countries. For instance, in Central Europe, a set of countries can be
merged into a single area.

Figure 5-6 and 5-7 show the degree distribution of the real and artificial network for

each country. As explained above, the difference between distributions is lower. It is in
accordance with the tolerance. In most of the cases the error is one node per bin.
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Figure 5-5. Degree distribution for artificial (left) and real (right) European networks.

Table 5-4 shows statistical measures for the degree distribution of both networks.
(the average value), Standard deviation (the amount of dispersion of a set of values)

and mode (most frequent value) have similar values. The difference is a little bit higher for
the moment of order 3 (indicator of symmetry) and 4 (kurtosis, indicator of ‘tailedness’).

In both cases moment 3 is positive, there is an asymmetry respect to the mean value.

The moment 4 is higher in the real network as the tail of the distribution is fatter. In the
artificial network values are more concentrated close to the mean value.

Table 5-4. Statistical measures for degree distribution.
REAL NETWORK ARTIFICIAL NETWORK

Mean | 4.05 3.80
Standard deviation | 2.20 2.12
Mode | 4 4
Skewness | 7.86 5.49
Kurtosis | 92.87 56.49
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Figure 5-6. Degree distribution for countries in the real European Network.
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Figure 5-7. Degree distribution for countries in the artificial European network.
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5.3.2. Betweenness centrality

It can be defined as the number of times a node is located in the shortest path
between two nodes, considering all the possible combinations in the graph. It represents a
measure of the centrality of a node in the network.

A node with high level of betweenness centrality has a central position in the graph.
It is in the shortest path among a high share of combination of pairs. For instance, in Figure
5-8, we can see that the light blue node has a central position, this node is in the path among
nodes located at the top and at the bottom.

Figure 5-8. An example of graph where light blue vertex has a high value of centrality.

A comparison between the betweenness centrality of the real network and the
artificial network is shown in the Figure 5-9.

As in the case of degree, both distributions are similar. In both cases the most
frequent value is zero (Table 5-5). In the artificial network there are more nodes that are
not in the shortest path between other two. Increasing the number of lines, for instance with
international connections, this value can be lowered.

Table 5-5. Statistical measures for betweenness centrality distribution.
REAL NETWORK  ARTIFICIAL NETWORK

Mean | 1.318 e4 1.05 e4
Standard deviation 2.637 e4 3.71e4
Mode | 0 0
Skewness 6.51 el13 3.92el4
Kurtosis | 9.92 e18 1.52 €20
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In both cases the mean of the distribution is similar. We find the highest difference

in the kurtosis, as we said for the degree, it is due to the tail of the distribution. In the
artificial network values are more dispersed, and the tail is bigger.
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Figure 5-9. Betweenness centrality for the real (left) and artificial (right) European networks.

5.3.3. Length of lines

To define the length of a line we used the Euclidean distance between two nodes.

This was used as the fitness function that conditions the decision of adding a line to the
system.

We should remember that in the first step of the algorithm there was no length
restriction, so some outliers can appear.

The rank of distances will vary among countries. It is supposed that the higher the
area where the grid is located the longer the lines that are uses to connect nodes.

Figure 5-10 shows the length of lines distribution for the whole European network.
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Figure 5-10. Length of lines distribution for the real (left) and artificial (right) European networks.

We observe that the shape of both functions is really similar. In this case, mean and
standard deviation have identical values. The value of mode is not significant in this case
as it is really difficult that two lines have the same distance (discrete values are considered).

The measure of tailedness is analogous in both cases and both distributions have the
same asymmetry.

If needed, we could get a better fit it more than ten bins were used. We should also
consider the possibility of add a new step in the algorithm to remove lines. As in the first
step length of line is not checked, the model can install lines with a length that does not
correspond to the real distribution.

Table 5-6. Statisticial measures for length of lines distribution.

REAL NETWORK ARTIFICIAL NETWORK

Mean | 4.8982 e3 45674 €3
Standard deviation | 4.1042 e3 3.8941 e3
Mode | 754 1089
Skewness | 1.18 el1 9.6928 10
Kurtosis | 2.33e15 1.463 e15

5.3.4. Shortest-path length

The shortest-path length of a graph is the minimum number of edges there are
between two nodes.
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Figure 5-11. Shortest-path distribution for the real (left) and artificial European networks.

If we compare the real and artificial networks, we can observe that in the artificial
one distances are shorter than in the real one. In the real network usually there are two
edges more than in the artificial one in the shortest path length. Standard deviation is also
lower for the artificial network. In the same way, the kurtosis is much bigger in the real
distribution. Values are more closed in the synthetic network.

The lower data dispersion can be understood from the point of view of how the
network is meshed. If lines are well spread distributed in the area, the path between two
nodes will be shorter.

Table 5-7. Statistical measures for shortest path length distribution.
REAL NETWORK ARTIFICIAL NETWORK

Mean | 13.87 11.82
Standard deviation | 6.29 4.83
Mode | 12 10
Skewness | 77.77 24.71
Kurtosis | 4.016 €3 1.453 €3

5.3.5. Clustering coefficient

The clustering coefficient is used as a measure to know if nodes tend to form
communities inside which there are more links than among them. This metric is really
useful in social networks, as it represents the average probability that a pair of one’s friends
are friends of each other’.
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In many networks clustering is found to have a rough dependence on degree, with
vertices with a higher degree having a lower local clustering coefficient on average. Local
clustering can be used as a proof for the existence of so-called “structural holes” in a
network. It is common in some types of networks, that for the neighbors of a vertex to be
connected among themselves. It happens sometimes that these expected connections
between neighbors are missing. The missing links are called structural holes. When missing
links appear it reduces the number of alternative routes that power can take through the
network (Newman, 2010), which has important consequences for reliability.

The clustering coefficient for a network can be calculated following the
equation 5-1:

C = 3 -number of triangles (5-1)
" number of connected triplets of vertices

A triplet is a set of three nodes that are connected.

Figure 5-12 shows an example of calculating clustering coefficient for a simple
graph. The value of clustering coefficient is: a) 1, b) 1/3, ¢) 0.

: N RN

Figure 5-12. Different clustering coefficient for a given graph with different edges.

Figure 5-13 displays the clustering coefficient distribution for the networks we are
studying.
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Figure 5-13. Clustering coefficient distribution for the real (left) and artificial (right) European
networks.

This metric is the most different among the ones we have analyzed. The mean value
is the double in the real network. Neighbors of a node are more linked in that case. The
kurtosis is the most identical measure, nevertheless this not have a relevant significance
here as the distribution is enclosed between 0 and 1.

We can think that as in previous metrics, adding more lines the distributions will be
more similar.

Table 5-8. Statistical measures for clustering coefficient distribution.
REAL NETWORK  ARTIFICIAL NETWORK

Mean 0.34 0.17
Standard deviation 0.30 0.25
Mode 0 0
Moment (order 3) 0.02 0.03
Moment (order 4) 0.02 0.02

As we have mentioned in the shortest path length, if lines are well spread through
all the geographical space, there will not be highly meshed areas and the connections among
neighbors of a node (clustering coefficient) will be lower.

Further analyses should be performed in order to identify a pattern in how the
network is meshed.

Figure 5-14 displays the correlation between the clustering coefficient and the
degree of a node. Taking into account that in the artificial network there are no nodes with
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a degree higher than 10, both graphs are quite analogous. In both cases we can identify a
trend, the higher the degree of a node the lower connect that its neighbors are.

1 e o o 1 e o
09 09—
L] L]
08 08
07 07
e o L] L 2
4 z
o <
ﬂéns L 2 %Dﬁ’
i ° 1=
k<] ° o ‘s
= w
*éna ° o . Ena ° o
o L4 [ s} [ ]
=) o
£ e o £ e
}L‘SDd L 2 ° D04 e o
0 [ 2 g L ]
>
2 ° 2
o [&]
L ® o ° L 2 L L °
L s L3 L °
03 o o 03
® ° °
e ® %o L4 s ® °
e o e o
L3 Y °
02 e e . & 02 e o . ®
L]
. ° ° . [
e ®® o0 o ° ° e ® % o
L3 L]
01 o ° ° 01 L e ® e ©
[ L4 ° ° 3
e e b4 e
° °
- ®
0 o . - L | I I 0 N - o N I I
o 2 4 6 8 10 12 14 16 18 20 o 2 4 6 8 10 12 14 16 18 20
Degree of node i RN Degree of node i AN

Figure 5-14. Correlation between clustering coefficient and degree of a node for the real (right) and
the artificial (left) European network.
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6. CONCLUSIONS

6.1. Epsilon Disc-Model

This work has implemented a state-of-the-art method for generating spatially
embedded networks applied to the power grid (developed by this project’s supervisors in
reference (Patania et al., 2015)).

Epsilon-disc models have been used in the network science literature to generate
spatially-embedded networks. These networks take into account the spatial component but
no other additional features that are relevant for power networks.

This project has identified the flaws of the Epsilon-disc model in terms of not fitting
the descriptive distributions of the network and not taking into account economic
information such as generation cost in the development of the network.

Fixing the value of the maximum epsilon radius was the main problem we found. We
did not find a way to establish it. A high value will give networks with a high degree of
mesh. Low radius will create grids with isolated areas where demand may be not supplied.

We consider that the algorithm can be useful for other types of networks as social
ones, nevertheless it is not completely useful for power networks as it does not consider
some features like generation costs or reliability of the system that are essential in the real
design of them. Some improvements could have been introduced, nevertheless we
considered that it was better to develop a new model.

6.2. The Trade-off Model

This project has developed a new generative network model that overcomes the flaws
observed in the epsilon-disc model. The new model displays properties that are more
consistent with the ones of actual networks.

With this model we not only ensure that all the demand is supplied but also we can
fit any degree distribution adding lines in a flexible way.

This is the main contribution of this research. The developed method can be used not
only to generate power networks but also in other types of networks.

The Trade-off Model is based on a preferential attachment model that effectively
shifts low-degree nodes towards the high degree region by adding edges smartly.

The results proved that the algorithm is able to fit a general degree distribution that
is taken from input data.
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The second step of the algorithm does not consider the cost of the system. To avoid
that far nodes have the same probability to be linked than nearby ones, the action of adding
a line is conditioned to the length distribution of lines.

It is difficult to emulate the process followed by TSOs to add new lines to increase
reliability. Several factors can influence this decision, including economic or political ones.
The algorithm will generate lines randomly based only on distance with is correlated to the
cost of installing a line.

We have generated random networks taking the European one as a template. Our first
conclusion is that the algorithm can be used to create networks that are similar to existing
ones. Degree distributions are almost identical. They are also similar from the point of view
of betweenness centrality, length of lines and shortest path length.

There was a larger difference in the case of the clustering coefficient.

We think that this difference is due to the way the grid is meshed. If we see the real
network, there is not a pattern in the mesh of the network. Depending on whether the mesh
is spread across the space or is concentrated in specific areas, we will have more or less
similar networks. This can justify the fact that in the artificial network the shortest path
length between nodes is lower.

From the point of view of the length of the lines, both networks are similar. Only
some outliers appear in the artificial network as no restrictions about distance were made
in the first step.

The line length distribution can be approached more accurately considering a high
number of bins in the histogram for the fitness distribution.

It will be interesting to replicate the European system considering random nodes as
well (in this case study nodes were fixed and only connections were generated), the area
should be well defined, as it is not a simple square. The case of Spain and Portugal can be
approached better with a square. The European network can be replicated dividing it into
different subnetworks.

We also concluded that we can create networks that have different properties
depending on the area. We applied this to Europe, where the network is a set of 14 small
different networks. We can create completely independent random networks that can be
linked, resulting a network with clear differenced areas. This could be a way to avoid the
problem of some networks in which the degree of mesh depends on the zone.

It is clear that we are not going to create networks that are exactly equal to the one
that we are using as a template. That is not the objective of the project. We try to create
artificial networks that are consistent with the real ones. There is not only one pattern that
have been follow in the generation of the existing network. There are a lot of properties
that should be considered. We have only considered the ones we think have more relevant
in the process of network design. They are good to recreate existing ones, and to be used in
studies about the expansion of existing networks.
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If we want to use the algorithm to create new networks for emerging countries this
second step it is not the most accurate, as the process should be a pseudo-optimization
process based on cost, emissions, etc.

6.3. Future Research

The goal of this work was to create a model that can generate artificial networks that
are similar to the real ones. Although there are some papers that have faced this question
for other types of networks, this had not been properly studied for the power network. We
have proposed an algorithm that can generate artificial networks with a high degree of
similarity as we have tested in section five. Nevertheless, the algorithm can increase its
degree of accuracy. With the improvements, the result will be more accurate for greenfield
expansion, where optimization algorithms require a high computational time.

Some of the improvements that can be developed in next steps are:

To improve the fitting to a degree distribution, a function should be implemented to
remove lines. For instance, in the case of Europe, in the first step, the trade-off was
implemented not taking into account constraints of nationality. In this case we can have
really long lines that are undesirable as they do not appear in the real case. Even the degree
distribution obtained in the first step will require not only shift it to the right but also to the
left, so following the same pattern to add line a new process can be defined to remove
existing lines. Here, the main consideration should be that the process should ensure that
all demand is met. If an essential line for the system is removed, another one should be
added.

As explained, an N-1 criterion is used by the TSO to ensure the reliability of the
system. Our algorithm added random transmission lines to fit degree distribution. However,
the N-1 criterion is not checked explicitly. A new step can be introduced before fitting the
degree distribution to add new lines following this criterion. As a first consequence of the
N-1 criterion, there will not be any node with only one line, all of them will have at least 2
lines. As we saw in the example of Europe, the number of nodes with only one lines was
high. Even in the example shown in reference (Patania et al., 2015) in the Spanish system
nodes with only one line were the most frequent. Therefore, the correct way to implement
this criterion should be studied carefully.

One of the flaws of the proposed algorithm is that it does not take into account
interconnection substations. It could install different lines very close geographically, so that
it should make more sense to join them by means of a substation. It should be possible to
establish the connection to an intermediate point of an existing line if there are not active
capacity constraints (the existing line can carry more power). This should be implemented
in a computational-efficient way, as we are increasing the number of ways to connect at the
first step.

An improvement for the algorithm can be introduced in the node location. In the
algorithm described you can introduce the location of nodes or the algorithm can generate
them randomly. With the random option, they are placed following a uniform distribution.
With topological information about the place where the network will be located, the
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algorithm should be able to decide where to place these nodes. For instance, on a river the
probability of have a hydroelectric plant will be higher than zero, while outside it should
be zero. This system should read not only topological information but also information
related to wind or solar radiation. This can be a really useful improvement if this tool is
used to generate completely new power networks.

Furthermore, the improvements for the algorithm described and following the
motivation for this project, the next step will be to use random networks to test the
optimization algorithms. With a large number of instances and following the framework of
K. Smith-Miles we will be able to approach a solution to answer our motivation question
of when it is better to use a Genetic Algorithm or Benders’ decomposition. .
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)

2,4

Mix)

expomean,

,2)1;

length b,
sum (Source 0 (

length Db,
Sink (

1),

length a,

length a,
Sink (

’

:,2)

’

’

Source (

5)))
1),

M4
-7

source generation (n source,

max (size (Source 0));

sink generation(n source,

n sink+n source
ordenasource (Source 0)

ordenarsink (Sink 0)

[Source (

sum (Source O (

Source 0
Sink 0

n source
n node
Source
Sink
Node
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Dist=node distance (Node) ;

fac=1.2;

e max=min (max (Dist));

Lines ebO=(node linkage(delta e, e max, Dist, fac));

plot lines (Node, Lines eb0O, Source,Sink, n sink, n_source)
grafo=graph (Dist.*Lines eb0);

Lines f2=f tradeoff perd(grafo, Dist, Source, Sink);

plotl lines(Node, Lines f2(:,:,1), Source,Sink, n_sink,
n_source,Lines f2(:,:,2))
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9. EXHIBIT 2
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expomean,

length a, length b,

sink generation(n_ source,

)

function Sink

ub, coef

1b,

round (ub/ (expomean*coef) ) ;

n sink

ones (n sink, 3);

Sink=

’

randi (length a,n sink,1)

,1)=

Sink (

’

randi (length b,n sink,1)

1,2)=

Sink (

1);

n sink,

expomean,

random ('Exponential’,

:,3)=

Sink (

’

return Sink

65



Generation of Random Electricity Transmission Networks ONERSIOND B8 ONTirc

ICAI & ICADE

Exhibit 2 =
©90000000000000000000000000000000000000000000000000000000000000000000000
OO0OO0OO0OO0OO0OOOOODOOODODOODODOOODODOODODOOODODOODODOOODOOODODOOODOOODODOODODODOODODOOODOOODODOOOOOODODOOO©O™O
9009 1 1A 1A 9990
5% % Caracterizacidn Generacidn 555
000000000000000000000000000000000000000000000000000000000000000000000000

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

function sources=source generation(n_source, length a, length b, Mix c)

Source=ones (n_source, /) ;

Source(:,1)=randi (length a,n source,1);

Source (:,2)=randi (length b,n source,1);

for i=l:n source

aux2=rand (1) ;

aux3=rand (1) ;

if aux2<Mix c (1)

Source (i, 3)=1;

Source (i, 4)=10* (1+randi ([0,10])/10);

Source (1,5)=500* (1-randi ([0,9]1)/100);

Source (i, 6)=0;

elseif (aux2<Mix c(2) && aux2>Mix c(1))
Source (i, 3)=2;

Source (i,4)=10* (1+randi([0,10])/10);

Source (1,5)=500* (1-randi ([0,9]1)/100);

Source (i, 6)=0;

elseif (aux2<Mix c(3) && aux2>Mix c(2))

Source (i, 3)=3;

Source (i, 4)=10* (1+randi ([0,10])/10);

Source (i, 5)=500* (1-randi ([0,9])/100);

Source (i,6)=0;
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elseif (aux2<Mix c(4) && aux2>Mix c(3))
Source (i,3)=4;
Source (i,4)=1000* (1+randi ([0,2]1)/20) ;
Source (i,5)=1500* (1-randi ([0,4])/30);
Source (i,6)=15;
elseif (aux2<Mix c(5) && aux2>Mix c(4))
Source (i, 3)=5;
Source (1,4)=500* (1+randi([0,4])/20);
Source (1,5)=1000* (1-randi ([0,41)/20);
Source (i, 6)=20;
elseif (aux2<Mix c(6) && aux2>Mix c(5))
Source (i, 3)=6;
Source (i,4)=100* (1+randi([0,10])/10);
Source (1,5)=500* (1-randi ([0,5])/100);
Source (i, 6)=25;
elseif (aux2<l && aux2>Mix c(6))
Source (i,3)=7;
Source (1,4)=100* (1+randi ([0,10]1)/10);
Source (i, 5)=500* (1-randi ([0,5])/100);
Source (i, 6)=50;
end
if (aux3<0.95)

Source (i, 7)=1;
Else
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Source (i,7)=0;
end
end

sources=Source;
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Sink(k,5)1;

I

B Sink(k, 4)

ordenarsink (Sink)
'descend')

3) .
Sink(k,2)

-7

I

orden

[Sink (k,1)

[B, k]=sort (Sink(

function ordenado

orden
ordenado
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ordenasource (Source)

function ordenado

I

'descend')

:,9),

[B, k]=sort (Source (

B Source (k, 6)

Source (k, 3) Source (k, 4)

[Source (k, 1) Source(k,2)
Source (k, 8)

orden

I

]

Source (k, 7)

=orden;

ordenado
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node)

’

round (sqrt ( (node (i, 1) -node (j,1)) "2+ (node (i,2) -

Dist (i,7)

node distance (

(n node)

’

(1+1)

(n node)

Dist(i,73)
Dist (j, 1)

max (size (node))
node (j,2))"2))

Dist

=(zeros (size(node)));
=1

for j

End

function matrix

Dist

n node
for i
end
matrix
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fac)

=node linkage(delta e, e max, Dist,

function lines 0

(zeros (size(Dist)));

Lines

max (size (Dist)) ;

n node

=int8 (zeros(l, n node));

lines per node

aux

while (e<e max)

’

etdelta e

e=

n_node

=1:

for i

’

aux+lines per node (i) *fac

aux=

n_node

i+1:

for j

0 && Dist(i,]) *aux<e )

(Lines (i, 7J)

if

1;

Lines (i, 3)

1;

Lines (j,1)

end

end

aux

end

=sum (Lines) ;

lines per node

end

_O=Lines;

lines O
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function plot4 (Lines red,nodes, Source 0 con,Sink 0, Source 0 ren,
Source 0)

nodes=nodes*8000;
axis equal
figure
hold on
for 1=1:1025
for §=i+1:1025
if (Lines red(i,j)==1)
plot ([nodes (i, 2),nodes(j,2)], [nodes(i,3),nodes(3,3)], 'b');
end
end

end
auxl=max (Source 0 con(:,5));
aux2=min (Source 0 con(:,5));
aux3=auxl-aux2;
pr=(Source 0(:,6));
cl=(1* (pr>(auxl-0.6*aux3))+0.8* (pr<(auxl-0.6*aux3) & pr>(auxl-
0.7*aux3))+0.6* (pr<(auxl-0.7%*aux3) & pr>(auxl-0.8%*aux3))+0* (pr<(auxl-
0.8%*aux3) ));
c2=(0* (pr>(auxl1l-0.2*aux3))+0.4* (pr<(auxl-0.2*%*aux3) & pr>(auxl-
0.3*aux3))+0.6* (pr<(auxl-0.3*aux3) & pr>(auxl-0.4*aux3))+0.8* (pr<(auxl-
0.4*aux3) & pr>(auxl-0.5*aux3))+1* (pr<(auxl-0.5*aux3) ));
c3=(0* (pr>(auxl-0.3*aux3))+0.2* (pr<(auxl-0.3*aux3) & pr>(auxl-
0.6*aux3))+0.4* (pr<(auxl-0.6%*aux3) & pr>(auxl-0.8%*aux3))+0* (pr<(auxl-
0.8%aux3) ));

colour=[cl c2 c3];

grey=[0.5 0.5 0.5];
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maxl=max (Sink 0(:,3));

s1=(Sink 0(:,3)/maxl*75);

scatter(Sink 0(:,1),Sink 0(:,2),s1*2.5,grey, 'filled")
s2=(Source 0(:,4)/maxl*75);

scatter (Source 0(:,1),Source 0(:,2),s2*2.5,colour, 'filled'")
axis equal

set(gcf, 'color', [1 1 11)

axis off

end
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10. EXHIBIT 3
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1);

=Lines f2(:,:,

Lines

1)

=nodes (

gnode

’

max (size (gnode))

ngnode

zeros (ngnode, ngnode) ;

glines

size (Lines) ;

la,b]=

n lines

=a;

n lines

=1:

for 1

n_lines

i+1:

for j

==1)

if (Lines (i, 3)

’

=Node (i, 3)

auxl

’

Node (3, 3)

aux2=

’

find (gnode==auxl)

aux3=

’

find (gnode==aux2)

aux4

if (aux3~=aux4)

gLines (aux3,aux4)=1;

gLines (aux4, aux3)=1;

end

end

end
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end

geoDist=node distance ([nodes(:,2)*8000, nodes(:,3)*8000]);
gnlines=gLines;

currentgrafo=graph (gLines) ;

grad=degree (currentgrafo) ;

info=[grad countryl;

clear currentgrafo

[Lines red]=f pat v2(glLines, info,geoDist );

plotd4 (Lines red,nodes, Source 0 con, Sink 0, Source 0 ren, Source 0);
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Attachment
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[n Lines]=f pat v2(Lines,infol,Dist)

function

2),Dist,LinEurope) ;

=f d c(infol(:,

[auxa rdist]

:,2),Dist,Lines);

f d c(infol(

auxb=

’

auxa-auxb

ma prob

ma prob (ma prob<0)=0;

’

f objective values()

matriz auxiliar

max (size (Lines)) ;

n node

n Lines

Lines;

zeros(14,1);

cond=

0;

(g<20)

while

g=qg+1;

:14

=1

for c

==0)

(cond (c)

if

find(info(

auxl

=info(:,1);

grado

’

grado (auxl)

a=

ones (10,1) ;

da=
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dalO=max (size (find(a==0)));

da(l)=max(size(find(a==1)));
da (2)=max (size (find (a==2)));
da (3)=max(size (find(a==3)));
da (4)=max (size (find(a==4)));
da (5)=max (size (find (a==5)));
da (6)=max (size (find (a==6)));
da (7)=max (size (find(a==7)));

da (8)=max (size (find (a==8)));

da (9)=max (size (find (a==9)));

da (10)=max (size(find(a>9)));

rl=rdist(c,1);

r2=rdist(c,2);

r3=rdist (c, 3);

r4=rdist (c, 4);

r5=rdist (c, 5);

ré=rdist (c, 6) ;

r7=rdist (c,7);

r8=rdist (c, 8) ;

r9=rdist (c, 9);

rl10=rdist (c,10);

rll=rdist(c,11);
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dt=matriz auxiliar(c,:)';

pd=da-dt;

for i=1l:n node
for j=1:n node

D=Dist (i,7);
r=(1*( D<=r2)+2* (r2<D && D<=r3)+3* (r3<D &&
D<=r4)+4* (r4<D && D<=r5)+5* (r5<D && D<=r6)+6* (r6<D &&
D<=r7)+7* (r7<D && D<=r8)+8* (r8<D && D<=r9)+9* (r9<D &&
D<=rl10)+10* (r1l0<D && D<=rll));

1f (r>0)

if(info(i,2)==c && info(j,2)==c && i~=7j)

if (info(i,1)==0 || info(j,1)==0 &&
n Lines(i,J)==0 )

if(info(i,1)==0 && info(j,1)==0)
if (ma prob(c,r)>0 && rand(1l)<0.3)

n Lines(i,]j)=1;

n Lines(j,1)=1;
info(i,1)=info(i,1)+1;
info(j,1)=info(j,1)+1;
da0=da0-2;

da(l)=da(l)+1;

da(l)=da(1l)+1;

pd(1)=pd (1) +2;

ma_ prob(c,r)=ma prob(c,r)-1;
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end

elseif (info(i,1)==0 && info(j,1)>0)
auxl=info(j,1);
if (auxl1>9)
auxl1=10;
end
if (aux1<10)

if (max (pd(l:auxl))>0 &&

(pd (auxl+1))<0)

if (ma prob(c,r)>0 &&

rand (1) <0.3)
n Lines(i,j)=1;
n Lines(j,1)=1;
info(i,l)=info(i,1)+1;
info(j,1l)=info(j,1)+1;
da (auxl)=da (auxl) -1;
da0=da0-1;
da (auxl+1l)=da (auxl+1) +1;
da(l)=da(l)+1;
pd(1l)=pd(1l)+1;
pd(auxl+l)=pd(auxl+l)+1;

pd (auxl)=pd(auxl)-1;
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ma_prob(c,r)=ma prob(c,r)-

1;
end

end

end

elseif (info(i,1)~=0 && info (j,1)==0)
auxl=info (i, 1);
if (auxl>9)
aux1=10;
end
if (aux1<10
if (pd(auxl)>0 && (pd(auxl+l))<0)

if ((ma_prob(c,r)>0 &&

rand(1)<0.3) || (D<r5 &&

rand(1)<0.6) )
n Lines(i,3j)=1;
n Lines(j,1i)=1;
info(i,l)=info(i,1)+1;
info(j,1)=info(j,1)+1;
da (auxl)=da (auxl) -1;
da0=da0-1;
da (auxl+1l)=da (aux1l+1)+1;
da(l)=da(l)+1;

pd(1l)=pd(1)+1;
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pd(auxl+l)=pd(auxl+l)+1;
pd (auxl)=pd(auxl) -1;
end
end
end

end

end

if (cl==1)
auxl=info(i,1);
if (auxl>9)
aux1=10;
end
aux2=info(j,1);
if (aux2>9)

aux2=10;
end

if(pd(auxl)>0 && auxl1<10)
1if( aux2<10)
if ((pd(aux2+1))<0)

if (ma prob(c,r)>0)

82



Generation of Random Electricity Transmission Networks
Exhibit 4

end

if(rand(l)<p &&

n Lines(i,])==0 &&
n Lines(i,j)==0 )
n Lines(i,J)=1;
n Lines(j,1)=1;
da (auxl)=da (auxl)-1;
da (aux2)=da (aux2) -1;
da (auxl+1l)=da (aux1l+1)+1;
da (aux2+1)=da (aux2+1) +1;
pd(auxl)=pd(auxl)-1;
pd (aux2) =pd (aux2)-1;
pd(auxl+l)=pd(auxl+l)+1;
pd(aux2+1)=pd (aux2+1l) +1;
info(j,1l)=info(j,1)+1;
info(i,1l)=info(i,1)+1;
ma_prob(c,r)=ma prob(c,r)
-1;
end
end
end
end

end
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end
end
end

end

if (max (abs (da-dt) ) <2)

cond(c)=1;

end
if (sum(cond)==13)
x=x+1;
if (x==20)
cond(c)=1;
end
end
end
end
end
aa=find(info(:,1)==0);

for i=l:max(size (aa))

v=1;

for j=1:n node

if (Dist(aa(i),j)~=0 && Dist(aa(i),3)<100 && v==1)

n Lines(aa(i),Jj)=1;

n Lines(j, aa(i))=1;

info(j,1l)=info(j,1)+1;
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end

end
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Sink)

Source,

Dist,

:,0);

length (P disponible))

’

:,5);
=Source (

’

f tradeoff perd(grafo,

Source (

=Lines
Sink (i, 3);

’

max (size (Source)) ;

aux= P disponible<Pi

n sink
generation cost

Pi

(length (find (aux==1))

max (size (Sink)) ;
Sink(i,3);

zeros (n source+n sink);

Lines
=1

aux= P disponible<Pi

if (v==0)

Pi
if
else
end

0.1;

function result

t=40;

n source

n sink

Lines

capac lines
flow

P disponible
for i
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cl=100;
c2=250;
c3=500;

c4=1000;

p2=15;
p3=30;
pr4=50;
p5=100;
p6=200;

cost instal=pl* (Pi<100 && Pi>0)+p2* (Pi<250 && Pi>100)+p3* (Pi<500
&& Pi>250) +p4* (Pi<1000 && Pi>500) +p5* (Pi<2000 &&
Pi>1000) +p6* (Pi<4000 && Pi>2000) ;

total generation cost=Pi.*generation cost.*24*365* ((1-
1/ (1+xr)"t) /(x));

lines cost=ones (n_source,2);
losses=0.001;

lines _cost(:,1)=Dist(l:n_source,i+n source) *cost instal+total gene
ration cost.*losses.*Dist(l:n source,i+n source);

dist 2=distances(grafo, l:n source, i+n source);

lines cost(:,2)=dist 2*cost instal+total generation cost.*losses.*
dist 2;

[min cost line,auxl]=min(lines cost, [],2);
cost=min_ cost line+total generation cost;
cost (aux)=-1;
if (sum(cost)==length (cost) *-1)
break

end

88



Generation of Random Electricity Transmission Networks

Exhibit 5

j=find (cost==(min (cost (cost>10))));
J=3(1);
if auxl (j)==
Lines (i+n_source, j)=1;
Lines (j,i+n_source)=1;
flow (i+n_source, j)=Pi;
flow(j,i+n_source)=-Pi;

capac_lines (i+n_source,j)=cl* (Pi<100 && Pi>0)+c2* (Pi<250 &&
Pi>100) +c3* (Pi<500 && Pi>250) +c4* (Pi<1000
&&
Pi>500) +c5* (P1i<2000 && Pi>1000)+c6* (Pi<4000 && Pi>2000) ;

capac_lines (j,1i+n_source)=capac_lines (i+n_source,j);
grafo=rmedge (grafo,i+n_source,j);
grafo=addedge (grafo, i+n_source, j,1);
else
path = shortestpath(grafo,i+n source,j);
ii=path(l:end-1);
jj=path(2:end);
ij=sub2ind(size(Lines), ii, jj);
ji=sub2ind(size(Lines), jj, 1ii);
Lines (ij)=1;
Lines (ji)=1;
flow (ij)=(Pi+flow(ij));
flow(ji)=-Pit+flow(ji);
Paux=flow(ij) ;

capac_lines(ij)=capac_lines (ij)+cl* (Paux<1l00 &
Paux>0) +c2* (Paux<250
& Paux>100) +c3* (Paux<500 &
Paux>250) +c4* (Paux<1000 & Paux>500)+c5* (Paux<2000 &
Paux>1000) +c6* (Paux<4000 &

Paux>2000) .* (capac_lines (ij)==0);
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capac_lines(ji)=capac_lines(ij);
grafo=rmedge (grafo,ii,j3j);

grafo=addedge (grafo,ii,jj,1);

end

P disponible (j)=P disponible(Jj)-Pi;

else
b=1;
Piaux3=Sink (i, 3);
while (b==1)
Piaux2=max (P_disponible) ;
if (Piaux3>Piaux?2)
b=1;
Pi=Piaux2;
Else
b=0;
Pi=Piaux3;
end
Piaux3=Piaux3-Piaux2;
aux= P _disponible<Pi;
generation cost=Source(:,6);
cl=100;
c2=250;
c3=500;
c4=1000;

c5=2000;
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c6=4000;
pl=8;
p2=15;
p3=30;
p4=50;
p5=100;
p6=200;

cost instal=pl* (Pi<100 && Pi>0)+p2* (Pi<250 &&
Pi>100) +p3* (Pi<500 &&

Pi>250) +p4* (Pi<1000 &&

Pi>2000) ;

Pi>500) +p5* (Pi<2000 && Pi>1000) +p6* (P1<4000 &&

total generation cost=Pi.*generation cost.*24*365* ((1-
1/(1+x)~t) /(x));

lines cost=ones (n_source,2);
losses=0.001;

lines cost(:,1)=Dist(l:n_source,i+n_source) *cost instal+tota
1 generation cost.*losses.*Dist (l:n_source,i+n_source);

dist 2=distances(grafo, 1l:n source, i+n source);

lines cost(:,2)=dist 2*cost instal+total generation cost.*lo
sses.*dist 2;

[min cost line,auxl]=min(lines_ cost, [],2);

cost=min cost line+total generation cost;

cost (aux)=-1;

if (sum(cost)==1length (cost) *-1)
break

end

j=find(cost==(min (cost (cost>10))));

J=3(1);

if auxl(j)==

=1;
=1:

’

Lines (i+n_source, J)
Lines (j,i+n_source)
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flow (i+n_source, j)=Pi;
flow (j,i+n_source)=-Pi;

capac_lines (i+n_source,j)=cl* (Pi<100 &&

Pi>0) +c2* (Pi<250 && Pi>100)+c3* (Pi<500 &&

Pi>250) +c4* (Pi<1000
Pi>500) +c5* (Pi<2000 &&
Pi>1000)+c6* (P1i<4000 && Pi>2000) ;

capac_lines (j,i+n_source)=capac_lines(i+n_ source,]j);
grafo=rmedge (grafo,i+n_source,j);
grafo=addedge (grafo, i+n_source, j,1);

else

path = shortestpath(grafo,i+n source,j);
ii=path(l:end-1);
jj=path(2:end);
ij=sub2ind(size(Lines), ii, jj);
ji=sub2ind(size(Lines), jj, 1ii);
Lines (i3)=1;
Lines (ji)=1;
flow(ij)=(Pi+flow(ij));
flow(ji)=-Pi+flow(ji);
Paux=flow (i7j);

capac_lines(ij)=capac_lines (ij)+cl* (Paux<1l00 &

Paux>0) +c2* (Paux<250 & Paux>100)+c3* (Paux<500 &

Paux>250)+c4d* (Paux<1000 &
Paux>500) +c5* (Paux<2000 &
Paux>1000) +c6* (Paux<4000 &

Paux>2000) . * (capac_lines (ij)==0);
capac_lines(ji)=capac_lines(ij);
grafo=rmedge (grafo,ii,jj)

grafo=addedge (grafo,ii,jj,1);
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end
P disponible (]j)=P disponible(Jj)-Pi;

End

end

end

nuevo (:, :,1l)=Lines;
nuevo (:, :,2)=flow;
nuevo (:, :,3)=capac_lines;

result=nuevo;
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delta e

=25;

n source

1000;

length a
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length b

1]
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Mix=
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Mix) ;

length Db,

length a,

source generation (n source,

Source 0

]
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Q
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X
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n n el

n sink+n source;

n node

ordenasource (Source 0);

Source

ordenarsink (Sink 0);

Sink=

,2)1;

Sink(

1),

Sink(

1, 2)

Source (

1),

[Source (

Node=

node distance (Node) ;

Dist=

’

fac=1.2

=100;

€ max
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Lines _ebO=(node linkage(delta e, e max, Dist, fac));

plot lines (Node, Lines eb0, Source,Sink, n sink, n source)

grafo=graph (Dist.*Lines eb0);
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