

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la as	ignatura
Nombre	Gestión de Operaciones
Código	AOI01
Titulación	Grado en Ingeniería Electromecánica
Curso	40
Cuatrimestre	10
Créditos ECTS	6 ECTS
Carácter	Básico
Departamento	Organización Industrial
Área	Estadística e Investigación Operativa
Universidad	Comillas
Horario	
Profesores	Sonja Wogrin, Francisco Alberto Campos, Félix Fernández, Pablo González Gascón, Diego Alejandro Tejada Arango
Descriptor	

Datos del prof	esorado
Profesor	Conduc
Nombre	Sonja Wogrin
Departamento	Organización Industrial
Área	Estadística e Investigación Operativa
Despacho	SM26. D-203
e-mail	sonja.wogrin@comillas.edu
Horario de	Previa petición por correo electrónico
Tutorías	Trong policion por control closus and
Profesor	
Nombre	Francisco Alberto Campos Fernández
Departamento	Instituto de Investigación Tecnológica
Área	Sistemas de Apoyo a la Decisión en el Sector de la Energía
Despacho	SM26. D-303
e-mail	acampos@upcomillas.es
Horario de	Previa petición por correo electrónico
Tutorías	
Profesor	
Nombre	Félix Fernández
Departamento	Organización Industrial
Área	Estadística e Investigación Operativa
Despacho	AA25. D-414
e-mail	felix.fernandezm@enel.com
Horario de	Previa petición por correo electrónico
Tutorías	
Profesor	
Nombre	Pablo González Gascón
Departamento	Organización Industrial
Área	Estadística e Investigación Operativa
Despacho	AA25. D-414
e-mail	pablo.gonzalezg@iberdrola.es
Horario de	Previa petición por correo electrónico
Tutorías	

Profesor	
Nombre	Diego Alejandro Tejada Arango
Departamento	Instituto de Investigación Tecnológica
Área	Sistemas de Apoyo a la Decisión en el Sector de la Energía
Despacho	SM26. Planta 3 ^a
e-mail	
Horario de	Previa petición por correo electrónico
Tutorías	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado en Ingeniería Electromecánica, esta asignatura pretende profundizar y ampliar los conocimientos de técnicas matemáticas de apoyo a la toma de decisiones.

Al finalizar el curso los alumnos dominarán la formulación y el modelado de problemas de optimización y decisión, conocerán las diferentes alternativas de modelado y las técnicas existentes para resolver modelos de investigación operativa. En particular se pretende conseguir que el alumno sea capaz de:

- Reconocer los diversos campos en los que se aplican técnicas de gestión de operaciones
- Modelar sistemas característicos de diferentes sectores empresariales mediante técnicas de gestión de operaciones
- Comprender y aplicar técnicas empleadas en la toma de decisiones que afectan al comportamiento de sistemas
- Analizar e interpretar las soluciones obtenidas de las distintas técnicas aplicadas
- Plantear y resolver modelos concretos de sistemas utilizando un lenguaje algebraico de modelado
- Analizar y sintetizar la información recibida y transmitir en forma adecuada, tanto en forma escrita como verbal, el contenido de la práctica de modelado realizada
- Aprender a trabajar en equipo en la realización de prácticas

Esta asignatura tiene un carácter mixto teórico-práctico por lo que a los componentes teóricos se les añaden los de carácter práctico, tanto la resolución de cuestiones numéricas como la realización de trabajos prácticos de modelado en los que se ejercitarán los conceptos estudiados.

Prerrequisitos

Conocimientos básicos de álgebra

Competencias - Objetivos Competencias Genéricas del título-curso CG3. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones. CG4. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial. CG7. Capacidad de analizar y valorar el impacto social y medioambiental de las soluciones técnicas. CG9. Capacidad de organización y planificación en el ámbito de la empresa, y otras instituciones y organizaciones. CG10. Capacidad de trabajar en un entorno multilingüe y multidisciplinar.

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

Las líneas básicas contenidas en el programa se articulan alrededor de los conceptos fundamentales del modelado de problemas de optimización y sus algoritmos de resolución.

BLOQUE 1: Modelado

Tema 1: GESTIÓN DE OPERACIONES

- 1.1 Las operaciones industriales y su gestión. Modelado de operaciones industriales.
- 1.2 Modelos de programación lineal, de programación entera, de programación no lineal.
- **1.3** Decisión multicriterio. Conjunto eficiente o de Pareto. Programación de compromiso y programación por metas.
- 1.4 Software de modelado.

BLOQUE 2: Algoritmos de solución

Tema 2: PROGRAMACIÓN LINEAL: MÉTODO SIMPLEX

- 2.1 Resolución gráfica. Geometría de la programación lineal.
- 2.2 Algoritmo del Simplex
- 2.3 Variables artificiales. Múltiples óptimos

Tema 3: DUALIDAD Y SENSIBILIDAD

- 3.1 Propiedades fundamentales de la dualidad
- 3.2 Interpretación económica
- 3.3 Análisis de sensibilidad numérico

Tema 4: PROGRAMACIÓN LINEAL ENTERA

4.1 Método de ramificación y acotamiento

BLOQUE 3: Teoría de la decisión

Tema 5: TEORÍA DE LA DECISIÓN

- 5.1 Teoría de la decisión. Decisión frente a incertidumbre. Procesos polietápicos
- **5.2** Teoría de juegos. Teorema de Nash. Juegos rectangulares de suma nula.

BLOQUE 4: Programación avanzada

Tema 6: PROGRAMACIÓN NO LINEAL

6.1 Problemas con y sin restricciones: condiciones de optimalidad. Condiciones necesarias y condiciones suficientes de Karush-Kuhn Tucker.

Tema 7: METAHEURÍSTICOS

7.1 Taxonomía. Algoritmos genéticos. Aplicaciones empresariales

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Con el fin de conseguir el desarrollo de competencias propuesto, la materia se desarrollará teniendo en cuenta la actividad del alumno como factor prioritario. Ello implicará que tanto las sesiones presenciales como las no presenciales promoverán la implicación activa de los alumnos en las actividades de aprendizaje.

Metodología Presencial: Actividades

- 1. Lección expositiva: El profesor explicará los conceptos fundamentales de cada tema incidiendo en lo más importante y a continuación se explicarán una serie de problemas tipo, gracias a los cuáles se aprenderá a identificar los elementos esenciales del planteamiento y la resolución de problemas del tema.
- 2. **Resolución en clase de problemas propuestos:** En estas sesiones se explicarán, corregirán y analizarán problemas análogos y de mayor complejidad de cada tema previamente propuestos por el profesor y trabajados por el alumno.
- 3. **Prácticas de modelado**. Se realizarán en grupos y en ellas los alumnos ejercitarán los conceptos y técnicas estudiadas, familiarizándose con el entorno material y humano del trabajo en el desarrollo de un modelo.

Metodología No Presencial: Actividades

- 1. Estudio individual y personal por parte del alumno de los conceptos expuestos en las lecciones expositivas.
- 2. Resolución de problemas prácticos que se corregirán en clase.
- 3. Resolución grupal de problemas propuestos.
- 4. Realización de una práctica de optimización que incluye la preparación y grabación de una presentación.

El objetivo principal del trabajo no presencial es llegar a entender y comprender los conceptos teóricos de la asignatura, así como ser capaz de poner en práctica estos conocimientos para resolver los diferentes tipos de problemas.

RESUMEN HORAS DE TRABAJO DEL ALUMNO									
HORAS PRESENCIALES									
Lección magistral	Lección magistral Resolución de Prácticas modelado Evaluación problemas								
33	7	4							
	HORAS NO PI	RESENCIALES							
Trabajo autónomo sobre contenidos teóricos	Trabajo autónomo sobre problemas	Realización de trabajos colaborativos	Trabajo autónomo sobre contenidos prácticos						
35	40	30	15						
		CRÉDITOS ECTS:	6 (180 horas)						

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	PESO
Realización de examen:	- Comprensión de conceptos.	
 Pruebas intermedias 	 Aplicación de conceptos a la 	
Examen Final	resolución de problemas.	70%
	 Análisis e interpretación de los 	
	resultados obtenidos.	
	alumnos tienen que tener al menos 4 pu	ntos sobre 10
en la not	a de exámenes de la asignatura.	
Realización de prácticas de	 Aplicación práctica de conceptos 	
optimización	de optimización.	
	 Capacidad de trabajo en grupo. 	20%
	 Presentación y comunicación oral 	
	y escrita.	
Participación en ejercicios y	 Participación activa en clase. 	
prácticas resueltos en clase.	 Aplicación de conceptos a la 	
	resolución de problemas.	10%
	 Análisis e interpretación de los 	1070
	resultados obtenidos.	
	- Presentación y comunicación oral.	

Calificaciones.

Calificaciones

La calificación en la **convocatoria ordinaria** de la asignatura se obtendrá como:

- Un 20 % la calificación de la práctica de optimización y su presentación en formato grabado.
- Un 10 % la calificación de la participación activa del alumno en la exposición de contenidos teóricos y en la resolución de problemas en clase y el control de asistencia a clase.
- Un 70 % la calificación de exámenes (20 % la calificación de pruebas intermedias y 50 % la del examen cuatrimestral). En cualquier caso para aprobar la asignatura se exigirá una calificación mínima de 4.0 en la calificación de exámenes.

Convocatoria Extraordinaria

- Un 20 % la calificación que obtuvo el alumno en su práctica de optimización.
- Un 10 % la calificación de la participación activa que obtuvo el alumno.
- Un 70 % la calificación del examen de la convocatoria extraordinaria.

PLAN DE TRABAJO Y CRONOGRAMA¹

Actividades no presenciales	Fecha de realización	Fecha de entrega
Lectura y estudio de los contenidos	Después de cada clase	

¹ En la ficha resumen se encuentra una planificación detallada de la asignatura. Esta planificación tiene un carácter orientativo y las fechas podrán irse adaptando de forma dinámica a medida que avance el curso.

teóricos en el material docente		
Resolución de los problemas propuestos	Semanalmente	
Asignación de la práctica de optimización	Semana 3	
Realización de la práctica de optimización	Semanas 4 y 5	Semanas 4 (preliminar) y 5 (final)
Realización de una presentación grabada de la práctica de optimización	Semana 12	
Preparación de examen final	Diciembre	

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- Frederick S Hillier, Gerald J Lieberman Introduction to Operations Research, 9/e. McGraw-Hill Higher Education. 2014
- A. Ramos, P. Sánchez, J.M. Ferrer, S. Wogrin. Modelos Matemáticos de Optimización. 2013.
 - (http://www.iit.upcomillas.es/aramos/simio/apuntes/a_mmo1a.pdf)
- A. Ramos, P. Sánchez, J.M. Ferrer, S. Wogrin. Modelos Matemáticos de Técnicas Específicas de Optimización. 2013.
 - (http://www.iit.upcomillas.es/aramos/simio/apuntes/a mmo2.pdf)

Bibliografía Complementaria

• Sarabia, A. La investigación operativa. Una herramienta para la adopción de decisiones. Universidad Pontificia Comillas. 1996

Material Complementario

- Presentaciones de teoría (http://www.iit.upcomillas.es/aramos/intro_simio.htm)
- Problemas resueltos (http://www.iit.upcomillas.es/swogrin/OM.htm)
- Exámenes resueltos (http://www.iit.upcomillas.es/swogrin/OM.htm)
- Prácticas de modelado (http://www.iit.upcomillas.es/swogrin/OM.htm)

FICHA RESUMEN

Ver páginas siguientes.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

Sesión	Contenido	Tema	Actividades Formativas Presenciales	Actividades Formativas No Presenciales	Entrega	Pres	No Pres	Comentarios para el Profesor
1	Presentación de la asignatura.	1	Lección expositiva			1		
2	Introducción a la optimización y modelado matemático. Definición de Investigación Operativa. Introducción histórica. Definición de optimización. Clasificación de métodos de optimización.	1	Lección expositiva	Estudio individual de contenidos teóricos		1	1	
3	Modelo y modelado. Etapas en el desarrollo de un modelo.	1	Lección expositiva	Estudio individual de contenidos teóricos		1	1	
4	Modelado en optimización lineal. Modelo de transporte. Modelo de transbordo. Modelo de asignación de tareas.	1	Lección expositiva	Estudio individual de contenidos teóricos		1	1	
5	Modelado en optimización lineal entera. Problema de la mochila. Problema de recubrimiento. Problema de empaquetado. Problema del viajante. Problema de coste fijo.	1	Lección expositiva	Estudio individual de contenidos teóricos		1	1	
6-8	Problemas de modelado en optimización.	1	Resolución en clase de problemas propuestos	Estudio individual y resolución de problemas propuestos	Entrega de problemas realizados individualmente	3	12	
9	Restricciones disyuntivas. Satisfacer k de N ecuaciones. Seleccionar entre N valores.	1	Lección expositiva	Estudio individual de contenidos teóricos		1	1	
10	Implicaciones sencillas. Equivalencias entre proposiciones lógicas.	1	Lección expositiva	Estudio individual de contenidos teóricos		1	1	

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

	Proposiciones lógicas complejas.							
11-13	Problemas de modelado en optimización.	1	Resolución en clase de problemas propuestos	Estudio individual y resolución de problemas propuestos		1	4	Asignación de prácticas de las prácticas de optimización.
14	Análisis de decisión multicriterio.	1	Lección expositiva	Estudio individual de contenidos teóricos		1	1	
15	Eficiencia de Pareto. Optimización multiobjetivo. Optimización por metas.	1	Lección expositiva	Estudio individual de contenidos teóricos		1	1	
16	Problemas de optimización multicriterio.	1	Resolución en clase de problemas propuestos	Estudio individual y resolución de problemas propuestos	Entrega de problemas realizados individualmente	1	3	
17	Prueba intermedia.					1	2	
18-21	Lenguajes algebraicos de modelado. Modelo de transporte escrito en GAMS.	1	Lección expositiva	Estudio individual de contenidos prácticos		4	1	
22	Ejecución y análisis de los resultados.	1	Lección expositiva	Realización de la práctica	Entrega preliminar de la formulación de la práctica de optimización	1	6	Recogida del informe prelimina de la práctica.
23	Optimización lineal.	2	Lección expositiva	Estudio individual de contenidos teóricos		1	1	
24	Hipótesis. Geometría. Propiedades. Algoritmo simplex. Solución gráfica. Forma estándar.	2	Lección expositiva	Escritura del informe de la práctica		1	2	
25	Öptimos múltiples.	2	Lección expositiva	Realización de la práctica	Entrega de los informes de la práctica de optimización	1	18	Recogida del informe final de la práctica.
26	Degeneración. Caracterización de las soluciones.	2	Lección expositiva	Estudio individual de contenidos teóricos		1	1	
27	Forma tabular.	2	Lección expositiva	Estudio individual de contenidos teóricos		1	1	
28	Obtención de solución básica inicial. Método	2	Lección expositiva	Estudio individual de contenidos		1	1	

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

	de las dos fases.			teóricos			
29	Problemas de optimización lineal.	2	Resolución en clase de problemas propuestos	Estudio individual y resolución de problemas propuestos	1	3	
30	Dualidad.	3	Lección expositiva	Estudio individual de contenidos teóricos	1	1	
31	Problema dual.	3	Lección expositiva	Estudio individual de contenidos teóricos	1	1	
32	Propiedades fundamentales de la dualidad. Interpretación económica. Interpretación gráfica de las variables duales y de los costes reducidos.	3	Lección expositiva	Estudio individual de contenidos teóricos	1	1	
33	Análisis de sensibilidad numérico.	3	Lección expositiva	Estudio individual de contenidos teóricos	1	1	
34	Análisis de sensibilidad numérico.	3	Resolución en clase de problemas propuestos	Estudio individual y resolución de problemas propuestos	1	1	
35	Optimización lineal entera. Método de ramificación y acotamiento.	4	Lección expositiva	Estudio individual de contenidos teóricos	1	1	
36	Optimización lineal entera. Método de ramificación y acotamiento.	4	Lección expositiva	Estudio individual de contenidos teóricos	1	1	
37	Prueba intermedia.				1	2	
38-40	Presentación oral de las prácticas de optimización.	4	Práctica de optimización	Preparación de la presentación de la práctica	3	3	
41	Teoría de la decisión. Criterios de decisión.	5	Lección expositiva	Estudio individual de contenidos teóricos	1	1	
42	Árboles de decisión.	5	Lección expositiva	Estudio individual de contenidos teóricos	1	1	
43	Análisis bayesiano.	5	Lección expositiva	Estudio individual de contenidos	1	1	

DEINGEN	IERIA						
				teóricos			
44-46	Problemas de Teoría de	5	Resolución en clase	Estudio individual	3	9	
	la decisión.		de problemas	y resolución de			
			propuestos	problemas			
				propuestos			
47	Teoría de juegos.	5	Lección expositiva	Estudio individual	1	1	
			·	de contenidos			
				teóricos			
48	Equilibrio en estrategias	5	Lección expositiva	Estudio individual	1	1	
	puras y mixtas.		· ·	de contenidos			
	' '			teóricos			
49	Equilibrio de Cournot.	5	Lección expositiva	Estudio individual	1	1	
	Equilibrio de Bertrand.			de contenidos			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			teóricos			
50-51	Problemas de Teoría de	5	Resolución en clase	Estudio individual	2	2	
	juegos.		de problemas	y resolución de	_	_	
	Jacgosi		propuestos	problemas			
			Frebrusses	propuestos			
52	Programación no lineal.	6	Lección expositiva	Estudio individual	1	1	
	Condiciones de			de contenidos			
	optimalidad.			teóricos			
53	Programación No	6	Lección expositiva	Estudio individual	1	1	
	Lineal. Condiciones			de contenidos			
	necesarias y suficientes			teóricos			
	de KKT			10011000			
54-55	Problemas de	6	Resolución en clase	Estudio individual	2	4	
	Programación No Lineal		de problemas	y resolución de	_		
			propuestos	problemas			
			propuestes	propuestos			
56	Metaheurísticos.	7	Lección expositiva	Estudio individual	1	1	
00	Taxonomía		2000.011 0.4000.1114	de contenidos			
TaxUIUIIIa			teóricos				
57	Metaheurísticos.	7	Lección expositiva	Estudio individual	1	1	
0.	Algoritmos genéticos.	•	2000ion oxpositiva	de contenidos		.	
	Aplicaciones			teóricos			
	empresariales			1.00000			
	Examen cuatrimestral.				3	10	
					60	120	
					00	120	