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Abstract

In this paper we adapt the demand and supply framework introduced by Figuerola-

Ferretti and Gonzalo (Journal of Econometrics 2010) to illustrate the dynamics of

pairs trading. We underline the process by which a finite elasticity of demand

for spread trading determines the speed of mean reversion and pairs trading prof-

itability. A persistence-dependent trading trigger is introduced accordingly. Ap-

plied to STOXX Europe 600 traded equities our strategy exploits price leadership

for portfolio replication purposes and delivers Sharpe ratios that outperform the

benchmark rules used in the literature. Portfolio performance and mean reversion

are enhanced after firm fundamental factor restrictions are imposed.

JEL classification: C58; G11; G12; G14
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1. Introduction

Short-term price discrepancies are common across assets that are imperfectly integrated.
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Pairs trading strategies are designed to earn profits from relative mispricings of closely re-

lated assets. This paper exploits commonalities arising from cointegrated assets to model

relative value arbitrage via pairs trading strategies. Pairs trading belongs to the family of

convergence trade strategies. It relies on a well-known trading rule for cointegrated price

series based on simultaneous long-short positions that are closed when prices revert to a

long-run relationship. When an investor opens a position he shorts the out-performer and

longs the under-performer, until the mispricing is eliminated. We extend the Figuerola-

Ferretti and Gonzalo (2010) (FFG thereafter) demand and supply framework to describe

price dynamics in two distinct but cointegrated assets and show how market participants

exploit temporary mispricings performing pairs trading strategies. The setup requires a fi-

nite elasticity of arbitrage services and cointegration error persistence. It evolves around the

speed by which arbitrageurs restore equilibrium allowing measurement of price discovery for

portfolio replication purposes and arbitrage profit determination. A market is regarded as

dominant in this framework if it concentrates a larger number of participants. Cointegra-

tion therefore guarantees price convergence that is represented in terms of a stationary error

correction term. A trading trigger is derived which is linked to the degree of persistence of

the cointegration error so that higher stationarity requires a lower trading trigger.

This paper is related to Gatev et al. (2006) (GGR thereafter), which examines the per-

formance of pairs trading using daily U.S. stock return data. GGR perform pairs selection

using the minimum distance algorithm. They find economically and statistically significant

excess returns of around 11% per annum. Following GGR, Andrade et al. (2005), Broussard

and Vaihekoski (2012) and Bowen and Hutchinson (2014) apply the algorithm to Asian and

European equity markets. A common drawback from these studies is that they essentially

apply an ad hoc trading trigger. Vidyamurthy (2004) sheds light to this problem by search-

ing for trading trigger optimality by maximizing a profit function under the assumption of

Gaussian errors.

Another strand of the literature models the cointegration spread under dynamic settings.

Elliott et al. (2005) and Avellaneda and Lee (2008) consider an Ornstain-Uhlenbeck process
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to model the cointegration error allowing spread estimation and setting the framework for

determination of the threshold value. While Avellaneda and Lee (2008) empirically determine

cutoff values based on the process assumed for the cointegration error, Elliott et al. (2005)

link the trading trigger to the degree of mean reversion. This paper contributes to the

literature by adapting the FFG model to paired equity prices to illustrate the process of

cointegration error correction by means of an economically meaningful VECM. In doing

this, we show that pairs trading profitability is dependent on the error speed of adjustment

(or spread mean reversion) which is determined by the elasticity of demand for pairs trading

strategies and the total number of market participants. We therefore demonstrate that lower

error persistency leads to higher pairs trading profitability. We accordingly propose a trading

trigger that is determined by the speed of convergence to the long-run stationary relationship

arising from VECM estimates. Our model-based trading rule is therefore related to Elliott

et al. (2005) in that the trading trigger is defined as a function of the speed of mean reversion.

This is motivated from VECM dynamics as pairs trading profitability is directly dependent

on cointegration error persistence which is determined by the speed of mean reversion. This

is consistent with the results reported by Kanamura et al. (2010) where an empirical link

between profitability and mean reversion is established for spread trading in the gas market.

The relationship between the speed of adjustment and the number of participants has been

empirically addressed in the literature by Brennan et al. (1993) in an study relating the

number of informed traders proxied number of analyst following a firm with the speed of

adjustment to common shocks.

Our empirical application is based on an out-of-sample analysis and uses STOXX Europe

600 traded equities whose prices are quoted in the euro currency to identify cointegration

relationships with a sample ranging from 2000 to 2017. Common factor and industry re-

strictions are imposed to illustrate the existence of long-run stationary relationships. This

justifies the use of a model with equity shared fundamentals that drive prices to parity.

We analyze the profitability of pairs strategies at the portfolio level and compare their per-

formance with benchmark pairs trading methodologies used in the literature. We use price
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leadership for portfolio replication purposes in an extensive out of sample estimation. We find

that the proposed pairs strategies outperform the seminal strategy of Gatev et al. (2006),

as evidenced by significant abnormal returns and higher Sharpe ratios. The documented

outperformance is enhanced once we control for common firm fundamentals as well as the

industry effect.

The rest of the paper proceeds as follows. In Section 2 we relate the VECM dynamics

to the construction of pairs trading strategies. This requires a description of preliminaries

and main results of the FFG model applied to two distinct but cointegrated assets. Section

3 presents the data sample and empirical results on cointegration and price discovery. In

section 4 we conduct the pairs trading performance analysis with a number of robustness

tests developed to illustrate the outperformance of our model-based approach. Section 5

provides conclusions.

2. The theoretical model

2.1. Model set-up

The aim of this section is to introduce pairs trading strategies in a demand and supply

framework. Paired firms in this context share common fundamentals and are linked via long-

run stationary relationships generated by market forces. Accordingly, arbitrage takes place

through pairs trading strategies that exploit mean reversion of pricing errors. Convergence

takes place because paired assets measure a common underlying factor. The model is built

on the presumption that price correction of two cointegrated assets departing from long-term

stationary relationships depends on the average speed of convergence in each market. This

determines the degree of persistence of the cointegration error and becomes an important

factor for both the trading trigger and for profit determination.

In what follows we present the joint dynamics between two cointegrated assets within a

demand and supply market clearing framework. Investors either take single asset positions or

trade two assets that share common fundamentals simultaneously via the use of pairs trading
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strategies. Mean reversion of the cointegration spread is of critical importance to arbitrageurs

who, will exploit short-lived deviations in search of profitability from pairs strategies. Under

imperfect integration, there is a finite elasticity of demand for arbitrage services (H),1 and

relative prices may differ between markets for short intervals of time by more than transaction

costs. The speed by which such price discrepancies are eliminated depends on the degree

of persistence in the error term zt. The speed of mean reversion is determined by market

imperfections that represent impediments to arbitrage such as liquidity or potential funding

constraints.2

We extend the FFG model to describe the mean reversion framework for imperfectly

integrated markets allowing for persitency in the cointegrating error. Let yt and xt be the

price of paired assets in time t, respectively. In order to find the non-arbitrage stationary

condition, the following set of standard assumptions applies in this section:

1. No limitations on borrowing.

2. No cost other than arbitrage transaction cost.

3. No limitations on short-sale.

4. Arbitrage opportunities that generate a random price difference between paired assets

are determined by the stationary process zt (also denoted as the price spread). These

arise as a result of market imperfections that impede arbitrage opportunities between

markets and lead to a finite elasticity of demand for pairs trading strategies (H > 0)

and a stationary cointegration error.3

5. The equity price series yt and xt are I(1), implying that their mean and auto-covariance

are different for every realization of t.

By the above assumptions 1-5, there exists a long-run stationary relationship described by:
1This elasticity measures the proportional change in demand for arbitrage strategies in the form of “pairs trading” for a

given change in the quantity of arbitrage services.
2See for instance Shleifer and Vishny (1997), Xiong (2001), Gromb and Vayanos (2002) and Kondor (2009) for a detailed

discussion on the limits to arbitrage.
3Market imperfections lead to stationary cointegration errors and finite elasticity of arbitrage services. This differs from

other frameworks in the literature that have considered non linearities in the cointegration error to identify the presence of non
linearities within the basis term arising under the presence of transaction costs, or interaction between sentiment and trading
behavior. See McMillan and Ülkü (2009).
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yt = γ0 + γ1xt + zt (1)

where γ0 is the (constant) cash amount invested (or borrowed) to buy γ1 units of asset xt

(required to replicate prices of asset yt). Therefore γ1 is the hedge ratio as it reflects the

size of position that has to be taken in the portfolio with asset xt to replicate the prices

of asset yt. Equation (1), implies that yt and xt are cointegrated suggesting (imperfect)

market integration. Pairs trading strategies are triggered when temporary mispricings arise

from the long-run cointegration relationship. When the spread between yt and xt widens

by an amount higher than a given threshold, there is a positive profit potential that can

be exploited by an arbitrageur who shorts the winner and buys the loser. If the long and

short components measure common fundamentals, the prices will mean revert to the long-

term relationship providing positive average (and cumulative) profits. This framework is

consistent with Brennan and Schwartz (1990) arguing that it is market imperfections that

give rise to the arbitrage opportunity.

The model developed in Appendix A describes the dynamics of agents who trade single

securities and agents who trade two cointegrated assets. Market imperfections are in this

context translated into a finite elasticity of demand for pursuing pairs strategies. The de-

mand schedule for each traded asset has two components: (a) the own asset demand and (b)

the speculative demand based on the long-term relationship between the two traded assets.

Market clearing conditions are defined by equating aggregate market demand and aggregate

supply schedules in a context where new information arrival is reflected in the difference be-

tween lagged market clearing prices and current bid prices. The resulting bivariate dynamics

between yt and xt are represented by the following VECM:

 ∆yt

∆xt

 =
H

d

 −Nx

Ny

(
1 −γ1 −γ0

)


yt−1

xt−1

1

+

 uy
t

ux
t

 (2)

with
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d = (H + ANy)Nx + γ1HNy (3)

where there are Ny participants in the market for asset yt and Nx participants in the market

for asset xt and, as previously specified, the elasticity of demand for pursuing pairs strategies

is noted by H.

The model therefore shows how demand and supply market clearing conditions lead to

a meaningful VECM framework for pairs trading. The concept of reversion to the long-run

relationship in this context is ideal to illustrate the pairs trading process. Note that pairs

trading strategies require a finite elasticity of demand for pairs trading strategies (H). Higher

market imperfections are translated into more persistent errors and lower (H). In the limit,

when arbitrage opportunities are exploited instantaneously, there is an infinite elasticity of

demand for pairs trading strategies (H → ∞). This leads to immediate price adjustments

in the two cointegrated markets, implying that temporary mispricings disappear and zt = 0.

In this case the relationship (yt = γ0 + γ1xt) becomes an exact relationship. When (H = 0)

yt and xt become independent I(1) processes there is no VECM model and profits from pairs

trading become zero.

We rewrite the theoretical result in (2) as:

∆P =

 ∆yt

∆xt

 =

 α1

α2

 zt−1 + ut (4)

where ut is a vector white noise with i.i.d shocks.4 If the VECM is to be well defined so

that we can guarantee that “pairs strategies” can be applied, the following conditions need

to be satisfied:

1. If α1 and a2 are both statistically significant, they must have opposite signs, as predicted

by the theoretical result in (2). This implies that, if there a significant change in

the cointegration error, so that for instance yt is greater than its replicating portfolio
4Note that in the empirical part lags of ∆P are chosen in order to obtain white noise errors.
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(γ0 + γ1xt) by a given threshold value (TV ), i.e. (zt > TV ), in order to restore the

long-term relationship yt is required to fall in the next period while xt is expected

to increase. In this case, α1 will be negative, H
d
(−Nx), and α2 positive, H

d
(Ny), so

pairs strategists will short yt (outperformer) and buy xt (underperformer) to exploit

price divergences. This allows positive profits until temporary mispricing vanishes.

Conversely when (zt < −TV ) , asset xt is overpriced in t , which implies that α2 will

be negative H
d
(−Ny) and α1 will be positive

H
d
(Nx) to guarantee mean reversion of the

error term. The determination of the TV is described in Section 2.2 below.

2. If zt > 0 and the asset yt was contributing significantly to price discovery, α2 will be

positive and statistically significant as the asset xt adjusts to incorporate new informa-

tion. Similarly, if the market trading xt is an important venue for price discovery and

liquidity then α1 would be negative and statistically significant. If both coefficients are

significant then both markets contribute to price discovery. The existence of cointegra-

tion means that at least one market has to restore the long-run relationship, indicating

that the given market is under (over) priced and is short-term inefficient. Profits from

pairs strategies can therefore be achieved. If the adjustment of both prices is immediate

and independent of the cointegration error (α1 = α2 = 0), the elasticity of demand for

pairs strategies is infinite (H → ∞), and there is no VECM, no price discovery, and no

profit from pairs strategies.5

3. In the VECM framework, the paired assets are modeled to converge to each other

to restore the long term relationship. The coefficients α1 and a2 are the adjustment

coefficients, and measure the speed of error correction. This is slow when the parameter

is close to 0, and fast when it is close to 1. In terms of our theoretical framework, xt

does not adjust to asset yt when Ny = 0 and Nx > 0. In this case α1 = 1, α2 = 0 and

xt becomes a random walk. Asset xt is essentially the common factor or efficient price.

(The reverse is true when Nx = 0 and Ny > 0.).

5In this case both markets are perfect substitutes and prices are “discovered” in both markets simultaneously. The model is
not sustainable for this case.
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4. Pairs trading strategies require stationarity of the error term. The error correction

mechanism links directly the adjustment speed of paired series to the cointegration

error, which follows an autoregressive (mean-reverting) process specified as:

zt = (1− (−α1 + γ1α2))zt−1 + uy
t − γ1u

x
t (5)

zt = ρzt−1 + uy
t − γ1u

x
t (6)

In this context, the sum of the absolute values of α1 and α2 determines the persistence

of the cointegration error. In the limit, when α1 = α2 = 0, zt is I(1), there is no

cointegration and it is not possible to benefit from trading paired assets.6 When α1

and/or α2 are statistically different from zero and correctly signed (see point 1), the error

term will be mean reverting and pairs trading will be profitable. Note that incorrect

estimated signs for α1 and α2 signals explosive behavior in the error term (ρ > 1).

In order to describe profits from pairs strategies we define the cointegration error as:

zt = yt − γ0 − γ1xt (7)

Whenever the cointegration error reaches the model trigger so that yt on the previous period

is above its long-term level, there will be an arbitrage opportunity which requires that the

investor shorts yt in the same amount as the replicating portfolio (constructed with asset xt)

in order to profit from pairs strategies. Profits from this strategy may be defined as:

Πt = M (−∆yt + γ1∆xt) = −M∆zt (8)

where Πt are measured in ¿, yt and xt represent equity prices in ¿, and M is the amount

invested (in ¿). Portfolio replication is defined in terms of price levels (and not returns)

and the delta or hedge ratio for a short position in asset yt will be γ1 implying that γ1

units of asset xt are acquired to replicate the value of asset yt. Portfolio allocations are
6The absolute value of the estimated adjustment coefficients has to lie between 0 and 1. A proof of this statement can be

provided upon request.
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therefore determined according to the regression coefficients of the cointegration relationship.

Substituting the result in Equation (4), we get :

∆yt =α1zt−1

∆xt =α2zt−1

Πt =M (−α1 + γ1α2) zt−1

(9)

From Equation (6) we can write :

Πt = M (1− ρ) zt−1 (10)

Profits are therefore negatively related to error persistence so that a more stationary the

error term leads to higher pairs trading profitability. When ρ > 1, the cointegration spread

is explosive and profits become negative.

When zt−1 > 0, asset yt is overpriced in period t − 1. This indicates that in time t as

previously specified, under VECM dynamics, α1 must be negative, and α2 positive as they

move to restore equilibrium. Therefore we have:

Πt = M
H

d
(Nx + γ1Ny) zt−1 (11)

where

d = (H + ANy)Nx + γ1HNy (12)

In this framework, expected theoretical profits from pairs strategies are always positive.

Profits are increasing in (H) and in the size of arbitrage opportunities as reflected in the

cointegration error. Whenever H = 0 there is no profitability from pairs trading strategies.

Profits can also be related to the total number of participants. When the total number of

market participants is zero Nx = Ny = 0 profitability becomes also zero. If Ny = 0 and

Nx > 0 then α1 = 1 , α2 = 0. From equation (9) we have that ∆xt = 0 so pairs trading

profitability wil be defined by
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Πt = M∆yt = Mzt−1 (13)

Note that profitability in this case becomes independent of the elasticity of demand for

pairs trading and the number of participants in the two markets. The same applies to the

analogue case Nx = 0 and Ny > 0 then α1 = 0 , 1.

2.2. Threshold design for the cointegration error

The trading algorithm dictates that arbitrage opportunities will be exploited when zt exceeds

a given threshold value TV . Under these circumstances the general principle is applied.

This requires placing a new trade when the error deviates from the long-term relationship

and unwinding the trade when this relationship is restored. In order to optimally design

the trading trigger, one has to specify what would qualify as a sufficient divergence of the

cointegration error from its long-term level. The literature does not offer a closed form

solution to this question. Instead, it demonstrates that the actual implementation of the

trading algorithm is wide and varied (see Park and Switzer (1996), Avellaneda and Lee

(2008), Elliott et al. (2005) and Vidyamurthy (2004) for description of threshold possibilities).

Park and Switzer (1996) perform basis trading in the fixed-income market and define the

trading trigger in terms of a combination of a moving average and a standard deviation

calibrated with a tolerance parameter. Avellaneda and Lee (2008) estimate trading cutoffs

based on mean reversion of a dimensionless variable while Vidyamurthy (2004) proposes

various band designs for different assumptions regarding the spread process. Our approach

is consistent with Vidyamurthy (2004) and Elliott et al. (2005) in that we define the threshold

value in terms of the amount of volatility (σ) away from the mean. However we exploit the

model-based result relating lower persistence to higher profitability as outlined in Equation

(10) to define the calibrating parameter of the trading trigger. Using the results underlying

Equation (5) we propose ρσ = (1 + α1 − γ1α2)σ as the model threshold.

Therefore the calibration parameter ρ measures the number of standard deviations of

zt from its mean that triggers a trade. In this way we link the model threshold to the
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persistence of the error term so that more persistent errors require a higher threshold. Under

this framework a trade will be triggered when ‖zt‖ >ρσ and unwound when the long-run level

is restored so that ‖zt‖ ≤ρσ. Note that from Equations (2) and (4) we can define the speed

of adjustment estimates (α1 and α2) in terms of our model parameters so that α1 =
H
d
(−Nx)

and α2 =
H
d
(Ny). This implies that, under the proposed theoretical model, the trigger will

have a value equal to one (ρ = 1) when the elasticity of demand for arbitrage strategies is

zero (H = 0) and/or when the total number of participants is zero (Nx = Ny = 0). As

the elasticity becomes larger and the sum of market participants increases, the threshold

value decreases. The parameters illustrating mean reversion are therefore crucial to the

trading process. For this reason, the trading trigger is dependent on the persistence of the

cointegration error and on mean reversion. Note that this is in line with Elliott et al. (2005),

who inversely relate the trigger level to the speed of convergence in the spread. Our work is

also consistent with Kondor (2009). In particular Kondor (2009) demonstrates that returns

are a decreasing function of the trading window. In our setting, more persistent errors are

likely to require longer trading windows when a trade is opened. To deal with this problem

our framework requires higher threshold for persistent errors. Higher profitability requires

lower thresholds. Therefore persistent errors require a higher trading threshold to guarantee

profitability when there is mean reversion in the cointegration process. Strong stationarity

of the error term is associated with lower triggers.

The threshold is also linked to pairs trading profitability as underlined in Equations (10)

and (11). The link between mean reversion and profitability has been discussed in the

literature by Kanamura et al. (2010) who report an empirical link between them for spread

trading in the gas market.

2.3. Portfolio replication

Portfolio replication requires determination of price leadership in the context of price discov-

ery. In this framework the dominant price is used to replicate the value of the follower. Price

discovery measures the contribution of cointegrated assets to reveal information regarding
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a common factor that measures fundamentals.7 It can be shown from VECM in (2) − (4),

that the contribution of assets yt and xt to price discovery is:

PDy =
α2

α2 − α1

=
Ny

Ny +Nx

(14)

PDx =
−α1

α2 − α1

=
Nx

Ny +Nx

(15)

Following the FFG framework the common factor is defined as:

CF = PDxxt + PDyyt (16)

If new information from both markets is incorporated into the common efficient price,

0 ≤ PDi ≤ 1 for i = y, x. Under the extreme case where α1 = 0, the price discovery

metrics become PDy = 1 and PDx = 0 then there is a predominance of asset yt in the

price discovery process.8 If α2 = 0 then we have PDx = 1 and PDy = 0 so that there is

a predominance of asset xt in terms of price discovery. Price discovery is exploited so that

the leading asset is used in this model to replicate the value of the follower. Equations (13)

and (14) demonstrate that price discovery relies on the relative number of agents in both

markets which defines the relative speed of mean reversion.

3. Cointegration and price discovery

In this paper we focus on the European equity market in order to identify cointegration and

potential profitable opportunities underlying pairs trading strategies. We consider companies

included in the STOXX Europe 600 index. Given that the STOXX Europe 600 Index

represents large, mid and small capitalization companies across 17 countries of the European

region we restrict the analysis to those corporates that are located in the Eurozone such that

their prices are quoted in euro currency. The selected sample consists of 292 companies

7See Hasbrouck (1995), Gonzalo and Granger (1995), and Lehmann (2002).
8Predominance in this context implies that the common fundamental factor is driven solely from the dominant price.
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across 10 countries of the European common currency area.

In what follows we perform a cointegration analysis to identify pairs that converge to a

long-term relationship over time. The finding of cointegration between two equity prices

implies that they measure a common underlying factor reflecting market fundamentals as

underlined in Equation (15). Price discovery in this context quantifies the contribution

of each of the cointegrated series to the revelation of the common factor. Commonalities

between paired firms give rise to a cointegration error as exhibited in the long-run stationary

relationship underlined in Equation (1). The idea is that paired assets converge to this

relationship over time. Under our baseline analysis commonalities arise for the following

underlying reasons: (a) Firms belong to the same trading and currency area. They are

therefore subject to similar sources of market risk and face common regulation. (b) Firms

operate under the same sector and therefore share industry risks as well as market risk. (c)

Firms are likely to share R&D intensities. 9 Under this framework pairs that are found to

be cointegrated are linked via a long-term linear relationship which prevails due to arbitrage

between the paired assets. Additional firm related fundamentals are considered in Section

4.5.

Daily closing price data are collected over the period dating from January 1st, 2000 to

February 6th, 2017. This comprises an average of 4461 trading observations10. The data

source is Datastream. Our sample period covers the pre-crisis period as well as the post

Lehman era, therefore it allows us to analyze pairs trading under the existence of cointe-

gration in different market states. The presence of cointegration indicates that two non-

stationary I(1) variables have a linear combination that is stationary, I(0). In what follows,

we identify a matching partner for each stock with the restriction that both stocks should

belong to the same industry. According to the Industry Classification Benchmark used by

STOXX indices11, the 292 companies are categorized into ten industries, namely, Financials

(63), Industrials (58), Consumer Goods (42), Consumer Services (33), Basic Materials (23),

9See Hyunbae et. al. 2004
10Note that not all companies have the same starting date.
11This classification is based on the companies´ primary revenue source.
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Utilities (20), Health Care (16), Technology (15), Telecommunications (11), and Oil & Gas

(11). The model presented in Section 2 demonstrates that the mechanism behind cointegra-

tion lies on the existence of an underlying common efficient price. Our empirical analysis is

based on the VECM specified in Equation (4). Econometric details of the estimation and

inference of (4) can be found in Johansen (1995) and Juselius (2006).

We start by performing an Augmented Dickey-Fuller test as unit roots are a necessary

condition for cointegration. We fail to reject the null hypothesis of a unit root for all price

series analyzed. We perform the Johansen cointegration test using a rolling-window approach

within a given industry at the 5% significant level. Specifically, we use a three-year window

from t to t+ 3 (estimation period) to identify cointegrated pairs and, for each selected pair,

estimates of the cointegration vector in the VECM are obtained. The selected pairs and

resulting estimates are then applied to trading implementation (see the detailed description

in Section 4.1) for the next six-month window from t + 3 to t + 3.5 (trading period). This

procedure is repeated through the remaining sample period. This leaves us, for instance,

with the second estimation window from t+ 0.5 to t+ 3.5, which is followed by the trading

window from t+3.5 to t+4. Given that not all companies have been listed at the first sample

date, January 1st, 2000, the starting date of a possible pair is chosen so that transactions are

available on both corporates considered. The resulting paired equities are tied via a long-run

arbitrage relationship under the imposed restriction that the error term is stationary. Paired

equities are in this sense close substitutes, and they tend to move in synchrony.

Once cointegration relationships are estimated, we investigate the lead-lag relationship

for each pair to determine which asset dominates the price discovery process. Table 1 re-

ports VECM estimates across industries. Because there are thirty different rolling samples,

reported results represent an average value computed from a series of estimates for each

percentile. We find from Panel A that the adjustment coefficient α1 is significantly negative

for all industry percentiles,12 suggesting that the price of the follower (yt) is expected to drop

by α1 units in response to one unit increase in the error correction term. The corresponding

12Average standard errors by industry can be provided upon request.
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estimate of α2 is positive under all percentiles. Results of α2 also suggest that it is not

significantly different from zero in 80% of the estimations. This implies that there is an

asymmetric lead-lag relation in 80% of the paired corporates. For the remaining 20%, both

assets contribute to price discovery. However, the general result is that there is a dominant

asset (xt) relative to its matching partner (yt) in terms of price discovery, and thus the fol-

lower (yt) does all the adjustment to restore the long-term relation. Note that this result

comes by construction given that the leading asset (xt) is used to replicate the follower (yt).

Effectively Johansen cointegration estimates are obtained in a context in which the follower

(or the dependent variable) is set to be explained by the leader which acts as the independent

variable. The existence of cointegration allows using Maximum Likelihood estimators of the

cointegrating relation to build our portfolio strategy, instead of OLS regressions as widely

used in the statistical arbitrage literature13. The (constant) cash amount, γ0, is required

to be positive14. The positive sign of γ0 suggests that long cash positions should be held

to replicate the follower with γ1 units of the leading asset, and thus interest expenses are

omitted from the construction of arbitrage profits. Then we look at the estimated values

of γ1 reported in Panel B. The values are varied as different units of the leading asset are

required to replicate the follower. Note that the largest range for γ1 is for Financials and In-

dustrials, the two sectors with highest number of paired companies. This coefficient reflects

the sensitivity of one asset to its matching partner and is in essence the hedge ratio in our

pairs trading strategy.

4. Profitability of pairs trading

4.1. Model-based pairs trading strategies

In this section, we illustrate the proposed pairs trading mechanism presented in Section 2,

based on the existence of cointegration. The trading mechanism is described as follows:

13see for instance Schaefer and Strebulaev (2008) and Kapadia and Pu (2012).
14Estimated values of γ0 can be provided upon request.
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An arbitrageur opens a long-short position on the day following departure, when the price

spread hits the model-derived threshold, denoted as (1+α1−γ1α2) units of standard deviation

calculated from historical spreads. The initial position is then unwound one day later when

price reversion eventually occurs, or is forced to close at the end of a 6-month trading

period if no convergence takes place. In other words, we trade according to the rule that

delays the opening/close of a position by one day, and the maximum trading horizon is six

months. After a pair has completed a round-trip trade, it will be subject to the identical

trading rule again. As previously discussed, this paper applies a three-year rolling-window

approach. This results in a series of cointegration coefficients and speed of mean reversion

estimates. These estimates are used to determine pricing errors to design the following six-

month out-of-sample trading strategies. The implementation of trading requires construction

of replicating portfolios and trading triggers immediately following the three-year estimation

period. Since most data are available from January 1st, 2000, their first valid trading day is

the first business day in January 2003.

This trading mechanism, which longs the underpriced asset and shorts the overpriced

one simultaneously, is implemented according to the sign of the estimated alpha coefficients.

Theoretical profits are always positive and defined by return differentials as specified in

Equations (8) and (9). Our pairs selection algorithm is driven by cointegration, which implies

that profits generated by the proposed strategy are expected to be stationary. We therefore

identify mean reverting spread portfolios that deliver stationary profits. Stationarity in

this context implies that the fundamental related risk is hedged. As stated in the model,

cointegration guarantees that short-lived price deviations revert towards the long-run level,

such that the slow adjustment process can be exploited to make profits. With this trading

rule Figure 1 illustrates how to perform the strategy using the cointegrated pair, Air Liquide

and BASF, as an example. The fluctuating line in blue represents price spread zt , while the

two straight lines in green indicate the borders of model-derived threshold (either positive or

negative). The line in grey, near to the x-axis, reflects the opening and close of pairs trades

on a daily basis. We see that a position is initiated when the price spread moves beyond the
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border and then closed when price deviation lies between two border lines.

4.2. The baseline results

We analyze the performance of pairs trading strategies for each industry, under the “persis-

tence calibrated” standard deviation trigger. Risk and return characteristics are examined

at the portfolio level. In addition to forming equal-weighted portfolios, we calculate buy-

and-hold portfolio returns, following Gatev et al. (2006). This approach takes into account

compounded returns, known as value-weighted portfolio returns. The return computation

under this approach is thus based on daily marked-to-market returns of individual pairs.

Table 2 reports estimated percentiles of trading trigger for each of the industry groups

aggregated over the set of 30 rolling samples. Reported results demonstrate that there

is error persistence delivering average trading triggers ranging from 0.65 to 0.98. Table

3 reports the excess return distribution by industry group and for the all-pair portfolio,

representing all tradable targets, over the whole out-of-sample period since 2003.15 Panel A

shows results from the equal-weighted portfolio, while Panel B presents profit estimates from

the value-weighted portfolio. The general observation is that pairs portfolios gain statistically

significant positive excess returns. We can see in Panel A that the equal-weighted portfolio

generates an annualized average return of at least 4.33%. Moreover only two portfolios

earn mean returns lower than 5%. Among the ten industries, pairs from Consumer Services

deliver the highest average return equal to 7.72% per annum, followed by 7.46% earned in the

Financials industry. Results therefore show clear positive performance which is consistent

across different industries. We next look at the risk profile, measured by volatility. We

can see that the first four industry portfolios (Financials, Industrials, Consumer Goods, and

Consumer Services) show lower volatility and maximum return values than the remaining

portfolios (Basic Materials, Utilities, Health Care, Technology, Telecommunications, and Oil

& Gas). This overall evidence indicates diversification benefits created from combining a

15Our strategy’s profitability is induced from two positions. In this context the payoff is interpreted as excess return since
trading profits or losses are earned from one euro investment in simultaneous long-short positions.
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larger number of pairs in a portfolio. This can be explained by the fact that the first four

industries include more companies within the group. For this reason, they exhibit similar

statistical properties. Reported results also demonstrate that the return distributions of

industry portfolios are positively skewed, only with the exception of Health Care16. This

implies that reported Sharpe ratio estimates may exhibit a downward bias. The finding of

right-skewed distribution is consistent with Gatev et al. (2006) and Jurek and Yang (2007).

However it is not supported by the work of Kondor (2009) arguing that arbitrageurs’ total

return is negatively skewed. Sharpe ratios are reported in the last column to evaluate

the risk-adjusted portfolio performance.17 We find that half of these industry portfolios

deliver a Sharpe ratio higher than 0.50. We contend that such impressive performance is

clearly associated with the sector that gathers a larger number of companies. Our results

therefore demonstrate that the proposed strategy is profitable for every industry categorized

under STOXX Europe 600, and therefore the existence of positive profits is not industry

dependent. The last row of Panel A (Table 3), examines the overall pairs trading performance

taking together all pairs selected within industries, thus allowing investment on all tradable

opportunities. The average annual return is close to 6.0% for this all-pair portfolio. More

impressive is the annualized Sharpe ratio of 0.85. This arises due to the large gains arising

from diversification across pairs that trade in different industries as can be seen in the

reported volatility of 6.81%. In line with our findings from industry portfolios, cointegration

delivers positively skewed portfolio returns.

We report in Panel B of Table 3 the results of value-weighted portfolios. Results are

consistent with those presented in Panel A. Value-weighted portfolios however deliver higher

Sharpe ratios and lower mean returns. The decrease in mean returns can also be found in

Chen et al. (2012). The improvement in Sharpe ratio estimates is documented for most of

industry portfolios as well as the all-pair portfolio. This arises as a consequence of lower

return volatility. Value-weighted portfolios, are by construction less volatile than equal-

16The negative skew in the Health Care industry may be due to the high downside risk arising from high investment in R&D.
17Simplified Sharpe ratios assume zero returns on the risk-free asset exploiting the fact that interest rates have been at

historical minimum levels over our sample period. All Sharpe ratios reported in the paper are simplified under this assumption.
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weighted portfolios as weights in time t are defined according to lagged returns. The all-pair

portfolio earns on average an annual excess return of 3.35%, and a Sharpe ratio of 1.03.

The latter represents an improvement of 21% when compared to the equal-weighted all-pair

portfolio. Note that this finding is consistent with the literature (See Plyakha et al. (2012)

and Pae and Sabbaghi (2015)).

To unfold the economic significance from arbitrageurs’ perspective, we consider the cumu-

lative portfolio returns over our sample period. Figure 2 plots the cumulative profits on the

equally weighted industry portfolios and the all-pair portfolio. These reinvested payoffs de-

pict the evolution of an investor´s wealth. It is observed that these portfolios earn cumulative

profits of different magnitudes and, more interestingly, their returns exhibit various patterns.

For instance, the industry portfolios, Consumer Goods and Consumer Services, accumulate

wealth in a steady manner without considerable losses. Other sectors such as Financials and

Utilities exhibit clearly pronounced rises over the 2008-2009 period. This evidence indicates

that pairs belonging to distinct industries exhibit different response to market conditions

leading to unresembling paths of return accumulation. However the common pattern across

all portfolios is that there is a significant increase in profitability with the unfolding of the

2008 global financial crisis. This therefore suggests that our model-based pairs strategies

can be used to hedge away market shocks and simultaneously yield significant profits under

abnormal periods. This is consistent with the literature (see for example Alexander et al.

(2002) and Do and Faff (2010)). The evolutionary path of wealth underlying the all-pair

portfolio suggests that there is persistent profitability without the requirement of stop-loss

criterion, over a 14-year period. This portfolio produces a total return of 0.86 at the end of

the sample.

The baseline analysis above concludes that our pairs trading strategy is profitable. The

robust performance confirms price convergence after the onset of a pricing anomaly, demon-

strating while pricing errors are persistent, they eventually mean revert.

The next step is to introduce transaction costs and assess the impact on portfolio returns.

Given that closing price data are used to compute abnormal returns, there is an identical
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probability of being at bid or ask. We impose corrections of these profits to reflect that, in

practice, we long at the ask and sell at the bid prices. In other words, we have to subtract

trading costs to get an estimate of profits net of transaction costs. To this end, we collect

bid and ask prices for each equity pair. Because we long the loser and short the winner asset,

transaction costs will reduce profits by one-half of the sum of the bid-ask spreads on both

assets every time there is a change in position in the pair. Results reported in Table 3A

reveal that, after accounting for transaction costs, Sharpe ratios and mean returns remain

positive in all cases.

4.3. Price discovery, relative turnover and portfolio replication

Equations (13) -(14) show that price discovery is defined in terms of the relative number of

participants in paired markets. Proxies for the relative number of participants can be found

on relative liquidity measures. Another approach in the literature has been to address the

relative number of analyst or informed traders following a given firm (see Brennan et al.

(1993)). In this paper we follow FFG and use liquidity measures for this purpose. The

relationship between price leadership and trading volume has been extensively addressed in

the price discovery literature (see Hasbrouck (1995) and references therein). It has also been

discussed in the asset pricing literature. Chordia and Swaminathan (2000) and Llorente

et al. (2002) show that trading volumes deliver valuable information about future price

movements and exerts impact on the speed of adjustment of individual stocks (see also

Admati and Pfleiderer (1988)). The underlying presumption is that stocks that trade with

higher liquidity respond faster to common information and become information leaders.

Stocks that trade with low liquidity are therefore followers as they exhibit lower speed of

price adjustment to common information. Variations in relative liquidity in both markets

are therefore reflected on the changes in price discovery.

In what follows we check whether the result of price discovery in the theoretical model

is confirmed empirically. We use for this purpose turnover as a proxy for market liquidity.
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Turnover is defined as the ratio of the number of shares traded in a day to the number of

shares outstanding at the end of the day. Our interest is to see whether price leadership is

associated with higher turnover. Specifically, we check for every pair screened out over each

trading period, and calculate the percentage of them meeting the condition that the leader’s

average turnover is higher than the follower. Figure 3 shows the results. We can see that price

leadership is associated with higher turnover for more than half of the pairs. This ratio is

even higher for Financials (63%), Industrials (64%), Health Care (61%), Telecommunications

(61%), and Oil & Gas (64%).

We now proceed to demonstrate the importance of price leadership determination for

portfolio replication design. For this purpose, we repeat the trading exercise in Section

4.2 using the follower to replicate the leader. We denote these portfolios as “follower”

portfolios. For comparison, Table 4 summarizes the excess returns for pairs portfolios which

are present in Table 3. From Panel A we find that average returns of industry portfolios are

lower compared to the baseline results. The same observation is applied to the performance

metrics of Sharpe ratio. Comparing the all-pair portfolio return estimates under the equal-

weighted method, the baseline portfolio yields a mean return which is 1.42% higher than that

reported for the “follower” portfolio. The baseline portfolio also outperforms its “follower”

counterpart in terms of Sharpe ratio, which is 0.85 for the baseline and 0.74 for the “follower”.

These findings are robust to the use of value-based weights as reported in Panel B of Table

3 and 4 respectively.

Results therefore confirm that the theoretical implications on price leadership of the model

exposed in Section 2 are important to maximize pairs trading profitability.

4.4. A comparison of performance: Model-based trading algorithm versus

GGR (2006)

The purpose of this section is to compare the results of the proposed strategy with the results

arising from the trading algorithm introduced by Gatev et al. (2006), acknowledged as the

benchmark work in the pairs trading literature. GGR identify pairs by minimizing the sum of
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squared spreads between two normalized price series in a 1-year period. Although both GGR

and our trading strategy exploit mean reversion in search of profitability, the seminal work

of GGR is based on non-parametric past return correlation. Our strategy instead follows

a model-based trading algorithm. To derive results under GGR methodology, we identify

pairs within each of the ten industries and rank them by distance. In order to make the two

trading algorithms comparable, we set the number of pairs included in an industry portfolio

to be the same as the number of cointegrated pairs under our method, for every trading

period. In other words, we guarantee that the portfolio size is identical under two different

selection methods. The objective is to remove any diversification effects arising from sample

size.

Following GGR, a trade is initiated if the prices diverge by more than two standard

deviations. In Panel A of Table 5, we summarize the return performance delivered by

GGR´s equally weighted portfolios. Compared to the baseline results in Table 3, the mean

portfolio return associated with our strategy is larger in all cases than that associated with

GGR. The magnitude of return gap is between 1% and 3% per annum. On the basis of

volatility, both strategies perform closely. In terms of the risk-return tradeoff, we find that

our model-based industry portfolios yield Sharpe ratios that exceed GGR portfolios in seven

out of ten cases. The magnitude of outperformance from our methodology is also significant.

Furthermore, our all-pair portfolio, gains an annualized mean return which is 2.4% higher

than that reported for GGR, and generates a Sharpe ratio of 0.85, ten units higher than

0.75 achieved under GGR. Similar conclusions are reached when we compare on the basis of

value-weighted portfolios.

Panel C in Table 5 shows results under GGR for alternative trading thresholds. Specifi-

cally we look at the profitability of the 1.5 and 3 standard deviations thresholds. It is clear

that the alternative thresholds underperform the commonly used 2 standard deviations and

therefore out proposed algorithm. Reported results therefore demonstrate that the combi-

nation of cointegration and a persistence-linked trading trigger proposed in this framework

supersedes the benchmark methodology proposed in the literature. In order to evaluate the
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performance of our trading trigger solely, we have analyzed profitability under the 2 standard

deviation case with selection performed under cointegration. Results, which can be provided

upon request, demonstrate that our persistence-dependent trading trigger delivers signifi-

cantly higher profitability than the 2 standard deviation trigger used as common benchmark

in the literature.

4.5. Commonality within industry groups: Firm Fundamental analysis

The theoretical framework presented in Section 2 shows that two firms that share a com-

mon factor are linked via a long-run cointegration relationship. In our baseline empirical

application, shared fundamentals arise due to commonalities at the industry, regulation and

geographical levels. Common fundamentals arising from such restrictions give rise to sta-

tionary errors. In this section we filter our initial sample with firm specific fundamentals

to identify stronger mean reversion reflected in less persistent mispricings and higher pairs

trading profitability. We follow the asset pricing literature (see Fama and French (1993),

Fama and French (1996), and Asness et al. (2013)) to consider a value factor measuring

the long-run (or book) value relative to its current market value (BV/MV). We additionally

control for the size effect using market capitalization and trading volume as proxy measures.

In particular, we sort firms within a given industry, based on each of the factors (market

cap, book-to-market ratio, and trading volume), and classify them into terciles. Then within

each tercile, we identify a matching partner for every firm. Note that under this restriction,

the number of selected pairs is much lower than that under the baseline study in Section 4.2.

Given that firms are ranked into three groups, we are restricted to do this analysis on four

industries for which the number of firms is more than 30: Financials, Industrials, Consumer

Goods, and Consumer Services. Tables 6 and 7 present percentiles for coefficient estimations

and pairs trading triggers. While coefficient estimations are highly consistent with the base-

line estimation, the results show lower dispersion in the cointegration coefficient and higher

speed of convergence due to the gain in commonality arising from firm-specific factor re-

strictions (note that simultaneous multi-factor restriction is not possible due to resulting low
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observations in each tercile portfolio). Table 8 displays the performance of equally-weighted

portfolios for each of the factor restrictions. Results show that while the restriction on size

does not provide a clear improvement, the book-to-market and volume restrictions clearly

outperform the baseline case. Specifically, Panel B shows that in all industry portfolios the

mean return is substantially larger under the book-to-market restriction. Such increase in

magnitude counteracts with the resulting increase of volatility level. Accordingly, Sharpe

ratios are superior to the baseline results. Finally Panel C reports the effect of trading vol-

ume on performance. Except from Consumer Services industry case, all analyzed portfolios

deliver stronger performance in terms of mean return. They also yield higher Sharpe ratios

relative to the baseline cases. The results of each tercile are available upon request.

The overall result suggests that the imposed additional restriction based on firm fun-

damentals, increases mean reversion and pairs trading performance. This is because of an

improved identification of the common underlying factor. Reported results suggest superior

performance under the book-to-market ratio and trading volume restrictions. This evidence

can be attributed to the increased commonality shared between paired assets. Book-to-

market ratio and volume traded are therefore relevant proxies to firm fundamental values.

Additional filtering of the initial sample on the basis of firm-level fundamentals implies

stronger arbitrage forces between paired assets leading to higher stationarity and pairs trad-

ing profitability.

5. Conclusion

In this paper we adapt the demand and supply framework introduced by FFG to illustrate the

process by which equities that share a common factor can be linked to exploit pairs trading

opportunities. We derive market clearing conditions under a demand schedule including an

arbitrage component and persistent cointegration errors. The dynamics of paired equity

prices are represented via an economically meaningful VECM framework where convergence

to the long-run relationship allows profits from pairs trading. Our model requires finite
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elasticity of demand for pairs trading strategies and exploits price discovery so that the

leading asset can be used to replicate the follower. Pairs trading profitability is linked to

the speed of mean reversion which is dependent on the elasticity of demand for pairs trading

strategies and the total number of market participants. Based on this presumption, the

presented framework derives a persistence-dependent trading threshold used to trigger pairs

trading. In an extensive out-of-sample exercise applied to STOXX Europe 600 equity price

daily data, we show that: (a) the use of price leadership for portfolio replication is important

in determining profitability; (b) the proposed model-based pairs trading strategies yield

positive Sharpe ratios that are higher than those obtained from competing pairs trading

methodologies applied in the literature; (c) portfolio outperformance and mean reversion are

enhanced under imposed firm fundamental factor as well as industry restrictions.

26



References

Admati, A. R., Pfleiderer, P., 1988. A Theory of Intraday Patterns: Volume and Price

Variability. Review of Financial Studies 1 (1), 3–40.

Alexander, C., Giblin, I., III, W. W., 2002. Cointegration and Asset Allocation: A New

Active Hedge Fund Strategy. Research in International Business and Finance 16 (5), 65–90.

Andrade, S., Di Pietro, V., Seasholes, M., 2005. Understanding the Profitability of Pairs

Trading. Working Paper, UC Berkeley, and Northwestern University.

Asness, C. S., Moskowitz, T. J., Pedersen, L. H., 2013. Value and Momentum Everywhere.

The Journal of Finance 68 (3), 929–985.

Avellaneda, M., Lee, J., 2008. Statistical Arbitrage in the US Equities Market. Quantitative

Finance 10 (7), 761–782.

Bowen, D. A., Hutchinson, M. C., 2014. Pairs Trading in the UK Equity Market: Risk and

Return. The European Journal of Finance, 1–25.

Brennan, M. J., Jegadeesh, N., Swaminathan, B., 1993. Investment Analysis and the Adjust-

ment of Stock Prices to Common Information. Review of Financial Studies 6 (4), 799–824.

Brennan, M. J., Schwartz, E. S., 1990. Arbitrage in Stock Index Futures. The Journal of

Business 63 (1), S7–S31.

Broussard, J. P., Vaihekoski, M., 2012. Profitability of Pairs Trading Strategy in An Illiquid

Market with Multiple Share Classes. Journal of International Financial Markets, Institu-

tions and Money 22 (5), 1188–1201.

Chen, H., Chen, S., Li, F., 2012. Empirical Investigation of An Equity Pairs Trading Strategy.

Working Paper, Texas A & M University, University of British Columbia, and University

of Michigan.

Chordia, T., Swaminathan, B., 2000. Trading Volume and Cross-autocorrelations in Stock

Returns. The Journal of Finance 55 (2), 913–935.

27



Do, B., Faff, R., 2010. Does Simple Pairs Trading Still Work? Financial Analysts Journal

66 (4), 83–95.

Elliott, R. J., Van Der Hoek, J., Malcolm, W. P., 2005. Pairs Trading. Quantitative Finance

5 (3), 271–276.

Fama, E. F., French, K. R., 1993. Common Risk Factors in the Returns on Stocks and Bonds.

Journal of Financial Economics 33 (1), 3–56.

Fama, E. F., French, K. R., 1996. Multifactor Explanations of Asset Pricing Anomalies. The

Journal of Finance 51 (1), 55–84.

Figuerola-Ferretti, I., Gonzalo, J., 2010. Modelling and Measuring Price Discovery in Com-

modity Markets. Journal of Econometrics 158 (1), 95–107.

Gatev, E., Goetzmann, W., Rouwenhorst, K., 2006. Pairs Trading: Performance of A

Relative-Value Arbitrage Rule. Review of Financial Studies 19 (3), 797–827.

Gonzalo, J., Granger, C., 1995. Estimation of Common Long-Memory Components in Coin-

tegrated Systems. Journal of Business & Economic Statistics 13 (1), 27–35.

Gromb, D., Vayanos, D., 2002. Equilibrium and Welfare in Markets with Financially Con-

strained Arbitrageurs. Journal of Financial Economics 66 (2), 361–407.

Hasbrouck, J., 1995. One Security, Many Markets: Determining the Contributions to Price

Discovery. The Journal of Finance 50 (4), 1175–1199.

Johansen, S., 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Mod-

els. New York.

Jurek, J., Yang, H., 2007. Dynamic Portfolio Selection in Arbitrage. In: EFA 2006 Meetings

Paper.

Juselius, K., 2006. The Cointegrated VAR Model: Methodology and Applications. Oxford

University Press.

28



Kanamura, T., Rachev, S. T., Fabozzi, F. J., 2010. A Profit Model for Spread Trading with

an Application to Energy Futures. The Journal of Trading 5 (1), 48–62.

Kapadia, N., Pu, X., 2012. Limited Arbitrage between Equity and Credit Markets. Journal

of Financial Economics 105 (3), 542–564.

Kondor, P., 2009. Risk in Dynamic Arbitrage: The Price Effects of Convergence Trading.

The Journal of Finance 64 (2), 631–655.

Lehmann, B. N., 2002. Some Desiderata for the Measurement of Price Discovery Across

Markets. Journal of Financial Markets 5 (3), 259–276.

Llorente, G., Michaely, R., Saar, G., Wang, J., 2002. Dynamic Volume-Return Relation of

Individual Stocks. Review of Financial Studies 15 (4), 1005–1047.

McMillan, D. G., Ülkü, N., 2009. Persistent Mispricing in A Recently Opened Emerging

Index Futures Market: Arbitrageurs Invited. Journal of Futures Markets 29 (3), 218–243.

Pae, Y., Sabbaghi, N., 2015. Equally Wweighted Portfolios vs Value Weighted Portfolios:

Reasons for Differing Betas. Journal of Financial Stability 18, 203–207.

Park, T. H., Switzer, L. N., 1996. Mean Reversion of Interest-Rate Term Premiums and

Profits from Trading Strategies with Treasury Futures Spreads. Journal of Futures Markets

16 (3), 331–352.

Plyakha, Y., Uppal, R., Vilkov, G., 2012. Why Does An Equal-weighted Portfolio Outper-

form Value- and Price-weighted Portfolios. Available at SSRN 1787045.

Schaefer, S. M., Strebulaev, I. A., 2008. Structural Models of Credit Risk are Useful: Ev-

idence from Hedge Ratios on Corporate Bonds. Journal of Financial Economics 90 (1),

1–19.

Shleifer, A., Vishny, R. W., 1997. The Limits of Arbitrage. The Journal of Finance 52 (1),

35–55.

29



Vidyamurthy, G., 2004. Pairs Trading: Quantitative Methods and Analysis. Vol. 217. John

Wiley & Sons.

Xiong, W., 2001. Convergence Trading with Wealth Effects: An Amplification Mechanism

in Financial Markets. Journal of Financial Economics 62 (2), 247–292.

30



Appendix A.

A theoretical supply and demand model for pair trading dynamics

Assume that a trader has identified two financial instruments whose prices yt and xt are

cointegrated. The underlying long-term stationary relationship between both markets can

be specified as:

yt = γ0 + γ1xt + zt (17)

This implies that the value of asset yt can be replicated by a portfolio using asset xt.

Portfolio replication will be established on the basis of price leadership. zt represents the

stationary arbitrage opportunities in two cointegrated markets arising from market imperfec-

tions. A trader exploits temporary mispricings from equilibrium by pursuing pairs trading

strategies that short sell the outperforming asset and buy the underperformer. We con-

sider now the aggregate market demand function for all agents who perform pairs trading

strategies taking simultaneous positions in yt and xt in period t. This is represented by:

H ((γ1xt + γ0)− yt) , H � 0

= H (zt) , H � 0
(18)

where H is the elasticity of demand for pairs trading strategies. It increases when trans-

action costs are negligible, and other market imperfections decrease as vehicles for cross-

market trading improve. In the limit, markets become perfectly integrated and the elasticity

H tends to infinity. When transaction costs are significant and there are market restrictions

that impede inter-market trading, the elasticity of demand for pairs strategies is finite.

We assume that there are Ny agents in the market for asset yt and Nx agents in the

market for asset xt. These investors will take positions in asset yt and asset xt as well as

pursue pairs trading in the two markets:

Let Qi,t be the number of shares owned by the ith participant in period t and Bi,t the bid
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price at which that agent is willing to hold quantity Qi,t. Then the demand function of the

ith agent in the market for stock yt in period t is

Qi,t − A (yt −Bi,t) (19)

with i = 1, ..., Ny where A � 0, is the demand elasticity, assumed to be the same for all

market agents.

The demand function for agent j in the market for stock xt is

Qj,t − A (xt −Bj,t) , A � 0, j = 1, ..., Nx (20)

The market for stock yt will clear at the value of yt that solves,

Ny∑
i=1

Qi,t =

Ny∑
i=1

(Qi,t − A (yt −Bi,t)) +H ((γ1xt + γ0)− yt) (21)

with H � 0.

The market for stock xt will clear at the value of xt such that:

Nx∑
j=1

Qj,t =
Nx∑
j=1

(Qj,t − A (xt −Bj,t)) +H ((γ1xt + γ0)− yt) (22)

Solving Equations (19) and (20) for yt and xt as a function of the mean bid price set by

market agents in yt

(
By

t = N−1
y

∑Ny

i=1Bi,t

)
and the mean bid price

(
Bx

t = N−1
x

∑Nx

j=1Bj,t

)
for market agents in xt, we obtain:

yt =
(ANx+Hγ1)NyB

y
t +HNxγ1Bx

t +HNxγ0
(H+ANy)Nx+HNyγ1

xt =
HNyB

y
t +(ANy+H)NxBx

t −HNyγ0
(H+ANy)Nx+HNyγ1

(23)
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In what follows we derive the dynamic price relationships. This requires characterizing

the model in Equation (21) with a description of the evolution of bid prices. It is assumed

that immediately after the market clearing period t−1 the ith agent in yt was willing to hold

a position of Qi,t at a price yt−1. Following FFG, this implies that yt−1 was his bid price

after that clearing. We assume that this bid price changes to Bi,t according to the equation

Bi,t = yt−1 + et + wi,t

Bj,t = xt−1 + et + wj,t

(24)

cov (et, wi,t) = 0,∀i

cov (wi,t, wj,t) = 0,∀i 6= j

with i = 1, ..., Ny and j = 1, ..., Nx. Where the vector
(

et, wi,t, wj,t

)
is vector white

noise with finite variance.

The price change Bi,t − yt−1 reflects the arrival of new information between period t− 1

and period t which changes the price at which the ith participant is willing to hold a position

of Qi,t in the market yt. This price change has a component common to all market agents

(et) and a component idiosyncratic to the ith agent (wi,t).

The equations in (22) imply that the mean bid price in each market in period t will be

By
t = yt−1 + et + wy

t

Bx
t = xt−1 + et + wx

t

(25)

where wy
t =

∑Ny
i=1 wy

i,t

Ny
and wx

t =
∑Nx

j=1 wx
j,t

Nx
. Substituting expressions (23) into (21) yields

the following vector model:

 yt

xt

 =
Hγ0
d

 Nx

−Ny

+M

 yt−1

xt−1

+

 uy
t

ux
t

 (26)
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where

 uy
t

ux
t

 = M

 et + wy
t

et + wx
t

 (27)

M =
1

d

 Ny (γ1H + ANx) γ1HNx

HNy (H + ANy)Nx

 (28)

And

d = (H + ANy)Nx + γ1HNy (29)

We next convert Equation (24) into a Vector Error Correction Model (VECM) by subtracting

(yt−1, xt−1)´ from both sides, with

 ∆yt

∆xt

 =
Hγ0
d

 Nx

−Ny

+ (M − I)

 yt−1

xt−1

+

 uy
t

ux
t

 (30)

M − I =
1

d

 −HNx γ1HNx

HNy −HNyγ1

 (31)

Rearranging terms,

 ∆yt

∆xt

 =
H

d

 −Nx

Ny

(
1 −γ1 −γ0

)


yt−1

xt−1

1

+

 uy
t

ux
t

 (32)
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Appendix B. Empirical Results

Table 1: Estimation of VECM parameters

Sample 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Panel A: Estimated values of α1 and α2

Financials α1 -0.013 -0.036 -0.076 -0.150 -0.302

α2 0.001 0.005 0.012 0.029 0.076

Industrials α1 -0.020 -0.038 -0.066 -0.112 -0.323

α2 0.001 0.007 0.015 0.028 0.058

Consumer Goods α1 -0.021 -0.052 -0.090 -0.136 -0.201

α2 0.002 0.008 0.018 0.036 0.077

Consumer Services α1 -0.017 -0.036 -0.063 -0.115 -0.254

α2 0.002 0.006 0.013 0.024 0.052

Basic Materials α1 -0.040 -0.059 -0.082 -0.112 -0.170

α2 0.004 0.012 0.024 0.041 0.064

Utilities α1 -0.009 -0.014 -0.028 -0.048 -0.089

α2 0.001 0.002 0.005 0.009 0.023

Health Care α1 -0.046 -0.060 -0.087 -0.125 -0.200

α2 0.004 0.010 0.018 0.032 0.052

Technology α1 -0.035 -0.046 -0.067 -0.092 -0.147

α2 0.005 0.010 0.020 0.032 0.052

Telecommunications α1 -0.011 -0.017 -0.028 -0.038 -0.059

α2 0.002 0.004 0.008 0.015 0.023

Oil & Gas α1 -0.026 -0.038 -0.053 -0.070 -0.090

α2 0.002 0.004 0.011 0.020 0.031

Panel B: Estimated values of γ1

Financials 0.14 0.45 1.43 7.06 11.64

Industrials 0.14 0.42 0.94 2.76 10.65

Consumer Goods 0.26 0.58 1.30 2.88 7.99

Consumer Services 0.28 0.49 0.88 1.95 4.96

Basic Materials 0.32 0.46 0.96 1.83 3.33

Utilities 0.23 0.45 0.93 3.34 9.86

Health Care 1.07 1.27 1.79 2.76 4.07

Technology 0.54 0.76 1.15 1.99 5.15

Telecommunications 2.17 2.25 2.62 4.25 6.60

Oil & Gas 0.64 0.80 1.10 2.49 3.99

This table presents the values of α1 and α2 obtained using the Johansen cointegration methodology in Panel A. The

percentiles for α1 are computed using the absolute values. Summary statistics of estimated values of γ1 are reported

in Panel B. As the Johansen test is conducted on a rolling-window basis, these reported values are an average value

computed from a series of estimates of each percentile. The sample period is January 2000 to February 6th 2017.
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Table 2: Model-derived trading trigger 1 + α1 − γ1α2

Sample 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Financials 0.65 0.80 0.89 0.93 0.97

Industrials 0.80 0.87 0.91 0.93 0.98

Consumer Goods 0.79 0.84 0.89 0.93 0.97

Consumer Services 0.81 0.86 0.91 0.94 0.96

Basic Materials 0.83 0.85 0.88 0.90 0.92

Utilities 0.90 0.91 0.94 0.95 0.96

Health Care 0.83 0.84 0.86 0.88 0.90

Technology 0.84 0.87 0.90 0.92 0.97

Telecommunications 0.89 0.93 0.94 0.97 0.98

Oil & Gas 0.88 0.90 0.91 0.93 0.94

This table presents the values of model-derived trading trigger 1+α1−γ1α2, which is computed using VECM estimates

obtained from the Johansen cointegration methodology. As the trading strategy is conducted on a rolling-window

basis, these reported values are an average value computed from a series of threshold numbers of each percentile. The

sample period is January 2000 to February 6th 2017.
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Table 3: Summary statistics of excess returns to pairs portfolios

Sample Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: Equal-weighted portfolios

Financials 0.0746 0.0000 0.1467 0.57 14.44 0.07 -0.07 0.51

Industrials 0.0433 0.0000 0.1318 0.15 10.76 0.07 -0.07 0.33

Consumer Goods 0.0514 0.0000 0.0943 0.69 17.45 0.06 -0.05 0.54

Consumer Services 0.0772 0.0000 0.1235 0.48 14.17 0.09 -0.06 0.63

Basic Materials 0.0662 0.0000 0.1642 0.08 18.54 0.09 -0.14 0.40

Utilities 0.0553 0.0000 0.1585 1.40 29.37 0.14 -0.10 0.35

Health Care 0.0644 0.0000 0.1163 -1.60 43.23 0.05 -0.14 0.55

Technology 0.0587 0.0000 0.1728 0.67 13.63 0.12 -0.07 0.34

Telecommunications 0.0470 0.0000 0.1735 1.08 22.32 0.14 -0.08 0.27

Oil & Gas 0.0579 0.0000 0.1034 0.94 18.12 0.07 -0.05 0.56

All-Pair Portfolio 0.0576 0.0154 0.0681 0.89 14.25 0.04 -0.03 0.85

Panel B: Value-weighted portfolios

Financials 0.0506 0.0000 0.0700 0.62 16.38 0.03 -0.04 0.72

Industrials 0.0246 0.0000 0.0639 0.26 10.47 0.03 -0.03 0.38

Consumer Goods 0.0272 0.0000 0.0454 0.73 15.61 0.03 -0.02 0.60

Consumer Services 0.0467 0.0000 0.0613 0.56 16.20 0.04 -0.03 0.76

Basic Materials 0.0346 0.0000 0.0808 0.26 18.06 0.05 -0.06 0.43

Utilities 0.0292 0.0000 0.0796 1.88 38.70 0.08 -0.05 0.37

Health Care 0.0455 0.0000 0.0960 -0.12 11.83 0.05 -0.06 0.48

Technology 0.0303 0.0000 0.0849 0.62 13.17 0.06 -0.03 0.36

Telecommunications 0.0313 0.0000 0.0967 1.06 23.31 0.06 -0.06 0.32

Oil & Gas 0.0309 0.0000 0.0504 1.03 18.11 0.03 -0.02 0.61

All-Pair Portfolio 0.0335 0.0051 0.0326 0.90 12.78 0.02 -0.01 1.03

This table presents descriptive statistics of excess returns for each industry group and the all-pair portfolio. We trade
according to the rule that opens a position in a pair one day after price spread diverges more than (1+α1−γ1α2) units
of historical standard deviation. Reported are the mean and median excess return (annualized), the (annualized)
standard deviation, skew, kurtosis, the maximum and minimum daily excess return and (annualized) Sharpe ratio.
The sample period is January 2000 to February 6th 2017.
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Table 3A: Summary statistics of excess returns to pairs portfolios after transaction costs

Sample Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Equal-weighted portfolios

Financials 0.0325 0.0000 0.0901 0.83 20.76 0.06 -0.05 0.36

Industrials 0.0157 0.0000 0.0834 0.80 22.25 0.07 -0.05 0.19

Consumer Goods 0.0314 0.0000 0.0942 0.69 17.56 0.06 -0.05 0.33

Consumer Services 0.0618 0.0000 0.1228 0.48 14.48 0.09 -0.06 0.50

Basic Materials 0.0470 0.0000 0.1643 0.07 18.49 0.09 -0.14 0.29

Utilities 0.0395 0.0000 0.1532 1.09 22.86 0.08 -0.05 0.27

Health Care 0.0428 0.0000 0.1163 -1.60 43.24 0.05 -0.14 0.37

Technology 0.0472 0.0000 0.1727 0.68 13.68 0.12 -0.07 0.27

Telecommunications 0.0282 0.0000 0.1299 1.35 26.32 0.10 -0.06 0.22

Oil & Gas 0.0487 0.0000 0.1054 0.62 19.31 0.07 -0.06 0.46

All-Pair Portfolio 0.0356 0.0000 0.0674 0.94 14.77 0.04 -0.03 0.53

This table presents descriptive statistics of excess returns net of transaction costs, for each industry group and the
all-pair portfolio. Transaction costs are estimated as one-half of the sum of the bid-ask spreads on both assets.
Reported are the mean and median excess return (annualized), the (annualized) standard deviation, skew, kurtosis,
the maximum and minimum daily excess return and (annualized) Sharpe ratio. The sample period is January 2000
to February 6th 2017.
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Table 4: Excess returns to alternative pairs trading: the switch of leadership

Sample Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: Equal-weighted portfolios

Financials 0.0533 0.0000 0.1395 1.09 19.12 0.09 -0.08 0.38

Industrials 0.0404 0.0000 0.1530 -0.36 18.89 0.08 -0.11 0.26

Consumer Goods 0.0443 0.0287 0.1182 -0.90 22.70 0.06 -0.11 0.37

Consumer Services 0.0575 0.0000 0.1055 0.46 10.28 0.05 -0.05 0.55

Basic Materials 0.0288 0.0000 0.1618 -0.28 19.74 0.09 -0.14 0.18

Utilities 0.0466 0.0000 0.1137 0.60 19.90 0.08 -0.07 0.41

Health Care 0.0511 0.0000 0.1306 0.07 20.70 0.08 -0.11 0.39

Technology 0.0276 0.0000 0.1509 0.40 12.91 0.07 -0.07 0.18

Telecommunications 0.0331 0.0000 0.1440 0.66 20.82 0.09 -0.07 0.23

Oil & Gas 0.0405 0.0000 0.1579 -0.25 14.72 0.09 -0.08 0.26

All-Pair Portfolio 0.0435 0.0000 0.0585 0.40 12.00 0.03 -0.02 0.74

Panel B: Value-weighted portfolios

Financials 0.0401 0.0000 0.0635 1.30 17.28 0.04 -0.03 0.63

Industrials 0.0230 0.0000 0.0737 -0.12 16.66 0.04 -0.05 0.31

Consumer Goods 0.0333 0.0117 0.0579 -0.41 18.23 0.03 -0.05 0.58

Consumer Services 0.0332 0.0000 0.0509 0.64 9.44 0.03 -0.02 0.65

Basic Materials 0.0141 0.0000 0.0809 -0.13 18.06 0.05 -0.07 0.17

Utilities 0.0264 0.0000 0.0574 0.83 21.64 0.04 -0.03 0.46

Health Care 0.0244 0.0000 0.0655 0.24 16.95 0.04 -0.05 0.37

Technology 0.0209 0.0000 0.0781 0.62 14.87 0.04 -0.03 0.27

Telecommunications 0.0211 0.0000 0.0719 0.73 19.90 0.04 -0.04 0.29

Oil & Gas 0.0200 0.0000 0.0787 -0.32 14.47 0.04 -0.04 0.25

All-Pair Portfolio 0.0253 0.0013 0.0278 0.79 9.24 0.01 -0.01 0.91

This table presents descriptive statistics of excess returns for each industry group and the all-pair portfolio. We trade

according to the rule that opens a position in a pair one day after price spread diverges more than (1+α1−γ1α2) units

of historical standard deviation. Contrary to portfolios in Table 3, the leadership is switched when establishing pairs

portfolios. That is, we use the price of follower to replicate the leader in this alternative trading rule. Reported are

the mean and median excess return (annualized), the (annualized) standard deviation, skew, kurtosis, the maximum

and minimum daily excess return and (annualized) Sharpe ratio. The sample period is January 2000 to February 6th

2017.
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Table 5: Summary statistics of excess returns to GGR portfolios

Sample Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: Equal-weighted portfolios

Financials 0.0685 0.0000 0.1854 0.43 11.14 0.12 -0.12 0.37

Industrials 0.0324 0.0000 0.0870 0.80 45.21 0.06 -0.05 0.37

Consumer Goods 0.0313 0.0000 0.0533 1.59 25.52 0.04 -0.02 0.59

Consumer Services 0.0688 0.0000 0.1430 2.22 40.89 0.22 -0.14 0.48

Basic Materials 0.0167 0.0000 0.0837 -0.82 28.88 0.09 -0.17 0.20

Utilities 0.0326 0.0000 0.0872 1.84 31.66 0.06 -0.04 0.37

Health Care 0.0461 0.0000 0.1017 0.21 54.89 0.09 -0.09 0.45

Technology 0.0403 0.0000 0.1797 1.79 27.40 0.13 -0.09 0.22

Telecommunications 0.0359 0.0000 0.1941 1.23 26.63 0.13 -0.12 0.19

Oil & Gas 0.0262 0.0000 0.0971 1.35 34.28 0.11 -0.07 0.27

All-Pair Portfolio 0.0335 0.0000 0.0445 1.83 27.95 0.03 -0.02 0.75

Panel B: Value-weighted portfolios

Financials 0.0415 0.0000 0.1021 0.06 29.57 0.10 -0.11 0.33

Industrials 0.0188 0.0000 0.0402 0.81 47.47 0.03 -0.02 0.62

Consumer Goods 0.0151 0.0000 0.0286 1.50 24.06 0.02 -0.01 0.81

Consumer Services 0.0387 0.0000 0.0790 2.25 37.90 0.11 -0.06 0.35

Basic Materials 0.0061 0.0000 0.0828 -0.87 28.83 0.04 -0.08 0.07

Utilities 0.0194 0.0000 0.0434 2.11 33.87 0.03 -0.02 0.45

Health Care 0.0567 0.0000 0.0805 0.57 22.22 0.06 -0.06 0.71

Technology 0.0158 0.0000 0.0918 1.84 29.36 0.07 -0.05 0.17

Telecommunications 0.0264 0.0000 0.1037 1.99 32.23 0.08 -0.05 0.25

Oil & Gas 0.0128 0.0000 0.0513 1.24 34.24 0.06 -0.04 0.20

All-Pair Portfolio 0.0206 0.0000 0.0249 1.69 21.80 0.01 -0.01 0.83

Panel C: Equal-weighted all-pair portfolios at two different thresholds

1.5 standard deviations 0.0313 0.0000 0.0463 1.71 25.50 0.03 -0.02 0.68

3 standard deviations 0.0173 0.0000 0.0386 1.54 38.96 0.03 -0.02 0.45

This table presents statistics of excess returns for industry groups and the all-pair portfolio under GGR. We trade

based on the rule that opens a position in a pair one day after price spread diverges over 2 standard deviations in

Panel A and B, while the same rule is applied but subject to 1.5 and 3 standard deviations in Panel C. Reported are

the mean and median excess return (annualized), the (annualized) standard deviation, skew, kurtosis, the maximum

and minimum daily excess return and (annualized) Sharpe ratio. The sample period is Jan. 2000 to Feb. 6th 2017.
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Table 6: VECM estimates and the model-derived trading trigger for pairs controlling book-to-market ratio

Sample 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Panel A: Estimated values of α1 and α2

Financials α1 -0.013 -0.041 -0.079 -0.146 -0.306

α2 0.001 0.005 0.014 0.030 0.076

Industrials α1 -0.023 -0.039 -0.067 -0.120 -0.312

α2 0.002 0.008 0.016 0.029 0.064

Consumer Goods α1 -0.023 -0.047 -0.090 -0.142 -0.200

α2 0.003 0.009 0.017 0.034 0.067

Consumer Services α1 -0.037 -0.052 -0.077 -0.122 -0.260

α2 0.006 0.009 0.016 0.026 0.052

Panel B: Estimated values of γ1

Financials 0.18 0.45 1.35 4.58 7.92

Industrials 0.19 0.45 0.94 2.68 10.08

Consumer Goods 0.40 0.74 1.54 2.96 7.03

Consumer Services 0.55 0.70 0.98 1.66 3.19

Panel C: Model-derived trading trigger 1 + α1 − γ1α2

Financials 0.63 0.80 0.88 0.93 0.96

Industrials 0.79 0.86 0.91 0.94 0.96

Consumer Goods 0.80 0.83 0.88 0.94 0.98

Consumer Services 0.80 0.86 0.91 0.93 0.96

This table presents the values of α1 and α2 obtained using the Johansen cointegration methodology in Panel A. The

percentiles for α1 are computed using the absolute values. Summary statistics of estimated values of γ1 are reported

in Panel B. Panel C presents the values of model-derived trading trigger 1 + α1 − γ1α2, which is computed using

the resulting VECM estimates. As the Johansen estimation and the following trading activities are conducted on a

rolling-window basis, these reported values are an average value computed from a series of numbers of each percentile.

The sample period is January 2000 to February 6th 2017.
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Table 7: VECM estimates and the model-derived trading trigger for pairs controlling trading volume

Sample 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Panel A: Estimated values of α1 and α2

Financials α1 -0.012 -0.036 -0.078 -0.152 -0.294

α2 0.001 0.004 0.012 0.029 0.077

Industrials α1 -0.021 -0.037 -0.063 -0.121 -0.252

α2 0.002 0.007 0.014 0.026 0.054

Consumer Goods α1 -0.030 -0.061 -0.091 -0.134 -0.189

α2 0.005 0.009 0.020 0.038 0.068

Consumer Services α1 -0.027 -0.039 -0.066 -0.090 -0.136

α2 0.006 0.008 0.015 0.022 0.036

Panel B: Estimated values of γ1

Financials 0.14 0.48 1.48 6.84 9.84

Industrials 0.20 0.43 0.89 2.92 10.67

Consumer Goods 0.37 0.82 1.69 3.27 7.87

Consumer Services 0.35 0.48 0.82 1.64 3.06

Panel C: Model-derived trading trigger 1 + α1 − γ1α2

Financials 0.65 0.80 0.89 0.93 0.97

Industrials 0.81 0.87 0.91 0.93 0.96

Consumer Goods 0.79 0.83 0.88 0.92 0.95

Consumer Services 0.81 0.87 0.91 0.94 0.96

This table presents the values of α1 and α2 obtained using the Johansen cointegration methodology in Panel A. The

percentiles for α1 are computed using the absolute values. Summary statistics of estimated values of γ1 are reported

in Panel B. Panel C presents the values of model-derived trading trigger 1 + α1 − γ1α2, which is computed using

the resulting VECM estimates. As the Johansen estimation and the following trading activities are conducted on a

rolling-window basis, these reported values are an average value computed from a series of numbers of each percentile.

The sample period is January 2000 to February 6th 2017.
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Table 8: Summary statistics of excess returns to equal-weighted pairs portfolios controlling common factors

Sample Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: Market capitalization

Financials 0.04 0.00 0.16 0.46 14.39 0.09 -0.06 0.26

Industrials 0.03 0.00 0.17 -0.16 11.66 0.07 -0.11 0.15

Consumer Goods 0.03 0.00 0.18 0.24 18.54 0.12 -0.13 0.18

Consumer Services 0.14 0.00 0.24 0.83 17.38 0.16 -0.13 0.56

Panel B: Book-to-market ratio

Financials 0.11 0.00 0.17 0.70 13.07 0.09 -0.08 0.65

Industrials 0.08 0.00 0.19 0.68 16.11 0.12 -0.09 0.40

Consumer Goods 0.09 0.01 0.13 0.27 8.76 0.07 -0.07 0.69

Consumer Services 0.12 0.00 0.19 0.33 12.54 0.11 -0.09 0.63

Panel C: Trading volume

Financials 0.10 0.00 0.17 0.68 14.58 0.09 -0.09 0.59

Industrials 0.06 0.00 0.17 0.30 11.10 0.09 -0.08 0.33

Consumer Goods 0.09 0.00 0.17 0.26 14.00 0.10 -0.10 0.55

Consumer Services 0.07 0.00 0.19 0.19 7.64 0.09 -0.06 0.40

This table presents descriptive statistics of excess returns for four industry groups, controlling three different funda-
mental factors. We trade according to the rule that opens a position in a pair one day after price spread diverges
more than (1 + α1 − γ1α2) units of historical standard deviation. Reported are the mean and median excess return
(annualized), the (annualized) standard deviation, skew, kurtosis, the maximum and minimum daily excess return
and (annualized) Sharpe ratio. The sample period is January 2000 to February 6th 2017.
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Figure 1: Price spreads between Air Liquide and BASF and pairs trading establishment

This figure illustrates how to perform pairs trading strategy using the cointegrated pair, Air Liquide and BASF,
during the period 2000-2009.
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Figure 2: Cumulative returns for industry pairs portfolios and the all-pair portfolio

This figure plots the cumulative excess returns of equal-weighted pairs portfolios over the period January 2000 to
February 6th 2017.
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Figure 3: The association of price leadership with trading volume of individual stocks

This figure shows, for each industry group, the percentage of leading assets in the price discovery process whose
average trading volume is higher than the follower, over the sample period January 2000 to February 6th 2017.
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