

e

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERÍA ELECTROMECANICA

ESPECIALIDAD ELECTRÓNICA

BACK-END DEVELOPMENT OF A
PROFINET-BASED DATA COLLECTOR

APPLICATION AND FINAL DEPLOYMENT

Autor: Germán Ferreira Peña

Director: José Daniel Muñoz Frías

R

Madrid

Julio 2018

 Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

BACK-END DEVELOPMENT OF A PROFINET-BASED DATA COLLECTOR APPLICATION

AND FINAL DEPLOYMENT

 en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2017/2018 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es plagio de otro, ni total

ni parcialmente y la información que ha sido tomada

de otros documentos está debidamente referenciada.

Fdo.: Germán Ferreira Peña Fecha: 19/07/2018

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: José Daniel Muñoz Frías Fecha: 19/07/2018

AUTORIZACIÓN PARA LA DIGITALIZACIÓN, DEPÓSITO Y DIVULGACIÓN EN RED DE PROYECTOS FIN

DE GRADO, FIN DE MÁSTER, TESINAS O MEMORIAS DE BACHILLERATO

1º. Declaración de la autoría y acreditación de la misma.

El autor D. GERMÁN FERREIRA PEÑA DECLARA ser el titular de los derechos de propiedad intelectual de la obra:

BACK-END DEVELOPMENT OF A PROFINET-BASED DATA COLLECTOR APPLICATION AND FINAL

DEPLOYMENT, que ésta es una obra original, y que ostenta la condición de autor en el sentido que otorga la Ley de

Propiedad Intelectual.

2º. Objeto y fines de la cesión.

Con el fin de dar la máxima difusión a la obra citada a través del Repositorio institucional de la Universidad, el

autor CEDE a la Universidad Pontificia Comillas, de forma gratuita y no exclusiva, por el máximo plazo legal y con

ámbito universal, los derechos de digitalización, de archivo, de reproducción, de distribución y de comunicación

pública, incluido el derecho de puesta a disposición electrónica, tal y como se describen en la Ley de Propiedad

Intelectual. El derecho de transformación se cede a los únicos efectos de lo dispuesto en la letra a) del apartado

siguiente.

3º. Condiciones de la cesión y acceso

Sin perjuicio de la titularidad de la obra, que sigue correspondiendo a su autor, la cesión de derechos

contemplada en esta licencia habilita para:

a) Transformarla con el fin de adaptarla a cualquier tecnología que permita incorporarla a internet y hacerla

accesible; incorporar metadatos para realizar el registro de la obra e incorporar “marcas de agua” o cualquier

otro sistema de seguridad o de protección.

b) Reproducirla en un soporte digital para su incorporación a una base de datos electrónica, incluyendo el derecho

de reproducir y almacenar la obra en servidores, a los efectos de garantizar su seguridad, conservación y preservar

el formato.

c) Comunicarla, por defecto, a través de un archivo institucional abierto, accesible de modo libre y gratuito a través

de internet.

d) Cualquier otra forma de acceso (restringido, embargado, cerrado) deberá solicitarse expresamente y obedecer a

causas justificadas.

e) Asignar por defecto a estos trabajos una licencia Creative Commons.

f) Asignar por defecto a estos trabajos un HANDLE (URL persistente).

4º. Derechos del autor.

El autor, en tanto que titular de una obra tiene derecho a:

a) Que la Universidad identifique claramente su nombre como autor de la misma

b) Comunicar y dar publicidad a la obra en la versión que ceda y en otras posteriores a través de cualquier medio.

c) Solicitar la retirada de la obra del repositorio por causa justificada.

d) Recibir notificación fehaciente de cualquier reclamación que puedan formular terceras personas en relación con

la obra y, en particular, de reclamaciones relativas a los derechos de propiedad intelectual sobre ella.

5º. Deberes del autor.

El autor se compromete a:

a) Garantizar que el compromiso que adquiere mediante el presente escrito no infringe ningún derecho de terceros,

ya sean de propiedad industrial, intelectual o cualquier otro.

b) Garantizar que el contenido de las obras no atenta contra los derechos al honor, a la intimidad y a la

imagen de terceros.

c) Asumir toda reclamación o responsabilidad, incluyendo las indemnizaciones por daños, que pudieran ejercitarse

contra la Universidad por terceros que vieran infringidos sus derechos e intereses a causa de la cesión.

d) Asumir la responsabilidad en el caso de que las instituciones fueran condenadas por infracción de derechos

derivada de las obras objeto de la cesión.

6º. Fines y funcionamiento del Repositorio Institucional.

La obra se pondrá a disposición de los usuarios para que hagan de ella un uso justo y respetuoso con los derechos del

autor, según lo permitido por la legislación aplicable, y con fines de estudio, investigación, o cualquier otro fin lícito.

Con dicha finalidad, la Universidad asume los siguientes deberes y se reserva las siguientes facultades:

➢ La Universidad informará a los usuarios del archivo sobre los usos permitidos, y no garantiza ni asume

responsabilidad alguna por otras formas en que los usuarios hagan un uso posterior de las obras no conforme con

la legislación vigente. El uso posterior, más allá de la copia privada, requerirá que se cite la fuente y se

reconozca la autoría, que no se obtenga beneficio comercial, y que no se realicen obras derivadas.

➢ La Universidad no revisará el contenido de las obras, que en todo caso permanecerá bajo la responsabilidad

exclusive del autor y no estará obligada a ejercitar acciones legales en nombre del autor en el supuesto de

infracciones a derechos de propiedad intelectual derivados del depósito y archivo de las obras. El autor renuncia a

cualquier reclamación frente a la Universidad por las formas no ajustadas a la legislación vigente en que los

usuarios hagan uso de las obras.

➢ La Universidad adoptará las medidas necesarias para la preservación de la obra en un futuro.

➢ La Universidad se reserva la facultad de retirar la obra, previa notificación al autor, en supuestos suficientemente

justificados, o en caso de reclamaciones de terceros.

Madrid, a 19 de Julio de 2018

ACEPTA

Fdo………………………………………………

Motivos para solicitar el acceso restringido, cerrado o embargado del trabajo en el Repositorio Institucional:

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERÍA ELECTROMECANICA

ESPECIALIDAD ELECTRÓNICA

BACK-END DEVELOPMENT OF A
PROFINET-BASED DATA COLLECTOR

APPLICATION AND FINAL DEPLOYMENT

Autor: Germán Ferreira Peña

Director: José Daniel Muñoz Frías
R

Madrid

Julio 2018

DESARROLLO BACK-END DE UNA APLICACIÓN DE

ADQUISICIÓN DE DATOS BASADA EN PROFINET E

IMPLEMENTACIÓN FINAL

Autor: Ferreira Peña, Germán.

Director: Muñoz Frías, Jose Daniel.

Entidad Colaboradora: Siemens CT

RESUMEN DEL PROYECTO

Introducción

El presente proyecto forma parte de un proyecto más amplio, que consiste en el

desarrollo de una solución software para poder adquirir información de los dispositivos

conectados a una red PROFINET de tal forma que:

- El inventario de los dispositivos PROFINET sea transparente: esto significa que

se puedan conocer los dispositivos conectados a la red, obteniendo cierta

información para identificarlos y comprobar su configuración de red.

- Conocer el estado de salud de los dispositivos con el fin de facilitar sus

actividades de mantenimiento.

Actualmente existen soluciones software en el mercado que proporcionan una lista que

contiene los dispositivos conectados a una red PROFINET. Algunas de las soluciones

más significativas son SolarWinds Network Performance Monitor [1], Siemens

PRONETA [2] y SIMATIC Automation Tool [3]. Sin embargo, estos programas tan

solo proporcionan información básica sobre estos dispositivos, de modo que para

conocer su estado de salud es necesario utilizar otras aplicaciones especializadas y

conectar cada dispositivo a un ordenador con un cable Ethernet. Por ello, es necesario el

desarrollo de una aplicación que permita obtener el estado de salud de los dispositivos

de la red de forma centralizada.

Este proyecto trata el desarrollo del componente de adquisición de datos de la

aplicación, que obtiene toda la información necesaria de los dispositivos de la red para

su posterior análisis; la creación de una plataforma para testear la aplicación y crear una

solución para que el cliente final pueda instalar la aplicación.

Metodología

La metodología que se siguió en la realización del proyecto fue:

En primer lugar, se desarrolló el componente de adquisición de datos para la aplicación

(ver Figura 1). Para programarlo, se usó el lenguaje C#, Visual Studio Professional 2015

y la API de SAT. Se programó el componente para cumplir con las prestaciones y nivel

de seguridad requeridos en una aplicación de uso industrial. Además, se diseñó una

parte del componente que permite obtener datos de los dispositivos por protocolo

SNMP [4] con el fin de verificar la información.

Figura 1: Arquitectura de la aplicación

Figura 2: Diagrama de objetos del componente de recogida de datos

Una vez completado el componente (Figura 2), se diseñó una plataforma para realizar

pruebas de funcionamiento de la aplicación y se realizaron diversas pruebas. Para ello,

se estudiaron diferentes herramientas compatibles con Visual Studio 2015 y finalmente,

se realizó un test de integración del programa utilizando las herramientas del propio

IDE.

Por último, se creó una solución para implementar el software en los ordenadores de

posibles usuarios finales considerando diferentes sistemas operativos y configuraciones.

Para ello se estudiaron diferentes herramientas para su desarrollo y se implementó

utilizando Inno Setup y SIT.

Resultados

El componente de adquisición de datos que se desarrolló cumple con las prestaciones

requeridas por el proyecto. Su diseño es modular, por lo que es posible reutilizar este

componente en futuros desarrollos de esta aplicación u otras aplicaciones que requieran

esta funcionalidad.

Con respecto a la plataforma de pruebas, su puesta en marcha permitió encontrar y

depurar errores de la aplicación, así como mejorar la integración de los componentes.

Finalmente, se creó un instalador que cumple con los requisitos del cliente.

Conclusiones

Desde el punto de vista del desarrollo del componente de adquisición de datos, C# es un

lenguaje ideal para desarrollar aplicaciones de este estilo, ya que posee capacidades de

manejar memoria de forma automática y además permite tratar las excepciones y fallos

del código de una forma más accesible.

Por otra parte, el diseño de la arquitectura de la aplicación conectando los componentes

por medio de interfaces permite dividir las funciones de los componentes de forma clara

y concisa.

Con respecto a la plataforma de pruebas, su diseño y utilización resultaron útiles durante

el desarrollo de el presente proyecto y el resto de los componentes de la aplicación, ya

que permitió detectar fallos y mejorar la integración de la aplicación. Como

consecuencia, la calidad de la aplicación mejoró.

Finalmente, el instalador de la aplicación resulta crucial desde el punto de vista del

cliente, ya que supone su primer contacto con el software. Es importante que el proceso

de instalación y desinstalación sea automatizado independientemente de la

configuración del ordenador del usuario.

Referencias

[1] Solarwinds, [Online]. Available: https://www.solarwinds.com/topics/network-

device-scanner.

[2] Siemens AG, [Online]. Available:

https://support.industry.siemens.com/cs/document/67460624/proneta-2-4-0-44-

commissioning-and-diagnostics-tool-for-profinet?dti=0&lc=en-WW.

[3] Siemens, [Online]. Available:

https://support.industry.siemens.com/cs/document/98161300/simatic-automation-tool-

la-herramienta-de-puesta-en-marcha-y-operación-de-mantenimiento-para-los-módulos-

simatic-?dti=0&lc=es-WW.

[4] Paessler, "How do SNMP, MIBs and OIDs work?," 2010. [Online]. Available:

https://kb.paessler.com/en/topic/653-how-do-snmp-mibs-and-oids-work.

https://www.solarwinds.com/topics/network-device-scanner
https://www.solarwinds.com/topics/network-device-scanner
https://support.industry.siemens.com/cs/document/67460624/proneta-2-4-0-44-commissioning-and-diagnostics-tool-for-profinet?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/67460624/proneta-2-4-0-44-commissioning-and-diagnostics-tool-for-profinet?dti=0&lc=en-WW

BACK-END DEVELOPMENT OF A PROFINET-BASED DATA

COLLECTOR APPLICATION AND FINAL DEPLOYMENT

PROJECT SUMMARY

Abstract

The present thesis is part of an application which consists of the development of a

software solution to gather information of devices connected to a PROFINET network

in order to:

- Know the installed base of PROFINET devices. This involves gathering enough

information to identify them and check their connectivity settings.

- Determine health status of the devices in order to ease maintenance activities.

Currently there are some software solutions available that provide a list containing all

the devices connected to a certain PROFINET network. The most remarkable solutions

are SolarWinds Network Performance Monitor [1], Siemens PRONETA [2] and

SIMATIC Automation Tool [3]. However, these solutions only provide basic

information about the connected devices. In order to determine health status of the

devices it is required to use specialized software and connect each device to a computer

using an Ethernet interface. From this point arises the need of a centralized solution

that can provide plant transparency (knowing the devices connected to the PROFINET

network) and health status of the installed base.

The present Thesis describes the development of the data collector component of the

application. This component is in charge of gathering all necessary information from

PROFINET devices for further analysis. A testing platform was created for the whole

application including Collector, and a deployment solution was implemented for the

final user.

Methodology

The methodology followed during the development of the present Thesis is depicted

below:

First, the application Collector component was developed (see app architecture in

Figure 1). The component was coded in C# using the SAT API and Visual Studio

Professional 2015 was used as the project IDE. The component was coded to achieve

the required specifications including software security for industrial purposes.

Moreover, an entity that can verify device data using SNMP [4] protocol was

developed.

Figure 1: Application architecture

Figure 2: Collector component object diagram

When the Collector development stage was completed (Figure 2), a testing framework

was designed. Testing tools compatible with Visual Studio 2015 were analyzed in order

to add them to the testing framework. As a result, it was concluded that Visual Studio

testing capabilities were suitable to run integration and module tests.

Finally, a deployment solution was created. This solution is aimed for the final users of

the application who could install it in their computers. The installer had to consider

different machine configurations to deploy the application automatically. Some

deployment development solutions were considered and the installer was implemented

using Inno Setup and SIT.

Results

The Collector component fulfilled the features required by the project. Its modular

design makes it possible to reuse this component in future developments of the present

application or in other applications that require Collector functionalities.

The testing framework supported the application development, because tests discovered

bugs that were corrected in time, and it improved application integration.

Finally, regarding deployment, the solution that was developed in the present thesis

fulfilled client requirements.

Conclusions

Regarding Collector development, C# is the best language to develop applications like

the presented in this Thesis, because it provides automatic memory management

capabilities, and exception and fault handling capabilities.

Additionally, connecting application components with interfaces allows to split

component responsibilities in order to have a clear and concise architecture.

Regarding the testing framework, its design and usage were successful during the

development of the present project and the rest of the app components because bugs

were found in time and it helped to integrate the application parts. As a result, the

quality of the software was increased.

Lastly, the application installer is crucial from the customer point of view. It is essential

that the installation and uninstallation process is automatic, regardless of final user´s

computer configuration. It represents the first and the final interaction with the software.

References

[1] Solarwinds, [Online]. Available: https://www.solarwinds.com/topics/network-

device-scanner.

[2] Siemens AG, [Online]. Available:

https://support.industry.siemens.com/cs/document/67460624/proneta-2-4-0-44-

commissioning-and-diagnostics-tool-for-profinet?dti=0&lc=en-WW.

[3] Siemens, [Online]. Available:

https://support.industry.siemens.com/cs/document/98161300/simatic-automation-tool-

la-herramienta-de-puesta-en-marcha-y-operación-de-mantenimiento-para-los-módulos-

simatic-?dti=0&lc=es-WW.

[4] Paessler, "How do SNMP, MIBs and OIDs work?," 2010. [Online]. Available:

https://kb.paessler

https://www.solarwinds.com/topics/network-device-scanner
https://www.solarwinds.com/topics/network-device-scanner
https://support.industry.siemens.com/cs/document/67460624/proneta-2-4-0-44-commissioning-and-diagnostics-tool-for-profinet?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/67460624/proneta-2-4-0-44-commissioning-and-diagnostics-tool-for-profinet?dti=0&lc=en-WW

TABLE OF CONTENTS

I

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Table of contents

Part I Thesis .. 9

Chapter 1 Introduction .. 11

1.1 Existing technologies ... 12

1.1.1 SolarWinds Network Performance Monitor ... 12

1.1.2 Siemens PRONETA 2.4 ... 13

1.1.3 SIMATIC Automation Tool ... 14

1.1.4 Software Comparison ... 14

1.2 Incentive ... 15

1.3 Objectives ... 15

1.3.1 Collector Component ... 16

1.3.2 Test Framework ... 16

1.3.3 Application Deployment .. 16

1.4 Methodology ... 16

1.5 Tools to use ... 18

1.6 Introduction ... 19

Chapter 2 Back End Development .. 21

2.1 Overview... 21

2.2 Interfaces and component relations ... 23

2.2.1 Components ... 23

2.2.2 Imported Functionality ... 24

2.2.2.1 Result Class .. 24

2.2.2.2 Network Class .. 24

2.2.2.3 IDeviceCollection Interface .. 25

2.2.2.4 IDevice Interface .. 25

2.2.2.5 IPLC Interface .. 25

TABLE OF CONTENTS

II

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

2.2.3 Exported Functionality ... 26

2.3 Performance Requirements .. 26

2.3.1 Thread Abortion ... 29

2.4 Data Processing .. 30

2.5 Communication protocols ... 32

2.5.1 SNMP Protocol .. 32

2.5.2 UDP Protocol ... 36

2.5.3 IP .. 36

2.5.4 ‘Sniffer’ Implementation .. 37

2.5.4.1 SnmpSharpNet ... 37

2.5.4.2 SNMP Library .. 38

2.5.4.3 SocketClass (.NET framework) .. 39

2.5.4.4 Development .. 41

2.5.5 Actual Implementation ... 43

2.5.6 String Data Processing ... 45

2.6 Fault and Exception Handling ... 46

Chapter 3 Testing Framework .. 51

3.1 Overview... 51

3.2 Testing Framework ... 53

3.2.1 Test Tools ... 53

3.2.2 Continuous Integration Tool .. 55

3.3 Code Design .. 55

3.3.1 Faking and Mocking classes .. 57

3.4 Integration Testing .. 59

3.4.1 Tests Structure.. 59

3.5 Collector Module Testing.. 60

Chapter 4 Application Deployment ... 63

4.1 Overview... 63

4.2 Tool Selection ... 64

4.2.1 Analysis of Alternatives ... 65

4.3 Inno Setup Approach .. 69

TABLE OF CONTENTS

III

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

4.4 Siemens Installer Tool Approach ... 71

4.4.1 Tool Architecture ... 71

4.4.2 Building process ... 73

4.4.2.1 Creating .msi installer ... 74

4.4.2.1.1 General Configuration .. 75

4.4.2.1.2 Component definition ... 78

4.4.2.1.3 Development strategy ... 79

4.4.2.2 “Wrapping” MSI into SIT .. 81

Chapter 5 Results ... 83

Chapter 6 Conclusions ... 85

6.1 Back-End Conclusions .. 85

6.2 Testing Platform Conclusions .. 85

6.3 Deployment Conclusions ... 85

Chapter 7 Future Development ... 87

References 89

Part II Budget ... 93

Chapter 1 Measurements ... 95

1.1 Equipment Measurements .. 95

1.2 Software Measurements .. 95

1.3 Direct Labor Measurements ... 96

Chapter 2 Unit Prices .. 97

2.1 Equipment Unit Prices .. 97

2.2 Software Unit Prices .. 97

2.3 Direct Labor Hourly Prices .. 98

Chapter 3 Partial Budgets ... 99

3.1 Equipment Budget ... 99

3.2 Software Budget .. 99

TABLE OF CONTENTS

IV

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

3.3 Direct Labor Partial Budget ... 100

Chapter 4 General Budget ... 101

List of Figures

V

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

List of Figures

Figure 1: Waterfall approach. .. 17

Figure 2: Basic High Level architecture .. 22

Figure 3: Simplified Collector Object Diagram .. 27

Figure 4: Device Data types layout ... 31

Figure 5: SNMP Protocol Encapsulation Overview. ... 33

Figure 6: SNMP Network Layout ... 33

Figure 7: OID tree. .. 35

Figure 8: SNMP Packet format. .. 36

Figure 9: IP Packet Description ... 37

Figure 10: Sniffer process diagram ... 43

Figure 11: Actual Implementation Diagram ... 44

Figure 12: Exception UML diagram ... 48

Figure 13: Testing frameworks layout. ... 52

Figure 14: Testing Diagram .. 52

Figure 15: Code Architecture Evolution ... 57

Figure 16: Mocking interface implementation .. 58

Figure 17: Type encapsulation .. 59

Figure 18: Module Testing Overview ... 61

Figure 19: Tool Structure .. 71

Figure 20: Siemens Installer Tool Interfaces. ... 73

Figure 21: MSI creator Tool architecture. ... 74

Figure 22: MSI installer development process .. 80

List of Tables

VII

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

List of Tables

Table 1: Comparison between tools available on the market 15

Table 2: Sprint Plan of the Project .. 17

Table 3: Location of API in the communication layers .. 39

Table 4:VS Test features comparison Extracted from: [13] 54

Table 5: Studied Tools version .. 65

Table 6: Tool feature comparison ... 66

Table 7: Equiment Measurements ... 95

Table 8: Software Measurements .. 95

Table 9: Direct Labor Measurements .. 96

Table 10: Equiment Unit Prices .. 97

Table 11: Software Unit Prices ... 97

Table 12: Direct Labor Hourly Prices ... 98

Table 13: Equipment Partial Budget ... 99

Table 14: Software Partial Budget .. 99

Table 15: Direct Labor Partial Budget .. 100

Table 16: General Budget .. 101

List of Tables

VIII

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Thesis

9

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Part I THESIS

Introduction

11

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 1 INTRODUCTION

Due to the large number of devices that are present in an industrial PROFINET

Network, it is interesting to access certain information about the installed base.

The most remarkable topics regarding this information are:

- Plant transparency: knowing which devices are connected to the network

and getting some basic information about them in order to identify and

check their connectivity configuration.

- Health status: knowing the status of the different devices in order to

facilitate maintenance activities.

In order to obtain this information, there are some centralized (meaning from a

unique computer) software solutions that provide the list of devices connected to a

PROFINET network. The most significant software apps that are currently in the

market are described in 1.1. However, these solutions only gather basic

information about the installed base. In order to determine the health status of a

device, it requires to connect it directly to a computer with specialized

manufacturer applications.

Because of the large number of devices present on a PROFINET network,

connecting each device to a computer via Ethernet interface is a tedious process.

Even sometimes can be hazardous because of the environment where the devices

are present.

A solution is being developed to tackle the problems exposed above. From that,

arises the present Master Thesis.

The current Thesis encompasses developing the Collector part of the software,

which oversees gathering all necessary information from the devices; creating a

testing platform for the whole application and providing a deployment solution to

distribute the application to the final clients.

Introduction

12

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

1.1 EXISTING TECHNOLOGIES

Due to the scope of the present thesis, the study of existing technologies will be

focused on PROFINET Device scanner software solutions.

As stated in Chapter 1, these solutions retrieve limited information about the

devices. Moreover, they are mostly focused on the analysis of network

performance.

1.1.1 SOLARWINDS NETWORK PERFORMANCE MONITOR

This tool is intended to be a network analyzer [1] that has several features to use

for network management activities. Regarding the scanner part of the software,

this application uses Simple Network Management Protocol (SNMP) to discover

devices on the network.

SNMP protocol has the advantage that it is compatible with equipment from

different vendors. Therefore, the tool will discover all the devices that answer to

SNMP requests.

The discovery functionality of this application scans the network for nodes. When

nodes are found, it is possible to add them to a database to monitor them.

Monitoring of network nodes is based on retrieving information via SNMP to

ensure that certain device parameters (e.g. Temperature, Fan Speed…) are within

limits. To initialize the discovery process, it is necessary to provide IP ranges,

subnets or IP addresses of the devices.

This tool is a commercial software. Its license price starts at $2,895.

Introduction

13

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

1.1.2 SIEMENS PRONETA 2.4

PRONETA [2] is a free tool for the analysis and configuration of PROFINET

networks with special support for ET 200 distributed IO. It has a feature called IO

Test which can provide support of a plant's wiring, providing the necessary

documentation.

Siemens PRONETA supports the diagnosis and commissioning of PROFINET

networks in automation systems by providing the following features:

• Topology overview, which automatically scans PROFINET networks and

displays all connected devices. The list of all connected devices can be

exported, including the details of all electronic modules. PRONETA

allows for configuring components and comparing between the actual

installation and a reference plant.

• IO Test for the rapid test of the wiring and module configuration of the

components. By reading and writing inputs and outputs, PRONETA

ensures that the connections between distributed IO components and their

sensors and actuators have been set up properly. PRONETA can create test

profile templates and save test protocols to document test results.

• All tasks can be accomplished even before a CPU has been linked up to

the network. Since no further engineering tools besides PRONETA and no

dedicated hardware are required, PRONETA facilitates a quick and

comfortable check of a plant configuration at an early stage.

Introduction

14

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

1.1.3 SIMATIC AUTOMATION TOOL

This is another tool provided by Siemens AG. However, this tool is not freeware.

It provides the following features [2]. Some of them are only available to Siemens

devices (CPUs, HMIs, IO and others):

• Scans a PROFINET/Ethernet network and identifies all the devices

connected to the network.

• Can make either LEDs of equipment or HMI screens flash to physically

locate devices.

• Creates a table that maps all accessible devices of the network.

• Assigns addresses (IP, subnet and gateway) and PROFINET Name of the

node.

• Sets current time of the PG/PC as time in a CPU.

• Loads programs to a CPU or HMI device.

• Erases CPU memory.

• Backups/Restores CPU data files to/from a backup file.

• Loads service data from a CPU.

• Reads diagnostics register from a CPU.

• Restores default configuration of a CPU.

• Updates CPU and modules Firmware.

• Loads, downloads and erases Recipes data (these data are stored in a

SMC) of a CPU.

• Loads or erases data from log files (storage in a SMC) of a CPU.

• Writes documentation about network configuration and saves it in:

o .csv file.

o .sat file encrypted and protected by a password.

All CPU features can be utilized in parallel with several CPUs at the same time.

1.1.4 SOFTWARE COMPARISON

To sum up, on Table 1 the different tools that are available on the market are

compared regarding capabilities and price:

Introduction

15

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

 License
Network

analysis

Installed base

transparency

Device

diagnostics

SolarWinds Commercial Performance YES NO

PRONETA Free Wiring YES NO

SAT Commercial NO YES YES

Table 1: Comparison between tools available on the market

1.2 INCENTIVE

As mentioned in the introduction, plants and industries present a large collection

of devices connected to PROFINET Networks. This collection is difficult to

manage, and a centralized software solution is ideal to deal with populated

networks.

The application customer looks for a solution that gives transparent information

about the installed devices and their health status.

This solution will improve maintenance of the plant, therefore helping to prevent

failures and operation shutdowns. As consequences, maintenance costs are

reduced, managing maintenance is easier and plant productivity is increased.

1.3 OBJECTIVES

As stated in Chapter 1, the aims of this project are:

- Develop the Collector component.

- Design and implement a testing framework for the application.

- Create a redistributable package (app deployment).

Introduction

16

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

In the following subchapters, the features of each part are listed.

1.3.1 COLLECTOR COMPONENT

1. Gather devices connected to the network.

2. Locate devices: physically detect devices of the PROFINET network.

3. Get status information to determine devices health condition.

4. Time requisites: the Collector operation must be controlled by an

asynchronous timer.

1.3.2 TEST FRAMEWORK

1. Unit testing and module testing.

2. Continuous integration testing.

1.3.3 APPLICATION DEPLOYMENT

1. Develop a redistributable package that meets customer requirements.

2. Integration of the package in the company installation framework.

1.4 METHODOLOGY

As this master thesis is based on software, a software development model is going

to be followed. The chosen model is the waterfall approach that is shown in

Figure 1:

Introduction

17

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 1: Waterfall approach.

Source: http://www.mikesmart.com/application_development/waterfall_method.htm

The Implementation stage splits into several sprints to fully develop the two-week

features in time. The estimated task plan is presented in Table 2:

Sr.No. Tasks
12-
mar

19-
mar

26-
mar

02-
abr

09-
abr

16-
abr

23-
abr

30-
abr

07-
may

14-
may

21-
may

28-
may

 Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6

1 Basic Info.

2 Locate Device.

3 Status Info.

4 App License.

5 Integration Test.

6 Deployment Dev.

Table 2: Sprint Plan of the Project

• Feature 1 aims to gather basic information about PROFINET devices such

as Name, MAC and IP addresses, subnet mask…

• Feature 2 allows to physically locate the device using a functionality

derived from PROFINET protocol.

• Feature 3 aims to gather detailed information from devices. This

information is provided to other components of the application in order to

determine health status information.

http://www.mikesmart.com/application_development/waterfall_method.htm

Introduction

18

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

• Feature 4 integrates a module to run the application within a user license.

• Task 5 implements an integration test for the whole application.

• Task 6 consists of developing an installer solution for the application.

1.5 TOOLS TO USE

For the execution of this project, the following Hardware and Software tools are

required:

• Hardware

o PC: the computer must run Windows OS.

o PROFINET Devices base: a test base, containing different

PROFINET devices such as PLCs, HMIs, Motor controllers and IO

devices.

o PROFINET Network: the devices mentioned above must be

connected to a real PROFINET network to perform testing and

analyzing performance of the application.

• Software

o Microsoft Visual Studio 2015 Professional: this software will be

the IDE of the application.

o VMWare: this software will provide virtual environment

capabilities to execute another operating system in the PC. The aim

of using a virtual environment is to test and simulate either the

application or the deployment software in a different OS without

harming registry or configuration files of the non-virtual machine.

o SAT: this third-party software provides a C# API that provides

capabilities to communicate with PROFINET Devices.

o Deployment application: the project will use an external

application to create a redistribute package to the final customers.

Introduction

19

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

1.6 INTRODUCTION

In order to ease the read of the present thesis, this section gives a brief description

about the following chapters:

• Chapter 2 describes the development of the Collector component of the

application. This chapter explains the architecture of the component and

how its required capabilities are implemented.

• Chapter 3 presents the testing framework of the application and explains

integration testing and module testing of the Collector component.

• Chapter 4 explains the process of developing an installer solution using a

freeware and a proprietary tool.

• Chapter 5 presents the achievements made during this project.

• Chapter 6 states some conclusions about the executed tasks.

• Chapter 7 presents some future developments based on the present thesis.

Introduction

20

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Back End Development

21

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 2 BACK END DEVELOPMENT

2.1 OVERVIEW

 As stated in Chapter 1, the Collector component is in charge of gathering the data

of the PROFINET network devices. Deepening in the previous functionality, the

Collector is the component responsible for:

➢ Configuring a network interface: this functionality means that it is possible

to view all the network adapters installed on the machine. The user will be

able to select one of them and then the Collector will set it during runtime

and validate it.

➢ Scanning the network: the component scans the PROFINET Network

connected to the selected and validated adapter. Once the scan has been

completed, a list stores the installed devices in the Network with the

gathered information. This information is sent to other components of the

software, which process these data in order to determine the health status

of the devices.

➢ Using two different channels as source: in order to ensure that the

information that is being communicated between the devices and the

computer is reliable, the component also makes a double-check of the

information. To do that, the data Collector connects to the devices after the

scan using socket communication and sends SNMP protocol requests.

These requests will return data fields that will be used to make the double-

check.

➢ Threading and timing: the component must be executed with a certain

frequency that the user can select through the UI. To improve

responsiveness of the app, the component must be executed in a new

thread.

➢ Data formatting: the information retrieved from devices needs to be

processed to be sent to the rest of the components of the app (mainly

database and core).

Back End Development

22

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 2: Basic High Level architecture

Figure 2 represents the high-level design of the components involved in the

Collector and the present thesis purpose. According to the presented architecture,

users interact with the app through a web interface. This web interface uses REST

APIs to interact with the application and the database.

Back End Development

23

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

2.2 INTERFACES AND COMPONENT RELATIONS

As seen in 2.1, the Collector will interact with the actual installed base of

PROFINET Devices, the core and the database of the application.

The application architecture isolates its components by using programming

interfaces. This ensures that each component of the software has a single

functionality, which cannot be modified by an external software part.

The use of programming interfaces is not only used in the internal structure of the

application, but also the Collector component uses interfaces to communicate with

the PROFINET devices. These interfaces are:

• SAT: this tool provides an Application Programming Interface, which

contains high level methods, properties and self-defined types to interact

with PROFINET devices without having to implement low-level protocols

and hardware communication.

• ISnmp: this interface is defined and implemented in the present Master

Thesis. ISnmp is in charge of the double-checking functionality that was

described in 2.1. The interface provides methods to communicate and get

certain information of the devices for that purpose. The functionality of the

interface will be explained in depth in 2.5.5.

2.2.1 COMPONENTS

The relation between the Collector and other parts of the application was stated in

2.1 and 2.2. This section will focus on describing these connections. The depth of

descriptions is constrained by confidentiality reasons of the Project.

▪ Core: core can get processed data from Collector for health status analysis.

The interface provides methods to send the installed base information to

the component.

▪ Database: there are methods to read configuration data that will be used to

authorize Collector to execute its task. Configuration parameters depend

on the user preferences and can be changed using the UI. Available

configuration parameters that affect Collector functionality are:

Back End Development

24

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

o Network adapter: the user will select one network interface from a

list of available adapters. This list is provided by SAT.

o Cycle-time update: the user can select the update cycle-time of the

device collection.

2.2.2 IMPORTED FUNCTIONALITY

As explained in 2.2, Collector component uses an API to interact with the

PROFINET Network, encompassing different classes, methods and properties to

work with. In this section, the imported functionality from the API is described:

2.2.2.1 Result Class

This class is used as the returned object when calling methods of other classes or

interfaces from SAT. It contains information about the degree of success of the

performed operation.

2.2.2.2 Network Class

The Network class performs functions using a network interface card installed on

the machine.

The most important methods that this class provides are presented below. All of

them return a Result object:

• List available network interfaces: this method identifies the available

network interface cards and returns a list of strings containing their names.

• Set network interface: sets the interface card (from the available interfaces

got by the previous method) to work with.

• Scan network: it outputs a collection of items, where each item represents

a PROFINET device. Devices include but are not limited to PLCs, local

modules, engine controllers and HMIs.

• Set timeout for operations: allows to set a timeout value to the methods

that are part of this class.

• Get timeout value: retrieves the current timeout value.

• Check license: with the returned Result object, it allows to check the

license of the SAT API.

Back End Development

25

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

2.2.2.3 IDeviceCollection Interface

This interface gathers a collection containing the devices scanned by ScanDevices

method. As a collection, it presents the functionality to iterate between items

(IEnumerable interface), and also presents some other remarkable features:

- Filtering elements: it is possible to filter elements by type of PROFINET

device e.g. CPUs, HMIs…

- Finding specific devices in the collection: the interface provides a method

that can find a device by introducing its IP or MAC address.

2.2.2.4 IDevice Interface

This interface represents each PROFINET device that was included in the

IDeviceCollection described above.

The interface provides a significant number of properties. Some of the most

remarkable are:

• IP address.

• MAC address.

• Subnet mask.

• Profinet Name of the device.

• Subnet mask.

IDevice presents some methods as well. For the purpose of this application, only a

method called Identify() was used. This method provides the capability to send a

request to physically identify a certain node in the network. The devices that are

compatible with this feature flash some LEDs or their screens.

2.2.2.5 IPLC Interface

This interface is only present in compatible PLC devices and gives more detailed

information about them. From the collection, it is possible to filter these devices

from the IDeviceCollection using its filtering methods or by casting each IDevice

item to a IPLC interface.

Back End Development

26

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

2.2.3 EXPORTED FUNCTIONALITY

As described in 2.2, the application architecture is based on interfacing. For the

Collector component, an interface called ICollector was created. This interface

provides the following methods as exported functionality:

• Initialize(): this method initializes the component. The initialization

process checks the configuration inputs, and if parameters are valid, then

Collector performs the scan operation and initializes the cyclic update of

information. The scan operation and cyclic update process will be

explained in detail in 2.3.

• DeInitialize(): this method performs a de-initialization of the component.

This stops the cyclic scanning process of the Collector component. It is

described in 2.3.

• List<string> GetNetworkInterfaces(): this function will return a list

containing the available network interfaces in the machine. This list is

provided by the QueryCards method of the Network class (see 2.2.2.2).

• Identify(string MAC address): this method physically identifies a device

by flashing some LEDs or device´s screen (as in HMIs) providing its

MAC address. The communication process which sends the request to the

device is done by Identify method of the IDevice interface (2.2.2.4).

2.3 PERFORMANCE REQUIREMENTS

As stated in 2.1, the scanning process of Collector must work on a separate thread

with a certain frequency.

Frequency is set by the user from the UI and Collector will have to scan the

network accordingly.

The reason for the Collector component to work on a separate thread is to improve

the responsiveness of the application. The scan method from SAT, which is the

main method of the scan functionality, blocks the code execution until it is

completed. The time this method takes to be completely executed varies

depending on the number of devices connected to the network, but it is expected

to be in the range of tens of minutes.

Back End Development

27

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

In order to fulfil the desired specifications, part of the code design is shown in

Figure 3:

Figure 3: Simplified Collector Object Diagram

To execute Collector component, the app core calls it via the ICollector interface.

Init() and DeInit() methods provide capabilities to initialize or close the

component. This sequence is executed every time the user updates one of the

possible configuration values (cycle interval time and/or network interface).

Back End Development

28

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Init() method first checks SAT and application licenses and then the Collector

input configuration. Only if all conditions are met, Init() method calls an internal

method called ExecuteCycle().

ExecuteCycle() provides the following functionality:

• Manages the creation and the disposal of the new thread.

• Manages timer functionality.

The three methods introduced in this section must consider the following cases

(assuming that the user has SAT and application valid licenses):

- Case 1: First use of the app, the configuration is updated with valid

parameters.

- Case 2: First use of the app, the configuration is updated with invalid

parameters.

- Case 3: The Collector component is in the meantime between scans and

the configuration is updated with valid parameters.

- Case 4: The Collector component is in the meantime between scans and

the configuration is updated with invalid parameters.

- Case 5: The Collector is performing a scan operation and the configuration

is updated with valid parameters.

- Case 6: The Collector is performing a scan operation and the configuration

is updated with invalid parameters.

- Case 7: The Collector scan function is still executing when the Timer

elapses again.

The Collector will execute the following actions for each of the cases above:

• Case 1: In the first use of the app, the Timer is not initiated, and the new

Thread is not created. When the user updates the configuration, then

DeInit() and Init() methods will be called. Configuration check passes and

then ExecuteCycle() is executed with the input configuration. The new

Thread is created, the Timer is initiated with the corresponding elapse time

and the scan method is executed. If the user does not make any

configuration changes, the scan function is called again when the Timer

elapses.

• Case 2: The starting point is the same as in Case 1. When the user updates

the configuration and the DeInit-Init sequence is executed, the

configuration check fails. Thus, ExecuteCycle() method is not executed

and the component will notify the application core that the input

Back End Development

29

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

configuration is incorrect. Timer and new Thread status remain the same

as in the starting point.

• Case 3: The Timer is initiated and waits for the next elapse time and the

new Thread has been disposed. When the user updates the configuration,

the DeInit-Init sequence is executed. During DeInit, Timer is stopped and

then, after Init, the configuration check passes and ExecuteCycle() is called

with the updated configuration. The Timer is reinitialized, the new Thread

is created and the scan method is executed. If the user does not make any

configuration changes, the scan function is called again when the Timer

elapses.

• Case 4: The starting point is the same as in Case 3. When the user updates

the configuration, DeInit-Init sequence is executed. During DeInit() the

current Timer is stopped, and then, during Init, configuration check fails.

The Collector notifies the app core that the configuration is invalid. The

Collector component sequence from this point is as Case 1 or Case 2.

• Case 5: The Timer is initiated and waiting for the next elapse time and the

new Thread is alive. When the user updates the configuration, DeInit-Init

sequence is executed. In DeInit the Timer is stopped and the scan (new)

Thread is aborted. Then, Init() checks the configuration. The configuration

is valid and ExecuteCycle() is called. Then, the Timer is reinitialized and

the scan thread is created. After creating the Thread the scan function is

executed. If the user does not make any configuration changes, the scan

function is called again when the Timer elapses.

• Case 6: The starting point is the same as in Case 5. After the user updates

the configuration, Deinit behaves the same way as in the previous case.

Then Init() checks configuration. Because the configuration is invalid,

ExecuteCycle() is not called and the component notifies the core that the

configuration is not valid. The component reaction from this point is as

Case 1 and Case 2.

• Case 7: The starting point is the same as in Case 5. When the Timer

elapses, ExecuteCycle() is called. The method finds that the scan Thread is

alive and performs an abortion.

2.3.1 THREAD ABORTION

As described in 2.3, in some of the cases the scan Thread needs to be aborted.

This abortion has to be done in a safe way to ensure stability during runtime.

Back End Development

30

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

To create and manage the threads, .NET framework provides a Thread Class (

[3]).

This class provides some methods and properties to create, dispose and view or

set the status of the threads that the application is running. In the same

documentation, Microsoft also provides some coding guidelines to make an

application stable.

The thread logic that ensures safe multithreading is the following:

• ExecuteCycle method checks if the scan thread is alive. If it is alive, it

means that scanning the network takes longer than the update cycle time.

In this case, the thread is aborted (using Thread.Join the main thread is

paused until the scan thread is completely aborted) and the user is notified

through the UI that the current cycle time is too short.

• DeInit method also checks if the scan thread is alive. If that is the case, it

means that the configuration is being updated while performing a scan

operation. The scan thread is aborted using safe abortion methods

(Tread.Join) and Collector scan operation starts again using the updated

configuration parameters.

2.4 DATA PROCESSING

The main data entry point of Collector is the method Instance.ScanDevices(out

scannedDevs) that was described in 2.2.2.2.

This method returns a data collection of type IDeviceCollection that contains

IDevice interfaces. These items provide the information about the devices that is

going to be processed in the application to get the status of the installed base.

However, these data types come from the SAT API. Tool-defined data types have

some disadvantages:

• Project dependencies are confusing: if multiple components of an

application have one common component that is not part of the .NET

Back End Development

31

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

framework, then the application architecture is not clear enough and it is

necessary to redefine it.

• The application does not have modular design: related to the previous

reason, if the components are connected by dependencies data types, it is

not possible to change SAT in the future without modifying code from all

other components. A modular design simplifies maintenance and upgrade

of. Moreover, components part of a modular design can be reused in other

applications.

• Tool-defined data types are not customizable, so it is not possible to

modify them to provide more complex or simpler functionalities.

Because of these reasons, it was decided to create the own application data types:

Device and DeviceCollection.

In the Collector, objects that come from SAT are converted to these own defined

data types (Figure 4):

Figure 4: Device Data types layout

However, data communication from SAT could not be reliable enough for the

application purposes and some information must be checked.

For this purpose, ISnmp interface and its implementation were created. This

component uses SNMP protocol in order to get the system description of every

device in the network to validate data from SAT.

Back End Development

32

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

2.5 COMMUNICATION PROTOCOLS

As stated in 2.4, ISnmp interface is in charge of double-checking the information

from the PROFINET devices. To provide this functionality, the implemented class

will receive network packets of the devices using SNMP protocol. Double-

checking process is possible at this point in two ways:

• Creating a packet ‘Sniffer’: SAT tool uses this protocol internally while

retrieving information of the devices. This way intends to receive packets

from SAT during the scanning process, and then processes the packets to

get the necessary data for validation. The main advantage of this way is

that network traffic is optimized. Therefore, the process of gathering

devices information will be faster and will not interact with the regular

activity of the network.

• Creating SNMP request to the scanned devices: this means sending a

SNMP request to every device that has been previously scanned by SAT

and gathering the responses. Later on, processing packets and getting the

information. As said previously, creating new traffic will make the process

slower and may interact with the regular network activity.

Both strategies were implemented and checked if they met company security

requirements and feature specification from the customer side. As personal data

can be gathered from the network, it is necessary to demonstrate that the software

shall only get packets of SNMP protocol.

Before going in depth with both implementations, the SNMP and underlying

protocols are explained below.

2.5.1 SNMP PROTOCOL

SNMP is a popular protocol for network management. It is used to manage

networks with hundreds or thousands of nodes. In PROFINET Networks, it is

used for collecting information from devices and configuring them on an Internet

Network.

The protocol is encapsulated in UDP and IP (see Figure 5). Because the protocol

is encapsulated in UDP, it is connectionless, meaning that there is no control over

Back End Development

33

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

the transport layer. Devices can receive the same packet more than once or

packets can be lost in the network without noticing.

Figure 5: SNMP Protocol Encapsulation Overview.

Source: http://www.industrialethernetu.com/courses/204_1.htm

In the market there are some tools to manage networks. These tools provide

features to monitor performance, audit network usage, and detect issues or

inappropriate access. The aim of SNMP is to be present in as many devices as

possible, having minimal operating requirements and run when other protocols do

not.

A scheme of SNMP layout can be seen in Figure 6:

Figure 6: SNMP Network Layout

http://www.industrialethernetu.com/courses/204_1.htm

Back End Development

34

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

As seen in Figure 6, the layout is based in two participants: the manager and the

agents.

Agents can communicate with the manager, but agents do not communicate

between them. In non-industrial networks, SNMP is used with printers, routers,

hubs, computers…

In the case of the current project, the protocol is going to be used with PROFINET

devices. The computer of the customer is the manager, and the connected

PROFINET devices behave as Agents.

The architecture of SNMP offers a solution to the network management problem

in terms of:

• The scope of the management information communicated by the protocol:

the information is represented by object types that are defined in Internet-

standard MIB or defined according to Internet-standard SMI.

• Because of the previous term, the representation of the information

communicated by the protocol is standard.

• Operations on management information supported by the protocol:

management functions are based on retrieval or alteration of variables.

Thus, it limits the amount of management functions to two: read and

write values.

• The form and meaning of references to management information: SNMP

objects are referenced by unique names so there is no possibility that MIB

can resolve multiple instances of that type. Also, the protocol is intended

to solve only variable names that are present in the specific version of the

protocol.

Back End Development

35

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 7: OID tree.

Source: [4]

In the case of the present project, Version 1 of SNMP protocol is going to be used.

This implementation of the protocol has the following characteristics:

• SNMP manager receives the responses from devices on the port 161. The

manager can send to the devices the requests from any available port.

• The MIBs in the first version are highly structured, therefore easier to

analyze. To access MIBs, there are object identifiers (OIDs) that uniquely

identify [4] managed objects in the MIB. The MIB is organized

hierarchically and can be depicted as a tree with different levels from the

root to the single leaves. Each OID has an address that follows the levels

of the OID tree. This hierarchy can be seen in Figure 7. For the case of this

project, system description is the OID that is going to be used. Its OID is

1.3.6.1.2.1.1/0.

• It presents Community Strings. Community Strings allow to authenticate

access to MIB objects, acting as embedded passwords in the packet [5].

This is the only security mechanism that is present in this version. Newer

versions of SNMP implement encryption techniques to protect data.

The packets present the structure shown in Figure 8:

Back End Development

36

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 8: SNMP Packet format.

Source: https://www.rane.com/note161.html

This structure is used to analyze the packets received from devices. The contents

of these packets are processed and compared with data received from SAT to

make the validation.

2.5.2 UDP PROTOCOL

As introduced in 2.5.1, SNMP protocol is encapsulated into UDP and IP.

This protocol provides a procedure to send messages as datagrams with a

minimum protocol mechanism.

In contrast with TCP [6], which checks and resends lost packets and makes a

reassemble into the correct sequence; UDP just sends the packets. This results in

lower bandwidth overhead and latency. On the other hand, packets can be lost or

received out of order.

2.5.3 IP

IP protocol version 4 is included in the PROFINET standard, and it is the version

that it is going to be considered in the current thesis because the next version of

the Protocol (IPv6) is predicted not to be included in the standard soon.

Nevertheless, both versions will coexist if the protocol is released soon.

The packet definition can be seen in Figure 9 :

Back End Development

37

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 9: IP Packet Description

This description was used during Sniffer development to decode the raw packet

and get the final data (SNMP data).

2.5.4 ‘SNIFFER’ IMPLEMENTATION

As a first approach, the ‘Sniffer’ option was chosen. The main reason to start with

this option was because SNMP requests are created by SAT during the scanning

process. Therefore, it is not necessary to generate more network traffic.

For the SNMP communication, the following C# libraries were studied:

2.5.4.1 SnmpSharpNet

This Open Source library [7] is written in C# and is compatible with SNMP

protocol versions 1, 2 and 3.

It supports SNMP operations (highlighted in bold those necessary for the project)

such as:

• Get.

• Get-Next.

• Get-Bulk.

• Set.

• Response.

• Report.

• Trap.

Back End Development

38

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

The library is fully self-contained, meaning that it only depends on .NET

framework and license type is GNU Lesser General Public License, making it

suitable for the project.

However, the library presents some disadvantages that made it unsuitable for the

project:

1. Beta version: the project is currently under a beta version [8] (the most

recent version is 0.9.4) dated 2014. The use of a non-released product does

not meet the quality requirements for this application.

2. Lack of improvement: because the most recent version is dated 2014, its

library has not been improved regularly, so there is no possibility to have

the first release on time.

3. Features do not fit requirements: the library allows to send and receive

requests from a specific end-point, but it is not possible to make a

“listener” that gathers the received information in a buffer for further

processing.

2.5.4.2 SNMP Library

Available in GitHub as sharpsnmp project, the library is compatible with C#, and

supports the following SNMP operations:

• Get (includes get-response).

• Set.

• Get-Next.

• Get-Bulk.

• Walk.

• Trap.

• Inform.

The library is self-contained, and it can be installed easily through NuGet package

manager in Visual Studio 2015.

This library has released the version 10.0.4 on February of the present year. There

are two possibilities to use it:

- Free version.

- Pro version: includes a MIB compiler. This is a GUI [9] that helps to load

MIB files and write them to make configuration files for devices

Back End Development

39

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

compatible with SNMP protocol. This version is intended to be used by

professionals and enterprises which need consulting and support services.

As in the previous case, this library was finally discarded because features did not

fit with the project requirements. It is not possible to implement an algorithm that

gathers data while SAT is scanning the network.

2.5.4.3 SocketClass (.NET framework)

This class [10] implements the Berkeley Socket interface. It is an interface to use

network communication capabilities.

A socket is an abstraction provided to an application programmer to send or

receive data to another process. Data can be communicated between processes in

the same machine or different machines. As seen in Table 3, socket interface is

located [11] between Application layer and transport layer:

Application

API

Transport

Network

Link

Physical

Table 3: Location of API in the communication layers

Sockets are also known as a half-association (3-tuple) that contains:

- Protocol, local IP address, local port number.

- Protocol, remote IP address, remote port number.

The most common socket types are:

• Stream sockets: provide reliable, two-way, connection-oriented

communication streams. This kind of Socket uses Transport Control

Protocol (TCP) as underlying transport layer.

Back End Development

40

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

• Datagram sockets: provide connectionless, unreliable service, used for

packet-by-packet transfer of information. This Socket uses UDP as

underlying transport layer and is the most suitable for the project.

• Raw sockets: this type of socket provides access to internal network

protocols and interfaces. It allows an application to have direct access to

lower-level communication protocols. Since the protocols are exposed in

RFCs, it is possible to parse them and get the SNMP information useful

for the project.

Microsoft .NET framework provides a class named “Socket” that holds Berkeley

API. The full documentation of the class can be found at [10]. However, in this

section the most remarkable methods, properties and challenges will be described:

The socket constructor used was:

- AddressFamily enumeration specifies the type of address that has been

used. There are numerous types such as AppleTalk, IPv4, IPv6 or Unix

type. As mentioned in 2.5.3, IPv4 is the underlying protocol of this

application.

- Socket Type enumeration specifies the socket type that the programmer

wants to use. Possible values are DGRAM, RAW and STREAM (as

defined in Berkeley API but there are others such as Seqpacket and

Unknown.

- ProtocolType specifies the protocol that the socket is aimed for. There are

many configurations including IPv4, IPv6, TCP, UDP, ICMP…

The three parameters can be configured. However, the combination of these three

must be consistent among them. Otherwise, the constructor raises an exception.

An example of an invalid configuration would be calling the constructor with

DGRAM as SocketType and using TCP as the Protocol type.

Regarding properties, some of them are useful for the entire development:

• Available: gets the amount of data that has been received from the network

and is available to read.

• EnableBroadcast: gets or sets a Boolean that specifies if the socket can

communicate through broadcast packets.

public Socket(AddressFamily aF,SocketType sT,ProtocolType pT)

Back End Development

41

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

• ExclusiveAddressUse: property that implies that the Socket only allows

one process to bind a port.

The most significant method for the development was IOControl because it sets

low-level operating modes for the Socket.

Finally, this way to implement SNMP communication in the “Sniffer” was

selected, because:

✓ It is integrated in .NET framework. Therefore, there are no issues

regarding licensing, functionality or support.

✓ This class provides more functionality: the class encompasses much more

functionality than needed for the project, because it is a generic library. As

seen through, other libraries have been built on top of .NET framework.

✓ The development process will be slower due to learning tasks, but if the

project requirements change, it is possible to implement additional features

regarding SNMP protocol or other protocols.

2.5.4.4 Development

From the libraries presented in 2.5.4.1, 2.5.4.2 and 2.5.4.3, the SocketClass was

finally selected to develop the sniffer.

As mentioned in 2.5.4, the goal of ‘Sniffer’ is to capture the SNMP

communication that is present while SAT is scanning devices.

A scheme of the process is shown in Figure 10. It is composed of the following

phases:

1. Timer elapses, and the Collector component checks the application

configuration. If the configuration is fine, it proceeds to start the scan

process.

2. Prior to call SAT scan function (described in 2.2.2.2) the socket object is

configured. The configuration is based on a 3-tuple as described in 2.5.4.3:

• Protocol: UDP.

• Local IP Address: the network adapter IP address.

• Local port number: 161 (as commented in 2.5.1).

• IOControl properties to configure the socket as a listener.

Back End Development

42

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

3. Start the socket listening to packets: the socket captures all packets

received on port 161 and UDP protocol. Packet information is stored in a

byte array buffer for further processing. This processing is made at the end

of the SAT scan process.

4. Call Instance.ScanDevices() method. This method blocks the execution of

the rest of the code. Because of that, the ‘Sniffer’ and SAT scan method

are placed in different threads. SAT belongs to the timer thread and a new

thread is created to execute the ‘Sniffer’.

5. When SAT finishes scanning the network, the listener is stopped and

packets stored in the buffer are processed. The timer is reinitialized and

the application exits Collector component until the timer is elapsed again.

This process was implemented successfully during application development.

However, during testing it was discovered that the ‘Sniffer’ was capturing packets

that did not belong to any PROFINET device. Using Wireshark and analyzing

packets it was possible to notice that the sniffer was capturing packets from other

applications that were not part of the scope of the present application.

Several configurations were applied to the socket object in order to try to solve

this issue. However, it could not be found a way to capture packets exclusively

from SAT.

This issue made not possible to use this method for validation, so other validation

methodology was implemented. This methodology is described in 2.5.5.

Back End Development

43

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 10: Sniffer process diagram

2.5.5 ACTUAL IMPLEMENTATION

This chapter will explain the actual implementation of ISnmp interface, creating

more traffic on the network.

Back End Development

44

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

As explained in 2.5.4.4, the ‘Sniffer’ implementation was not valid for the project.

To provide the same functionality as the ‘Sniffer’, the project took another

approach.

As mentioned in 2.5, the idea is to send SNMP requests and get the responses

from the devices that are previously scanned by SAT.

SAT provides the IP addresses of the devices that have been scanned. Thus, it is

possible to communicate with them using their IP addresses as endpoints for the

socket configuration.

The scheme of this implementation can be seen in Figure 11:

Figure 11: Actual Implementation Diagram

The actual implementation encompasses the following steps:

Back End Development

45

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

1. Timer is elapsed to scan devices from the PROFINET network.

2. SAT scan function is executed, getting information and the IP addresses of

the installed base.

3. IP addresses are validated to proceed later with the Socket communication.

4. Socket object is configured to send a SNMP request and get the response

from a particular device. The tuple configuration is the following for

sending the SNMP request:

• Protocol: UDP.

• Remote IP address: the IP of the desired device, given by SAT.

• Remote Port: 161.

It is not necessary to configure another socket object for the response; the

socket has the functionality to receive responses from the endpoint of the

communication. Instead of gathering all packets in a single buffer, each

packet is stored in a separate byte array.

5. The information gathered from Socket communication is processed.

Confidentiality requirements of the project do not allow to fully describe

the whole packet process, so a brief description of this process is provided

in 2.5.6.

6. Device data is validated and the database with the installed base

information is updated.

2.5.6 STRING DATA PROCESSING

Response packets from SNMP are stored in buffers as commented in 2.5.5. These

buffers hold the raw packet data from UDP protocol (IP protocol heading is

already processed by the socket).

The process to get the information useful for the application is the following:

1. Isolate SNMP object: this means analyze the packet following the packet

structure of UDP and SNMP protocol. This analysis gives information

about the communication and the object that is being requested. As

Back End Development

46

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

mentioned in 2.5.1, system description is the used OID for this

application.

2. Process SNMP object: in this phase the object is converted from raw data

to strings. Then, strings are analyzed to validate devices.

String analysis can be made using two different methodologies:

1. Analyze strings as arrays: this method utilizes array properties to analyze

strings as arrays of characters.

2. Use regular expressions: regular expressions are patterns [12] used to find

matches in an input text.

For the present thesis, regular expressions methodology was used. The reasons to

select regular expressions were:

• Regular expressions allow the developer to focus on the

functionality rather than worrying about arrays issues.

• Patterns are easy to describe, and it is possible to implement

changes in them quickly.

• There is a Regular Expression class provided by .NET framework.

• Performance is not affected significantly because there is not a lot

of text to be processed.

2.6 FAULT AND EXCEPTION HANDLING

The application is part of the industrial software portfolio of the company.

Because of that, it must be responsive in any situation and handle all possibilities

of input data. In the case of the Collector component, there are some situations

that could make the application crash:

Back End Development

47

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

• Initialize the Collector more than once: the Collector thread is

designed to be executed every time the timer elapses. Creating

more than one Collector thread would result in unexpected

behavior.

• Wrong configuration input: if the user enters a configuration not

suitable for the Collector or there was a failure in the localhost

communication, the Collector cannot execute the scanning task.

• Socket exception: when validating the data, it is possible that the

device does not have a valid network configuration, making SNMP

communication impossible.

Some of these situations are solved by using input validation. However, there are

some scenarios impossible to prevent. Therefore, the use of exceptions is

necessary to avoid application crashing.

For this application, C# exceptions are used. Exceptions occur when the code

encounters an unexpected scenario. These situations block the execution of the

current method or function. From this point, the code tries to find a piece of code

that handles the exception. If it cannot find it, the code will go backwards through

the call stack until it finds the handling. If the exception is not handled in any part

of the code, then the C# runtime will stop the execution of the application.

To handle exceptions in C#, there are three main statements:

• Try.

• Catch.

• Finally.

It is possible to use them all or use try and catch. Try statement allows

encapsulating code that can raise exceptions, while catch statements provide

handling mechanisms to these exceptions. It might happen that catch statements

provide handling to some exceptions but not all of them. If a specific exception

that is not being handled by the catch statement is raised, the code will go

Back End Development

48

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

backwards through the call stack in order to find a catch statement that handles

this exception.

Finally statements provide a functionality to take an action if any of the caught

exceptions occur. Usually these statements are used to close files or safely close

communications with databases.

Exceptions are represented in the C# language as objects. The C# system class

Exception provides the functionality to log error messages and get information

about the failure that is present. However, it is a good practice to create specific

exceptions for the application. This gives the advantage of specifying the error

and create customized handling depending on the failure.

To create specific exceptions, a class derived from System.Exception was created

(Figure 12):

Figure 12: Exception UML diagram

To ensure that all possible scenarios are covered, two techniques were applied:

• Code review: a person or group of people who do not develop a

software component reviews the whole code. This technique makes

easier to find bugs and solve issues as unhandled exceptions in the

code.

• Executing static code analysis: Visual Studio provides a feature

that analyzes the code and gives warnings to the developer about

coding guidelines that are not present in the code. The developer

Back End Development

49

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

can choose which guidelines wants to be included in the analysis.

Regarding exceptions, code analysis can warn about catching

generic exceptions.

Back End Development

50

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Testing Framework

51

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 3 TESTING FRAMEWORK

3.1 OVERVIEW

To deliver software that is reliable and safe for the customers, the application will

have to behave as expected in every scenario. For this reason, a testing framework

is necessary.

A testing framework includes several testing methodologies. For this project, the

following methodologies were used:

▪ Unit testing: to test functions, methods and other small parts of code.

▪ Module testing: intended to check single components of the application.

▪ Integration testing: to check the whole application, focusing on the

integration of the different components.

Figure 13 shows the hierarchy of the different testing methods. The Integration

testing method used in this project combines the Sub System and System Testing

seen in the figure.

Testing Framework

52

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 13: Testing frameworks layout.

Source: https://www.slideshare.net/deepaksharmasharma9615/3software-testing

The basic idea of testing is shown in Figure 14. Basically, testing starts by

providing certain input data to the code unit that the developer wants to test. The

code unit can be a single method, a class, an app module or the whole application.

Once the code is executed, output data is compared to the expected output, and if

they are equal, then the test scenario is successful.

Figure 14: Testing Diagram

Input data scenarios will have to provide different conditions to ensure that the

following capabilities are implemented in the software:

Testing Framework

53

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

• Resource management: the application must deal with memory and object

management, creating and disposing the necessary instances and threads.

This capability is mostly taken care by C# runtime, but there are some

cases (Threading and accessing databases) where it is required to manually

manage them, therefore this must be checked during testing.

• Functionality: during testing, the different functionalities to be delivered

by the application are checked.

• Security: depending on the degree of confidentiality requested on data

involved, the application will have to deal with security issues that may

affect the application. Scenarios that involve security treads may be

considered during testing phase.

• Fault handling: the application has to consider cases in which components

or communication with other parties fail. This includes exception

handling, checking data integrity and ensuring that the function calls are

executed in the correct sequence.

The methodology to perform these tests can be manual, e.g. with developer

interaction to perform every scenario; or automated, by coding the different case

scenarios.

For the project of this thesis, automated testing approach is used. In the following

sections, testing framework and integration testing are fully described.

3.2 TESTING FRAMEWORK

3.2.1 TEST TOOLS

As explained in 3.1, the automated testing approach is used for the current project.

To automate tests, it is necessary to have a testing framework that provides

capabilities to write, execute and analyze test cases.

For the current project, Visual Studio 2015 Professional testing framework is

used. The capabilities that this edition provides are displayed in Table 4 and

compared to Enterprise Edition of the same IDE.

Testing Framework

54

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

 VS Professional VS Enterprise

Intellitest ✅

Microsoft Fakes ✅

Code Coverage ✅

Test case management ✅

Unit Testing ✅ ✅

Table 4:VS Test features comparison

Extracted from: [13]

The following explains the different features shown in Table 4:

• Intellitest: this component [14] creates a suite of tests for the code

automatically and can generate data input combinations to cover all cases.

• Microsoft Fakes: this feature [15] helps to isolate the code that is being

tested by replacing other parts of the application with stubs or shims.

o Stubs: they replace a class with a substitute that implements the

same interface. Using stubs require that application components

are connected by using interfaces exclusively. This design

approach was used during development and is fully described in

section 3.3 of this document.

o Shims: modifies the compiled code of the application at runtime so

that it fakes method calls by running the shim code that the test

provides.

• Code Coverage: is used to determine the percentage [16] of the code that

is being tested and can be used a progress measure of the test phase of a

software solution.

• Test case management: this is a Visual Studio extension package [17] that

gives capabilities to establish a test plan for a solution.

• Unit testing: this feature allows to write and run unit tests for a certain

method, component or a whole application.

Testing Framework

55

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

3.2.2 CONTINUOUS INTEGRATION TOOL

As mentioned previously, Visual Studio 2015 Professional testing framework is

going to be used in this project. To ease continuous integration [18] process, it is

possible to port the framework to a server that builds and tests the application in

every code update using an application called TeamCity.

TeamCity [19] allows a team to track changes during development and provides

building capabilities every time that new code is pushed into the server. These

capabilities include:

• Code compilation.

• Run automated tests.

• Deploy the application.

A report is generated in every built, so it is possible to check changes and

integrate features faster.

3.3 CODE DESIGN

As mentioned in 3.1, testing is a critical phase of the project. To make this phase

successful, it is vital that the code presents a defined architecture that makes it

easier to test. In this project, the code was designed using the following principles:

• Clear architecture: it is important to isolate the different functionalities and

responsibilities of the classes and interfaces of the application. This

guideline was also applied to the internal design of the Collector

component of the present document, by splitting tasks into different

classes and interfaces (see Chapter 2). This architecture makes debugging

easier and faster.

• Interfacing: communicating application parts with interfaces provides

isolation and prevents developers from using objects or methods that

Testing Framework

56

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

should not be called from a certain component. In addition to that, it is

possible to wrap components during phase using a fake tool or a mocked

class. The tools that were studied for the present project are described in

Section 3.3.1.

In the case of the present project, interfacing is crucial because there are certain

components that need external communication, therefore, it is not possible to test

them on the server:

• SAT implementation: this part needs to establish communication to

PROFINET devices to gather information from them.

• ISnmp implementation class: this class also needs to communicate with the

PROFINET devices using the named protocol.

To make the code of these two modules testable, the code design evolved to a

more complex architecture. This architecture (Figure 15) presents an intermediate

interface that provides a façade between the application and the external

communication. In addition to that, data is packed into objects that are part of the

.NET framework, letting custom objects which belong to other dependencies

(such as SAT API) be part only of the interface implementation.

Testing Framework

57

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 15: Code Architecture Evolution

3.3.1 FAKING AND MOCKING CLASSES

In 3.3 it was explained that wrapping components to focus testing to an isolated

part is possible by using a faking framework. The IDE used in this project has no

capabilities to fake objects according to Table 5. Therefore, other free options

from Visual Studio marketplace were studied. The best option that was studied is

called FakeItEasy.

FakeItEasy has some capabilities suitable for testing purposes. It can fake several

types of objects and function calls.

Regarding types [20], the package can fake:

• Interfaces.

Testing Framework

58

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

• Classes that fit these conditions:

o Not sealed.

o Not static.

o Have at least one public or protected constructor whose arguments

the package can construct or get.

o Delegates.

Regarding function calls [21], the package can configure:

• Function calls

• Getters.

• Setters.

• Fake return values.

• ref and out parameters assignment.

Nevertheless, as mentioned in 3.3, the code was designed to split the different

components and dependencies with interfaces. According to FakeItEasy features,

the package can fake interfaces and was used as a first approach to deal with

actual communication issues. However, trying to fake SAT custom objects

presented problems. For this reason, FakeItEasy approach was discarded.

Figure 16: Mocking interface implementation

Testing Framework

59

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

The approach that was finally chosen was mocking the interface implementation.

This concept is described in Figure 16. Basically, it is necessary to create another

implementation for the interfaces described in Section 3.3.

These interface implementations consist basically of a basic encapsulation of their

methods to interchange data in standardized objects (objects that are part of the

.NET framework). This wrapping is shown in Figure 17:

Figure 17: Type encapsulation

3.4 INTEGRATION TESTING

The tests that are performed on the server are part of integration testing. This test

methodology helps the developers to find bugs and make the necessary changes in

order to integrate app components.

The following subsection describes the structure of the tests that were performed

and the strategy that was followed to make a reliable integration testing

framework.

3.4.1 TESTS STRUCTURE

To test the application as an End to End test, the tests are designed using the

following structure:

1. Make a request via REST APIs: simulating the user UI, the test starts

using REST APIs as the user does when navigating through the web

interface.

Testing Framework

60

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

2. Read/Update information: the REST request can either retrieve

information or update certain data.

3. Make assertions: if the REST request updates information, it is necessary

to retrieve again the updated data fields and ensure if the update has been

successful. If the test request was retrieving information, this has to be

compared with the mocked data that has been hardcoded previously.

To ensure that the tests are designed correctly, they must:

• Provide a defined starting point of the application: tests must start in a

known and defined environment to get the same results with the same

inputs.

• Test as many conditions as possible to increase code coverage.

• Make logical assertions e.g. compare data that is being modified during

the test.

3.5 COLLECTOR MODULE TESTING

Sections 3.3 and 3.4 described the code design and the procedures to test the

application on the server using TeamCity. However, this approach excludes the

actual device communication with SAT and UDP sockets.

To test these dependencies, it is necessary to implement another type of test called

module testing. This test approach just performs test of a specific component of

the application. In this case, the test is applied exclusively to the Collector

component as shown in Figure 18.

Testing Framework

61

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 18: Module Testing Overview

The testing is made through the ICollector interface. This methodology allows to

test:

• Functionality: to check the different features that this component must

offer according to the application architecture.

• Fault handling: to ensure that the component works in every possible

scenario.

• Responsiveness: check times of the scan process.

• Communication: to ensure that the different communication protocols are

well configured and work in a test network.

Testing Framework

62

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

•

Application Deployment

63

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 4 APPLICATION DEPLOYMENT

4.1 OVERVIEW

After application development, the next step is to deliver the application to the

final customers. To do that, it is necessary to create an installer solution.

The features that the installer must provide are:

• Check the OS version: the installer must install the application in the

operating systems Windows 7 or Windows 10. All other OS versions are

not allowed.

• Check for requirements: the installer can run only if certain software tools

are installed in the customer´s computer. In the case of this project, the

prerequisites are:

o .NET version 4.6.2.

o SAT 3.1.

o ALM: the lower required version is 6.0.

• Copy Files: the files to run the application need to be copied in certain

locations of the computer:

o [ProgramFiles]: libraries and files that are not going to be changed

during runtime are copied here. The reason why only “static” files

must be copied in this folder is because in order to modify, add or

remove files in this location, administration permissions are

needed. The current application must run without admin

permissions.

o [ProgramData]: the local database of the app must be copied here

because it is going to be modified during runtime.

• Write registry keys: during installation, it is needed to write registry keys

for:

Application Deployment

64

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

o Application configuration: some of the configuration parameters of

the app are stored there, in order to save the configuration when the

customer shuts down the computer or the app.

o Installation: to store the installed version of the application. This

can be used for future installers that might check the current

version of the installed application.

• Execute post installation programs: the current application will be

delivered as a Windows Service. The application as Service will be

installed after the files are copied in the proper locations. To do that, it is

necessary to execute an .exe file.

• Reboot the machine: because of the previous point, the machine has to be

rebooted in order to start running the service.

To develop an installer solution that can comply with these technical features,

different installer development frameworks are going to be studied in 4.2. After

that, two implementations of the installer are going to be described in detail.

4.2 TOOL SELECTION

To deploy the application satisfying the requirements defined in 4.1, different

tools are going to be analyzed regarding features, ease to use and licensing terms.

For this thesis, the tools that are going to be analyzed are:

1. Microsoft Visual Studio 2015 Installer Projects extension: this is a tool

available in the Visual Studio marketplace. It is an extension of the IDE.

2. Inno Setup: this is a third-party tool that supports from Windows 2000 on.

It provides full support for 32-bit application and an extensive support for

64-bit.

3. WiX Toolset: this software has two components:

Application Deployment

65

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

a. Toolset build tools.

b. Visual Studio WiX extension.

4. InstallShield Limited Edition: this is a software integrated in Visual Studio

to create setup packages.

Tool versions are presented in Table 5:

Tool Name Version System Description

MS VS 2015 Installer

Projects Extension
2.1

Microsoft extension to

Visual Studio 2015 to

create installer packages

Inno Setup 5.5.9 (a)
Tool that generates

installers from script files

WiX Toolset 3.11

Tool that generates

installer solutions from

xml files or from VS UI

InstallShield Limited

Edition

Limited InstallShield

capabilities

Table 5: Studied Tools version

4.2.1 ANALYSIS OF ALTERNATIVES

In Table 6, a simplified table with the features that are required for this project is

presented. Each tool has been studied for this application and some have been

tried to check for feasibility.

Application Deployment

66

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

 Visual Studio

Ext.

Inno Setup WiX InstallShield

Limited Ed.

License Not

commercial

use

Commercial

use-free

MIT Not comercial

use

Firewall

exceptions

Separate batch

file

Yes Yes No

Learning curve Easy Medium Hard Easy

Learning resources Few Stack Ov. &

Docs

Stack Ov.

& Docs

Stack Ov. &

YouTube

Customizable

installer

Few Custom pages All Few

Custom GUI

capabilities

Few Few All Few

VS integration Yes No Yes Yes

R/W Registry

capabilities

No Yes Yes Yes

Preinstall

capabilities

Yes Yes Yes N/A

Postinstall

capabilities

Yes Yes Yes N/A

Table 6: Tool feature comparison

As presented in Table 6, Visual Studio 2015 Projects Extension is not valid for

the scope of this project because it cannot be used for commercial purposes.

However, the tool provides some remarkable features:

1. It is simple to use: it is good as a first step to get familiar with installer

environments.

http://www.jrsoftware.org/files/is/license.txt
http://www.jrsoftware.org/files/is/license.txt
http://wixtoolset.org/about/license/
http://www.dlt.com/sr/contracts/Flexera%2008%20%20-%20Installshield%20EULA.pdf
http://www.dlt.com/sr/contracts/Flexera%2008%20%20-%20Installshield%20EULA.pdf

Application Deployment

67

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

2. Following the previous statement, the tool is fully integrated in Visual

Studio IDE. The tool provides a wizard that helps the user to configure the

main settings of the installer application such as:

a. Type of application (Windows or Web).

b. Type of redistributable package.

c. Dependencies and files to be deployed.

d. Changes in the registry.

e. Changing the user interface of the .msi installer.

f. Checking version of installed .NET framework and providing the

download link if necessary.

g. Feature to give the user the option to install the software to all

users of the machine.

Nevertheless, this tool presents a main drawback: the full set of capabilities is not

clear, because the extension has a lack of documentation. The user can only learn

by trial and error.

WiX Toolset encompasses a set of utilities that build Windows installation

packages from XML source code. It is an open source project, originally

developed by Microsoft and currently maintained by Rob Menshing. In fact, the

tool was used to develop the installer for the Microsoft Office suite.

To work with the tools, it is possible to use a bash environment or the UI that is

available as a Visual Studio extension.

The main features that this toolset presents are listed below:

• Declarative approach: using tagged language XML.

• Unrestricted access to Windows Installer functionality.

• Source Code instead of GUI-Based assembly of information.

• Complete integration with application development: it is possible to

develop the application and the installer at the same time.

• Support for team development, both in-house and third-party software.

Application Deployment

68

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

InstallShield Limited Edition is a Visual Studio extension to build .msi installer

packages. It is available for all Visual Studio versions except Community

Editions. It has plenty of capabilities [22] that include:

• Customize application description information.

• Check .NET and Internet Explorer version.

• Check for required Software.

• Manage files to deliver from folders or from Visual Studio released code.

• Registry capabilities in 32 and 64-bit registry. It is possible to:

o Add keys.

o Change values of existing keys.

• Customize application icon and create an entry in the Start menu.

• Customize dialogs as License Agreement, Users installation, installation

path and launching the application after installation is completed.

• Customize environmental variables.

• Perform installation of IIS server.

• Capabilities with Windows Services.

• Customize UI: it is possible to modify the default images that appear

during installation.

• Advanced configuration: the installation capabilities can be modified from

some INI files.

• MSI deployment.

However, this tool has some drawbacks that made it unsuitable for the current

app:

- Architecture of installation cannot be modified: because this software is a

Limited Edition, the installer architecture is not changeable.

- Licensing. In the End-User License Agreement (EULA) [23], it is

described for the Visual Studio Extension that this tool may not be used

for commercial purposes.

Application Deployment

69

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

From the tools that have been analyzed in this chapter, Inno Setup was selected to

deploy the software. In 4.3, the internals of this tool in order to get the application

successfully deployed are described.

4.3 INNO SETUP APPROACH

InnoSetup was the first approach to develop the installer solution as discussed in

4.2.1.

This tool uses a script to create the installer solution. The script is created and

compiled by Inno Setup.

This script is divided into the following sections:

[Setup]

This section contains settings that affect the installer and the uninstaller and are

required for every installation. There are mandatory properties like application

name and version, and this section can also configure the user interface and more

detailed product information.

[Code]

This section specifies a Pascal script. This script can customize the internals of the

setup process. For that, Inno Setup provides support functions and classes that can

be easily customized.

[Types]

It is an optional section. It allows to define the setups types that are shown when

selecting components during installation e.g. minimal, custom, full. It is possible

to define additional, developer created types.

[Components]

This optional section configures the components that are shown in the component

selection window during setup.

Application Deployment

70

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

[Tasks]

This section defines the user-customizable tasks that the setup will perform during

installation. These tasks can be selected by the user in a wizard page through

checkboxes and radio buttons.

[Files]

This section defines any files to install on the user´s system.

[Icons]

This section defines the shortcuts to the application. Shortcuts can be placed in the

Start Menu or in other locations such as Desktop.

[Languages]

This section allows to customize multilingual installations. This section defines

the languages to use during setup from a .isl file.

[Messages]

This section allows to customize the messages that are going to appear during the

installation process. Inno Setup provides default messages, but in this section, it is

possible to define new messages or override these default texts.

[Registry]

In this section it is possible to define registry keys and values to write, modify or

delete. The tool can work with 32 and 64-bit registry.

[Run] &[UninstallRun]

These sections specify programs to execute:

• After installation.

• Before uninstallation.

Several parameters can be configured to execute the programs such as silent

installation flag or run a certain program with admin privileges.

Application Deployment

71

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

4.4 SIEMENS INSTALLER TOOL APPROACH

During the development phase of the installer with Inno Setup, the customer

requirements changed, and the installer could not be finally developed with Inno

Setup, so an internal company tool was eventually used. Due to confidentiality

reasons, the utilization of this tool cannot be explained in detail.

In the following subchapters, the architecture and the building process of the

installer are described.

4.4.1 TOOL ARCHITECTURE

The structure of the tool is shown in Figure 19:

Figure 19: Tool Structure

• MSI Setup Unit: these files are .msi installers of the desired applications.

These files provide information about the setup.

• MSI-Databases provide information about the installed products in the

computer.

• Registry is used to read installed product data, edition and system

configuration.

• Setup Unit Info-Files (SPF) contain all relevant data of a setup unit.

Application Deployment

72

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

• XML files contain Product configuration and they are used by a SIT

component.

• SIT info file (SIT.ini) contains general information for the SIT and is

responsible for its entire control.

There are two definitions that are used during this section:

• Builder: is a person who assembles setup units within a data media and

configures a SIT for the requirements of the product.

• User: is the end user of the assembled bundle, basically the customer of

the product.

• Setup Unit: is a generic term for all the setup programs which installs the

files of the delivered products or components of a computer.

• Bundle: is a delivery unit which can be assembled from several setup

units. Generally, all products of a bundle are related with each other.

To better distinguish between the builder and the user, in Figure 20 the interfaces

of the tool for both are presented:

Application Deployment

73

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 20: Siemens Installer Tool Interfaces.

Source: Internal SIT documentation

4.4.2 BUILDING PROCESS

Building the installer requires two main steps:

• Create .msi installer: before “wrapping” the .msi into SIT it is necessary to

create the package that performs most of the installation operations.

• Configure SIT to link .msi installer: the main idea is to make a GUI to

access the .msi. However, SIT also can perform some installation steps.

Application Deployment

74

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

4.4.2.1 Creating .msi installer

To create this package, another tool provided by the firm is used. This tool acts as

an interface to create packages using the SDK of Microsoft and provides another

way to create packages with the capabilities that are most used in the products of

the company.

The overall architecture of this tool (from now on, MSI creator) is shown in

Figure 21:

Figure 21: MSI creator Tool architecture.

As shown in Figure 21, the tool outsources the configuration of the installer to

have a modular design. Therefore, if the released application changes, it is

possible to modify the configuration easily.

The presented architecture is described:

• Language files: it is possible to configure the languages available for the

installer and the application. To make this configuration possible, it is

necessary to provide some language files.

The structure of these files is simple:

o ID: the language is identified by a language code. For example,

German has the code ‘1031’ whereas English has ‘1033’.

Application Deployment

75

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

o Language content: each string or text that will appear in the

application (or installer app) is classified by a tag code. The

application code points to this tag to display the final text in the

selected language.

• Graphics: the tool allows to customize the GUI of the .msi installer. The

customization can be made:

o Providing images for the installer: these images, typically in .png

format will be displayed during the installation process. If they are

not defined, default .msi images will be displayed.

o Application icon: it is possible to define the installer icon and the

application icon to link it to a shortcut. The icon image format is

.ico.

• General configuration: the general configuration is provided to the tool by

a .ini file. When the creator software is launched, it loads and read this file

as the first step.

• Application files: these are the files that are going to be deployed in the

final customer machine.

• Features: the software allows to define the different features that are going

to be deployed in the software. Splitting the program into different features

allows to split the product into parts that the installer user can select during

the installation process. In the case of the application of this project, there

is only one feature, called Main_feature.

• Component definition: the installer has its own definition of components.

Components are virtual single units that perform one or more installation

operations. It is possible to solve the installation process using a single

component, however, splitting the installation process in components

allows a modular customization of the different features the installer must

provide. Thus, debugging is easier, and it is possible to plan a feature

implementation schedule.

4.4.2.1.1 General Configuration

Application Deployment

76

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

As stated in 4.4.2.1, the general configuration of the .msi installer is made via a

.ini file.

This file can be edited with a text editor such as Notepad and has a well-defined

structure. The structure consists of different sections with attributes and values for

them.

It is not possible to describe the configurable parameters in detail due to

confidentiality reasons, but briefly, the sections and parameters are:

• Product information: this encompasses the following attributes

o Setup type: this field means the type of installation that this

product represents. These types can be:

▪ Language packs: packages that provide files to display a

program in a specified language.

▪ Merge modules: these are setup packages that cannot be

installed directly [24] and must be included within an MSI.

These modules enable the developer to add third-party

features to the installation. Examples for Merge modules

are subcontracted Microsoft .dlls.

▪ Client edition: this is a type of installation that needs a main

setup.

▪ Main edition: this represents the main setup or main edition

of the product and is suitable for the application that is

described in the present Master Thesis.

▪ Global edition: this means an edition independent setup.

o Naming: there are some attributes that define the name to display

during the installation process, in the window title, banners…

o Versioning: there is another group of attributes that describe the

product number, release number…

o GUIDs: GUID stands for Globally Unique Identifier [25], it is a

128-bit key that identifies the product. This key is used to identify

Application Deployment

77

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

products, versions and to check authenticity. To generate them, it is

possible to use a Microsoft tool or use an online GUID generator.

o Packed MSI flag: this option allows the build to generate a unique

.msi file that contains the compressed application data or having a

.cab file that contains the compressed data, .mst files that gather the

configuration settings and the .msi file.

o Setup in 64-bit flag: to allow and restrict the installation on x64-

Windows machines.

• SIT-defined properties: in this section the user can define properties that

are going to be used by SIT.

• ARP attributes: ARP refers to Add or Remove Programs feature of

Microsoft. These attributes allow to customize the entry that the program

will create in this menu:

o Icon: route to the icon that is shown in the menu.

o Contact: the contact information that is shown in the entry.

o Help link: an URL to find support information of the app.

• Path: defines the default installation path of the Setup Package.

• Languages: define the languages that are going to be used during the

installation process and the product languages that are going to be

installed.

• Special conditions: it can be configured whether the installer asks for

rebooting the machine or execute this action without user permission.

• Create Desktop icon.

• Preconditions: in this section it can be checked certain conditions of the

customer machine such as available RAM, Internet Explorer version, .Net

version…

• Environment: it is possible to create or modify environmental variables on

the machine.

• Start applications before installation: in this section, it is possible to define

applications to start before the actual installation process. In the case of the

project app, it is necessary to execute a program that uninstalls the

Application Deployment

78

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

application as a Windows service prior to deleting the files and registry

entries during uninstallation.

• Start applications after installation: as the previous one, it is possible to

define applications to start right after the installation process is complete.

For the case of the thesis’s app, it is necessary to execute a program that

installs the application as a Windows service.

• Registry: it is possible to create registry entries for different purposes for

an application. However, it is also possible to define registry keys and

values from components. For this project, registry keys are defined in a

unique component.

4.4.2.1.2 Component definition

As explained in 4.4.2.1, components are used to split the installation processes

into virtual units. That procedure allows to add features to the installer and track

changes easily.

As in 4.4.2.1.1, component definition is made by a .ini file. In this file,

components are listed and then each component is customized separately to assign

it certain functions.

For the case of the application, several components have been created to give the

installer the features required by the application and to comply with customer

requirements.

The components are split into:

• Copy files: components that exclusively deliver files needed for the

application and are copied in different locations. They were created as

many components as different locations for these files were needed.

o Copy static files: these are copied in subdirectories of

[ProgramFiles64] folder.

o Copy dynamic files: files that are going to be modified during

runtime are copied under a subdirectory of [ProgramData].

Application Deployment

79

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

• Copy registry keys: another component oversees delivering the necessary

registry keys to the customer computer. Registry keys are placed in a .reg

file that is created manually.

Each component can be customized separately. The main customizations available

are:

• Language: it is possible to specify the language which component belongs

to. This is used to distinguish between components that are only available

for certain languages.

• Permanent flag: this property makes the delivered component not to be

removed during uninstallation.

• Empty flag: to specify that the component has no files associated. As

stated previously, components are virtual installer features and may

perform actions that do not involve files.

• Destination: to specify the path to deliver the files (if any).

• Files: files are specified using whitelisting. This means that files have to

be defined one by one. Although this makes the process a bit tedious, it

forces the builder to have full control over the delivered files.

4.4.2.1.3 Development strategy

As explained in 4.4.2.1, the MSI creator needs several dependencies to create an

installer. This makes the first steps tough until the builder gets familiar with the

tool. It is necessary to understand the relations and the constraints of the different

areas of the tool to add features and reduce debugging times.

To avoid getting blocked during the development phase of the installer, the

following strategy was used (see Figure 22):

Application Deployment

80

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Figure 22: MSI installer development process

1. Create minimum installer unit: this step is the most difficult one. It

consists of creating a minimum functional feature, component and general

configuration files to build an installer. This allows to set up the

environment to start adding features having the simplest possible structure.

2. Adding features: from the minimum setup, each feature that the installer

requires is included to the previous version.

3. Debug: the setup unit that is deployed by the MSI creator is checked. Prior

to actual testing, log files of the MSI creator are fully reviewed, removing

warnings and errors. Once the build is successful, testing phase is started.

If not, corrections are made, and the debug process starts again.

Application Deployment

81

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

4. Testing: when the build is successful, the built installer is executed in test

mode in different environments on a virtual machine. To check whether

the installation has been successful, the following steps have to be taken:

a. User checking: check if all files have been deployed in the correct

locations and the necessary registry entries created.

b. Log files: SIT provides the test execution of the built MSI and

creates some log files that give information about installation

phases, property resolution and default behavior of the installer.

c. ORCA: ORCA is a tool provided by Microsoft SDK that provides

full capabilities for editing MSI installer properties database. This

program was used to check directory resolution properties and to

give custom graphics to the .msi installer.

4.4.2.2 “Wrapping” MSI into SIT

As described in 4.4.2, the MSI package performs most of the actual installation

tasks. However, there are functions that are not fully satisfied by MSI:

• GUI: the user interface of MSI packages is poor and difficult to modify.

SIT provides a user interface that fits the software portfolio of the

company.

• Integration: SIT is intended to ease integration of the products of the

company by solving the interdependencies between them. For example, if

there is a Product A that uses components from Product B that are already

installed, SIT will check the version of these components and upgrade

them if necessary.

• Prerequisites: although MSI provides capabilities to check for

prerequisites, SIT presents a friendlier interface.

In order to wrap the MSI package into SIT, it is necessary to do the following

steps:

Application Deployment

82

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

• Define Setup settings: SIT main configuration is done with a .ini file. This

file can configure the basic setup parameters of the installation process

such as:

o GUI.

o Check for prerequisites.

o Installation languages.

o After installation/uninstallation reboots.

o Installation checkpoints.

• Define product relations: SIT can manage product, features and

component relations from an xml file. This file states the features and

components that the product requires, so during installation, installed

features and components can be upgraded or installed.

Results

83

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 5 RESULTS

This chapter mentions the results that were achieved during the development of

the present thesis.

Regarding Collector, a modular component for the application was developed.

The component is coded using secure coding guidelines, making it reliable for

industrial purposes. The architecture of the application and the internal component

structure makes Collector a modular component that can be reused with or

without modifications in future applications.

Regarding testing, the creation of the testing environment was successful because

it helped to find issues during development.

Finally, regarding deployment, an installer solution that complies with customer

requirements was developed. Changing the tool during development phase made

installer creation longer than expected, but successful.

Results

84

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Conclusions

85

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 6 CONCLUSIONS

6.1 BACK-END CONCLUSIONS

From the Collector development it can be said:

• C# is a programming language that allows to develop applications faster. It

provides capabilities to manage memory and exception handling that

makes it suitable to develop industrial software for Windows.

• The use of interfaces to create the architecture of the component and the

whole application allows to divide component responsibilities, therefore

defining a functional, simple architecture.

6.2 TESTING PLATFORM CONCLUSIONS

The creation of the testing platform was successful because it helped debugging

the application, improved the continuous integration of the application

components. This ensures quality of the released product

6.3 DEPLOYMENT CONCLUSIONS

Clients’ first contact with the application is the installer. Therefore, it is crucial to

develop a solution that could performed an automated installation regardless

machine´s configuration.

Conclusions

86

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Future Development

87

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 7 FUTURE DEVELOPMENT

As described in the present thesis, this project provides plant transparency and

health status information about devices of a PROFINET network.

The idea of having a centralized asset management can be applicable to many

other sectors as the following:

• Transportation companies: rental car companies, airlines or logistics

companies could also take advantage of a solution that provides status and

information of their assets. For example, rental car companies could know

in real time the status of their vehicles and program their maintenance.

• Hospitals and other health centers: could use a similar application to show

status of their patients and manage resources more efficiently.

Regarding the present application, its future development is confidential and

cannot be described in this document. The only future developments that can be

mentioned are:

• Develop a scanner software that could substitute SAT. This scanner

software could improve the scan method to be faster.

• Find out an application that allows to make testing on the server without

using mocked or faked objects to test the whole application automatically.

Future Development

88

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

References

89

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

REFERENCES

[1] Solarwinds, [Online]. Available:

https://www.solarwinds.com/topics/network-device-scanner.

[2] Siemens, [Online]. Available:

https://support.industry.siemens.com/cs/document/98161300/simatic-

automation-tool-la-herramienta-de-puesta-en-marcha-y-operación-de-

mantenimiento-para-los-módulos-simatic-?dti=0&lc=es-WW.

[3] Microsoft, "Thread Class," [Online]. Available:

https://msdn.microsoft.com/en-

us/library/system.threading.thread(v=vs.110).aspx.

[4] Paessler, "How do SNMP, MIBs and OIDs work?," 2010. [Online].

Available: https://kb.paessler.com/en/topic/653-how-do-snmp-mibs-and-

oids-work.

[5] Cisco, "Simple Network Management Protocol," [Online]. Available:

https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/managed_ser

vices/8_6_1/cucm/managed_services/snmp.pdf.

[6] SearchNetworking, [Online]. Available:

https://searchnetworking.techtarget.com/definition/UDP-User-Datagram-

Protocol.

[7] SnmpSharpNet, [Online]. Available: http://www.snmpsharpnet.com.

[8] SourceForge, [Online]. Available:

https://sourceforge.net/projects/snmpsharpnet/files/snmpsharpnet/.

[9] SharpSNMP, [Online]. Available:

References

90

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

https://pro.sharpsnmp.com/en/latest/getting-started/compiler-features.html.

[10] MSDN, "Socket Class," [Online]. Available:

https://msdn.microsoft.com/en-

us/library/system.net.sockets.socket(v=vs.110).aspx.

[11] N. Shetty, "Socket Programming," University of California, Berkeley, 2007.

[12] Microsoft, "Regular Expression Language - Quick Reference," [Online].

Available: https://docs.microsoft.com/en-us/dotnet/standard/base-

types/regular-expression-language-quick-reference.

[13] Visual Studio, [Online]. Available:

https://www.visualstudio.com/es/vs/compare/.

[14] Microsoft, [Online]. Available: https://docs.microsoft.com/en-

us/visualstudio/test/intellitest-manual/introduction.

[15] MSDN, "Isolating Code Under Test with Microsoft Fakes," [Online].

Available: https://msdn.microsoft.com/en-us/library/hh549175.aspx.

[16] MSDN, "Using Code Coverage to Determine How Much Code is being

Tested," [Online]. Available: https://msdn.microsoft.com/en-

us/library/dd537628.aspx.

[17] Microsoft Visual Studio, "Test Planning and Management with Visual

Studio Team Services," [Online]. Available:

https://almvm.azurewebsites.net/labs/vsts/testmanagement/.

[18] Codeship Inc., "Continuous Integration Essentials," [Online]. Available:

https://codeship.com/continuous-integration-essentials.

[19] JetBrains, "TeamCity," [Online]. Available:

https://www.jetbrains.com/teamcity/?fromMenu.

[20] FakeItEasy, "What can be faked," [Online]. Available:

http://fakeiteasy.readthedocs.io/en/stable/what-can-be-faked/.

References

91

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

[21] FakeItEasy, "Specifying a Call to Configure," [Online]. Available:

http://fakeiteasy.readthedocs.io/en/stable/specifying-a-call-to-configure/.

[22] Flexera Software, "Building your first project using InstallShield Limited

Edition for Visual Studio," [Online]. Available:

https://www.youtube.com/watch?v=xI36omxTsSw.

[23] Flexera Software, "End-User License Agreement- InstallShield," 2011.

[24] Symantec, [Online]. Available:

https://www.symantec.com/connect/articles/about-merge-modules.

[25] "guid.one," [Online]. Available: http://guid.one/guid.

[26] Siemens AG, [Online]. Available:

https://support.industry.siemens.com/cs/document/67460624/proneta-2-4-0-

44-commissioning-and-diagnostics-tool-for-profinet?dti=0&lc=en-WW.

[27] IBM, "Socket Types," [Online]. Available:

https://www.ibm.com/support/knowledgecenter/en/ssw_aix_61/com.ibm.ai

x.progcomc/socket-types.htm.

[28] Microsoft, "Overview of Microsoft IntelliTest," [Online]. Available:

https://docs.microsoft.com/en-us/visualstudio/test/intellitest-

manual/introduction.

References

92

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Budget

93

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Part II BUDGET

Measurements

95

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 1 MEASUREMENTS

All resources that may apply an economic contribution and the used amounts of

them for this project are listed in this chapter. In order to ease the reading, the

following resources are divided by categories.

1.1 EQUIPMENT MEASUREMENTS

Equipment Quantity
Project

Usage(h)

Year

Usage

Time

(h)

Computer 1 880 2112

Test Devices Platform 1 250 500

Table 7: Equiment Measurements

1.2 SOFTWARE MEASUREMENTS

Software Quantity
Project

Usage(h)

Year

Usage

Time

(h)

Visual Studio Professional

2015
1 880 2112

SAT 1 880 2112

Microsoft Office 1 120 300

Wireshark 1 250 500

SIT 1 250 -

ORCA 1 250 -

Table 8: Software Measurements

Measurements

96

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

1.3 DIRECT LABOR MEASUREMENTS

Direct Labor Hours

Information Collect 100

Collector Development 250

Testing framework design 50

Testing 80

Code analysis 50

Documentation 100

Installer development 250

Table 9: Direct Labor Measurements

Unit Prices

97

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 2 UNIT PRICES

Unit prices of materials and equipment used for the present Thesis, as well as

hourly prices for the carried-out tasks are listed in this chapter.

2.1 EQUIPMENT UNIT PRICES

Equipment
Unit

Price (€)

Computer 1.000

Test Devices Platform 25.000

Table 10: Equiment Unit Prices

2.2 SOFTWARE UNIT PRICES

Software
Unit

price(€/year)

Visual Studio Professional 2015 641

SAT 300

Microsoft Office 30

Wireshark Free

SIT
Free

(Internal)

ORCA Free

Table 11: Software Unit Prices

Unit Prices

98

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

2.3 DIRECT LABOR HOURLY PRICES

Direct Labor

Hourly

Prices

(€)

Information Collect 20

Collector Development 60

Testing framework

design
60

Testing 50

Code analysis 50

Documentation 40

Installer development 60

Table 12: Direct Labor Hourly Prices

Partial Budgets

99

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 3 PARTIAL BUDGETS

This chapter lists the partial budgets calculated as the product between the

measurements and their unit prices. Moreover, the amortization of equipment and

software is considered in the following calculations.

3.1 EQUIPMENT BUDGET

Equipment Price (€)
Project

Usage(h)

Year Usage

(h)

Annual

Amortization
Cost (€)

Computer 1.000,00 880,00 2.112,00 0,25 104,17

Test Devices

Platform
25.000,00 250,00 500,00 0,15 1.875,00

TOTAL

1.979,17

Table 13: Equipment Partial Budget

3.2 SOFTWARE BUDGET

Software
License

price(€/year)
Project Usage(h)

Year

Usage

Time (h)

Annual

Amortization
Cost(€)

Visual Studio Professional 2015 641,00 880,00 2.112,00 1,00 267,08

SAT 300,00 880,00 2.112,00 1,00 125,00

Microsoft Office 30,00 120,00 300,00 1,00 12,00

Wireshark Free 250,00 500,00 NA 0,00

SIT
Free

(Internal)
250,00 - NA 0,00

ORCA Free 250,00 - NA 0,00

TOTAL 404,08

Table 14: Software Partial Budget

Partial Budgets

100

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

3.3 DIRECT LABOR PARTIAL BUDGET

Direct Labor Hours
Hourly

Prices (€)
Cost(€)

Information Collect 100 20 2.000

Collector Development 250 60 15.000

Testing framework design 50 60 3.000

Testing 80 50 4.000

Code analysis 50 50 2.500

Documentation 100 40 4.000

Installer development 250 60 15.000

TOTAL 45.500

Table 15: Direct Labor Partial Budget

General Budget

101

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Chapter 4 GENERAL BUDGET

The general budget is obtained as the sum of the partial budgets that were

calculated in Chapter 3. Other expenses as electricity, maintenance and office

equipment are included as a percentage of the total sum.

General Budget

Category
Partial

Sum

Equipment 1.979,17

Software 404,08

Direct Labor 45.500

Sum 47.883,25

Other Expenses

(5%)
2.394,16

TOTAL 50.277,41

Table 16: General Budget

		2018-07-16T11:28:46+0200
	MUÑOZ FRIAS JOSE DANIEL - 52573841G

