

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) INGENIERO INDUSTRIAL

SIMULACIÓN DE TRANSITORIOS DE TEMPERATURA EN SALAS DE UNA CENTRAL NUCLEAR CON ECOSIMPRO

Autor: Beatriz Calderón Escatllar Director: Paula Porca Belío

> Madrid Julio de 2018

Beatriz Calderón Escatllar

SIMULACIÓN DE TRANSITORIOS DE TEMPERATURA EN SALAS DE UNA CENTRAL NUCLEAR CON ECOSIMPRO

AUTORIZACIÓN PARA LA DIGITALIZACIÓN, DEPÓSITO Y DIVULGACIÓN EN RED DE PROYECTOS FIN DE GRADO, FIN DE MÁSTER, TESINAS O MEMORIAS DE BACHILLERATO

1°. Declaración de la autoría y acreditación de la misma.

El autor D. Beatriz Calderón Escatllar

DECLARA ser el titular de los derechos de propiedad intelectual de la obra: SIMULACIÓN DE TRANSITORIOS DE TEMPERATURA EN SALAS DE CENTRALES NUCLEARES CON ECOSIMPRO, que ésta es una obra original, y que ostenta la condición de autor en el sentido que otorga la Ley de Propiedad Intelectual.

2º. Objeto y fines de la cesión.

Con el fin de dar la máxima difusión a la obra citada a través del Repositorio institucional de la Universidad, el autor **CEDE** a la Universidad Pontificia Comillas, de forma gratuita y no exclusiva, por el máximo plazo legal y con ámbito universal, los derechos de digitalización, de archivo, de reproducción, de distribución y de comunicación pública, incluido el derecho de puesta a disposición electrónica, tal y como se describen en la Ley de Propiedad Intelectual. El derecho de transformación se cede a los únicos efectos de lo dispuesto en la letra a) del apartado siguiente.

3°. Condiciones de la cesión y acceso

Sin perjuició de la titularidad de la obra, que sigue correspondiendo a su autor, la cesión de derechos contemplada en esta licencia habilita para:

- a) Transformarla con el fin de adaptarla a cualquier tecnología que permita incorporarla a internet y hacerla accesible; incorporar metadatos para realizar el registro de la obra e incorporar "marcas de agua" o cualquier otro sistema de seguridad o de protección.
- b) Reproducirla en un soporte digital para su incorporación a una base de datos electrónica, incluyendo el derecho de reproducir y almacenar la obra en servidores, a los efectos de garantizar su seguridad, conservación y preservar el formato.
- c) Comunicarla, por defecto, a través de un archivo institucional abierto, accesible de modo libre y gratuito a través de internet.
- d) Cualquier otra forma de acceso (restringido, embargado, cerrado) deberá solicitarse expresamente y obedecer a causas justificadas.
- e) Asignar por defecto a estos trabajos una licencia Creative Commons.
- f) Asignar por defecto a estos trabajos un HANDLE (URL persistente).

4°. Derechos del autor.

El autor, en tanto que titular de una obra tiene derecho a:

- a) Que la Universidad identifique claramente su nombre como autor de la misma
- b) Comunicar y dar publicidad a la obra en la versión que ceda y en otras posteriores a través de cualquier medio.
- c) Solicitar la retirada de la obra del repositorio por causa justificada.
- Recibir notificación fehaciente de cualquier reclamación que puedan formular terceras personas en relación con la obra y, en particular, de reclamaciones relativas a los derechos de propiedad intelectual sobre ella.

5°. Deberes del autor.

El autor se compromete a:

- a) Garantizar que el compromiso que adquiere mediante el presente escrito no infringe ningún derecho de terceros, ya sean de propiedad industrial, intelectual o cualquier otro.
- b) Garantizar que el contenido de las obras no atenta contra los derechos al honor, a la intimidad y a la imagen de terceros;
- c) Asumir toda reclamación o responsabilidad, incluyendo las indemnizaciones por daños, que pudieran ejercitarse contra la Universidad por terceros que vieran infringidos sus derechos e

intereses a causa de la cesión.

d) Asumir la responsabilidad en el caso de que las instituciones fueran condenadas por infracción de derechos derivada de las obras objeto de la cesión.

6°. Fines y funcionamiento del Repositorio Institucional.

La obra se pondrá a disposición de los usuarios para que hagan de ella un uso justo y respetuoso con los derechos del autor, según lo permitido por la legislación aplicable, y con fines de estudio, investigación, o cualquier otro fin lícito. Con dicha finalidad, la Universidad asume los siguientes deberes y se reserva las siguientes facultades:

- La Universidad informará a los usuarios del archivo sobre los usos permitidos, y no garantiza ni asume responsabilidad alguna por otras formas en que los usuarios hagan un uso posterior de las obras no conforme con la legislación vigente. El uso posterior, más allá de la copia privada, requerirá que se cite la fuente y se reconozca la autoría, que no se obtenga beneficio comercial, y que no se realicen obras derivadas.
- La Universidad no revisará el contenido de las obras, que en todo caso permanecerá bajo la responsabilidad exclusive del autor y no estará obligada a ejercitar acciones legales en nombre del autor en el supuesto de infracciones a derechos de propiedad intelectual derivados del depósito y archivo de las obras. El autor renuncia a cualquier reclamación frente a la Universidad por las formas no ajustadas a la legislación vigente en que los usuarios hagan uso de las obras.
- La Universidad adoptará las medidas necesarias para la preservación de la obra en un futuro.
- La Universidad se reserva la facultad de retirar la obra, previa notificación al autor, en supuestos suficientemente justificados, o en caso de reclamaciones de terceros.

Madrid, a 13 de Julio de 2018

АСЕРТА

Fdo.

Motivos para solicitar el acceso restringido, cerrado o embargado del trabajo en el Repositorio Institucional:

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) INGENIERO INDUSTRIAL

SIMULACIÓN DE TRANSITORIOS DE TEMPERATURA EN SALAS DE UNA CENTRAL NUCLEAR CON ECOSIMPRO

Autor: Beatriz Calderón Escatllar Director: Paula Porca Belío

> Madrid Julio de 2018

Beatriz Calderón Escatllar

SIMULACIÓN DE TRANSITORIOS DE TEMPERATURA EN SALAS DE UNA CENTRAL NUCLEAR CON ECOSIMPRO

SIMULACIÓN DE TRANSITORIOS DE TEMPERATURA EN SALAS DE UNA CENTRAL NUCLEAR CON ECOSIMPRO

Autor: Calderón Escatllar, Beatriz.

Director: Porca Belío, Paula.

Entidad Colaboradora: Empresarios Agrupados.

RESUMEN DEL PROYECTO

1. CONTEXTO

La energía nuclear tiene actualmente un peso decisivo en el sistema de generación eléctrico español. En 2016 la producción eléctrica nuclear supuso el 35,18% de la electricidad generada en España. Sin embargo, hay bajo apoyo social a la energía nuclear debido en parte a los accidentes nucleares ocurridos, los cuales han dejado una huella importante en la opinión pública.

Un ejemplo de ello es el accidente que tuvo lugar en la central nuclear de Fukushima, Japón. El 11 de marzo de 2011 se produjo un terremoto en la costa noroeste de Japón, lo que produjo que la central se quedara sin alimentación eléctrica. Tras el terremoto, llegó un tsunami. Las salas en las que se encontraban los motores diésel cuya función era alimentar el sistema de refrigeración, se inundaron, el núcleo se quedó sin sistema de refrigeración y la temperatura de éste aumentó.

Tras el accidente de Fukushima, todos los países de la Unión Europea tomaron medidas para verificar que las centrales eran capaces de soportar situaciones similares a las ocurridas en dicho accidente.

Para ello, todas las centrales se sometieron a una serie de "pruebas de resistencia". Una de estas pruebas en las centrales españolas consistió en realizar estudios de transitorios de temperatura ante accidentes de pérdida de los equipos de refrigeración en las salas que contienen equipos de seguridad.

Este proyecto consiste en la implementación de una herramienta de simulación de transitorios de temperatura en salas de una central nuclear ante diferentes situaciones de accidente, a fin de comprobar que la temperatura de la sala se mantiene en unos rangos óptimos para los equipos de seguridad instalados.

2. ESTADO DEL ARTE Y MOTIVACIÓN

Actualmente, es posible simular transitorios de temperatura en salas de plantas nucleares mediante varios programas. Entre ellos, se encuentra el software de cálculo HVAC-TT v2.1, desarrollado por la empresa Empresarios Agrupados, el cual es de uso interno.

El programa HVAC-TT permite analizar el efecto de las variaciones de carga, arranques y paradas de equipos, etc. en las condiciones de temperatura de las salas. Este programa está aprobado por el Consejo de Seguridad Nuclear (CSN) para su uso en cálculos de transitorios de temperatura.

Sin embargo, la interfaz no es intuitiva y la entrada de datos resulta en algunos casos laboriosa. Además, el programa establece una serie de simplificaciones. Estas simplificaciones son:

- Solo se permite simular una única sala, de tipo paralelepípedo.
- Todos los muros de la sala deben tener la misma composición, del mismo material y espesor.
- Solo se admite una puerta en la sala.
- Solo se admite un fan-coil.
- Sólo se pueden introducir hasta 40 parámetros variables.
- Sólo se pueden procesar hasta 15 tuberías aisladas y 10 desnudas.
- El número máximo de paredes con temperatura variable es de 10.
- Si algún valor de entrada es variable en el tiempo, el número máximo de puntos para indicar la variación en el tiempo es de 10.
- Solo permite simular una sala aislada, es decir, no permite simular al mismo tiempo la variación de temperaturas en salas adyacentes.
- No permite considerar el efecto de la irradiación solar en el calentamiento de los muros exteriores.

Para salvar estas simplificaciones resulta necesario adecuar los datos de entrada al programa.

Por otra parte, el programa no permite simular variaciones de temperatura en diferentes salas colindantes, puesto que está pensado para el empleo en una única sala aislada. Esto implica que en el caso de estudios de temperatura en edificios enteros de centrales nucleares la simulación se deba realizar de forma progresiva sala a sala.

Además, el programa tampoco permite considerar de manera directa el efecto de la irradiación solar en el calentamiento de los muros exteriores, sino que es preciso la realización de modelos y cálculos previos que se introducen finalmente en el programa como datos de entrada.

Debido a esto surge la necesidad de desarrollar un modelo de simulación similar mediante un programa alternativo que permita la entrada de datos de forma más directa y sencilla, con una interfaz más intuitiva.

Por ello, en el presente proyecto se utilizará el programa EcosimPro, un software de modelado y simulación de sistemas dinámicos desarrollado por Empresarios Agrupados y pensado para otros usos distintos al nuclear, el cual se adaptará para esta aplicación en particular.

En comparación con el programa HVAC-TT, EcosimPro no posee tantas limitaciones:

- Se permite que los muros de la sala posean composiciones diferentes.
- Se permite que los muros de la sala posean espesores diferentes.
- Se admite más de una puerta.
- Se admite más de un fan-coil.
- La sala a estudio no tiene porqué ser cuadrada, se admiten salas con distintas geometrías.
- Permite simular salas simulando al mismo tiempo la variación de temperaturas en salas adyacentes.

Además de todo ello, la introducción de datos no es tan laboriosa y su interfaz es más intuitiva.

Sin embargo, este programa tampoco permite considerar directamente el efecto de la irradiación solar, por lo que se ha desarrollado una pequeña aplicación de cálculo mediante Excel para calcular el calor transferido a la sala por irradiación solar, mediante el método del cálculo de la temperatura exterior equivalente (temperatura sol-aire) y el calor mediante el método Radiant Times Series (RTS), según la metodología "ASHRAE Handbook Fundamentals 2017". A esta aplicación de Excel se le ha dado el nombre de SolES v.1, ya que realiza el cálculo de la temperatura de **SOL**-aire y el balance de cargas térmicas en régimen **ES**tacionario. Su ventaja es que permita obtener de forma automática los datos de partida que necesita el programa.

3. METODOLOGÍA, RESULTADOS Y CONCLUSIONES

Para la obtención del flujo de calor máximo transferido a través de un cerramiento exterior, es necesario obtener previamente la temperatura de sol-aire. La temperatura de sol-aire es una temperatura del aire exterior equivalente que incluye el efecto de la radiación solar y el flujo radiante con el cielo, de manera que el cálculo del calor transmitido en un cerramiento exterior se simplifica. Las ecuaciones utilizadas para el cálculo de la temperatura de sol-aire se han programado en una pestaña de SolES y se ha validado satisfactoriamente mediante un ejemplo publicado en el capítulo 18 de ASHRAE.

Una vez obtenida la temperatura de sol-aire, se ha procedido al cálculo del calor transmitido en un cerramiento exterior. El cálculo del flujo de calor a través de un cerramiento exterior programado en SolES también ha sido validado mediante un ejemplo publicado en el capítulo 18 de ASHRAE.

A fin de ser lo más conservador posible para los objetivos perseguidos en el presente proyecto, se considera la transferencia de calor máxima que se produciría en el peor día del año para calcular el calor máximo transmitido en cerramientos exteriores en régimen permanente. Dependiendo del caso de estudio se usará el valor pico o bien una aproximación senoidal representativa del peor día del año.

Posteriormente, se ha procedido a modelizar en SolES el balance de cargas térmicas en una sala convencional, en régimen permanente, considerando todos los flujos de calor de la sala a estudio, incluido el calor máximo transmitido a través del muro exterior. Este cálculo ha sido validado por un programa de cálculo de cargas térmicas de tipo comercial, el programa Hourly Analysis Program de la empresa Carrier (HAP Carrier versión v4.91).

Tanto el cálculo del calor máximo transferido a través de un cerramiento exterior como el balance estacionario de cargas térmicas en una sala tipo se han implementado en la aplicación de Excel SolES con el objetivo de automatizar el proceso para poder obtener los resultados mediante los datos de entrada sin necesidad de conocer ni modificar las ecuaciones utilizadas. La aplicación SolES incorpora un base de datos de diseño relativos a las localizaciones de las centrales nucleares a estudio. No obstante, se podría particularizar para cualquier ubicación.

A continuación, se ha validado el programa EcosimPro pensado para otros usos distintos del nuclear mediante el programa HVAC-TT, aprobado por el Consejo de Seguridad Nuclear.

Para ello, se ha simulado en el programa EcosimPro un caso real de evolución de temperatura en una sala de una central nuclear ante una situación de accidente.

La sala a estudio (sala EF135) contiene un generador diésel de seguridad, el cual entra en funcionamiento ante un accidente en la central nuclear. Dado que la carga térmica que disipa el generador es muy elevada, la sala dispone de dos unidades fan-coil que permiten mantener la sala en unos rangos óptimos de temperatura para el funcionamiento de dicho generador. Dicha sala contiene un cerramiento exterior, la pared Sur.

El caso de estudio que se modela es el fallo de agua de alimentación a una de las dos unidades fan-coil en caso de accidente, es decir, estando la planta funcionando en operación anormal con el generador diésel funcionando.

Mediante la herramienta SolES, se han obtenido los datos de partida necesarios a introducir en EcosimPro. Estos datos de partida han sido la temperatura de pared de los cerramientos interiores y el flujo de calor máximo transferido por la pared Sur.

Para desarrollar el modelo en EcosimPro se ha utilizado la librería THERMAL, la cual contiene una base de datos de componentes programados por defecto capaces de simular la sala a estudio, las condiciones iniciales y los diferentes fenómenos principales de transferencia de calor. Adicionalmente ha sido necesario programar en EcosimPro diferentes componentes para tener en cuenta todos los fenómenos específicos que tienen lugar en el caso a estudio.

La evolución obtenida de la temperatura interna del aire de la sala EF135 mediante el programa EcosimPro es la siguiente:

Los resultados obtenidos en forma de tabla mediante el programa HVAC-TT han sido representados de manera gráfica a fin de permitir la comparación con los resultados obtenidos con EcosimPro:

Tal y como se observa en las anteriores gráficas, el valor máximo alcanzado por la temperatura del aire a las 80 horas en EcosimPro ($54,32^{\circ}C$) es similar al obtenido mediante el programa HVAC-TT ($55^{\circ}C$). La diferencia entre ambas temperaturas es menor de un grado ($0,68^{\circ}C$) por lo que el resultado obtenido se considera aceptable.

Esta pequeña diferencia entre ambas temperaturas es debido a que el flujo de calor a través del cerramiento exterior, la pared Sur, ha sido obtenido en el programa HVAC-TT mediante un método alternativo al método ASHRAE programado con el programa SolES.

Según el programa HVAC-TT, el modelo evoluciona hacia un régimen senoidal estacionario a partir de las 48 horas (2 días) de haber postulado el fallo de una de las unidades fan-coil. Sin embargo, en EcosimPro el régimen estacionario se alcanza a partir de las 168 horas (7 días).

Esta diferencia es debida a que el programa HVAC-TT termina de realizar la simulación cuando detecta que el rango de variación de las variables es pequeño. Sin embargo, EcosimPro permite realizar la simulación de tanto tiempo como se desee. Por ello, el régimen estacionario se alcanza antes en el programa HVAC-TT y el valor obtenido de la temperatura de la sala EF135 mediante EcosimPro a las 80 horas (54,32°C) varía muy poco con respecto al obtenido a los 7 días (54,35°C).

Al obtener resultados similares mediante ambos programas, se concluye que EcosimPro es un programa fiable para la simulación de transitorios de temperatura.

Tras esta validación, se ha obtenido una nueva metodología de simulación de transitorios de temperatura en salas de centrales nucleares, permitiendo una mejora de la

productividad en la ejecución de proyectos similares con un considerable ahorro de tiempo.

Por todo ello, se concluye que se ha obtenido una metodología fiable para la obtención de transitorios de temperatura en salas de centrales nucleares mediante el programa EcosimPro.

SIMULATION OF TEMPERATURE TRANSIENTS IN ROOMS OF A NUCLEAR POWER PLANT USING ECOSIMPRO

Author: Calderón Escatllar, Beatriz.

Director: Porca Belío, Paula.

Collaborating Entity: Empresarios Agrupados.

ABSTRACT OF THE PROJECT

1. CONTEXT

The nuclear energy has currently a decisive significance in the Spanish electric generation system. In 2016, nuclear electricity production accounted for 35.18% of the electricity generated in Spain. However, there is low social support for nuclear energy given the nuclear accidents, which have left a significant impact on public opinion.

An example of this is the accident that took place in the Fukushima nuclear power plant, in Japan. On the 11 March 2011, an earthquake shook the northwest coast of Japan, which caused the nuclear power plant to operate without an electrical power supply. After the earthquake, a tsunami arrived. The rooms where the diesel engines were located whose function was to feed the cooling system, were flooded, the core was left without cooling system and the temperature of the core was increased.

After the Fukushima accident, all the countries of the European Union took measures to verify that the nuclear power plants were able to resist similar situations to the ones that occurred in the Fukushima accident.

As consequence, all the plants underwent a series of "resistance tests". One of these tests in the Spanish power plants consisted in carrying out studies of temperature transients in the event of accidents involving the loss of refrigeration equipment in the rooms that contain safety equipment.

This project consists of the simulation of temperature transients in rooms of a nuclear power plant with safety equipment, in order to verify that the temperature of the room and its equipment are kept at optimum ranges.

2. STATE OF THE ART AND MOTIVATION

Currently, it is possible to simulate temperature transients in nuclear plant rooms through several software. Among them the HVAC-TT v2.1, has been developed by the company Empresarios Agrupados, being its use limited to internal applications.

The HVAC-TT software allows analyzing the effect of load variations, starting and stopping equipment, etc. in the temperature conditions of the rooms. This software is approved by the Nuclear Safety Council (CSN) for use in calculations of temperature transients.

However, the interface is not intuitive and data entry is sometimes laborious. In addition, the software establishes a series of simplifications. These simplifications are:

- Only one room with shape of parallelepiped is allowed to be simulated.

- All the walls of the room must have the same composition, same material and thickness.

- Only one door is allowed in the room.

- Only one fan-coil is allowed.

- Only up to 40 variable parameters can be entered.

- Only up to 15 isolated pipes and 10 pipes without isolation can be processed.

- The maximum number of walls with variable temperature is 10.

- If any input value is variable in time, the maximum number of points to indicate the variation in time is 10.

- Only allows to simulate an isolated room. It does not allow to simulate at the same time the variation of temperatures in adjacent rooms.

- It does not allow to consider the effect of solar irradiation on the heating of the exterior enclosure.

To overcome these simplifications, it is necessary to adapt the input data to the software.

Also, the software does not allow to simulate temperature variations in different adjacent rooms, since it is intended for use in a single isolated room. This implies that in the case of temperature studies in whole buildings of nuclear power plants, the simulation must be carried out progressively from room to room.

In addition, the software also does not allow to directly consider the effect of solar irradiation on the heating the exterior of the enclosure, but it is necessary to carry out previous models and calculations that are finally introduced into the software as input data.

Due to all the simplifications of this software, there is a need to develop a similar simulation model through an alternative software that allows the entry of data in a more direct and simple way, with a more intuitive interface.

Therefore, in this project the software that will be used is EcosimPro, which models and simulates dynamic systems developed by Empresarios Agrupados. The EcosimPro software has been designed to be employed in other uses than nuclear, so it must be adapted for this particular application.

In comparison with the HVAC-TT software, EcosimPro does not have so many limitations:

- The walls of the room are allowed to have different compositions.

- The walls of the room are allowed to have different thicknesses.

- More than one door is allowed.

- More than one fan-coil is allowed.

- The study room does not need to be a parallelepiped, rooms with different geometries are allowed.

- It allows to simulate adjacent rooms, simulating at the same time the variation of temperatures in both rooms.

In addition, the introduction of data is not so laborious, and its interface is more intuitive.

However, this software does not allow to consider the effect of solar irradiation, so a small calculation application has been developed using Excel to calculate the heat transferred to the room by solar irradiation. The Excel application is based on the equivalent outside temperature (sun-air temperature) and heat, using the Radiant Times Series (RTS) method according to the

"ASHRAE Handbook Fundamentals 2017" methodology. This excel spreadsheet has been called SolES v.1, as it employs the sun-air (**SOL**-aire in Spanish language) temperature and the balance of thermal loads in stationary (**ES**tacionario in Spanish language) regime. Its advantage is that allows obtaining in an easy way the entry data needed for the EcosimPro software.

3. METHOLOGY, RESULTS AND CONCLUSIONS

To obtain the maximum heat flow transferred through an external enclosure, it is necessary to previously obtain the sun-air temperature. The sun-air temperature is an equivalent temperature of outside air that includes the effect of solar radiation and the radiant flow from the sky. This means the calculation of the heat transmitted in an external enclosure is simplified. The equations employed in the calculation of the sun-air temperature has been programmed in the SolES and it has been successfully validated by an example published in chapter 18 of ASHRAE.

Once the sol-air temperature has been obtained, the heat transmitted in an external enclosure has been calculated. The calculation of heat flow through an external enclosure programmed in SolES has also been validated by an example published in chapter 18 of ASHRAE.

In order to be as conservative as possible for the objectives pursued in the present project, the maximum heat transfer that would occur on the worst day of the year, is the one considered to calculate the maximum heat transmitted in exterior enclosures in permanent regime. Pending on the case study, a peak value or a sine wave approximation representative of the worst day throughout the year has been employed.

Next step has been to model in the SolES the balance of thermal loads in a conventional room in permanent regime, considering all the heat flows of the room to analyze, including the maximum heat transmitted through the external enclosure. This calculation has been validated by a software of calculation of thermal loads of commercial use, the Hourly Analysis Program of Carrier (HAP Carrier version v4.91).

Both the maximum heat transferred through an external enclosure and the balance of thermal loads in a standard room have been implemented in SolES. The purpose of doing it in a spreadsheet is to automate the process in order to obtain the results through the input data without having to know or modify the equations used by the software. The SolES application includes a database about the location of the nuclear power plants analyzed. Nevertheless, it can be customized for any alternative location.

The EcosimPro software has been validated for use in nuclear applications. For the validation the HVAC-TT has been employed, as it is already approved by the Nuclear Safety Council.

For this purpose, a real case of temperature evolution in an accident situation on a room at a nuclear power plant, has been simulated in the EcosimPro software.

The study room (EF135 room) contains a safety diesel generator, which enters into operation in case of accident in the nuclear power plan. Given the high thermal load dissipated by the generator, the room I fitted with two units of fan-coil allowing to maintain the temperature with in optimal range. This room contains an exterior enclosure, the South wall.

In the study case it is simulated the failure of in the supply of cooling water of one fancoil unit, with the plant in abnormal operation (diesel generator EF135 in operation).

Using the SolES tool, the entry data for the EcosimPro has been obtained. These entry data are the temperature of the interior side in the enclosure wall and the maximum heat flow transferred by the South wall.

To run the EcosimPro model, it has been used the THERMAL library, which contains a data base of standard components, such as initial conditions or main phenomena of heat transfer. Also it has been necessary to program several components to take into account other phenomena that take place in the case under study, since the EcosimPro nor the library does not include them by default.

The evolution obtained from the internal air temperature of room EF135 using the EcosimPro software is as follows:

The results obtained from the HVAC-TT software in form of table have been represented graphically in order to allow comparison with the results obtained with EcosimPro:

As shown in the previous graphs, the maximum value reached by the air temperature $(54,32^{\circ}C)$ of the room at 80-hour in EcosimPro is similar to the maximum value of temperature obtained by the HVAC-TT software $(55^{\circ}C)$. The difference between both temperatures is lower than one degree so the results obtained are considered as acceptable.

This low difference between both temperatures can be justified by the heat flow through the external enclosure, the South wall, as it has been obtained in the HVAC-TT software with an alternative method to ASHRAE, programmed with SolES tool.

According to the HVAC-TT software, the model evolves towards a stationary sinusoidal regime from 48 hours (2 days) after having postulated the failure of one of the fan-coil units. However, in EcosimPro the steady state is reached after 168 hours (7 days).

This difference is due to the fact that the HVAC-TT software finishes performing the simulation when it detects that the variation range of the variables is small. However, EcosimPro allows you to perform the simulation as long as desired. Therefore, the stationary regime is reached earlier in the HVAC-TT software and the temperature of the room EF135 obtained with EcosimPro at 80 hours of simulation (54,32°C) has little variation with respect to the temperature obtained after 7 days of simulation (54,35°C).

It can be concluded that EcosimPro is a reliable software for the simulation of temperature transients, as similar results have been obtained with both software.

After this validation, a new methodology for simulating temperature transients in nuclear power plant rooms has been obtained, allowing an improvement of productivity in the execution of similar projects with a considerable saving of time.

Therefore, it is concluded that a reliable methodology has been obtained in order to calculate temperature ss in rooms of nuclear power plants through the EcosimPro software.

INDICE

CAPÍTULO 1	INTRODUCCIÓN	9
1.1. COI	NTEXTO	9
1.2. EST	ADO DE LA CUESTIÓN	
1.3. MO	TIVACIÓN	
1.4. OBJ	ETIVOS DEL PROYECTO	
CAPÍTULO 2	DESARROLLO DE LA HERRAMIENTA SOLES EN RÉGIMEN ESTA	ACIONARIO 17
2.1. OBT	ENCIÓN DE LA TEMPERATURA DE SOL-AIRE	
2.1.1.	METODOLOGÍA	17
2.1.2.	VALIDACIÓN	23
2.2. OB' EXTERIOR	ΓΕΝCIÓN DEL CALOR TRANSFERIDO MÁXIMO EN UN C	ERRAMIENTO 34
2.2.1.	METODOLOGÍA	
2.2.2.	VALIDACIÓN	
2.3. MO	DELIZACIÓN DEL BALANCE DE CARGAS TÉRMICAS EN UNA SA	LA TIPO41
2.3.1.	METODOLOGÍA	41
2.3.2.	VALIDACIÓN	47
CAPÍTULO 3 HERRAMIEN	3: SIMULACIÓN DE TRANSITORIOS DE TEMPERATURA M TA ECOSIMPRO	IEDIANTE LA 53
3.1. EST	UDIO 1: SALA TIPO	53
3.2. EST	UDIO 2: SALA GENERADOR DIÉSEL	63
3.2.1.	CASO DE ESTUDIO	64
3.2.2. MEDIAN	OBTENCION DE DATOS DE PARTIDA EN REGIMEN E ITE EL USO DE LA HERRAMIENTA SOLES	STACIONARIO 66
3.2.3.	DESARROLLO DEL MODELO EN ECOSIMPRO	69
3.2.4.	VALIDACIÓN MEDIANTE EL PROGRAMA HVAC-TT	74
CAPÍTULO 4	CONCLUSIONES	
REFERENCIA	\S	
ANEXOS		

INDICE DE FIGURAS

FIGURA 1. ACCIDENTE NUCLEAR DE FUKUSHIMA, JAPÓN. FUENTE: GOOGLE	. 10
Figura 2. Logo HVAC-TT. Fuente: Manual de usuario	.11
FIGURA 3: LOGO ECOSIMPRO. FUENTE: GOOGLE	.12
FIGURA 4. VARIACIÓN DE LA DECLINACIÓN. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	. 19
FIGURA 5. ÁNGULOS SOLARES. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	.20
Figura 6.Funcionamiento ángulo Ψ	.21
Figura 7. Posibles ángulos φ	.26
FIGURA 8. TRANSFERENCIA DE CALOR EN UN CERRAMIENTO INTERIOR	.46
Figura 9. Resultados Hormigón 550 HAP Carrier	.49
Figura 10. Resultados Hormigón 450 HAP Carrier	.49
FIGURA 11. RESULTADOS BALANCE TÉRMICO HAP CARRIER	.51
Figura 23. Modelo utilizado en EcosimPro, sala 01	.53
FIGURA 12. DATOS DE ENTRADA 1 PARA EL BALANCE DE CARGAS TÉRMICAS EN LA SALA 01	.54
FIGURA 13. DATOS DE ENTRADA 2 PARA EL BALANCE DE CARGAS TÉRMICAS EN LA SALA 01	.55
FIGURA 14. DATOS DE ENTRADA 3 PARA EL BALANCE DE CARGAS TÉRMICAS EN LA SALA 01	.55
FIGURA 15. DATOS DE ENTRADA 1 PARA OBTENCIÓN DEL FLUJO DE CALOR MÁXIMO A TRAVÉS DEL TECHO	.56
FIGURA 16. DATOS DE ENTRADA 2 PARA OBTENCIÓN DEL FLUJO DE CALOR MÁXIMO A TRAVÉS DEL TECHO	.56
FIGURA 17. RESULTADOS 1 DEL FLUJO DE CALOR MÁXIMO A TRAVÉS DEL TECHO	.56
FIGURA 18. RESULTADOS 2 DEL FLUJO DE CALOR MÁXIMO A TRAVÉS DEL TECHO	.56
FIGURA 19. RESULTADOS 3 DEL FLUJO DE CALOR MÁXIMO A TRAVÉS DEL TECHO	.57
FIGURA 20. RESULTADOS 1 DEL BALANCE DE CARGAS TÉRMICAS EN LA SALA 01	.58
FIGURA 21. RESULTADOS 2 DEL BALANCE DE CARGAS TÉRMICAS EN LA SALA 01	.58
FIGURA 22. RESULTADOS 3 DEL BALANCE DE CARGAS TÉRMICAS EN LA SALA 01	.59
FIGURA 24. TEMPERATURAS INICIALES DE PARED DE LOS CERRAMIENTOS INTERIORES	.67
FIGURA 25. MODELO UTILIZADO EN ECOSIMPRO, SALA EF135	.69
FIGURA 26. CAPTURA DE PANTALLA AL COMPONENTE "EF135" DEL PROGRAMA ECOSIMPRO	.74
FIGURA 27. CAPTURA DE PANTALLA DE LOS DATOS DE LA SALA Y DE TEMPERATURA DEL PROGRAMA HVAC-TT	.75
FIGURA 28. CAPTURA DE PANTALLA DE LOS DATOS DE CARGA MISCELÁNEA DEL PROGRAMA HVAC-TT	.76
FIGURA 29. CAPTURA DE PANTALLA DEL COMPONENTE "WALL_NORTE_OESTE_TECHO" DEL PROGRAMA ECOSIMPRO	.77
FIGURA 30.CAPTURA DE PANTALLA DEL COMPONENTE "WALL_ESTE" DEL PROGRAMA ECOSIMPRO	.77
FIGURA 31. CAPTURA DE PANTALLA DE LOS DATOS DEL MURO Y DE RADIACIÓN DEL PROGRAMA HVAC-TT	.78
FIGURA 32. CAPTURA DE PANTALLA DE LAS PAREDES CON TEMPERATURA FIJA DEL PROGRAMA HVAC-TT	.78
FIGURA 33. CAPTURA DE PANTALLA DE LAS PAREDES CON TEMPERATURA VARIABLE DEL PROGRAMA HVAC-TT	.79
FIGURA 34. CAPTURA DE PANTALLA DEL COMPONENTE "CV_N_O_T" DEL PROGRAMA ECOSIMPRO	.80
FIGURA 35. CAPTURA DE PANTALLA DEL COMPONENTE "CV_N_O_T_1" DEL PROGRAMA ECOSIMPRO	.80
FIGURA 36. CAPTURA DE PANTALLA DEL COMPONENTE "CV_E" DEL PROGRAMA ECOSIMPRO	.80
FIGURA 37. CAPTURA DE PANTALLA DEL COMPONENTE "CV_E_1" DEL PROGRAMA ECOSIMPRO	.81
FIGURA 38. CAPTURA DE PANTALLA DEL COMPONENTE "RD_N_O_T" DEL PROGRAMA ECOSIMPRO	.81
FIGURA 39. CAPTURA DE PANTALLA DEL COMPONENTE "RD_N_O_T_1" DEL PROGRAMA ECOSIMPRO	.82
FIGURA 40. CAPTURA DE PANTALLA DEL COMPONENTE "RD_E" DEL PROGRAMA ECOSIMPRO	.82
FIGURA 41. CAPTURA DE PANTALLA DEL COMPONENTE "RD_E_1" DEL PROGRAMA ECOSIMPRO	.82
FIGURA 42. CAPTURA DE PANTALLA DEL COMPONENTE "EF134_EF136_EK154_EK156" DEL PROGRAMA ECOSIMPRO	.83
FIGURA 43. CAPTURA DE PANTALLA DEL COMPONENTE "TF005" DEL PROGRAMA ECOSIMPRO	.83
FIGURA 44. CAPTURA DE PANTALLA DE LA TEMPERATURA DEL PASILLO DEL PROGRAMA HVAC-TT	.84
FIGURA 45. CAPTURA DE PANTALLA DEL COMPONENTE "FC1" DEL PROGRAMA ECOSIMPRO	.84
FIGURA 46. CAPTURA DE PANTALLA DE LOS DATOS DEL FAN-COIL DEL PROGRAMA HVAC-TT	.85

FIGURA 48. CAPTURA DE PANTALLA DE LOS DATOS DE LA PUERTA DEL PROGRAMA HVAC-TT	86
FIGURA 49. CAPTURA DE PANTALLA DEL COMPONENTE "AE" DEL PROGRAMA ECOSIMPRO	
FIGURA 50. CAPTURA DE PANTALLA DE LOS DATOS DE VENTILACIÓN DEL PROGRAMA HVAC-TT	
FIGURA 51. CAPTURA DE PANTALLA DE LA TEMPERATURA DE LA VENTILACIÓN DEL PROGRAMA HVAC-TT	
FIGURA 52. CAPTURA DE PANTALLA DEL COMPONENTE "WALL_SUR" DEL PROGRAMA ECOSIMPRO	

INDICE DE TABLAS

TABLA 1. CENTRALES NUCLEARES EXISTENTES EN ESPAÑA. FUENTE: MINISTERIO DE ENERGÍA, TURISMO Y AGENDA DIGITAL	9
TABLA 2. VALORES DE ABSORTANCIA. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	18
TABLA 3. VALORES DE LA REFLECTIVIDAD. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	23
TABLA 4. TEMPERATURA EXTERIOR ATLANTA	24
TABLA 5. RESULTADOS 1 SOLES EJEMPLO ATLANTA	30
TABLA 6. RESULTADOS 1 ASHRAE EJEMPLO ATLANTA. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	31
TABLA 7. RESULTADOS 2 SOLES EJEMPLO ATLANTA	32
TABLA 8. RESULTADOS 2 ASHRAE EJEMPLO ATLANTA. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	34
TABLA 9. FRACCIÓN CONVECCIÓN, RADIACIÓN. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	37
TABLA 10. RESULTADOS 3 SOLES EJEMPLO ATLANTA	41
TABLA 11. RESULTADOS 3 ASHRAE EJEMPLO ATLANTA. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	41
TABLA 12. RESISTENCIAS TÉRMICAS SUPERFICIALES DE PARTICIONES INTERIORES. FUENTE: CÓDIGO TÉCNICO DE LA	
EDIFICACIÓN	43
TABLA 13.SALAS ADYACENTES SALA 07	48
TABLA 14. CARACTERÍSTICAS CERRAMIENTOS INTERIORES SALA 07	48
TABLA 15. CARACTERÍSTICAS CERRAMIENTOS EXTERIORES SALA 07	48
TABLA 19. CARGA A COMBATIR OBTENIDA DE LA HERRAMIENTA SOLES	59
TABLA 20. DIMENSIONES DE LA SALA EF135	64
TABLA 21. SALAS ADYACENTES A LA SALA EF135	65
TABLA 22. VALOR INICIAL DE LA SENOIDAL, AMPLITUD Y DESFASE	69
TABLA 23. DATOS A INTRODUCIR EN EL COMPONENTE "PUERTA"	70
TABLA 24. DATOS A INTRODUCIR EN EL COMPONENTE "AE"	71
TABLA 25. DATOS A INTRODUCIR EN EL COMPONENTE "TF005"	72
TABLA 26. DATOS A INTRODUCIR EN EL COMPONENTE "FC1"	72
TABLA 27. DATOS A INTRODUCIR EN EL COMPONENTE "RD"	73
TABLA 28. DATOS A INTRODUCIR EN EL COMPONENTE "WALL_SUR"	73
TABLA 29. CONVERSIÓN DE UNIDADES DEL COMPONENTE "EF135"	76
TABLA 30. ÁREA DE LOS CERRAMIENTOS INTERIORES	79
TABLA 31. CONVERSIÓN DE UNIDADES DE LOS COMPONENTES "WALL"	79
TABLA 32. CONVERSIÓN DE UNIDADES DEL COMPONENTE "EF134_EF136_EK154_EK156"	83
TABLA 34. CONVERSIÓN DE UNIDADES DEL COMPONENTE "PUERTA"	86
TABLA 35. CONVERSIÓN DE UNIDADES DEL COMPONENTE "AE"	88
TABLA 36. TABLA DE RESULTADOS HVAC-TT	92
TABLA 37. TABLA DE RESULTADOS ECOSIMPRO	93
TABLA 38. COMPARACIÓN DE RESULTADOS A LOS 29 SEGUNDOS	93
TABLA 39. TASAS REPRESENTATIVAS A LAS CUALES EL SER HUMANO APORTA CALOR Y HUMEDAD EN DIFERENTES ESTADOS D	DE
ACTIVIDAD. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	103
TABLA 40. DENSIDADES DE POTENCIA DE ILUMINACIÓN. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	103
TABLA 41. CTS PARED 1. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	104
TABLA 42. CTS PARED 2. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	105
TABLA 43. CTS PARED 3. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	106
TABLA 44. CTS PARED 4. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	107
TABLA 45. CTS PARED 5. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	108
TABLA 46. CTS PARED 6. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	109
TABLA 47. CTS PARED 7. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	110
TABLA 48. CTS TECHO 1. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	111
TABLA 49. CTS TECHO 2. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	112

TABLA 50. CTS TECHO 3. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	113
TABLA 51. CTS TECHO 4. FUENTE: ASHRAE HANDBOOK FUNDAMENTALS 2017	114
TABLA 52. PROPIEDADES TÉRMICAS DE LAS CAPAS UTILIZADAS EN LAS DESCRIPCIONES DE PARED Y TECHO DE CTS. FUENTE	:
ASHRAE HANDBOOK FUNDAMENTALS 2017	115
TABLA 53. VALORES REPRESENTATIVOS DE RTS PARA CONSTRUCCIÓN LIGERA, MEDIA Y PESADA. FUENTE: ASHRAE	
HANDBOOK FUNDAMENTALS 2017	116
TABLA 54. VALORES DE CONDUCTIVIDAD TÉRMICA, DENSIDAD Y CALOR ESPECÍFICO EN FUNCIÓN DEL MATERIAL. FUENTE:	
Empresarios Agrupados	123

INDICE DE GRÁFICAS

GRÁFICA 1. EVOLUCIÓN DE LA MASA DE AIRE RELATIVA ATLANTA	28
GRÁFICA 2. EVOLUCIÓN DE LA TEMPERATURA EXTERIOR DEL AIRE Y LA TEMPERATURA EQUIVALENTE	33
GRÁFICA 3. EVOLUCIÓN EN DOS DÍAS DE LA TEMPERATURA EXTERIOR EQUIVALENTE	36
GRÁFICA 4. EVOLUCIÓN DE LA TEMPERATURA DE LA SALA 01	59
GRÁFICA 5. ZOOM REALIZADO A LA EVOLUCIÓN DE LA TEMPERATURA DE LA SALA 01	60
GRÁFICA 6. EVOLUCIÓN DE LA POTENCIA TÉRMICA EN LA PARED ESTE	60
GRÁFICA 7. EVOLUCIÓN DE LA POTENCIA TÉRMICA EN LA PARED NORTE	61
GRÁFICA 8. EVOLUCIÓN DE LA POTENCIA TÉRMICA DEL SUELO	61
GRÁFICA 9. EVOLUCIÓN DE LA POTENCIA TÉRMICA EN LOS CERRAMIENTOS INTERIORES	62
GRÁFICA 10. EVOLUCIÓN DE LA TEMPERATURA DE LOS CERRAMIENTOS INTERIORES	63
GRÁFICA 11. FLUJO DE CALOR A TRAVÉS DE LA PARED SUR	68
GRÁFICA 12. EVOLUCIÓN DE LA TEMPERATURA DE LA SALA EF135 OBTENIDA DEL PROGRAMA ECOSIMPRO	89
GRÁFICA 13. EVOLUCIÓN DE LA TEMPERATURA DE LA SALA EF135 OBTENIDA DEL PROGRAMA HVAC-TT	89
GRÁFICA 14. EVOLUCIÓN 2 DE LA TEMPERATURA DE LA SALA EF135 OBTENIDA DEL PROGRAMA ECOSIMPRO	90
GRÁFICA 15. EVOLUCIÓN DE LA TEMPERATURA DE LOS CERRAMIENTOS INTERIORES OBTENIDA DEL PROGRAMA ECOSIM	IPRO 91
GRÁFICA 16. EVOLUCIÓN DE LA POTENCIA TÉRMICA OBTENIDA DEL PROGRAMA ECOSIMPRO	94
GRÁFICA 17. EVOLUCIÓN DE LA POTENCIA TÉRMICA DE LA PUERTA OBTENIDA DEL PROGRAMA ECOSIMPRO	94
GRÁFICA 18. EVOLUCIÓN DEL FLUJO DE CALOR A TRAVÉS DE LA PARED SUR	95
GRÁFICA 19. EVOLUCIÓN DE LA TEMPERATURA EXTERIOR OBTENIDA DEL PROGRAMA ECOSIMPRO	95
GRÁFICA 20. EVOLUCIÓN DE LA TEMPERATURA DE LA SALA TF005 OBTENIDA DEL PROGRAMA ECOSIMPRO	96
GRÁFICA 21. EVOLUCIÓN DE LA TEMPERATURA EXTERIOR CON DESFASE OBTENIDA DEL PROGRAMA ECOSIMPRO	97
GRÁFICA 22. EVOLUCIÓN DE LA TEMPERATURA EXTERIOR OBTENIDA DEL PROYECTO DE REFERENCIA	97
GRÁFICA 23. EVOLUCIÓN DE LA TEMPERATURA DE LA SALA TF005 CON DESFASE OBTENIDA DEL PROGRAMA ECOSIMPI	ro98
GRÁFICA 24. EVOLUCIÓN DE LA TEMPERATURA DE LA SALA TF005 CON DESFASE OBTENIDA DEL PROYECTO DE REFEREN	VCIA .98

CAPÍTULO 1: INTRODUCCIÓN

1.1. CONTEXTO

En la actualidad es posible producir energía eléctrica a partir de fuentes de energías renovables y no renovables. Dentro de las fuentes de energías no renovables se encuentran las centrales nucleares.

En España hay seis centrales nucleares en funcionamiento y dos en desmantelamiento. La potencia total instalada es de 7728 MW_e. Las centrales existentes en España se adjuntan en la siguiente tabla:

Central	Emplazamiento	Potencia eléctrica (MW)	Tipo	Año entrada en servicio
Sta. María	V. Tobalina	466.00	B.W.R.	1971
Garoña	Burgos			
Almaraz I	Almaraz	1035.30	P.W.R.	1981
	Cáceres			
Almaraz II	Almaraz	1045.00	P.W.R.	1983
	Cáceres			
Ascó I	Ascó	1032.50	P.W.R.	1983
	Tarragona			
Ascó II	Ascó	1027.21	P.W.R.	1985
	Tarragona			
Cofrentes	Cofrentes	1092.02	B.W.R.	1984
	Valencia			
Vandellós II	Vandellós	1087.14	P.W.R.	1987
	L'Hospitalet del Infant			
	Tarragona			
Trillo	Trillo	1066.00	P.W.R.	1988
	Guadalajara			

Tabla 1. Centrales nucleares existentes en España. Fuente: Ministerio de Energía, turismo y agenda digital

La energía nuclear tiene actualmente un peso decisivo en el sistema de generación eléctrico español. En 2016 la producción eléctrica nuclear supuso el 35,18% de la electricidad generada en España. Sin embargo, no hay mucho apoyo social a la energía nuclear debido en parte a los accidentes nucleares ocurridos, los cuales han dejado una huella importante en la opinión pública. [5]

Un ejemplo de ello es el accidente que tuvo lugar en la central nuclear de Fukushima, Japón. El 11 de marzo de 2011 se produjo un terremoto en la costa noroeste de Japón, lo que produjo que la central se quedara sin alimentación eléctrica. Al estar diseñada para soportar terremotos, ante la posibilidad de quedarse sin alimentación eléctrica, contaba con motores diésel, que comenzaron a funcionar a fin de alimentar el sistema de refrigeración. Tras el terremoto, llegó un tsunami. El maremoto fue de 15 metros, sin embargo, el muro de contención de la central era de 8. De esta manera, las salas en las que se encontraban los motores diésel se inundaron, el núcleo se quedó sin sistema de refrigeración y la temperatura de éste aumentó. [6]

Figura 1. Accidente nuclear de Fukushima, Japón. Fuente: Google

Tras el accidente de Fukushima, todos los países de la Unión Europea tomaron medidas para verificar que las centrales eran capaces de soportar situaciones similares a las ocurridas en dicho accidente.

Para ello, todas las centrales se sometieron a una serie de "pruebas de resistencia". Una de estas pruebas en las centrales españolas consistió en realizar estudios de transitorios de temperatura ante accidentes de pérdida de los equipos de refrigeración en las salas que contienen equipos de seguridad.

Por todo ello, el fin del presente proyecto consiste en la simulación de los transitorios de temperatura en salas de una central nuclear con el fin de conocer la evolución de la temperatura en la sala ante diferentes situaciones de accidente.

1.2. ESTADO DE LA CUESTIÓN

Actualmente, es posible simular transitorios de temperatura en salas de plantas nucleares mediante varios programas. Entre ellos, se encuentra el software de cálculo HVAC-TT v2.1, desarrollado por la empresa Empresarios Agrupados y de uso interno.

PROGRAMA KVACTT Versión 2.1

Figura 2. Logo HVAC-TT. Fuente: Manual de usuario

El programa HVAC-TT permite analizar el efecto de las variaciones de carga, arranques y paradas de equipos, etc. en las condiciones de temperatura de las salas. Este programa está aprobado por el Consejo de Seguridad Nuclear (CSN) para su uso en cálculos de transitorios de temperatura.

El programa es robusto y presenta características muy útiles, ya que permite simular la evolución de temperatura en una sala típica de una central nuclear, considerando el calor intercambiado a través de los muros y puertas con las salas frontera, el calor generado/evacuado por diferentes equipos típicos (unidades fan-coil, tuberías calientes, cableado eléctrico, etc.). Sin embargo, la interfaz no es intuitiva y la entrada de datos resulta en algunos casos laboriosa. Además, el programa establece una serie de simplificaciones. Estas simplificaciones son:

- Solo se permite simular una única sala, de tipo paralelepípedo.
- Todos los muros de la sala deben tener la misma composición, del mismo material y espesor.
- Solo se admite una puerta en la sala.
- Solo se admite un fan-coil.
- Sólo se pueden introducir hasta 40 parámetros variables.
- Sólo se pueden procesar hasta 15 tuberías aisladas y 10 desnudas.
- El número máximo de paredes con temperatura variable es de 10.
- Si algún valor de entrada es variable en el tiempo, el número máximo de puntos para indicar la variación en el tiempo es de 10.
- Solo permite simular una sala aislada, es decir, no permite simular al mismo tiempo la variación de temperaturas en salas adyacentes.

- No permite considerar el efecto de la irradiación solar en el calentamiento de los muros exteriores.

Para salvar estas simplificaciones resulta necesario adecuar los datos de entrada al programa. Por ejemplo, al permitir únicamente un solo tipo de cerramiento, de espesor constante, es necesario calcular el espesor promedio de todos los muros de la sala, incluidos los del techo y suelo.

Por otra parte, el programa no permite simular variaciones de temperatura en diferentes salas colindantes, puesto que está pensado para el empleo en una única sala aislada. Esto implica que en el caso de estudios de temperatura en edificios enteros de centrales nucleares la simulación se deba realizar de forma progresiva sala a sala.

Además, el programa tampoco permite considerar de manera directa el efecto de la irradiación solar en el calentamiento de los muros exteriores, sino que es preciso la realización de modelos y cálculos previos que se introducen finalmente en el programa como datos de entrada.

Debido a todas las simplificaciones que posee el programa, surge la necesidad de desarrollar un modelo de simulación similar mediante un programa que permita la entrada de datos de forma más directa y sencilla, con una interfaz más intuitiva.

1.3. MOTIVACIÓN

Las motivaciones del presente Trabajo Fin de Máster son varias.

En primer lugar, es necesario controlar la temperatura del núcleo de las centrales nucleares mediante adecuados sistemas de refrigeración de salas en donde se encuentran los equipos que intervienen en estas funciones de seguridad a fin de evitar posibles accidentes. Es por ello por lo que en el presente proyecto se simularán los transitorios de temperatura en salas de una central nuclear con equipos de seguridad, a fin de comprobar que la temperatura de la sala y sus equipos se mantienen en unos rangos óptimos.

En segundo lugar, tal y como se ha comentado en el apartado anterior, el programa HVAC-TT posee ciertas simplificaciones y la interfaz es poco intuitiva.

Por ello, en el presente proyecto se utilizará otro programa más versátil. Este programa es EcosimPro, un software de modelado y simulación de sistemas dinámicos desarrollado por Empresarios Agrupados y pensado para otros usos distintos al nuclear, el cual se adaptará para esta aplicación en particular.

Figura 3: Logo EcosimPro. Fuente: Google

En comparación con el programa HVAC-TT, EcosimPro no posee tantas limitaciones:

- Se permite que los muros de la sala posean composiciones diferentes.
- Se permite que los muros de la sala posean espesores diferentes.
- Se admite más de una puerta.
- Se admite más de un fan-coil.
- La sala a estudio no tiene porqué ser cuadrada, se admiten salas con distintas geometrías.
- Permite simular salas simulando al mismo tiempo la variación de temperaturas en salas adyacentes.

Además de todo ello, la introducción de datos no es tan laboriosa y su interfaz es más intuitiva.

Sin embargo, este programa tampoco permite considerar el efecto de la irradiación solar, por lo que se desarrollará una pequeña aplicación de cálculo mediante Excel para calcular el calor transferido a la sala por irradiación solar, mediante el método del cálculo de la temperatura exterior equivalente (temperatura sol-aire) y el calor mediante el método Radiant Times Series (RTS).

1.4. OBJETIVOS DEL PROYECTO

Los objetivos del proyecto son:

- Modelizar el calor máximo transferido a través de un cerramiento exterior en régimen permanente, considerando el efecto de la irradiación solar y calculando la temperatura sol-aire.
- Modelizar el balance de cargas térmicas en una sala tipo, en régimen permanente.
- A partir de la situación en régimen permanente, simular la evolución de temperatura en salas de una central nuclear, en régimen transitorio.

El primer objetivo del proyecto consiste en modelizar el calor máximo transferido en un cerramiento exterior en régimen permanente, calculando para ello una temperatura del aire exterior equivalente. Se seguirá la metodología explicada en el documento técnico "ASHRAE Handbook Fundamentals 2017", capítulos 14 y 18. El propósito del cálculo de esta temperatura es incluir en ella el efecto de la radiación solar y el flujo radiante con el cielo, de manera que el cálculo del calor transmitido en un cerramiento exterior se simplifica.

El flujo de calor por metro cuadrado en un cerramiento exterior es el siguiente:

$$\frac{q}{A} = \alpha \cdot E_t + h_o(t_o - t_s) - \varepsilon \cdot \Delta R \tag{1}$$

Siendo:

 α : absortancia de la superficie (-)

 E_t : radiación solar total incidente sobre la superficie (W/m²)

 h_o : coeficiente de transferencia convectivo radiante (W/m²·K)

 t_o : temperatura del aire exterior (°C)

 t_s : temperatura de la superficie (°C)

 ε : emitancia de la superficie (-)

 ΔR : diferencia entre el flujo radiante con el cielo incidente en la superficie y la radiación emitida por un cuerpo negro a la temperatura del aire exterior (W/m²)

Mediante el uso de la temperatura de sol-aire la expresión anterior se simplifica de la forma siguiente:

$$\frac{q}{A} = h_o(t_e - t_s) \tag{2}$$

Siendo:

t_e: temperatura de sol-aire (°C)

Una vez obtenida la temperatura de sol-aire se procede al cálculo del flujo de calor transmitido en un cerramiento exterior según la metodología RTS seguida por "ASHRAE Handbook Fundamentals 2017".

A fin de ser lo más conservador posible para los objetivos perseguidos en el presente proyecto, se considera la transferencia de calor máxima que se produciría en el peor día del año para calcular el calor máximo transmitido en cerramientos exteriores en régimen permanente. Dependiendo del caso de estudio se usará el valor pico o bien una aproximación senoidal representativa del peor día del año.

Posteriormente, se procederá a modelizar el balance de cargas térmicas en una sala tipo, en régimen permanente, considerando todos los flujos de calor de la sala a estudio, incluido el calor máximo transmitido a través del muro exterior.

Tanto el calor máximo transferido a través de un cerramiento exterior como el balance de cargas térmicas en una sala tipo se han implementado en una hoja de cálculo Excel. La finalidad de realizarlo en una hoja de cálculo es automatizar el proceso para poder obtener los resultados mediante los datos de entrada sin necesidad de conocer ni modificar las ecuaciones que utiliza el programa. A esta hoja de cálculo en Excel se le ha dado el nombre de SolES v.1, ya que realiza el cálculo de la temperatura de **SOL**-aire y el balance de cargas térmicas en régimen **ES**tacionario. Dicha aplicación incorpora un base de datos de diseño relativos a las localizaciones de las centrales nucleares a estudio del presente proyecto. No obstante, se podría particularizar para cualquier ubicación.

Tras ello, se simularán dos casos de estudio de transitorios de temperatura, un primer caso sencillo que sirve para desarrollar el modelo de EcosimPro y entender la física del fenómeno, y finalmente un segundo caso más completo en donde se simulará un caso real para una sala de una central nuclear. Para ello se usarán los resultados de flujo de calor a través del cerramiento exterior, en régimen permanente, obtenido mediante la aplicación SoIES.
CAPÍTULO 2: DESARROLLO DE LA HERRAMIENTA SOLES EN RÉGIMEN ESTACIONARIO

2.1. OBTENCIÓN DE LA TEMPERATURA DE SOL-AIRE

2.1.1. METODOLOGÍA

La temperatura de sol-aire es una temperatura del aire exterior equivalente que incluye el efecto de la radiación solar y el flujo radiante con el cielo, de manera que el cálculo del calor transmitido en un cerramiento exterior se simplifica.

$$t_e = t_o + \frac{\alpha E_t}{h_o} - \frac{\varepsilon \Delta R}{h_o}$$
(3)

Siendo:

t_e: temperatura de sol-aire (°C)

 t_o : temperatura del aire exterior (°C)

 α : absortancia de la superficie (-)

 E_t : radiación solar total incidente sobre la superficie (W/m²)

 h_o : coeficiente de transferencia convectivo radiante (W/m²·K)

ε: emitancia de la superficie (-)

 ΔR : diferencia entre el flujo radiante con el cielo incidente en la superficie y la radiación emitida por un cuerpo negro a la temperatura del aire exterior (W/m²)

Según la metodología "ASHRAE Handbook Fundamentals 2017", en superficies horizontales que reciben radiación de onda larga únicamente del cielo, un valor apropiado de ΔR sería en torno a 63W/m², por lo que si $\varepsilon = 1$, y $h_o = 17$ W/m²·K, se obtiene $\frac{\varepsilon \cdot \Delta R}{h_o} \cong 4K$.

Las superficies verticales reciben radiación de onda larga tanto del suelo como de los edificios de los alrededores y del cielo, por lo que es difícil obtener valores de ΔR precisos. Cuando la intensidad de la radiación solar es alta, las superficies de objetos terrestres suelen tener una temperatura mayor que el aire exterior, por lo que su radiación de onda larga compensa la baja emitancia del cielo. Por ello, la metodología ASHRAE asume $\varepsilon \cdot \Delta R = 0$ para superficies verticales. El valor de h_o para superficies verticales se considera equivalente al de superficies horizontales e igual a 17 W/m²·K.

Los valores de la absortancia α se obtienen de la siguiente tabla:

Surface	Absorptance
Brick, red (Purdue) ^a	0.63
Paint	
Red ^b	0.63
Black, matte ^b	0.94
Sandstone ^b	0.50
White acrylic ^a	0.26
Sheet metal, galvanized	
New ^a	0.65
Weathered ^a	0.80
Shingles	
Gray ^b	0.82
Brown ^b	0.91
Black ^b	0.97
White ^b	0.75
Concrete ^{a,c}	0.60 to 0.83

Tabla 2. Valores de absortancia. Fuente: ASHRAE Handbook Fundamentals 2017

Para el cálculo de la irradiancia E_t es necesario obtener previamente otras variables. A continuación, se explican cada una de las variables necesarias para la obtención de E_t .

 E_o : Flujo radiante extraterrestre (W/m²). El flujo radiante extraterrestre es la irradiación incidente en una superficie normal a los rayos del sol. Debido a la órbita elíptica del sol, E_o varía a lo largo del año, alcanzando un máximo de 1412 W/m² a principios de enero (cuando la tierra está más cerca del sol) y un mínimo de 1322 W/m² a principios del mes de julio (cuando la tierra está más alejada del sol). El flujo radiante extraterrestre se calcula mediante la siguiente ecuación.

$$E_o = E_{sc} \left\{ 1 + 0.033 \cos\left[360^{\circ} \frac{(n-3)}{365} \right] \right\}$$
(4)

Siendo:

n: número de día del año

 E_{sc} : Constante solar (1367 W/m²). Intensidad de la radiación solar en una superficie normal a los rayos del sol, a una distancia media entre el sol y la tierra

ET: Ecuación del tiempo (min). La velocidad orbital de la tierra varía a lo largo del año, por lo que la Hora Solar Aparente (AST), medido por un reloj solar, también varía desde el tiempo promedio medido por un reloj funcionando a la tasa uniforme. A esta variación se le llama ecuación del tiempo. Se calcula mediante la siguiente ecuación.

$$ET = 2,2918[0,0075 + 0,1868\cos(\Gamma) - 3,2077\sin(\Gamma) - 1,4615\cos(2\Gamma) - 4,089\sin(2\Gamma)]$$
(5)

El parámetro Γ se obtiene mediante la siguiente ecuación.

$$\Gamma = 360^{\circ} \frac{n-1}{365} \tag{6}$$

 δ : Declinación (°). La declinación es el ángulo entre la línea que une el sol y la tierra y el plano ecuatorial. Su valor varía a lo largo del año. Esta variación es la responsable de los

cambios de estación con periodos desiguales de claridad y oscuridad. En la siguiente figura se representa cómo varía a lo largo del año.

Figura 4. Variación de la declinación. Fuente: ASHRAE Handbook Fundamentals 2017

Se obtiene para cada día del año mediante la siguiente ecuación.

$$\delta = 23,45 \sin\left(360^{\circ} \frac{n+284}{365}\right) \tag{7}$$

LSM: Meridiano estándar local (°). El meridiano estándar local es la longitud de la hora estándar local del meridiano, es decir, los °E del meridiano de Greenwich.

$$LSM = 15 \cdot TZ \tag{8}$$

Siendo:

TZ: Huso horario (°). Expresado en horas antes o después de la hora universal coordinada (UTC). Depende del emplazamiento.

AST: Hora Solar Aparente (h). La Hora Solar Aparente está relacionada con la Hora estándar local mediante la siguiente ecuación.

$$AST = LST + \frac{ET}{60} + \frac{LSM - LON}{15}$$
(9)

Siendo:

LST: Hora estándar local (°)

LON: Longitud (°)

H: Ángulo horario (°). El ángulo horario se define como el desplazamiento angular al este u oeste del sol a partir del meridiano local debido a la rotación de la tierra.

$$H = 15(AST - 12) \tag{10}$$

Siendo cero al mediodía, mayor que cero por la tarde y menor que cero por la mañana.

A continuación, se definen todos los ángulos solares necesarios para el cálculo de la radiación solar E_t , que se encuentran representados en la siguiente figura:

Figura 5. Ángulos solares. Fuente: ASHRAE Handbook Fundamentals 2017

β: Ángulo de la altitud solar (°). El ángulo β representado en la anterior imagen, se relaciona con *L*, δ y *H* mediante la siguiente ecuación:

$$\sin\beta = \cos L \cos \delta \cos H + \sin L \sin \delta \tag{11}$$

Siendo:

L: Latitud (°)

El ángulo β toma valores menores de cero por la noche.

 ϕ : Ángulo solar azimut (°). El ángulo ϕ se determina mediante las siguientes ecuaciones.

$$\cos \phi = \frac{\sin \beta \sin L - \sin \delta}{\cos \beta \, \cos L} \tag{12}$$

$$\cos \phi = \frac{\cos H \cos \delta \sin L - \sin \delta \cos L}{(13)}$$

$$\sin \phi = \frac{\frac{\sin H \cos \delta}{\cos \beta}}{\cos \beta}$$
(14)

El ángulo ϕ toma valores mayores de cero por la tarde y menores por la mañana.

 ψ : Ángulo azimut superficie (°). Se define como el ángulo con respecto al sur de la normal a la superficie del cerramiento en un plano horizontal. El funcionamiento del ángulo ψ se representa en la siguiente imagen.

Figura 6.Funcionamiento ángulo ψ

Si la normal al cerramiento estuviera alineada con el sur, ψ tomaría el valor de cero grados. Si, por el contrario, estuviera posicionado hacia el norte, el ángulo ψ tomaría el valor de 180°. Para cualquier tipo de orientación entre el sur y el norte dirección oeste, ψ toma un valor positivo. Como ejemplo, si estuviera posicionado hacia el oeste, sería 90°. Si por el contrario el cerramiento estuviera posicionado en un ángulo entre el sur y el norte en dirección este, ψ tendría un valor negativo. A modo de ejemplo, en el este ψ sería -90°.

y: Ángulo superficie-sol azimut (°). Se define como la diferencia entre los ángulos ϕ y ψ .

$$\gamma = \phi - \psi \tag{15}$$

El ángulo γ toma valores mayores de 90° y menores de -90° cuando la superficie del cerramiento se encuentra en la sombra.

6: Ángulo de incidencia (°). El ángulo de incidencia es el ángulo entre la línea normal a la superficie irradiada y la línea tierra-sol. Es de vital importancia en ventanajes, cálculos de carga y tecnologías solares ya que afecta a la intensidad de la componente directa de la radiación solar incidente en la superficie y en la habilidad de la superficie para absorber, transmitir o reflejar los rayos solares. Se obtiene mediante la siguiente ecuación.

$$\cos\theta = \cos\beta\cos\gamma\sin\Sigma + \sin\beta\cos\Sigma \tag{16}$$

Siendo Σ el ángulo formado entre la superficie y el suelo, es decir, la pendiente de la superficie. Su valor varía entre 0 y 180°. Los valores más comunes son 0° (superficie horizontal) y 90° (superficie vertical). Los valores superiores a 90° corresponden a superficies mirando al suelo.

m: Masa de aire relativa. La masa de aire relativa es el ratio de la masa de atmósfera en el camino real del sol a la tierra con respecto a la masa que existiría si el sol estuviera directamente sobre la cabeza. La masa de aire relativa se obtiene en función del ángulo β expresado en grados.

$$m = \frac{1}{\sin\beta + 0.50572 \ (6.07995 + \beta)^{-1.6364}} \tag{17}$$

Eb: Irradiancia directa (W/m²). La irradiancia directa es la componente directa de la radiación solar en un día despejado. Representa la parte de la radiación solar saliendo directamente de la esfera solar. Se obtiene mediante la siguiente ecuación.

$$E_b = E_o e^{-\tau_b m^{ab}} \tag{18}$$

Siendo:

ab: Exponente directa de la masa de aire

El exponente directa de la masa de aire se obtiene mediante la siguiente relación empírica.

$$ab = 1,454 - 0,406 \tau_b - 0,268 \tau_d + 0,021 \tau_b \tau_d \tag{19}$$

Los parámetros τ_b (directa) y τ_d (difusa) dependen de la localización y varían a lo largo del año. Abarcan la dependencia de la radiación solar ante cielo despejado en condiciones locales, como la elevación, precipitaciones, aerosoles, ozono, y la reflexión de la superficie.

Etb: Irradiancia directa sobre la superficie (W/m²). La irradiancia directa sobre la superficie se define como la parte de la radiación solar que sale directamente de la esfera solar y que llega a la superficie. Se obtiene mediante la siguiente relación geométrica.

$$E_{t,b} = E_b \cos\theta \tag{20}$$

Esta relación es sólo válida si cos θ es mayor que cero. De otra manera, la irradiancia $E_{t,b}$ sería cero.

Ed: Irradiancia difusa (W/m²). La irradiancia difusa es la componente difusa de la radiación solar en un día despejado. Representa la parte de la radiación solar saliendo de todo lo que no sea la esfera solar, es decir, del resto del cielo. Se obtiene mediante la siguiente ecuación.

Siendo:

$$E_d = E_o e^{-\tau_d m^{aa}} \tag{21}$$

ad: Exponente difusa de la masa de aire

El exponente difusa de la masa de aire se obtiene mediante la siguiente relación empírica.

$$ad = 0,507 + 0,205 \tau_b - 0,080 \tau_d - 0,190 \tau_b \tau_d \tag{22}$$

Etd: Irradiación difusa sobre la superficie (W/m²). La irradiancia difusa sobre la superficie se define como la parte de la radiación solar que sale de la bóveda celeste y que llega a la superficie. Se obtiene mediante las siguientes ecuaciones.

$$E_{t,d} = E_d(Y\sin\Sigma + \cos\Sigma) \quad si \quad \Sigma \le 90^{\circ}$$
(23)

$$E_{t,d} = E_d Y \sin \Sigma \quad si \quad \Sigma > 90^{\circ} \tag{24}$$

Siendo:

$$Y = \max(0,45; 0,55 + 0,437 \cos \theta + 0,313 \cos^2 \theta)$$

Etr: Irradiancia reflejada del suelo en la superficie (W/m²). Se obtiene mediante la siguiente ecuación.

$$E_{t,r} = (E_b \sin\beta + E_d)\rho_g \frac{1 + \cos\beta}{2}$$
(25)

Siendo:

 ho_g : Reflectividad del suelo (%)

La reflectividad ρ_{g} se obtiene de la siguiente tabla:

Foreground Surface	Reflectance
Water (near normal incidences)	0.07
Coniferous forest (winter)	0.07
Asphalt, new	0.05
weathered	0.10
Bituminous and gravel roof	0.13
Dry bare ground	0.2
Weathered concrete	0.2 to 0.3
Green grass	0.26
Dry grassland	0.2 to 0.3
Desert sand	0.4
Light building surfaces	0.6
Snow-covered surfaces:	
Typical city center	0.2
Typical urban site	0.4
Typical rural site	0.5
Isolated rural site	0.7

Tabla 3. Valores de la reflectividad. Fuente: ASHRAE Handbook Fundamentals 2017

Finalmente, se obtiene la irradiancia total que recibe la superficie. Se define como la suma de la componente directa, la componente difusa y la componente reflejada del suelo.

$$E_t = E_{t,b} + E_{t,d} + E_{t,r}$$
(26)

Esta expresión se utiliza para obtener la temperatura de sol-aire mediante la ecuación (3).

2.1.2. VALIDACIÓN

El cálculo de la temperatura de sol-aire mediante la aplicación SolES de Excel desarrollada para el proyecto ha sido validado mediante un ejemplo publicado en el documento técnico "ASHRAE Handbook Fundamentals 2017". Este ejemplo consiste en un cerramiento exterior ubicado en el estado de Atlanta, Georgia.

El cerramiento consiste en una pared que se encuentra girada hacia el oeste unos 60° con respecto al sur. El cálculo se realiza a cada hora del día 21 de julio. La superficie del cerramiento es de color oscuro.

A modo de ejemplo, se explica a continuación con detalle el cálculo de cada una de las variables intermedias necesarias para la obtención de la temperatura de sol-aire a las 3:00 PM. Los resultados en el resto de horas han sido adjuntados mediante tablas.

Los datos del emplazamiento son los siguientes, obtenidos del ejemplo publicado en el documento técnico "ASHRAE Handbook Fundamentals 2017".

$$TZ = -5h$$
$$LON = 84,43^{\circ}W$$
$$L = 33,64^{\circ}$$

t_o: Temperatura del aire exterior: La evolución de la temperatura del aire exterior en el estado de Atlanta es la siguiente, obtenida del ejemplo publicado en el documento técnico "ASHRAE Handbook Fundamentals 2017".

LST (h)	To (°C)
1	23,2
2	22,8
3	22,4
4	22,1
5	21,9
6	22,1
7	22,9
8	24,8
9	26,9
10	28,8
11	30,6
12	31,7
13	32,6
14	33,1
15	33,1
16	32,4
17	31,6
18	30,4
19	28,7
20	27,5
21	26,5
22	25,5
23	24,7
24	23,9

Tabla 4. Temperatura exterior Atlanta

E_o: **Flujo radiante extraterrestre.** Para la obtención de E_o es necesario obtener n. El valor de n para el 21 de julio es 202. E_{sc} es constante e igual a 1367 W/m².

$$E_o = E_{sc} \left\{ 1 + 0.033 \cos \left[360^{\circ} \frac{(n-3)}{365} \right] \right\}$$
$$E_o = 1367 \left\{ 1 + 0.033 \cos \left[360^{\circ} \frac{(202-3)}{365} \right] \right\} = 1323.69 \frac{W}{m^2}$$

ET: Ecuación del tiempo. Para la obtención de ET es necesario obtener previamente el valor de Γ .

$$\Gamma = 360^{\circ} \frac{n-1}{365}$$
$$\Gamma = 360^{\circ} \frac{202-1}{365} = 198,25$$

 $ET = 2,2918[0,0075 + 0,1868\cos(\Gamma) - 3,2077\sin(\Gamma) - 1,4615\cos(2\Gamma) - 4,089\sin(2\Gamma)]$

$$ET = 2,2918[0,0075 + 0,1868\cos(198,25) - 3,2077\sin(198,25) - 1,4615\cos(2 \cdot 198,25) - 4,089\sin(2 \cdot 198,25)] = -6,38 min$$

δ: Declinación

$$\delta = 23,45 \sin\left(360^{\circ} \frac{n+284}{365}\right)$$
$$\delta = 23,45 \sin\left(360^{\circ} \frac{202+284}{365}\right) = 20,44^{\circ}$$

LSM: Meridiano estándar local.

TZ = -5h

$$LSM = 15 \cdot TZ = 15 \cdot (-5) = -75^{\circ}E = 75^{\circ}W$$

AST: Hora Solar Aparente.

$$LON = 84,43^{\circ}W$$
$$AST = LST + \frac{ET}{60} + \frac{LSM - LON}{15}$$
$$AST = 15 + \frac{-6,38}{60} + \frac{8,45 - 75}{15} = 14,2649$$

H: Ángulo horario

$$H = 15(AST - 12)$$
$$H = 15 \cdot (14,2649 - 12) = 33,97^{\circ}$$

β: Ángulo de la altitud solar

$$L = 33,64^{\circ}$$

$$\sin\beta = \cos L \cos \delta \cos H + \sin L \sin \delta$$

$$\sin\beta = \cos(33,64)\cos(20,44)\cos(33,97) + \sin(33,64)\sin(20,44) = 0,8404$$

 $\beta = \sin^{-1}(0.8404) = 57.18^{\circ}$

φ: Ángulo solar azimut

El ángulo ϕ se puede obtener a partir de cualquiera de las fórmulas (12), (13) o (14).

Se observa que cuando el ángulo ϕ es negativo, se obtienen resultados diferentes con las anteriores fórmulas en una hoja de cálculo Excel.

Los resultados obtenidos en una hoja de cálculo Excel al ser el ángulo ϕ negativo son:

Ecuación (12): Se obtiene el mismo ángulo, pero en positivo.

Ecuación (13): Se obtiene el mismo ángulo, pero en positivo.

Ecuación (14): Se obtiene el ángulo suplementario al ángulo obtenido mediante las dos fórmulas anteriores.

Al obtener el ángulo ϕ mediante el coseno, la diferencia de resultados se debe a que cos(-x) = cos(x). Al utilizar la fórmula del seno, la diferencia se debe a que hay dos posibles ángulos como resultado y Excel toma uno de ellos por defecto, siendo el que no nos interesa.

Para una mayor comprensión se adjunta un ejemplo. Si el ángulo ϕ fuera igual a -175°, los resultados obtenidos mediante cada una de las anteriores ecuaciones en una hoja Excel serían los siguientes:

Ecuación (12): $\phi = 175^{\circ}$ Ecuación (13): $\phi = 175^{\circ}$ Ecuación (14): $\phi = -5^{\circ}$

Siendo 175° y -5° suplementarios.

Lo que ocurre es lo siguiente: cos (-175) = cos (175), y Excel supone por defecto que se trata del ángulo positivo.

Figura 7. Posibles ángulos ϕ

En el caso del seno, lo que ocurre es que sen (-5) =sen (-175) y Excel toma por defecto el de menor ángulo, es decir, -5° .

Según este ejemplo que se está estudiando en Atlanta, se observa que el ángulo ϕ es negativo sólo cuando el ángulo H es negativo.

Por ello, se ha supuesto que cuando Η sea negativo, el ángulo φ también lo será.

Se ha optado por resolver el ángulo ϕ mediante la siguiente fórmula del coseno.

$$\cos \phi = \frac{\cos H \cos \delta \sin L - \sin \delta \cos L}{\cos \beta}$$
$$\cos \phi = \frac{\cos(33,97) \cos(20,44) \sin(33,64) - \sin(20,44) \cos(33,64)}{\cos(57,18)} = 0,2578$$
$$\phi = \sin^{-1}(0,2578) = 75,06^{\circ}$$

\gamma: Ángulo superficie-sol azimut. El cerramiento se encuentra girado hacia el oeste unos 60° con respecto al sur, por lo que el ángulo ψ es 60°.

$$\gamma = \phi - \psi = 75,06 - 60 = 15,06^{\circ}$$

θ: Ángulo de incidencia

$$\cos \theta = \cos \beta \cos \gamma \sin \Sigma + \sin \beta \cos \Sigma$$
$$\cos \theta = \cos(57,18) \cos(15,06) \sin(90) + \sin(57,18) \cos(90) = 0,5233$$
$$\theta = \cos^{-1}(0,5233) = 58,44^{\circ}$$

m: Masa de aire relativa

$$m = \frac{1}{\sin\beta + 0.50572 \ (6.07995 + \beta)^{-1.6364}}$$
$$m = \frac{1}{\sin(57.18) + 0.50572 \ (6.07995 + 57.18)^{-1.6364}} = 1.1891$$

Para el resto de horas calculadas en el ejemplo de Atlanta, se observa que en las horas en las que el ángulo β es negativo, Excel da como resultado error.

Esto es debido a que, en la fórmula, β se encuentra elevado a un número decimal y en Excel no es posible elevar una base negativa a un número decimal. En un principio se pensó en que era necesario que la suma (6,07005 + β) debía ser negativa para que se obtuviera como resultado error. Sin embargo, se ha comprobado que cuando (6,07005 + β) da como resultado un número positivo, siendo β negativo, se sigue obteniendo error.

Basándonos en este ejemplo de Atlanta, se observa que cuando Excel da como resultado error, el ejemplo no calcula m. La tendencia de m en las horas en las que sí es posible calcularla es la siguiente:

Gráfica 1. Evolución de la masa de aire relativa Atlanta

Se observa una tendencia infinita. En las horas en las que no es posible calcular m, en el ejemplo de Atlanta no lo calculan. Por ello, en las horas en las que no es posible calcular m, se ha supuesto una m igual a cero.

Eb: Irradiancia directa. Para el mes de julio y el estado de Atlanta los parámetros τ_b y τ_d tienen un valor de 0,515 y 2,066 respectivamente. Previamente al cálculo de Eb es necesario calcular el exponente ab.

$$ab = 1,454 - 0,406 \tau_b - 0,268 \tau_d + 0,021 \tau_b \tau_d$$

$$ab = 1,454 - 0,406 \cdot 0,515 - 0,268 \cdot 2,066 + 0,021 \cdot 0,515 \cdot 2,066 = 0,7136$$

$$E_b = E_o e^{-\tau_b m^{ab}}$$

$$E_b = 1323,69 \cdot e^{-0,515 \cdot 1,1891^{0,7136}} = 739,11 \frac{W}{m^2}$$

Para el resto de horas calculadas, según el ejemplo de Atlanta en las horas en las que no se calcula el valor de m, Eb toma un valor de 0. Por ello, se ha supuesto que cuando m sea 0, es decir, β sea negativo, Eb será 0.

Etb: Irradiancia directa sobre la superficie

$$E_{t,b} = E_b \cos \theta$$

 $E_{t,b} = 739,11 \cdot \cos(58,44) = 386,80 \frac{W}{m^2}$

Ed: Irradiancia difusa. Previamente a la obtención de Ed es necesario obtener el exponente ad.

$$ad = 0,507 + 0,205 \tau_b - 0,080 \tau_d - 0,190 \tau_b \tau_d$$
$$ad = 0,507 + 0,205 \cdot 0,515 - 0,080 \cdot 2,066 - 0,190 \cdot 0,515 \cdot 2,066 = 0,2451$$

$$E_d = E_o e^{-\tau_d m^{ad}}$$
$$E_d = 1323,69 \cdot e^{-2,066 \cdot 1,1891^{0,2451}} = 153,33 \frac{W}{m^2}$$

Para el resto de horas calculadas y al igual que con Eb, según el ejemplo de Atlanta, en las horas en las que no se calcula el valor de m, Ed toma un valor de 0. Se ha considerado que cuando β sea negativo, Ed sea 0.

Etd: Irradiación difusa sobre la superficie. Para la obtención de Etd, en primer lugar, se obtiene el valor de Y.

$$Y = \max(0,45; 0,55 + 0,437 \cos \theta + 0,313 \cos^2 \theta)$$

 $Y = \max(0,45; 0,55 + 0,437\cos(58,44) + 0,313\cos^2(58,44)) = \max(0,45; 0,86) = 0,86$

Al ser un cerramiento vertical, $\Sigma = 90^{\circ}$, por lo que se utiliza la siguiente ecuación:

$$E_{t,d} = E_d(Y\sin\Sigma + \cos\Sigma)$$
$$E_{t,d} = 153,33 \cdot (0,86 \cdot \sin(90) + \cos(90)) = 132,54 \frac{W}{m^2}$$

Etr: Irradiancia reflejada del suelo en la superficie. Al ser un suelo típico centro ciudad, ρ_g = 0,2 de acuerdo a la Tabla 3.

$$E_{t,r} = (E_b \sin\beta + E_d)\rho_g \frac{1 + \cos\beta}{2}$$
$$E_{t,r} = (739,11 \cdot \sin(57,18) + 153,33) \cdot 0.2 \cdot \frac{1 + \cos(57,18)}{2} = 77,45 \frac{W}{m^2}$$

Et: Irradiancia total en la superficie

$$E_t = E_{t,b} + E_{t,d} + E_{t,r}$$
$$E_t = 386,8 + 132,54 + 77,45 = 596,79 \frac{W}{m^2}$$

te: Temperatura de sol-aire

$$t_e = t_o + \frac{\alpha E_t}{h_o} - \frac{\varepsilon \Delta R}{h_o}$$
$$t_e = 33,10 + 0,053 \cdot 596,79 - 0 = 64,73^{\circ}C$$

A continuación, se adjuntan todos los resultados obtenidos en cada una de las horas del día 21 de julio de todas las variables intermedias necesarias para la obtención de la temperatura de sol-aire con la herramienta SolES.

LST (h)	AST (h)	H (°)	β (°)	φ (°)	m	Eb (W/m²)	θ (°)	Etb (W/m²)	Ed (W/m ²)	Etr (W/m²)	Y	Etd (W/m²)	Etr + Etd (W/m ²)	Et (W/m²)
1	0,26	-176	-36	-175	0	0,0	117,4	0,0	0,0	0,0	0,4500	0,0	0,0	0,0
2	1,26	-161	-33	-159	0	0,0	130,9	0,0	0,0	0,0	0,4500	0,0	0,0	0,0
3	2,26	-146	-27	-144	0	0,0	144,5	0,0	0,0	0,0	0,4500	0,0	0,0	0,0
4	3,26	-131	-19	-132	0	0,0	158,1	0,0	0,0	0,0	0,4500	0,0	0,0	0,0
5	4,26	-116	-9	-122	0	0,0	171,3	0,0	0,0	0,0	0,4500	0,0	0,0	0,0
6	5,26	-101	3	-113	16,89775	27,6	172,5	0,0	21,3	2,2	0,4500	9,6	11,8	11,8
7	6,26	-86	14	-105	3,98127	332,9	159,5	0,0	72,9	15,5	0,4500	32,8	48,3	48,3
8	7,26	-71	27	-98	2,22813	531,7	145,9	0,0	107,1	34,5	0,4500	48,2	82,7	82,7
9	8,26	-56	39	-90	1,58627	647,0	132,3	0,0	130,9	53,8	0,4500	58,9	112,7	112,7
10	9,26	-41	51	-81	1,27768	716,8	118,8	0,0	147,6	70,8	0,4500	66,4	137,2	137,2
11	10,26	-26	63	-67	1,11736	758,0	105,6	0,0	158,4	83,6	0,4553	72,1	155,8	155,8
12	11,26	-11	74	-39	1,04213	778,8	92,6	0,0	164,2	91,1	0,5306	87,1	178,3	178,3
13	12,26	4	76	16	1,02872	782,6	80,2	132,9	165,3	92,6	0,6332	104,7	197,3	330,1
14	13,26	19	69	57	1,07338	770,1	68,7	280,2	161,7	87,9	0,7505	121,4	209,3	489,5
15	14,26	34	57	75	1,18908	739,1	58,4	386,8	153,3	77,4	0,8644	132,5	210,0	596,8
16	15,26	49	45	86	1,41572	684,2	50,4	435,9	139,5	62,2	0,9555	133,3	195,6	631,5
17	16,26	64	32	94	1,86200	593,3	45,8	413,9	119,4	43,7	1,0073	120,2	163,9	577,9
18	17,26	79	20	102	2,89770	440,5	45,5	308,7	90,6	24,2	1,0099	91,5	115,7	424,3
19	18,26	94	8	109	6,84593	173,5	49,7	112,1	48,3	7,2	0,9631	46,5	53,8	165,9
20	19,26	109	-3	117	0	0,0	57,5	0,0	0,0	0,0	0,8754	0,0	0,0	0,0
21	20,26	124	-14	127	0	0,0	67,5	0,0	0,0	0,0	0,7630	0,0	0,0	0,0
22	21,26	139	-23	138	0	0,0	79,0	0,0	0,0	0,0	0,6452	0,0	0,0	0,0
23	22,26	154	-30	151	0	0,0	91,3	0,0	0,0	0,0	0,5403	0,0	0,0	0,0
24	23,26	169	-35	167	0	0,0	104,2	0,0	0,0	0,0	0,4617	0,0	0,0	0,0

Tabla 5. Resultados 1 SolES ejemplo Atlanta

						Direct Beam Solar Diffuse Solar Heat Gain								
Local Standard Hour	Apparent Solar Time	Hour Angle <i>H</i>	Solar Altitude β	Solar Azimuth ¢	Solar Air Mass <i>m</i>	Beam Normal E _b , W/m ²	Surface Incident Angle θ	Surface Direct, W/m ²	Diffuse Horizontal <i>E_d</i> , W/m ²	Ground Diffuse, W/m ²	<i>Y</i> Ratio	Sky Diffuse, W/m ²	Subtotal Diffuse, W/m ²	Total Surface Irradiance, W/m ²
1	0.26	-176	-36	-175	_	0.0	117.4	0.0	0.0	0.0	0.4500	0.0	0.0	0.0
2	1.26	-161	-33	-159	_	0.0	130.9	0.0	0.0	0.0	0.4500	0.0	0.0	0.0
3	2.26	-146	-27	-144	—	0.0	144.5	0.0	0.0	0.0	0.4500	0.0	0.0	0.0
4	3.26	-131	-19	-132	_	0.0	158.1	0.0	0.0	0.0	0.4500	0.0	0.0	0.0
5	4.26	-116	-9	-122	—	0.0	171.3	0.0	0.0	0.0	0.4500	0.0	0.0	0.0
6	5.26	-101	3	-113	16.91455	27.5	172.5	0.0	21.2	2.2	0.4500	9.6	11.8	11.8
7	6.26	-86	14	-105	3.98235	333.0	159.5	0.0	73.0	15.5	0.4500	32.8	48.4	48.4
8	7.26	-71	27	-98	2.22845	531.9	145.9	0.0	107.2	34.5	0.4500	48.2	82.7	82.7
9	8.26	-56	39	-90	1.58641	647.4	132.3	0.0	131.0	53.8	0.4500	59.0	112.8	112.8
10	9.26	-41	51	-81	1.27776	717.2	118.8	0.0	147.7	70.8	0.4500	66.4	137.3	137.3
11	10.26	-26	63	-67	1.11740	758.5	105.6	0.0	158.5	83.7	0.4553	72.2	155.9	155.9
12	11.26	-11	74	-39	1.04214	779.3	92.6	0.0	164.3	91.2	0.5306	87.2	178.4	178.4
13	12.26	4	76	16	1.02872	783.1	80.2	132.9	165.4	92.6	0.6332	104.7	197.4	330.3
14	13.26	19	69	57	1.07337	770.5	68.7	280.4	161.8	87.9	0.7505	121.5	209.4	489.8
15	14.2647	33.97	57.2	75.05	1.18905	739.6	58.45	387.0	153.4	77.5	0.8644	132.6	210.1	597.1
16	15.26	49	45	86	1.41566	684.6	50.4	436.2	139.6	62.3	0.9555	133.4	195.7	631.9
17	16.26	64	32	94	1.86186	593.7	45.8	414.2	119.4	43.8	1.0073	120.3	164.1	578.3
18	17.26	79	20	102	2.89735	440.8	45.5	308.9	90.7	24.2	1.0100	91.6	115.7	424.7
19	18.26	94	8	109	6.84406	173.7	49.7	112.2	48.3	7.3	0.9631	46.6	53.8	166.0
20	19.26	109	-3	117	—	0.0	57.5	0.0	0.0	0.0	0.8755	0.0	0.0	0.0
21	20.26	124	-14	127	—	0.0	67.5	0.0	0.0	0.0	0.7630	0.0	0.0	0.0
22	21.26	139	-23	138	—	0.0	79.0	0.0	0.0	0.0	0.6452	0.0	0.0	0.0
23	22.26	154	-30	151	—	0.0	91.3	0.0	0.0	0.0	0.5403	0.0	0.0	0.0
24	23.26	169	-35	167	—	0.0	104.2	0.0	0.0	0.0	0.4618	0.0	0.0	0.0

Los resultados publicados en el ejemplo de Atlanta del libro "ASHRAE Handbook Fundamentals 2017" del capítulo 18, son los siguientes:

Tabla 6. Resultados 1 ASHRAE ejemplo Atlanta. Fuente: ASHRAE Handbook Fundamentals 2017

Se comprueba que se obtienen resultados similares.

En cuanto a la temperatura de sol-aire, los resultados obtenidos a cada hora del día 21 de julio mediante la herramienta SolES son los siguientes.

LST (h)	To (°C)	te (°C)
1	23,2	23,2
2	22,8	22,8
3	22,4	22,4
4	22,1	22,1
5	21,9	21,9
6	22,1	22,7
7	22,9	25,5
8	24,8	29,2
9	26,9	32,9
10	28,8	36,1
11	30,6	38,9
12	31,7	41,1
13	32,6	50,1
14	33,1	59,0
15	33,1	64,7
16	32,4	65,9
17	31,6	62,2
18	30,4	52,9
19	28,7	37,5
20	27,5	27,5
21	26,5	26,5
22	25,5	25,5
23	24,7	24,7
24	23,9	23,9

Tabla 7. Resultados 2 SolES ejemplo Atlanta

Para una mayor comprensión, los resultados anteriores se han obtenido mediante una gráfica.

Gráfica 2. Evolución de la temperatura exterior del aire y la temperatura equivalente

Tal y como se observa en la gráfica adjunta, la temperatura de sol-aire coincide con la temperatura del aire exterior durante la noche, ya que el efecto de la radiación solar es nulo. El valor máximo de la temperatura de aire exterior se obtiene a medio día, en torno a las 15:30 horas.

Las temperaturas de sol-aire del ejemplo de Atlanta del libro "ASHRAE Handbook Fundamentals 2017" del capítulo 18 son las siguientes:

Local Standard Hour	Outdoor Temp., °C	Sol-Air Temps., °C
1	23.2	23.2
2	22.8	22.8
3	22.4	22.4
4	22.1	22.1
5	21.9	21.9
6	22.1	22.7
7	22.9	25.4
8	24.8	29.2
9	26.9	32.9
10	28.8	36.1
11	30.6	38.8
12	31.7	41.1
13	32.6	50.0
14	33.1	59.0
15	33.1	64.7
16	32.4	65.8
17	31.6	62.1
18	30.4	52.9
19	28.7	37.5
20	27.5	27.5
21	26.5	26.5
22	25.5	25.5
23	24.7	24.7
24	23.9	23.9

Tabla 8. Resultados 2 ASHRAE ejemplo Atlanta. Fuente: ASHRAE Handbook Fundamentals 2017

Se comprueba que las temperaturas de sol-aire son similares.

2.2. OBTENCIÓN DEL CALOR TRANSFERIDO MÁXIMO EN UN CERRAMIENTO EXTERIOR

2.2.1. METODOLOGÍA

A continuación, se describen las ecuaciones utilizadas para la obtención del calor máximo transferido hacia el interior de una sala a través de un cerramiento exterior, según la metodología "ASHRAE Handbook Fundamentals 2017". Para ello, en primer lugar, se calcula el calor por conducción haciendo uso de los valores de las series temporales de conducción (CTS).

q_{i, θ}: **Ganancia de calor conductiva por la superficie hace n horas (W).** La ganancia de calor a través de paredes y techos desde el exterior se obtiene a partir de la siguiente ecuación.

$$q_{i,\theta-n} = UA(t_{e,\theta-n} - t_{rc}) \tag{27}$$

Siendo:

 $q_{i,\theta-n}$: Ganancia de calor conductiva por la superficie hace n horas (W)

U: Coeficiente global de transferencia (W/m²·K)

A: Área de la superficie del cerramiento (m²)

 $t_{e,\theta-n}$: temperatura sol-aire hace n horas (°C)

 t_{rc} : temperatura del aire de la sala (°C)

Este calor no depende del calor obtenido en las horas anteriores.

El valor de coeficiente global de transferencia se obtiene en función de si el cerramiento es pared o techo. Si se trata de una pared el coeficiente global U se obtiene de las tablas Tabla 37, Tabla 38, Tabla 39, Tabla 40, Tabla 41, Tabla 42 y Tabla 43, en función de las características del cerramiento. Si es techo se obtiene de las tablas Tabla 44, Tabla 45, Tabla 46 y Tabla 47. Todas las tablas se adjuntan en ANEXOS.

Tal y como se observa en la anterior ecuación, para la obtención del calor máximo es necesario obtener la temperatura exterior equivalente máxima de todo el año, te. Esto es debido a que, para un mismo cerramiento, el coeficiente global U sólo depende del tipo de cerramiento y por lo tanto es fijo, el área del cerramiento es dato y la temperatura interior de la habitación se supone constante.

Por lo tanto, para la obtención del calor máximo será necesario calcular la temperatura exterior equivalente máxima. Según la ecuación (3), la temperatura de sol-aire depende de t_o , α , E_t , ΔR , h_o y ε .

Se ha realizado un estudio a fin de determinar si la temperatura equivalente es máxima cuando alguna de estas variables alcanza un valor máximo o mínimo.

Tanto t_o como E_t varían a lo largo del año. Se comprueba mediante la ecuación (3) que cuanto mayor sea t_o y mayor sea E_t , mayor será t_e .

Por otro lado, la absortancia de la superficie α varía en función del color del cerramiento y por lo tanto su valor es fijo para un mismo cerramiento.

El coeficiente convectivo radiante h_o no varía y, por lo tanto, tampoco influye.

Por último, el término $\frac{\varepsilon \cdot \Delta R}{h_o}$ depende únicamente de si el cerramiento es vertical u horizontal y por lo tanto tampoco influye en la obtención de la temperatura equivalente máxima.

Por lo tanto, la temperatura equivalente será máxima cuando t_o y E_t sean máximos. Sin embargo, se ha comprobado que valores elevados de la radiación E_t no implica que t_o también alcance valores máximos. Un ejemplo de ello es en los meses de invierno, en los que la radiación solar E_t es muy elevada, pero sin embargo las temperaturas máximas que se alcanzan en el aire no son elevadas.

Por ello, se ha estudiado la influencia de los términos t_o y $\frac{\alpha \cdot E_t}{h_o}$. El valor del término $\frac{\alpha}{h_o}$ varía entre (0,026; 0,052), según la metodología seguida por "ASHRAE Handbook Fundamentals 2017". Considerando un valor muy elevado de la radiación E_t igual a 900W/m² (obtenido realizando un estudio de las radiaciones máximas que se dan en los emplazamientos en los que se encuentran las centrales nucleares para las cuales se utiliza la herramienta SoIES), se obtiene para el término $\frac{\alpha \cdot E_t}{h_o}$ un valor máximo de 46,8°C, muy similar a los valores máximos

que podría llegar a alcanzar el término t_o . Por lo tanto, ambos términos, t_o y E_t , influyen en gran medida a la hora de obtener el valor máximo de la temperatura equivalente.

Por todo ello, se demuestra que para calcular la transferencia de calor máxima en una habitación es necesario calcular la temperatura exterior equivalente a cada hora de todos los días del año.

El calor transmitido en un cerramiento exterior en una hora concreta depende del calor obtenido en las horas anteriores. Por lo tanto, calcular la temperatura equivalente máxima de todo el año no es suficiente. Por ello, se ha calculado para cada día del año, el sumatorio de la temperatura de sol-aire a lo largo del día y se ha obtenido el día en el que dicha suma es máxima.

De esta manera, si se obtuvieran las siguientes evoluciones de temperaturas equivalentes en dos días del año, el calor máximo que se transmite por el cerramiento exterior se obtendría en el día 2, debido a que la suma de las temperaturas equivalentes obtenidas a lo largo del día 2 es mayor que la del día 1.

Gráfica 3. Evolución en dos días de la temperatura exterior equivalente

A continuación, se calcula la ganancia de calor conductiva por la superficie teniendo en cuenta que el calor obtenido en una hora en concreto depende del obtenido en las horas anteriores.

 q_{θ} : Ganancia de calor conductiva por la superficie (W). Según la metodología ASHRAE, la ganancia de calor conductiva por la superficie a través de paredes y techos se calcula utilizando la ganancia de calor conductiva en la hora de cálculo, en las 23 horas anteriores y las series temporales de conducción.

$$q_{\theta} = c_0 q_{i,\theta} + c_1 q_{i,\theta-1} + c_2 q_{i,\theta-2} + c_3 q_{i,\theta-3} + \dots + c_{23} q_{i,\theta-23}$$
(28)

Siendo:

 q_{θ} : Ganancia de calor conductiva por la superficie (W)

 $q_{i,\theta}$: Ganancia de calor conductiva en la hora actual (W)

 $q_{i,\theta-n}$: Ganancia de calor conductiva por la superficie hace n horas (W)

 $c_0, c_1 \dots$: Factores temporales de conducción

Los factores de conducción temporales se obtienen de las tablas Tabla 37 a la Tabla 43 si se trata de una pared, y de la tabla Tabla 44 a la Tabla 47 si se trata de un techo. Todas las tablas se adjuntan en ANEXOS.

Tal y como se observa en la anterior ecuación, este calor sí depende del calor obtenido en las horas anteriores.

Las fuentes de energía caloríficas transfieren su energía mediante convección y radiación. La transferencia de calor por radiación introduce una dependencia del tiempo que no es fácil de cuantificar. La radiación es absorbida por las masas térmicas de la sala y después transferida por convección a la sala. Este proceso crea un retardo en el tiempo. La parte convectiva, por el otro lado, se asume como una ganancia inmediata de carga térmica sin retardo en la sala.

De esta manera, la ganancia de calor obtenida en una habitación a través de un cerramiento exterior es la suma del calor por convección en la hora a estudio más el calor por radiación en la hora a estudio más las 23 horas anteriores.

Las fracciones de radiación ($Fracción_{RD}$) y convección ($Fracción_{CV}$) utilizadas en función del tipo de cerramiento (pared o techo) se adjuntan en la siguiente tabla:

Heat Gain Type	Recommended Radiative Fraction	Recommended Convective Fraction
Conduction heat gain		
Through walls and floors	0.46	0.54
Through roof	0.60	0.40

Tabla 9. Fracción convección, radiación. Fuente: ASHRAE Handbook Fundamentals 2017

Qc: Calor por convección (W). El calor por convección se obtiene mediante la siguiente ecuación.

$$Q_c = q_\theta \cdot Fracción_{CV} \tag{29}$$

 $Q_{r, \theta}$: Calor por radiación (W). El calor por radiación se obtiene mediante las siguientes ecuaciones.

$$q_{r,\theta} = q_{\theta} \cdot Fracción_{RD}$$

$$q_{r,\theta-1} = q_{\theta-1} \cdot Fracción_{RD}$$

$$\vdots$$

$$etc$$
(30)

$$Q_{r,\theta} = r_0 q_{r,\theta} + r_1 q_{r,\theta-1} + r_2 q_{r,\theta-2} + r_3 q_{r,\theta-3} + \dots + r_{23} q_{r,\theta-23}$$
(31)

Siendo:

 $Q_{r,\theta}$: Ganancia de calor radiante por la superficie para la hora actual θ (W). Depende del calor radiante de las horas anteriores

 $q_{r,\theta}$: Ganancia de calor radiante en la hora actual (W). No depende del calor radiante de las horas anteriores

 $q_{r,\theta-n}$: Ganancia de calor radiante por la superficie hace n horas (W)

 $r_0, r_1 \dots$: Factores temporales radiantes

Por último, se obtiene el calor transferido hacia el interior de una habitación a través de un cerramiento exterior.

Q_{pared exterior}: Calor transmitido por el cerramiento exterior (W). Se obtiene mediante la suma de los calores $Q_c \vee Q_{r,\theta}$.

$$Q_{cerr.\ ext} = Q_c + Q_{r,\theta} \tag{32}$$

2.2.2. VALIDACIÓN

El cálculo del calor transferido a través de un cerramiento exterior obtenido mediante la aplicación SoIES de Excel ha sido validado mediante un ejemplo publicado en el documento técnico "ASHRAE Handbook Fundamentals 2017". Este ejemplo consiste en un cerramiento exterior ubicado en el estado de Atlanta, Georgia. Dicho ejemplo coincide con el utilizado para validar la temperatura de sol-aire.

El cálculo se realiza a cada hora del día 21 de julio. A modo de ejemplo los cálculos han sido realizados a las 15:00 horas. Los resultados en el resto de horas han sido adjuntados con una tabla.

En cuanto a las características del cerramiento, está formado por diversas capas: una capa exterior de cristal (sprandrel glass), una capa de aislamiento de aire, 50mm de panel aislante, otra capa de aislamiento de aire y 16mm de placa de yeso. Su área es de 5,57m² y su coeficiente global de transferencia 0,44W/(m²·K). El interior de la habitación se encuentra a 23,9°C.

q_{i, θ}: **Ganancia de calor conductiva por la superficie hace n horas (W).** La ganancia de calor a través de paredes y techos desde el exterior a cada hora del día 21 de Julio se obtiene a partir de la siguiente ecuación.

$$q_{i,\theta-n} = UA(t_{e,\theta-n} - t_{rc})$$

Sustituyendo a cada hora del día 21 de julio, en base a los resultados de la Tabla 5

y la Tabla 7, se obtiene:

$$q_{i,1} = 0,44 \cdot 5,57 \cdot (23,2 - 23,9) = -2W$$
$$q_{i,2} = 0,44 \cdot 5,57 \cdot (22,8 - 23,9) = -3W$$
$$q_{i,3} = 0,44 \cdot 5,57 \cdot (22,4 - 23,9) = -4W$$

$$\begin{aligned} q_{i,4} &= 0,44 \cdot 5,57 \cdot (22,1-23,9) = -4W \\ q_{i,5} &= 0,44 \cdot 5,57 \cdot (21,9-23,9) = -5W \\ q_{i,6} &= 0,44 \cdot 5,57 \cdot (22,73-23,9) = -3W \\ q_{i,7} &= 0,44 \cdot 5,57 \cdot (25,46-23,9) = 4W \\ q_{i,8} &= 0,44 \cdot 5,57 \cdot (29,18-23,9) = 13W \\ q_{i,9} &= 0,44 \cdot 5,57 \cdot (32,88-23,9) = 22W \\ q_{i,10} &= 0,44 \cdot 5,57 \cdot (36,07-23,9) = 30W \\ q_{i,11} &= 0,44 \cdot 5,57 \cdot (38,86-23,9) = 37W \\ q_{i,12} &= 0,44 \cdot 5,57 \cdot (38,86-23,9) = 37W \\ q_{i,13} &= 0,44 \cdot 5,57 \cdot (50,1-23,9) = 42W \\ q_{i,13} &= 0,44 \cdot 5,57 \cdot (50,1-23,9) = 64W \\ q_{i,14} &= 0,44 \cdot 5,57 \cdot (59,04-23,9) = 86W \\ q_{i,15} &= 0,44 \cdot 5,57 \cdot (64,73-23,9) = 100W \\ q_{i,16} &= 0,44 \cdot 5,57 \cdot (62,23-23,9) = 103W \\ q_{i,17} &= 0,44 \cdot 5,57 \cdot (52,89-23,9) = 71W \\ q_{i,19} &= 0,44 \cdot 5,57 \cdot (27,5-23,9) = 9W \\ q_{i,21} &= 0,44 \cdot 5,57 \cdot (26,5-23,9) = 6W \\ q_{i,22} &= 0,44 \cdot 5,57 \cdot (24,7-23,9) = 2W \\ q_{i,23} &= 0,44 \cdot 5,57 \cdot (23,9-23,9) = 0W \end{aligned}$$

 q_{θ} : Ganancia de calor conductiva por la superficie (W). La ganancia de calor conductiva a las 15:00 horas se obtiene a partir el calor conductivo a las 15:00 horas y las 23 horas anteriores.

Los valores de los factores de conducción temporales han sido obtenidos a partir del tipo de cerramiento de la Tabla 37 adjuntada en ANEXOS.

$$q_{15} = c_0 q_{i,15} + c_1 q_{i,14} + c_2 q_{i,13} + c_3 q_{i,12} + \dots + c_{23} q_{i,16} =$$

= 0,18 \cdot 100 + 0,57 \cdot 86 + 0,19 \cdot 64 + 0,04 \cdot 42 + \dots + 0 \cdot 103 = 81,94W

Qc: Calor por convección (W). El calor por convección se obtiene mediante la siguiente ecuación.

$$Q_c = q_{15} \cdot Fracción_{CV}$$

Al ser una pared, la fracción por convección es del 54%, obtenido de la Tabla 9.

$$Q_c = 81,94 \cdot 0,54 = 44,25W$$

 $Q_{r, \theta}$: Calor por radiación (W). El calor por radiación se obtiene mediante las siguientes ecuaciones.

$$Q_{r,\theta} = r_0 q_{r,\theta} + r_1 q_{r,\theta-1} + r_2 q_{r,\theta-2} + r_3 q_{r,\theta-3} + \dots + r_{23} q_{r,\theta-23}$$

Al ser una pared, la fracción por radiación es del 46%, obtenido de la Tabla 9. Los valores de los factores de radiación temporales han sido obtenidos de la Tabla 49 adjuntada en ANEXOS. El tipo de construcción es media, el porcentaje de cristal considerado es del 50% y se supone que el suelo de la habitación dispone de un acabado interior tipo moqueta o similar (carpet).

$$\begin{aligned} Q_{r,15} &= r_o \cdot 0.46 \cdot q_{15} + r_1 \cdot 0.46 \cdot q_{14} + r_2 \cdot 0.46 \cdot q_{13} + r_3 \cdot 0.46 \cdot q_{12} + \dots + r_{16} \cdot 0.46 \\ &\cdot q_{16} \end{aligned}$$

$$\begin{aligned} Q_{r,15} &= 0.49 \cdot 0.46 \cdot 81.94 + 0.17 \cdot 0.46 \cdot 62.28 + 0.09 \cdot 0.46 \cdot 44.35 + 0.05 \cdot 0.46 \\ &\cdot 35.44 + \dots + 0 \cdot 0.46 \cdot 95.69 = 26.95W \end{aligned}$$

Q_{pared exterior}: **Calor transmitido por el cerramiento exterior (W).** El calor que se transfiere hacia el interior de la habitación a través de la pared se obtiene mediante la suma del calor por convección y por radiación.

$$Q_{cerr.\ ext} = Q_c + Q_{r.15} = 44,25 + 26,95 = 71,2W$$

Los resultados obtenidos a cada hora del día 21 de Julio son los siguientes:

LST (h)	qi,h (W)	СТЅ	qh (W)	Qc (W)	Qr (W)	RTS	Qr,h (W)	Qcerr. exterior (W)
1	-2	18	0	0	0	49	4	5
2	-3	57	-1	-1	-1	17	4	3
3	-4	20	-3	-1	-1	9	3	1
4	-4	4	-3	-2	-2	5	2	0
5	-5	1	-4	-2	-2	3	2	0
6	-3	0	-4	-2	-2	2	2	-1
7	4	0	-2	-1	-1	2	2	1
8	13	0	4	2	2	1	3	5
9	22	0	12	6	5	1	5	12
10	30	0	21	11	9	1	8	19
11	37	0	29	15	13	1	10	26
12	42	0	35	19	16	1	13	32
13	64	0	44	24	20	1	16	40
14	86	0	62	34	29	1	21	54
15	100	0	82	44	38	1	27	71
16	103	0	96	52	44	1	33	84
17	94	0	99	54	46	1	36	90

18	71	0	92	49	42	1	36	86
19	33	0	70	38	32	1	32	70
20	9	0	39	21	18	1	24	45
21	6	0	17	9	8	0	16	25
22	4	0	8	4	4	0	11	15
23	2	0	5	2	2	0	8	10
24	0	0	2	1	1	0	6	7

Tabla 10. Resultados 3 SolES ejemplo Atlanta

Los resultados publicados en el ejemplo de Atlanta del libro "ASHRAE Handbook Fundamentals 2017" del capítulo 18, son los siguientes:

Local	Heat	CTS	Heat Gain, W			Nonsolar RTS Zone	Radiant Cooling	Total Cooling
Standard Hour	Input, W	Type 1, %	Total	Convective 54%	Radiant 46%	Type 8, %	Load, W	Load, W
1	-2	18	0	0	0	49	4	5
2	-3	57	-1	-1	-1	17	4	3
3	-4	20	-2	-1	-1	9	3	1
4	-4	4	-3	-2	-2	5	2	1
5	-5	1	-4	-2	-2	3	2	0
6	-3	0	-4	-2	-2	2	2	-1
7	4	0	-2	-1	-1	2	2	1
8	13	0	4	2	2	1	3	5
9	22	0	12	6	5	1	5	12
10	30	0	21	11	9	1	8	19
11	36	0	28	15	13	1	10	26
12	42	0	35	19	16	1	13	32
13	64	0	44	24	20	1	15	39
14	86	0	62	33	28	1	20	54
15	99	0	81	44	37	1	27	71
16	102	0	95	51	44	1	32	84
17	93	0	99	53	46	1	36	89
18	71	0	91	49	42	1	36	85
19	33	0	70	38	32	1	32	69
20	9	0	39	21	18	1	24	45
21	6	0	17	9	8	0	16	25
22	4	0	8	4	4	0	11	15
23	2	0	5	3	2	0	8	10
24	0	0	2	1	1	0	6	7

Tabla 11. Resultados 3 ASHRAE ejemplo Atlanta. Fuente: ASHRAE Handbook Fundamentals 2017

Se comprueba que se obtienen resultados similares.

2.3. MODELIZACIÓN DEL BALANCE DE CARGAS TÉRMICAS EN UNA SALA TIPO

2.3.1. METODOLOGÍA

A continuación, se describen todos los cálculos realizados mediante la aplicación de Excel SoIES a fin de obtener el balance de cargas térmicas en una sala tipo en régimen estacionario.

Calor transmitido a través de los cerramientos interiores. Suponiendo que el calor se transfiere de la sala contigua (sala frontera) a la sala a estudio, el calor que se transmite por un cerramiento interior se obtiene mediante la siguiente fórmula general de transferencia de calor:

$$Q_{cerr.\ int} = U \cdot A \cdot (T_{front} - T_i) \tag{33}$$

Siendo:

 $Q_{cerr. int}$: Calor transmitido a través de los cerramientos interiores (W)

U: Coeficiente global de transferencia (W/m²·K)

A: Área del cerramiento interior (m²)

 T_{front} : Temperatura interior de la sala frontera (°C)

 T_i : Temperatura interior de la sala a estudio (°C)

De esta manera, se supone que dicho calor es una carga a combatir de signo positivo. Si por el contrario la sala adyacente se encontrara a menor temperatura y por lo tanto disminuyera la carga a combatir, su signo sería negativo.

El coeficiente global de transferencia se obtiene mediante las siguientes ecuaciones, obtenidas del Documento Básico HE, apartado E.1.3.1 del Código Técnico de la Edificación (CTE).

$$U = \frac{1}{R_t} \tag{34}$$

$$R_t = R_{si} + \sum_{i} R_i + R_{se} \tag{35}$$

$$R_i = \frac{e}{\lambda} \tag{36}$$

Siendo:

 R_t : Resistencia térmica total del componente constructivo (m²·K/W)

 R_{si} : Resistencia térmica superficial correspondiente al aire interior (m²·K/W)

 R_{se} : Resistencia térmica superficial correspondiente al aire exterior (m²·K/W)

 R_i : Resistencias térmicas de cada capa (m²·K/W)

e: Espesor de la capa (m)

λ: Conductividad térmica del material que compone la capa (W/m·K)

El valor de las resistencias R_{si} , R_{se} se obtiene de la siguiente tabla en función del tipo de cerramiento.

Posición de la partición interior y sentido del	Rse	R ₈	
Particiones interiores verticales o con pendiente sobre la horizontal >60° y flujo horizontal	•	0,13	0,13
Particiones interiores horizontales o con pendiente sobre la horizontal ≤60° y flujo ascendente		0,10	0,10
Particiones interiores horizontales y flujo descendente		0,17	0,17

Tabla 12. Resistencias térmicas superficiales de particiones interiores. Fuente: Código Técnico de la Edificación

Calor máximo transmitido a través de los cerramientos exteriores. El calor transmitido por los cerramientos exteriores se calcula mediante la aplicación SoIES de Excel desarrollada, en donde se han programado las ecuaciones explicadas anteriormente.

Cargas internas. La carga térmica total aportada por las cargas internas es la suma de todas las cargas internas consideradas.

$$Q_{internas} = Q_{ocupación} + Q_{iluminación} + Q_{eléctrica} + Q_{miscelánea}$$
(37)

Siendo:

 $Q_{internas}$: Carga térmica aportada por todas las cargas térmicas consideradas en la sala a estudio (W)

 $Q_{ocupación}$: Carga térmica aportada por el nivel de ocupación (W)

 $Q_{iluminación}$: Carga térmica aportada por el nivel de iluminación (W)

 $Q_{eléctrica}$: Carga térmica aportada por los equipos eléctricos (W)

 $Q_{miscelánea}$: Carga térmica aportada por el resto de posibles fuentes de energía térmica (W)

La carga térmica por ocupación ($Q_{ocupación}$) se calcula en función del número de personas y de la actividad que realizan. En la Tabla 35, obtenido del documento técnico "ASHRAE Handbook Fundamentals 2017", se indican diferentes valores de referencia. Dado que la aplicación SolES desarrollada está pensada para simular transitorios de temperatura en salas de centrales nucleares, se ha supuesto inicialmente un grado de actividad correspondiente a "trabajo ligero" para una persona (hombre) que trabaja en una central nuclear sentado. Por lo tanto, se considera una carga aportada por persona igual a 130 W/persona. No obstante, es posible modificar dicho valor en la aplicación SolES para adaptarlo a otras situaciones de cálculo.

La carga térmica por iluminación ($Q_{iluminación}$) se puede obtener a partir de la Tabla 36, "ASHRAE Handbook Fundamentals 2017", en donde se indican diferentes valores de referencia. Dado que en una central nuclear existen diferentes tipos de espacios (pasillos, habitaciones eléctricas/mecánicas u oficinas), se permite al usuario elegir uno de estos tipos de espacios o bien introducir manualmente la carga de iluminación en W/m². La carga correspondiente a la disipación de los equipos eléctricos ($Q_{eléctrica}$) y otras fuentes de disipación de calor ($Q_{miscelánea}$) se consideran valores a introducir por el usuario, particulares para cada caso.

Todas las cargas internas consideras contribuyen a aumentar la carga a combatir en la sala a estudio.

Infiltraciones. La carga térmica por infiltraciones se calcula mediante la siguiente fórmula, obtenida del capítulo 18 de "ASHRAE Handbook Fundamentals 2017":

$$Q_{infiltraciones} = \nu_{inf} \cdot \rho_{inf} \cdot (h_{inf} - h_i)$$
(38)

Siendo:

 $Q_{infiltraciones}$: Carga térmica aportada por infiltraciones (W)

 v_{inf} : Caudal de aire infiltrado (m³/s)

 ρ_{inf} : Densidad en las condiciones del aire de la sala contigua (kg/m³)

 h_{inf} : Entalpía del aire de la sala contigua (kJ/kg)

 h_i : Entalpía del aire de la sala a estudio (kJ/kg)

Mediante la anterior fórmula, se supone que el calor por infiltraciones aumenta la carga a combatir. Si por el contrario disminuyera la carga a combatir, su signo sería negativo.

 ρ_{inf} , h_{inf} , h_i se obtienen en el programa SolES haciendo uso de otra aplicación de Excel denominada "Psicrom" y desarrollada por Empresarios Agrupados, la cual permite calcular cualquier propiedad del aire representada en el diagrama psicrométrico en función de la presión atmosférica del emplazamiento y de dos variables de entrada. Las variables de entrada consideradas han sido las siguientes:

$$\rho_{inf} = f(HR_{inf}, T_{inf})$$
$$h_{inf} = f(HR_{inf}, T_{inf})$$
$$h_i = f(HR_i, T_i)$$

Impulsión. Con este término se considera la carga combatida mediante una unidad de refrigeración interior, tipo fan-coil o similar. Esa carga de impulsión disminuye la carga interna a combatir, y se obtiene mediante la siguiente fórmula.

$$Q_{AI} = \nu_{AI} \cdot \rho_{AI} \cdot (h_i - h_{AI}) \tag{39}$$

Siendo:

 Q_{AI} : Carga térmica del aire de impulsión (W)

 v_{AI} : Caudal de aire impulsión (m³/s)

 ρ_{AI} : Densidad del aire en las condiciones de impulsión (kg/m³)

 h_i : Entalpía del aire de la sala a estudio (kJ/kg)

h_{AI}: Entalpía del aire en las condiciones de impulsión (kJ/kg)

 ρ_{imp} , h_{imp} han sido obtenidos mediante la función "Psicrom". Utilizando la presión atmosférica de la central a estudio, las variables de entrada consideradas han sido las siguientes:

$$\rho_{AI} = f(HR_{AI}, T_{AI})$$
$$h_{AI} = f(HR_{AI}, T_{AI})$$

Ventilación. La carga de ventilación para la renovación de aire exterior se obtiene mediante la siguiente fórmula:

$$Q_{AE} = v_{AE} \cdot \rho_{AE} \cdot Cp_{AE} \cdot (T_{AE} - T_i) \tag{40}$$

Siendo:

 Q_{AE} : Carga térmica aportada por el are exterior (W)

 v_{AE} : Caudal de aire ventilación (m³/s)

 ρ_{AE} : Densidad del aire en las condiciones de aire exterior (kg/m³)

 Cp_{AE} : Calor específico en las condiciones del aire exterior (KJ/kg·K)

 T_{AE} : Temperatura del aire exterior (°C)

 T_i : Temperatura del aire de la sala a estudio (°C)

 ρ_{AE} , Cp_{AE} han sido obtenidos mediante la función "Psicrom". Utilizando la presión atmosférica de la central a estudio, las variables de entrada consideradas han sido las siguientes:

$$\rho_{AE} = f(HR_{AE}, T_{AE})$$
$$Cp_{AE} = f(HR_{AE}, T_{AE})$$

Carga total a combatir. La carga total a combatir se calcula mediante la siguiente fórmula.

$$Q_{total} = Q_{cerr. int} + Q_{cerr. ext} + Q_{internas} + Q_{infiltraciones} - Q_{AI} + Q_{AE}$$
(41)

Siendo:

 Q_{total} : Carga total a combatir (W)

 $Q_{cerr. int}$: Calor transmitido por los cerramientos interiores (W)

 $Q_{cerr.\ ext}$: Calor transmitido por los cerramientos exteriores (W)

Q_{internas}: Carga térmica de las cargas internas (W)

Qinfiltraciones: Carga térmica por infiltraciones (W)

 Q_{AI} : Carga del aire de impulsión (W)

 Q_{AE} : Carga del aire de ventilación (W)

Caudal de impulsión. Si se desea obtener el caudal de impulsión necesario para combatir la carga térmica total de la sala a estudio, se utiliza la siguiente fórmula:

caudal de impulsión =
$$\frac{Q_{total}}{\rho_{AI} \cdot (h_i - h_{AI})}$$
 (42)

Siendo:

 Q_{total} : Carga total a combatir (W)

 ρ_{AI} : Densidad del aire en las condiciones de impulsión (kg/m³)

 h_i : Entalpía del aire de la sala a estudio (kJ/kg)

 h_{AI} : Entalpía del aire en las condiciones de impulsión (kJ/kg)

Para obtener el balance de cargas térmicas no es necesario obtener la temperatura de las paredes de cada uno de los cerramientos interiores que componen la sala a estudio, ya que para obtener el calor transmitido por dichos cerramientos se ha utilizado el coeficiente global de transferencia. Sin embargo, sí es necesario obtener la temperatura de las paredes para introducirlas en el programa EcosimPro como condición inicial. Por ello, también se ha calculado la temperatura tanto interior como exterior de la pared de cada uno de los cerramientos que componen la sala a estudio.

Temperatura interior y exterior de la pared de los cerramientos interiores. Suponiendo un flujo de calor desde el interior de la sala a la sala contigua, el calor por convección y radiación del interior de la sala se iguala al calor por conducción, y éste, es igual al calor por convección y radiación de la sala contigua.

Figura 8. Transferencia de calor en un cerramiento interior

$$h_{cri} \cdot A \cdot (T_i - T_{pi}) = \frac{\lambda}{e} \cdot A \cdot (T_{pi} - T_{pe})$$
(43)

$$\frac{\lambda}{e} \cdot A \cdot \left(T_{pi} - T_{pe}\right) = h_{cre} \cdot A \cdot \left(T_{pe} - T_{pe}\right) \tag{44}$$

Siendo:

 h_{cri} : Coeficiente convectivo radiante interior (W/m².°C)

 h_{cre} : Coeficiente convectivo radiante exterior (W/m².°C)

 T_{pi} : Temperatura de la pared interior (°C)

 T_{pe} : Temperatura de la pared exterior (°C)

Se obtienen dos ecuaciones con dos incógnitas, las temperaturas interiores y exteriores de la pared del cerramiento. Resolviendo dichas ecuaciones, se obtienen ambas temperaturas.

$$T_{pe} = T_i - T_{pi} + T_e \tag{45}$$

$$T_{pi} = \frac{\left(\frac{\lambda}{e} + h_{cr}\right) \cdot T_i + \frac{\lambda}{e} \cdot T_e}{\left(\frac{2 \cdot \lambda}{e} + h_{cr}\right)}$$
(46)

De acuerdo a la Tabla 12, los valores de hcri y hcre son el mismo por tratarse de cerramientos interiores, ya que se obtienen como 1/Rsi y 1/Rse respectivamente, y ambas resistencias poseen el mismo valor.

2.3.2. VALIDACIÓN

La modelización del balance de cargas térmicas en régimen permanente se ha validado mediante un programa de cálculo de cargas térmicas de tipo comercial, el programa Hourly Analysis Program de la empresa Carrier (HAP Carrier versión v4.91), desarrollado para su uso en edificaciones convencionales.

Para ello, se ha creado una sala tipo muy sencilla y se han comparado los resultados obtenidos en la herramienta SoIES con los obtenidos con el programa HAP Carrier.

El ejemplo consiste en una sala, en adelante sala 07, de tipo convencional, la cual se considera ubicada en la misma localización que una de las centrales nucleares a estudio del presente proyecto. Se considera una temperatura interior estacionaria de 40°C y se procede a estudiar la transferencia de calor a través de sus muros en régimen estacionario.

<u>Dimensiones:</u> Largo = 10m Ancho = 5m Alto = 8m <u>Condiciones interiores a mantener:</u> T=40°C HR=50% <u>Condiciones de impulsión:</u> T=35,1°C HR=65,3% <u>Cargas internas:</u> Iluminación=12W/m² Miscelánea=4kW

Salas adyacentes:

Pared	Sala	T (°C)
Norte	А	47
Sur	А	47
Este	А	47
Oeste	А	47
Suelo	В	50
Techo	Exterior	-

Tabla 13.Salas adyacentes sala 07

Características de los cerramientos:

Cerramiento interior	Área (m ²)	Тіро	ho (kg/m³)	Espesor (m)
Norte	80	Hormigón	2400	0,55
Sur	80	Hormigón	2400	0,55
Este	40	Hormigón	2400	0,55
Oeste	40	Hormigón	2400	0,55
Suelo	50	Hormigón	2100	0,45

Tabla 14. Características cerramientos interiores sala 07

Cerramiento exterior	Área (m²)	Тіро	Capas	
			150 mm hormigón pesado	
Techo			Espacio de aire	
			Aislamiento térmico de	
	50	Hormigón	Aislamiento térmico de algodón o equivalente RSI 3.3	
		- 0-	3.3	
			Acabado interior tipo	
			loseta acústica o	
			eguivalente	

Tabla 15. Características cerramientos exteriores sala 07

Calor transmitido a través de cerramientos interiores. Para obtener el calor transmitido a través de los cerramientos interiores, es necesario calcular previamente el coeficiente global de transferencia de cada tipo de muro.

Los coeficientes globales de transferencia que se han obtenido han sido de la pared Norte y del Suelo, ya que las paredes Norte, Sur, Este y Oeste poseen el mismo coeficiente de transferencia al ser el mismo tipo de cerramiento.

En primer lugar, se ha obtenido el coeficiente global de la pared Norte. Según la Tabla 50 suministrada por la Empresa Empresarios Agrupados en la que se indican diferentes tipos de cerramientos junto con su conductividad térmica, densidad y calor específico, para el hormigón de densidad 2400 kg/m³ la conductividad térmica es de 1,9W/(m·K). Según la Tabla 12, al ser todos los cerramientos Norte, Sur, Este y Oeste verticales, las resistencias R_{si} y R_{se} son de 0,13 (m²·K)/W.

$$R_{i,Norte} = \frac{0,55}{1,9} = 0,289 \frac{m^2 \cdot K}{W}$$
$$R_{t,Norte} = 0,13 + 0,289 + 0,13 = 0,549 \frac{m^2 \cdot K}{W}$$
$$U_{Norte} = \frac{1}{0,549} = 1,820 \frac{W}{m^2 \cdot K}$$

El cerramiento se modeliza en el programa HAP Carrier en base a los datos indicados anteriormente como se adjunta en la siguiente imagen.

Wall Assembly Name: Hormigon550 Outside Surface Color: Layers: Inside to Outside Thickness Density Specific Ht. R-Value Weight mm kg/m² kJ/kg/K m²-K/W Inside surface resistance 0,000 0,0 0,0 Outside surface resistance 0,000 0,0 0,0 0,0 Outside surface resistance 0,000 0,0 0,000 0,0 0,0 Outside surface resistance 0,000 0,0 0,000 0,13000 0,0 Totals 550,000 0,055 1320,0								
Outside Surface Color: Absorptivity: 0,830 Layers: Inside to Outside Thickness Density Specific Ht. R-Value Weight Inside surface resistance 0,000 0,0 0,000 0,13000 0,0 Hormigon 550,000 2400,0 1,00 0,28940 1320,0 Outside surface resistance 0,000 0,0 0,00 0,13000 0,0 Totals 550,000 0,0 0,55 1320,0		Wall Assembly <u>N</u> ame:	Hormigon5	550				-
Layers: Inside to Outside Thickness mm Density kg/m³ Specific Ht. kJ/kg/K R-Value Weight Inside surface resistance 0,000 0,00 0,000 0,13000 0,0 Hormigon ▼ 550,000 2400,0 1,00 0,28940 1320,0 Outside surface resistance 0,000 0,00 0,00 0,13000 0,0 Totals 550,000 0,00 0,55 1320,0	Outside Surface <u>C</u> olor:			•			<u>A</u> bsorptivity:	0,830
Layers Inside to Outside mm kg/m³ kJ/kg/K m²-K/W kg/m² Inside surface resistance 0,000 0,00 0,000 0,13000 0,0 Hormigon ▼ 550,000 2400,0 1,00 0,28940 1320,0 Outside surface resistance 0,000 0,00 0,000 0,13000 0,0 Totals 550,000 0 0,55 1320,0 18200///e2///		Linuero: Inside to C	Jutaida	Thickness	Density	Specific Ht.	R-Value	Weight
Inside surface resistance 0,000 0,00 0,13000 0,0 Hormigon ▼ 550,000 2400,0 1,00 0,28940 1320,0 Outside surface resistance 0,000 0,00 0,00 0,13000 0,0 Totals 550,000 0 0,00 0,13000 0,0 Image: Note that the surface resistance 0,000 0,000 0,13000 0,0 Image: Note that the surface resistance 0,000 0,000 0,000 0,13000 0,0 Image: Note that the surface resistance 0,000 0,000 0,000 0,13000 0,0 Image: Note that the surface resistance 0,000		Layers: Inside to Outside		mm	kg/m³	kJ/kg/K	m²-K/W	kg/m²
Hormigon ▼ 550,000 2400,0 1,00 0,28940 1320,0 Outside surface resistance 0,000 0,0 0,000 0,13000 0,0 Totals 550,000 0 0,55 1320,0	Inside surface resistance		0,000	0,0	0,00	0,13000	0,0	
Outside surface resistance 0,000 0,0 0,00 0,13000 0,0 Totals 550,000 0,55 1320,0 1	Hormigon 👻		550,000	2400,0	1,00	0,28940	1320,0	
Totals 550,000 0,55 1320,0		Outside surface re	esistance	0,000	0,0	0,00	0,13000	0,0
0 IIIVI 18200//		Totals		550,000			0,55	1320,0
Uverall U-Value:				0\	verall U-Value:	1,820	W/m²/K	

Figura 9. Resultados Hormigón 550 HAP Carrier

En segundo lugar, se ha obtenido el coeficiente global del suelo. Según la Tabla 50, para el hormigón de densidad 2100kg/m³ la conductividad térmica es de 1,44W/(m·K). Según la Tabla 12, al ser el suelo un cerramiento horizontal, y el flujo ascendente, las resistencias R_{si} y R_{se} son de 0,10(m²·K)/W.

$$R_{i,Suelo} = \frac{0.45}{1.44} = 0.312 \frac{m^2 \cdot K}{W}$$
$$R_{t,Suelo} = 0.10 + 0.312 + 0.10 = 0.512 \frac{m^2 \cdot K}{W}$$
$$U_{Suelo} = \frac{1}{0.512} = 1.951 \frac{W}{m^2 \cdot K}$$

El cerramiento se modeliza en el programa HAP Carrier en base a los datos indicados anteriormente como se adjunta en la siguiente imagen.

٧	/all Assembly <u>N</u> ame:	Hormigon4	150				•
Outside Surface <u>C</u> olor:		•			<u>A</u> bsorptivity:	0,830	
	Layers: Inside to Outside		Thickness mm	Density kg/m³	Specific Ht. kJ/kg/K	R-Value m²-K/W	Weight kg/m²
	Inside surface resistance		0,000	0,0	0,00	0,10000	0,0
▶ Hormigon 🗸		-	450,000	2100,0	1,00	0,31250	945,0
	Outside surface re	esistance	0,000	0,0	0,00	0,10000	0,0
Totals		450,000			0,51	945,0	
Overal				/erall U-Value:	1,951	W/m²/K	

Figura 10. Resultados Hormigón 450 HAP Carrier

Tras obtener el coeficiente global de transferencia, sustituyendo en la ecuación (33), se obtiene el calor transferido a través de los cerramientos interiores.

$$Q_{Norte} = 1,82 \cdot 80 \cdot (47 - 40) = 1019,16W$$

$$Q_{Sur} = 1,82 \cdot 80 \cdot (47 - 40) = 1019,16W$$

$$Q_{Este} = 1,82 \cdot 40 \cdot (47 - 40) = 509,18W$$

$$Q_{oeste} = 1,82 \cdot 40 \cdot (47 - 40) = 509,18W$$

$$Q_{particiones} = 3057,47W$$

$$Q_{Suelo} = 1,951 \cdot 50 \cdot (50 - 40) = 975,61W$$

$$Q_{cerr.\ int} = 4033,08W$$

Dichas ecuaciones han sido modelizadas en el programa SolES.

Calor transmitido a través del cerramiento exterior. El calor transmitido a través del techo se calcula mediante la aplicación de Excel SolES, desarrollada según la metodología anteriormente explicada. El calor transmitido obtenido es el siguiente:

$$Q_{cerr.\ ext} = 190,45W$$

Cargas internas. La carga interna total obtenida en la sala 07 es la siguiente:

$$Q_{iluminación} = \frac{12W}{m^2} \cdot 50m^2 = 600W$$
$$Q_{miscelánea} = 4kW$$
$$Q_{internas} = 600 + 4000 = 4600W$$

Carga total a combatir. La carga total a combatir se calcula mediante la fórmula (41). En la sala 07 no hay infiltraciones, impulsión ni renovación de aire exterior. La carga total obtenida es la siguiente:

$$Q_{total} = 4033,08 + 190,45 + 4600 = 8823,53W$$

En el programa HAP Carrier consideran un factor de seguridad de un 5%. Considerando dicho factor de seguridad, la carga total a combatir es la siguiente:

$$Q_{total} = 8823,53 \cdot 1,05 = 9264,71W$$

A continuación, se adjuntan los calores obtenidos en el programa HAP Carrier.

Zone 1	DESIGN COOLING					
	COOLING DATA AT Jul 2000					
	COOLING OA D	COOLING OA DB / WB 32,7 °C / 18,2 °C				
	OCCUPIED T-S	TAT 40,0 °C				
		Sensible	Latent			
ZONE LOADS	Details	(W)	(W)			
Window & Skylight Solar Loads	0 m ²	0	-			
Wall Transmission	0 m ²	0	-			
Roof Transmission	50 m²	35	-			
Window Transmission	0 m ²	0	-			
Skylight Transmission	0 m²	0	-			
Door Loads	0 m ²	0	-			
Floor Transmission	0 m ²	0	-			
Partitions	240 m ²	3057	-			
Ceiling	50 m²	975	-			
Overhead Lighting	0 W	0	-			
Task Lighting	600 W	600	-			
Electric Equipment	0 W	0	-			
People	0	0	0			
Infiltration	-	0	0			
Miscellaneous	-	4000	0			
Safety Factor	5% / 5%	433	0			
>> Total Zone Loads	-	9101	0			

Figura 11. Resultados balance térmico HAP Carrier

El calor transmitido a través del cerramiento exterior obtenido mediante el programa HAP Carrier (35 W) es inferior al calculado mediante la aplicación SolES (190,45 W). Esto se debe a que el programa HAP Carrier modeliza la transferencia de calor en cerramientos exteriores para el día 21 de julio mientras que SolES calcula la máxima transferencia de calor de todo el año, correspondiente al peor día. En SolES el flujo de calor máximo se obtiene para el día 1 de julio. Además de ello, el programa HAP Carrier modeliza la transferencia de calor en cerramientos exteriores mediante versiones más antiguas del ASHRAE, en concreto de los años 1993 y 1997. Por todo lo anterior, la aplicación SolES se considera más conservadora que el programa comercial utilizado para su validación para los objetivos perseguidos en el presente proyecto.

En cuanto a las particiones, el suelo y las cargas internas, se comprueba que los valores obtenidos con HAP Carrier (8632 W) son similares a los obtenidos con SolES (8633,08 W).

Por lo tanto, la carga total a combatir calculada mediante la herramienta Excel es mayor y por lo tanto más conservador que la obtenida mediante la herramienta HAP Carrier, lo cual es favorable para los objetivos perseguidos en el presente proyecto.
CAPÍTULO 3: SIMULACIÓN DE TRANSITORIOS DE TEMPERATURA MEDIANTE LA HERRAMIENTA ECOSIMPRO

3.1. ESTUDIO 1: SALA TIPO

En el primero de los casos simulados con EcosimPro se ha modelizado la misma sala 07 del caso anterior en cuanto a geometría, localización y salas frontera.

En cuanto a las condiciones iniciales se ha supuesto que la sala no posee carga térmica y se ha fijado una temperatura interior tal que la sala se encuentra en equilibrio (flujo de calor cero):

<u>Condiciones interiores a mantener</u>: T = 47,7°C HR=50% Cargas internas: No posee carga interna

A este caso de estudio se le ha dado el nombre de sala 01.

En base a estos datos se ha simulado en EcosimPro cómo varía la temperatura en dicha sala en régimen transitorio hasta alcanzarse una temperatura estacionaria, valor que se ha comparado con el resultado obtenido mediante la herramienta SoIES, como se demostrará más adelante.

El modelo utilizado en EcosimPro para la simulación del caso de estudio es el siguiente:

Figura 12. Modelo utilizado en EcosimPro, sala 01

Para desarrollar este modelo se ha utilizado la librería THERMAL, la cual contiene una base de datos de componentes programados por defecto.

La transferencia de calor por convección y conducción en muros mediante los componentes "Wall" y "FreeConvec_Plate". En dichos componentes se introducen las características del cerramiento.

La temperatura exterior de la sala se ha fijado mediante el componente "DNode", mientras que la geometría y las condiciones iniciales de la sala de definen en el componente "DNodeRoom".

La explicación detallada de los diferentes componentes utilizados de la librería THERMAL se adjunta en el caso de estudio 2, en el cual también se detallan componentes adicionales que ha sido necesario programar.

En primer lugar, se han realizado los cálculos en régimen permanente mediante la herramienta SoIES.

A continuación, se muestran las capturas de pantalla realizadas al programa SoIES. Los datos de entrada introducidos son los siguientes:

Datos de entrado	a				
Central nuclear					
Sala	Sala 01				
Dimensiones					
Largo	10.00 m	(*) Largo se i	refiere a la d	limensión de l	a pared norte
Ancho	5.00 m				
Alto	8.00 m				
Volumen	400.0 m3				
Condiciones in	nteriores a mant	ener			
T	47.70 °C				
HR	50.0%				
Condiciones d	e impulsión				
T	35.10 °C				
HR	65.3%			1	
Caudal	dato	n 0	13/s		
Condiciones d	e ventilacion				
T	38.40 °C				
HK	10.0%	- 11			
Caudal	0	m3/h			
Corgoo intorn					
Caryas Interna	0.00000000				
Ucupación	o personas	(A) (A) (A)		0.00.11/1-12	I
Tiuminación	0.00	valor (w/m2)		0.00 W/m2	l
Electrica	0.00	VV NA			
Miscelanea	0.00	W			

Figura 13. Datos de entrada 1 para el balance de cargas térmicas en la sala 01

	Infiltraciones					
_		Procedencia	T (°C)	HR (%)	C	audal
	inf 1					
	inf 2					
Γ	inf 3					
Γ	inf 4					
Γ	inf 5					
ſ	inf 6					
Γ	inf 7					

Tipos de fronteras		
Nombre	Descripción	T (°C)
Sala A		47
Sala B		50

Figura 14. Datos de entrada 2 para el balance de cargas térmicas en la sala 01

Cerramientos	interiores					
Pared	Frontera	T (°C)	Área (m²)		Tipo muro	espesor (mm)
Norte 1	Sala A	47	80.00	Hormigón	Hormigón convencional d 2400	550
Norte 2		-				
Norte 3		-				
Norte 4		-				
Norte 5		-				
Sur 1	Sala A	47	80.00	Hormigón	Hormigón convencional d 2400	550
Sur 2		-				
Sur 3		-				
Sur 4		-				
Sur 5		-				
Este 1	Sala A	47	40.00	Hormigón	Hormigón convencional d 2400	550
Este 2		-				
Este 3		-				
Este 4		-				
Este 5		-				
Oeste 1	Sala A	47	40.00	Hormigón	Hormigón convencional d 2400	550
Oeste 2		-				
Oeste 3		-				
Oeste 4		-				
Oeste 5		-				
Techo 1		-				
Techo 2		-				
Techo 3		-				
Techo 4		-				
Techo 5		-				
Suelo 1	Sala B	50	50.00	Hormigón	Hormigón convencional d 2100	450
Suelo 2		-				
Suelo 3		-				
Suelo 4		-				
Suelo 5		-				

Figura 15. Datos de entrada 3 para el balance de cargas térmicas en la sala 01

El techo es un cerramiento exterior. Debido a ello, se ha calculado el flujo de calor máximo transmitido por dicho cerramiento.

Los datos de entrada en la herramienta SolES son los siguientes:

Datos de ent	trada		
			Ángulo ψ
Cerramient	to exterior		180°
Tipo	Techo 1		N
Σ	0 °		
ψ	0 °		26
Área	50.00 m2		
Material		hormigón	
Cristal	10 %		+ -
Construcción	pesada		
Composición	36		S
			0°

Figura 16. Datos de entrada 1 para obtención del flujo de calor máximo a través del techo

Suelo exterior	r		
	hormigón	erosionado	
Suelo sala		_	
Moqueta	si		

Figura 17. Datos de entrada 2 para obtención del flujo de calor máximo a través del techo

La herramienta SolES muestra los siguientes resultados intermedios correspondientes al cálculo del flujo de calor máximo transmitido por el cerramiento exterior.

Resultados	
Resultados	intermedios
τb	0.395
τd	2.197
ρg	0.30
α	0.83
ho	17.00 W/(m2·K)
ε·ΔR/ho	4 K
Eo	1321.97 W/m2
ET	178.52 min
δ	0.00 °
τ	0.00 °
TZ	1.00 h
LSM	15.00 °
ab	0.72
ad	0.00

Figura 18. Resultados 1 del flujo de calor máximo a través del techo

LS	AST (h)	H (°)	β(°)	φ(°)	m	Eb (W/m2)	θ (°)	Etb (W/m2)	Ed (W/m2)	Etr (W/m2)	Y	Etd (W/m2)	Et (W/m2)	γ (°)	Qcond (W)	Qconv (W)	Qrad (W)
1	0.47	-173.01	-27.07	-172.78	0.00	0.00	117.07	0.00	0.00	0.00	0.45	0.00	0.00	-172.78	-34.33	-13.73	-18.01
2	1.47	-158.01	-24.12	-157.83	0.00	0.00	114.12	0.00	0.00	0.00	0.45	0.00	0.00	-157.83	-65.96	-26.38	-26.06
3	2.47	-143.01	-18.51	-144.30	0.00	0.00	108.51	0.00	0.00	0.00	0.45	0.00	0.00	-144.30	-95.91	-38.36	-34.33
4	3.47	-128.01	-10.81	-132.46	0.00	0.00	100.81	0.00	0.00	0.00	0.48	0.00	0.00	-132.46	-124.14	-49.66	-42.65
5	4.47	-113.01	-1.60	-122.13	0.00	0.00	91.60	0.00	0.00	0.00	0.54	0.00	0.00	-122.13	-150.85	-60.34	-50.93
6	5.47	-98.01	8.67	-112.89	6.37	292.77	81.33	44.12	40.98	0.00	0.62	40.98	85.10	-112.89	-175.89	-70.36	-59.07
7	6.47	-83.01	19.63	-104.26	2.95	556.92	70.37	187.14	74.81	0.00	0.73	74.81	261.94	-104.26	-198.61	-79.44	-66.87
8	7.47	-68.01	31.03	-95.64	1.93	699.44	58.97	360.53	99.51	0.00	0.86	99.51	460.04	-95.64	-215.39	-86.16	-73.57
9	8.47	-53.01	42.59	-86.21	1.48	783.32	47.41	530.13	117.68	0.00	0.99	117.68	647.81	-86.21	-221.25	-88.50	-77.97
10	9.47	-38.01	54.00	-74.46	1.24	834.40	36.00	675.02	130.59	0.00	1.11	130.59	805.61	-74.46	-213.12	-85.25	-79.15
11	10.47	-23.01	64.57	-56.83	1.11	864.22	25.43	780.46	138.94	0.00	1.20	138.94	919.40	-56.83	-190.64	-76.26	-76.68
12	11.47	-8.01	72.30	-24.92	1.05	878.22	17.70	836.63	143.11	0.00	1.25	143.11	979.73	-24.92	-155.62	-62.25	-70.67
13	12.47	6.99	72.61	21.99	1.05	878.67	17.39	838.50	143.24	0.00	1.25	143.24	981.74	21.99	-111.08	-44.43	-61.57
14	13.47	21.99	65.22	55.24	1.10	865.63	24.78	785.91	139.36	0.00	1.20	139.36	925.27	55.24	-61.06	-24.42	-50.15
15	14.47	36.99	54.75	73.51	1.22	837.01	35.25	683.56	131.30	0.00	1.12	131.30	814.86	73.51	-10.03	-4.01	-37.38
16	15.47	51.99	43.38	85.51	1.45	787.64	46.62	540.94	118.71	0.00	1.00	118.71	659.65	85.51	37.32	14.93	-24.39
17	16.47	66.99	31.81	95.04	1.89	706.57	58.19	372.44	100.93	0.00	0.87	100.93	473.37	95.04	76.43	30.57	-12.35
18	17.47	81.99	20.40	103.68	2.85	569.41	69.60	198.45	76.73	0.00	0.74	76.73	275.18	103.68	103.65	41.46	-2.31
19	18.47	96.99	9.39	112.29	5.92	316.67	80.61	51.68	43.65	0.00	0.63	43.65	95.33	112.29	116.26	46.51	4.79
20	19.47	111.99	-0.93	121.47	0.00	0.00	90.93	0.00	0.00	0.00	0.54	0.00	0.00	121.47	113.26	45.30	8.34
21	20.47	126.99	-10.23	131.72	0.00	0.00	100.23	0.00	0.00	0.00	0.48	0.00	0.00	131.72	95.82	38.33	8.16
22	21.47	141.99	-18.05	143.44	0.00	0.00	108.05	0.00	0.00	0.00	0.45	0.00	0.00	143.44	68.30	27.32	4.84
23	22.47	156.99	-23.82	156.86	0.00	0.00	113.82	0.00	0.00	0.00	0.45	0.00	0.00	156.86	36.48	14.59	-0.56
24	23.47	171.99	-26.96	171.73	0.00	0.00	116.96	0.00	0.00	0.00	0.45	0.00	0.00	171.73	3.71	1.48	-7.20

Figura 19. Resultados 2 del flujo de calor máximo a través del techo

Por último, muestra los siguientes resultados finales.

Figura 20. Resultados 3 del flujo de calor máximo a través del techo

El calor máximo obtenido es de 53,64W. Al pulsar el botón generar resultados, se guardan en la herramienta Excel todos los datos de entrada y salida de dicho cerramiento y el programa lo utiliza para el balance de cargas térmicas en la sala a estudio.

A continuación, se muestran los resultados correspondientes al modelado del balance de cargas térmicas en la sala 01 mediante la herramienta SolES.

Resultados

Unidades W

Sala 01					
		Cerra	amientos interio	ores	
Pared	Rsi (m²·K/W)	Rse (m ² ·K/W)	λ (W/m·K)	U (W/m²⋅K)	Calor transmitido
Norte 1	0.13	0.04	1.900	2.18	-121.88 W
Sur 1	0.13	0.04	1.900	2.18	-121.88 W
			4 000		<i>co.o.e.</i>
Este 1	0.13	0.04	1.900	2.18	-60.94 W
Oorto 1	0.12	0.04	1 000	2.19	60.04 W
Oeste 1	0.15	0.04	1.500	2.10	-00.54 44
Suelo 1	0.10	0.04	1.440	2.21	254.14 W
	Total cer	ramientos interio	ores		-111.49 W

Figura 21. Resultados 1 del balance de cargas térmicas en la sala 01

Cerramientos exteriores						
Pared	Calor máximo					
Techo 1	53.64 W					
Total cerr. Exteriores	53.64 W					

Infiltraciones					
Total infiltraciones	0.00 W				

Cargas internas					
Ocupación	0.00 W				
Iluminación	0.00 W				
Eléctrica	0.00 W				
Otras	0.00 W				
Total internas	0.00 W				

Figura 22. Resultados 2 del balance de cargas térmicas en la sala 01

	TOTAL	
Cerr. Exteriores	53.64	w
Cerr. Interiores	-111.49	W
Infiltraciones	0.00	w
Cargas internas	0.00	w
Caudal impulsión	0.000	m3/s
Impulsión	0.00	w
Ventilación	0.00	w
Carga a combatir	-57.85	w

Figura 23. Resultados 3 del balance de cargas térmicas en la sala 01

En la herramienta SolES se observa que la temperatura del aire de la sala 01 en la que se alcanza el régimen permanente, y por lo tanto la carga a combatir es cero, se encuentra entre 47,6 y 47,7°C.

Temperatura interior (°C)	Carga a combatir (W)
47,6	7,21
47,7	-57,85

Tabla 16. Carga a combatir obtenida de la herramienta SolES

Para realizar la modelización con EcosimPro se ha supuesto una temperatura inicial de la sala en el programa EcosimPro inferior a 47,7°C e igual a 40°C.

Se obtiene la siguiente evolución de la temperatura del aire de la sala 01.

Evolución de la temperatura de la sala 01

Gráfica 4. Evolución de la temperatura de la sala 01

Tal y como se esperaba, la temperatura del aire de la sala aumenta a medida que avanza la simulación. En el régimen permanente, se alcanza una temperatura de 47,87°C muy similar a los 47,7°C alcanzados mediante la herramienta SoIES.

Tal y como se observa en la anterior gráfica, en torno a los 44°C se produce un cambio muy brusco en la evolución de la temperatura. Realizando un zoom en la anterior gráfica:

Gráfica 5. Zoom realizado a la evolución de la temperatura de la sala 01

Se observa que dicho instante se produce a los 10.000 segundos.

Este instante corresponde con el momento en el que las potencias intercambiadas en cada uno de los nodos de los cerramientos interiores se igualan.

Gráfica 6. Evolución de la potencia térmica en la pared Este

Gráfica 7. Evolución de la potencia térmica en la pared Norte

En la siguiente gráfica se representa la potencia térmica intercambiada en cada uno de los cerramientos interiores.

Gráfica 9. Evolución de la potencia térmica en los cerramientos interiores

En cuanto a su evolución, se observan tres claras tendencias. Se agrupan de la siguiente manera:

Tendencia 1: Pared Norte y Sur Tendencia 2: Pared Este y Oeste Tendencia 3: Suelo

Las paredes Norte, Sur, Este y Oeste poseen las mismas características, siendo todos hormigón del mismo espesor y densidad. Las paredes Norte y Sur poseen una tendencia distinta a las paredes Este y Oeste ya que sus áreas son diferentes, siendo la de las paredes Norte y Sur de $80m^2$ y la de las paredes Este y Oeste igual a $40m^2$. Por lo tanto, el calor total que se transfiere por los cerramientos es distinto (el calor por unidad de área es el mismo). El suelo posee un área distinta al resto de cerramientos y por ello su tendencia es diferente.

A continuación, se ha simulado la evolución de la temperatura de la pared de los cerramientos interiores.

Gráfica 10. Evolución de la temperatura de los cerramientos interiores

A medida que avanza la simulación, la temperatura a ambos lados de los cerramientos interiores aumentan y se aproximan. En el régimen permanente, la temperatura de las paredes se mantiene constante en el tiempo.

En cuanto a la evolución de las temperaturas de los cerramientos interiores, se observan dos claras tendencias. Se agrupan de la siguiente manera:

Tendencia 1: Pared Norte, Sur, Este y Oeste Tendencia 2: Suelo

Las paredes Norte, Sur, Este y Oeste poseen las mismas características, todos son hormigón del mismo espesor y densidad. Todos poseen la misma tendencia debido a que la sala con la que lindan es la misma y por lo tanto se encuentra a la misma temperatura (47°C). El suelo linda con una sala que se encuentra a distinta temperatura (50°C) y por ello tiene una tendencia distinta al grupo anterior.

De acuerdo a lo explicado anteriormente, se considera que la modelización realizada con EcosimPro es lo suficientemente representativa del fenómeno físico transitorio como para que pueda ser comparada y validada para un caso real con otro programa de simulación de transitorios.

3.2. ESTUDIO 2: SALA GENERADOR DIÉSEL

A continuación, se adjunta el estudio realizado en régimen transitorio mediante la herramienta EcosimPro para un caso real de evolución de temperatura en una sala de una central nuclear. Los resultados obtenidos con EcosimPro se validan con los obtenidos mediante el programa HVAC-TT.

3.2.1. CASO DE ESTUDIO

El caso a estudio consiste en la simulación del transitorio de la temperatura del aire de una sala perteneciente a una central nuclear ante el fallo de alimentación de agua de refrigeración de uno de los dos fan-coil que contiene dicha sala.

La sala a estudio, desde ahora EF135, contiene un generador diésel y dos unidades fan-coil. El funcionamiento de dicha sala es el siguiente. Ante un accidente en la central nuclear, entrará en funcionamiento el generador diésel. Dicho generador aporta una carga térmica muy elevada. Para mantener la sala EF135 en unos rangos óptimos de temperatura, entrarán en funcionamiento dos unidades fan-coil.

En el momento en que se postula el fallo de la unidad de fan-coil la planta se encontrará en operación anormal (generador diésel de la sala EF135 en funcionamiento) y ambos fan-coil en funcionamiento.

La sala EF135 a estudio se modeliza de acuerdo a HVAC-TT como una sala de tipo paralelepípedo con las siguientes dimensiones:

Largo	10,15m
Ancho	19,6m
Alto	8,08m

Tabla 17. Dimensiones de la sala EF135

La renovación de aire en la sala EF135 se produce con un aporte directo del aire exterior de 5.000 CFM.

La sala EF135 dispone de dos puertas con la sala EF136 que se mantienen abiertas durante el caso de estudio para favorecer la ventilación de la sala, las cuales son consideradas en el modelo de HVACT-TT como una única puerta de dimensiones 1940 x 2550 mm.

Dicha puerta se modelizará de manera similar en el componente "Puerta" de EcosimPro como una infiltración a 40 °C y caudal 0,18 m³/s, como luego se demostrará.

Como temperatura del aire de ventilación procedente del exterior se considera una variación senoidal a lo largo del día, cuyo valor máximo es 38,4°C, con una amplitud de 6,1°C. Se considera que el máximo de la senoidal se da a las 15 horas, por lo que el desfase obtenido es de 3,93 radianes. El caudal del aire exterior es de 8500 m³/h. Dicha variación de temperatura se programa de manera similar en el componente "AE" de EcosimPro, como luego se demostrará.

Las salas adyacentes consideradas son las siguientes:

Pared	Sala	Descripción	T (°C)
Norto	EF136	Pasillo	40
nonte	EF154	Sala de baterías de salvaguardia B	40

Sur	-	Exterior	Evolución senoidal
Este	TF005	Pasillo	Evolución senoidal
Oeste	EF134	Generador diésel 1	40
Suelo	-	Adiabático	-
Tasha	EK154	Sala de baterías de salvaguardia B	40
EK156 Sala d		Sala de cargadores B	40

Tabla 18. Salas adyacentes a la sala EF135

Se considera que la temperatura de la sala este (TF005) también experimenta una variación senoidal a lo largo del día. Su valor máximo es de 43,4°C, 5°C superior a la temperatura del aire exterior. La amplitud es de 6,1°C. Al igual que con el aire exterior, se ajusta el desfase para que el máximo se dé a las 15 horas. El desfase obtenido es de 3,93 radianes. Dicha variación de temperatura se programa de manera similar en el componente "TF005" de EcosimPro, como luego se demostrará.

Finalmente, en el caso de la pared Sur que linda con el exterior se ha considerado para la modelización realizada con HVAC-TT un valor de temperatura exterior equivalente obtenida mediante un método alternativo al método ASHRAE programado con el programa SolES. Dicho método alternativo se basa en el uso de las tablas 19, 20 y 20A incluidas en el Manual de Aire Acondicionado de Carrier Air Conditioning Company, mediante las cuales, y a través de diferentes transformaciones y cálculos manuales que se desarrollan en concreto para cada aplicación, obtiene una estimación aproximada de dicha temperatura.

Para la realización del modelo en EcosimPro se usará la metodología explicada en el presente proyecto y desarrollada en la aplicación de Excel SoIES, la cual presenta la ventaja de estar automatizada y permitir una gran variedad de consideraciones.

El suelo se considera como pared adiabática y sin espesor.

Las cargas internas consideradas en la sala EF135 son carga miscelánea y carga térmica aportada por cada unidad fan-coil.

La carga térmica miscelánea considerada es de 1.000.000 Btu/h. Esta carga térmica se desglosa en las siguientes contribuciones:

- Generador Diesel
- Iluminación de la sala
- Bandejas eléctricas y cabinas
- Carga térmica disipada por los motores de los ventiladores

En cuanto a las unidades fan-coil, la carga térmica aportada por cada unidad a la sala debido a la ineficacia del motor es de 58.500 Btu/h. Dicha carga se considera constante en el tiempo, a pesar de que el fan-coil haya dejado de recibir agua de refrigeración, puesto que su motor y ventilador siguen operando.

La capacidad de refrigeración de cada unidad fan-coil es de 462.440,7 Btu/h.

El caso a estudio a simular consiste en partir de una situación inicial en la que el generador diésel se encuentra en funcionamiento y sólo uno de los dos fan-coil se encuentra operativo.

3.2.2. OBTENCION DE DATOS DE PARTIDA EN REGIMEN ESTACIONARIO MEDIANTE EL USO DE LA HERRAMIENTA SOLES

Mediante la herramienta SolES se han obtenido al igual que en el caso anterior los datos de partida necesarios a introducir en EcosimPro. A continuación, se describen cada uno de ellos.

Estableciendo como condición inicial una temperatura en la sala EF135 de 40°C, se han obtenido las temperaturas de pared a ambos lados de los cerramientos interiores. Los resultados obtenidos se adjuntan en la siguiente tabla:

Condicio	nes iniciales
т	40 °C
	313.15 K

Cerramientos interiores		
Pared	Tpi (K)	Tpe (K)
Norte 1	313.15	313.15
Este 1	314.02	315.68

Figura 24. Temperaturas iniciales de pared de los cerramientos interiores

Estas temperaturas se introducen como datos de entrada en los componentes "Wall_Norte_Oeste_Techo" y "Wall_Este" según corresponda.

La sala EF135 posee un cerramiento exterior, la pared Sur. El flujo máximo de calor a través del cerramiento obtenido mediante la herramienta SolES se ha aproximado a una senoidal a fin de introducirlo como dato en el programa EcosimPro.

La evolución senoidal del flujo de calor máximo a través de un cerramiento exterior se ha modelado mediante la siguiente ecuación, en la que se considera que el máximo de la función senoidal tiene el mismo valor y coincide en el tiempo con el valor máximo de calor obtenido mediante SoIES:

$$q_{sen} = Q_o + A \cdot \sin\left(\frac{\pi \cdot t}{12} + desf\right) \tag{47}$$

Siendo:

 q_{sen} : Flujo de calor aproximado a una evolución senoidal (W)

 Q_o : Valor inicial de la senoidal (W)

A: Amplitud (W)

t: Tiempo (h)

desf: Desfase (radianes)

Los parámetros que modelan el flujo de calor obtenido a lo largo del día se obtienen mediante las siguientes ecuaciones.

$$Q_o = q_{max} - A \tag{48}$$

$$A = \frac{4max}{2} \tag{49}$$

$$desf = \frac{\pi}{2} - \frac{\overline{\pi} \cdot t_{q_{max}}}{12} \tag{50}$$

El flujo de calor obtenido mediante la herramienta SoIES se adjunta en la siguiente gráfica:

Gráfica 11. Flujo de calor a través de la pared Sur

El programa SolES da como resultado los siguientes parámetros, que modelan el flujo de calor obtenido a lo largo del día. Estos parámetros se introducen como datos de entrada en el programa EcosimPro, en el componente "Wall_Sur", según se indica más adelante en la ecuación (57).

$Q_o(W)$	A(W)	desf (rad)
142,11	459,35	-3,665

Tabla 19. Valor inicial de la senoidal, amplitud y desfase

3.2.3. DESARROLLO DEL MODELO EN ECOSIMPRO

El modelo utilizado en EcosimPro para la simulación del caso de estudio en la sala EF135 es el siguiente:

Figura 25. Modelo utilizado en EcosimPro, sala EF135

Para desarrollar este modelo se ha partido del modelo desarrollado en el caso de estudio anterior y se han programado a mano los componentes "Puerta", "AE", "TF005", "FC1", "RD" y "Wall_Sur" para simular otros fenómenos que tienen lugar en el caso de estudio, y que la librería de EcosimPro por defecto no contempla.

Finalmente se han introducido los mismos datos que en HVAC-TT y se ha simulado el mismo caso que el realizado en el programa HVAC-TT.

A continuación, se describen los diferentes componentes programados en EcosimPro:

Componente "Puerta": Se simula la existencia de una puerta abierta en la sala mediante este componente, según la formulación empleada en el programa HVAC-TT. La carga térmica aportada por la infiltración es calculada mediante la siguiente fórmula:

$$Q_{puerta} = 0.2 \cdot W \cdot H^{3/2} \cdot g^{1/2} \cdot \left(2 \cdot \frac{T_i - T}{T_i + T}\right)^{1/2} \cdot \frac{P \cdot C_p}{2 \cdot R_a} \cdot \left(\frac{1}{T} + \frac{1}{T_i}\right)$$
(51)
 $\cdot (T_i - T)$

Siendo:

 Q_{puerta} : Carga térmica aportada a través de la puerta (W)

H: Altura de la puerta (m)

W: Ancho de la puerta (m)

 C_p : Calor específico en las condiciones del aire infiltrado (J/kg·K)

P: Presión (Pa)

 R_a : Constante universal de los gases particularizada para aire (287 J/kg·K)

 T_i : Temperatura del aire de la sala a estudio, sala EF135 (K)

T: Temperatura del aire de la sala contigua, sala EF136 (K)

El valor de C_p es calculado mediante una función interna del programa EcosimPro. Para ello, es necesario introducir la presión de la sala como dato al componente.

Los datos necesarios a introducir por el usuario en el componente "Puerta" de EcosimPro son los siguientes:

Variable	Unidad
Presión	Ра
Н	m
W	m
Т	K
Tipo de fluido: Aire	-

Tabla 20. Datos a introducir en el componente "Puerta"

Componente "AE": Se simula el caudal de aire de ventilación de la sala introduciendo un flujo de aire en el que la temperatura de entrada a la sala EF135 experimenta una variación senoidal. La carga térmica aportada por la renovación de aire es calculada mediante la siguiente fórmula:

$$Q_{AE} = \nu_{AE} \cdot \rho_{AE} \cdot Cp_{AE} \cdot (T_i - T_{AE})$$
(52)

Siendo:

 Q_{AE} : Carga térmica aportada por el aire exterior (W)

 v_{AE} : Caudal de aire exterior (m³/s)

 ρ_{AE} : Densidad en las condiciones del aire exterior (kg/m³)

 Cp_{AE} : Calor específico en las condiciones del aire exterior (J/kg·K)

 T_i : Temperatura del aire de la sala a estudio (EF135) (°C)

 T_{AE} : Temperatura del aire exterior (°C)

La temperatura del aire exterior experimenta una variación senoidal. El valor de la temperatura exterior en cada instante de tiempo se calcula mediante la siguiente fórmula:

$$T_{AE} = (T_{max} - A) + A \cdot \sin\left(\frac{(t/3600) \cdot \pi}{12} + desf\right)$$
(53)

Siendo:

T_{max}: Temperatura máxima alcanzada por la senoidal (°C)

A: Amplitud (°C)

t: Tiempo (s)

desf: Desfase (radianes)

Los datos necesarios a introducir por el usuario en el componente "AE" de EcosimPro son los siguientes:

Variable	Unidad
Presión	Ра
$ u_{AE}$	m³/s
T _{max}	°C
A	°C
desf	rad
Tipo de fluido: Aire	-

Tabla 21. Datos a introducir en el componente "AE"

Componente "TF005": Simula una sala en la que la temperatura del aire de dicha sala varía de manera senoidal. La temperatura se calcula mediante la siguiente fórmula:

$$T_{TF005} = (T_{max} - A) + A \cdot \sin\left(\frac{(t/3600) \cdot \pi}{12} + desf\right)$$
(54)

Siendo:

 T_{max} : Temperatura máxima alcanzada por la senoidal (°C)

A: Amplitud (°C)

t: Tiempo (s)

desf: Desfase (radianes)

Los datos necesarios a introducir por el usuario en el componente "TF005" de EcosimPro son los siguientes:

Tman	°C
- max	Ľ
A	°C
desf	radianes

Tabla 22. Datos a introducir en el componente "TF005"

Componentes "FC1": Simulación de un fan-coil según la formulación empleada en el programa HVAC-TT. La carga térmica combatida con un fan-coil se calcula mediante la siguiente ecuación:

$$Q_{FC} = Q_{nom} \cdot \left(\frac{T_{ea} - T_{ew}}{T_{eacn} - T_{ewcn}}\right)$$
(55)

Siendo:

 Q_{FC} : Carga térmica retirada por el fan-coil (Btu/h)

Q_{nom}: Capacidad nominal del fan-coil (Btu/h)

Tea: Temperatura de entrada del aire (°F)

 T_{ew} : Temperatura de entrada del agua (°F)

Teacn: Temperatura de entrada del aire en condiciones nominales (°F)

 T_{ewcn} : Temperatura de entrada del agua en condiciones nominales (°F)

Los datos necesarios a introducir por el usuario en el componente "FC1" de EcosimPro son los siguientes:

Variable	Unidad
Q_{nom}	Btu/h
T _{ew}	۴F
T _{eacn}	۴F
T _{ewcn}	°F

Tabla 23. Datos a introducir en el componente "FC1"

Componente "RD": Simula la carga de radiación transferida entre el aire de la sala y el cerramiento interior. La transferencia de calor es calculada mediante la siguiente fórmula:

$$Q_{RD} = A \cdot FF \cdot \varepsilon \cdot \sigma \cdot \left(T_i^{\ 4} - T_{pi}^{\ 4}\right) \tag{56}$$

Siendo:

 Q_{RD} : Calor transferido entre el cerramiento interior y el aire de la sala a estudio, sala EF135 (W)

 ε : Emisividad

FF: Factor de forma

A: Área del cerramiento interior (m2)

 σ : Constante de Stefan-Boltzmann (5,67·10-8 W/m²·K⁴)

 T_i : Temperatura del aire de la sala a estudio, sala EF135 (K)

 T_{pi} : Temperatura de la pared interior del cerramiento (K)

Se permite al usuario introducir dos valores de emisividad, en función de si la temperatura del aire es mayor o menor que la temperatura de la pared del cerramiento.

Los datos necesarios a introducir por el usuario en el componente "RD" de EcosimPro son los siguientes:

Variable	Unidad
$\varepsilon_1 (Ti < Tpi)$	-
$\varepsilon_2(Ti > Tpi)$	-
FF	-
A	m²

Tabla 24. Datos a introducir en el componente "RD"

Componente "Wall_Sur": Mediante este componente se introduce el flujo de calor transferido a través de un cerramiento exterior obtenido mediante la herramienta SoIES. En la herramienta SoIES la evolución del flujo de calor se aproxima a una senoidal. El programa EcosimPro realiza el cálculo del flujo de calor a través del cerramiento mediante la siguiente fórmula:

$$Q_{cerr.\ ext} = Q_o + A \cdot \sin\left(\frac{(t/3600) \cdot \pi}{12} + desf\right)$$
(57)

Siendo:

 $Q_{cerr. ext}$: Flujo de calor transferido a través del cerramiento exterior (pared Sur) (W)

 Q_o : Valor inicial de la senoidal (W)

A: Amplitud (W)

t: Tiempo (s)

desf: Desfase (radianes)

Los datos necesarios a introducir por el usuario en el componente "Wall_Sur" de EcosimPro son los siguientes:

Variable	Unidad
Q_o	W
Α	W
desf	radianes

Tabla 25. Datos a introducir en el componente "Wall_Sur"

Mediante esta simulación se han comparado los resultados obtenidos mediante el programa EcosimPro con los de HVAC-TT, a partir de los mismos datos de partida y

considerando el mismo caso. Las hipótesis introducidas en ambos programas son las siguientes:

- Temperatura inicial de la sala 40°C.
- Tanto el generador diésel como ambos fan-coil aportan carga térmica a la sala.
- Desde el inicio de la simulación únicamente se encuentra en funcionamiento un solo fan-coil.
- Debido a que no es posible introducir desfase en el programa HVAC-TT en el supuesto de que la temperatura varíe de manera senoidal, la temperatura del aire exterior y del pasillo (TF005) se han introducido sin desfase.

3.2.4. VALIDACIÓN MEDIANTE EL PROGRAMA HVAC-TT

A continuación, se detallan todos los parámetros introducidos en el programa EcosimPro para cada uno de los componentes utilizados en el caso a estudio.

Componente "EF135": Simula la sala a estudio EF135. Los parámetros introducidos en el componente "EF135" del programa EcosimPro son los siguientes:

Name: Ef	ame: EF135						
Show La	✓ Show Label						
General	General						
Name	e	Туре	Value	Units	Description		
			PARAMETERS				
n		INTEGER	1	-	Dimension of thermal port		
			DATA				
Boundary	у	BOOLEAN	FALSE 👻	-	Flag used to set boundary mode		
Label		STRING	"Node Label"	-	Node label		
Р		REAL	95404	Pa	Pressure in the room		
То		REAL	313.15	K	Initial temperature		
V		REAL	1607.44	m^3	Volume of the room node		
qi		REAL	327360.39	W	Impressed heat		
thermal_f	fluid	ENUM THERMAL.ThFluids	Air 🔹	-	Fluid in the Room		

Figura 26. Captura de pantalla al componente "EF135" del programa EcosimPro

El programa HVAC-TT modeliza la sala a estudio EF135 como una sala de tipo paralelepípedo. Los parámetros introducidos de la sala y de temperatura en el programa HVAC-TT son los siguientes:

DATOS DE LA SALA Y DE TEMPERATURA	
NUMERO DE LA SALA	135
NOMBRE DE LA SALA	GENERADOR DIESEL 3
SUCESO	PERDIDA 1FCU EST
LONGITUD DE LA SALA (FT)	33.3
ANCHURA DE LA SALA (FT)	64.3
ALTURA DE LA SALA (FT)	26.5
TEMPERATURA INTERIOR INICIAL (°F)	104
Nº DE PAREDES CON TEMPERATURA FIJA (MAX.10)	1
Nº DE PAREDES CON TEMPERATURA VARIABLE (MAX.10)	2
SUP. MURO CON TEMP.INT = TEMP.EXT	.2

Figura 27. Captura de pantalla de los datos de la sala y de temperatura del programa HVAC-TT

El volumen de la sala EF135 obtenido a partir de las dimensiones introducidas en el programa HVAC-TT es el siguiente:

$$V = Longitud \cdot Ancho \cdot Alto = 33,3 \cdot 64,3 \cdot 26,5 = 56.751 ft^{3}$$

En cuanto a la carga interna total considerada por HVAC-TT, es la suma de la carga miscelánea de origen eléctrico y la aportada por ambas unidades fan-coil. La carga miscelánea se introduce a través de la pantalla mostrada en la siguiente Figura 28.

Figura 28. Captura de pantalla de los datos de carga miscelánea del programa HVAC-TT

La carga térmica aportada por ambas unidades fan-coil es introducida en el programa HVAC-TT a través de la pantalla mostrada en la Figura 46.

La suma de ambas es la siguiente:

$$q_i = 1.000.000 + 117.000 = 1117000 Btu/h$$

El programa EcosimPro trabaja en unidades métricas, mientras que el programa HVAC-TT en unidades británicas. A fin de poder comparar los parámetros introducidos en el programa EcosimPro con las diferentes pantallas mostradas de HVAC-TT, se ha adjuntado una tabla en la que se indican los parámetros introducidos en EcosimPro en unidades británicas.

Variable	Unidades			
variable	Métricas	Británicas		
T_o	313,15 K	104 °F		
q_i	327360,39 W	1117000 Btu/h		
V	1.607,44 m ³	56.751 ft ³		

Tabla 26. Conversión de unidades del componente "EF135"

Se comprueba que los parámetros introducidos en EcosimPro son los mismos a los introducidos en HVAC-TT.

Componentes "Wall_Norte_Oeste_Techo" y "Wall_Este": Simulan los cerramientos interiores que lindan con salas a temperatura fija y variable respectivamente.

Los parámetros introducidos en el componente "Wall_Norte_Oeste_Techo" del programa EcosimPro son los siguientes:

Name: Wall_Norte_Oeste	e: Wal_Norte_Oeste_Techo							
Show Label	Show Label							
General	General							
Name	Name Tune Value Unitr Description							
	.,,,,,	PARAMETERS	ornes	beenpaon				
n	INTEGER	1	-	Dimension of thermal port				
nodes	INTEGER	12	-	Number of nodes of wall discretization				
		DATA						
A	REAL	452.4	m^2	Area of the wall				
TemperatureDependance	e BOOLEAN	TRUE		Flag to consider temperature dependance of the material properties				
То	REAL	290	К	Constant initial temperature of nodes if init_mode = Constant_Temp				
To_linear[2]	ARRAY REAL	{ 313.15,313.15}	К	Initial temperatures at both side if init_mode = Linear_Temp				
To_table	TABLE 1D	{ { 0,1 } ,{ 290,290 } }	К	Table with initial wall temperature versus non-dimensional positio				
ср	REAL	653.14	J/(kg·K)	Wall Specific heat if material is None				
e	REAL	0.4264	m	Wall thickness				
init_mode	ENUM THERMAL.WALL_INIT_MODE	Linear_Temp 🗸		Option for the initiliazation of the nodal temperatures				
k	REAL	1.729	W/(m·K)	Wall conductivity if material is None				
mat	ENUM THERMAL.Material	MatUsr1 -	-	Material				
rho	REAL	2306.66	kg/m^3	Wall density if material is None				

Figura 29. Captura de pantalla del componente "Wall_Norte_Oeste_Techo" del programa EcosimPro

Los parámetros introducidos en el componente "Wall_Este" del programa EcosimPro son los siguientes:

Name: Wall_Este	e: Wal_Este							
7 Show Label								
General	General							
Name	Туре	Value	Units	Description				
		PARAMETERS						
n	INTEGER	1	-	Dimension of thermal port				
nodes	INTEGER	12	-	Number of nodes of wall discretization				
		DATA						
Α	REAL	144.126	m^2	Area of the wall				
TemperatureDependance	BOOLEAN	TRUE		Flag to consider temperature dependance of the material properties				
То	REAL	290	K	Constant initial temperature of nodes if init_mode = Constant_Temp				
To_linear[2]	ARRAY REAL	{ 314.02,315.68 }) K	Initial temperatures at both side if init_mode = Linear_Temp				
To_table	TABLE 1D	{ { 0,1 } ,{ 290,290 } }) K	Table with initial wall temperature versus non-dimensional position if i				
cp	REAL	653.14	J/(kg·K)	Wall Specific heat if material is None				
e	REAL	0.4264	m	Wall thickness				
init_mode	ENUM THERMAL.WALL_INIT_MODE	Linear_Temp 🗸		Option for the initiliazation of the nodal temperatures				
k	REAL	1.729	W/(m·K)	Wall conductivity if material is None				
mat	ENUM THERMAL.Material	MatUsr1 -	-	Material				
rho	REAL	2306.66	kg/m^3	Wall density if material is None				

Figura 30.Captura de pantalla del componente "Wall_Este" del programa EcosimPro

Los parámetros introducidos de datos de muros y de radiación en el programa HVAC-TT son los siguientes:

DATOS DEL MURO Y DE RADIACION				
ESPESOR (IN)	16.79			
CONDUCTIVIDAD(BTU/H·FT· ² F)	1			
DENSIDAD (LB/FT^3)	144			
CALOR ESPECIFICO (BTU/LB·°F)	.156			
EMISIVIDAD INTERIOR	1			
EMISIVIDAD TUBERIA-MURO	.85			
EMISIVIDAD EXTERIOR	1			
FACTOR DE FORMA INTERIOR	1			
FACTOR DE FORMA DE TUBERIA	1			
FACTOR DE FORMA EXTERIOR	1			
Nº DE REBANADAS DEL MURO	12			

Figura 31. Captura de pantalla de los datos del muro y de radiación del programa HVAC-TT

Los parámetros introducidos de las paredes con temperatura fija en el programa HVAC-TT son los siguientes:

	PAREDES CON TEMPERAT	IURA FIJA
PARED 1	FRACCION AREA TOTAL= .565	TEMPERATURA (°F)= 104 _

Figura 32. Captura de pantalla de las paredes con temperatura fija del programa HVAC-TT

Los parámetros introducidos de las paredes con temperatura variable en el programa HVAC-TT son los siguientes:

Figura 33. Captura de pantalla de las paredes con temperatura variable del programa HVAC-TT

Tal y como se observa en las anteriores imágenes, para cada tipo de cerramiento es necesario introducir en el programa HVAC-TT la fracción de área con respecto a la superficie total de la sala. La superficie total del paralelepípedo equivalente de la sala EF135 es de 800,7 m², según el proyecto en el que se basa este estudio. En la siguiente tabla se adjuntan las áreas de cada cerramiento, obtenido al multiplicar la fracción de muro por la superficie total del paralelepípedo.

Pared	% _{muro}	Área (m²)		
Norte				
Oeste	0,565	452,4		
Techo				
Este	0,180	144,126		

Tabla 27. Área de los cerramientos interiores

Como se puede comprobar, dichas áreas son las introducidas en el programa EcosimPro.

Finalmente, en cuanto a las propiedades del muro, a fin de poder comparar los parámetros introducidos en el programa EcosimPro con HVAC-TT, se adjunta la siguiente tabla, en la que se indican los parámetros introducidos en EcosimPro en unidades británicas.

Variable	Unidades			
variable	Métricas	Británicas		
е	0,4264 m	16,79 in		
k	1,729 W/(m⋅K)	1 Btu/h·ft·°F		
rho	2306,66 kg/m ³	144 lb/ft ³		
Ср	653,14 J/(kg·К)	0,156 Btu/lb∙°F		

Tabla 28. Conversión de unidades de los componentes "Wall"

Se comprueba que dichos parámetros son los introducidos en el programa EcosimPro.

Componentes "CV_N_O_T", "CV_N_O_T_1", "CV_E", "CV_E_1": Simulan el efecto de la convección natural o libre.

Los parámetros introducidos en el componente "CV_N_O_T" del programa EcosimPro son los siguientes:

Name: CV_N_	me: CV_N_O_T						
Show Label] Show Label						
General							
Name	Туре	Value	Units	Description			
		PARAMETERS					
n	INTEGER	1	-	Dimension of thermal port			
position	ENUM THERMAL.WallType	wall 👻	-	Film Type			
thermal_fluid	ENUM THERMAL.ThFluids	Air 👻	-	Interface Fluid			
		DATA					
А	REAL	452.4	m^2	Convective heat exchange area			
Grav	REAL	9.80665	m/s^2	Gravity			
Lc	REAL	8.08	m	Height for vertical plate OR perimeter for floor and ceiling option			
Р	REAL	95404	Pa	Ambient pressure			

Figura 34. Captura de pantalla del componente "CV_N_O_T" del programa EcosimPro

Los parámetros introducidos en el componente "CV_N_O_T_1" del programa EcosimPro son los siguientes:

Name: CV_N_	ume: CV_N_O_T_1						
🗸 Show Label	Show Label						
General							
Name	Туре	Value	Units	Description			
		PARAMETERS					
n	INTEGER	1	-	Dimension of thermal port			
position	ENUM THERMAL.WallType	wall 👻	-	Film Type			
thermal_fluid	ENUM THERMAL.ThFluids	Air 🗸	-	Interface Fluid			
		DATA					
Α	REAL	452.4	m^2	Convective heat exchange area			
Grav	REAL	9.80665	m/s^2	! Gravity			
Lc	REAL	8.08	m	Height for vertical plate OR perimeter for floor and ceiling option			
Р	REAL	95404	Pa	Ambient pressure			

Figura 35. Captura de pantalla del componente "CV_N_O_T_1" del programa EcosimPro

Los parámetros introducidos en el componente "CV_E" del programa EcosimPro son los siguientes:

Name: C	V_E						
Show La	Show Label						
General							
Name	e	Туре	Value	Units	Description		
			PARAMETERS				
n		INTEGER	1	-	Dimension of thermal port		
position		ENUM THERMAL.WallType	wall 👻	-	Film Type		
thermal_f	fluid	ENUM THERMAL.ThFluids	Air 👻	-	Interface Fluid		
			DATA				
Α		REAL	144.126	m^2	Convective heat exchange area		
Grav		REAL	9.80665	m/s^2	Gravity		
Lc		REAL	8.08	m	Height for vertical plate OR perimeter for floor and ceiling option		
Р		REAL	95404	Pa	Ambient pressure		

Figura 36. Captura de pantalla del componente "CV_E" del programa EcosimPro

Los parámetros introducidos en el componente "CV_E_1" del programa EcosimPro son los siguientes:

Name: CV	:: CV_E_1						
Show Lab	Show Label						
General	General						
Name	Туре	Value	Units	Description			
		PARAMETERS					
n	INTEGER	1	-	Dimension of thermal port			
position	ENUM THERMAL.WallType	wall 👻	-	Film Type			
thermal_fl	uid ENUM THERMAL.ThFluids	Air 👻	-	Interface Fluid			
		DATA					
Α	REAL	144.126	m^2	Convective heat exchange area			
Grav	REAL	9.80665	m/s^2	Gravity			
Lc	REAL	8.08	m	Height for vertical plate OR perimeter for floor and ceiling option			
Р	REAL	95404	Pa	Ambient pressure			

Figura 37. Captura de pantalla del componente "CV_E_1" del programa EcosimPro

Aunque no sea necesario que el usuario lo indique, el programa HVAC-TT tiene en cuenta el efecto de la convección.

Se comprueba que en EcosimPro se han introducido las mismas áreas a las introducidas en los cerramientos interiores anteriores. La altura de los cerramientos es la altura del paralelepípedo equivalente, siendo de 8,08 m.

Componentes "RD_N_O_T", "RD_N_O_T_1", "RD_E", "RD_E_1": Simula la carga de radiación transferida entre el aire de la sala EF135 y el cerramiento interior al que se encuentra conectado.

Los parámetros introducidos en el componente "RD_N_O_T" del programa EcosimPro son los siguientes:

Name:	lame: RD_N_O_T					
Show Label						
Name	Туре	Value	Units	Description		
		DATA				
ASALA	REAL	452.4	m^2	Área de la pared de la sala		
EAM_1	REAL	1	-	Emisividad aire-muro si Tgas < Twall		
EAM_2	REAL	0.1	-	Emisividad aire-muro si Tgas > Twall		
FF	REAL	1	-	Factor de forma		

Figura 38. Captura de pantalla del componente "RD_N_O_T" del programa EcosimPro

Los parámetros introducidos en el componente "RD_N_O_T_1" del programa EcosimPro son los siguientes:

Name:	me: RD_N_O_T_1						
Show	l Show Label						
Name	Туре		Value	Units	Description		
			DATA				
ASALA	REAL	452.4		m^2	Área de la pared de la sala		
EAM_1	REAL	1		-	Emisividad aire-muro si Tgas < Twall		
EAM_2	REAL	0.1		-	Emisividad aire-muro si Tgas > Twall		
FF	REAL	1		-	Factor de forma		
	THE THE	-					

Figura 39. Captura de pantalla del componente "RD_N_O_T_1" del programa EcosimPro

Los parámetros introducidos en el componente "RD_E" del programa EcosimPro son los siguientes:

Name:	ame: RD_E						
Show	Show Label						
Name	Туре	Value	Units	Description			
		DATA					
ASALA	REAL	144.126	m^2	Área de la pared de la sala			
EAM_1	REAL	1	-	Emisividad aire-muro si Tgas < Twall			
EAM_2	REAL	0.1	-	Emisividad aire-muro si Tgas > Twall			
FF	REAL	1	-	Factor de forma			

Figura 40. Captura de pantalla del componente "RD_E" del programa EcosimPro

Los parámetros introducidos en el componente "RD_E_1" del programa EcosimPro son los siguientes:

Na	ame: RD_E_1						
V	Show Label						
	Name	Туре	Value	Units	Description		
			DATA				
1	ASALA	REAL	144.126	m^2	Área de la pared de la sala		
E	EAM_1	REAL	1	-	Emisividad aire-muro si Tgas < Twall		
E	EAM_2	REAL	0.1	-	Emisividad aire-muro si Tgas > Twall		
F	FF	REAL	1	-	Factor de forma		

Figura 41. Captura de pantalla del componente "RD_E_1" del programa EcosimPro

Se comprueba que en EcosimPro se han introducido las mismas áreas a las introducidas en los cerramientos interiores.

Los valores introducidos en HVAC-TT tanto de emisividad como del factor de forma se adjuntan en la Figura 31.

Se comprueba que en ambos programas se han introducido los mismos valores de emisividad y factores de forma.

Componente "EF134_EF136_EK154_EK156": Simula una sala cuya temperatura interior del aire es de 40°C. Los parámetros introducidos en el componente "EF134_EF136_EK154_EK156" del programa EcosimPro son los siguientes:

Name: EF:	ame: EF134_EF136_EK154_EK156						
Show Lab	Show Label						
General							
Name	Type Value Units Description						
		PARAMETERS					
n	INTEGER	1	-	Dimension of thermal port			
		DATA					
Boundary	BOOLEAN	TRUE 👻	-	Flag used to set boundary mode			
С	REAL	0.001	J/K	Heat capacity			
Label	STRING	"Node Label"	-	Node label			
То	REAL	313.15	K	Initial temperature			
qi	REAL	0	W	Impressed heat			

Figura 42. Captura de pantalla del componente "EF134_EF136_EK154_EK156" del programa EcosimPro

El valor introducido de la temperatura del aire de la sala contigua a los cerramientos Norte, Oeste y Techo del programa HVAC-TT se adjunta en la Figura 32.

Realizando el cambio de unidades para la temperatura introducida en EcosimPro:

Unidades			
Métricas	Británicas		
313,15 K	104 °F		
	Unid Métricas 313,15 K		

Tabla 29. Conversión de unidades del componente "EF134_EF136_EK154_EK156"

Se comprueba que en ambos programas se ha introducido el mismo valor para la temperatura del aire.

Componente "TF005": Simula la sala TF005 en la que la temperatura del aire experimenta una variación senoidal. Los parámetros introducidos en el componente "TF005" del programa EcosimPro son los siguientes:

Name:	ame: TF005						
Show Label							
Name	Туре		Value	Units	Description		
			DATA				
T_max	REAL	316.55		К	Temperatura máxima		
Α	REAL	6.1		К	Amplitud		
desf	REAL	0		radianes	Desfase		

Figura 43. Captura de pantalla del componente "TF005" del programa EcosimPro

Los parámetros introducidos de la temperatura de la sala TF005 en el programa HVAC-TT son los siguientes:

SENO T = A +	B * sen(2×π×t/C)
VALOR INICIAL A =	99.14
AMPLITUD B =	10.98
PERIODO C =	1440_

Figura 44. Captura de pantalla de la temperatura del pasillo del programa HVAC-TT

Tal y como se observa en la anterior figura, la evolución de la temperatura introducida en el programa HVAC-TT es la siguiente, con la temperatura en °F y el tiempo en minutos.

$$T_{HVAC-TT} = 99,14 + 10,98 \cdot \sin\left(\frac{2 \cdot \pi \cdot t}{1440}\right)$$

Pasando la anterior ecuación a grados Kelvin, se obtiene la siguiente ecuación:

$$T_{TF005} = 310,45 + 6,1 \cdot \sin\left(\frac{2 \cdot \pi \cdot t}{1440}\right)$$

EL valor del origen del seno se calcula como (316,55 - 6,1), dando como resultado 310,45K, por lo que se comprueba que los datos introducidos en EcosimPro son los mismos a los introducidos en HVAC-TT.

Componente "FC1": Simula un fan-coil según la formulación empleada en el programa HVAC-TT. Los parámetros introducidos en el componente "FC1" del programa EcosimPro son los siguientes:

Name:	FC1						
Show Label							
Name	Туре	Value	Units	Description			
		DATA					
Q_nom	REAL	462440.73	Btu/h	Capacidad nominal del fancoil			
T_ew	REAL	95	٩F	Temperatura de entrada del agua			
T_eacn	REAL	104	٥F	Temperatura de entrada del aire en condiciones nominales			
T_ewcn	REAL	85	٩F	Temperatura de entrada del agua en condiciones nominales			

Figura 45. Captura de pantalla del componente "FC1" del programa EcosimPro

Los parámetros introducidos del fan-coil en el programa HVAC-TT son los siguientes:

CAPACIDAD NOMINAL (BTU/H)	462440.73
CARGA APORTADA (BTU/H)	117000
TEMPERATURA ENTRADA DEL AIRE EN C.N. (°F)	104
TEMPERATURA ENTRADA DEL AGUA EN C.N. (°F)	85
TEMPERATURA DEL AGUA EN CONDICIONES REALES (°F)	95
OPCION ARRANQUE/PARADA DEL FAN-COIL	NO

Figura 46. Captura de pantalla de los datos del fan-coil del programa HVAC-TT

Se comprueba que se han introducido los mismos datos en ambos programas. En cuanto a la carga aportada por el fan-coil, se comprueba que es la misma que la introducida como carga total en EcosimPro, según se ha explicado en el componente "EF135".

Componente "Puerta": Simula la existencia de una puerta abierta que comunica las salas EF135 y EF136. Los parámetros introducidos en el componente "Puerta" del programa EcosimPro son los siguientes:

ame: Puerta				
Show Label				
Name	Туре	Value	Units	Description
		DATA		
P	REAL	95404	Pa	Presión
W	REAL	1.94	m	Ancho de la puerta
н	REAL	2.55	m	Altura de la puerta
Т	REAL	313.15	K	Temperatura del aire exterior a la puerta
thermal_fluid	ENUM THERMAL.ThFluids	Air 👻	-	Tipo de fluido

Figura 47. Captura de pantalla del componente "Puerta" del programa EcosimPro

Los parámetros introducidos de la puerta en el programa HVAC-TT son los siguientes:

DATOS DE LA PUERTA				
ANCHURA DE LA PUERTA (FT)	6.36			
ALTURA DE LA PUERTA (FT)	8.366			
TEMPERATURA EXTERIOR PUERTA (°F)	104.00001			
OPCION APERTURA/CIERRE DE PUERTA	SI			

Figura 48. Captura de pantalla de los datos de la puerta del programa HVAC-TT

A fin de comparar los parámetros del componente "Puerta" con los introducidos en el programa HVAC-TT, se adjunta la siguiente tabla.

Variable	Unidades		
variable	Métricas	Británicas	
Т	313,15 K	104 °F	
W	1,94 m	6,36 ft	
Н	2,55 m	8,366 ft	

Tabla 30. Conversión de unidades del componente "Puerta"

Se comprueba que se ha introducido los mismos parámetros en ambos programas.

Componente "AE": Simula el caudal de aire de ventilación de la sala EF135. Los parámetros introducidos en el componente "AE" del programa EcosimPro son los siguientes:

Name: AE						
Show Label						
Name	Туре	Value	Units	Description		
		DATA				
Р	REAL	95404	Pa	Presión en la sala		
flow_air	REAL	2.361	m^3/s	Caudal de aire		
T_max	REAL	311.55	K	Temperatura máxima		
A	REAL	6.1	K	Amplitud		
desf	REAL	0	radianes	Desfase		
thermal_fluid	ENUM THERMAL.ThFluids	Air 👻	-	Fluido en la habitación		

Figura 49. Captura de pantalla del componente "AE" del programa EcosimPro

Los parámetros introducidos de ventilación en el programa HVAC-TT son los siguientes:

DATOS DE VENTILACION	
CAUDAL DE VENTILACION (CFM)	5000
TEMPERATURA MAXIMA (°F)	101.12V

Figura 50. Captura de pantalla de los datos de ventilación del programa HVAC-TT

)
VALOR INICIAL A = 90.1	
AMPLITUD B = 10.96	8
PERIODO C = 1440	

Figura 51. Captura de pantalla de la temperatura de la ventilación del programa HVAC-TT

Tal y como se observa en la anterior figura, la evolución de la temperatura introducida en el programa HVAC-TT es la siguiente, con la temperatura en °F y el tiempo en minutos.

$$T_{HVAC-TT} = 90,14 + 10,98 \cdot \sin\left(\frac{2 \cdot \pi \cdot t}{1440}\right)$$

Pasando la anterior ecuación a grados Kelvin, se obtiene la siguiente ecuación:

$$T_{AE} = 305,45 + 6,1 \cdot \sin\left(\frac{2 \cdot \pi \cdot t}{1440}\right)$$

EL valor del origen del seno se calcula como (311,55 - 6,1), dando como resultado 305,45K, por lo que se comprueba que los datos introducidos en EcosimPro son los mismos a los introducidos en HVAC-TT.

A fin de comparar el caudal de ventilación introducido en ambos programas, se adjunta la siguiente tabla.

Variable	Unidades		
variable	Métricas	Británicas	
flow_air	2,361 m³/s	5000 CFM	
Table 24 Commission de maide del commence to "AF"			

Tabla 31. Conversión de unidades del componente "AE"

Se comprueba que se ha introducido el mismo valor de caudal en ambos programas.

Componente "Wall_Sur": Simula el flujo de calor que llega desde el exterior a la sala EF135 a través de la pared Sur.

El programa EcosimPro obtiene dicho flujo de calor a partir de la herramienta SolES, según la metodología "ASHRAE Handbook Fundamentals 2017" explicada en el presente proyecto. Dicho flujo de calor se aproxima a una senoidal. Los datos introducidos en EcosimPro son los siguientes:

Name:	lame: Wall_Sur				
Show Label					
Name	Туре		Value	Units	Description
			DATA		
Qo	REAL	142.11		W	Valor inicial de la senoidal
Α	REAL	459.35		W	Amplitud
desf	REAL	-3.665		radianes	Desfase

Figura 52. Captura de pantalla del componente "Wall_Sur" del programa EcosimPro

El programa HVAC-TT considera un valor de temperatura exterior equivalente obtenida por el usuario e introducida a mano mediante un método alternativo al método ASHRAE programado con el programa SoIES.

A continuación, se adjuntan los resultados obtenidos al simular la sala EF135 mediante EcosimPro y su comparación con el programa HVAC-TT.

La evolución obtenida de la temperatura interna del aire de la sala EF135 mediante el programa EcosimPro es la siguiente:

Gráfica 12. Evolución de la temperatura de la sala EF135 obtenida del programa EcosimPro

La evolución obtenida es senoidal, ya que tanto la renovación de aire exterior como la temperatura de la sala TF005 varían de manera senoidal.

Los resultados obtenidos en forma de tabla mediante el programa HVAC-TT han sido representados de manera gráfica a fin de permitir la comparación con los resultados obtenidos con EcosimPro:

Gráfica 13. Evolución de la temperatura de la sala EF135 obtenida del programa HVAC-TT

Tal y como se observa en las anteriores gráficas, el valor máximo alcanzado por la temperatura del aire a las 80 horas en EcosimPro (54,32°C) es similar al obtenido mediante el programa HVAC-TT (55°C). La diferencia entre ambas temperaturas es menor de un grado (0,68°C) por lo que el resultado obtenido se considera aceptable.

Esta pequeña diferencia entre ambas temperaturas se debe a que el flujo de calor a través del cerramiento exterior, la pared Sur, ha sido obtenido en el programa HVAC-TT mediante un método alternativo al método ASHRAE programado con el programa SolES.

Según el programa HVAC-TT, el modelo evoluciona hacia un régimen senoidal estacionario a partir de las 48 horas (2 días) de haber postulado el fallo de una de las unidades fan-coil. Sin embargo, en EcosimPro el régimen estacionario se alcanza a partir de las 168 horas (7 días).

Esta diferencia es debida a que el programa HVAC-TT termina de realizar la simulación cuando detecta que el rango de variación de las variables es pequeño. Sin embargo, EcosimPro permite realizar la simulación de tanto tiempo como se desee. Por ello, el régimen estacionario se alcanza antes en el programa HVAC-TT y el valor obtenido de la temperatura de la sala EF135 mediante EcosimPro a las 80 horas (54,32°C) varía muy poco con respecto al obtenido a los 7 días (54,35°C), tal y como se observa en la gráfica adjunta.

Gráfica 14. Evolución 2 de la temperatura de la sala EF135 obtenida del programa EcosimPro

El alcance del régimen estacionario en EcosimPro se observa en la siguiente gráfica, en la que se ha representado la evolución de la temperatura de la pared de los cerramientos interiores.

Gráfica 15. Evolución de la temperatura de los cerramientos interiores obtenida del programa EcosimPro

Tal y como se observa en la anterior gráfica, en el régimen estacionario la temperatura de la pared a ambos lados de cada uno de los cerramientos alcanza una variación senoidal constante en el tiempo.

A fin de comprobar si el proceso de cálculo seguido por EcosimPro se corresponde con el utilizado mediante el programa HVAC-TT se han comparado los parámetros reflejados en la tabla de resultados que se obtiene como salida del programa HVAC-TT con los obtenidos mediante EcosimPro.

La tabla de resultados obtenida durante aproximadamente la primera hora (56 segundos) de simulación con HVAC-TT es la siguiente:

EVOLUCION DE TEMPERATURAS (F)											EVOLUCION	I DE CARGA	S (BTU/H	R)			
																Q0=	-4365
				T.MURO	(Dist.p	oulg.car	a int.)										
									. Temp.	Balance	Rad.	Carga	Carga	Car.	Refr.	TubAisl	TubDesn
	TIE	MPO		TAIRE	0.00	5.60	11.19	16.79	Ext.	=QSala	Muro	Miscel.	Conv.	Ven+Prt	Fan Coil	convec.	con+rad.
0D	ОH	ОM	0S 1	L04.000	107.5	110.1	112.7	115.3	118.636	-4365	0	0	0	0	0	0	0
0 D	ОH	ОM	1S 1	L04.186	107.5	110.1	112.7	115.0	115.795	873225	39954	1117000	10676	-72818	-221314	0	0
0 D	ОH	ОM	1S 1	L04.389	107.5	110.1	112.7	114.8	115.841	864309	37706	1117000	9877	-73880	-226043	0	0
0 D	ОH	ОM	2S 1	L04.609	107.5	110.1	112.7	114.8	115.891	854621	35256	1117000	9024	-75066	-231193	0	0
0 D	ОH	ОM	3S 1	L04.849	107.5	110.1	112.7	114.8	115.945	844082	32589	1117000	8120	-76381	-236796	0	0
0 D	ОH	ОM	4S 1	L05.109	107.5	110.1	112.7	114.8	116.005	832634	29688	1117000	7166	-77833	-242884	0	0
0 D	ΟH	ОM	5S 1	L05.392	107.5	110.1	112.7	114.8	116.069	820219	26536	1117000	6166	-79433	-249492	0	0
0 D	ΟH	ОM	6S 1	L05.698	107.5	110.1	112.7	114.8	116.138	806780	23115	1117000	5127	-81191	-256653	0	0
0 D	ОH	ОM	7S 1	L06.029	107.5	110.1	112.7	114.9	116.213	792265	19409	1117000	4060	-83121	-264403	0	0
0 D	ΟH	ОM	8S 1	L06.386	107.5	110.1	112.7	114.9	116.294	776624	15399	1117000	2984	-85233	-272777	0	0
0 D	ΟH	ОM	10s 1	L06.771	107.5	110.1	112.7	114.9	116.381	759823	11068	1117000	1929	-87540	-281809	0	0
0 D	ОH	ОM	11S 1	L07.185	107.5	110.1	112.7	114.9	116.475	741846	6399	1117000	949	-90055	-291532	0	0
0 D	ΟH	ОM	12S 1	L07.495	107.5	110.1	112.7	114.9	116.545	726000	2162	1117000	253	-92358	-300342	0	0
0 D	ΟH	ОM	13S 1	L07.778	107.5	110.1	112.7	114.9	116.610	712364	-211	1117000	-217	-94700	-309209	0	0
0 D	ОH	ОM	14S 1	L07.940	107.5	110.1	112.7	114.9	116.646	707106	-393	1117000	-484	-95703	-312979	0	0
0 D	ΟH	ОM	15S 1	L08.117	107.5	110.1	112.7	114.9	116.686	701310	-591	1117000	-830	-96803	-317096	0	0
0 D	ОH	ОM	16S 1	L08.309	107.5	110.1	112.7	114.9	116.730	694933	-808	1117000	-1255	-98009	-321589	0	0
0 D	ΟH	ОM	16S 1	L08.519	107.5	110.1	112.7	114.9	116.778	687930	-1045	1117000	-1764	-99330	-326486	0	0
0 D	ОH	ОM	17S 1	L08.748	107.5	110.1	112.7	115.0	116.830	680251	-1303	1117000	-2364	-100775	-331820	0	0
0 D	ΟH	ОM	18S 1	L08.996	107.5	110.1	112.7	115.0	116.886	671843	-1585	1117000	-3064	-102356	-337623	0	0
0 D	ΟH	ОM	19S 1	L09.266	107.5	110.1	112.7	115.0	116.947	662649	-1890	1117000	-3872	-104083	-343928	0	0

0 D	ОH	OM 21S 109.558	107.5	110.1	112.7	115.0	117.014	652612	-2223 1117000	-4799	-105967	-350770	0
0 D	ОH	OM 22S 109.875	107.5	110.1	112.7	115.0	117.085	641672	-2583 1117000	-5857	-108022	-358184	0
0 D	ОH	OM 24S 110.217	107.5	110.1	112.7	115.0	117.163	629768	-2974 1117000	-7058	-110258	-366204	0
0 D	ОH	OM 25S 110.586	107.5	110.1	112.7	115.0	117.247	616841	-3396 1117000	-8414	-112689	-374863	0
0 D	ОH	OM 27S 110.984	107.5	110.1	112.7	115.0	117.337	602831	-3852 1117000	-9938	-115325	-384194	0
0 D	ОH	OM 29S 111.411	107.5	110.1	112.7	115.1	117.434	587683	-4344 1117000	-11644	-118180	-394226	0
0 D	ОH	OM 31S 111.868	107.5	110.1	112.7	115.1	117.538	571346	-4871 1117000	-13545	-121264	-404985	0
0 D	ОH	OM 33S 112.276	107.6	110.1	112.7	115.1	117.630	555437	-5389 1117000	-15470	-124303	-415515	0
0 D	ОH	OM 35S 112.713	107.6	110.1	112.7	115.1	117.730	539661	-5895 1117000	-17410	-127291	-425796	0
0 D	ОH	OM 37S 113.102	107.6	110.1	112.7	115.1	117.818	524321	-6391 1117000	-19359	-130231	-435852	0
0 D	ОH	OM 40S 113.519	107.6	110.1	112.7	115.1	117.913	509131	-6875 1117000	-21310	-133117	-445663	0
0 D	ОH	OM 42S 113.963	107.6	110.1	112.7	115.1	118.014	492843	-7394 1117000	-23444	-136218	-456141	0
0 D	ОH	OM 44S 114.358	107.6	110.1	112.7	115.2	118.103	477068	-7900 1117000	-25568	-139257	-466353	0
0D	ΟH	OM 47S 114.779	107.6	110.1	112.7	115.2	118.199	461518	-8393 1117000	-27676	-142228	-476279	0
0 D	ОH	OM 50S 115.226	107.6	110.1	112.7	115.2	118.300	444919	-8918 1117000	-29962	-145405	-486838	0
0D	ΟH	OM 52S 115.621	107.6	110.1	112.7	115.2	118.390	428910	-9428 1117000	-32220	-148506	-497089	0
0D	ΟH	OM 55S 116.041	107.6	110.1	112.7	115.2	118.486	413207	-9923 1117000	-34444	-151522	-507010	0
0D	ΟH	OM 58S 116.485	107.6	110.1	112.7	115.2	118.587	396526	-10448 1117000	-36838	-154732	-517517	0
0D	ΟH	1M OS 116.789	107.6	110.1	112.7	115.3	118.656	382368	-10903 1117000	-38938	-157525	-526620	0
0D	ΟH	1M 2S 117.113	107.6	110.1	112.7	115.3	118.730	370147	-11286 1117000	-40728	-159883	-534271	0
0D	ΟH	1M 5S 117.458	107.6	110.1	112.7	115.3	118.808	357115	-11694 1117000	-42652	-162401	-542413	0
0 D	ОH	1M 8S 117.823	107.6	110.1	112.7	115.3	118.891	343266	-12128 1117000	-44715	-165081	-551049	0
0D	ΟH	1M 11S 118.208	107.6	110.1	112.7	115.3	118.979	328603	-12586 1117000	-46918	-167923	-560171	0
0D	ΟH	1M 14S 118.612	107.6	110.1	112.7	115.3	119.071	313146	-13068 1117000	-49261	-170925	-569768	0
0 D	ΟH	1M 18S 119.033	107.6	110.1	112.7	115.3	119.167	296926	-13573 1117000	-51741	-174080	-579816	0
0D	ΟH	1M 22S 119.472	107.7	110.1	112.7	115.4	119.267	279995	-14100 1117000	-54351	-177380	-590283	0
0 D	ΟH	1M 27S 119.924	107.7	110.1	112.7	115.4	119.370	262425	-14646 1117000	-57084	-180812	-601122	0
0 D	ΟH	1M 30S 120.205	107.7	110.1	112.7	115.4	119.434	248303	-15095 1117000	-59350	-183645	-610041	0
0 D	ОH	1M 33S 120.499	107.7	110.1	112.7	115.4	119.501	236904	-15448 1117000	-61143	-185875	-617040	0
0 D	ΟH	1M 37S 120.807	107.7	110.1	112.7	115.4	119.572	224945	-15818 1117000	-63032	-188218	-624374	0
0 D	ΟH	1M 41S 121.128	107.7	110.1	112.7	115.4	119.645	212461	-16203 1117000	-65013	-190667	-632022	0
0 D	ΟH	1M 45S 121.459	107.7	110.1	112.7	115.4	119.721	199501	-16602 1117000	-67079	-193214	-639953	0
0 D	ΟH	1M 50S 121.799	107.7	110.1	112.7	115.5	119.799	186130	-17014 1117000	-69220	-195845	-648127	0
0 D	ΟH	1M 56S 122.147	107.7	110.1	112.7	115.5	119.878	172430	-17434 1117000	-71422	-198546	-656496	0

Tabla 32. Tabla de resultados HVAC-TT

Como se puede comprobar en esta tabla el paso de tiempo no es uniforme, ya que es ajustado internamente mediante el programa HVAC-TT.

Mediante el programa EcosimPro se ha obtenido una tabla similar con el fin de comparar en cada instante las variables que utilizan ambos programas. La tabla obtenida mediante EcosimPro a cada segundo es la siguiente:

			EVOL	UCIÓN DE C	ARGAS (B	TU/H)			
TIEMPO		Balance	Rad.	Carga	Carga	Car.	Refr.	TubAisl	tubDesn
SEGUNDOS	TAIRE (² F)	Qsala	Muro	Miscel.	Conv.	Ven+Prt	Fan Coil	convec.	con+rad.
0S	104.270	834200	2509	1117000	413	-67939	-219051	0	0
1S	104.525	826439	2385	1117000	269	-69136	-225252	0	0
25	104.777	818040	1761	1117000	-51	-70283	-231389	0	0
35	105.026	809671	1142	1117000	-399	-71393	-237463	0	0
4S	105.274	801336	528	1117000	-764	-72474	-243483	0	0
5S	105.519	793057	-81	1117000	-1137	-73526	-249441	0	0
6S	105.761	784845	-684	1117000	-1511	-74554	-255336	0	0
7S	106.001	776916	-1062	1117000	-1878	-75559	-261180	0	0
85	106.238	769211	-1250	1117000	-2277	-76541	-266959	0	0
95	106.474	761540	-1437	1117000	-2699	-77503	-272686	0	0
10S	106.706	753916	-1622	1117000	-3139	-78446	-278352	0	0
115	106.937	746334	-1805	1117000	-3592	-79370	-283968	0	0
12S	107.166	738800	-1987	1117000	-4057	-80277	-289530	0	0
13S	107.392	731320	-2168	1117000	-4532	-81166	-295035	0	0
14S	107.616	723887	-2346	1117000	-5016	-82040	-300489	0	0
15S	107.837	716522	-2523	1117000	-5506	-82895	-305880	0	0
16S	108.057	709190	-2699	1117000	-6005	-83738	-311232	0	0
17S	108.275	701920	-2873	1117000	-6508	-84565	-316527	0	0
18S	108.490	694723	-3046	1117000	-7015	-85376	-321757	0	0
19S	108.703	687583	-3216	1117000	-7526	-86173	-326935	0	0
205	108.913	680499	-3386	1117000	-8040	-86956	-332061	0	0
215	109.122	673449	-3554	1117000	-8560	-87728	-337152	0	0
225	109.330	666452	-3721	1117000	-9082	-88487	-342197	0	0
235	109.535	659507	-3886	1117000	-9606	-89235	-347194	0	0

24S	109.738	652620	-4050	1117000	-10133	-89970	-352141	0	0
255	109.939	645790	-4213	1117000	-10661	-90693	-357039	0	0
26S	110.139	639018	-4374	1117000	-11189	-91405	-361888	0	0
275	110.336	632304	-4533	1117000	-11719	-92105	-366687	0	0
285	110.531	625649	-4691	1117000	-12249	-92793	-371438	0	0
295	110.724	619052	-4848	1117000	-12779	-93471	-376140	0	0
305	110.915	612513	-5003	1117000	-13309	-94137	-380794	0	0
315	111.105	606033	-5157	1117000	-13838	-94794	-385400	0	0
325	111.292	599610	-5309	1117000	-14367	-95439	-389959	0	0
335	111.477	593246	-5460	1117000	-14895	-96075	-394471	0	0
34S	111.661	586939	-5610	1117000	-15422	-96701	-398936	0	0
355	111.842	580690	-5758	1117000	-15948	-97317	-403356	0	0
365	112.022	574498	-5904	1117000	-16472	-97923	-407729	0	0
375	112.200	568363	-6050	1117000	-16995	-98520	-412058	0	0
385	112.376	562286	-6193	1117000	-17517	-99108	-416341	0	0
395	112.550	556265	-6336	1117000	-18036	-99688	-420580	0	0
40S	112.722	550300	-6477	1117000	-18554	-100258	-424774	0	0
41S	112.893	544392	-6617	1117000	-19070	-100819	-428925	0	0
42S	113.062	538539	-6755	1117000	-19583	-101373	-433032	0	0
43S	113.229	532742	-6893	1117000	-20095	-101917	-437097	0	0
44S	113.394	527000	-7028	1117000	-20604	-102454	-441118	0	0
45S	113.557	521314	-7163	1117000	-21111	-102983	-445098	0	0
46S	113.719	515682	-7296	1117000	-21615	-103504	-449035	0	0
47S	113.879	510104	-7428	1117000	-22116	-104017	-452931	0	0
48S	114.038	504581	-7558	1117000	-22615	-104523	-456786	0	0
49S	114.194	499111	-7688	1117000	-23111	-105021	-460601	0	0
50S	114.349	493695	-7816	1117000	-23605	-105512	-464375	0	0
51S	114.503	488331	-7943	1117000	-24096	-105995	-468108	0	0
52S	114.655	483021	-8068	1117000	-24583	-106472	-471803	0	0
53S	114.805	477762	-8192	1117000	-25068	-106942	-475458	0	0
54S	114.953	472556	-8316	1117000	-25550	-107405	-479074	0	0
555	115.100	467401	-8437	1117000	-26029	-107861	-482651	0	0
56S	115.246	462298	-8558	1117000	-26504	-108310	-486191	0	0

Tabla 33. Tabla de resultados EcosimPro

A continuación, se muestran a modo de ejemplo los resultados particulares a los 29 segundos:

	EVOLUCIÓN DE CARGAS (BTU/H)													
	TIEMPO	TAIDE (°E)	Balance	Rad.	Carga	Carga	Car.	Refr.	TubAisl	tubDesn				
	SEGUNDOS	TAIKE (F)	Qsala	Muro	Miscel.	Conv.	Ven+Prt	Fan Coil	convec.	con+rad.				
HVAC-TT	295	111,411	587683	-4344	1117000	-11644	-118180	-394226	0	0				
EcosimPro	295	110.724	619052	-4848	1117000	-12779	-93471	-376140	0	0				

Tabla 34. Comparación de resultados a los 29 segundos

En todas las variables se obtienen resultados del mismo orden de magnitud.

El programa EcosimPro permite obtener mediante una gráfica cualquier tipo de variable utilizada en el modelo. A continuación, se adjunta la evolución de las variables que se han considerado de interés.

La evolución obtenida de la potencia térmica mediante el programa EcosimPro es la siguiente:

Gráfica 16. Evolución de la potencia térmica obtenida del programa EcosimPro

En la gráfica anterior no se aprecia la evolución de la potencia térmica correspondiente a la puerta. La evolución de dicha potencia se adjunta en la siguiente gráfica:

Gráfica 17. Evolución de la potencia térmica de la puerta obtenida del programa EcosimPro

Todas las potencias experimentan una evolución senoidal. Esto es debido a que todas las potencias dependen de la temperatura del aire de la sala EF135.

La evolución obtenida del flujo de calor a través de la pared Sur mediante EcosimPro se adjunta en la siguiente gráfica:

Gráfica 18. Evolución del flujo de calor a través de la pared Sur

Se comprueba que la evolución obtenida del flujo de calor a través de la pared Sur es similar al obtenido mediante la herramienta SoIES.

La evolución de la temperatura del aire exterior a lo largo de un día obtenida en el programa EcosimPro es la siguiente:

Gráfica 19. Evolución de la temperatura exterior obtenida del programa EcosimPro

La evolución de la temperatura de la sala TF005 a lo largo de un día obtenida en el programa EcosimPro es la siguiente:

Gráfica 20. Evolución de la temperatura de la sala TF005 obtenida del programa EcosimPro

Debido a que el programa EcosimPro permite introducir desfase a las temperaturas que evolucionan de manera senoidal, se ha realizado una simulación en la que sí se ha introducido el desfase en la evolución de la temperatura de la renovación del aire exterior (componente "AE") y en el pasillo (componente "TF005") a fin de comparar los resultados con el proyecto en el que se basa este estudio.

La evolución obtenida para la temperatura del aire exterior introduciendo el desfase para que el máximo de la senoidal se dé a las 15 horas mediante el programa EcosimPro se adjunta en la siguiente gráfica:

Gráfica 21. Evolución de la temperatura exterior con desfase obtenida del programa EcosimPro

La evolución de la temperatura del aire exterior obtenida en el proyecto en el que se basa este estudio se adjunta en la siguiente gráfica:

Gráfica 22. Evolución de la temperatura exterior obtenida del proyecto de referencia

Mediante las anteriores gráficas, se comprueba que mediante el programa EcosimPro se obtiene la misma senoidal para la temperatura del aire exterior, y por lo tanto el componente "AE" es válido.

La evolución obtenida de la temperatura del aire de la sala TF005 introduciendo el desfase para que el máximo de la senoidal se dé a las 15 horas mediante el programa EcosimPro se adjunta en la siguiente gráfica:

Gráfica 23. Evolución de la temperatura de la sala TF005 con desfase obtenida del programa EcosimPro

La evolución de la temperatura del aire de la sala TF005 obtenida en el proyecto en el que se basa este estudio se adjunta en la siguiente gráfica:

Gráfica 24. Evolución de la temperatura de la sala TF005 con desfase obtenida del proyecto de referencia

Mediante las anteriores gráficas, se comprueba que mediante el programa EcosimPro se obtiene la misma senoidal para la temperatura del aire de la sala TF005, y por lo tanto el componente "TF005" es válido.

De acuerdo a lo explicado se comprueba la validez del modelo utilizado para la simulación con el programa EcosimPro, así como de los diferentes componentes programados a mano para el caso de estudio.

CAPÍTULO 4: CONCLUSIONES

Las conclusiones obtenidas del presente proyecto son varias.

En primer lugar, mediante el cálculo del flujo de calor a través del cerramiento exterior se ha conseguido incluir en el programa EcosimPro el efecto de la radiación solar, programando para ello un componente capaz de modelar la evolución del flujo de calor máximo transferido a través del cerramiento exterior a lo largo de un día.

Para la obtención del flujo de calor máximo transferido a través de un cerramiento exterior en régimen permanente considerando el efecto de la irradiación solar, ha sido necesario calcular previamente una temperatura del aire exterior equivalente. Para ello, se ha seguido la metodología explicada en el documento técnico "ASHRAE Handbook Fundamentals 2017", capítulos 14 y 18 y el cálculo se ha validado según un ejemplo publicado en el capítulo 18 de ASHRAE, por lo que dicho cálculo ha quedado validado.

De esta manera, se concluye que se ha obtenido una metodología válida para incluir el efecto de la radiación solar en el programa EcosimPro.

En segundo lugar, se ha modelizado el balance de cargas térmicas en una sala tipo en régimen permanente. Este cálculo se ha validado mediante una herramienta de tipo comercial, el programa HAP Carrier, por lo que se concluye que se ha obtenido una manera fiable de modelizar el balance de cargas térmicas en una sala tipo en régimen permanente.

Tanto el calor máximo transferido a través de un cerramiento exterior como el balance de cargas térmicas en una sala tipo se han implementado en la herramienta SoIES, por lo que se ha conseguido automatizar el proceso para poder obtener los resultados mediante los datos de entrada sin necesidad de conocer ni modificar las ecuaciones que utiliza el programa.

En tercer lugar, se ha validado el programa EcosimPro pensado para otros usos distintos del nuclear mediante el programa HVAC-TT, aprobado por el CSN. Para ello, se ha simulado en EcosimPro un proyecto realizado anteriormente mediante el programa HVAC-TT, comparando tanto los datos de entrada como los resultados obtenidos mediante ambos programas. Para llevar a cabo la simulación en EcosimPro, ha sido necesario programar varios componentes para tener en cuenta todos los fenómenos que tienen lugar en el caso a estudio, ya que el programa EcosimPro por defecto no los contempla. Los resultados obtenidos mediante ambos programas son similares. La diferencia de temperatura obtenida en la sala a estudio es menor de un grado (0,68°C) por lo que los resultados obtenidos se consideran aceptables. Esta pequeña diferencia entre ambas temperaturas es debida a que el flujo de calor a través del cerramiento exterior, la pared Sur, ha sido obtenido en el programa SolES. De esta manera, se concluye que EcosimPro es un programa fiable para la simulación de transitorios de temperatura.

Por todo ello, se concluye que se ha obtenido una metodología fiable para la obtención de transitorios de temperatura en salas de centrales nucleares mediante el programa EcosimPro.

Por último, esta metodología permite ser utilizada en futuros proyectos de simulación de transitorios de temperatura en centrales nucleares, previa validación por el CSN. La aplicación de esta metodología conllevará una mejora en la productividad pues permite realizar cálculos con menores recursos.

REFERENCIAS

- [1] ASHRAE Handbook Fundamentals 2017 American Society of Heating, Refrigerating and Air Conditioning Engineers (Vol. capítulos 14 y 18). (2017).
- [2] Código Técnico de la Edificación. (n.d.). Retrieved from Documento Básico HE Ahorro de Energía: http://www.afme.es/phocadownload/Codigo_Tecnico_de_la_Edificacion/DB-HE.pdf
- [3] Empresarios Agrupados. (1996). Manual de Usuario HVAC-TT v2.1 (3 ed.).
- [4] Empresarios Agrupados. (n.d.). Manual de Usuario EcosimPro v5.6.0.
- [5] Foro de la Industria Nuclear Española. (n.d.). Retrieved from https://www.foronuclear.org/es/energia-nuclear/energia-nuclear-en-espana
- [6] Informe del accidente de Fukushima. (n.d.). Retrieved from https://www.iaea.org/About/Policy/GC/GC59/GC59Documents/Spanish/gc59-14_sp.pdf
- [7] Manual HAP Carrier. (n.d.).
- [8] Ministerio de Energía, Turismo y Agenda Digital. (n.d.). Retrieved from http://www.mincotur.gob.es/energia/es-ES/Paginas/index.aspx
- [9] Norma Española UNE-EN 12101-6. Sistemas para el control de humo y de calor. (n.d.).

ANEXOS

		Total	Heat, W	Sensible	Latent	% Sensible Heat that is	
Degree of Activity	Location	Adult Male	Adjusted,	Heat, W	Heat,		High V
begree of Activity	Elocation	Marc	141/1			Lon	ingn /
Seated at theater	Theater	115	105	70	35	60	27
Seated, very light work	Offices, hotels, apartments	130	115	70	45		
Moderately active office work	Offices, hotels, apartments	140	130	75	55		
Standing, light work; walking	Department store; retail store	160	130	75	55	58	38
Walking, standing	Drug store, bank	160	145	75	70		
Sedentary work	Restaurant ^c	145	160	80	80		
Light bench work	Factory	235	220	80	140		
Moderate dancing	Dance hall	265	250	90	160	49	35
Walking 4.8 km/h; light machine work	Factory	295	295	110	185		
Bowling ^d	Bowling alley	440	425	170	255		
Heavy work	Factory	440	425	170	255	54	19
Heavy machine work; lifting	Factory	470	470	185	285		
Athletics	Gymnasium	585	525	210	315		

Tabla 35. Tasas representativas a las cuales el ser humano aporta calor y humedad en diferentes estados de actividad. Fuente: ASHRAE Handbook Fundamentals 2017

LPD, W/m ²	Common Space Types ^a	LPD, W/m ²	Building-Specific Space Types*	LPD, W/m ²
	Loading Dock, Interior	5.1	Health Care Facility	
1.1/m total	Lobby		In exam/treatment room	18.0
height	In facility for the visually impaired	19.4	In imaging room	16.3
$4.3 \pm 0.7/m$	(and not used primarily by staff)c		In medical supply room	
total height	For elevator	7.0	In nursery	9.5
_	In hotel	11.5	In nurses' station	7.6
6.8	In motion picture theater	6.4	In operating room	26.8
8.9	In performing arts theater	21.6	In patient room	6.7
7.1	All other lobbies	9.7	In physical therapy room	9.9
12.3	Locker Room	8.1	In recovery room	12.4
3.1	Lounge/Breakroom		Library	
26.2	In health care facility	10.0	In reading area	11.5
16.5	All other lounges/breakrooms	7.9	In stacks	18.4
4.7	Office		Manufacturing Facility	
4.7	Enclosed	12.0	In detailed manufacturing area	13.9
11.9	Open plan	10.6	In equipment room	8.0
om)	Parking Area, Interior	2.1	In extra-high-bay area	11.3
Room	Pharmacy Area	18.1	(15.2 m floor-to-ceiling height)	11.5
14.5	Pestroom	10.1	In high-bay area	13.3
/ 13.4	In facility for the visually impaired	13.1	(7.6 to 15.2 m floor-to-ceiling	10.0
s 15.4	(and not used primarily by staff) ^c	15.1	height)	
13.3	All other restrooms	10.6	In low-bay area	12.0
15.5	Sales Aread	15.5	(<7.6 m floor-to-ceiling height)	12.9
8.8	Sales Al ca-	50	Museum	
7.8	Stairway	5.5	In general exhibition area	11.4
7.0	Stan way	nor LDD and	In posteration room	11.4
0.0	control requirements for stairway	nes LPD and	In restoration room	11.0
9.9	Stairwell	7.4	ing Room	6.6
10.7	Storage Room		Post Office, Sorting Area	10.2
4.4	<4.65 m ²	13.3	Religious Buildings	
7.1	All other storage rooms	6.8	In fellowship hall	6.9
18.6	Vehicular Maintenance Area	7.3	In worship/pulpit/choir area	16.5
18.4	Workshop	17.2	Retail Facilities	
	Duilding Specific Space Typest	I DD W/m2	In dressing/fitting room	7.7
10.4	Bunding-Specific Space Types"	LFD, W/m-	In mall concourse	11.9
28.5 W/m ²	Facility for Visually Impaired ^e		Sports Arena, Playing Area	
	In chapel (used primarily by	23.8	For Class I facility	39.7
11.6	residents)		For Class II facility	25.9
7.0	In recreation room/common living	26.0	For Class III facility	19.4
9.6	room (and not used primarily by		For Class IV facility	13.0
7.0	staff)		Transportation Facility	
4.6	Automotive		In baggage/carousel area	5.7
6.1	(See Vehicular Maintenance Are	a)	In an airport concourse	3.9
13.1	Convention Center: Exhibit Space	15.7	At a terminal ticket counter	8.7
9.8	Dormitory/Living Quarters	4.2	Warehouse—Storage Area	
	Fire Station: Sleeping Quarters	0.22	For medium to bulky, palletized	6.2
15.5	Gymnasium/Fitness Center		items	
19.5	In exercise area	7.8	For smaller, hand-carried itemse	10.2
6.5	In playing area	13.0		
	LPD, W/m ² 1.1/m total height 4.3 + 0.7/m total height 6.8 8.9 7.1 12.3 3.1 26.2 16.5 4.7 4.7 11.9 om) gRoom 14.5 / 13.4 13.3 8.8 7.8 9.9 10.7 4.4 7.1 18.6 18.4 10.4 28.5 W/m ² 11.6 7.0 4.6 6.1 13.1 9.8 15.5 19.5 6.5	LPD, W/m ² Common Space Types ^a 1.1/m total height Loading Dock, Interior 1.1/m total height In facility for the visually impaired (and not used primarily by staff) ^c 6.8 In motion picture theater 8.9 In performing arts theater 7.1 All other lobbies 12.3 Locker Room 3.1 Lounge/Breakroom 26.2 In health care facility 16.5 All other lounges/breakrooms 4.7 Enclosed 11.9 Open plan 0m) Parking Area, Interior g. Room Pharmacy Area 14.5 Restroom /1 3.4 In facility for the visually impaired (and not used primarily by staff) ^c 13.3 All other restrooms Sales Aread Sales Aread 8.8 Seating Area, General 7.8 Stairway 9.9 control requirements for stairway. 9.9 control requirements for stairway. 10.7 Storage Room 4.4 <4.65 m ² 7.1 All other storage rooms 18.6 Vehicular Mainte	LPD, W/m²Common Space Types*LPD, W/m²1. l/m total heightLoading Dock, Interior5.11. l/m total heightIn facility for the visually impaired (and not used primarily by staff)°19.46.8In motion picture theater6.48.9In performing arts theater21.67.1All other lobbies9.712.3Locker Room8.11.4Lounge/Breakroom10.016.5All other lobbies7.94.7Office12.09Open plan10.67.8Parking Area, Interior2.19Pharmacy Area18.114.5Restrooms10.67.8StairwaySpace containing stairway determines LPD and control requirements for stairway.9.9StairwaySpace containing stairway determines LPD and control requirements for stairway.9.9Stairwal7.410.7Storage Room6.814.6Neibel (used primarily by staff)23.816.6In diding-Specific Space Types*LPD, W/m²10.4Storage Room6.816.6In recreation room/common living staff)26.07.0room (and not used primarily by staff)23.816.6In recreation room/common living staff)26.07.0In recreation room/common living staff)26.07.0In the storage rooms6.816.6In recreation room/common living staff)26.07.0In recreat	LPD, W/m2Common Space Types*LPD, W/m2Building-Specific Space Types*Loddig Dock, Interior5.1In dealing Dock, Interior5.11.1/m total heightIn facility for the visually impaired19.4In exam/treatment room4.3 + 0.7/m total heightIn duised primarily by staff)*In exam/treatment roomIn medical supply room6.8In motion picture theater6.4In operating roomIn medical supply room7.1All other lobbies9.7In patient roomIn physical therapy room3.1Lourge/Breakroom8.1In patient roomIn reading area3.1Lourge/Breakroom1.1In reading areaIn stacks7.4OfficeMandfacturing FacilityIn dealided manfacturing areaIn equipment room11.9Open plan10.6In dealided manfacturing areaIn equipment room14.5In facility for the visually impaired (and not used primarily by staff)*13.1In dealide area facilityIn dealide area14.5Seate Area5.5(c7.6 m floor-to-ceiling height)15.5StairwayStairway1.1In overship all in trestoration room9.9Stairway7.4Storage Room9.97.0In chapel (used primarily by staff)23.8In fellowship hall In mastorting rea10.4Restlify for Visually Impaired* In chapel (used primarily by staff)7.413.1Convention Center: Exhibit Space15.79.8Dornetion Center: Exhibit Space15.7 </td

Tabla 36. Densidades de potencia de iluminación. Fuente: ASHRAE Handbook Fundamentals 2017

			Curtai	inwalls		Studwalls				
	Spandrel Glass, R-1.8 Insulation Board, Gyp. Board	Spandrel Glass, R-3.5 Insulation Board, Gyp. Board	Metal Wall Panel, R-1.8 Insulation Board, Gyp. Board	Metal Wall Panel, R-3.5 Insulation Board, Gyp. Board	25 mm Stone, R-1.8 Insulation Board, Gyp. Board	25 mm Stone, R-3.5 Insulation Board, Gyp. Board	Metal Wall Panel, Sheathing, R9 Batt Insulation, Gyp. Board	Metal Wall Panel, Sheathing, R-3.9 Batt Insulation, Gyp. Board	25 mm Stone, Sheathing, R-1.9 Batt Insulation, Gyp. Board	25 mm Stone, Sheathing, R-3.9 Batt Insulation, Gyp. Board
Wall Number	1	2	3	4	5	6	7	8	9	10
<i>U</i> , W/(m ² ·K)	0.430	0.245	0.431	0.246	0.429	0.245	0.418	0.231	0.416	0.230
Total R	2.33	4.08	2.32	4.07	2.33	4.08	2.39	4.34	2.40	4.35
Hour		С	onduction Ti	me Factors,	%		Co	onduction Ti	me Factors,	%
0	18.0	3.4	25.0	5.4	8.3	1.4	19.3	5.6	6.5	1.6
1	57.1	35.9	56.1	40.9	44.0	22.3	57.5	45.0	41.1	24.9
2	19.8	36.8	15.2	33.8	31.2	35.9	18.7	34.4	32.7	37.3
3	4.0	15.9	3.0	13.4	11.6	23.2	3.7	11.1	13.3	21.9
4	0.8	5.5	0.6	4.5	3.5	10.7	0.7	2.9	4.5	9.2
5	0.2	1.8	0.1	1.4	1.0	4.2	0.1	0.7	1.4	3.4
6	0.0	0.6	0.0	0.4	0.3	1.5	0.0	0.2	0.4	1.2
7	0.0	0.2	0.0	0.1	0.1	0.5	0.0	0.0	0.1	0.4
8	0.0	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.1
9	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Percentage	100	100	100	100	100	100	100	100	100	100
Layer ID from	F01	F01	F01	F01	F01	F01	F01	F01	F01	F01
outdoors to indoors	F09	F09	F08	F08	F10	F10	F08	F08	F10	F10
(See Table 18)	F04	F04	F04	F04	F04	F04	G03	G03	G03	G03
	102	102	102	102	102	102	104	I04	104	I04
	F04	102	F04	102	F04	102	G01	I04	G01	I04
	G01	F04	G01	F04	102	F04	F02	G01	F02	G01
	F02	G01	F02	G01	F02	G01	0	F02	0	F02
	0	F02	0	F02	0	F02	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

Tabla 37. CTS pared 1. Fuente: ASHRAE Handbook Fundamentals 2017

		Stud	walls				E	FS		
	Wood Siding, Sheathing, R-1.9 Batt Insulation, 12.5 mm Wood	Wood Siding, Sheathing, R-3.9 Batt Insulation, 12.5 mm Wood	25 mm Stucco, Sheathing, R-1.9 Batt Insulation, Gyp. Board	25 mm Stucco, Sheathing, R-3.9 Batt Insulation, Gyp. Board	EIFS, R-0.9 Insulation Board, Sheathing, Gyp. Board	EIFS, R-1.8 Insulation Board, Sheathing, Gyp. Board	EIFS, R-0.9 Insulation Board, Sheathing, R-1.9 Batt Insulation, Gyp. Board	EIFS, R-0.9 Insulation Board, Sheathing, R-3.9 Batt Insulation, Gyp. Board	EIFS, R0.9 Insulation Board, Sheathing, 200 mm LW CMU, Gyp. Board	EIFS, R-1.8 Insulation Board, Sheathing, 200 mm LW CMU, Gyp. Board
Wall Number	11	12	13	14	15	16	17	18	19	20
<i>U</i> , W/(m ² ·K)	0.402	0.226	0.412	0.229	0.670	0.422	0.305	0.191	0.526	0.360
Total R	2.49	4.43	2.43	4.37	1.49	2.37	3.28	5.23	1.90	2.78
Hour	C	onduction Ti	me Factors,	%		С	onduction T	ime Factors,	%	
0	6.4	1.5	5.7	1.3	11.9	6.0	2.6	0.5	1.0	1.3
1	40.7	24.3	40.4	23.8	48.8	40.7	25.2	11.9	2.0	1.8
2	32.4	36.3	33.6	37.6	26.3	31.6	30.7	25.9	5.8	4.5
3	13.5	21.9	13.7	22.5	0.0	13.2	19.5	15.4	8.7	7.3
4	4./	9.0	4.0	9.0	2.0	2.0	10.6	13.4	9.5	0.5
6	0.5	1.5	0.4	1.2	0.3	0.8	2.9	5.7	8.1	7.7
7	0.2	0.5	0.1	0.4	0.1	0.3	1.5	3.4	7.2	7.0
8	0.0	0.2	0.0	0.1	0.0	0.1	0.8	2.0	6.5	6.4
9	0.0	0.1	0.0	0.0	0.0	0.0	0.4	1.2	5.7	5.8
10	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.7	5.1	5.3
11	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	4.5	4.8
12	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	4.0	4.3
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	3.6	3.9
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	3.2	3.5
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	2.8	3.2
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	2.9
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2	2.6
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.4
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	2.1
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6	1.9
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	1.8
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	1.6
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	1.4
Total Percentage	100	100	100	100	100	100	100	100	100	100
Layer ID from	F01	F01	F01	F01	F01	F01	F01	F01	F01	F01
outdoors to indoors	F11	F11	F07	F07	F06	F06	F06	F06	F06	F06
(See Table 18)	G02	G02	G03	G03	I01	I01	101	101	101	101
	104	104	104	104	G03	I01	G03	G03	G03	I01
	G01	104	G01	104	F04	G03	I04	104	M03	G03
	F02	G01	F02	G01	G01	F04	G01	104	F04	M03
	0	F02	0	F02	F02	G01	F02	G01	G01	F04
	0	0	0	0	0	F02	0	F02	F02	G01
	0	0	0	0	0	0	0	0	0	F02
	0	0	0	0	0	0	0	Ű	0	0

Tabla 38. CTS pared 2. Fuente: ASHRAE Handbook Fundamentals 2017

					Brick Walls				
	Brick, R-0.9 Insulation Board, Sheathing, Gyp. Board	Brick, R-1.8 Insulation Board, Sheathing, Gyp. Board	Brick, Sheathing, R-1.9 Batt Insulation, Gyp. Board	Brick, Sheathing, R-3.9 Batt Insulation, Gyp. Board	Brick, R-0.9 Insulation Board, Sheathing, R-1.9 Batt Insulation, Gyp. Board	Brick, R-0.9 Insulation Board, Sheathing, R-3.9 Batt Insulation, Gyp. Board	Brick, R-0.9 Insulation Board, 200 mm LW CMU	Brick, R-1.8 Insulation Board, 200 mm LW CMU	Brick, 200 mm LW CMU, R-1.9 Batt Insulation, Gyp.Board
Wall Number	21	22	23	24	25	26	27	28	29
U, W/(m ² ·K)	0.573	0.381	0.376	0.217	0.283	0.157	0.583	0.386	0.347
Total R	1.75	2.62	2.66	4.60	3.54	6.36	1.75	2.59	2.88
Hour				Conduc	tion Time Fac	ctors, %			
0	0.2	0.1	0.2	0.1	0.1	0.4	0.6	0.8	1.6
1	4.8	3.0	4.1	1.6	1.5	0.5	0.8	0.8	1.5
2	13.9	11.1	13.3	8.5	6.8	2.0	2.6	2.1	1.9
3	16.7	15.5	16.6	14.5	11.7	5.3	5.5	4.5	3.3
4	14.9	15.0	14.8	15.2	13.3	8.2	7.6	6.6	5.0
5	12.0	12.7	11.8	13.1	12.7	9.7	8.7	7.9	6.2
6	9.2	10.1	9.2	10.6	11.1	10.1	9.0	8.4	6.9
7	7.0	7.8	7.1	8.3	9.2	9.6	8.7	8.4	7.1
8	5.3	6.0	5.4	6.5	7.5	8.8	8.2	8.0	7.0
9	4.0	4.6	4.2	5.0	5.9	7.8	7.4	7.4	6.7
10	3.0	3.5	3.2	3.9	4.7	6.8	6.6	6.7	6.3
11	2.3	2.6	2.4	3.0	3.6	5.8	5.8	6.0	5.9
12	1.7	2.0	1.9	2.3	2.8	4.9	5.0	5.3	5.4
13	1.3	1.5	1.4	1.8	2.2	4.1	4.3	4.7	5.0
14	1.0	1.1	1.1	1.4	1.7	3.4	3.7	4.1	4.5
15	0.7	0.9	0.8	1.1	1.3	2.8	3.1	3.5	4.1
16	0.5	0.7	0.6	0.8	1.0	2.3	2.6	3.0	3.7
17	0.4	0.5	0.5	0.6	0.8	1.9	2.2	2.6	3.4
18	0.3	0.4	0.4	0.5	0.6	1.5	1.9	2.2	3.0
19	0.2	0.3	0.3	0.4	0.5	1.2	1.6	1.9	2.7
20	0.2	0.2	0.2	0.3	0.4	1.0	1.3	1.6	2.5
21	0.1	0.2	0.2	0.2	0.3	0.8	1.1	1.4	2.2
22	0.1	0.1	0.1	0.2	0.2	0.6	0.9	1.1	2.0
23	0.1	0.1	0.1	0.1	0.2	0.5	0.7	1.0	1.8
Total Percentage	100	100	100	100	100	100	100	100	100
Layer ID from	F01	F01	F01	F01	F01	F01	F01	F01	F01
outdoors to indoors	M01	M01	M01	M01	M01	M01	M01	M01	M01
(See Table 18)	F04	F04	F04	F04	F04	F04	F04	F04	F04
	101	101	G03	G03	101	101	101	101	M03
	G03	I01	104	104	G03	101	M03	101	104
	F04	G03	G01	104	104	G03	F02	M03	G01
	G01	F04	F02	G01	G01	104	0	F02	F02
	F02	G01	0	F02	F02	104	0	0	0
	0	F02	0	0	0	G01	0	0	0
	0	0	0	0	0	F02	0	0	0

Tabla 39. CTS pared 3. Fuente: ASHRAE Handbook Fundamentals 2017

Brick, 200 mm Brick, 2						Brick Walls				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Brick, 200 mm LW CMU, R-3.9 Batt Insulation, Gyp. Board	Brick, R-0.9 Insulation Board, 200 mm HW CMU, Gyp. Board	Brick, R-1.8 Insulation Board, 200 mm HW CMU, Gyp. Board	Brick, R-0.9 Insulation Board, Brick	Brick, R-1.8 Insulation Board, Brick	Brick, R-0.9 Insulation Board, 200 mm LW Concrete, Gyp. Board	Brick, R-1.8 Insulation Board, 200 mm LW Concrete, Gyp. Board	Brick, R-0.9 Insulation Board, 300 mm HW Concrete, Gyp. Board	Brick, R-1.8 Insulation Board, 300 mm HW Concrete, Gyp. Board
U, W(m ²⁻ k) 0.207 0.630 0.406 0.704 0.436 0.515 0.355 0.549 0.355 Total R 4.83 1.59 2.46 1.42 2.30 1.94 2.82 1.82 2.82 Hour Conduction Time Factors, % 0 1.9 1.8 2.0 0.9 1.0 3.3 3.4 5.8 3.0 3.2 3.7 3.8 2 1.8 2.4 2.3 3.3 2.8 3.0 3.2 3.7 3.8 3 2.7 3.8 3.4 5.8 5.0 3.1 3.2 3.7 3.8 4 4.0 5.1 4.6 7.3 6.6 3.4 3.4 3.8 3.8 5 5.4 6.0 6.2 6.4 8.3 7.7 3.8 3.4 4.4 4.2 4.2 4.2 4.1 4.0 5.7 5.7 7.6 5.8 5.1 5.0 <td< th=""><th>Wall Number</th><th>30</th><th>31</th><th>32</th><th>33</th><th>34</th><th>35</th><th>36</th><th>37</th><th>38</th></td<>	Wall Number	30	31	32	33	34	35	36	37	38
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>U</i> , W/(m ² ·K)	0.207	0.630	0.406	0.704	0.436	0.515	0.355	0.549	0.355
Hour Conduction Time Factors, % 0 1.9 1.8 2.0 0.9 1.0 3.3 3.4 3.8 3.9 1 1.8 1.7 1.9 1.3 1.2 3.1 3.3 3.8 3.8 3.8 2 1.8 2.4 2.3 3.3 2.8 3.0 3.2 3.7 3.8 3 2.7 3.8 3.4 5.8 5.0 3.1 3.2 3.7 3.8 4 4.0 5.1 4.6 7.3 6.6 3.4 3.4 3.8 3.7 3.9 3.9 6 6.2 6.5 6.1 8.2 7.8 4.2 4.1 4.1 4.0 7 6.6 6.3 7.9 7.7 4.6 4.4 4.4 4.4 10 6.4 6.1 6.0 6.2 6.4 5.1 5.0 4.5 4.5 11 6.0 5.7 5.7	Total R	4.83	1.59	2.46	1.42	2.30	1.94	2.82	1.82	2.82
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hour				Conduc	tion Time Fa	ctors, %			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	1.9	1.8	2.0	0.9	1.0	3.3	3.4	3.8	3.9
2 1.8 2.4 2.3 3.3 2.8 3.0 3.2 3.7 3.8 3 2.7 3.8 3.4 5.8 5.0 3.1 3.2 3.7 3.8 4 4.0 5.1 4.6 7.3 6.6 3.4 3.4 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.7 3.9 3.9 3.9 6 6.2 6.5 6.1 8.2 7.8 4.2 4.1 4.1 4.0 7 6.7 6.6 6.3 7.5 7.4 4.8 4.6 4.3 4.3 9 6.6 6.4 6.2 6.9 6.9 5.0 4.8 4.4 4.4 10 6.4 6.1 6.0 6.2 5.1 4.9 4.5 4.5 11 6.0 5.7 5.7 5.6 5.8 5.1 5.0 4.5 4.5 12	1	1.8	1.7	1.9	1.3	1.2	3.1	3.3	3.8	3.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1.8	2.4	2.3	3.3	2.8	3.0	3.2	3.7	3.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	2.7	3.8	3.4	5.8	5.0	3.1	3.2	3.7	3.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	4.0	5.1	4.6	7.3	6.6	3.4	3.4	3.8	3.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	5.4	6.0	5.5	8.0	7.5	3.8	3.7	3.9	3.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	6.2	6.5	6.1	8.2	7.8	4.2	4.1	4.1	4.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	6.7	6.6	6.3	7.9	7.7	4.6	4.4	4.2	4.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	6.8	6.6	6.3	7.5	7.4	4.8	4.6	4.3	4.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	6.6	6.4	6.2	6.9	6.9	5.0	4.8	4.4	4.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	6.4	6.1	6.0	6.2	6.4	5.1	4.9	4.5	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	6.0	5.7	5.7	5.6	5.8	5.1	5.0	4.5	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	5.6	5.3	5.4	5.0	5.2	5.1	4.9	4.6	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	5.2	4.9	5.0	4.4	4.6	5.0	4.9	4.6	4.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	4.8	4.6	4.7	3.8	4.1	4.9	4.8	4.5	4.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	4.4	4.2	4.3	3.3	3.6	4.7	4.7	4.5	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	4.0	3.8	4.0	2.9	3.2	4.6	4.6	4.3	4.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	3.7	3.5	3.7	2.5	2.8	4.4	4.4	4.3	4.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	3.4	3.2	3.4	2.2	2.4	4.2	4.3	4.2	4.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	3.1	2.9	3.1	1.9	2.1	4.1	4.1	4.2	4.2
21 2.5 2.4 2.6 1.4 1.6 3.7 3.9 4.0 4.1 22 2.3 2.1 2.4 1.2 1.4 3.6 3.7 4.0 4.0 23 2.1 1.9 2.2 1.0 1.2 3.4 3.6 3.9 3.9 Total Percentage 100 100 100 100 100 100 100 100 100 100 100 Layer ID from outdoors to indoors (See Table 18) F01 F0	20	2.8	2.6	2.9	1.6	1.8	3.9	4.0	4.1	4.1
22 2.3 2.1 2.4 1.2 1.4 3.6 3.7 4.0 4.0 23 2.1 1.9 2.2 1.0 1.2 3.4 3.6 3.9 3.9 Total Percentage 100	21	2.5	2.4	2.6	1.4	1.6	3.7	3.9	4.0	4.1
23 2.1 1.9 2.2 1.0 1.2 3.4 3.6 3.9 3.9 Total Percentage 100 M01 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 <	22	2.3	2.1	2.4	1.2	1.4	3.6	3.7	4.0	4.0
Total Percentage 100	23	2.1	1.9	2.2	1.0	1.2	3.4	3.6	3.9	3.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total Percentage	100	100	100	100	100	100	100	100	100
outdoors to indoors (See Table 18) M01 <	Layer ID from	F01	F01	F01	F01	F01	F01	F01	F01	F01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	outdoors to indoors	M01	M01	M01	M01	M01	M01	M01	M01	M01
M03 I01 I01 <td>(See Table 18)</td> <td>F04</td> <td>F04</td> <td>F04</td> <td>F04</td> <td>F04</td> <td>F04</td> <td>F04</td> <td>F04</td> <td>F04</td>	(See Table 18)	F04	F04	F04	F04	F04	F04	F04	F04	F04
I04 M05 I01 M01 I01 M13 I01 M16 I01 I04 G01 M05 F02 M01 F04 M13 F04 M16 G01 F02 G01 0 F02 G01 F04 G01 F04 F02 0 F02 0 0 F02 G01 F04 F02 0 F02 0 0 F02 G01 F02 G01		M03	101	101	I01	101	101	I01	I01	I01
I04 G01 M05 F02 M01 F04 M13 F04 M16 G01 F02 G01 0 F02 G01 F04 G01 F04 F02 0 F02 0 0 F02 G01 F04 G01 F04 F02 0 F02 0 0 F02 G01 F02 G01		104	M05	101	M01	101	M13	I01	M16	101
G01 F02 G01 0 F02 G01 F04 G01 F04 F02 0 F02 0 0 F02 G01 F02 G01		104	G01	M05	F02	M01	F04	M13	F04	M16
F02 0 F02 0 0 F02 G01 F02 G01		G01	F02	G01	0	F02	G01	F04	G01	F04
		F02	0	F02	0	0	F02	G01	F02	G01
0 0 0 0 0 0 F02 0 F02		0	0	0	0	0	0	F02	0	F02
0 0 0 0 0 0 0 0		0	0	0	0	0	0	0	0	0

Tabla 40. CTS pared 4. Fuente: ASHRAE Handbook Fundamentals 2017

	Brick	Walle			Con	croto Block W	Valle		
	Brick, 200 mm	Brick, 200 mm			200 mm LW CMU	200 mm LW CMU	25 mm Stucco,	25 mm Stucco,	
	HW Concrete,	HW Concrete,	200 mm LW CMU,	200 mm LW CMU,	w/Fill Insulation,	w/Fill Insulation,	200 mm HW CMU,	200 mm HW CMU,	200
	Batt Insulation,	Batt Insulation,	Batt Insulation,	Batt Insulation,	Batt Insulation,	Batt Insulation,	Batt Insulation,	Batt Insulation,	200 mm LW CMU w/Fill
	Gyp. Board	Gyp. Board	Gyp. Board	Gyp. Board	Insulation				
Wall Number	39	40	41	42	43	44	45	46	47
<i>U</i> , W/(m ² ·K)	0.383	0.217	0.382	0.219	0.335	0.203	0.412	0.229	1.058
Total R	2.61	4.60	2.62	4.56	2.99	4.93	2.42	4.37	0.95
Hour	Conduction Ti	me Factors, %			Conduc	tion Time Fac	ctors, %		
0	3.4	3.5	0.2	0.2	0.6	0.8	0.5	0.5	0.7
1	3.3	3.4	4.6	1.9	1.6	1.0	2.3	1.2	10.4
2	3.3	3.3	13.3	8.8	5.7	3.4	8.0	5.1	20.6
3	3.6	3.5	15.8	13.9	9.5	7.1	11.6	9.6	19.5
4	4.0	3.8	14.0	14.1	10.8	9.4	11.7	11.3	14.8
5	4.4	4.2	11.4	12.3	10.3	9.8	10.5	10.8	10.5
6	4.7	4.5	9.0	10.0	9.3	9.3	9.1	9.6	7.3
7	4.8	4.7	7.0	8.1	8.1	8.3	7.7	8.3	5.0
8	4.9	4.8	5.5	6.4	7.0	7.4	6.5	7.1	3.5
9	4.9	4.9	4.3	5.1	6.0	6.5	5.5	6.0	2.4
10	4.9	4.9	3.4	4.1	5.1	5.6	4.6	5.1	1.6
11	4.8	4.8	2.6	3.2	4.4	4.9	3.9	4.3	1.1
12	4.7	4.7	2.0	2.6	3.7	4.3	3.3	3.7	0.8
13	4.6	4.6	1.6	2.1	3.2	3.7	2.8	3.1	0.5
14	4.5	4.5	1.3	1.6	2.7	3.2	2.3	2.7	0.4
15	4.4	4.4	1.0	1.3	2.3	2.8	2.0	2.3	0.2
16	4.2	4.3	0.8	1.0	2.0	2.4	1.6	1.9	0.2
17	4.1	4.2	0.6	0.8	1.7	2.1	1.4	1.6	0.1
18	4.0	4.1	0.5	0.7	1.5	1.8	1.2	1.4	0.1
19	3.9	4.0	0.4	0.5	1.2	1.6	1.0	1.2	0.1
20	3.8	3.9	0.3	0.4	1.1	1.4	0.8	1.0	0.0
21	3.7	3.8	0.2	0.3	0.9	1.2	0.7	0.8	0.0
22	3.6	3.7	0.2	0.3	0.8	1.1	0.6	0.7	0.0
23	3.5	3.6	0.1	0.2	0.7	0.9	0.5	0.6	0.0
Total Percentage	100	100	100	100	100	100	100	100	100
Layer ID from	F01	F01	F01	F01	F01	F01	F01	F01	F01
outdoors to indoors	M01	M01	M03	M03	M08	M08	F07	F07	M08
(See Table 18)	F04	F04	104	104	104	104	M05	M05	F02
	M15	M15	G01	104	G01	104	104	104	0
	104	104	F02	G01	F02	G01	G01	104	0
	G01	104	0	F02	0	F02	F02	G01	0
	F02	G01	0	0	0	0	0	F02	0
	0	F02	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Tabla 41. CTS pared 5. Fuente: ASHRAE Handbook Fundamentals 2017

	Concrete I	Block Walls	lls Precast and Cast-In-Place Block Walls								
	200 mm LW CMU w/Fill Insulation, Gyp. Board	300 mm LW CMU w/Fill Insulation, Gyp. Board	100 mm LW Concrete. R-0.9 Board Insulation, Gyp. Board	100 mm LW Concrete. R-1.8 Board Insulation, Gyp. Board	100 mm LW Concrete. R-1.9 Batt Insulation, Gyp. Board	100 mm LW Concrete. R-3.9 Batt Insulation, Gyp. Board	100 mm LW Concrete. R-1.8 Board Insulation, 100 mm LW Concrete	100 mm LW Concrete. R-3.5 Board Insulation, 100 mm LW Concrete	EIFS, R-0.9 Insulation Board, 200 mm LW Concrete, Gyp. Board	EIFS, R-1.8 Insulation Board, 200 mm LW Concrete, Gyp. Board	
Wall Number	48	49	50	51	52	53	54	55	56	57	
<i>U</i> , W/(m ² ·K)	0.835	0.688	0.675	0.424	0.417	0.230	0.435	0.247	0.652	0.412	
Total R	1.20	1.45	1.48	2.36	2.40	4.34	2.30	4.05	1.53	2.41	
Hour	Conduction Ti	ime Factors, %			(Conduction T	ime Factors, %	6			
0	0.2	1.0	0.7	0.3	0.4	0.1	0.7	0.9	2.2	2.4	
1	3.6	1.1	10.4	7.1	8.4	3.8	0.9	0.8	2.2	2.4	
2	11.8	2.6	19.7	17.4	18.2	13.6	2.8	1.6	3.2	3.1	
3	15.5	5.0	18.1	18.1	17.9	17.5	5.6	3.7	4.6	4.2	
4	14.6	7.1	13.9	14.6	14.2	15.6	7.7	5.9	5.7	5.2	
5	12.2	8.3	10.2	11.1	10.7	12.3	8.7	7.4	6.2	5.7	
6	9.7	8.5	7.4	8.2	7.9	9.4	8.9	8.2	6.3	5.9	
7	7.5	8.3	5.4	6.1	5.9	7.0	8.6	8.3	6.2	5.9	
8	5.8	7.7	3.9	4.5	4.3	5.3	8.0	8.1	6.0	5.8	
9	4.5	7.0	2.8	3.3	3.2	3.9	7.3	7.6	5.7	5.6	
10	3.5	6.3	2.1	2.5	2.4	3.0	6.5	6.9	5.4	5.3	
11	2.7	5.6	1.5	1.8	1.7	2.2	5.7	6.3	5.1	5.1	
12	2.0	4.9	1.1	1.3	1.3	1.6	5.0	5.6	4.8	4.8	
13	1.6	4.3	0.8	1.0	0.9	1.2	4.3	4.9	4.5	4.6	
14	1.2	3.8	0.6	0.7	0.7	0.9	3.7	4.3	4.2	4.3	
15	0.9	3.3	0.4	0.5	0.5	0.7	3.2	3.7	3.9	4.1	
16	0.7	2.9	0.3	0.4	0.4	0.5	2.7	3.2	3.7	3.9	
17	0.6	2.5	0.2	0.3	0.3	0.4	2.3	2.8	3.5	3.6	
18	0.4	2.2	0.2	0.2	0.2	0.3	1.9	2.4	3.2	3.4	
19	0.3	1.9	0.1	0.2	0.2	0.2	1.6	2.0	3.0	3.3	
20	0.3	1.7	0.1	0.1	0.1	0.2	1.4	1.7	2.8	3.1	
21	0.2	1.5	0.1	0.1	0.1	0.1	1.1	1.5	2.6	2.9	
22	0.1	1.3	0.0	0.1	0.1	0.1	0.9	1.2	2.5	2.7	
23	0.1	1.1	0.0	0.0	0.0	0.1	0.8	1.0	2.3	2.6	
Total Percentage	100	100	100	100	100	100	100	100	100	100	
Layer ID from	F01	F01	F01	F01	F01	F01	F01	F01	F01	F01	
outdoors to indoors	M08	M09	M11	M11	M11	M11	M11	M11	F06	F06	
(See Table 18)	F04	F04	I01	I01	I04	104	102	102	101	I01	
	G01	G01	F04	I01	G01	104	M11	102	M13	I01	
	F02	F02	G01	F04	F02	G01	F02	M11	G01	M13	
	0	0	F02	G01	0	F02	0	F02	F02	G01	
	0	0	0	F02	0	0	0	0	0	F02	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	

Tabla 42. CTS pared 6. Fuente: ASHRAE Handbook Fundamentals 2017

				Precast and	Cast-In-Place	Block Walls			
	200 mm LW Concrete. R-11 Batt Insulation, Gyp. Board	200 mm LW Concrete. R-22 Batt Insulation, Gyp. Board	EIFS Finish, R-1.8 Insulation Board, 200 mm HW Concrete, Gyp. Board	EIFS Finish, R-3.5 Insulation Board, 200 mm HW Concrete, Gyp. Board	200 mm HW Concrete, R-11 Batt Insulation, Gyp. Board	200 mm HW Concrete, R-22 Batt Insulation, Gyp. Board	300 mm HW Concrete, R-3.3 Batt Insulation, Gyp. Board	300 mm HW Concrete, R-6.7 Batt Insulation, Gyp. Board	300 mm HW Concrete
Wall Number	58	59	60	61	62	63	64	65	66
U, W/(m ² ·K)	0.068	0.039	0.082	0.045	0.076	0.041	0.047	0.025	0.549
Total R	14.7	25.7	12.1	22.1	13.1	24.2	21.4	40.5	1.8
Hour				Condu	ction Time Fac	tors, %			
0	1.4	1.6	2.8	2.9	1.1	1.2	2.5	2.7	1.2
1	1.6	1.6	3.0	2.9	2.1	1.5	2.4	2.6	1.9
2	3.2	2.4	4.2	3.5	5.5	3.8	2.7	2.5	4.3
3	5.6	4.3	5.2	4.5	8.2	6.9	3.6	2.8	6.6
4	7.2	6.2	5.6	5.2	8.9	8.4	4.7	3.5	7.8
5	7.7	7.2	5.6	5.5	8.6	8.6	5.5	4.3	8.1
6	7.7	7.4	5.5	5.5	7.9	8.1	5.9	5.1	7.9
7	7.3	7.3	5.3	5.4	7.1	7.4	6.0	5.5	7.4
8	6.8	6.9	5.2	5.2	6.4	6.7	5.9	5.8	6.8
9	6.2	6.4	5.0	5.0	5.7	6.1	5.7	5.8	6.2
10	5.6	5.9	4.8	4.9	5.1	5.4	5.5	5.7	5.6
11	5.1	5.4	4.6	4.7	4.6	4.9	5.2	5.5	5.0
12	4.7	4.9	4.4	4.5	4.1	4.4	5.0	5.3	4.5
13	4.2	4.5	4.3	4.4	3.7	3.9	4.7	5.1	4.0
14	3.8	4.1	4.1	4.2	3.3	3.5	4.4	4.8	3.6
15	3.5	3.7	3.9	4.1	2.9	3.2	4.2	4.6	3.2
16	3.2	3.4	3.8	3.9	2.6	2.8	4.0	4.3	2.9
17	2.9	3.1	3.6	3.8	2.3	2.5	3.7	4.1	2.6
18	2.6	2.8	3.5	3.6	2.1	2.3	3.5	3.9	2.3
19	2.4	2.6	3.4	3.5	1.9	2.0	3.3	3.6	2.0
20	2.1	2.4	3.2	3.4	1.7	1.8	3.1	3.4	1.8
21	1.9	2.2	3.1	3.3	1.5	1.6	3.0	3.2	1.6
22	1.8	2.0	3.0	3.1	1.3	1.5	2.8	3.1	1.5
23	1.6	1.8	2.9	3.0	1.2	1.3	2.6	2.9	1.3
Total Percentage	100	100	100	100	100	100	100	100	100
Layer ID from	F01	F01	F01	F01	F01	F01	F01	F01	F01
outdoors to indoors	M13	M13	F06	F06	M15	M15	M16	M16	M16
(See Table 18)	104	104	102	102	I04	104	105	105	F02
	G01	104	M15	102	G01	104	G01	105	0
	F02	G01	G01	M15	F02	G01	F02	G01	0
	0	F02	F02	G01	0	F02	0	F02	0
	0	0	0	F02	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Tabla 43. CTS pared 7. Fuente: ASHRAE Handbook Fundamentals 2017

		Sloped Frame Roofs								
	Metal Roof, R-3.3 Batt Insulation, Gyp. Board	Metal Roof, R-6.7 Batt Insulation, Gyp. Board	Metal Roof, R-3.3 Batt Insulation, Suspended Acoustical Ceiling	Metal Roof, R-6.7 Batt Insulation, Suspended Acoustical Ceiling	Metal Roof, R-3.3 Batt Insulation	Metal Roof, R-6.7 Batt Insulation	Asphalt Shingles, Wood Sheathing, R-3.3 Batt Insulation, Gyp. Board	Asphalt Shingles, Wood Sheathing, R-6.7 Batt Insulation, Gyp. Board	Slate or Tile, Wood Sheathing, R-3.3 Batt Insulation, Gyp. Board	
Roof Number	1	2	3	4	5	6	7	8	9	
<i>U</i> , W/(m ² ·K)	0.2485	0.1355	0.2265	0.1287	0.2547	0.0242	0.2348	0.1313	0.2388	
Total R	4.02	7.38	4.42	7.77	3.93	41.35	4.26	7.62	4.19	
Hour				Conduc	ction Time Fac	tors, %				
1	6.4	0.3	10.1	0.5	26.6	1.9	0.9	0.0	0.8	
2	44.2	10.9	55.6	14.8	61.0	27.5	16.5	2.6	16.6	
3	32.7	28.5	27.3	32.1	11.2	34.7	30.1	13.3	32.8	
4	11.6	25.9	5.7	24.3	1.1	19.1	23.5	21.0	25.0	
5	3.6	16.2	1.0	13.6	0.1	9.0	14.0	20.2	13.6	
6	1.1	8.9	0.2	7.1	0.0	4.2	7.5	15.5	6.4	
7	0.3	4.6	0.0	3.7	0.0	1.9	3.8	10.6	2.8	
8	0.1	2.3	0.0	1.9	0.0	0.9	1.9	6.7	1.2	
9	0.0	1.2	0.0	1.0	0.0	0.4	0.9	4.1	0.5	
10	0.0	0.6	0.0	0.5	0.0	0.2	0.5	2.5	0.2	
11	0.0	0.3	0.0	0.3	0.0	0.1	0.2	1.4	0.1	
12	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.8	0.0	
13	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.5	0.0	
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Percentage	100	100	100	100	100	100	100	100	100	
Laver ID from	F01	F01	F01	E01	E01	F01	F01	F01	F01	
outdoors to indoors	F08	F08	F08	F08	F08	F08	F12	F12	F14	
(See Table 18)	G03	603	603	G03	G03	G03	G05	G05	605	
·	F05	F05	F05	F05	F05	F05	F05	F05	F05	
	105	105	105	105	105	105	105	105	105	
	G01	105	F05	105	E03	105	F05	105	F05	
	F03	G01	F16	F05	0	F03	G01	F05	G01	
	105	F03	F03	F16	ő	0	F03	G01	F03	
	ŏ	105	103	F03	ő	0	105	F03	105	
	ŏ	ő	ő	0	ő	0	ő	105	ő	
	0	0	0	0	0	ő	0	0	0	
	Ň	0	0	0	0	0	0	ő	0	
	ŏ	ő	ő	ő	ő	0	0	ŏ	ő	
	Ő	õ	õ	õ	õ	õ	õ	õ	õ	

Tabla 44. CTS techo 1. Fuente: ASHRAE Handbook Fundamentals 2017

	Slo	ped Frame R	oofs		Wood		Metal Deck Roofs		
	Slate or Tile, Wood Sheathing, R-6.7 Batt Insulation, Cyn Board	Wood Shingles, Wood Sheathing, R-3.3 Batt Insulation, Cyn Board	Wood Shingles, Wood Sheathing, R-6.7 Batt Insulation, Cyn Board	Membrane, Sheathing, R-1.8 Insulation Board, Wood Deck	Membrane, Sheathing, R-3.5 Insulation Board, Wood Deck	Membrane, Sheathing, R-1.8 Insulation Board, Wood Deck, Suspended Acoustical Ceiling	Membrane, Sheathing, R-3.5 Insulation Board, Wood Deck, Suspended Acoustical Ceiling	Membrane, Sheathing, R-1.8 Insulation Board, Metal Deck	Membrane, Sheathing, R-3.5 Insulation Board, Metal Deck
Roof Number	Gyp. Board 10	Сур. Боаго 11	12	13	14	15	16	17	18
U. W/(m ² ·K)	0.1325	0.2300	0.1298	0.3944	0.2333	0.3306	0.2094	0.4539	0.2528
Total R	7.54	4.35	7.70	2.54	4.29	3.02	4.78	2.20	3.96
Hour	Condu	tion Time Fac	tors, %		Conduction Ti	me Factors, %		Conduction Ti	me Factors, %
1	0.0	0.6	0.0	0.3	0.1	0.9	1.2	18.0	3.3
2	2.5	11.6	1.7	6.9	2.1	2.7	1.5	60.0	38.1
3	14.0	24.2	9.7	17.2	10.0	7.8	4.3	18.4	37.6
4	22.8	22.1	17.0	17.7	15.4	10.1	7.6	3.0	14.6
5	21.4	15.6	18.1	14.3	15.2	9.8	8.8	0.5	4.5
6	15.7	10.0	15.5	10.9	12.7	8.8	8.6	0.1	1.3
7	10.1	6.2	11.9	8.2	10.1	7.8	8.0	0.0	0.4
8	6.0	3.8	8.5	6.2	7.9	6.9	7.2	0.0	0.1
9	3.4	2.3	5.9	4.6	6.1	6.1	6.5	0.0	0.0
10	1.9	1.4	4.0	3.5	4.7	5.4	5.9	0.0	0.0
11	1.0	0.8	2.6	2.6	3.6	4.8	5.3	0.0	0.0
12	0.6	0.5	1.7	2.0	2.8	4.2	4.7	0.0	0.0
13	0.3	0.3	1.1	1.5	2.2	37	43	0.0	0.0
14	0.2	0.2	0.7	1.1	1.7	3.3	3.8	0.0	0.0
15	0.1	0.1	0.5	0.8	1.3	2.9	3.4	0.0	0.0
16	0.0	0.1	0.3	0.6	1.0	2.6	3.1	0.0	0.0
10	0.0	0.0	0.2	0.5	0.8	2.0	2.8	0.0	0.0
18	0.0	0.0	0.1	0.3	0.6	2.0	2.5	0.0	0.0
10	0.0	0.0	0.1	0.3	0.5	1.8	2.0	0.0	0.0
20	0.0	0.0	0.1	0.2	0.4	1.5	2.0	0.0	0.0
20	0.0	0.0	0.0	0.2	0.4	1.5	1.8	0.0	0.0
22	0.0	0.0	0.0	0.1	0.2	1.4	1.6	0.0	0.0
22	0.0	0.0	0.0	0.1	0.2	1.1	1.5	0.0	0.0
23	0.0	0.0	0.0	0.1	0.1	0.9	1.3	0.0	0.0
Total Percentage	100	100	100	100	100	100	100	100	100
Laver ID from	F01	F01	F01	F01	F01	F01	F01	F01	F01
outdoors to indoors	F14	F15	F15	F13	F13	F13	F13	F13	F13
(See Table 18)	G05	G05	G05	603	603	603	603	603	603
·	F05	F05	F05	102	102	102	102	102	102
	105	105	105	G06	102	G06	102	F08	102
	105	F05	105	F03	G06	F05	G06	F03	F08
	F05	G01	F05	0	F03	F16	F05	0	F03
	G01	F03	G01	ŏ	0	F03	F16	ő	0
	F03	.05	F03	0	0	.05	F03	Ő	ő
	0	ŏ	0	ŏ	ŏ	ŏ	0	ő	ŏ
	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	ő	ŏ
	ő	ň	ň	n n	0	ñ	ň	Ő	ő
	0	ő	Ő	0	0	Ő	ő	ő	0
	Ő	ő	Ő	Ő	ŏ	Ő	Ő	ő	Ő

Tabla 45. CTS techo 2. Fuente: ASHRAE Handbook Fundamentals 2017

			М	etal Deck Ro	ofs			Concre	te Roofs
	Membrane, Sheathing, R-1.8	Membrane, Sheathing, R-3.5				50 mm Concrete Roof Ballast,	50 mm Concrete Roof Ballast,	Membrane, Sheathing,	Membrane, Sheathing,
	Insulation Board, Metal Deck,	Insulation Board, Metal Deck,	Membrane, Sheathing, R-2.6	Membrane, Sheathing, R-5.3	Membrane, Sheathing, R-4.4	Membrane, Sheathing, R-2.6	Membrane, Sheathing, R-5.3	R-2.6 Insulation Board,	R-5.3 Insulation Board,
	Suspended Acoustical Ceiling	Suspended Acoustical Ceiling	Insulation Board, Metal Deck	100 mm LW Concrete	100 mm LW Concrete				
Roof Number	19	20	21	22	23	24	25	26	27
<i>U</i> , W/(m ² ·K)	0.3714	0.1880	0.3248	0.1752	0.2485	0.2984	0.1673	0.3059	0.1696
Total R	2.69	5.32	3.08	5.71	4.02	3.35	5.98	3.27	5.90
Hour			Condu	ction Time Fac	tors, %			Conduction Ti	me Factors, %
1	4.8	0.2	8.6	0.3	6.4	0.4	0.1	0.6	0.8
2	40.0	8.8	52.5	12.8	44.2	10.1	1.3	2.2	0.9
3	34.7	26.6	29.8	31.1	32.7	21.9	8.1	7.9	2.5
4	13.8	26.3	7.3	25.5	11.6	19.5	14.7	11.2	5.9
5	4.6	17.3	1.5	14.7	3.6	14.2	15.8	11.2	8.6
6	1.4	9.8	0.3	7.7	1.1	10.1	14.0	10.0	9.6
/	0.4	5.2	0.1	3.9	0.3	/.1	11.4	8./	9.4
0	0.1	2.7	0.0	2.0	0.1	2.5	0.0	1.5	0.7
10	0.0	0.7	0.0	0.5	0.0	2.5	5.0	5.5	6.0
11	0.0	0.4	0.0	0.2	0.0	1.7	3.7	47	6.0
12	0.0	0.2	0.0	0.1	0.0	1.2	2.8	4.0	5.2
13	0.0	0.1	0.0	0.1	0.0	0.9	2.0	3.4	4.5
14	0.0	0.1	0.0	0.0	0.0	0.6	1.5	2.9	3.9
15	0.0	0.0	0.0	0.0	0.0	0.4	1.1	2.5	3.4
16	0.0	0.0	0.0	0.0	0.0	0.3	0.8	2.2	2.9
17	0.0	0.0	0.0	0.0	0.0	0.2	0.6	1.8	2.5
18	0.0	0.0	0.0	0.0	0.0	0.2	0.4	1.6	2.2
19	0.0	0.0	0.0	0.0	0.0	0.1	0.3	1.4	1.9
20	0.0	0.0	0.0	0.0	0.0	0.1	0.2	1.2	1.6
21	0.0	0.0	0.0	0.0	0.0	0.1	0.2	1.0	1.4
22	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.9	1.2
23	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.7	1.1
Z4 Total Daraantaaa	100	100	100	100	100	100	100	100	100
Total Percentage	100	100	100	100	100	100	100	100	100
Layer ID from	F01	F01	F01	F01	F01	F01	F01	F01	F01
outdoors to indoors	F13	F13	F13	F13	F08	M17	M17	F13	F13
(See <u>Table 18</u>)	G03	G03	G03	G03	G03	F13	F13	G03	G03
	102	102	103	103	F05	G03	G03	103	103
	F08	102	F08	103	105	103	103	M11	103
	FU5	F08	F03	F08	G01 E02	F08 F02	103	F03	M111 E02
	F10	F16	0	105	105	105	E03	0	105
	0	F03	0	0	0	0	0	0	0
	0	0	õ	ő	ő	ő	ő	0	ő
	0	õ	õ	õ	õ	õ	õ	0	õ
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Tabla 46. CTS techo 3. Fuente: ASHRAE Handbook Fundamentals 2017

		Concrete Roofs									
	Membrane, Sheathing, R-2.6 Insulation Board, 150 mm LW Concrete	Membrane, Sheathing, R-5.3 Insulation Board, 150 mm LW Concrete	Membrane, Sheathing, R-2.6 Insulation Board, 200 mm LW Concrete	Membrane, Sheathing, R-5.3 Insulation Board, 200 mm LW Concrete	Membrane, Sheathing, R-2.6 Insulation Board, 150 mm HW Concrete	Membrane, Sheathing, R-5.3 Insulation Board, 150 mm HW Concrete	Membrane, Sheathing, R-2.6 Insulation Board, 200 mm HW Concrete	Membrane, Sheathing, R-5.3 Insulation Board, 200 mm HW Concrete	Membrane, 150 mm HW Concrete, R-3.3 Batt Insulation, Suspended Acoustical Ceiling	Membrane, 150 mm HW Concrete, R-6.7 Batt Insulation, Suspended Acoustical Ceiling	
Roof Number	28	29	30	31	32	33	34	35	36	37	
<i>U</i> , W/(m ² ·K)	0.2972	0.1669	0.2890	0.1688	0.3167	0.1729	0.3139	0.1719	0.2387	0.1325	
Total R	3.36	5.99	3.46	5.92	3.16	5.79	3.19	5.82	4.19	7.54	
Hour					Conduction T	ime Factors, %	ó				
1	1.5	1.9	2.4	1.5	2.0	2.3	2.6	2.8	1.4	1.6	
2	1.7	1.7	2.3	1.4	2.4	2.2	2.6	2.7	2.3	1.6	
3	3.4	2.0	2.6	1.5	4.6	2.7	3.5	2.8	5.7	2.6	
4	6.0	3.2	3.7	2.6	6.5	4.1	4.8	3.4	8.0	4.8	
5	7.5	4.9	4.9	4.6	7.0	5.4	5.7	4.3	8.2	6.5	
6	7.8	6.2	5.7	6.4	6.8	6.2	5.9	5.0	7.8	7.3	
7	7.6	6.9	6.1	7.4	6.5	6.4	5.9	5.5	7.2	7.4	
8	7.1	7.0	6.1	7.8	6.1	6.3	5.7	5.6	6.6	/.1	
9	6.5	6.9	6.0	7.6	5.7	6.1	5.5	5.6	6.0	6.7	
10	6.0	6.5	5.8	1.2	5.5	5.8	5.5	5.5	5.5	6.2	
11	5.0	5.7	5.5	6.1	3.0	5.5	3.0	5.5	3.0	5.7	
12	1.6	5.7	5.0	5.5	4.7	1.2	4.0	4.0	4.0	4.9	
13	4.0	1.8	47	5.0	4.4	4.0	4.0	4.9	3.8	4.0	
15	3.8	4.0	4.7	4.5	3.8	4.3	4.4	4.5	3.5	4.4	
16	3.5	4.1	4.1	4.0	3.6	4.0	4.0	4.3	3.2	3.7	
17	3.2	3.7	3.9	3.6	3.4	3.8	3.8	4.1	2.9	3.4	
18	2.9	3.4	3.7	3.2	3.1	3.5	3.6	3.9	2.6	3.1	
19	2.6	3.1	3.4	2.9	2.9	3.3	3.4	3.7	2.4	2.8	
20	2.4	2.9	3.2	2.6	2.8	3.1	3.3	3.6	2.2	2.6	
21	2.2	2.6	3.0	2.3	2.6	2.9	3.1	3.4	2.0	2.4	
22	2.0	2.4	2.9	2.1	2.4	2.7	3.0	3.2	1.8	2.2	
23	1.8	2.2	2.7	1.9	2.3	2.6	2.8	3.1	1.7	2.0	
24	1.7	2.0	2.5	1.7	2.1	2.4	2.7	3.0	1.5	1.8	
Total Percentage	100	100	100	100	100	100	100	100	100	100	
Layer ID from	F01	F01									
outdoors to indoors	F13	F13									
(See <u>Table 18</u>)	G03	M14	M14								
	103	103	103	103	103	103	103	103	F05	F05	
	M12	103	M13	I03	M14	I03	M15	I03	105	105	
	F03	M12	F03	M13	F03	M14	F03	M15	F16	105	
	0	F03	0	F03	0	F03	0	F03	F03	F16	
	0	0	0	0	0	0	0	0	0	F03	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	

Tabla 47. CTS techo 4. Fuente: ASHRAE Handbook Fundamentals 2017

Layer ID	Description	Thickness, mm	Conductivity, W/(m·K)	Density, kg/m ³	Specific Heat, kJ/(kg·K)	Resistance <i>R</i> , (m ² ·K)/W	R	Mass, kg/m ²	Thermal Capacity, kJ/(m ^{2.} K)	Notes
F01	Outdoor surface resistance	_	_	_	_	0.04	0.04	_	_	1
F02	Indoor vertical surface resistance	_	_	_	_	0.12	0.12	_	_	2
F03	Indoor horizontal surface resistance	_	_	_	_	0.16	0.16	_	_	3
F04	Wall air space resistance	_	_	_	_	0.15	0.15	_	_	4
F05	Ceiling air space resistance	_	_	_	_	0.18	0.18	_	_	5
F06	EIFS finish	9.5	0.72	1856	0.84	_	0.01	17.7	14.92	6
F07	25 mm stucco	25.4	0.72	1856	0.84	_	0.04	47.2	39.45	6
F08	Metal surface	v0.8	45.28	7824	0.50	_	0.00	6.0	3.07	7
F09	Opaque spandrel glass	6.4	0.99	2528	0.88	_	0.01	16.1	14.10	8
F10	25 mm stone	25.4	3.17	2560	0.79	_	0.01	65.1	51.71	9
F11	Wood siding	12.7	0.09	592	1.17	_	0.14	7.5	8.79	10
F12	Asphalt shingles	3.2	0.04	1120	1.26	_	0.08	3.6	4.50	
F13	Built-up roofing	9.5	0.16	1120	1.46	_	0.06	10.7	15.74	
F14	Slate or tile	12.7	1.59	1920	1.26	_	0.01	24.4	30.67	
F15	Wood shingles	6.4	0.04	592	1.30	_	0.17	3.8	4.91	
F16	Acoustic tile	19.1	0.06	368	0.59	_	0.31	7.0	4.09	11
F17	Carpet	12.7	0.06	288	1.38	_	0.22	3.7	5.11	12
F18	Terrazzo	25.4	1.80	2560	0.79	_	0.01	65.1	51.71	13
G01	16 mm gyp board	15.9	0.16	800	1.09	_	0.10	12.7	13.90	
G02	16 mm plywood	15.9	0.12	544	1.21	_	0.14	8.6	10.42	
G03	13 mm fiberboard sheathing	12.7	0.07	400	1.30	_	0.19	5.1	6.54	14
G04	13 mm wood	12.7	0.15	608	1.63	_	0.08	7.7	12.67	15
G05	25 mm wood	25.4	0.15	608	1.63	_	0.17	15.5	25.35	15
G06	50 mm wood	50.8	0.15	608	1.63	_	0.33	30.9	50.49	15
G07	100 mm wood	101.6	0.15	608	1.63	_	0.66	61.8	100.97	15
I01	25 mm insulation board	25.4	0.03	43	1.21	_	0.88	1.1	1.43	16
102	50 mm insulation board	50.8	0.03	43	1.21	_	1.76	2.2	2.66	16
103	75 mm insulation board	76.2	0.03	43	1.21	_	2.64	3.3	4.09	16
104	89 mm batt insulation	89.4	0.05	19	0.96	_	1.94	1.7	1.64	17
105	154 mm batt insulation	154.4	0.05	19	0.96	_	3.34	3.0	2.86	17
106	244 mm batt insulation	243.8	0.05	19	0.96	_	5.28	4.7	4.50	17
M01	100 mm brick	101.6	0.89	1920	0.79	_	0.11	195.2	155.34	18
M02	150 mm LW concrete block	152.4	0.49	512	0.88	_	0.31	78.1	68.68	19
M03	200 mm LW concrete block	203.2	0.50	464	0.88	_	0.41	94.3	82.99	20
M04	300 mm LW concrete block	304.8	0.71	512	0.88	_	0.43	156.2	137.36	21
M05	200 mm concrete block	203.2	1.11	800	0.92	_	0.18	162.7	149.83	22
M06	300 mm concrete block	304.8	1.40	800	0.92	_	0.22	244.0	224.84	23
M07	150 mm LW concrete block (filled)	152.4	0.29	512	0.88	_	0.53	78.1	68.68	24
M08	200 mm LW concrete block (filled)	203.2	0.26	464	0.88	_	0.78	94.3	82.99	25
M09	300 mm LW concrete block (filled)	304.8	0.29	512	0.88	_	1.04	156.2	137.36	26
M10	200 mm concrete block (filled)	203.2	0.72	800	0.92	_	0.28	162.7	149.83	27
M11	100 mm lightweight concrete	101.6	0.53	1280	0.84	_	0.19	130.1	108.95	
M12	150 mm lightweight concrete	152.4	0.53	1280	0.84	_	0.29	195.2	163.52	
M13	200 mm lightweight concrete	203.2	0.53	1280	0.84	_	0.38	260.3	218.10	
M14	150 mm heavyweight concrete	152.4	1.95	2240	0.90	_	0.08	341.6	307.62	
M15	200 mm heavyweight concrete	203.2	1.95	2240	0.90	_	0.10	455.5	410.23	
M16	300 mm heavyweight concrete	304.8	1.95	2240	0.90	_	0.16	683.2	615.24	
M17	50 mm LW concrete roof ballast	50.8	0.19	640	0.84	_	0.27	32.5	2 7.19	28

Tabla 48. Propiedades térmicas de las capas utilizadas en las descripciones de pared y techo de CTS. Fuente: ASHRAE Handbook Fundamentals 2017

																				I	nterio	r Zone	25	
			Li	ght					Med	lium					He	avy			Li	ght	Med	ium	He	avy
	Wit	th Car	pet	No	o Carp	oet	Wit	h Car	pet	N	o Carp	oet	Wit	h Car	pet	N	o Carj	pet	e te	, te	e te	bet ,	e te	bet
Glass	10%	50%	90%	10%	50%	90%	10%	50%	90%	10%	50%	90%	10%	50%	90%	10%	50%	90%	Q M	C N	Car M	Z E	Carl Vi	Cal N
Hour										1	Radia	nt Tin	ne Fac	tor, %										
0	47	50	53	41	43	46	46	49	52	31	33	35	34	38	42	22	25	28	46	40	46	31	33	21
1	19	18	17	20	19	19	18	17	16	17	16	15	9	9	9	10	9	9	19	20	18	17	9	9
2	11	10	9	12	11	11	10	9	8	11	10	10	6	6	5	6	6	6	11	12	10	11	6	6
3	6	6	5	8	7	7	6	5	5	8	7	7	4	4	4	5	5	5	6	8	6	8	5	5
4	4	4	3	5	5	5	4	3	3	6	5	5	4	4	4	5	5	4	4	5	3	6	4	5
5	3	3	2	4	3	3	2	2	2	4	4	4	4	3	3	4	4	4	3	4	2	4	4	4
6	2	2	2	3	3	2	2	2	2	4	3	3	3	3	3	4	4	4	2	3	2	4	3	4
7	2	1	1	2	2	2	1	1	1	3	3	3	3	3	3	4	4	4	2	2	1	3	3	4
8	1	1	1	1	1	1	1	1	1	3	2	2	3	3	3	4	3	3	1	1	1	3	3	4
9	1	1	1	1	1	1	1	1	1	2	2	2	3	3	2	3	3	3	1	1	1	2	3	3
10	1	1	1	1	1	1	1	1	1	2	2	2	3	2	2	3	3	3	1	1	1	2	3	3
11	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	1	1	1	2	2	3
12	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	3	3	3	1	1	1	1	2	3
13	1	1	1	0	1	0	1	1	1	1	1	1	2	2	2	3	3	2	1	1	1	1	2	3
14	0	0	1	0	1	0	1	1	1	1	1	1	2	2	2	3	2	2	1	0	1	1	2	3
15	0	0	1	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	0	0	1	1	2	3
16	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	0	0	1	1	2	3
17	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	0	0	1	1	2	2
18	0	0	0	0	0	0	1	1	1	1	1	1	2	2	1	2	2	2	0	0	1	1	2	2
19	0	0	0	0	0	0	0	1	0	0	1	1	2	2	1	2	2	2	0	0	1	0	2	2
20	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	2	2	2	0	0	0	0	2	2
21	0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	2	2	2	0	0	0	0	2	2
22	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	2	2	2	0	0	0	0	1	2
23	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	2	2	1	0	0	0	0	1	2
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Tabla 49. Valores representativos de RTS para construcción ligera, media y pesada. Fuente: ASHRAE Handbook Fundamentals 2017

Material	λ (W/m K)	ρ (kg/m³)	ce (J/Kg K)
FR Entrevigado cerámico -Canto 300 mm	1,678	1580,0	1000
FR Entrevigado cerámico -Canto 350 mm	1,717	1520,0	1000
FR Entrevigado de EPS mecanizado enrasado - Canto 400 mm	0,741	1390,0	1000
FR Entrevigado de EPS mecanizado enrasado -Canto 300 mm	0,667	1470,0	1000
FR Entrevigado de EPS mecanizado enrasado -Canto 350 mm	0,707	1420,0	1000
FR Entrevigado de EPS mecanizado enrasado -Canto 450 mm	0,769	1360,0	1000
FR Entrevigado de EPS moldeado descolgado -Canto 300 mm	0,357	1330,0	1000
FR Entrevigado de EPS moldeado descolgado -Canto 350 mm	0,402	1310,0	1000
FR Entrevigado de EPS moldeado descolgado -Canto 400 mm	0,440	1290,0	1000
FR Entrevigado de EPS moldeado descolgado -Canto 450 mm	0,479	1280,0	1000
FR Entrevigado de EPS moldeado enrasado -Canto 300 mm	1,056	1460,0	1000
FR Entrevigado de EPS moldeado enrasado -Canto 350 mm	1,065	1420,0	1000
FR Entrevigado de EPS moldeado enrasado -Canto 400 mm	1,073	1380,0	1000
FR Entrevigado de EPS moldeado enrasado -Canto 450 mm	1,079	1360,0	1000
FR Entrevigado de hormigón aligerado - Canto 450 mm	1,986	1455,0	1000
FR Entrevigado de hormigón aligerado -Canto 250 mm	1,788	1645,0	1000
FR Entrevigado de hormigón aligerado -Canto 300 mm	1,838	1570,0	1000
FR Entrevigado de hormigón aligerado -Canto 350 mm	1,890	1515,0	1000
FR Entrevigado de hormigón aligerado -Canto 400 mm	1,936	1480,0	1000
FR Entrevigado de hormigón -Canto 250 mm	1,901	1740,0	1000
FR Entrevigado de hormigón -Canto 300 mm	1,947	1670,0	1000
FR Entrevigado de hormigón -Canto 350 mm	1,995	1610,0	1000

			1 1
FR Entrevigado de hormigón -Canto 400 mm	2,043	1570,0	1000
FR Entrevigado de hormigón -Canto 450 mm	2,091	1540,0	1000
FR FR Entrevigado cerámico -Canto 250 mm	1,640	1660,0	1000
FU Entrevigado cerámico -Canto 250 mm	0,908	1220,0	1000
FU Entrevigado cerámico -Canto 300 mm	0,846	1110,0	1000
FU Entrevigado cerámico -Canto 350 mm	0,995	1030,0	1000
FU Entrevigado de EPS mecanizado enrasado -Canto 250 mm	0,266	800,0	1000
FU Entrevigado de EPS mecanizado enrasado -Canto 300 mm	0,256	750,0	1000
FU Entrevigado de EPS mecanizado enrasado -Canto 350 mm	0,255	700,0	1000
FU Entrevigado de EPS moldeado descolgado -Canto 250 mm	0,176	710,0	1000
FU Entrevigado de EPS moldeado descolgado -Canto 300 mm	0,200	670,0	1000
FU Entrevigado de EPS moldeado descolgado -Canto 350 mm	0,223	640,0	1000
FU Entrevigado de EPS moldeado enrasado -Canto 250 mm	0,313	790,0	1000
FU Entrevigado de EPS moldeado enrasado -Canto 300 mm	0,341	740,0	1000
FU Entrevigado de EPS moldeado enrasado -Canto 350 mm	0,368	690,0	1000
FU Entrevigado de hormigón aligerado - Canto 400 mm	1,311	985,0	1000
FU Entrevigado de hormigón aligerado -Canto 250 mm	1,020	1180,0	1000
FU Entrevigado de hormigón aligerado -Canto 300mm	1,128	1090,0	1000
FU Entrevigado de hormigón aligerado -Canto 350 mm	1,211	1035,0	1000
FU Entrevigado de hormigón aligerado d< 1200 - Canto 400 mm	1,408	985,0	1000
FU Entrevigado de hormigón aligerado d< 1200 -Canto 250 mm	1,121	1180,0	1000
FU Entrevigado de hormigón aligerado d< 1200 -Canto 300 mm	1,220	1090,0	1000
FU Entrevigado de hormigón aligerado d< 1200 -Canto 350 mm	1,311	1035,0	1000
FU Entrevigado de hormigón -Canto 250 mm	1,323	1330,0	1000
FU Entrevigado de hormigón -Canto 300 mm	1,422	1240,0	1000
FU Entrevigado de hormigón -Canto 350 mm	1,528	1180,0	1000
FR Sin Entrevigado -Canto 250 mm	4,167	2350,0	1000
FR Sin Entrevigado -Canto 300 mm	4,286	2350,0	1000
FR Sin Entrevigado -Canto 350 mm	4,651	2350,0	1000
Hormigón armado 2300 < d < 2500	2,300	2400,0	1000
Hormigón armado d > 2500	2,500	2600,0	1000
Hormigón celular curado en autoclave d 1000	0,290	1000,0	1000
Hormigón celular curado en autoclave d 300	0,090	300,0	1000
Hormigón celular curado en autoclave d 400	0,120	400,0	1000
Hormigón celular curado en autoclave d 500	0,140	500,0	1000
Hormigón celular curado en autoclave d 600	0,180	600,0	1000
Hormigón celular curado en autoclave d 700	0,200	700,0	1000
Hormigón celular curado en autoclave d 800	0,230	800,0	1000
Hormigón celular curado en autoclave d 900	0,270	900,0	1000
Hormigón con arcilla expandida como árido principal d 1000	0,350	1000,0	1000
Hormigón con arcilla expandida como árido principal d 1100	0,390	1100,0	1000
Hormigón con arcilla expandida como árido principal d 1200	0,440	1200,0	1000
Hormigón con arcilla expandida como árido principal d 1300	0,500	1300,0	1000
Hormigón con arcilla expandida como árido principal d 1400	0,550	1400,0	1000
Hormigón con arcilla expandida como árido principal d 1500	0,610	1500,0	1000
· · · · · ·	,	,	

			1
Hormigón con arcilla expandida como árido principal d 1600	0,680	1600,0	1000
Hormigón con arcilla expandida como árido principal d 1700	0,760	1700,0	1000
Hormigón con arcilla expandida como árido principal d 800	0,270	800,0	1000
Hormigón con arcilla expandida como árido principal d 900	0,300	900,0	1000
Hormigón con arcilla expandida sin otros áridos d 400	0,130	400,0	1000
Hormigón con arcilla expandida sin otros áridos d 500	0,160	500,0	1000
Hormigón con arcilla expandida sin otros áridos d 600	0,190	600,0	1000
Hormigón con arcilla expandida sin otros áridos d 700	0,220	700,0	1000
Hormigón con áridos ligeros 1600 < d < 1800	1,150	1700,0	1000
Hormigón con áridos ligeros 1800 < d < 2000	1,350	1900,0	1000
Hormigón con otros áridos ligeros d 1000	0,300	1000,0	1000
Hormigón con otros áridos ligeros d 1100	0,340	1100,0	1000
Hormigón con otros áridos ligeros d 1200	0,370	1200,0	1000
Hormigón con otros áridos ligeros d 1300	0,420	1300,0	1000
Hormigón con otros áridos ligeros d 1400	0,460	1400,0	1000
Hormigón con otros áridos ligeros d 1500	0,520	1500,0	1000
Hormigón con otros áridos ligeros d 1600	0,590	1600,0	1000
Hormigón con otros áridos ligeros d 1800	1,220	1800,0	1000
Hormigón con otros áridos ligeros d 2000	1,500	2000,0	1000
Hormigón con otros áridos ligeros d 500	0,940	500,0	1000
Hormigón con otros áridos ligeros d 600	0,830	600,0	1000
Hormigón con otros áridos ligeros d 700	0,740	700,0	1000
Hormigón con otros áridos ligeros d 800	0,650	800,0	1000
Hormigón con otros áridos ligeros d 900	0,270	900,0	1000
Hormigón convencional d 1600	0,970	1600,0	1000
Hormigón convencional d 1700	1,030	1700,0	1000
Hormigón convencional d 1800	1,120	1800,0	1000
Hormigón convencional d 1900	1,200	1900,0	1000
Hormigón convencional d 2000	1,320	2000,0	1000
Hormigón convencional d 2100	1,440	2100,0	1000
Hormigón convencional d 2200	1,570	2200,0	1000
Hormigón convencional d 2300	1,720	2300,0	1000
Hormigón convencional d 2400	1,900	2400,0	1000
– Hormigón en masa 2000 < d < 2300	1,650	2150,0	1000
- Hormigón en masa 2300 < d < 2600	2,000	2450,0	1000
Teja de hormigón	1,500	2100.0	1000
Tablero contrachapado 250 < d < 350	0,110	300,0	1600
Tablero contrachapado 350 < d < -450	0.130	400,0	1600
Tablero contrachapado 450 < d < 500	0,150	475,0	1600
Tablero contrachapado 500 < d < 600	0.170	550.0	1600
Tablero contrachapado 600 < d < 750	0.210	675.0	1600
Tablero contrachapado 700 < d < 900	0.240	800.0	1600
Tablero contrachapado d < 250	0.090	200.0	1600
Tablero de partículas $180 < d < 270$	0,100	225.0	1700
Tablero de partículas $270 < d < 450$	0 130	360.0	1700
	0,100	200,0	1,00

Tablero de partículas 450 < d < 640	0,150	545,0	1700
Tablero de partículas 640 < d < 820	0,180	730,0	1700
Tablero de partículas con cemento d < 1200	0,230	1200,0	1500
Tablero de virutas orientadas [OSB] d < 650	0,130	600,0	1700
Tableros de fibras incluyendo MDF 200 < d < 350	0,100	275,0	1700
Tableros de fibras incluyendo MDF 350 < d < 550	0,140	450,0	1700
Tableros de fibras incluyendo MDF 550 < d < 750	0,180	650,0	1700
Tableros de fibras incluyendo MDF 750 < d < 1000	0,200	875,0	1700
Tableros de fibras incluyendo MDF d < 200	0,070	180,0	1700
Mortero de áridos ligeros [vermiculita perlita]	0,410	900,0	1000
Mortero de cemento o cal para albañilería y para revoco/enlucido 1000			
< d < 1250	0,550	1125,0	1000
Mortero de cemento o cal para albañilería y para revoco/enlucido 1250	0		
< d < 1450	0,700	1350,0	1000
iviortero de cemento o cal para albanilería y para revoco/enlucido 1450	0 000	1575 0	1000
< u < 1000 Mortero de cemento o cal para albañilería y para revoco/enlucido 1600	0,800	1525,0	1000
< d < 1800	1.000	1525.0	1000
Mortero de cemento o cal para albañilería y para revoco/enlucido 1800	_,		
< d < 2000	1,300	1900,0	1000
Mortero de cemento o cal para albañilería y para revoco/enlucido 500 <			
d < 750	0,300	625,0	1000
Mortero de cemento o cal para albañilería y para revoco/enlucido 750 <			
d < 1000	0,400	875,0	1000
Mortero de cemento o cal para albanilería y para revoco/enlucido d	1 800	2100.0	1000
Mortero de veso	0.800	1500.0	1000
BC con mortero aislante espesor 140 mm	0,000	1020.0	1000
BC con mortero aislante espesor 190 mm	0,306	910.0	1000
BC con mortero aislante espesor 240 mm	0.298	920.0	1000
BC con mortero aislante espesor 290 mm	0,295	910.0	1000
BC con mortero convencional espesor 140 mm	0,233	1170.0	1000
BC con mortero convencional espesor 140 mm	0 /122	1020 0	1000
BC con mortero convencional espesor 240 mm	0,433	1000,0	1000
BC con mortero convencional espesor 240 mm	0,424	1090,0	1000
Arcilla Expandida Tárido suelto	0,421	527 5	1000
EPS Poliestireno Evpandido [0.020 W/[mk]]	0,140	20.0	1000
EDS Poliestireno Expandido [0.023 W/[IIIK]]	0,029	20.0	1000
EDS Poliestireno Expandido [0.037 W/[IIIK]]	0,030	20.0	1000
MW and minoral [0.021 W/[mk]]	0,040	30,0	1000
	0,031	40,0	1000
	0,041	40,0	1000
IVIW Lana minerai (U.US W/[mK]]	0,050	40,0	1000
Panel de perlita expandida [EPB] [>80%]	0,062	190,0	1000
Panel de vidrio celular [CG]	0,050	125,0	1000
PUR Inyección en tabiquería con dióxido de carbono CO2	0,040	17,5	1000
PUR Plancha con HFC o Pentano y rev. impermeable a gases [0.025	0.025		1000
vv/[[IIIK]]	0,025	45,0	1000

PUR Plancha con HFC o Pentano y rev. permeable a gases [0.03 W/[mK]]	0,030	45,0	1000
PUR Plancha con HFC o Pentano y rev. permeable gases [0.027 W/[mK]]	0,027	45,0	1000
PUR Proyección con CO2 celda cerrada [0.032 W/[mK]]	0,032	50,0	1000
PUR Proyección con CO2 celda cerrada [0.035 W/[mK]]	0,035	50,0	1000
PUR Proyección con Hidrofluorcarbono HFC [0.028 W/[mK]]	0,028	45,0	1000
XPS Expandido con dióxido de carbono CO2 [0.034 W/[mK]]	0,034	37,5	1000
XPS Expandido con dióxido de carbono CO3 [0.038 W/[mK]]	0,038	37,5	1000
XPS Expandido con dióxido de carbono CO4 [0.042 W/[mK]]	0,042	37,5	1000
XPS Expandido con hidrofluorcarbonos HFC [0.025 W/[mK]]	0,025	37,5	1000
XPS Expandido con hidrofluorcarbonos HFC [0.032 W/[mK]]	0,032	37,5	1000
XPS Expandido con hidrofluorcarbonos HFC [0.039 W/[mK]]	0,039	37,5	1000
Asfalto	0,700	2100,0	1000
Asfalto arenoso	0,150	2100,0	1000
Betún fieltro o lámina	0,230	1100,0	1000
Betún puro	0,170	1050,0	1000
Butadieno	0,250	980,0	1000
Butilo [isobuteno] compacto/colado en caliente	0,240	1200,0	1400
Caucho celular	0,060	70,0	1500
Caucho natural	0,130	910,0	1100
Caucho rigido [ebonita] sólido	0,170	1200,0	1400
Etileno propileno dieno monómero [EPDM]	0,250	1150,0	1000
Neopreno [policloropreno]	0,230	1240,0	2140
Poliisobutileno	0,200	930,0	1100
Polisulfuro	0,400	1700,0	1000
Azulejo cerámico	1,300	2300,0	840
Gres calcáreo 2000 < d < 2700	1,900	2350,0	1000
Gres cuarzoso 2600 < d < 2800	2,600	2700,0	1000
Gres(sílice) 2200 < d < 2590	2,300	2395,0	1000
Plaqueta o baldosa cerámica	1,000	2000,0	800
Plaqueta o baldosa de gres	2,300	2500,0	1000
Teja cerámica-porcelana	1,300	2300,0	840
Teja de arcilla cocida	1,000	2000,0	800
Enlucido de yeso 1000 < d < 1300	0,570	1150,0	1000
Enlucido de yeso aislante 500 < d < 600	0,180	550,0	1000
Enlucido de yeso aislante 600 < d < 900	0,300	750,0	1000
Enlucido de yeso d < 1000	0,400	900,0	1000
BH aligerado hueco espesor 250 mm	0,472	760,0	1000
BH aligerado hueco espesor 300 mm	0,454	1050,0	1000
BH aligerado hueco -muro de carga- espesor 300 mm	0,475	1160,0	1000
BH aligerado hueco -muro de carga- espesor 300 mm motero aligerado	0,421	1100,0	1000
BH aligerado macizo espesor 200 mm	0,287	840,0	1000
BH aligerado macizo espesor 250 mm	0,300	850,0	1000
BH aligerado macizo espesor 300 mm	0,317	860,0	1000
BH aligerado macizo -muro de carga- espesor 300 mm	0,338	940,0	1000
BH aligerado macizo -muro de carga- espesor 300 mm mortero aligerado	0,287	910,0	1000

BH convencional espesor 100 mm	0,632	1210,0	1000
BH convencional espesor 150 mm	0,789	1040,0	1000
BH convencional espesor 200 mm	0,923	860,0	1000
BH convencional espesor 250 mm	1,007	685,0	1000
BH convencional espesor 300 mm	1,160	585,0	1000
1 pie LM métrico o catalán 40 mm< G < 50 mm	1,030	2140,0	1000
1 pie LP métrico o catalán 40 mm< G < 60 mm	0,667	1220,0	1000
1 pie LP métrico o catalán 60 mm< G < 80 mm	0,567	1150,0	1000
1 pie LP métrico o catalán 80 mm< G < 100 mm	0,512	1000,0	1000
1/2 pie LM métrico o catalán 40 mm< G < 50 mm	0,991	2170,0	1000
1/2 pie LP métrico o catalán 40 mm< G < 60 mm	0,667	1140,0	1000
1/2 pie LP métrico o catalán 60 mm< G < 80 mm	0,567	1020,0	1000
1/2 pie LP métrico o catalán 80 mm< G < 100 mm	0,512	900,0	1000
Tabicón de LH doble [60 mm < E < 90 mm]	0,432	930,0	1000
Tabicón de LH doble Gran Formato 60 mm < E < 90 mm	0,212	630,0	1000
Tabicón de LH triple [100 mm < E < 110 mm]	0,427	920,0	1000
Tabicón de LH triple Gran Formato 100 mm < E < 110 mm	0,206	620,0	1000
Tabique de LH sencillo [40 mm < Espesor < 60 mm]	0,445	1000,0	1000
Tabique de LH sencillo Gran Formato [40 mm < E < 60 mm]	0,228	670,0	1000
Con capa de compresión -Canto 200 mm	1,404	1810,0	1000
Con capa de compresión -Canto 250 mm	1,560	1580,0	1000
Con capa de compresión -Canto 300 mm	1,618	1530,0	1000
Con capa de compresión -Canto 350 mm	1,698	1440,0	1000
Con capa de compresión -Canto 400 mm	1,800	1320,0	1000
Con capa de compresión -Canto 500 mm	2,020	1300,0	1000
Sin capa de compresión -Canto 200 mm	1,404	1410,0	1000
Sin capa de compresión -Canto 250 mm	1,560	1380,0	1000
Sin capa de compresión -Canto 300 mm	1,618	1290,0	1000
Sin capa de compresión -Canto 350 mm	1,698	1180,0	1000
Sin capa de compresión -Canto 400 mm	1,800	1180,0	1000
Sin capa de compresión -Canto 500 mm	2,020	1120,0	1000
Balsa d < 200	0,057	180,0	1600
Conífera de peso medio 435 < d < 520	0,150	480,0	1600
Conífera ligera d < 435	0,130	430,0	1600
Conífera muy pesada d >610	0,230	620,0	1600
Conífera pesada 520 < d < 610	0.180	570.0	1600
Corcho Comprimido	0.100	450.0	1560
Corcho Expandido con resinas sintéticas 100 < d < 150	0.049	125.0	1560
Corcho Expandido con resinas sintéticas 150 < d < 250	0.055	200.0	1560
Corcho Expandido puro $100 < d < 150$	0.049	125.0	1560
Frondosa de peso medio 565 < d < 750	0 180	660.0	1600
Frondosa ligera 435 < d < 565	0 150	500.0	1600
Frondosa muy ligera $200 < d < 435$	0,130	320.0	1600
Frondosa muy nesada $[d > 870]$	0,130	900 0	1600
Frondosa nesada $750 < d < 870$	0,230	775 0	1600
	0,230	0,011	1000

Paneles de fibras con conglomerante hidráulico 250 < d < 350	0,100	300,0	1700
Paneles de fibras con conglomerante hidráulico 350 < d < 450	0,120	400,0	1700
Paneles de fibras con conglomerante hidráulico 450 < d < 550	0,150	500,0	1700
Placas de corcho	0,065	450,0	1500
Acero	50,000	7800,0	450
Acero Inoxidable	17,000	7900,0	460
Aluminio	230,000	2700,0	880
Aluminio aleaciones de	160,000	2800,0	880
Bronce	65,000	8700,0	380
Cobre	380,000	8900,0	380
Cromo	93,700	7160,0	449
Estaño	66,600	7310,0	227
Hierro	72,000	7870,0	450
Hierro fundición	50,000	7500,0	450
Latón	120,000	8400,0	380
Níquel	90,700	8900,0	444
Plomo	35,000	11300,0	130
Titanio	21,900	4500,0	522
Zinc	110,000	7200,0	380
Arcilla o limo [1200 < d < 1800]	1,500	1500,0	2100
Arena y grava [1700 < d < 2200]	2,000	1450,0	1050
Arenisca [2200 < d < 2600]	3,000	2400,0	1000
Asperón [1300 < d < 1900]	0,900	1600,0	1000
Asperón [1900 < d < 2500]	1,800	2200,0	1000
Basalto [2700 < d < 3000]	3,500	2850,0	1000
Caliza blanda [1600 < d < 1790]	1,100	1695,0	1000
Caliza dura [2000 < d < 2190]	1,700	2095,0	1000
Caliza dureza media [1800 < d < 1990]	1,400	1895,0	1000
Caliza muy blanda [d < 1590]	0,850	1500,0	1000
Caliza muy dura [2200 < d < 2590]	2,300	2395,0	1000
Esquisto Pizarra [2000 < d < 2800]	2,200	2400,0	1000
Gneis Pórfido [2300 < d < 2900]	3,500	2600,0	1000
Granito [2500 < d < 2700]	2,800	2600,0	1000
Mármol [2600 < d < 2800]	3,500	2700,0	1000
Piedra artificial	1,300	1700,0	1000
Piedra pómez natural [d < 400]	0,120	390,0	1000
Roca natural porosa [por ejem. Lava] d < 1600	0,550	1500,0	1000
Silex [2600 < d < 2800]	2,600	2700,0	1000
Tierra apisonada adobe bloques de tierra comprimida [1770 < d < 2000]	1,100	1885,0	1000
Tierra vegetal [d < 2050]	0,520	2000,0	1840
Traquita andesita [2000 < d < 2700]	1,100	2350,0	1000
Acrílicos	0,200	1050,0	1500
Cloruro de polivinilo [PVC]	0,170	1390,0	900
Linóleo	0,170	1200,0	1400
Poliacetato	0,300	1410,0	1400

Poliamida [nylon] [PA]	0,250	1150,0	1600
Poliamida 6.6 [PA6.6] 25%fibra vidrio	0,300	1450,0	1600
Policarbonatos [PC]	0,200	1200,0	1200
Poliestireno [PS]	0,160	1050,0	1300
Polietileno alta densidad [HDPE]	0,500	980,0	1800
Polietileno baja densidad [LDPE]	0,330	920,0	2200
Polimetilmetacrilato [PMMA]	0,180	1180,0	1500
Polipropileno [PP]	0,220	910,0	1800
Polipropileno 25%fibra vidrio	0,250	1200,0	1800
Politetrafluoretileno [PTFE]	0,250	2200,0	1000
Poliuretano [PU]	0,250	1200,0	1800
Resina epoxi	0,200	1200,0	1400
Resina fenolica	0,300	1300,0	1700
Resina poliéster no saturado [UP]	0,190	1400,0	1200
Teja plástico	0,200	1000,0	1000
Cloruro de polivinilo [PVC] + 40% plastificante	0,140	1200,0	1000
Espuma de polietileno	0,050	70,0	2300
Espuma de poliuretano [PU]	0,050	70,0	1500
Espuma de silicona	0,120	750,0	1000
Espuma elastomérica-flexible	0,050	70,0	1500
Sílica gel [desecante]	0,130	720,0	1000
Silicona masilla	0,500	1450,0	1000
Silicona pura	0,350	1200,0	1000
Uretano o poliuretano [rotura de puente térmico]	0,210	1300,0	1800
Moquetas revestimientos textiles	0,060	200,0	1300
Subcapa fieltro	0,050	120,0	1300
Subcapa lana	0,060	200,0	1300
Cuarzo	1,400	2200,0	750
Sodocálcico [inc. Vidrio flotado]	1,000	2500,0	750
Vidrio prensado	1,200	2000,0	750
Placa de yeso laminado [PYL] 750 < d < 900	0,250	825,0	1000
Placa de yeso o escayola 750 < d < 900	0,250	825,0	1000
Placas de yeso armado con fibras minerales 800 < d < 1000	0,250	900,0	1000
Yeso, baja dureza d < 600	0,180	500,0	1000
Yeso, de alta dureza 1200 < d < 1500	0,560	1350,0	1000
Yeso, de alta dureza 900 < d < 1200	0,430	1050,0	1000
Yeso, dureza media 600 < d < 900	0,300	750,0	1000

Tabla 50. Valores de conductividad térmica, densidad y calor específico en función del material. Fuente: Empresarios Agrupados