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RESUMEN DEL PROYECTO 

1. INTRODUCCIÓN 

El problema de la expansión de la red eléctrica de transporte (TEP por sus siglas 

en inglés), determina las nuevas líneas eléctricas que hay que añadir al sistema existente 

y cuándo. Con la instalación de nuevas líneas se busca poder satisfacer el incremento de 

demanda estimado para el futuro a la vez que se minimiza la suma del coste de operación 

y de inversión del sistema. Se trata de un problema combinatorio estocástico cuya 

complejidad se ha incrementado con la liberalización del mercado eléctrico y la 

introducción de plantas de producción de energía renovable.  

Para resolver el TEP se han utilizado tanto métodos de resolución clásicos, 

basados en programación matemática, como no clásicos, destacándose los 

metaheurísticos. Entre estos últimos destacan los Algoritmos Genéticos (GA). El GA se 

presenta como una herramienta que permite obtener soluciones de alta calidad con un 

bajo coste computacional. Los recursos computacionales requeridos en este tipo de 

problemas suponen la principal restricción a la hora de seleccionar el algoritmo de 

resolución. Esta es la principal desventaja que presenta la descomposición de Benders 

(BD), la cual permite obtener resultados con una garantía de optimalidad. Ambos 

algoritmos se encuentran implantados para su utilización en el modelo TEPES, 

desarrollado en el IIT. 

Una vez que la efectividad del GA y BD ha sido probada, se busca determinar 

cuándo es mejor utilizar un algoritmo u otro. Esta decisión está basada en coste 

computacional y bondad de la solución obtenida.  

La referencia (Smith-Miles, Baatar, Wreford, & Lewis, 2014) propone un modelo 

teórico que permite discernir qué algoritmo utilizar para resolver un problema de 

optimización, basándose en que la bondad de un algoritmo está relacionada con las 

características que definen el problema. Para aplicar esta metodología a TEP, es necesario 

trabajar con un número de instancias elevado, es decir, con muchos casos particulares, 

para poder extraer conclusiones generales. Al existir pocos sistemas eléctricos con sus 

datos disponibles, es necesario generar instancias artificialmente, esto es, redes eléctricas 

de transporte aleatorias cuyas características sean similares a posibles redes reales 

existentes.  
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El problema de la generación aleatoria de redes eléctricas no ha sido abordado hasta 

ahora. Las leyes físicas que rigen este tipo de redes hacen que los modelos de generación 

usados en redes sociales u otro tipo de redes complejas no se puedan utilizar para los 

sistemas eléctricos. Además, las redes eléctricas son redes espacialmente embebidas, esto 

significa que la disposición geográfica de sus elementos es esencial para comprender el 

funcionamiento del sistema, lo cual plantea problemas adicionales. Los algoritmos 

utilizados en redes sociales no consideran tampoco esa característica.  

Este proyecto ha partido de un modelo para redes espacialmente embebidas 

propuesto inicialmente en la referencia de sus directores (Patania et al. 2015), 

denominado modelo Epsilon-disc. 

Este modelo epsilon-disc todavía presenta alguna deficiencia para obtener 

resultados similares a las redes eléctricas reales. Por ejemplo, no permite ajustarse a las 

distribuciones estadísticas de grado de conectividad que describen a estas redes. El 

modelo tampoco tiene en cuenta, de momento, la información económica del problema, 

relacionada con el coste variable de generación o fijo de desarrollo de la red.  

A la vista de estos inconvenientes, el principal objetivo del proyecto se centra en el 

desarrollo de un nuevo modelo que sea capaz de generar redes eléctricas de transporte 

aleatorias que emulen a las redes reales solventando los inconvenientes previos.  

2. METODOLOGÍA 

El nuevo modelo, denominado trade-off model, consta de dos pasos: casación 

eficiente de la demanda (1) y ajuste de la distribución de grado (2).  

En el primer paso, el modelo representa las etapas iniciales de desarrollo de un red 

eléctrica donde cada nodo de demanda busca la central de generación capaz de suministrar 

su energía demandada al mínimo precio.  

El coste de suministro tiene en cuenta, el coste de 

instalación de la línea y el coste de la energía 

suministrada. El coste de instalación de una línea varía 

linealmente con la distancia entre nodos. El modelo 

elige la opción más barata entre conexión directa entre 

nodos o la conexión de éste a la red existente. Cuando 

dos nodos no son conectados directamente, se puede 

necesitar más de una línea para satisfacer la demanda.  

El método busca el camino más corto entre los 

nodos. Al no estar inicialmente los nodos conectados 

entre ellos, es necesario definir un grafo auxiliar en el 

que los nodos estén unidos con posibles conexiones. 

En este grafo, el peso de los arcos será la distancia 

entre dos nodos. 

Figura-1. Distribución de 

grado deseada y distribución 

obtenida tras la primera etapa 

del trade-off. 
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Para evitar un alto coste computacional, se define un grafo donde la probabilidad de 

que dos nodos estén conectados está inversamente relacionada con la distancia entre ellos. 

Para ello se utiliza el modelo Epsilon-disc. 

El segundo paso se basa en la instalación de nuevas líneas con el objetivo de 

conseguir una función de distribución de grado definida.  

El modelo analiza las diferentes uniones entre nodos para elegir qué líneas se añaden 

al sistema. Se establecen limitaciones relacionadas con longitudes de líneas máximas para 

distintas tecnologías.  

Durante su desarrollo, el algoritmo analiza el grado (número de conexiones) de los 

nodos candidatos a ser unidos, viendo si la unión de éstos contribuye a alcanzar la 

distribución de grado objetivo (la que se toma como modelo de una red real). En caso de 

que la unión facilite alcanzar esa distribución, será asignada una probabilidad de unión 

estrictamente positiva. Si la instalación de esa línea no contribuye a alcanzar la función 

objetivo, la probabilidad de unir esos dos nudos será cero.  

Al tratarse de redes espacialmente embebidas, se asume que la probabilidad de unir 

dos nodos está directamente relacionada con la longitud de la línea. Al considerar 

distancias se está tomando de manera implícita el coste de instalación de la misma.  

Si tanto la probabilidad de instalar una línea como la de que exista una línea de esa 

longitud son positivas, el algoritmo decidirá la instalación aleatoriamente.  

3. RESULTADOS 

Para comprobar la validez del modelo se generará una red aleatoria que se comparará 

posteriormente con una red eléctrica real. La red real es la resultante de la unión de las 

redes de 14 países europeos. Las características que se evalúan son: grado, centralidad, 

longitudes de línea, camino más corto y coeficiente de apuntamiento.       

 

Figura-2. Ejemplo de red generada en la primera etapa del modelo trade-off.  
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Figura-3. Ejemplo de red generada tras la segunda etapa del modelo trade-off. 

La figura 4 muestra la distribución de grado para la red real y artificial. Ambas 

distribuciones presentan un grado de similitud elevado.  

En el caso de la centralidad, ambas distribuciones son similares, en ambos casos el 

valor más frecuente es cero. Esto refleja que la mayor parte de los nodos no se encuentran 

camino más corto entre otros dos.  

Si se compara la longitud de líneas, se observa que ambas distribuciones son muy 

similares. En este caso tanto la media como la desviación típica tienen valores similares.  

 

Figura-4. Distribución de grado de la red artificial (izquierda) y la red real (derecha) 
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Se puede observar que en la red artificial las distancias entre nodos son menores que 

en la red real. 

El coeficiente de agrupamiento es la medida estadística que más difiere. Su valor 

medio es el doble en el caso de la red real. Los vecinos de un nodo están más unidos entre 

ellos.  

CONCLUSIONES 

El Trade-off Model se basa en un modelo de unión preferente que permite ajustar 

la distribución de grado a una función definida. Para ello añade líneas en el sistema de 

manera que los nodos de bajo grado vean incrementado su grado, mientras que los de 

grado elevado ya no ven añadidas nuevas líneas.  

La primera conclusión es que el modelo se puede utilizar para crear redes que sean 

similares a las existentes. Las distribuciones de grado son similares. Ambas redes son 

muy parecidas desde el punto de vista de centralidad, longitud de líneas y camino más 

corto de la red. La mayor diferencia se encuentra en el coeficiente de agrupamiento. Se 

considera que esta diferencia es debida a la forma en que la red está mallada. Si se observa 

la red real, no se puede encontrar un patrón seguido durante el mallado del sistema. 

Dependiendo de si la red está mallada uniformemente, o sólo se encuentran malladas 

partes concretas de la misma, el coeficiente de agrupamiento será similar o no. Esto puede 

justificar el hecho de la pequeña diferencia en la distribución de caminos más cortos.  

 El modelo también puede generar redes con diferentes propiedades dependiendo 

de la zona. En el caso estudiado, la red artificial ha sido la unión de las 14 redes nacionales 

que forman la red real. Se pueden generar redes aleatorias completamente independientes 

que se pueden unir posteriormente. De esta manera se puede solventar el problema de 

redes en el que el mallado no se encuentra distribuido uniformemente.  

  Este proyecto no trata de generar redes que sean exactamente iguales a las redes 

reales. Se crean redes artificiales cuyos descriptores estadísticos son similares a los de 

redes reales. En este proyecto sólo se han considerado las características más relevantes 

de una red, pudiéndose utilizar para generar redes aleatorias que permitan su uso en el 

estudio del problema de expansión de la red eléctrica de transporte.  

4. REFERENCIAS 

Smith-Miles, K., Baatar, D., Wreford, B., & Lewis, R. (2014). Towards objective 

measures of algorithm performance across instance space. Computers & Operations 

Research, 45, 12-24.  

Patania, A., Young, J., Lumbreras, S., Pereda, M., Bertazzi, I., Citron, D., & Haraguchi, 

M. (2015) Part I: Generating random networks that are consistent with power 

transmission.  

  



vi   

 
 

GENERATION OF RANDOM ELECTRICITY TRANSMISSION 

NETWORKS 

1. INTRODUCTION 

Transmission Expansion Planning (TEP) tries to solve the problem of what lines 

should be added to the existing network and when, to satisfy forecasted demand in the 

long-term and minimizing operation and investment costs. This is a combinatorial 

stochastic problem that has become more complicated due to market liberalizations and 

the integration of renewable energy sources. 

As for other optimization problems, to solve the TEP problem classical and non-

classical methods have been applied. Researchers find in metaheuristic methods, as 

Genetic Algorithm (GA), an attractive tool to generate solutions to the TEP problem. 

They give high-quality solutions with lower computational resources. Computational 

requirements are the main problem for TEP due to the size of the instances, where a huge 

number of variables and constraints are considered. This is also the main weakness of 

Benders’ Decomposition (BD) in some cases, while this algorithm is able to provide 

solutions with any desired level of accuracy. Both algorithms are implemented in the 

model TEPES developed by IIT.  

Once the effectiveness of GA and BD for the TEP problem have been tested; it 

would be interesting to find in which instances it is better to use one algorithm or another. 

It is based on computational cost and solution goodness.  

Reference (Smith-Miles, Baatar, Wreford, & Lewis, 2014) proposes a framework 

to evaluate different algorithms for optimization problems. The theoretical framework is 

based on the concept that the hardness of an algorithm is related to the features of the 

problem. To apply it to the TEP problem, it is necessary to work with a high number of 

instances, real and random ones. There is a necessity to generate random transmission 

networks that should be consistent with the real ones.  

The generation of random networks has not been studied in depth in the case of 

power grids. The physical laws that govern power networks imply that the network-

generation techniques used in social or other types of networks cannot be used in this 

context. Furthermore, power grids are a spatially embedded network. This means that the 

geographical placement of its elements is essential to understand the behaviour of the 

system. This makes it more difficult to apply already existing techniques that do not take 

this characteristic into account. 

This work has implemented a state-of-the-art method for generating spatially 

embedded networks applied to the power grid (Patania et al. 2015), the Epsilon-disc 

model, proposed by the supervisors of this project. 
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This project has identified the flaws of the Epsilon-disc model in terms of not fitting 

the descriptive distributions of the network and not taking into account economic 

information such as generation cost in the development of the network.  

The main objective of this project is to develop a new model that will be able to 

generate random power systems that emulate real ones.  

2. METHODOLOGY 

The new model, which has been named Trade-off model, can be described in two 

steps: meeting demand efficiently (1) and fitting a degree distribution (2). 

The first step of the algorithm simulates a trade-off between demand (customers) 

and generators (suppliers). Each sink node will try to find the generator that is able to 

supply their energy needs at the lowest cost.  

The cost of linking two nodes considers the cost of line installation and the cost of 

generation. The cost associated to installing a line is linear with the length of the line, 

modelled as the Euclidean distance between two nodes. The model chooses the lowest-

cost option between direct connections between two nodes or connecting them through 

already existing lines. When nodes are not connected directly, more than one line could 

be required.  

The algorithm will look for the shortest 

path between nodes. As nodes are not connected 

yet, it is necessary to define an imaginary graph. 

In this network, the weight of edges will be the 

geographical distance, if there is no line or ‘1’ if 

there is a line connecting two nodes.  

To avoid high computational requirements, 

the imaginary graph cannot be a network where 

all nodes are linked among them. It is necessary 

to define a graph where it is more probable to find 

a connection between closed nodes than between 

those which are located far away. This is 

performed with the epsilon-disc model. 

The second step can be summarized as 

adding new lines smartly to obtain a defined 

distribution. 

The algorithm will analyse all the possible combinations of nodes to decide if a line 

is added to the system. Constraints related to distance can be introduced to avoid studying 

lines that are too long.  

The process will analyse the current degree of the two candidate nodes to be linked. 

If the line contributes to reach the target distribution, it is assigned a positive probability 

Figure-1. Target degree distribution and 

degree distribution after step 1 in the 

trade-off model. 
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of being installed. If that connection will not contribute to the fitting process, the 

probability of linking those nodes will be zero.  

As power networks are spatially embedded, we assume that the probability of linking 

two nodes is correlated to the distance between them. We will condition the connection 

between two nodes not only to its contribution to the fitting process but also to a fitness 

function based on distance. By considering distance we are taking into account the cost 

of installing a line. The fitness function can be defined as the probability of installing a 

line of a specific length. 

If a line contributes to fitting the degree distribution and has a positive probability to 

be installed based on length of line, the algorithm will decide whether to install it or not 

based on generating a random number. 

3. RESULTS 

A real case of the European network will be used to test the algorithm explained. The 

real network used is a combination of 14 European countries. It is evaluated: degree, 

betweenness centrality, length of lines, shortest-path and clustering coefficient.  

Figure 4 shows the degree distribution for the real and artificial networks. The degree 

of accuracy is high, both histograms are quite similar. This similarity is reflected in the 

results that are shown in the table 1.  

 

Figure-2. Example of network generated after first step.  

In the case of betweenness centrality, in both cases the most frequent value is zero. 

Most part of the nodes are not in the shortest path between other two. 

Comparing length of lines, we observe that the shape of both functions is really 

similar. In this case, mean and standard deviation have identical values. 
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If we compare the real and artificial networks we can observe that in the artificial one 

distances are shorter than in the real one. In the real network usually there are two edges 

more than in the artificial one in the shortest path length.  Standard deviation is also lower 

for the artificial network.  

 

Figure-3. Example of network generated after second step.  

 

The clustering coefficient is the most different metric among the ones we have 

analyzed. The mean value is the double in the real network. Neighbors of a node are more 

linked in that case.  

 

Figure-4. Degree distribution for artificial (left) and real (right) European networks. 
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4. CONCLUSIONS 

The Trade-off Model is based on a preferential attachment model that effectively 

shifts low-degree nodes towards the high degree region by adding edges smartly .The 

results proved that the algorithm is able to fit a general degree distribution that is taken 

from input data.  

Our first conclusion is that the algorithm can be used to create networks that are 

similar to existing ones. Degree distributions are almost identical. They are also similar 

from the point of view of betweenness centrality, length of lines and shortest path length. 

There was a larger difference in the case of the clustering coefficient. We think that this 

difference is due to the way the grid is meshed. If we see the real network there is not a 

pattern in the mesh of the network. Depending on whether the mesh is spread across the 

space or is concentrated in specific areas, we will have more or less similar networks. 

This can justify the fact that in the artificial network the shortest path length between 

nodes is lower.  

We also concluded that we can create networks that have different properties 

depending on the area. We applied this to Europe, where the network is a set of 14 small 

different networks. We can create completely independent random networks that can be 

linked, resulting a network with clear differenced areas. This could be a way to avoid the 

problem of some networks in which the degree of meshness depends on the zone. 

It is clear that we are not going to create networks that are exactly equal to the one 

that we are using as a template. That is not the objective of the project. We try to create 

artificial networks that are consistent with the real ones. There is not only one pattern that 

have been follow in the generation of the existing network. There are a lot of properties 

that should be considered. We have only considered the ones we think have more relevant 

in the process of network design. They are good to recreate existing ones, and to be used 

in studies about the expansion of existing networks.  
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1. INTRODUCTION 

 

 

Author: Chad Lewis 

In late 1880s and early 1890s, the War of Currents between Edison and 

Westinghouse (who bought Tesla’s patents) made the beginning of power transmission 

systems a rocky start. 

In 1882 Edison established the first power generation plant in Manhattan, New 

York, which was able to supply energy for 400 incandescent lamps. This was a 110 V 

direct-current (DC) power system. With such a low voltage, generation plants had to be 

close to demand because of power losses. 

With the first alternating current (AC) transformer in Europe, Westinghouse 

noticed that large power plants could be built far from the demand using AC and 

transformers. With this combination, losses could be reduced. The first AC power system 

was installed in Massachusetts in 1886. 

DC and AC power systems were installed in different cities in North America 

while both businessmen were involved in an embarrassing struggle. Topsy, an elephant, 
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was electrocuted as Harold Brown (one of Edison’s employees) tried to demonstrate the 

risks of AC. In 1893 at the Chicago World Fair, Westinghouse developed an AC grid with 

100,000 electric lights. This system, cheaper than Edison’s DC proposal, led to the final 

AC supremacy we see today. 

The power system has since then evolved from those small city grids to become the 

largest engineering system developed by humankind. 

1.1. The Power System 

In an electric system, generation plants are connected to demand through the 

transmission and distribution grids. The transmission system plays a key role to ensure 

the reliability and effectiveness of the electric system. 

Spain has more than 42.000 km of high voltage lines1 with a capacity of 84.539 

MVA. It is connected to France, Portugal and Morocco, being part of an international 

network. Although almost the entire network is built with AC technology, one of the 

connections with France is DC and other to the Balearic Islands. Transmission System 

Operators (TSO) are installing DC technology for long distances using high-voltage 

connections (HVDC). This technology requires HVDC converter stations to transform 

from AC to DC and back. 

Power systems have to face new challenges as an increase in the degree of 

interconnection among countries or the integration of new renewable plants. These goals 

need new tools for Transmission Expansion Planning. 

 

 

Figure 1-1. Power system structure. Source: Institute for Energy Research 

1.2. Transmission Expansion Planning 

Transmission Expansion Planning (TEP) tries to solve the problem of which lines 

should be added to the existing network and when, to satisfy forecasted demand in the 

long-term and minimizing operation and investment costs, including security of supply. 

                                                 

1 Information available at Red Eléctrica de España, www.ree.es. 
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This is a combinatorial stochastic problem that has become even more complicated due 

to market liberalizations and integration of renewable energy resources, placed far from 

existing transmission lines. 

‘Desertec’, ‘MedGrid’ or ‘Beyond 2020’ are examples of TEP projects. In these 

cases, the aim is to develop a large and well-connected network to encourage renewable 

generation and international exchanges. 

New transmission lines are high-capital investments with long useful lives: the 

decision of which lines will be built will have an enormous impact on the whole system. 

For instance, the budget of ENTSO-e countries for the period 2012-2020 is over EUR 

100 bn (Chaniotis, 2012). ENTSO-e is the European Network of Transmission System 

Operators. It represents 45 TSO of 35 countries in Europe, in the case of Spain the TSO 

is Red Eléctrica de España. The objective of ENTSO-e is to set-up a European energy 

market, supporting its functioning and helping to achieve the European climate and 

energy agenda2. 

 

Figure 1-2. TEP PROBLEM Author: S. Lumbreras 

As for other optimization problems, to solve the TEP optimization problem 

classical and non-classical methods have been applied. Figure 1-3 shows a classification 

of solution techniques. 

Classical techniques have been applied with the TEP problem as Linear 

Programming (LP), although it assumes important simplifications its low computational 

                                                 

2 Who is ENTSO-e, https://www.entsoe.eu/about-entso-e/ 
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effort requirements makes it a practical tool to solve large systems. Linear Programming 

(LP) assumes a DC power flow model and ignores the discrete nature of investment 

variables. Quadratic Programming is used to take into account losses from the DC model. 

With Mixed-Integer Programming (MIP) the binary nature of investment decision 

variables is considered. Non Linear Programming (NLP) and Mixed-Integer Non Linear 

Programming (MINLP) are used in when modelling problems with AC power flow 

(Lumbreras, 2014). 

When uncertainties are added to the decision process, decomposition techniques, 

as Benders Decomposition (BD), have an important role to solve the TEP problem 

(Lumbreras, 2012).  

Researchers find in metaheuristic methods, as Genetic Algorithm (GA), an 

attractive tool to generate solutions to the TEP problem. They give high-quality solutions 

with lower computational resources. Computational requirements are the main problem 

for TEP due to the size of the instances, where a huge number of variables and constraints 

are considered. 

 

CLASSICAL METHDOS NON-CLASSICAL METHODS 

MATHEMATICAL 
PROGRAMMING 

STOCHASTIC 
DECOMPOSITION 

EQUILIBRIUM 
FORMULATION 

SENSITIVITY 
ANALYSIS 

METAHEURISTICS 

LP 
NLP 

QP 

MINLP EXPERT SYSTEMS 
MIP 

Figure 1-3. Solution techniques for TEP problem. 

1.2.1. Benders’ Decomposition 

Benders’ Decomposition (BD) is one of the most applied algorithms in the 

Stochastic Optimization domain. Developed by the mathematician J.F. Benders, BD is a 

multistage optimization algorithm that divides the problem into multiple smaller 

problems, solving them iteratively. The first step is to solve the master problem giving a 

value to a subset of variables, the rest of variables are valued in the sub-problem. In a 

second stage, the sub-problem studies the optimality of the solution proposed by the 

master problem and the gives feedback to the master problem, adding new constraints 

(cuts). Figure 1-4 shows the flow chart followed in Benders’ decomposition. 
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Figure 1-4. Benders’ Decomposition Flow Chart 

 

1.2.2. Genetic Algorithms  

GA are evolutionary algorithms that generate solutions for an optimization 

problem based on natural evolution theory. It was proposed by J.H. Holland in the 

seventies. 

The algorithm starts with an initial population of candidate solutions. Each 

candidate solution has a set of properties (chromosomes) which can be mutated and 

altered. 

The evolution starts from a population of randomly generated individuals, and is 

an iterative process. In each generation the fitness of every individual in the population is 

evaluated; the fitness is usually the value of the objective function in the optimization 
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problem including some penalty term associated to the evaluation of the feasibility of the 

solution. The fittest individuals are selected from the current population, and each 

individual’s genome is modified. 

 

 

Figure 1-5. Genetic Algorithm flow chart.  

 

The algorithm terminates when a satisfactory fitness level has been reached for 

the population or after a certain number of iterations.  

The process that follow the algorithm is shown in the Figure 1-5. 

1.2.3. TEPES, Transmission Expansion Problem for an Energy System  

The Institute for Research in Technology of ICAI (IIT) developed a model to solve 

the TEP problem, TEPES (Transmission Expansion Problem for an Energy System), 

based on BD. This model evaluates the future network’s needs in a tactical level, 

supporting the decision of future investments for the long term. 
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Based on a DC model flow, the objective function of the model is to minimize 

investment and operational costs. A cost related to reliability of the system is also taken 

into consideration. The master problem proposes investing in new lines and the sub-

problem gives it feedback with the operation cost, and unserved power due to 

transmission contingencies. BD is the main algorithm used in classical method, 

nevertheless, depending on the size of the problem, the number of lines, the integrality 

conditions or the number of cuts added can make the resolution of the problem slow. 

A Genetic Algorithm model was coded for TEPES in reference (Duro, 2014) 

The TEPES software cannot decide which algorithm should choose depending on 

the instance that will be solved. The user decides when to use each one, thinking on 

computational time and quality of results. 

1.2.4. Choosing the best algorithm 

Once the effectiveness of GA and BD for the TEP problem have been tested; the 

minimization of time spent and computational resources required make necessary to find 

in which instances it is better to use one algorithm or another. 

Reference (Smith-Miles, Baatar, Wreford, & Lewis, 2014) proposes a framework 

to evaluate different algorithms for optimization problems. It has been tested for the 

‘Traveling Salesman Problem’ (TSP), where two variants of the Lin-Kernigan heuristic 

(proposed for the TSP problem more than thirty years ago) were tested. The theoretical 

framework is based on that the hardness of an algorithm is related to the features of the 

problem. It can be described in five steps. 

 

Summarising Instances 

Each instance, where the algorithm will be tested, has some properties that are 

correlated with the difficulty of solving the optimization problem with a specific 

algorithm. Not only generic properties like the number of variables or number of 

constraints, but also specific properties such as the number of candidate lines, number of 

sinks, or average distance between a pair of nodes in the case of TEP problem. 

These properties can be represented in the instance space (ℝ𝑛). It is assumed that 

two instances that are closely located, are similar and will have a similar behaviour 

(except if they define a boundary between regions). 

 

 

 

 

 



Generation of Random Electricity Transmission Networks 

Introduction  

  

8 

 

 

Figure 1-6. Steps followed in classification of optimization algorithms. 

 

Generating Instances 

To assess the performance of both algorithms and to establish a relationship 

between the features of the instances and the future behaviour, a large number of instances 

is required. It is necessary that they will be well spread across the feature space, for 

statistical generalization. 

The author proposes the idea of using evolutionary algorithms to evolve instances 

from the existing ones. In this way you can ensure that you will have instances that the 

algorithm will solve ‘goodly’ and ‘badly’. The definition of goodness and badness used 

when an algorithm solved a case is defined below.  

The number of real instances that are available in the case of power networks is 

very low. This is the case because there are very few power systems worldwide with 

publicly available data. Therefore, in order to apply the framework in (Smith-Miles, 

Baatar, Wreford, & Lewis, 2014), new instances should be generated. 

The physical laws that govern the TEP problem make this step a critical one. 

Visualising Instances in the Feature Space 

Once there is a sufficient number of instances and their features have been 

described, they will be reduced from ℝ𝑛∙𝑚 (m instances, n measurable features for each 

instance) to ℝ2, or ℝ3. Not all the measurable features have the same weight when an 

instance is defined. With this reduction a couple of new variables (combination of the 
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most important ones) will describe each instance. This can be achieved using Principal 

Components Analysis (PCA). This will allow visualizing them in 2-D or 3-D space. With 

this reduction, the instances space is obtained. 

An analysis of PCA can be also useful to understand better the TEP problem 

supporting other research projects.  

Visualising the Algorithm Footprint in the Instance Space 

To compare the performance of the algorithm, both methods will be evaluated for 

all the instances. First of all, it is necessary to define when algorithms have a good or bad 

performance, it will be based on solution time criterion and the accuracy of the algorithm. 

An algorithm will be good to solve an instance if the resolution time is inside a predefined 

optimality gap. 

After running all candidate algorithms, instances will be labelled as good or bad, 

making it easy to visualize the result in the instance space. 

Figure 1.-7 displays this step for the case of the TSP problem. As we said two 

algorithms were tested, A and B. In the figure we can identify four areas, these areas 

correspond to: 

 Algorithm A is good and B is bad. 

 Algorithm B is good and A is bad. 

 Algorithms A and B are good. 

 Algorithms A and B are bad. 

 

Figure 1-7. An example of two algorithm footprints Source: (Smith-Miles et al., 2014) 
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Measuring the size of Algorithm Footprints 

In this step different regions will be defined in the instance space based on good 

and bad performance. Clustering classification allows us to establish boundaries in the 

instance space and develop a model that can evaluate which algorithm is better depending 

on the instance features. Each region will be related to a specific algorithm. The algorithm 

to solve a new instance will be chosen depending on where the new instance is located in 

this space. 

In the previous figure it is easy to identify some areas where the decision of 

choosing an algorithm is clear (in the perimeter area). Nevertheless, in the centre the 

algorithm cannot provide an accurate answer, as boundaries of the clusters are not well 

defined. We could potentially define a new dimension to try to identify better limits 

between two regions. 

It should be stressed that this framework has only recently been proposed for 

algorithms in general and therefore it has never been applied to TEP. 

1.3. Objectives: 

Lot of studies have been focused on TEP problem. While GA and BD’s have been 

modelled and tested to solve this problem, it is not clear when they should be used. The 

necessity of using the most accurate algorithm make that to know when one is better than 

the other is the next step in the researching process. Computational requirements remarks 

the importance of that study. To answer the previous question we can use the theoretical 

framework proposed by K.S. Miles exposed above. To apply it to the TEP problem, it is 

necessary to work with a high number of instances, real and random ones. As we know 

the number of real networks is really low, we can assume there are no more than one 

network for country. Nevertheless if we are studying the network from an international 

point of view, as in the case of Europe, the number of real networks is reduced to a few 

of them. There is a need to generate new ones.  

The generation of random network (that should be well spread across the feature 

space) has not been studied deeply and there are not good results. The physical laws that 

govern power networks, make that networks generation techniques used in social or other 

types of networks cannot be used for it. Furthermore power grids have a special 

consideration, they are embedded network. It means that the place where the elements of 

the grid are located are essential to understand the behaviour of the system.    

The main objective of this project is to develop a model that will be able to generate 

random power systems which should emulate a real one. This model should be 

parametrical and should guarantee a certain degree of randomization for fixed inputs. For 

the same node location and features, the algorithm should be able to link them differently.  

Once the algorithm is developed we will need to test if random networks could be 

used as real ones. A statistical approach will be used to know the degree of accuracy of 

the artificial networks.  
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Creating a huge number of instances we will be able to test them in the TEPES 

software, comparing results for the Genetic Algorithm and the Benders’ Decomposition. 

This is not the scope of this project. Results can also be tested to know if the algorithm 

could be used in the generation of real network. Emerging countries are trying to find 

optimal power networks, nevertheless as in the TEP problem, the main problem are 

computational constraints.  
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2. NETWORK STUDY 

A network or graph can be defined as a set of vertices (nodes) connected by edges 

(Figure 1-5). The internet or human societies are two particular instances of networks. In 

the case of the Internet, each computer can be seen as a node and edges represent data 

connections. Many objects of interest in the physical, biological, and social sciences can 

be thought of as networks. Using networks, the system is reduced to an abstract structure 

where the most relevant information is the pattern of connection between vertices. The 

pattern of connections among nodes will condition the behavior of the network. The 

transmission power system can be thought as a network. 

Reference (Newman, 2010) is the best-known book about networks. In this section 

we will make a brief analysis of some network generation models based on this book. 

 

 

Figure 2-1. Undirected graph composed of 11 nodes and 10 edges.  

2.1.1. Network Generation 

In general, the structure of a realized network is the result of a series of processes 

where there is some sort of randomness involved. 

All the algorithms described below can be used for all types of networks. Although 

the internet, social networks or the transmission grid can be seen as graphs, they have 

different properties that make them really different. For instance, while in the case of 

human networks it is not important where people are located, when we talk about power 

networks it is a fundamental feature, as they are spatially embedded networks. 

This state of the art is basically divided in two parts. The first one is related to 

generative models in classical network theory, where they try to create an ‘optimal’ graph 
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for a given number of nodes. The second part is based on complex networks where some 

new algorithms are proposed to obtain networks with specific features. 

2.1.1.1. Generative models in classical network theory  

First of all, it is necessary to define the minimum weight spanning tree of 

connected and undirected graphs. This tree is the set of edges that link all the vertices 

with the minimal total weighting for its edges (See Figure 2-2). 

 

Figure 2-2. Minimum weight spanning tree 

Two main algorithms to create a minimum weight spanning tree for a given graph 

are the following ones: 

Prim’s Algorithm: 

This algorithm was proposed by Prim in 1957 (Prim, 1957). It tries to find the 

minimum weight spanning tree in three steps: 

1. - Initialize the minimum weight spanning tree with one randomly chosen vertex. 

2. - Find the edge of minimum weight that connects a new vertex with the current graph 

(in the first iteration the first node). 

3. - Repeat step 2 until all the nodes are in included in the graph. 

Figure 1-7 displays the process the algorithm follow for a set of nine nodes. 
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Figure 2-3. Prim’s Algorithm  

 

Figure 2-4. Kruskal’s Algorithm 

Kruskal’s Algorithm: 

This algorithm also looks for the set of edges which connect all the vertices of a 

graph creating a minimum-weight spanning tree (Kruskal, 1956). Steps: 

1. - Initialize the minimum-weight spanning tree looking for the minimum weight edge. 

This edge and the two vertices, which are linked, are added to the new graph. 

2. - Look for the next edge with the minimum weight. Add it to the new graph if at least 

one of the two nodes linked by the edge are not in the new graph. 

3. - Repeat step two up to all vertices are add to the minimum weight spanning tree. 

Figure 1-8 shows the steps followed to obtain the minimum weight spanning tree 

for a given set of nodes and edges. 
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The minimum-weight spanning tree can be used for network design. In the case 

of power networks, the TSO knows where nodes are located and the weight of edges can 

represent the cost of installing a line. Using this algorithm we can obtain a network, 

nevertheless two main limitations for power networks are identified. The first one is that 

not only the cost of a line should be considered when you create a power network, it also 

should take into account the cost of energy supplied (cost associated to generation). In 

addition, in a real power network nodes have redundant lines to ensure security of supply 

as we will see later. 

2.1.1.2. Generative models for Complex Networks:  

This part is based on reference (Newman, 2010). 

These models try to reproduce the mechanisms by which networks are created. 

Their main objective is not always to find optimal networks but to generate networks that 

exhibit some given properties. Preferential Attachment and Vertices-Copying are two 

particular generative models for scale-free networks. Optimization models generate 

networks that are created to achieve a specific goal. 

Scale-free networks are those which degree distribution follows a power law (at 

least in the tail). The degree of a graph is the number of edges attached to each node. 

Preferential Attachment: 

This is the best-known algorithm for networks with a power-law degree 

distributions (scale-free networks). 

In the 1970s Price (PRICE, 1965) tried to explain why a network could have that 

distribution. The explanation was based in Herbert Simon’s idea of ‘rich-get-richer’ (the 

more money you have to invest the higher the return on your investment). Simon showed 

mathematically that the idea gives rise to a power-law distribution. 

This idea adapted to network analysis was called by Price: cumulative advantage. 

Barabási and Albert in reference (Barabasi & Albert, 1999) developed this theory under 

the name of Preferential Attachment. 

Barabási and Albert is a generative model for undirected graphs. When a vertex 

is added to the network, this will be linked to a set of candidates vertices based on a 

probabilistic function. The probability of linking to a node is proportional to the nodes’ 

degree (number of edges attached to a vertex). Barabási and Albert’s model established 

the number of connections for each new node added. The probability of a new edge 

attaches to a vertex is linear in the degree of the vertex (equation 1-1).  

𝑝𝑖 =
𝑘𝑖

∑ 𝑘𝑗𝑗
 

(2-1) 

Where 𝑘𝑖 is degree of node “i” (to which new node would be added), and ∑ 𝑘𝑗𝑗  is 

the overall number of edges in the graph. 
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The networks generated with Barabási-Albert algorithm follow a power-law 

degree distribution (equation 1-2). The value of α is usually 3.  

𝑝𝑘 ≈ 𝑘−𝛼 
(2-2) 

 

 

Figure 2-5. The steps of the growth of the network according to the Preferential Attachment model 

(m=m0=2). Author: Arpad Horvath. 

Some relevant extensions to the Preferential Attachment model have been 

proposed. 

Addition of extra edges:  

There are certain types of networks where extra edges are added after the graph is 

created. There is still a power-law degree distribution. In power networks it can be used 

to ensure the reliability of the system, where redundant lines are added.  

At each step, in addition to new edges linked with new vertices, some edges are 

added linking existing nodes. Both ends of edges are chosen based on degree. As in the 

general model, the number of edges for new vertices and for existing ones can be defined. 

Removal of edges: 

In the same way, while some networks add new edges, others remove them when 

they grow. The probability of losing an edge is proportional to the degree of each node. 

It can be understood like an inverse preferential attachment model. 

Non-linear preferential attachment: 

Barabási-Albert proposed a model in which the probability of attaching with an 

existing vertex is proportional to the degree. There may are some processes in which this 

relationship is non-linear. For instance, it can also depend on the network size. 

Using a non-linear function, the outcome cannot follow a perfect power-law 

degree distribution. 

Vertices of varying quality or attractiveness: 

In the model described above, it is assumed that all vertices are equally likely to 

be linked by a new edge (based on degree). The quality or attractiveness of some nodes 

can be higher than the rest. When we refer to the power network, nodes will be 
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characterized by size and technology in case of generators. It is clear that the higher the 

size of the node in terms of power, the higher its attractiveness to be linked.  

Biaconi and Barabási (Bianconi & Barabási, 2001a; Bianconi & Barabási, 2001b) 

proposed a model where nodes could have different quality or fitness. 

New nodes will be linked to a defined number of vertices as in the general model. 

Each node is assigned a fitness (a real number which values follow a given distribution). 

The probability of linking a new node to an existing one depends on both its degree and 

fitness. 

As in any non-linear preferential attachment, the overall degree distribution may 

not have a power-law tail. This will depend on the fitness distribution that has been used. 

Vertex-copying models: 

When new nodes are added, instead of selecting another node to link, the new 

node will copy all the existing edges of the node selected. To avoid that only nodes which 

have connections can increase their degree, the copy only happens with a probability ‘p’. 

With a probability ‘1-p’, the new vertex is added based on degree (preferential attachment 

algorithm). 

Depending on this probability, it can be shown that the network follows a power-

law degree distribution. 

Figure 2-6 shows an example of the algorithm when a vertex is copied. 

 

Figure 2-6. Example of vertex copying. Light blue node is chosen to be copied. 

 

Network Optimization models: 

Some networks (like a transportation network) have a specific goal to achieve. 

The design of the network can therefore be based on an optimization process, for instance 

to reduce the investment cost or the distance between nodes. 
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There are different models to generate this type of networks, one of the most 

simple is proposed in reference (i Cancho & Solé, 2003) by Ferrer I Cancho and Solé. 

Before thinking on the goodness of this type of algorithms to replicate real grids, 

we should consider that power networks are not always designed based on optimization 

process. Nevertheless these algorithms can be really interesting when networks are being 

developed from scratch (which is known is some contexts as greenfield problems).  

   

The small-world model:  

A small-world network is a graph in which 

although most nodes are not neighbors, the distance 

(number of edges between two vertices) among 

them is low. See Figure 2-7: 

There are different mechanisms to build 

small-world networks, such the proposed by Watts-

Strogatz or Barmpoutis. (Watts, Dodds, & 

Newman, 2002), (Barmpoutis & Murray, 2010). 

These algorithms have been applied to 

generate different types of networks. Nevertheless, 

as we said in Section 1, this is not applicable to 

power networks. In the next chapter we will explain 

and implement one of those algorithms, the epsilon 

disc model which was proposed in reference 

(Patania et al., 2015). 

 

Figure 2-7. An example of small-world 

graph.  
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3. GENERATING RANDOM POWER NETWORKS 

 

Figure 3-1. Spanish Power Network. Source: Red Eléctrica de España.  

3.1. Power Grids 

In a traditional power system, generation plants are connected to demand through the 

transmission and distribution grids. This project will only consider the high-voltage 

transmission network.  

As mentioned above, the transmission grid is a special type of undirected graph, in 

which nodes are geographically distributed. Therefore, it is a spatially embedded network. 

The graph is undirected because capacity does not impose any direction in the physical 

flows that will traverse the network. 
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 There can be two main types of nodes in 

the power system: sinks and sources. In this 

text, as it can be seen in Figure 3-2, an orange 

circle represents a generator (source), and a 

blue one represents demand (sink). The 

network can include interconnection 

substations; they will be modeled as a sink with 

no load. Nodes have different attributes depend 

on their nature, such as generation technology, 

capacity, or operating cost.  

 We assume that the length of lines is the 

Euclidean distance and their capacity is limited. 

The power flow through the lines is governed 

by Kirchhoff’s circuit laws (we will use a 

linearized DCOPF to model them)  

 

 

Figure 3-3. Spanish Power Grid.  

3.1.1. Node & Line Attributes  

In this chapter, the power transmission network (generation, demand and lines) will 

be characterized following the attributes in reference (Pereda et al., 2015). 

Source nodes will be characterized following Table 3-1. The number of nodes in 

each technology will depend on their relative abundance.   

Sinks are exponentially distributed with an average value of 66 MW for each node. 

Table 3-2 shows these line characteristics. We suppose that the reactance is the same for 

all line types and the electrical resistance is assumed zero, as power losses are not 

considered. 

Figure 3-2.  Power Grid Graph 
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Table 3-1. Generation Characteristics 

TECHNOLOGY RELATIVE 

ABUNDANCE 

(%) 

CAPACITY 

LOWER 

BOUND [MW] 

CAPACITY 

UPPER 

BOUND [MW] 

MARGINAL 

COST 

[EUR/MWh] 

WIND 14.10% 10 500 0 

SUN 9.10% 10 500 0 

HYDRO 15.50% 10 500 0 

NUCLEAR 13.40% 1000 1500 15 

COAL 18.40% 500 1000 20 

CCGT 22,00% 100 500 25 

OCGT 4.80% 100 500 50 

 

Table 3-2. Line Characteristics 

VOLTAGE [kV] NTC3 COST [MEUR/km] REACTANCE [Ω pu/km] 

400 100 0.08 0.008 

400 250 0.15 0.008 

400 500 0.3 0.008 

400 1000 0.5 0.008 

400 2000 1 0.008 

400 4000 20 0.008 

                                                 

3 NTC, Net transmission capacity. 
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3.1.2. Epsilon-Disc Model Description 

The first mechanism to generate random networks that was tested in the context of this 

project was the Epsilon-Disc Model, used in (Patania et al., 2015). Nodes are connected 

only based on their placement. The algorithm can be described in three steps:  

 Node location is randomly fixed according to a probabilistic distribution function. 

This work uses a uniform distribution. The inverse transform method assigns the 

attributes (Table 3-1), using a uniform distribution. It is necessary to define the 

area where the network is located and the number of nodes (sinks and sources).  The 

number of sinks and sources is related through equation 3-1. Demand must be lower 

than the upper generation limit, and higher than the lower generation limit. The 

lower generation limit depends on the availability of the generation commitment.  

 

− − − − − ∑ 𝐺𝑖 ∙ 𝑥𝑖 ≤ ∑ 𝐷𝑖

𝑖

≤ ∑ 𝐺𝑖

𝑖𝑖

 (2-1) 

 Node connections will depend on the Euclidean distance between two nodes. The 

idea that provides the basis of the algorithm is to consider discs of epsilon radius 

centered around each node. The radius will grow ε units at each step, from a 

minimum value 𝜀𝑚𝑖𝑛 up to a maximum value 𝜀𝑚𝑎𝑥. Nodes that are inside the disc 

will be connected to the central node.  

 

Figure 3-4. Epsilon-disc model process.  
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 Line capacity will be determined solving a power flow, in this case, a DC power 

flow model. An approximation of unit commitment is required and it will be applied 

as a simple economic dispatch. Although the power flow results are continuous 

values, line capacity will be set following a discrete distribution (see table 3-2) in 

order to reflect the discrete capacities of transmission lines (a line can either be 

installed or not). The result will be quasi-optimal line capacities for a given network. 

If the flow through a line becomes less than a threshold, this line is removed and 

the DC power flow is recalculated. 

3.1.3. Epsilon-Disc Model Simulation 

Figure 3-5 shows four graphs of 166 nodes (146 sinks and 20 sources) in a square 

of 5000 km with different values for the parameter 𝜀𝑚𝑎𝑥. 

A first conclusion from the figure below is that the number of lines will depend 

on 𝜀𝑚𝑎𝑥. This parameter will condition the supply, since with a low 𝜀𝑚𝑎𝑥 there may not be 

enough line capacity to meet demand. The election of the maximum radius has therefore 

deep implications, as we will obtain graphs with varying properties, from less to more 

meshed. 

 

Figure 3-5. Network of 166 nodes with different 𝜺𝒎𝒂𝒙, 100 km (top-left), 150 km (top-right), 

200 km (bottom-left) and 500 km (bottom-right). 
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Figure 3-6. Relationship 𝜺𝒎𝒂𝒙, – Number of lines. Case 166 nodes (146 sources and 20 sinks). 

 

To see the relationship between number of lines set by the epsilon-disc model and 

the maximum radius specified, we run the algorithm fixing only the number of nodes. We 

can see in figure 3-6, that this relationship follows a power law.  

This model does not consider the electrical properties of the network. This will 

make that one node with a low demand can be linked to a high number of nodes if they are 

placed in the latest disc. To avoid nodes connected to a high number of lines, a new step is 

introduced in the algorithm. Before fixing capacities, some lines are removed.  

As Figure 3-7 shows, in a case of three nodes, power supply is ensured with only 

two lines, so one line is redundant. The reference (Patania et al., 2015) establishes a flow 

criterion to remove redundant lines. However, if there are two nodes linked by two similar 

lines, the flow will be similar in both lines and it will be difficult to remove one line strictly 

following a flow criterion. 

In this text, the algorithm has been modified to obtain basic networks where all the 

nodes are linked. After that, new lines will be added following a reliability criterion. The 

new step removes one line when three nodes are linked by three edges. The algorithm 

chooses the line which has the longest distance. 
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Figure 3-7. Different ways of linking three nodes ensuring the power supply. 

In Figure 3-8 we can see the effect of the new step introduced in the algorithm. In 

an instance of 166 nodes, with a maximum radius of 150 km, the number of lines is reduced 

from 902 to 278. Despite these removals, there are some areas where the number of lines 

per node is still intuitively too high compared to real networks.   

 

Figure 3-8.  Power network where triangles are removed.  

As previously explained, the degree of a node in a network is the number of lines 

linked to it. We will use it to compare a random grid generated with a real one (in this 

section, the Spanish network). 

In Figures 3-9 and 3-10, we can see how the pattern followed in the three cases is 

not similar. In the second histogram (epsilon-disc model), the degree reaches higher values 

than the Spanish network (first histogram). After removing triangles (third histogram), the 

highest degrees have been reduced.  

The main difference among the three histograms is the most frequent degree. While 

in the Spanish instances is around 1, in random networks is over 3. The epsilon-disc model 

requires new steps to remove lines from extremely linked nodes.  
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The algorithm links nodes that are close without taking into account their current 

degree. We can think that the higher the degree of a node, the lower the number of new 

lines should be added to that node.  

One option is to link nodes based not only on distance but also on degree. This idea 

is developed in the preferential attachment model (See section 2). This algorithm, 

introduced by reference (Barabasi & Albert, 1999), proposes a growth model where the 

probability of linking two nodes depends on their current degree. This idea is also 

developed in (Manna & Sen, 2002), where the probability of linking two nodes decreases 

with the Euclidean distance between them.  

 

 

Figure 3-9. Degree frequency histogram of Spanish network. Source: (Patania et al., 2015). 

 

 

Figure 3-10. Degree frequency histogram of random networks. 
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We adapt the epsilon-disc model to take into account not only distance but also 

degree. Now the distance between two nodes will be increased with the number of lines 

attached to each one. If one node is inside the disc of radius 𝜀 (considering only euclidean 

distance), it will be attached depending on how connected to other lines they are. The 

distance will be increased based on the degree and also on a weighting factor.  

 

 

Figure 3-11. Random networks generated and their degree histogram.  

 

Figure 3-11 shows different networks for the same node definition (same node 

capacities and locations). The higher the weighting factor, the lower the node’s degree. 

These results are quite similar to the previous ones. There are only a few nodes with low 

degree and the most frequent degree is 3 or 4 depending on the case. More lines should be 

removed again. As we can see in the third network, some areas are isolated and there are 

even two sinks that are not linked to any source. There is also the problem that the algorithm 

does not take into account the features of the generators. Some areas can be supplied only 

with renewable energy, which means that demand will not be met in the cases where 

renewable power availability is not sufficient. In addition, there is not an objective criterion 

to follow as lines are removed. However, it is easier to think in a growth model. 

Based on the state-of-the-art of Section 2, where some algorithms used to create 

networks are described, we can think on a new model that combines the best ideas of them. 

From preferential attachment we can take that the higher the degree the higher the 

possibilities to be linked to another node. It is also clear that the connection should be 

conditioned to the features of the nodes, so the process should take into account a fitting 

function. At the same time, the process should try to look for a network that minimizes the 

cost, although it should not be considered an optimization problem. We are not looking for 

the minimum cost network but to a process that can generate a wide range of reasonable 

power networks. 
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After analyzing the epsilon-disc model, we have seen its strength in taking into 

account that the transmission network is spatially embedded. This geographical aspect also 

should be considered in a new algorithm to generate power networks. 

The ideas described above can be combined into a single algorithm. We propose to 

ensure the power supply in a first step and support the reliability of the system in a second 

step. In this way, we cover one of the main weakness of the epsilon-disc- model where we 

could not be sure when demand is met. For meeting the demand we can think that it is not 

necessary to have a high number of lines per node, so we will avoid the problem of high 

degree for most of the nodes. This new algorithm is explained and implemented in the next 

chapter. 
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4. THE TRADE-OFF NETWORK MODEL   

The Epsilon-disc model only considers the spatial component but no other features that 

are relevant to power networks. For instance, we should consider generation technology in 

order to avoid having sinks which demand is only met with renewable sources with no other 

backup technology. 

In addition, the Epsilon-disc algorithm takes into account the cost of installing a line 

(cost is directly related with distance €/km) but it does not take into account the generation 

cost. In general, we can say that customers try to meet demand at the lowest cost. 

Generators that are cheaper should be preferable. 

In a real network, nodes are not only linked to satisfy their demand, they are also 

connected to reach a suitable level of reliability of the system. Transport System Operators 

(TSO) apply an N-1 redundancy criterion to ensure the reliability of the power network 

when all elements but one (hence the name N-1) are available. This criterion tries to answer 

the question: What happens if a line or a generator fails? 

 

Figure 4-1. N-1 criterion where a node is removed. 

To answer the question, we can simulate the behaviour (power flows) of the system 

after removing one edge or one node as we can see in Figure 4-1. In case of removing a 

generator, a new dispatch is required. Once the generation is fixed, the power flows through 

the network are estimated. If power flows respect the line capacity limits, it means that 

neither lines nor nodes should be added to the system. If any line is overloaded or demand 

cannot be met, it is necessary to study which line or power plant should be added to the 

system to satisfy it.  
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Figure 4-2.- Process followed in the N-1 criterion 

We propose the Trade-off model as the generation algorithm for spatially embedded 

power networks. This model exhibits properties that are more consistent with the ones of 

actual power networks. The algorithm is not only able to ensure energy supply but also to 

create networks that follow specific degree distributions. This is the main contribution of 

this research, as it can be used for other types of networks. To reach a degree distribution, 

we propose a preferential attachment model that effectively shifts low-degree nodes 

towards the high-degree region by adding edges in a guided fashion. 

The model can be described in two steps: meeting demand cost-effectively (1) and 

fitting a degree distribution (2). 

The algorithm has been implemented in Matlab4, using existing Matlab functions to 

work with graphs. 

4.1. Meeting demand efficiently 

The first step of the algorithm simulates a clearing process between demand 

(customers) and generators (suppliers). Each sink will try to find the generator that is able 

to supply its energy needs at the lowest cost. 

The priority of finding an available generator is based on size, in terms of power 

demand. The bigger the node the higher the priority to find a source node.  

Before starting the trade-off model, nodes are generated as described in the Epsilon-

disc model (Chapter 3). Sinks are defined by their location and power demand. Power 

plants are characterized by location, maximum and minimum generation limits, generation 

variable cost and type of technology. 

                                                 

4 Matlab, http://www.mathworks.com/products/matlab/index.html 
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The cost of linking two nodes considers the cost of line installation and the cost of 

generation (equation 4-1). The cost is the net present value of future cash flows. Therefore, 

it is necessary to define a period of time and a discount rate to evaluate the cost.   

 𝐶 = ∑
𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛+ 𝐶𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

(1+𝑟)𝑡
𝑛
𝑡=1         ___               

(4-1) 

When a single generator is not able to supply all the demand of a node, it will supply 

as much as it can. New iterations linking other generators to that sink will be required until 

demand is satisfied. 

The cost associated to installing a line is linear with the length of the line, modelled 

as the Euclidean distance between two nodes. The model chooses the lowest-cost option 

between a direct connection between two nodes or connecting them through already 

existing lines. When nodes are not connected directly, more than one line could be required.  

The algorithm will look for the shortest path between nodes. As nodes are not 

connected yet, it is necessary to define an imaginary graph. In this network, the weight of 

edges will be the geographical distance, if there is no line or 1 if there is a line connecting 

two nodes.  

To avoid high computational requirements, it is necessary to define a graph where 

is more probable to find a connection between closed nodes than between those which are 

located far away.  

This is performed with the epsilon-disc model. As we saw in the previous section, 

all the nodes that are inside the disc of a node will be linked to it. The disc will grow until 

a maximum radius. The problem of defining the maximum radius does not affect to this 

case. If the maximum epsilon is not big enough, some areas will be isolated, nevertheless 

the algorithm will ensure the supply connecting two nodes directly. If the maximum value 

is high, there are more possible paths to check and the algorithm will be slower. It has been 

tested that there is not linear correlation between computational time and number of edges 

of a graph. The algorithm is much slower when the graph increases in size.  

Figure 4-3 shows the base network for a given example. The maximum radius has 

been defined as the minimum of the maximum distance between nodes. It is supposed that 

all nodes should be connected. As we can see in the figure, some areas are more meshed 

than others. 
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Figure 4-3. Auxiliary graph based on epsilon-disc model.  

 

  

Figure 4-4. An example of the first step in the trade-off model.  
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Figure 4-4 displays the result of this first step for a random network. Nodes have 

been generated following the parameters defined in Section 3. Grey bubbles represent 

demand. The colour of source nodes is related to the generation cost of that node, with 

green representing relatively cheap and red representing relatively expensive generation.   

As we can see, all the sink nodes have at least one connection. We suppose that all 

the demand can be supplied. We can check this assumption with the proportion 

generation/demand. If there is more power available than demand this ratio will be higher 

than 1. In this case, the algorithm can ensure all the demand is met. In cases in which the 

ratio is lower than 1 the system will not able to satisfy its demand. Networks with energy 

not supplied are interesting from the point of view of the optimization algorithms but in 

fact they are not realistic.  

In addition, it is important to consider the resource availability in the case of 

renewable generation: it is necessary to introduce an improvement to ensure nodes will 

meet demand in all scenarios.  

If we want to create a network similar to a real one, we need to consider the time 

evolution of the network. To do this, the trade-off model can be subdivided in different 

stages. Each stage represents an increase in power demand and generation. Stages can be 

based on generation technologies, as the historical development of the power system 

seemed to be articulated around periods where there was one single dominant technology 

that was more extensively deployed 

The simplest division would be to split generation expansion in two stages. In the 

first one, thermal and hydroelectric plants are used while in the second stage renewable 

generation is introduced. This implies that sink nodes seek to satisfy their demand using 

conventional generation first, and only then are linked to renewable generators as well. 

These stages can be generalized to consider other technology waves, as it has happened in 

Spain with coal, nuclear or CCGT units. The stages can also be used to consider national 

versus international connections.  

Another possibility is to consider that renewable plants only supply a percentage of 

the total demand. The sink node will have more generation available than what it needs. 

These kind of model would be useful for a greenfield expansion, where new plants (most 

of the renewable power plants) are being developed at the same time that the lines.   

From the point of view of demand, if we consider different stages, each stage can 

represent a growth in demand. The demand increase trajectory is pre-specified at the 

beginning.  

Line capacity is fixed based on the theoretical flow through the line after the trade-

off model is executed. It also considers the limits of the biggest line that can be installed 

(which is an input). If the flow is higher than the maximum line capacity, the algorithm will 

look for a new way to supply demand.  

A typical degree distribution after the first step in the trade-off model is shown in 

Figure 4-5. The distribution is similar to the shown in Chapter 3 for the Spanish network. 

The most frequent degree is one (that is, most of the nodes are only linked to another one). 



 

Generation of Random Electricity Transmission Networks 

Generating random power networks 

  

36 

 

Nevertheless, it does not fit well to the simplified European Network where degree does 

not follow an exponential distribution.  

Depending on the specific network, different distributions will be required. It is 

necessary to define a new step to make it possible to follow any type of degree distribution. 

We propose a method to do this by adding lines in a specific way. We can shift the 

distribution to the right (increasing degree) stablishing new lines. If we need to shift it to 

the left (decreasing degree) is necessary to remove existing lines. If lines are removed, we 

should check if demand is still met. For the sake of simplicity, we only consider the 

possibility of adding lines, and therefore we implicitly assume that we will not need to shift 

the distribution to the left. The number of lines added in step 1 is considered relatively 

small with respect to the total number of lines.   

 

Figure 4-5. Typical degree distribution for the network obtained in the first step of the algorithm.  

4.2. Fitting a degree distribution 

This step can be summarized as adding new lines smartly to obtain a defined distribution. 
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Figure 4-6. Current degree distribution (in orange) and target function (blue line). 

An input of the algorithm is the degree distribution that is wanted to achieve. This can 

be given from the distribution for an existing system, for instance. It can be also defined 

randomly. The distribution can be introduced as an equation or as a histogram. We use a 

bin for each value of degree in order to get the most accurate results.  

The algorithm also requires setting a tolerance level for the fitting. The process ends if 

the difference between the target and the current distribution is smaller than the tolerance 

or if after a specific number of iterations the model does not add any line. The lower the 

tolerance the most accurate the histogram and the greater computational time spent.  

The algorithm will analyse all the possible combinations of nodes to decide if a line is 

added to the system. Constraints related to distance can be introduced to avoid studying 

lines that are too long.   

As in the first step of the algorithm, there is a priority to analyse if a line is installed. 

It is based on size.   

The process will analyse the current degree of the two candidate nodes to be linked. If 

the line contributes to reach the target distribution, it is assigned a positive probability of 

being installed. If that connection will not contribute to the fitting process, the probability 

of linking those nodes will be zero.  

Equation 4-2 defines when a line contributes to reach a desired distribution based on 

the degree of two nodes.  
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 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ( 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒)) > 𝑡𝑎𝑟𝑔𝑒𝑡)  ∩
                            (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ( 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒 𝑖) + 1 = < 𝑡𝑎𝑟𝑔𝑒𝑡) _               

(4-2) 

  

The objective is to shift the degree distribution to the right. We assume that the 

number of nodes with a low degree is much higher than the number of nodes with a high 

degree.  

When the connection between two nodes is studied, their degree is analyzed. If the 

number of nodes with a given degree is higher than the target value, then the distribution 

must be shifted to the right.   

As we have explained, power networks are spatially embedded. We assume that the 

probability of linking two nodes is related to the distance between them. We will condition 

the connection between two nodes not only to its contribution to the fitting process but also 

to a fitness function based on distance. Considering distance we are taking into account the 

cost of installing a line.  

The fitness function can be defined as the probability of installing a line. For instance, 

we can use a Gaussian distribution. Another possibility is to introduce a desired distribution 

for length of lines. Knowing the maximum number of lines in a gap, the algorithm will 

decide if the probability of connecting a line that contributes to the reach the target 

distribution is high or low. If the difference between the target number of lines in an interval 

and the current interval is zero, that lines will not be installed.  

If a line contributes to fitting the degree distribution and has a positive probability to 

be installed, the algorithm will decide whether to install it or not based on generating a 

random number.  

After a new line is installed, it is necessary to update the difference between the target 

distribution and the current one.  

When the fitness distribution is defined it is necessary that it is in accordance to the 

properties of the case. Otherwise, lines will not be added and the algorithm will not be able 

to reach the desired distribution.  

If after the Step 2 there are still isolated nodes, they will be linked randomly to one of 

their closest neighbours.  

The result of this second step will be shown in the next chapter. This will be used also 

to check the degree of accuracy of the algorithm, testing it with a real case of the European 

network. Node features will be introduced as inputs. The objective will be to know the 

goodness of the algorithm to link nodes. The artificial network will be compared to the real 

one from a statistical point of view.   

If the same nodes are used in different simulations, the result of the first step will be 

identical. There will not be any difference between the lines installed in different cases. 

Nevertheless, the second step will give different results for each simulation.  
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5. STATISTICAL ANALYSIS 

A real case of the European network will be used to test the algorithm explained in the 

previous section. The objective is to check if the result, that is, the artificial networks 

generated with the trade-off model, are consistent with the real ones.  

5.1. European network 

The simplified network used is a combination of 14 countries in Europe. Each 

country has a different number of nodes, Table 5-1 shows the number of nodes per country. 

Nodes have their geographical position defined. At each node we can find demand, one or 

more generator or a combination of demand and generators. Figure 5.1 shows the network 

that will be the benchmark. Grey bubbles represent demand. Generation is represented with 

different colors based on generation cost (red represents more expensive and green shows 

cheaper plants). Lines can be classified as international connections and national 

connections. All nodes are connected in the same graph.  

Table 5-1. Number of nodes considered in each country.  

COUNTRY NUMBER OF 

NODES 

1 32 

2 29 

3 15 

4 218 

5 92 

6 245 

7 162 

8 7 

9 53 

10 20 

11 30 

12 22 

13 32 

14 68 
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Figure 5-1. Simplified European network.  
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5.2. Random European network generated with Trade-off model 

Node location and features (power demand, power supplied and type of generation) 

have been introduced based on the real case. Only lines will be generated randomly by the 

algorithm.  

In attempt to mimic the real historical development of the network, two stages have 

been considered. As in the real network renewables were only installed later, we have 

distinguished between conventional and renewable power plants. Conventional plants are: 

nuclear, coal, gas, hydro and oil. Renewables include wind and solar. We have considered 

the growth in demand when renewables were installed was small, so all the demand was 

considered in the first stage. As there is not an increase in demand during the second stage, 

renewable plants will be linked randomly in the second step of the algorithm, where all the 

demand is met.  

In the first step the algorithm will try to ensure that all the demand is supplied, in 

this case only with conventional power plants. Sink nodes will look for the cheapest power 

plant that is able to supply all their demand. Generation cost for each type of power plant 

is shown in Table 5-3. The present value is calculated considering a discount rate of 10 % 

for the next 40 years. Line power losses have not been considered. Table 5-2 shows the 

cost of installing a line.  

Figure 5-2 displays the network generated after the first step. In this instance, ratio 

between total conventional generation power and total power demand is 1.4353, which is 

reasonable compared to existing system. We can observe that all sink nodes are connected 

to at least one line.  

Table 5-2. Lines cost in European case.  

CAPACITY (MW) COST (MEUR/KM) 

100 0.08 

250 0.15 

500 0.3 

100 0.5 

2000 1 

4000 2 

Table 5-3. Generation cost in European case.  

TECHNOLOGY COST (EUR/MWH) 

Gas 50 

Oil 110 

Biomass 16 

Peak 120 

Nuclear 14 

Coal 50 

Hydro 0 

Wind on-shore 0 

Wind off-shore 0 

Solar 0 
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With the second step, the algorithm will try to fit the desired degree distribution. In 

this step, nodes with renewable plants have been introduced.  

During step 1, sinks are connected to sources only considering generation cost. No 

geographical constraints were taken into account. Nevertheless, in the second step the 

connection of two nodes will be conditioned by the country of location of the nodes.  

As the algorithm will try to reach a degree distribution connecting nodes of the same 

country, we can say that the algorithm is fitting not only one-degree distribution but also 

fourteen distributions, one for each country. This is more representative of the European 

network given that the national networks were created independently only to be 

interconnected relatively later.  

Although we lose the possibility of mimicking international connections, we think is 

the best way to have a good approach.  

The fitness function considered in this step is based on the length of the line. For each 

candidate line the probability of installing it is correlated to the distances between the two 

nodes. There will be a different fitness function for each country, as length of lines cannot 

be considered similar in the case of Spain or Sweden for instance.  

Figure 5-3 shows the artificial network for Europe obtained with the Trade-off model.  
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Figure 5-2. Artificial European network after the first step of Trade-off mode.  
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Figure 5-3. Artificial European network obtained with the Trade-off model.  
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Figure 5-4 shows the degree distribution after the first step and the target distribution. 

We can observe that there is a high number of nodes whose degree is zero. Nodes with no 

lines are those which have renewable plants or have not been linked in the first step 

(remember that the ratio between power generation and power demand was higher than 1).  

The most frequent degree is one, as most of the nodes can met its demand only with 

one power plant. There are no nodes with a very high degree; the most connected node has 

8 lines connected to it. This is far from the 16 lines that some nodes have in the real network.  

 

Figure 5-4. Degree distribution after the first step and target distribution for the European case. 

Although the tolerance for this case is only 2, the error in the overall degree 

distribution can be high as international connections have not been considered. The degree 

will be adjusted based on ten bins: nodes with 1, 2, 3, 4, 5, 6, 7, 8, 9, >9 lines per node. 

The fitness distribution for the length of lines has been defined as the difference 

between the number of lines in the real network and in the artificial network for a length 

interval. If that difference is positive, the probability of installing that line is also positive. 

This difference is updated after a new line is added. This function is divided in ten classes 

equally distributed from the minimum and up to the maximum length of a line in each 

country.  

5.3. Statistical analysis 

We can observe that the real and the artificial network are very similar. Different 

measures are used to compare them from a statistical point of view.  



 

Generation of Random Electricity Transmission Networks 

Generating random power networks 

  

46 

 

5.3.1. Degree distribution 

The degree distribution, as explained, is the main descriptor of a network used in 

network science. As we saw in Section 3, in the case of a power network degree is the 

number of lines linked to a node (a demand or a power plant).  

Figure 5-5 shows the degree distribution for the real and artificial networks. Both 

histograms are quite similar. As a consequence of the inputs used we can observe that there 

are no nodes with more than ten incident lines. If we wanted to avoid this, we could divide 

the degree distribution into a larger number of bins (in this case we used one single bin for 

all degrees higher than 9). Although the tolerance for the algorithm was 2, we can observe 

that the error is bigger than this. This was to be expected, as the fit will not always be 

possible. For nodes with one connection, the difference between the target and the current 

degree distribution is almost 20. We should consider that the algorithm has been adjusted 

by country, so for the whole network the error is the sum of the errors of each country.  

Another cause that justify that the algorithm does not adjust perfectly the distribution 

is that international connections are considered in the target distribution but we did not take 

them into account for fitting the curve. Adding international connections the curve will 

shift to the right so the difference with the real distribution will be lower.   

A solution to improve this error can be to divide the network in different areas that 

do not correspond to countries. For instance, in Central Europe, a set of countries can be 

merged into a single area.  

Figure 5-6 and 5-7 show the degree distribution of the real and artificial network for 

each country. As explained above, the difference between distributions is lower. It is in 

accordance with the tolerance. In most of the cases the error is one node per bin.  
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Figure 5-5. Degree distribution for artificial (left) and real (right) European networks. 

 

Table 5-4 shows statistical measures for the degree distribution of both networks. 

Mean (the average value), Standard deviation (the amount of dispersion of a set of values) 

and mode (most frequent value) have similar values. The difference is a little bit higher for 

the moment of order 3 (indicator of symmetry) and 4 (kurtosis, indicator of ‘tailedness’).   

In both cases moment 3 is positive, there is an asymmetry respect to the mean value. 

The moment 4 is higher in the real network as the tail of the distribution is fatter. In the 

artificial network values are more concentrated close to the mean value. 

Table 5-4. Statistical measures for degree distribution.  

 REAL NETWORK ARTIFICIAL NETWORK 

Mean 4.05 3.80 

Standard deviation 2.20 2.12 

Mode 4 4 

Skewness 7.86 5.49 

Kurtosis 92.87 56.49 
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Figure 5-6. Degree distribution for countries in the real European Network.  
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Figure 5-7. Degree distribution for countries in the artificial European network.  
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5.3.2. Betweenness centrality 

It can be defined as the number of times a node is located in the shortest path 

between two nodes, considering all the possible combinations in the graph. It represents a 

measure of the centrality of a node in the network.  

A node with high level of betweenness centrality has a central position in the graph. 

It is in the shortest path among a high share of combination of pairs. For instance, in Figure 

5-8, we can see that the light blue node has a central position, this node is in the path among 

nodes located at the top and at the bottom.  

 

Figure 5-8. An example of graph where light blue vertex has a high value of centrality.  

A comparison between the betweenness centrality of the real network and the 

artificial network is shown in the Figure 5-9.  

As in the case of degree, both distributions are similar. In both cases the most 

frequent value is zero (Table 5-5). In the artificial network there are more nodes that are 

not in the shortest path between other two. Increasing the number of lines, for instance with 

international connections, this value can be lowered.  

Table 5-5. Statistical measures for betweenness centrality distribution.  

 REAL NETWORK ARTIFICIAL NETWORK 

Mean 1.318 e4 1.05 e4 

Standard deviation 2.637 e4 3.71 e4 

Mode 0 0 

Skewness 6.51 e13 3.92 e14 

Kurtosis 9.92 e18 1.52 e20 
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In both cases the mean of the distribution is similar. We find the highest difference 

in the kurtosis, as we said for the degree, it is due to the tail of the distribution. In the 

artificial network values are more dispersed, and the tail is bigger.  

 

Figure 5-9. Betweenness centrality for the real (left) and artificial (right) European networks. 

5.3.3. Length of lines 

To define the length of a line we used the Euclidean distance between two nodes. 

This was used as the fitness function that conditions the decision of adding a line to the 

system.  

We should remember that in the first step of the algorithm there was no length 

restriction, so some outliers can appear.  

The rank of distances will vary among countries. It is supposed that the higher the 

area where the grid is located the longer the lines that are uses to connect nodes.  

Figure 5-10 shows the length of lines distribution for the whole European network.  
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Figure 5-10. Length of lines distribution for the real (left) and artificial (right) European networks. 

We observe that the shape of both functions is really similar. In this case, mean and 

standard deviation have identical values. The value of mode is not significant in this case 

as it is really difficult that two lines have the same distance (discrete values are considered).   

The measure of tailedness is analogous in both cases and both distributions have the 

same asymmetry.   

If needed, we could get a better fit it more than ten bins were used. We should also 

consider the possibility of add a new step in the algorithm to remove lines. As in the first 

step length of line is not checked, the model can install lines with a length that does not 

correspond to the real distribution.  

Table 5-6. Statisticial measures for length of lines distribution.  

 REAL NETWORK ARTIFICIAL NETWORK 

Mean 4.8982 e3 4.5674 e3 

Standard deviation 4.1042 e3 3.8941 e3 

Mode 754 1089 

Skewness 1.18 e11 9.6928 e10 

Kurtosis 2.33 e15 1.463 e15 

 

5.3.4. Shortest-path length 

The shortest-path length of a graph is the minimum number of edges there are 

between two nodes.  
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Figure 5-11. Shortest-path distribution for the real (left) and artificial European networks. 

If we compare the real and artificial networks, we can observe that in the artificial 

one distances are shorter than in the real one. In the real network usually there are two 

edges more than in the artificial one in the shortest path length. Standard deviation is also 

lower for the artificial network. In the same way, the kurtosis is much bigger in the real 

distribution. Values are more closed in the synthetic network.  

The lower data dispersion can be understood from the point of view of how the 

network is meshed. If lines are well spread distributed in the area, the path between two 

nodes will be shorter.  

Table 5-7. Statistical measures for shortest path length distribution.  

 REAL NETWORK  ARTIFICIAL NETWORK 

Mean 13.87 11.82 

Standard deviation 6.29 4.83 

Mode 12 10 

Skewness 77.77 24.71 

Kurtosis 4.016 e3  1.453 e3 

5.3.5. Clustering coefficient 

The clustering coefficient is used as a measure to know if nodes tend to form 

communities inside which there are more links than among them. This metric is really 

useful in social networks, as it represents the average probability that a pair of one’s friends 

are friends of each other’.  
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In many networks clustering is found to have a rough dependence on degree, with 

vertices with a higher degree having a lower local clustering coefficient on average. Local 

clustering can be used as a proof for the existence of so-called “structural holes” in a 

network. It is common in some types of networks, that for the neighbors of a vertex to be 

connected among themselves. It happens sometimes that these expected connections 

between neighbors are missing. The missing links are called structural holes. When missing 

links appear it reduces the number of alternative routes that power can take through the 

network (Newman, 2010), which has important consequences for reliability.  

The clustering coefficient for a network can be calculated following the          

equation 5-1: 

 

                     𝐶 =
3 ∙𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
                   

___               

(5-1) 

 

A triplet is a set of three nodes that are connected.  

Figure 5-12 shows an example of calculating clustering coefficient for a simple 

graph. The value of clustering coefficient is: a) 1, b) 1/3, c) 0.  

 

 

Figure 5-12. Different clustering coefficient for a given graph with different edges. 

 

Figure 5-13 displays the clustering coefficient distribution for the networks we are 

studying.  
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Figure 5-13. Clustering coefficient distribution for the real (left) and artificial (right) European 

networks. 

This metric is the most different among the ones we have analyzed. The mean value 

is the double in the real network. Neighbors of a node are more linked in that case. The 

kurtosis is the most identical measure, nevertheless this not have a relevant significance 

here as the distribution is enclosed between 0 and 1. 

We can think that as in previous metrics, adding more lines the distributions will be 

more similar.  

Table 5-8. Statistical measures for clustering coefficient distribution. 

 REAL NETWORK ARTIFICIAL NETWORK 

Mean 0.34 0.17 

Standard deviation 0.30 0.25 

Mode 0 0 

Moment (order 3) 0.02 0.03 

Moment (order 4) 0.02 0.02 

As we have mentioned in the shortest path length, if lines are well spread through 

all the geographical space, there will not be highly meshed areas and the connections among 

neighbors of a node (clustering coefficient) will be lower. 

Further analyses should be performed in order to identify a pattern in how the 

network is meshed.   

Figure 5-14 displays the correlation between the clustering coefficient and the 

degree of a node. Taking into account that in the artificial network there are no nodes with 
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a degree higher than 10, both graphs are quite analogous. In both cases we can identify a 

trend, the higher the degree of a node the lower connect that its neighbors are. 

 

Figure 5-14. Correlation between clustering coefficient and degree of a node for the real (right) and 

the artificial (left) European network. 
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6. CONCLUSIONS 

6.1. Epsilon Disc-Model 

This work has implemented a state-of-the-art method for generating spatially 

embedded networks applied to the power grid (developed by this project’s supervisors in 

reference (Patania et al., 2015)).  

Epsilon-disc models have been used in the network science literature to generate 

spatially-embedded networks. These networks take into account the spatial component but 

no other additional features that are relevant for power networks.  

This project has identified the flaws of the Epsilon-disc model in terms of not fitting 

the descriptive distributions of the network and not taking into account economic 

information such as generation cost in the development of the network.  

Fixing the value of the maximum epsilon radius was the main problem we found. We 

did not find a way to establish it. A high value will give networks with a high degree of 

mesh. Low radius will create grids with isolated areas where demand may be not supplied.  

We consider that the algorithm can be useful for other types of networks as social 

ones, nevertheless it is not completely useful for power networks as it does not consider 

some features like generation costs or reliability of the system that are essential in the real 

design of them. Some improvements could have been introduced, nevertheless we 

considered that it was better to develop a new model.  

6.2. The Trade-off Model 

This project has developed a new generative network model that overcomes the flaws 

observed in the epsilon-disc model. The new model displays properties that are more 

consistent with the ones of actual networks.  

With this model we not only ensure that all the demand is supplied but also we can 

fit any degree distribution adding lines in a flexible way.  

This is the main contribution of this research. The developed method can be used not 

only to generate power networks but also in other types of networks.  

The Trade-off Model is based on a preferential attachment model that effectively 

shifts low-degree nodes towards the high degree region by adding edges smartly. 

The results proved that the algorithm is able to fit a general degree distribution that 

is taken from input data.  
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The second step of the algorithm does not consider the cost of the system. To avoid 

that far nodes have the same probability to be linked than nearby ones, the action of adding 

a line is conditioned to the length distribution of lines.  

It is difficult to emulate the process followed by TSOs to add new lines to increase 

reliability. Several factors can influence this decision, including economic or political ones. 

The algorithm will generate lines randomly based only on distance with is correlated to the 

cost of installing a line.  

We have generated random networks taking the European one as a template. Our first 

conclusion is that the algorithm can be used to create networks that are similar to existing 

ones. Degree distributions are almost identical. They are also similar from the point of view 

of betweenness centrality, length of lines and shortest path length. 

There was a larger difference in the case of the clustering coefficient.  

We think that this difference is due to the way the grid is meshed. If we see the real 

network, there is not a pattern in the mesh of the network. Depending on whether the mesh 

is spread across the space or is concentrated in specific areas, we will have more or less 

similar networks. This can justify the fact that in the artificial network the shortest path 

length between nodes is lower.  

From the point of view of the length of the lines, both networks are similar. Only 

some outliers appear in the artificial network as no restrictions about distance were made 

in the first step. 

The line length distribution can be approached more accurately considering a high 

number of bins in the histogram for the fitness distribution.   

It will be interesting to replicate the European system considering random nodes as 

well (in this case study nodes were fixed and only connections were generated), the area 

should be well defined, as it is not a simple square. The case of Spain and Portugal can be 

approached better with a square. The European network can be replicated dividing it into 

different subnetworks.  

We also concluded that we can create networks that have different properties 

depending on the area. We applied this to Europe, where the network is a set of 14 small 

different networks. We can create completely independent random networks that can be 

linked, resulting a network with clear differenced areas. This could be a way to avoid the 

problem of some networks in which the degree of mesh depends on the zone.   

It is clear that we are not going to create networks that are exactly equal to the one 

that we are using as a template. That is not the objective of the project. We try to create 

artificial networks that are consistent with the real ones. There is not only one pattern that 

have been follow in the generation of the existing network. There are a lot of properties 

that should be considered. We have only considered the ones we think have more relevant 

in the process of network design. They are good to recreate existing ones, and to be used in 

studies about the expansion of existing networks.  
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If we want to use the algorithm to create new networks for emerging countries this 

second step it is not the most accurate, as the process should be a pseudo-optimization 

process based on cost, emissions, etc.  

6.3. Future Research 

The goal of this work was to create a model that can generate artificial networks that 

are similar to the real ones. Although there are some papers that have faced this question 

for other types of networks, this had not been properly studied for the power network. We 

have proposed an algorithm that can generate artificial networks with a high degree of 

similarity as we have tested in section five. Nevertheless, the algorithm can increase its 

degree of accuracy. With the improvements, the result will be more accurate for greenfield 

expansion, where optimization algorithms require a high computational time.   

Some of the improvements that can be developed in next steps are:  

To improve the fitting to a degree distribution, a function should be implemented to 

remove lines. For instance, in the case of Europe, in the first step, the trade-off was 

implemented not taking into account constraints of nationality. In this case we can have 

really long lines that are undesirable as they do not appear in the real case. Even the degree 

distribution obtained in the first step will require not only shift it to the right but also to the 

left, so following the same pattern to add line a new process can be defined to remove 

existing lines. Here, the main consideration should be that the process should ensure that 

all demand is met. If an essential line for the system is removed, another one should be 

added.  

As explained, an N-1 criterion is used by the TSO to ensure the reliability of the 

system. Our algorithm added random transmission lines to fit degree distribution. However, 

the N-1 criterion is not checked explicitly. A new step can be introduced before fitting the 

degree distribution to add new lines following this criterion. As a first consequence of the 

N-1 criterion, there will not be any node with only one line, all of them will have at least 2 

lines. As we saw in the example of Europe, the number of nodes with only one lines was 

high. Even in the example shown in reference (Patania et al., 2015) in the Spanish system 

nodes with only one line were the most frequent. Therefore, the correct way to implement 

this criterion should be studied carefully. 

One of the flaws of the proposed algorithm is that it does not take into account 

interconnection substations. It could install different lines very close geographically, so that 

it should make more sense to join them by means of a substation. It should be possible to 

establish the connection to an intermediate point of an existing line if there are not active 

capacity constraints (the existing line can carry more power). This should be implemented 

in a computational-efficient way, as we are increasing the number of ways to connect at the 

first step.   

An improvement for the algorithm can be introduced in the node location. In the 

algorithm described you can introduce the location of nodes or the algorithm can generate 

them randomly. With the random option, they are placed following a uniform distribution. 

With topological information about the place where the network will be located, the 
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algorithm should be able to decide where to place these nodes. For instance, on a river the 

probability of have a hydroelectric plant will be higher than zero, while outside it should 

be zero. This system should read not only topological information but also information 

related to wind or solar radiation. This can be a really useful improvement if this tool is 

used to generate completely new power networks.  

Furthermore, the improvements for the algorithm described and following the 

motivation for this project, the next step will be to use random networks to test the 

optimization algorithms. With a large number of instances and following the framework of 

K. Smith-Miles we will be able to approach a solution to answer our motivation question 

of when it is better to use a Genetic Algorithm or Benders’ decomposition. .  
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8. EXHIBIT 1: TRADE-OFF MODEL FIRST STEP 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                             INPUTS                              %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%Area localización:  

  

length_a=1000;  

 

length_b=1000;  

 

%Generación: 

 

Mix = [0.15 , 0.3, 0.45 , 0.6, 0.75, 0.9, 1];  

 

%Demanda: 

 

expomean=66;  

 

n_sink=50;  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%     FASE 1: Localizar generación y demanda                      %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

Source_0=source_generation(n_source, length_a, length_b, Mix);  

 

Sink_0=sink_generation(n_source, length_a, length_b, expomean, 

    sum(Source_0(:,4)), 

sum(Source_0(:,5)));  

 

n_source=max(size(Source_0)); 

 

n_node=n_sink+n_source;  

  

Source=ordenasource(Source_0);  

 

Sink=ordenarsink(Sink_0);  

 

  

Node=[Source(:,1), Source(:,2) ; Sink(:,1), Sink(:,2)];  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%   FASE 2: Desarrollo básico de la red                           %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 

Dist=node_distance(Node);  

  

fac=1.2; 

 

e_max=min(max(Dist)); 

  

Lines_eb0=(node_linkage(delta_e, e_max, Dist, fac));  

 

plot_lines(Node, Lines_eb0, Source,Sink, n_sink, n_source) 

  

grafo=graph(Dist.*Lines_eb0);     

  

Lines_f2=f_tradeoff_perd(grafo, Dist, Source, Sink);   

  

plot1_lines(Node, Lines_f2(:,:,1), Source,Sink, n_sink,  

 n_source,Lines_f2(:,:,2)) 
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9. EXHIBIT 2: FUNCTIONS I 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                  Caracterización Demanda                        %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function Sink=sink_generation(n_source, length_a, length_b, expomean, 

lb, ub, coef ) 

  

n_sink=round(ub/(expomean*coef)); 

 

Sink=ones(n_sink,3); 

 

Sink(:,1)=randi(length_a,n_sink,1); 

 

Sink(:,2)=randi(length_b,n_sink,1); 

 

Sink(:,3)=random('Exponential', expomean, n_sink, 1);     

  

return Sink; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                   Caracterización Generación                    %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function sources=source_generation(n_source, length_a, length_b, Mix_c) 

  

Source=ones(n_source,7); 

 

Source(:,1)=randi(length_a,n_source,1); 

 

Source(:,2)=randi(length_b,n_source,1); 

  

for i=1:n_source 

            

            aux2=rand(1); 

 

            aux3=rand(1); 

             

            if aux2<Mix_c(1) 

 

            Source(i,3)=1;  

 

            Source(i,4)=10*(1+randi([0,10])/10);   

  

            Source(i,5)=500*(1-randi([0,9])/100);  

   

            Source(i,6)=0;    

         

            elseif (aux2<Mix_c(2) && aux2>Mix_c(1)) 

            Source(i,3)=2;  

 

            Source(i,4)=10*(1+randi([0,10])/10);   

  

            Source(i,5)=500*(1-randi([0,9])/100);   

  

            Source(i,6)=0;    

             

            elseif (aux2<Mix_c(3) && aux2>Mix_c(2)) 

 

            Source(i,3)=3;  

 

            Source(i,4)=10*(1+randi([0,10])/10);    

 

            Source(i,5)=500*(1-randi([0,9])/100);    

 

            Source(i,6)=0;   
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            elseif (aux2<Mix_c(4) && aux2>Mix_c(3)) 

 

            Source(i,3)=4;  

 

            Source(i,4)=1000*(1+randi([0,2])/20);  

   

            Source(i,5)=1500*(1-randi([0,4])/30);  

   

            Source(i,6)=15;    

             

            elseif (aux2<Mix_c(5) && aux2>Mix_c(4)) 

 

            Source(i,3)=5;  

 

            Source(i,4)=500*(1+randi([0,4])/20);   

  

            Source(i,5)=1000*(1-randi([0,4])/20);    

 

            Source(i,6)=20;      

  

            elseif (aux2<Mix_c(6) && aux2>Mix_c(5)) 

 

            Source(i,3)=6;  

 

            Source(i,4)=100*(1+randi([0,10])/10);   

  

            Source(i,5)=500*(1-randi([0,5])/100); 

    

            Source(i,6)=25;  

             

            elseif (aux2<1 && aux2>Mix_c(6)) 

 

            Source(i,3)=7;  

 

            Source(i,4)=100*(1+randi([0,10])/10);   

  

            Source(i,5)=500*(1-randi([0,5])/100);   

   

            Source(i,6)=50;    

 

            end 

             

            if (aux3<0.95) 

 

                Source(i,7)=1; 

 

            Else 
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                Source(i,7)=0; 

 

            end 

        

end 

  

sources=Source;  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                       Ordenar Demanda                           %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function ordenado=ordenarsink(Sink) 

  

[B,k]=sort(Sink(:,3), 'descend'); 

  

orden=[Sink(k,1) Sink(k,2) B Sink(k,4) Sink(k,5)]; 

  

ordenado=orden;  

 

  



 

Generation of Random Electricity Transmission Networks 

Exhibit 2 

  

70 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                        Ordenar Generación                       %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function ordenado=ordenasource(Source) 

  

[B,k]=sort(Source(:,5), 'descend'); 

  

orden=[Source(k,1) Source(k,2) Source(k,3)  Source(k,4) B Source(k,6) 

Source(k,7) Source(k,8) ];  

  

ordenado=orden;  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                  Distancia entre nodos                          %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function matrix=node_distance( node) 

  

  

Dist=(zeros(size(node))); 

 

n_node=max(size(node)); 

 

for i=1:(n_node) 

 

    for j=(i+1):(n_node) 

 

        Dist(i,j)=round(sqrt((node(i,1)-node(j,1))^2+(node(i,2)-

node(j,2))^2)); 

 

        Dist(j,i)=Dist(i,j); 

 

    End 

 

end 

  

  

matrix=Dist;  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                    Unión nodos EDM                              %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function lines_0=node_linkage(delta_e, e_max,  Dist, fac) 

  

e=0; 

 

Lines=(zeros(size(Dist))); 

 

n_node=max(size(Dist)); 

  

lines_per_node=int8(zeros(1, n_node)); 

 

aux=1; 

  

while(e<e_max) 

 

    e=e+delta_e; 

    

    for i=1:n_node 

 

        aux=aux+lines_per_node(i)*fac;  

 

        for j=i+1:n_node 

             

            if (Lines(i,j)==0 && Dist(i,j)*aux<e ) 

 

                Lines(i,j)=1; 

 

                Lines(j,i)=1; 

     

            end 

             

  

        end 

 

        aux=1; 

 

    end 

 

    lines_per_node=sum(Lines); 

end 

     

     

lines_0=Lines; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                    PLOT                                         %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 
function plot4(Lines_red,nodes, Source_0_con,Sink_0, Source_0_ren, 

Source_0) 

 
nodes=nodes*8000;  

 
axis equal 

 
figure 

 
hold on 

 
for i=1:1025 

 
    for j=i+1:1025 

 
        if(Lines_red(i,j)==1)    

             
           plot([nodes(i,2),nodes(j,2)],[nodes(i,3),nodes(j,3)], 'b');   

       
        end 

 
    end 

 
end 

   
aux1=max(Source_0_con(:,5)); 

 
aux2=min(Source_0_con(:,5)); 

 
aux3=aux1-aux2; 

 
pr=(Source_0(:,6)); 

 
c1=(1*(pr>(aux1-0.6*aux3))+0.8*(pr<(aux1-0.6*aux3) & pr>(aux1-

0.7*aux3))+0.6*(pr<(aux1-0.7*aux3) & pr>(aux1-0.8*aux3))+0*(pr<(aux1-

0.8*aux3) )); 

 
c2=(0*(pr>(aux1-0.2*aux3))+0.4*(pr<(aux1-0.2*aux3) & pr>(aux1-

0.3*aux3))+0.6*(pr<(aux1-0.3*aux3) & pr>(aux1-0.4*aux3))+0.8*(pr<(aux1-

0.4*aux3) & pr>(aux1-0.5*aux3))+1*(pr<(aux1-0.5*aux3) )); 

 
c3=(0*(pr>(aux1-0.3*aux3))+0.2*(pr<(aux1-0.3*aux3) & pr>(aux1-

0.6*aux3))+0.4*(pr<(aux1-0.6*aux3) & pr>(aux1-0.8*aux3))+0*(pr<(aux1-

0.8*aux3) )); 

 
colour=[c1 c2 c3]; 

 
grey=[0.5 0.5 0.5];     
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max1=max(Sink_0(:,3)); 

 
s1=(Sink_0(:,3)/max1*75); 

 
scatter(Sink_0(:,1),Sink_0(:,2),s1*2.5,grey, 'filled') 

 
s2=(Source_0(:,4)/max1*75); 

 
scatter(Source_0(:,1),Source_0(:,2),s2*2.5,colour, 'filled') 

  
axis equal 

 
set(gcf, 'color', [1 1 1]) 

 
axis off 

  
end 
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10. EXHIBIT 3: TRADE-OFF MODEL SECOND STEP 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                             TOM 2º                              %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

Lines=Lines_f2(:,:,1); 

  

gnode=nodes(:,1); 

 

ngnode=max(size(gnode)); 

 

gLines=zeros(ngnode,ngnode); 

  

[a,b]=size(Lines); 

 

n_lines=a; 

   

for i=1:n_lines 

    

   for j=i+1:n_lines 

         

        if(Lines(i,j)==1) 

     

            aux1=Node(i,3); 

 

            aux2=Node(j,3); 

             

            aux3=find(gnode==aux1); 

 

            aux4=find(gnode==aux2); 

             

            if(aux3~=aux4) 

 

            gLines(aux3,aux4)=1; 

 

            gLines(aux4,aux3)=1; 

             

            end 

             

        end 

         

    end 
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end  

  

geoDist=node_distance([nodes(:,2)*8000, nodes(:,3)*8000]); 

 

gnLines=gLines; 

  

currentgrafo=graph(gLines); 

 

grad=degree(currentgrafo); 

 

info=[grad country];  

 

clear currentgrafo 

  

  

[Lines_red]=f_pat_v2(gLines, info,geoDist ); 

  

plot4(Lines_red,nodes, Source_0_con, Sink_0, Source_0_ren, Source_0);
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11. EXHIBIT 4: FUNCTIONS II  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                      P. Attachment                              %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [n_Lines]=f_pat_v2(Lines,info1,Dist) 

  

 

[auxa rdist]=f_d_c(info1(:,2),Dist,LinEurope); 

 

auxb=f_d_c(info1(:,2),Dist,Lines); 

  

ma_prob=auxa-auxb; 

 

ma_prob(ma_prob<0)=0; 

  

 

matriz_auxiliar=f_objective_values(); 

 

n_node=max(size(Lines));  

 

n_Lines=Lines;  

  

cond=zeros(14,1); 

 

q=0; 

 

while (q<20)  

 

q=q+1; 

 

for c=1:14 

     

    if (cond(c)==0) 

 

        aux1=find(info(:,2)==c);  

  

        grado=info(:,1); 

 

        a=grado(aux1);  

 

        da=ones(10,1); 
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        da0=max(size(find(a==0))); 

 

        da(1)=max(size(find(a==1))); 

 

        da(2)=max(size(find(a==2))); 

 

        da(3)=max(size(find(a==3))); 

 

        da(4)=max(size(find(a==4))); 

 

        da(5)=max(size(find(a==5))); 

 

        da(6)=max(size(find(a==6))); 

 

        da(7)=max(size(find(a==7))); 

 

        da(8)=max(size(find(a==8))); 

 

        da(9)=max(size(find(a==9))); 

 

        da(10)=max(size(find(a>9))); 

 

 

        r1=rdist(c,1); 

 

        r2=rdist(c,2); 

 

        r3=rdist(c,3); 

 

        r4=rdist(c,4); 

 

        r5=rdist(c,5); 

 

        r6=rdist(c,6); 

 

        r7=rdist(c,7); 

 

        r8=rdist(c,8); 

 

        r9=rdist(c,9); 

 

        r10=rdist(c,10); 

 

        r11=rdist(c,11); 

        

  



 

Generation of Random Electricity Transmission Networks 

Exhibit 4 

  

79 

 

        dt=matriz_auxiliar(c,:)'; 

 

        pd=da-dt; 

  

  

            for i=1:n_node 

               for j=1:n_node 

  

            

                   D=Dist(i,j); 

 r=(1*( D<=r2)+2*(r2<D && D<=r3)+3*(r3<D &&    

D<=r4)+4*(r4<D && D<=r5)+5*(r5<D && D<=r6)+6*(r6<D && 

D<=r7)+7*(r7<D && D<=r8)+8*(r8<D && D<=r9)+9*(r9<D && 

D<=r10)+10*(r10<D && D<=r11)); 

                    

                   if(r>0) 

                                                             

                       if(info(i,2)==c && info(j,2)==c && i~=j)  

  

                          c1=1; 

 

if(info(i,1)==0 || info(j,1)==0 && 

n_Lines(i,j)==0 )  

 

                              c1=0; 

 

                              if(info(i,1)==0 && info(j,1)==0)   

                                    

                                  if(ma_prob(c,r)>0 && rand(1)<0.3) 

 

                                      n_Lines(i,j)=1; 

 

                                      n_Lines(j,i)=1; 

 

                                      info(i,1)=info(i,1)+1; 

 

                                      info(j,1)=info(j,1)+1; 

 

                                      da0=da0-2; 

 

                                      da(1)=da(1)+1; 

 

                                      da(1)=da(1)+1; 

 

                                      pd(1)=pd(1)+2; 

 

                                      ma_prob(c,r)=ma_prob(c,r)-1; 
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                                  end 

  

  

                              elseif (info(i,1)==0 && info(j,1)>0)  

  

                                  aux1=info(j,1); 

 

                                  if (aux1>9) 

 

                                  aux1=10; 

 

                                  end 

  

                                  if(aux1<10)   

  

                                      if(max(pd(1:aux1))>0 &&  

    

           (pd(aux1+1))<0)  

 

                                          if(ma_prob(c,r)>0 && 

    

    

  rand(1)<0.3) 

 

                                              n_Lines(i,j)=1; 

 

                                              n_Lines(j,i)=1; 

 

                                              info(i,1)=info(i,1)+1; 

 

                                              info(j,1)=info(j,1)+1; 

 

                                              da(aux1)=da(aux1)-1; 

 

                                              da0=da0-1; 

 

                                              da(aux1+1)=da(aux1+1)+1; 

 

                                              da(1)=da(1)+1; 

 

                                              pd(1)=pd(1)+1; 

 

                                              pd(aux1+1)=pd(aux1+1)+1; 

 

                                              pd(aux1)=pd(aux1)-1; 
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                                              ma_prob(c,r)=ma_prob(c,r)-

    

        1; 

                                          end 

 

                                      end 

 

                                  end 

  

   

                              elseif (info(i,1)~=0 && info (j,1)==0) 

   

                                  aux1=info(i,1); 

 

                                  if (aux1>9) 

 

                                   aux1=10; 

 

                                  end 

  

                                  if (aux1<10  

  

                                      if(pd(aux1)>0 &&(pd(aux1+1))<0) 

 

                                          if((ma_prob(c,r)>0 && 

    

    

  rand(1)<0.3) || (D<r5 &&   

    

   rand(1)<0.6) ) 

 

                                              n_Lines(i,j)=1; 

 

                                              n_Lines(j,i)=1; 

 

                                              info(i,1)=info(i,1)+1; 

 

                                              info(j,1)=info(j,1)+1; 

 

                                              da(aux1)=da(aux1)-1; 

 

                                              da0=da0-1; 

 

                                              da(aux1+1)=da(aux1+1)+1; 

 

                                              da(1)=da(1)+1; 

 

                                              pd(1)=pd(1)+1; 



 

Generation of Random Electricity Transmission Networks 

Exhibit 4 

  

82 

 

 

                                              pd(aux1+1)=pd(aux1+1)+1; 

 

                                              pd(aux1)=pd(aux1)-1; 

                                               

                                          end 

 

                                      end 

 

                                  end 

 

                              end 

  

 

                         end 

  

 

                          if (c1==1) 

 

                              aux1=info(i,1); 

 

                              if (aux1>9) 

 

                               aux1=10; 

 

                              end 

  

                              aux2=info(j,1); 

 

                              if (aux2>9) 

 

                               aux2=10; 

                              end 

  

                              if(pd(aux1)>0 && aux1<10) 

  

                                  if( aux2<10)  

  

                                      if((pd(aux2+1))<0)  

  

                                          if(ma_prob(c,r)>0) 

 

                                              p=0.3; 

 

                                          else 

 

                                              p=0; 
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                                          end 

  

                                          if(rand(1)<p &&  

    

    

  n_Lines(i,j)==0 &&   

    

         n_Lines(i,j)==0 ) 

 

                                                n_Lines(i,j)=1; 

 

                                                n_Lines(j,i)=1; 

  

                                                da(aux1)=da(aux1)-1; 

 

                                                da(aux2)=da(aux2)-1; 

  

                                                da(aux1+1)=da(aux1+1)+1; 

 

                                                da(aux2+1)=da(aux2+1)+1; 

  

                                                pd(aux1)=pd(aux1)-1; 

 

                                                pd(aux2)=pd(aux2)-1; 

  

                                                pd(aux1+1)=pd(aux1+1)+1; 

 

                                                pd(aux2+1)=pd(aux2+1)+1; 

  

                                                info(j,1)=info(j,1)+1; 

 

                                                info(i,1)=info(i,1)+1;  

                                                 

ma_prob(c,r)=ma_prob(c,r)

-1; 

  

  

                                              end 

 

                                          end 

 

                                      end 

 

                                  end 

    

                              end 
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                        end 

 

                   end 

  

               end 

 

            end 

           

                    

           if(max(abs(da-dt))<2)  

         

               cond(c)=1; 

           end 

             

           if(sum(cond)==13) 

 

               x=x+1; 

 

               if (x==20) 

                   cond(c)=1; 

 

               end 

 

           end 

             

    end 

     

end 

  

end 

  

aa=find(info(:,1)==0); 

  

for i=1:max(size(aa)) 

 

   v=1; 

 

   for j=1:n_node 

 

       if (Dist(aa(i),j)~=0 && Dist(aa(i),j)<100 && v==1) 

 

           n_Lines(aa(i),j)=1; 

 

           n_Lines(j, aa(i))=1; 

 

           info(j,1)=info(j,1)+1; 
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           info(aa(i),1)=info(aa(i),1)+1; 

 

           v=0; 

       end 

        

   end 

     

end 
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12. EXHIBIT 5: FUNCTIONS III 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                             Trade-off                           %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function result=f_tradeoff_perd(grafo, Dist, Source, Sink) 

  
r=0.1; 

 
t=40; 

  
n_source=max(size(Source)); 

 
n_sink=max(size(Sink)); 

 
Lines=zeros(n_source+n_sink); 

 
capac_lines=Lines; 

 
flow=Lines;  

 
P_disponible=Source(:,5);  

   
for i=1:n_sink  

  
    Pi=Sink(i,3);  

 
    aux= P_disponible<Pi; 

      
    if (length(find(aux==1))==length(P_disponible)) 

 
        v=1; 

 
    else 

 
        v=0; 

 
    end 

     

 
    if(v==0)  

  
        Pi=Sink(i,3);  

 
        aux= P_disponible<Pi; 

 
        generation_cost=Source(:,6);   
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        c1=100; 

 
        c2=250; 

 
        c3=500; 

 
        c4=1000; 

 
        c5=2000; 

 
        c6=4000; 
 

        p1=8; 

 
        p2=15; 

 
        p3=30; 

 
        p4=50; 

 
        p5=100; 

 
        p6=200; 

 
        cost_instal=p1*(Pi<100 && Pi>0)+p2*(Pi<250 && Pi>100)+p3*(Pi<500

   && Pi>250)+p4*(Pi<1000 && Pi>500)+p5*(Pi<2000 && 

    Pi>1000)+p6*(Pi<4000 && Pi>2000); 

  
        total_generation_cost=Pi.*generation_cost.*24*365*((1-

        1/(1+r)^t)/(r));  

  
        lines_cost=ones(n_source,2); 

  
        losses=0.001; 

               
lines_cost(:,1)=Dist(1:n_source,i+n_source)*cost_instal+total_gene   

ration_cost.*losses.*Dist(1:n_source,i+n_source);  
 

        dist_2=distances(grafo, 1:n_source, i+n_source); 
 

  

lines_cost(:,2)=dist_2*cost_instal+total_generation_cost.*losses.*

dist_2;    

 
      [min_cost_line,aux1]=min(lines_cost,[],2); 

  
      cost=min_cost_line+total_generation_cost; 

  
      cost(aux)=-1; 

  
       if(sum(cost)==length(cost)*-1) 

 
           break  

  
       end 
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       j=find(cost==(min(cost(cost>10)))); 

  
       j=j(1); 

  
        if aux1(j)==1  

 
            Lines(i+n_source,j)=1; 

 
            Lines(j,i+n_source)=1; 

 
            flow(i+n_source,j)=Pi; 

 
            flow(j,i+n_source)=-Pi;   

      
            capac_lines(i+n_source,j)=c1*(Pi<100 && Pi>0)+c2*(Pi<250 && 

  Pi>100)+c3*(Pi<500 && Pi>250)+c4*(Pi<1000 

&&           

Pi>500)+c5*(Pi<2000 && Pi>1000)+c6*(Pi<4000 && Pi>2000); 
              

capac_lines(j,i+n_source)=capac_lines(i+n_source,j); 

  
            grafo=rmedge(grafo,i+n_source,j); 

 
            grafo=addedge(grafo,i+n_source,j,1); 

  
        else  

  
              path = shortestpath(grafo,i+n_source,j); 

  
              ii=path(1:end-1); 

 
              jj=path(2:end); 

  
              ij=sub2ind(size(Lines), ii, jj); 

 
              ji=sub2ind(size(Lines), jj, ii); 

  
              Lines(ij)=1; 

 
              Lines(ji)=1; 

 
              flow(ij)=(Pi+flow(ij));  

 
              flow(ji)=-Pi+flow(ji);   

  
              Paux=flow(ij); 

  
             capac_lines(ij)=capac_lines(ij)+c1*(Paux<100 & 

          Paux>0)+c2*(Paux<250 

& Paux>100)+c3*(Paux<500 &        

  Paux>250)+c4*(Paux<1000 & Paux>500)+c5*(Paux<2000 & 

          

Paux>1000)+c6*(Paux<4000 &          

           

Paux>2000).*(capac_lines(ij)==0); 
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             capac_lines(ji)=capac_lines(ij); 

  
             grafo=rmedge(grafo,ii,jj); 

 
             grafo=addedge(grafo,ii,jj,1); 

  

   
        end 

  

  
    P_disponible(j)=P_disponible(j)-Pi; 

     

         
    else  

 
        b=1; 

 
        Piaux3=Sink(i,3); 

  
        while(b==1) 

          
            Piaux2=max(P_disponible); 

                    
            if(Piaux3>Piaux2) 

 
                b=1; 

 
                Pi=Piaux2;     

             
            Else 

 
                b=0; 

 
                Pi=Piaux3; 

 
            end 

             
            Piaux3=Piaux3-Piaux2; 

          
            aux= P_disponible<Pi; 

 
            generation_cost=Source(:,6);   

 
            c1=100; 

 
            c2=250; 

 
            c3=500; 

 
            c4=1000; 

 
            c5=2000; 
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            c6=4000; 
 

            p1=8; 

 
            p2=15; 

 
            p3=30; 

 
            p4=50; 

 
            p5=100; 

 
            p6=200; 

 
            cost_instal=p1*(Pi<100 && Pi>0)+p2*(Pi<250 &&  

           Pi>100)+p3*(Pi<500 && 

Pi>250)+p4*(Pi<1000 &&         

       Pi>500)+p5*(Pi<2000 && Pi>1000)+p6*(Pi<4000 && 

Pi>2000); 
  

            total_generation_cost=Pi.*generation_cost.*24*365*((1-

   1/(1+r)^t)/(r));  

  
            lines_cost=ones(n_source,2); 

  
            losses=0.001; 

  
lines_cost(:,1)=Dist(1:n_source,i+n_source)*cost_instal+tota

 l_generation_cost.*losses.*Dist(1:n_source,i+n_source);  

 
            dist_2=distances(grafo, 1:n_source, i+n_source); 

            

lines_cost(:,2)=dist_2*cost_instal+total_generation_cost.*lo

sses.*dist_2;    

 
            [min_cost_line,aux1]=min(lines_cost,[],2); 

  
            cost=min_cost_line+total_generation_cost; 

  
            cost(aux)=-1; 

  
           if(sum(cost)==length(cost)*-1) 

 
               break  

  
           end 

  
           j=find(cost==(min(cost(cost>10)))); 

  
           j=j(1); 

  
            if aux1(j)==1  

 
                Lines(i+n_source,j)=1; 
                Lines(j,i+n_source)=1; 
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                 flow(i+n_source,j)=Pi; 
                 flow(j,i+n_source)=-Pi;   

      
                 capac_lines(i+n_source,j)=c1*(Pi<100 &&  

         

Pi>0)+c2*(Pi<250 && Pi>100)+c3*(Pi<500 &&   

        Pi>250)+c4*(Pi<1000 && 

Pi>500)+c5*(Pi<2000 &&               

Pi>1000)+c6*(Pi<4000 && Pi>2000); 

 
                 capac_lines(j,i+n_source)=capac_lines(i+n_source,j); 

  
                 grafo=rmedge(grafo,i+n_source,j); 

 
                 grafo=addedge(grafo,i+n_source,j,1); 

  
            else  

  

             
                  path = shortestpath(grafo,i+n_source,j); 

  
                  ii=path(1:end-1); 

 
                  jj=path(2:end); 

   
                  ij=sub2ind(size(Lines), ii, jj); 

 
                  ji=sub2ind(size(Lines), jj, ii); 

  
                 Lines(ij)=1; 

 
                 Lines(ji)=1; 

 
                 flow(ij)=(Pi+flow(ij));  

 
                 flow(ji)=-Pi+flow(ji);   

  
                 Paux=flow(ij); 

  
                 capac_lines(ij)=capac_lines(ij)+c1*(Paux<100 & 

         

Paux>0)+c2*(Paux<250 & Paux>100)+c3*(Paux<500 &  

                 Paux>250)+c4*(Paux<1000 & 

Paux>500)+c5*(Paux<2000 &              

Paux>1000)+c6*(Paux<4000 &     

                  

Paux>2000).*(capac_lines(ij)==0); 

 
                 capac_lines(ji)=capac_lines(ij); 

  
                 grafo=rmedge(grafo,ii,jj); 

 
                 grafo=addedge(grafo,ii,jj,1); 
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            end 

  
         P_disponible(j)=P_disponible(j)-Pi; 

 
        End 

 

             
    end 

         

    

         
end 

  

  

  
nuevo(:,:,1)=Lines; 

 
nuevo(:,:,2)=flow; 

 
nuevo(:,:,3)=capac_lines; 

 
result=nuevo; 
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13. EXHIBIT 6: EPSILON-DISC MODEL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                             INPUTS                              %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

delta_e=75 ;  

 

n_source=25;  

 

length_a=1000;  

 

length_b=1000;  

 

Mix=[0.141 , 0.232, 0.387 , 0.521, 0.705, 0.925, 1];  

 

expomean=66;  

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%                             MODELO                              %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

  

Source_0=source_generation(n_source, length_a, length_b, Mix);  

 

Sink_0=sink_generation(n_source, length_a, length_b, expomean, 

sum(Source_0(:,4)), sum(Source_0(:,5)));  

  

n_sink=max(size(Sink_0)); 

 

n_node=n_sink+n_source; 

  

Source=ordenasource(Source_0);  

 

Sink=ordenarsink(Sink_0);  

 

Node=[Source(:,1), Source(:,2); Sink(:,1), Sink(:,2)];  

  

Dist=node_distance(Node);  

  

fac=1.2; 

 

e_max=100; 
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Lines_eb0=(node_linkage(delta_e, e_max, Dist, fac));  

 

plot_lines(Node, Lines_eb0, Source,Sink, n_sink, n_source) 

 

grafo=graph(Dist.*Lines_eb0);   

 

 



 


