

SYLLABUS

Course	
Name	Advanced Materials
Code	DIM-OPT-640
Degree	Master in Industrial Engineering (MII)
Year	2
Semester	2
ECTS credits	3 ECTS
Character	Elective
Department	Mechanical Engineering
Area	Materials Science
Universidad	Pontificia Comillas
Coordinator	Juan Carlos del Real Romero

Instructor	
Name	Javier Munilla López
Departament	Ingeniería Mecánica
Área	Materials
Office	
e-mail	javier.munilla@ciemat.es
Phone	
Office hours	Arrange an appointment through email.

Instructor	
Name	Eva Paz Jiménez
Departament	Ingeniería Mecánica
Área	Materials
Office	
e-mail	epaz@comillas.edu
Phone	
Office hours	Arrange an appointment through email.

Instructor	
Name	Juan Carlos del Real-Romero
Departament	Ingeniería Mecánica
Área	Materials
Office	5th floor - Dirección
e-mail	delreal@comillas.edu
Phone	
Office hours	Arrange an appointment through email.

COURSE SPECIFICS

Context of the course

Contribution to the professional profile

This course will be an introduction to advanced materials based on ceramics, metals and polymers. An overview of applications and manufacturing methods will be provided while special focus will be put to polymeric matrix composites. The whole life cycle from raw material to a quality-controlled assembly will be studied, including general properties of materials, testing methods and NDT evaluation.

This course is designed to address important areas of composites that focus on current and potential applications of the advanced materials, fibers, matrices, manufacturing methods for composites, methods for determining mechanical properties of heterogeneous materials.

At the end of this course, student should be able to:

- Demonstrate understanding of materials. Fibers and matrices.
- A knowledge of processing and manufacturing methods of composite materials
- Quality inspection and testing.

Pre-requisites

There are no prerequisites that formally prevent this course. However, by being immersed in a postgraduate program, it is based on concepts that have been studied before in previous courses. Students are expected to have an understanding of basic materials science and engineering, strength of materials, or an equivalent course.

Computer and Technical Requirements. Microsoft Word and Microsoft PowerPoint are useful for writing reports and presentations.

Competences – Goals

Generic competences

- CG3. Knowledge of basic and technological subjects, which enables students to learn new methods and theories, and gives them versatility to adapt to new environments.
- CG4. Ability to solve problems with initiative, decision, creativity, and critical reasoning; and to communicate and transfer knowledge, abilities and skills in the field of Engineering.
- CG8. Apply the acquired knowledge to solve problems in new or unfamiliar environments within broader and multidisciplinary contexts
- CG11. Acquire learning skills that will allow further study in a self-directed or autonomous manner

Specific Competences and Learning Results¹

By the end of the course students should be able to:

- RA1. Understand the differences between the composites and traditional materials. Know the current and emerging applications of composites in the industry.
- RA2. Know the different types of matrix and its applications: polymer, metal and ceramic.
- RA3. Demonstrate understanding of the different materials (fibres, resins, cores) used in composites.
- RA4. Select the most appropriate manufacturing process for fabricating composite components.
- RA5. Describe the non-destructive inspection (NDE) and structural health monitoring of composites.
- RA6. Understand the relation between the design and manufacture of composite parts.

CONTENTS AND MODULES

Contents
1: Introduction to composite materials
1.1 Classifications, applications, terminology. Metallic, Ceramic and Polymeric Matrix
Composites.
2: Introduction to Material Mechanics
2.1 2. Materials properties.
2.2 Overview of different types of matrices, reinforcements, adhesives.
2.3 Prepegs, fillers and other additives
3: Manufacturing processes
3.1 Basic characteristics of manufacturing processes for polymeric matrix composites.
3.2 Hand lay-up, autoclave processing, compression molding, resin transfer molding
(RTM), pultrusion, and filament winding.
3.3 Overview of ceramic and metallic matrix composites manufacturing methods
4: Manufacturing parts and assemblies
4.1 Physical and chemical joints
4.2 Adhesives
5: Mechanical Testing of Composites
5.1 Strength determination test
5.2 Fracture test
6: Non destructive testing of composites
6.1 Introduction to NDT
6.2 Ultrasonics inspection
6.3 Thermography
6.4 Fiber Bragg gratings

¹ Learning results are observable indicators of the competences acquired, which allow assessing the degree of competence of the students. The competences are usually more general and abstract. Learning results are observable indicators of competences.

TEACHING METHODOLOGY

General methodological aspects

The best way to achieve a fundamental understanding of the basics of advanced materials, manufacturing processes and applications is a practical approach to this concepts. Both classroom sessions and independent study are developed to imply the students within the learning activities. The contents are developed to keep the student attention and following the competencies acquisition by the students.

In-class activities	Competences
Lectures and problem-solving sessions (24 hours) The lecturer will introduce the fundamental concepts of each chapter, along with some practical recommendations, and will go through worked examples to support the explanation. Active participation will be encouraged by raising open questions to foster discussion and by proposing short application exercises to be solved in class either on paper or using a software package.	CG8, CG11
Lab sessions (6 hours) Under the instructor's supervision, students, divided in small groups, will apply the concepts and techniques covered in the lectures to real problems and will become familiar with the most widespread software tools and libraries.	CG4, CG8, CG11
Tutoring For groups or individual students will be organized upon request.	
Non-Out-of-class activities	Competences
Personal study of the course material and resolution of the proposed exercises (30 hours)	CG8, CG11
Lab results analysis and report writing (10 hours).	CG11
Development of a final project during the last third of the course (20 hours).	CG4, CG8, CG11

SUMMARY OF THE STUDENT WORKING HOURS			
CLASSROOM ACTIVITIES			
Lectures	Practical lectures	Lab sessions	Assessment
16	4	6	4
NON-CLASSROOM ACTIVITIES			
Self study - Theory	Self study - practical	Lab report writing	Final project
20	10	10	20
		ECTS:	3.0 (90 hours)

EVALUATION AND GRADING CRITERIA

Evaluation	Grading criteria	Weight	
Mid-term exam	- Understanding of concepts		
	- Application of concepts to problem solving	20%	
	- Analysis and interpretation of problem results	2070	
Final exam	- Understanding of concents		
i mai cham	 Application of concepts to problem solving 	50%	
	- Analysis and interpretation of problem results	0070	
To pass the course you must get at least 4 out of 10 on the final exam			
Lab reports	- Application of theoretical concepts to real problem-		
	Ability to use and develop computer vision software	10%	
	- Written communication skills		
Final project	- Problem analysis		
	- Information search skills		
	- Quality of the proposed solution	20%	
	- Teamwork	2070	
	- Oral presentation and written communication skills		

Grading	
In-class activities	
Competences	

- Theory will account for 70%, of which:
 - Mid-term: 20%
 - Final exam: 50%
- Lab will account for the remaining 30%, of which:
 - Lab practices: 10%
 - Final project: 20%

In order to pass the course, the mark of the final exam must be greater or equal to 4 out of 10 points and the mark of the final project must be at least 5 out of 10 points. Otherwise, the final grade will be the lower of the two marks.

Retakes

A new project could have to be developed and handed in. In addition, all students will take a final exam. The resulting grade will be computed as follows:

- Final exam: 70%
- Final project: 30%

As in the regular assessment period, in order to pass the course, the mark of the final exam must be greater or equal to 4 out of 10 points and the mark of the final project must be at least 5 out of 10 points. Otherwise, the final grade will be the lower of the two marks.

Course rules

Class attendance is mandatory according to Article 93 of the General Regulations (Reglamento General) of Comillas Pontifical University and Article 6 of the Academic Rules (Normas Academicas) of the ICAI School of Engineering. Not complying with this requirement may have the following consequences:

- Students who fail to attend more than 15% of the lectures may be denied the right to take the final exam during the regular assessment period.
- Regarding laboratory, absence to more than 15% of the sessions can result in losing the

right to take the final exam of the regular assessment period and the retake. Missed sessions must be made up for credit.

Students who commit an irregularity in any graded activity will receive a mark of zero in the activity and disciplinary procedure will follow (cf. Article 168 of the General Regulations (Reglamento General) of Comillas Pontifical University).

WORK PLAN AND SCHEDULE

Non-classroom activities	Date
Mid-term exam	Week 9
Final exam	Мау
Review and self-study of the concepts covered in the lectures	After each lesson
Proposed problem solving	Weekly
Final project	Last month

REFERENCES AND RESOURCES

Basic references

• Notes prepared by the lecturer (available in Moodle).

Complementary references

- Composite Materials. Science and Engineering. K. Chawla. Springer (2002)
- Composites Manufacturing. Materials, Product and Process Engineering. S.K. Mazumdar. CRC Press (2000)
- Fiber-Reinforced Composites: Materials, Manufacturing, and Design, P. K. Mallick, 2nd edition, New York: Marcel Dekker, Inc. (1993).
- Introduction to Composite Materials Design, 2nd ed., Ever J. Barbero, CRC Press, (2011)
- Software: CES Edupack. Edition 2017.

² A detailed planning of the course may be found in the schedule. This planning is indicative and may change along the course