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Valuation of an American Option for the Spanish
secondary reserve market using a Machine Learning

model
A. Malpica*

Abstract—This paper presents an original methodology to
compute a financial product that could enhance the demand
side participation in ancillary services, specially for industrial
consumers. The financial product consists in an american option
on the Spanish secondary reserve market for the following day,
where the buyer has the right but not the obligation to offer part
of its capacity to the system operator. Considering this approach,
an industrial consumer would receive an economic incentive to
offer its flexibility to the system without changing its production
planning, paying an upfront premium. The computation of the
american option is leveraged on a Monte Carlo simulation
approach where the random paths are obtained from a machine
learning model. The machine learning model attempts to forecast
the 24-hour secondary band prices of the following day using a
combination of different algorithms; the output of the model is
used as a baseline to perform the Monte Carlo simulation that
computes the option value.

LIST OF SYMBOLS

t, τ time - hour of the day
d day
T tenor of the american option, i.e. 24 hours
i index of the random path
I total number of random paths
g index of basis function
G total number of basis functions
βr coefficient vector of ridge regression
γ shrinkage parameter of ridge penalty
K strike - electricity valuation
αg,t coefficient of basis function g at hour t
Ŝt secondary band price prediction at hour t
St secondary band price at hour t
Yt error term at hour t
Xt feature vector at hour t
Zt logarithm of the error term at hour t
Wt input feature vector of the second layer at hour t
Vt option value at hour t
Vt,i option value at hour t for random path i
Vt+∆t,i simulated continuation value at hour t for random

path i
ht payoff of the option at hour t
St,i secondary band price at hour t for random path i
Ct continuation value at hour t
Ĉt,i estimation of the continuation value at hour t for

random path i
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Ĉ0 option value estimation
bg basis function of grade g
MAEd mean absolute error of day d

I. INTRODUCTION

T raditionally, in electric power systems, demand side
has been regarded as a passive agent without any

obligation to contribute to system reliability and operation.
Generators were responsible for supplying the demand, the
security of supply and the balancing services to cover demand
fluctuations, intermittent generation and network outages.

According to [1], demand side management (DSM) is aimed
to adapt energy consumption to improve overall electricity
usage and infrastructure efficiency through the implementation
of policies and methods that control electricity load. DSM
could be driven by energy efficiency and demand response
(DR) programmes; whilst the former refers to decrease the
amount of energy consumed to end products or services, the
latter attempts to shift in time end consumption in response
of external signals [2].

DR can be further broken down into price based and
incentive based programmes. In the former, a consumer is
responsible to manage its own consumption with regard to a
pricing mechanism that fluctuates according to real time cost
of electricity. On the other hand, incentive based programmes
are arranged to provide ancillary services or maintain the
security of supply in emergency or contingency situations,
through an established market or via bilateral contracts. In
these markets or contracts, the consumers provide the service,
but the load management is executed by a third party, e.g. the
transmission system operator (TSO) or an aggregator.

Notwithstanding, a detailed knowledge of potential
customers is required in order to implement successful DR
programmes. Therefore, technical studies regarding the end
use of electricity should be carried out to characterise the
demand and identify the flexibility and the suitable DR method
to apply. This emphasises the complexity in the demand
participation in electricity markets [3]. Due to this complexity,
the mainstream approach of DR research and application has
been to address small residential loads through aggregation
to achieve a significant volume that can impact on system
operation [4].

Industrial consumers are a promising target who can benefit
from DR programmes, due to the vast uptake of electricity. As
mentioned in [5], two criteria identify large industries with
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economic potential for DR: the total electricity demand and
the specific costs for energy. Consequently, electricity cost is
essential for these industries and they can obtain economic
benefits offering part of their flexibility in the electricity
markets or adapting their consumption profile according to
external signals. Within industrial consumers, there is a
cluster known as electro-intensive consumers; these industries
perform processes such as chemical production, steel and
non-ferrous metal manufacturing that require an intensive use
of electricity.

In [6], real examples of large industries performing DR
actions are highlighted. Several articles [7–12] aim to model
the flexibility contribution together with the computation of
possible economic benefits and the feasibility of the DR
programmes. All these studies stress the difficulty on assessing
the internal flexibility of industrial consumers, because a
detailed knowledge of the industrial process is required; in
addition, each electro-intensive industry must be analysed at a
time, and the effective DR programmes to be applied should
be adapted specifically. Hence, the feasibility of each DR
programme in the literature review is conditioned to a tailored
solution for the consumer.

Therefore, the objective of this paper is to propose a
general framework for a DR programme that could be easily
applied for any industry. Due to the difficulty to assess the
internal flexibility of industrial consumers, the proposed model
resorts to an external market vision. In this case, the proposed
solution consists in a financial option where the underlying
asset is the secondary band price of the Spanish electricity
system, reflecting the participation of the industrial demand
in this ancillary service. At the same time, the possibility
of exercising or not the option provides flexibility in the
operation for the industrial consumer. This paper is structured
as follow: Section II introduces the description of the financial
product. The methodology is presented in section III, where
the mathematical formulation and the machine learning model
used are described. Results of a case study are shown in section
IV. Finally, section V presents the conclusions of the study.

II. FINANCIAL PRODUCT DESCRIPTION

Typically, financial products are traded within electricity
systems between generation and demand agents who want to
hedge against uncertainty and volatility. A literature review
of derivatives in electricity markets [13–16] reveals that, large
consumers who need a fixed price for electricity can resort to
future, forward contracts or options to remove really high peak
prices that could reduce their operating margins; on the other
hand, retailers or aggregators can settle options to mitigate
consumers load deviations or significant forecasting errors that
yield economic losses.

The financial contract described here is settled on the
secondary reserve market between the Spanish TSO and a
large industrial consumer who is willing to participate in this
market. The secondary regulation is an ancillary service that
aims to guarantee the equilibrium between generation and
demand, and handles the deviations from real-time operation.
The secondary regulation consists on two products: up and

Fig. 1: Payments between the TSO and an industrial consumer.

down secondary band (capacity) and up and down secondary
energy (use). The focus of this study lies on the secondary
band while the secondary energy use is out of scope. The
secondary band is procured by the TSO on a daily basis;
for each hour of the day, the TSO defines different levels of
required band. The mechanism to determine which agents will
provide the secondary band is a market held one day before
delivery that is cleared marginally.

Though demand side is not currently allowed to participate
in this ancillary service in Spain, there are plans for a
future opening to these kind of markets, coming from EU
policies and directives [17], together with good experiences in
other countries. Then, the scenario suggested here proposes a
framework where industrial consumers can participate on these
ancillary services. The financial product, that could enable
demand side in general and large industrial consumers in
particular to contribute to system operation, consists of an
american option on this day-ahead secondary reserve market.
As a result, an industrial consumer can buy an american option
to offer part of its load on one hour of the secondary band
market. The american option gives the industrial consumer
the right but not the obligation to exercise the option at
any time up to the expiration date [18]. In this case, the
industrial consumer can allocate part of its demand on the
secondary band upon request of the TSO, at any time on
the 24 hours of the following day. Since the industry does
not have the obligation to exercise the option, inherently it
acquires flexibility to manage its production planning without
being subject to possible load shedding from the secondary
band deployment.

Two outcomes might result after the option arrangement,
with different payoffs for the counterparties. Figure 1
represents the payments direction of the two scenarios. In both
scenarios, the industrial consumer pays an upfront premium
to have the aforementioned right; this upfront premium is the
option value C that will be describe and compute later. This
payment prevents from a risk-free profit for the industrial
consumer. In Figure 1 a), the industrial consumer ends up
not exercising the option, thus not receiving any payment
from the TSO; this situation might happen when the industrial
manufacturing is prioritised rather than the possible revenue
coming from secondary band participation or the industrial
agent does not find economically attractive the hourly prices
of the secondary band after the publication thereof. On the
other hand, in Figure 1 b), the industry decides to exercise
the option because it finds more profitable allocating part of
its load on the secondary band and being exposed itself to
possible load reduction. As a result, if the industrial consumer
is capable to maintain the arranged load, the TSO will pay
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the industrial consumer P , which is the hourly price of the
secondary band times the amount offered by the industrial
consumer.

III. METHODOLOGY

This section introduces the methodology followed to
compute the aforementioned option value C. Since the hourly
secondary band price is the underlying of the american option,
the first step is to obtain a mathematical expression that
represents its behaviour. This behaviour will be driven by a
stochastic process that will help to further evaluate the option
through a Monte Carlo simulation.

A. Mathematical formulation

This section will obtain a expression for the hourly
secondary band price St. Most state of the art focus on
spot prices, as this is the basic and most common electricity
product, underpinned by the fact that spot prices exhibits
characteristics such as seasonal pattern, mean-reversion effect
and price spikes [19]. The stochastic process of the spot
price Pt is often represented as (1), where f(t) is a
known deterministic function of time and Qt is a diffusion
stochastic process such as a standard Brownian motion [20].
Modifications of this process can also be found in [21] and
[22], where the first study incorporates a mean-reverting with
jumps that represents the price spikes and the second study
adds an autoregressive model for the logarithm of the energy
price.

Pt = f(t) +Qt (1)

However, these models attempt to obtain an exact
mathematical equation that describes the spot electricity prices,
relying on the predictable component with the implication it
has for derivative valuation. In [20] the predictable component
is described exhaustively; the deterministic part is fitted as
a linear regression to try to capture the seasonalities of the
process as much as possible. In addition, the stochastic process
is discretised following an autoregressive model of order 1.

Three issues might arise if this kind of approach is followed
to obtain the secondary band price model. First of all, these
model have been derived from spot electricity prices, and in
this study, the price to forecast is the secondary band, whose
market is governed by different mechanisms and the behaviour
of the agents might change. Then, the deterministic component
could be very biased, since it just tries to identify the seasonal
pattern through a linear regression looking at the kind of
day and the calendar month, leaving aside possible electricity
system variables that could enhance the prediction. Finally,
considering that the electricity prices for the secondary band
are obtained via an auction for the 24 hours of the following
day; this modeling could not be applied as there would be
a lack of information, e.g. in order to predict the price for
the hour seven of the following day, the price of the hour six
must be available and all prices for the following 24 hours are
cleared simultaneously.

The proposed model relies on a Machine Learning (ML)
algorithm that predicts the values of the hourly prices of the

secondary band for the following day. The ML algorithm
structure and the used data are described in detail in the
following subsection. The ML model is trained to forecast
St, for the 24 hours of the following day.

As the outcome of the model is a single value for each
hour, the stochastic process disappears using this technique;
notwithstanding, the ML approach has an inherent error that
can be used to restore the stochastic process that will be
required to perform a Monte Carlo simulation.

Let St be the hourly secondary band price and Ŝt the
outcome of the model, the error of the model can be
represented as (2), where Yt is the error term. A logarithmic
transformation is applied to both sides of the equation. (3)
shows that the output of the ML model is a function of
Xt, being Xt the vector of features that enters into the
model; subsequently, the ML model finds a suitable function,
f(·), that maps the input data to the output value, while
minimising the error between the prediction Ŝt and the true
value St. Moreover, changing Ln(Yt) for Zt, rearranging (2)
and combining with (3), the desired mathematical expression
for St is represented in (4).

St

Ŝt
= Yt

Ln

(
St

Ŝt

)
= Ln(Yt)

(2)

Ŝt = f(Xt) (3)

St = f(Xt) · eZt (4)

This equation may be quite similar to that presented in (1),
however, here the deterministic part is obtained through a ML
model that has no so easy interpretation as detailed in [20].
Furthermore, the hypotheses behind the ML approach assume
that the errors in the model are independent and identically
distributed from a normal random variable with mean zero
and variance σ2.

B. Machine learning algorithm

Machine learning can be defined as a set of methods that
can automatically detect patterns in data, and use the covered
patterns to predict future data or perform other kind of decision
making, such as classification. The type of ML model used
in this study corresponds to a supervised learning, where the
underlying statistical model uses a set of inputs with its related
outputs as examples to learn patterns in data that allow it to
predict accurately the output of future examples, for which
their results are not known [23].

Typically, in regression problems, an objective function to
minimise the difference between the true output of the data and
the predicted output from the model is used in order to ensure
the model adjusts well to the data. The group of data used to
learn the patterns is called the training set, and the result of the
cost function is known as training error. However, an undesired
effect might arise if the model learns too much, meaning that
the model adjusts excessively to the known output of the data
that it does not generalise well when future data are predicting,
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Fig. 2: Structure of the Machine Learning model for the Secondary band prediction Ŝt.

yielding a very poor performance or test error, which is the
result of the cost function applied to new observations that the
model has never seen; this effect is known as overfitting.

In order to avoid overfitting, a cross-validation (CV)
technique must be carried out to ensure the model generalises
properly. CV is a mathematical method that can estimate the
test error by removing a group of samples from the training set,
train the model on the remaining set and predict on the hold
out set. There are different CV techniques that can be applied,
however, given the characteristics of the problem, i.e. it can
be seen as a time series problem, the CV technique consists in
training the model up to a certain day, then predicting on the
following day, checking the model performance on the test and
repeating this process adding the samples of the following day.
Hence, the CV can be seen as training on a rolling window
that extends up to each new day, as new examples come from
the secondary band market.

Figure 2 represents the ML structure. The input data comes
from historical records of the Spanish TSO [24]. Three
different ML algorithms (a LGBM, a random forest and a
k-nearest neighbours) are trained with the data, and each
outcome thereof is finally combined with meta-data (hour
of the day, and day of the week) and used to trained a
linear regression with ridge regularisation. This final layer
yields the hourly secondary band price prediction. Below, a
brief summary of the input data, the ML algorithm and the
american option valuation process are highlighted for a better
understanding of the model.

1) Input data: Since, this study has an objective to forecast
the secondary band price for the following day, real data from
electricity Spanish system are obtained on a hourly basis.
Notwithstanding, the model can be always update up to a new
date due to each day, new observations can be incorporated
into the model. A combination of raw hourly observations
and some feature engineering (values of the previous hour,
values of the same hour for the day before, moving averages)
is carried out to define the vector Xt of features; a detailed
list of all inputs can be found in the Appendix. The length of
the vector Xt is 85, meaning that the algorithms have to deal
with 85 different inputs variables for each observation.

2) ML algorithms: The collected data are preprocessed and
fed in the three aforementioned ML algorithms, that composed
the first layer of the model. These algorithms receive the same
input, however each one deals with the data in a different way,
producing an estimation of the hourly secondary band price.

These three models [25–27] are standard in the industry, and
all packages used are open source.

Due to the distinct behaviour of each algorithm, the
performance of every model might produce different
predictions regarding the secondary band price. A direct
aftermath of using different models in the same data set is that
one model can perform well under certain conditions, yielding
a good prediction for some observation and for the same
conditions, another model can perform worse, diverting from
the true output reasonably and vice versa. Thus, combining
the outputs of all models into another model might increase
the overall performance; this technique is known as stacking
[28].

A linear regression is used as the model in the final layer.
The ridge name refers to an additional penalty that is included
to the objective function, as shown in (5), where Wt is
the input feature from the first layer, γ is a non-negative
parameter that reduces the weight of the coefficient and || · ||2
is the euclidean norm. Another interesting effect, is that the
coefficient vector βr does not depend on time, i.e. the model is
trained to yield a coefficient vector that generalises regardless
of the hour to predict, giving a robust model.

min
βr

||St −Wtβr||22 + γ||βr||2 (5)

C. American option value

Now, the ML model is able to generate the desired
prediction of the hourly secondary band price for the following
day, Ŝt. In (4), a stochastic process takes place through Zt;
thus, a Monte Carlo simulation allows to valuate the american
option for the industrial consumer. The value of an option is
the discounted expected payoff under the risk-neutral measure;
for simplicity, no risk-free rate has been assumed, resulting the
option value in just the expected payoff.

The value of the american option can be stated as (6), where
V0 is the option value at time zero, E0(·) is the expected value,
Sτ is the secondary band price at time τ , and hτ is the payoff
of the option at time τ , that is represented in (7), being K,
the strike value. T is the total time that the window of the
american option is opened, i.e. 24 hours in this study, and τ
is each one of the possible hours in which the option can be
exercised.

V0 = sup
τε{0,∆t,2∆t,...,T}

E0(hτ (Sτ )) (6)
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ht(St) = max(St −K, 0) (7)

The option value problem becomes an optimal stopping
problem. The algorithm used to solve this problem is called
Least-Squares Monte Carlo [29]. It can be shown that the
american option value at any point in time is the maximum
between the payoff in that moment and the continuation value
(8), being the index level of the secondary band price s.
At any possible exercise time, the buyer of the american
option can compare the immediate exercise of the option,
with the expected payoff for not exercising the option now,
and continuing to keep the option alive. This conditional
expectation (9) can be estimated from the cross-sectional
information that the simulation provides.

Vt(s) = max(ht(s), Ct(s)) (8)

Ct(s) = Et(Vt+∆t(St+∆t)|St = s) (9)

Assuming that the simulation has I paths of the underlying
over T time intervals of equal size ∆t . Vt+∆t,i is the
simulated continuation value for path i at time t; however, this
number cannot be used due to the perfect valuation foresight
it would mean. Instead of this number, the cross-section of all
simulated continuation values can be used to approximate the
expected continuation value by least-squares regression.

Consequently, the least-squares optimisation can be stated
as (10), where the continuation value is estimated as Ĉt,i =∑D
d=1 α

∗
g,tbg(St,i), being bg a set of basis function (e.g., g=2

implies the square value of St,i) and α∗g,t, the solution obtained
from the minimisation problem.

min
α1,t,...αG,t

1

I

I∑
i=1

(Vt+∆t,i −
G∑
g=1

αg,tbg(St,i))
2 ∀t (10)

Generally speaking, the Least-Square Monte Carlo approach
can be synthesised in the following steps:

1) The I random paths are computed for the 24 period.
2) Starting from the last period, the expected payoff of

immediate exercise and the estimated continuation value
are compared and kept the maximum of both.

3) This process is repeated backwards, and for each hour,
the continuation value Ĉt,i is estimated using the
cross-section information.

4) The option value can be calculated averaging all random
paths, that is, using the Monte Carlo estimator, as shown
in (11).

Ĉ0 =
1

I

I∑
i=1

V0,i (11)

This option value Ĉ0, is the premium that the industrial
consumer will be willing to pay upfront in order to hold the
american option. It has to be noted that the option value is
strongly dependent of the secondary band price (in this case
the estimation resulted from the ML model) and the strike K.
Each industrial consumer has an intrinsic electricity value that
depends on the industrial process performed. However, this

intrinsic value relies on several factor that may be difficult to
take into account. As a result, every industrial consumer will
have a different electricity valuation, represented here as the
strike K, as the strike might stand for the payment that the
industrial consumer will have to receive in order to reduce one
unit of electricity energy.

IV. CASE STUDY

In this section, the case study is presented together with
the results obtained. First a brief explanation of the case
study considered is introduced. Then, the results are explained.
Finally, several examples of the american option valuation are
shown.

A. Case study description

As it has mentioned before, the case study is carried out for
the Spanish electricity system, particularly for the deployment
of an american option based on the secondary reserve market,
where the capacity band is cleared and assigned on a daily
basis, resulting in a price signal in EUR/MW for each one of
the hour of the following day.

A list of the main input variables used in this study can be
seen in the Appendix. The length of the observed period is
from January 1, 2016 until April 29, 2017. As the model is
trained to predict on a daily basis, the input data is fed until
the desired day to predict. The first predicted date corresponds
to January 31, 2016; so, for the first prediction a set of 30 days
is hold as training set. As time goes by, new input dates can
be incorporated into the model, hence, for April 29, 2017 all
previous dates are fed into the model as examples to train. With
the forecasts obtained from the ML model, the american option
can be computed, meaning that for each day an american
option can be evaluated.

B. ML model accuracy

The ML model must be validated in order to confirm that the
model works properly and it yields a good approximation of
the secondary band price. As it has been mentioned before, the
CV strategy followed lets to check for each day which is the
precision of the model. The model performance is evaluated
through the mean absolute error (MAE) on a daily basis, as
shown in (12). For each day d, the model predicts without
knowing the true output of the secondary band price; once the
hourly secondary band price are published, the performance
can be tested through the error achieved.

MAEd =
1

24

24∑
t=1

|St − Ŝt| ∀d (12)

Considering that each one of the proposed algorithms looks
at the same target (secondary band price), the previous error
assessment can be done for the four algorithms; this also
highlights the fact that the stacking procedure yields a lower
error rate, turning into a higher accuracy. Figure 3 shows the
daily MAE obtained for all days predicted by the model. It
can be seen that the MAE decreases as the entire model has
more data to learn, as the new daily observation are added
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Fig. 3: Daily mean absolute error obtained from the different
algorithms.

to the training set. In addition, the model with the lower
average rate is the stacking, followed by the LGBM, showing
less oscillations, thanks to the contribution of the models on
the previous layer. The almost negligible difference between
the LGBM and the stacking reflects that this is the model
leveraging the bulk of the stacking model.

Regarding that the main objective of the ML model is to
predict the hourly prices of the secondary band market, then it
is mandatory to check how well the ML model output seems
to the market prices. For this purpose, Figure 6 shows the
real market prices of the secondary band, together with the
daily out-of-sample predictions that the ML model generates.
It can be seen that the predictions resemble fairly to the
secondary band pattern, i.e. the ML model understands the
hidden patterns of the band and is able to produce a prediction
with some confidence interval around the true secondary band
price.

Obviously, the predictions are not 100% accurate and they
would not match exactly the secondary band even with the best
possible model, as the statistical modelling assumes always
an irreducible error that cannot be removed. Having a similar
pattern of the secondary band market is enough for this study,
because of the later Monte Carlo simulation approach will
generate a lot of random paths obtaining an expected value
from them. Henceforth, the true secondary band price will be
embedded among all random paths.

C. Option valuation

Once the accuracy of the ML model has been demonstrated,
the american option valuation has to be computed. The length
of the simulation is fixed to 24 hours, as the american option
can be exercised during the whole following day. Since a very

large number of random paths increases the accuracy of the
option value estimation at the expense of higher computational
requirements, 100,000 independents random paths have been
selected. Finally, 3 are the number of basis functions used to
estimate the continuation value of (10).

Figure 4 - 5 represent the Monte Carlo simulation
performed, together with the option value obtained for two
different days. On the upper graph, the blue line represents
the output from the ML model, while the green line is the
real secondary band prices resulting from the market; the gray
lines are just a 10% of all random paths computed. On the
graph below, the option value is calculated for different strike
levels using the aforementioned Least-Squares Monte Carlo
algorithm; therefore the curve represents the option value, i.e.
the upfront premium that the industrial consumer will have
to pay in order to hold the american option, for different
strikes level, where, again the strike level can be viewed as
the intrinsic electricity value.

On average, the estimation of the secondary band price
from the ML is close to the true output, resulting in a good
approximation for the expectation of the random paths, leading
to a reliable american option valuation. Regarding the option
value - strike curve of the different american options evaluated,
it can be seen that both exhibit a similar behaviour. For very
large strikes prices (electricity valuation) the american option
value is zero; as the strike starts to reduce, the american option
value tends to increase until reaching almost a straight line
trend, crossing an elbow area. This elbow area usually starts
around the highest value of the prediction from the ML model,
however the shape of the entire curve depends on the generated
random paths.

These option value - strike curves can be used as a quick
visual tool to determine if it results valuable to enter into the
financial contract of the american option; for a given strike,
the premium is almost immediate to obtain and vice versa.
The curves are computed with forecasts that are underpinned
by real market data, thus, all insights that could be drawn
rely on market side information instead of the limited and not
scalable information that could be derived from an industrial
load study, that could not be replicated easily.

Considering the utilisation by the industrial consumers,
which are the group of interest in this study, it makes sense,
that for those industrial consumers with a very high electricity
valuation (essential implication of electricity in their process
and intensive costs too) the upfront payment of the option
would be zero, since just participating in this market with
the cleared prices yields an economic loss for this group.
Notwithstanding, those industrial consumers with a large
utilisation of electricity but a cheaper electricity valuation,
have an opportunity to exercise the american option and
receive the secondary band market price, resulting in a possible
profitable situation; though the profitability will depend on
further events that are out of scope of this study.

Also, this option value-strike curve can be interpreted as the
upfront payment that the industrial consumer would have to
pay in order to be hedged and end in a zero profit situation.
If an industrial consumer had an electricity valuation of K,
assuming that the industrial consumer would be curtailed 1
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Fig. 4: Monte Carlo simulation and Option value against strike -
2017-03-31

MW of electricity during one hour, this K would represent the
amount lost by the consumer, therefore it would be willing to
receive at least this amount K to participating in the secondary
reserve market to end without economic losses in case of the
TSO would deploy its load. Regarding the curves and also
the output from the ML model, it can be seen that the option
value is almost zero for strikes values higher than the largest
value of the ML output. This seems reasonable as for these
high strike values, the industrial consumer will be unable to
recover the possible cost due to a load reduction performed
by the TSO. In addition, the option value is not zero at the
peak value of the estimation, and it always presents an extra
charge that would avoid to the industrial consumer to turn out
in a risk-free profit situation.

V. CONCLUSION

An innovative methodology to value an american option for
the Spanish secondary band market has been proposed in this
study. After carrying out the required calculations to end with
a solution and analysing it, several conclusions can be drawn,
which are stated now.

The new approach proposed here lies on an existing market
point of view. Instead of developing a tailored solution that
accounts for the flexibility of the consumer, the stated solution
consists in a general framework where the flexibility of the
industrial consumer is considered and can be integrated in the
system operation. For that, each large industrial consumer will
have to perform an internal audit of its processes to find where
they have this flexibility and if it is feasible to deploy it on a
daily basis or coinciding with a maintenance stop.

Fig. 5: Monte Carlo simulation and Option value against strike -
2017-04-02

The advantage lies on that any industrial consumer can
know quickly the upfront premium, based on its electricity
valuation, that would have to pay in order to hold the american
option, and accordingly to this price decide whether to settle
the financial contract, enabling the TSO to consider a possible
load reduction coming from industrial consumers.

Consequently, the option value-strike curves shown in
Figures 4 - 5 provide information and insights for both
industrial consumers and the TSO. Industrial consumers can
obtain the lower bound of the price they would be willing
to offer based on their electricity value, as the option value
represented can be seen as a benchmark. On the other hand,
the TSO can anticipate the revenues it could receive via selling
the american options to the industrial consumers.

The american option valuation is underpinned by a ML
model whose output is the forecasting of the secondary reserve
market prices for the following day. It has been proven that
the model predicts the secondary band market pattern similar
to the true market prices, however the model does not predict
exactly the same prices due to the irreducible error of the
underlying statistical model. The ML model is robust, as the
mean absolute error accumulated since the first predictions
until the last validation day is 3.813 EUR/MW, meaning that
on average the model tends to over or underestimate the price
in that quantity. Another advantage of the ML model is that it
performs better as more observations and samples are included
in the pipeline to predict, i.e. more days.

Finally, the american option valuation shows that the
resulting option value is such the industrial consumer could
end in a zero profit situation, as it was used as a hedge
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Fig. 6: Secondary band predictions Ŝt and real secondary band market prices St.

instrument. However, more analysis must be carried out to
take into account the potential benefits for the counterparties;
those analysis should include the possible deployment of the
industrial load by the TSO, assessing the profit and loss for
the industrial consumer with the subsequent payments that the
TSO should make; also a cost and benefit analysis for all
agents involved in the system if this kind of financial product
is incorporated to the system operation.

Beforehand, it seems that keeping both the industrial
demand and traditional generators in secondary reserve might
result in a cost overrun for the system; however the analysis
of different scenarios should underpinned the deployment of
this solution or not. For example, if an industrial consumer
has paid the option, but it does not exercise it, this supposes
an earning for the TSO that could reduce system cost; another
situation would be prioritising the use of the demand from
industrial consumers participating in this service, as it would
avoid increasing generation from conventional power plants,
with the environmental benefits it brings together with the
savings from replacing tertiary reserves. In the end, further
analysis and improvements must be carried out thoroughly,
because this framework can be replicated and applied for
other agents that could be interested in this product, such as
aggregators or even generators.

APPENDIX

Here, the variables used to define Xt for the ML model are
presented. Table I contains a list of the raw variables obtained
from the Spanish TSO; in addition, a feature engineering
process has been performed and for each hourly sample
observation, the following variables are included when it is
possible as inputs. PVP stands for daily provisional feasible
programme.

1) The same variables of the previous hour (-1 hour).
2) The same variables of the previous day at the same hour

(-24 hour).
3) The moving average value of these variables during the

last 24 hours.

TABLE I: Base input variables for the ML model

Variable Description

band Secondary band price
spot Spot price for the following day (Day-ahead

market)
coal Coal generation from PVP
ccgt Combined cycle gas turbine generation from

PVP
wind Wind generation from PVP

nuclear Nuclear generation from PVP
solar Solar generation from PVP

hidraulic Hidraulic generation from PVP
installed hidraulic Hidraulic installed capacity

installed coal Coal installed capacity
installed ccgt Combined cycle gas turbine installed

capacity
demand Programmed demand from PVP

programmed demand Programmed demand forecasted by the TSO
one day in advance

spot energy Energy cleared in the day-ahead market
forecasted wind Forecasted wind production by the TSO
forecasted solar Forecasted solar production by the TSO

france Net exchange with French interconnection
from PVP

portugal Net exchange with Portuguese
interconnection from PVP

morocco Net exchange with Moroccan
interconnection from PVP
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