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Abstract. Thermoyphons, in the engineering literature, is a device composed of a
closed loop containing a fluid who motion is driven by several actions such as grav-
ity and natural convection. Their dynamics are governing for a coupled differential
nonlinear systems. In several previous work we show chaos in the fluid, even with
a viscoelastic fluid. We study the asymptotic behavior depending on the relevant
parameters for this king of viscoelastic fluid in some particular thermosyphon models.
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1 Introduction

In engineering literature a thermosyphon is a device composed of a closed loop
pipe containing a fluid whose motion is driven by the effect of several actions
such as gravity and natural convection.The flow inside the loop is driven by an
energetic balance between thermal energy and mechanical energy.

Here, we consider a thermosyphon model in which the confined fluid is
viscoelastic. This has some a-priori interesting peculiarities that could affect
the dynamics with respect to the case of a Newtonian fluid. On the one hand,
the dynamics has memory so its behavior depends on the whole past history
and, on the second hand, at small perturbations the fluid behaves like an elastic
solid and a characteristic resonance frequency could, eventually, be relevant
(consider for instance the behavior of jelly or toothpaste).

The simplest approach to viscoelasticity comes from the so-called Maxwell
model Morrison [14]. In this model, both Newton’s law of viscosity and Hooke’s
law of elasticity are generalized and complemented through an evolution equa-
tion for the stress tensor, σ.

Viscoelastic behavior is common in polymeric and biological suspensions
and, consequently, our results may provide useful information on the dynamics
of this sort of systems inside a thermosyphon.

In a thermosyphon the equations of motion can be greatly simplified because
of the quasi-one-dimensional geometry of the loop. Thus, we assume that the
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section of the loop is constant and small compared with the dimensions of the
physical device, so that the arc length co-ordinate along the loop (x) gives the
position in the circuit. The velocity of the fluid is assumed to be independent of
the position in the circuit, i.e. it is assumed to be a scalar quantity depending
only on time. This approximations comes from the fact that the fluid is assumed
to be incompressible. On the contrary temperature is assumed to depend both
on time and position along the loop.

The derivation of the thermosyphon equations of motion is similar to that
in Ref. keller [12] and are obtained in Yasappan and Jiménez-Casas et al. [10].
Finally, after adimensionalizing the variables (to reduce the number of free pa-
rameters) we get the followingo ODE/PDE system (see Yasappan and Jiménez-
Casas et al. [10] and Bravo-Gutierrez and Castro et al. [1]):

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf,

∂T

∂t
+ v

∂T

∂x
= l(v)(Ta − T )

(1)

with v(0) = v0,
dv
dt (0) = w0 and T (0, x) = T0(x).

Here v(t) is the velocity, T (t, x) is the distributions of the temperature of
the viscoelastic fluid into the loop, G(v), is the friction law at the inner wall
of the loop, the function f is the geometry of the loop and the distribution of
gravitational forces. In this cases l(v)(Ta − T ) is the Newton’s linear cooling
law as in Jiménez-Casas and Rodŕıguez-Bernal [5–7], Yasappan, Jiménez-Casas
et al. [10], Morrison [14] , Rodŕıguez-Bernal and Van Vleck [18] or Welander
[20], where l represents the heat transfer law across the loop wall, and is a
positive queantity depending on the velocity, and Ta is the (given) ambient
temperature distribution. ε in Eq. (1) is the viscoelastic parameter, wich is the
dimensionless version of the viscoelastic time. Roughly speaking, it gives the
time scale in which the transition from elastic to fluid-like occurs in the fluid.

We assume that G(v) is positive and bounded away from zero. This function
has been usually taken to be G(v) = G0, a positive constant for the linear
friction case [12], or G(v) = |v| for the quadratic law [4,13], or even a rather
general function given by G(v) = g(Re)|v|,where Re is a Reynolds-like number
that is assumed to be large [17,19] and proportional to |v|. The functions G,
f, l and h incorporate relevant physical constants of the model, such as the
cross sectional area, D, the length of the loop, L, the Prandtl, Rayleigh, or
Reynolds numbers, etc see [19]. Usually G, l are given continuous functions,
such that G(v) ≥ G0 > 0, and l(v) ≥ l0 > 0, for G0 and l0 positive constants.

Finally, for physical consistency, it is important to note that all functions
considered must be 1-periodic with respect to the spatial variable, and

∮
=∫ 1

0
dx denotes integration along the closed path of the circuit. Note that

∮
f =

0.
The contribution in this paper (Section 3) is to prove that, under suitable

conditions, any solution either converges to the rest state or the oscillations of
velocity around v = 0 must be large enough. This result, generalizes the one
proposed in Rodŕıguez-Bernal and Van Vleck [18] for a thermosyphon model
with a one-component viscoelastic fluid in the case of friction linear law.



2 Previous results about well posedness and global
attractor

First, we note that in this section we consider the case in which all periodic
functions in Eq. (1) have zero average, i.e. we work in Y = IR2 × Ḣ1

per(0, 1),
where

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x+ 1) = u(x)a.e.,

∮
u = 0},

Ḣm
per(0, 1) = Hm

loc(IR) ∩ L̇2
per(0, 1).

In effect, we observe that, if we integrate the equation for the temperature
along the loop, we have that d

dt (
∮
T ) = l(v)

∮
(Ta − T ). Therefore,

∮
T →

∮
Ta,

exponentially as t→∞, for every
∮
T0.

Moreover, if we consider θ = T −
∮
T , then from the second equation of

system (1), we obtain the θ verifies the equation:

∂θ

∂t
+ v

∂θ

∂x
= l(v))(θa − θ), θ(0) = θ0 = T0 −

∮
T0 (2)

and θa = Ta −
∮
Ta.

Therefore, if we consider now θ = T −
∮
T then from the second equation

of system Eq. (1), we obtain that θ verifies the equations (2).
Finally, since

∮
f = 0, we have that

∮
Tf =

∮
θf, and the equation for v

reads

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
θ.f, v(0) = v0,

dv

dt
(0) = w0. (3)

Thus, from Eqs. (2) and (3) we have (v, θ) verifies system Eq.(1) with θa, θ0
replacing Ta, T0 respectively and now

∮
θ =

∮
θa =

∮
θ0 =

∮
f = 0.

Thus, we consider the system Eq. (1) with
∮
T0 =

∮
Ta = 0 and

∮
T (t) = 0

for every t ≥ 0.
Therefore, we can apply the result about sectorial operator of Henry [3]

to prove the existence of solutions of system (1). Moreover, if we consider
some aditionally hypothesis (H) to add for the friction G using in the tecnique
Lemma 5 in Yasappan and Jiménez-Casas [10], which are satisfied for all friction
functions G consider in the previous works,i.e., the thermsyphon models where
G is constant or linear or quadratic law, and also for G(s) ≡ A|s|n, as s→∞.
Then, we have the next result.

Proposition 1. We suppose that H(r) = rG(r) is locally Lipschitz, f, l ∈
L̇2
per(0, 1) l(v) ≥ l0 > 0 and Ta ∈ Ḣ1

per(0, 1). Then, given (w0, v0, T0) ∈ Y =

IR2 × Ḣ1
per(0, 1), there exists a unique solution of (1) satisfying

(w, v, T ) ∈ C([0,∞],Y) and (ẇ, w,
∂T

∂t
) ∈ C([0,∞), IR2 × L̇2

per(0, 1)),

where w = v̇ = dv
dt and ẇ = d2v

dt2 . In particular, (1) defines a nonlinear semi-
group, S(t) in Y, with S(t)(w0, v0, T0) = (w(t), v(t), T (t)).



Moreover, from (H) (see [10]) Eq. (1) has a global compact and connected
attractor, A , in Y. Also if Ta ∈ ×Ḣm

per(0, 1) with m ≥ 1, the global attractor

A ⊂ IR2 × Ḣm+2
per (0, 1) and is compact in this space.

Proof: This result has been proved in Theorem 3, Theorem 5 and Corollary
11 from Yasappan and Jiménez-Casas at al.[10].

3 Asymptotic behaviour of finite length solutions

In this section we consider the linear friction law [12] where G(v) = G0, a
positive constant. First, we will see a result about the existence and behavior
of constant solutions with respect to the spatial variable, i.e. depending only
on time.

Proposition 2. Under the hypotheses of Proposition 1 if we suppose that Ta is
a constant function, i.e. Ta ∈ IR, then the solutions (w(t), v(t), T (t)) converge
to (0, 0, Ta) exponentially when the times goes to infinity.

Proof: If ∂T
∂x = 0 then taking into account that

∮
f = 0 we have that∮

Tf = 0. Therefore from the system the constan solutions in x for T are given

by T (t) = Ta + (T0 − Ta)e−
∫ t
0
l(v)dr, and hence T (t)→ Ta exponentially, when

t→∞.
I) First, we will note that v(t) → 0 as t → ∞ since from (1) the equation

for v(t) is now a linear homogeneous equation given by:

ε
d2v

dt2
+
dv

dt
+G0v = 0 with ε,G0 > 0. (4)

In effect, if we denoted by vH(t) any solution of this linear homogeneous equa-
tion then vH(t) → 0 as t → ∞ since there exits a base of solutions given by
exponential functions which converge to zero.

II) Second, we will also prove thatif v(t) → 0 then w(t) → 0 as t → ∞
exponentially and we conclude.

In effect, if v(t) → 0 , for every δ > 0 there exists t0 such that |G0v| ≤ δ

and εd|w|dt + |w| ≤ δ for every t ≥ t0, this is

|w(t)| ≤ |w(t0)|e− 1
ε (t−t0) + δ[1− e− 1

ε (t−t0)] ≤ δ

i.e w(t)→ 0 as t→∞ exponentially.

In previous works, like Yasappan and Jiménez-Casas et al. [10], Jiménez-
Casas and Castro at al.[8,11], the asymptotic behaviour of the systemfor the
viscoelastic fluid as Eq.(1) for large enough time is studied.

In this sense the existence of a inertial manifold associated to the functions
f (loop-geometry) and Ta (given ambient temperature) have proved. The ab-
stract operators theory (Henry[3], Foias et al. [2] and Rodŕıguez-Bernal[16,15])
has been used for this purpose.



In this section we will prove in Proposition 3, for the linear friction case
[12] the results which rise an important consequence: for large time the ve-
locity reaches the equilibrium - null velocity -, or takes a value to make its
integral diverge, which means that either it remains with a constant value
without changing its sign or it will alternate an infinite number of times so the
oscillations around zero become large enough to make the integral diverge.

3.1 Previous results and notations

In this section we assume also that G∗(r) = rG(r) is locally Lipschitz satisfying
(H) (see [10]), and f, Ta ∈ L̇2

per are given by following Fourier expansions

Ta(x) =
∑
k∈IZ∗

bke
2πkix; f(x) =

∑
k∈IZ∗

cke
2πkix; (5)

where IZ∗ = IZ − {0}, while T0 ∈ Ḣ2
per is given by T0(x) =

∑
k∈IZ∗ ak0e

2πkix.

Finally assume that T (t, x) ∈ Ḣ2
per is given by

T (t, x) =
∑
k∈IZ∗

ak(t)e2πkix (6)

where IZ∗ = IZ − {0}, We note that āk = −ak since all functions consider are
real and also a0 = 0 since they have zero average.

Now we observe the dynamics of each Fourier mode and from Eq. (1), we
get the following system for the new unknowns, v and the coefficients ak(t).{

εd
2v
dt2 + dv

dt +G(v)v =
∑
k∈IZ∗ ak(t)c−k

ȧk(t) + [2πkiv(t) + l(v(t))] ak(t) = l(v(t))bk
(7)

• Assume that the given ambient temperature Ta ∈ Ḣm
per, are given by

Ta(x) =
∑
k∈K

bke
2πkix,

and bk 6= 0 for every k ∈ K ⊂ IZ with 0 6= K, since
∮
Ta = 0. We denote by

Vm the clousure of the subspace of Ḣm
per generated by {e2πkix, k ∈ K}. Then

we have from Theorem 13 in Yasappan and Jiménez-Casas et al.[10] the set
M = IR2 × Vm is an inertial manifold for the flow of S(t)(w0, v0, T0) =
(w(t), v(t), T (t)) in the space Y = IR2 × Ḣm

per(0, 1). By this, the dynamics
of the flow is given by the flow in M associated to the given ambient
temperature Ta. This is{

εd
2v
dt2 + dv

dt +G(v)v =
∑
k∈K ak(t)c−k

ȧk(t) + [2πkiv(t) + l(v(t))] ak(t) = l(v(t))bk, k ∈ K
(8)

• Moreover, we assume that the function associated to the geometry of the
loop f , are given by

f(x) =
∑
k∈J

cke
2πkix



and ck 6= 0 for every k ∈ J ⊂ IZ with 0 6= K, since
∮
f = 0.

We note also that on the inertial manifold∮
Tf =

∑
k∈K∩J ak(t)c−k. Thus, the dynamics of the system depends only

on the coefficients in K ∩ J .
• Herafter, we consider de functions Ta and f are given by following Fourier

expansions

Ta(x) =
∑
k∈K

bke
2πkix; f(x) =

∑
k∈J

cke
2πkix; (9)

where
K = {k ∈ IZ∗/bk 6= 0} , J = {k ∈ IZ∗/ck 6= 0} with IZ∗ = IZ − {0}, First,
from the equations Eq. (7) we can observe the velocity of the fluid is
independent of the coefficients for temperature ak(t) for every k ∈ IZ∗−(K∩
J). That is, the relevant coefficients for the velocity are only ak(t) with
k belonging to the set K ∩ J. This important result about the asymptotic
behaviour has been proved in Propositions 14 and 15 from Yasappan and
Jiménez-Casas at al.[10].

We also note that 0 /∈ K ∩ J and since K = −K and J = −J then the set
K ∩ J has an even number of elements, wihch we denote by 2n0. Therefore
the number of the positive elements of K ∩ J , (K ∩ J)+ is n0. Moreover the
equations for a−k are conjugates of the equations for ak and therefore we have∑
k∈K∩J ak(t)c−k = 2Re(

∑
k∈(K∩J)+

ak(t)c−k).

Thus, ∮
Tf = 2Re(

∑
k∈(K∩J)+

ak(t)c−k). (10)

The aim is to prove the Proposition 3 which generalize the result of ther-
mosyphon model for Newtoniann fluids of Rodŕıguez-Bernal and Van Vleck
[18] in the case of a linear friction law. To do so we examine which are these
steady-state solutions, also called equilibrium points.

We have to make the difference between equilibrium points (constants re-
spect to the time) null velocity, called rest equilibrium, and equilibrium points
with non-vanishing constant velocity.

Equilibrium conditions.
i) The system Eq. (7) presents the rest equilibrium w = v = 0, ak = bk

∀k ∈ K ∩ J under the assumption of the following orthogonality condition:

I0 = Re(
∑

k∈(K∩J)+

bkc−k) = 0. (11)

ii) Any other equilibrium position will have a non-vanishing velocity and
the equilibrium is given by:

G(v)v = 2Re(
∑

k∈(K∩J)+

akc−k)

ak = l(v)bk
l(v)+2πkiv

(12)



3.2 Asymptotic behaviour

Lemma 1. We consider the linear equation given by

ε
d2v

dt2
+
dv

dt
+G0v = I(t), (13)

then there exist vp(t) particular solution of (13) such that

limsupt→∞|vp(t)| ≤ limsupt→∞|I(t)| (14)

and

liminft→∞|vp(t)| ≥ liminft→∞|I(t)| (15)

Proof: We consider φi = eαit, i = 1, 2 a base of solutions of linear homogeneous
equations

ε
d2v

dt2
+
dv

dt
+G0v = 0

with φ1 + φ2 = −1
ε and φ1.φ2 = G0

ε , then we have that

vp(t) = (φ1, φ2)

∫ t

t0

W−1((φ1(s), φ2(s))(0,
I(s)

ε
)⊥ds (16)

is a particular solution of (13), with W denoting the Wrouskiann. Then we
have that

vp(t) =
eφ2t

ε(φ2 − φ1)

∫ t

t0

I(s)e(φ1+
1
ε )s − eφ1t

ε(φ2 − φ1)

∫ t

t0

I(s)e(φ2+
1
ε )s.

Finally, using L’Hopital’s Lemma from [18] we have for example:

limsupt→∞

∫ t
t0
I(s)e(φ1+

1
ε )s

e−φ2t
≤

limsupt→∞
I(t)e(φ1+

1
ε )t

−φ2e−φ2t
=
−1

φ2
limsupt→∞I(t),

since φ1 + φ2 = −1
ε , and we conclude.

Lemma 2. If we assume that a solution of Eq. (7) satisfies
∫∞
0
|v(s)|ds <∞,

then for every η > 0 there exists t0 such that∫ t

t0

l(r)e−
∫ t
r
l(e−

∫ t
r
2πikv − 1)dr ≤ η, (17)

where l(r) = l(v(r)), and t ≥ t0.



Proof: If
∫∞
0
|v(s)|ds < ∞, then for all δ there exits t0 > 0 such that for

every t0 ≤ r ≤ t we have |
∫ t
r
v| ≤ δ. Then, for any η > 0 we can take t0 large

enough such that

|e−
∫ t
r
2πikv − 1| ≤ η for all t0 ≤ r ≤ t. (18)

Therefore,writing l(r) = l(v(r)) and taking into account that l is istrictly
bounded away from zero, we get∫ t

t0

l(r)e−
∫ t
r
l(e−

∫ t
r
2πikv − 1)dr ≤ η(1− e−

∫ t
r
l) ≤ η

Proposition 3. i) if K ∩ J = ∅, then the global attractor for system Eq. (1)
in IR2 × Ḣ1

per(0, 1) is reduced to a point {(0, 0, Ta)} .
ii) We assume that I0 = Re(

∑
k∈(K∩J)+bkc−k

) = 0, with K ∩ J finite set, and

that a solution of Eq. (7) satisfies
∫∞
0
|v(s)|ds < ∞. Then the system reaches

the rest stationary solution, that:{
v(t)→ 0, and w(t)→ 0, as t→∞

ak(t)→ bk, as t→∞

This is, he also have in this situation the global attractor for system Eq. (1) in
IR2 × Ḣ1

per(0,1) is reduced to a point {(0, 0, Ta)}.
iii) Conversely, if I0 = Re(

∑
k∈(K∩J)+

bkc−k) 6= 0 then for every solution∫∞
0
|v(s)|ds =∞, and v(t) does not converge to zero.

Proof: First, we study the behaviour for large time of the coefficients ak(t).
The distance between the coefficients that represents the solution of the

system, ak(t) to the values of those coefficients in the equilibrium, bk is com-
puted.

For t0 enough large, noting l(v(r)) = l(r), we known that for every t > t0
we have

ak(t) = ak(t0)e
−

∫ t
t0

2πikv+l
+ bk

∫ t

t0

l(r)e−
∫ t
r
2πikv+ldr (19)

and

ak(t)− (1− e−
∫ t
0
2πkiv)bk = ak(t0)e

−
∫ t
t0

2πikv+l
+

+bk

∫ t

t0

l(r)e−
∫ t
r
l(e−

∫ t
r
2πikv − 1)dr.

Taking limits when t→∞, we get
ak(t)− (1− e−

∫ t
0
2πkiv)bk → 0, since ak(t0)e−

∫ t
0
2πikv+l → 0 and from Eq.

(17) we have that bk
∫ t
t0
l(r)e−

∫ t
r
l(e−

∫ t
r
2πkiv−1)→ 0. Now taking into account



that (1− e−
∫ t
0
2πikv)bk converges to bk for large time we conclude that:

ak(t)→ bk

I(t) = 2Re(
∑

k∈(K∩J)+

ak(t)c−k)→ I0 (20)

with I0 = 2Re(
∑

k∈(K∩J)+

bkc−k).

We note that T (t, x) =
∑
k ak(t)e2πkix → Ta =

∑
k bke

2πkix.
To conclude, we study now when the velocity v(t) and the acceleration w(t)

go to zero. From (10) we can reading the equation for v, the first equation of
system Eq. (7), as

ε
d2v

dt2
+
dv

dt
+G(v)v = I(t).

we consider now, G(v) = G0 > 0 and then we note that:
I) First, if we consider vp(t) the particular solution of the above equation

given by Lemma 1 and we denoted by vH(t) the solution of linear homogeneous
equation given by:

ε
d2v

dt2
+
dv

dt
+G0v = 0

such that v(t) = vp(t) + vH(t). We now that since vH(t) → 0 as t → ∞, we
have that: v(t)− vp(t)→ 0 as t→∞.

II) Second,using (20) for every δ > 0 there exists t0 such that |I(t)−I0| ≤ δ
for ever t ≥ t0, and using Lemma 1, we conclude that

limsupt→∞|v(t)| ≤ δ + I0
G0

for every δ > 0.
i)-ii) In particular, when K ∩ J = ∅ or I0 = 0, we get v(t)→ 0 and working

as in Part II) from Proposition 2 we also have that w(t)→ 0. Thus we conclude.
iii) Finally, we also note that

liminft→∞|v(t)| ≥ δ + I0
G0

for every δ > 0 and in the case of I0 6= 0, we get liminft→∞|v(t)| > 0, which
implies that

∫∞
0
|v(s)|ds = ∞. This result is in contradiction with the initial

condition
∫∞
0
|v(s)|ds <∞, what implies that it is not a valid hypothesis.

3.3 Concluding remarks

Recalling that functions associated to circuit geometry, f, and to prescribed
ambient temperature, Ta, are given by f(x) =

∑
k∈J cke

2πkix and Ta(x) =∑
k∈K bke

2πkix, respectively. In Yasappan and Jiménez-Casas et. al [10], using
the operator abstract theory, it is proved that if K ∩ J = ∅, then the global
attractor for system Eq. (1) in IR2 × Ḣ1

per(0, 1) is reduced to a point



In this sense the Proposition 3 offers the possibility to obtain the same
asymptotic behaviour for the dynamics, i.e., the attractor is also reduced to a
point taking functions f and Ta without this condition, that is with K ∩J 6= ∅,
its enough that the set (K ∩ J) 6= ∅, but Re(

∑
k∈(K∩J)+

bkc−k) = 0, when we

consider the linear friction case G = G0.
We note, the result about the inertial manifold ( Yasappan and Jiménez-

Casas et. al [10]) reduces the asymptotic behaviour of the initial system Eq.
(1) to the dynamics of the reduced explicit system Eq. (8) with k ∈ K ∩ J.

We observe also that from the analysis above, it is possible to design the
geometry of circuit, f , and/or ambient temperature, Ta, so that the resulting
system has an arbitrary number of equations of the form N = 4n0 +1 where n0
is the number of elements of (K ∩ J)+ and we consider the real an imaginary
parts of relevant coefficients for the temperature ak(t) and solute concentration
dk(t) with k ∈ (K ∩ J)+ .

Note that it may be the case that K and J are infinite sets, but their
intersection is finite. Also, for a circular circuit we have f(x) ∼ asen(x) +
bcos(x), i.e. J = {±1} and then K ∩ J is either {±1} or the empty set.

Recently, we have considered a thermosyphon model containing a viscoelas-
tic fluid and we have shown chaos in some closed-loop thermosyphon model with
one-component viscoelastic fluid not only in this model [10], also in other kind
of transfer law ( Jiménez-Casas and Castro [8], Yasappan and Jiménez-Casas
et al. [9]), and even in some cases with a viscoelastic binary fluid (Yasappan
and Jiménez-Casas et al. [11])
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11. Justine Yasappan, A. Jiménez-Casas and Mario Castro, “Stabilizing interplay
between thermodiffusion and viscoelasticity in a closed-loop thermosyphon”,Disc.
and Conti. Dynamic. Syst. Series B., vol. 20, 9, 3267-3299, (2015).

12. J.B. Keller, “Periodic oscillations in a model of thermal convection”, J. Fluid
Mech., 26, 3, 599-606, (1966).
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