

SUBJECT DATASHEET

Subject basic Information		
Name	3D Engineering design with dynamic simulation in SolidWorks	
Code		
Study	Grado en Ingeniería Electromecánica	
Course		
Semester	2°	
ECTS	3 ECTS	
Туре		
Department	Ingeniería Mecánica	
Area	Mecánica	
University	Comillas	
Timetable		
Teachers	María Ana Sáenz Nuño	
Descriptor		

Faculty information		
Teacher		
Name	María Ana Sáenz Nuño	
Departament	Ingeniería Mecánica	
Área	Mecánica	
Office	D-118	
e-mail	msaenz@comillas.edu	
Students	A definir al comenzar el curso	
attention		

SPECIFIC SUBJECT DATASHEET

Subject contextualisation

Contribution to the professional profile of the Title

At the end of the course, the student will make technical drawings and to design 3D systems with Solidworks, to test them against real world conditions in order to ensure the best design before building it, and to validate them.

Students who successfully complete this course will be able to:

- develop strategies to analyze the dynamics of particles and rigid bodies
- apply the laws of dynamics to analyze and interpret the dynamics of particles and rigid bodies

Pre requirements

Basics on technical drawing. Elemental dynamics.

Competencies - Targets General Competencies of the course / qualification

CG3. Knowledge on basic and technological matters that help the learning of new method and theories. Student will be trained to be flexible in front of new challenges.

CG4. Ability to solve new problems, make decisions, be creative, critical reasoning and to communicate knowledge and skills inside the Industrial Engineering field.

Specific Competencies and learning outcome

CE1 To learn to design a 3D part in Solidworks

RA1 To learn to select the best sketch for each part.

RA2 To learn to build a 3D model of each part.

RA3 To learn to build a library of parts with Solidworks.

CE2 To learn to design a 3D assembly in Solidworks

RA1 To learn to select the best relations for building up an assemblie.

RA2 To learn to prepare its technical documentation with Solidworks.

CE3 To learn to analyze the dynamic and kinematic behavior of a 3D assembly in Solidworks

RA1 To learn to select the best relations for simulating different types of interactions between the parts in an assemblie.

RA2 To optimize the design.

¹ Learning outcomes are indicators of the student competencies and internal deep knowledge.. The competencies are more general and abstract.. The R.A. are indicators showing student competencies.

THEME SEGMENT AND CONTENTS

THEME SEGMENT AND CONTENTS
Content – Theme segments
THEME 1: Essentials on part designing
Unit 1: SolidWorks Basics and the User Interface
Design Intent
File References
Opening Files
The SolidWorks User Interface
Using the Command Manager
Unit 2: Introduction to Sketching
2D Sketching
Sketch Entities
Design Intent
Sketch Relations
Dimensions
Extrude
Unit 3: Basic Part Modeling
Terminology
Choosing the Best Profile
Choosing the Sketch Plane
Details of the Part
Boss Feature
Sketching on a Planar Face
Cut Feature
View Selector
Using the Hole Wizard
Filleting
Detailing Basics
Drawing Views
Center Marks
Dimensioning
Changing Parameters
Unit 4: Symmetry and Draft
Symmetry in the Sketch
Sketching Inside the Model
Using Model Edges in a Sketch
Creating Trimmed Sketch Geometry
Unit 5: Patterning
Reference Geometry
Linear Pattern
Circular Patterns
Mirror Patterns
Using Pattern Seed Only
Sketch Driven Patterns
Unit 6: Revolved Features
Revolved Features
Building the Rim
Building the Spoke
Edit Material
Mass Properties
Unit 7: Shelling and Ribs
Analyzing and Adding Draft
Shelling
Planes

Ribs	
Full Round Fillets	
Thin Features	
THEME 2: Essentials on assembly designing	
Fundamentals on Assemblies	
Advanced Mate Techniques	
Top-Down Assembly Modeling	
Assembly Features, Smart Fasteners, and Smart Components	
Using Configurations with Assemblies Display States and Appearances	
Assembly Editing	
Layout-based Assembly Design	
Large Assemblies	
THEME 3: Dynamical and kinematic behaviour of systems with Solidworks	
Unit 1: Introduction to user interface	
Constraint mapping concepts	
Action only forces and moments	
Action/Reaction forces and moments	
Motion drivers	
Building models for kinematic analysis	
Create displacement, velocity, acceleration and force graphics	
Translatory and torsional springs	
Translatory and torsional dampers	
3D Contact to simulate realistic interaction between parts	
Impact forces	
Using Function builder and Expressions to build complex motions and forces Flexible connectors - Bushings	
Unit 2: Advance topics	
Kinematic and Dynamic analysis	

TRAINING METHODOLOGY

Subject methodological aspects

Both In-class and distance teaching are developed to imply the students within the learning activities. The subjects are developed to keep the student attention and following the competencies acquisition by the students. Student activities are key factors to develop this course.

Redundancies - Importance and how to avoid/solve them Export of results to SolidWorks Simulation (stress analysis)

In-class methodology: Activities

- 1. Life presentations. The teacher will explain basic concepts for every theme showing the more important aspects. Examples will be presented, discussed and solved to complete the understanding.
- 2. In class case discussion and problem solving. Students will discuss the cases and problems proposed by the teacher. Cases will be open challenges that can be analyzed and solved by the use of the concepts already presented in class.

Distance Methodology: Activities

1. Self-learning on the concepts presented in class. Material to be used are slides,

multimedia files, personal and teacher notes, recommended books and magazines. **Cases study**. To be revised and updated with the rest of information given in the subject.

Main target of the distance Works is to be able to understand theoretical concepts and to be able to apply them.

STUDENT SCHEDULE SUMMARY (Hours)					
LIVE					
Teacher Lessons	Case discussion	Evaluation			
8	20	2			
DISTANCE					
Self study on theory	Self work on cases	Prepare for Examination			
8	50	2			
		ECTS:	3 (90 hours)		

Evaluation activities	Criteria	Weight			
Tests::Mid term exam.End of term exam	 Concepts understanding. Use of concepts to solve real cases. Problem solving solution analysis and results interpretation. Presentation. 	60%			
Continuous evaluation.:Case solving	 Concepts understanding. Concepts use to solve real cases. 	40%			

EVALUATION AND SCORING CRITERIA

Scoring.

Scoring

The grade will be determined by midterm (15%), homework (10%), continuos evaluation (30%), and a final examination (45%). The exams are all closed notebook, closed textbook and no calculator. The course will not be graded on a curve, i.e., there is no bound on the numbers of A's, B's, C's etc.

WORKING SCHEDULE

Distance Activities		Do Date	Delivery date
•	Reading of multimedia files to be showed in class (Slides)	Before lesson	
•	Study on the slides showed in class.	After lesson	
•	Study with additional information coming from other sources: Hand written notes, books, etc.	After lesson	
•	Case solving	In class	
•	Solved problema understanding.	In class	
•	Presentation, cases, problems preparation as part of continuous scoring.	After lesson	
•	Mid-term and final exam preparation.	February and May	

BIBLIOGRAFÍA Y RECURSOS Bibliography

• Resource Center at Dassault Systemes web.