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ABSTRACT

In the context of their daily operations, energy utilities have to manage the risk related to power
and gas activities. In this context, it is necessary to develop tools which can help to decide at
what price the company should enter into different products and how can market prices affect

the performance of the utility.

In this thesis, a flexible Monte Carlo evaluation tools has been implemented in MS Excel. The
software is equipped with various price models, such as Geometric Brownian Motion, Vasicek

and ARIMA, which can help predict the dynamics of the spot prices.

A study of the suitability of the GBM and Vasicek price models has been carried out for spot
power and gas markets, having obtained better results the GBM model for gas markets and the

Vasicek model for power markets.

Strong emphasis has been made on the valuation of Asian options with the Monte Carlo model,
offering a comparison of the prices determined with the three spot price models together with
the Vorst approximation. Very consistent results have been obtained for the valuation of caps
and floors with the Vasicek and ARIMA, comparing the actual payoffs which would have

delivered these options during past periods, and improving the Vorst benchmark pricing.

Finally, the Monte Carlo tool has been employed to offer risk indicators such as Mark-to-

Market and Value at Risk.
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1. INTRODUCTION

1.1 Motivation

On its daily basis, the energy utilities have to take decisions oriented to manage the risk related
to their power and gas activities. The aim of this project is to develop in two stages, contract

valuation and risk analysis tools.

The resulting tools should serve the company to take decisions on its power and gas activities
and to assess the value and the risk of its portfolio of contracts. Different methodologies are
assessed for this purpose: Monte Carlo procedures with naive and antithetic approaches have
been developed in MS Excel. Different econometric price models have been created such as

GBM and Vasicek in MS Excel or ARIMA in R software.

1.2 Objectives
The main objectives of the master thesis are:

- Development of option valuation models based on different spot price generators for power

and gas, determining their fair value.

- Develop a flexible and user-friendly software to compute the price of the contracts and

suitable risk metrics in order to manage the risks of a contract.

- Allow to assess the risks of a trading position.

1.3 Structure

This document is organized as follows. Chapter 2 describes the main features of energy trading,
and describes briefly power and gas markets and the main price drivers for each commodity.
In chapter 3 are reviewed the main concepts of risk management, and different products to
hedge this risk, as well as the methods to valuate these instruments. In Chapter 4 are presented
the steps followed to develop the software, as well as the valuation methods to assess the risk
of entering into option contracts. In Chapter 5, the suitability of spot prices models is assessed

as well as the results of the option valuation methods, as well as the VaR and CVar calculations.
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Chapter 6 summarizes the conclusions and Chapter 7 contains the annexes, which explain

further the obtention of the ARIMA models and detail the code employed.
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2. INTRODUCTION TO ENERGY TRADING

2.1 Commodities

Oxford Dictionary defines ‘commodity’ as a “raw material or primary agricultural product that
can be bought and sold, such as copper or coffee” (Oxford). However, this definition seems to
leave out many products which are widely regarded as commodities. This is the case for
materials such as oil or energy commodities as power and gas, which do not fall into one of the
categories specified in the definition. Nowadays, even greenhouse gas emissions are considered

as commodities.

In economics, commodities are considered all those goods and services which are assumed to
have essentially uniform quality independently of the producer (Investopedia). Therefore,
several types of commodities can be identified, such as energy, agricultural crops, livestock or

metals.

Commodities, being a central part in human life, have been traded since ancient times. During
Bronze Age, trading in metals such as bronze, gold and copper occurred in the Mediterranean
Basin and Asia Minor (Cartwright, 2012). Due to the difficulties in transport and high

delivering times, natural forward markets arose for agricultural crops and metals.

In 1848 commodities trading became first formally established with the creation of the Chicago

Board of Trade (CBOT). But it was not until 1864 that the CBOT standardized future contracts.

More recently, the need for risk hedge promoted the development of these markets, creating
new products, techniques and clearing schemes. In the 1970’s, thanks in part to the

development of computers, the derivative markets appeared worldwide. (Realmarkits)
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2.2 Energy trading

During much of the 20" century, electricity utilities in nearly every country had the form of
integrated monopolies. They were in charge of all the activities related from generation to
supply to customers. Energy trading became relevant after the 1973 oil crisis, when derivative
markets appeared (Millan, 1996). Later, other electricity markets were created with the start of
the liberalization process in Chile and UK in the 1980’s, and in many other countries
afterwards. The liberalization in the natural gas sector and especially the development of well-
functioning markets has taken more time especially in Europe. Until recently, some European
markets were not considered to be liquid enough, leading to unstable prices that encouraged
parties to take shelter on indexations of other commodities, mainly Brent. In recent years, there
has been an increasing trend to move towards TTF or NBP indexations, as they are the most

liquid hubs in Europe.

Among the most recognized energy markets are the CME group, and Intercontinental Exchange
(ICE). The CME group operates the NYMEX (New York Mercantile Exchange) market, as
well as other non-energy markets such as CME (Chicago Mercantile Exchange) and CBOT

(Chicago Board of Trade), which focus mainly and agricultural financial products.

NYMEX most famous commodities are WTI crude oil and Henry Hub natural gas, which are
references in America of the respective commodities. ICE Brent is the reference in Europe for

crude oil.

13



2.3 Power markets

2.3.1. Introduction

Since the discovery of the principles of electromagnetic induction by Michael Faraday in 1831
and the creation of the modern electric utility by Thomas Edison in the late 19" century, the
efforts to create, develop and modernize the electricity power sector have never ceased. In the
early days, electricity was generated and sold locally, much in part to the low power capacity
of the electric generators at the time. The benefit of the economies of scale played a big role in
the improve of technologies and the power lines, boosting the possibilities of selling electricity

to the reach places located far from the generating plants. (UT Austin)

The integrated monopoly scheme that was predominant in all European countries during most
of the 20™ century helped creating advanced transmission systems to supply energy to remote
places. However, state investment has historically been much smaller in the lines
interconnecting countries. While private investment has helped renew electricity assets
especially on the generation side, electricity networks have continued being regulated as a
monopoly due to the inefficiency of creating competition in this area. Besides, the concerns of
exporting countries of the fact that expanding interconnection capacity could elevate prices for
their national consumers, along with the usually problematic agreement of the share of network
investment costs and revenues, has lead in many cases in Europe to independent national power
markets with limited capacity interconnection. In the last years, there have been strong
initiatives in the European Union to move towards a single electricity market. While it is not a
reality so far, there have been major advances in regional integration, leading to several

electricity transnational markets, being the most important Nord Pool and EPEX.
i ‘ ‘
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ltalia-Eslovenia [
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Figure 1: Regional electricity markets in the European Union (REE)
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Nord Pool is an electricity spot market created in 1993 which performs operations in nine
European countries. First established in the Scandinavian countries, it later expanded to the
Baltic countries, and recently incorporated Germany and the United Kingdom. It is the largest
electricity market in volume traded in Europe. It has been appointed as Nominated Electricity
Market Operator in 15 countries, including Poland and those currently operated by EPEX, with

the aim of increasing integration in the market operations. (Nord Pool)

EPEX is currently the second biggest electricity spot market in Europe. It operates in Central
West European countries, including France, Germany, Austria, Switzerland and Luxembourg.
EPEX is currently owned by APX, which itself operates the electricity markets in Netherlands,
Belgium and the UK. The future and derivatives platform in all these countries in Central and

Northern Europe is the European Energy Exchange (EEX).

| Figure 2 Coverage of energy trading by the main exchange platforms

Mo main exchange [l EEx+ MIBEL i
EEX ¥/ EEX+MNASDAQ . / 74

L

B B EEX+ICE +NASDAQ. 23
PXE

B eex+ice

Biz- JEE /%

//j//,/

BN - o
\ %

|

%

@
7,
%“'f

’
U

Figure 2: Coverage of energy trading by the main exchange platforms (ECA, 2015)

The Iberian Peninsula market, MIBEL, also has its operations divided, being the spot market
(OMIE) in Spain and the derivatives and futures markets in Portugal (OMIP). It was in 2007
when the operations between Portugal and Spain started being performed jointly, by using the
market splitting mechanism. This technique consists in consider as a single market both

countries in case that the interconnection capacity is not saturated. Otherwise, the two countries

15



are treated as separated markets and there are differences in prices (MIBEL, 2009). According
to OMIE, in 2014 the price was the same in both countries for 90% of the hours. There are
financial auctions on interconnection rights, which allow to perform trading of the spread

between the prices of both countries.

Since 4 February 2014, a market coupling technique, Price Coupling of Regions (PCR), was
implemented in the NWE and SWE regions, allowing to efficiently manage the interconnection

capacity. As of today, the PCR algorithm couples the prices of 24 European countries.

- Markets using PCR: MRC

[ Markets using PCR: 4MMC
Markets PCR members
- Independent users of PCR

[:] Markets associate
members of PCR

Figure 3: Countries using PCR algorithm (PCR)

2.3.2. Fundamentals of the Spanish electricity market

Spain’s electricity market, as the rest of the EU power markets, is based on marginal pricing,
receiving all dispatched power units the marginal bid of the most expensive plant which is
allowed to produce. The marginal bids of each plant, due to economic theory, is very similar
to the variable costs of the power units. This allows the generators to recover their variable
costs and an important part of the fixed costs. To guarantee security of supply, technology-

discriminatory capacity payments are made to generators.

In the Spanish market, there is a high percentage of non-manageable renewables. In 2016, wind
energy alone generated 19.3% of the total generated power in Spain. Other non-manageable

renewable production came from solar PV (3.1%), thermal solar (2.1%) and run-of-river hydro

16



power plants (REE, 2017). These plants generally bid at very low or even zero prices as their
variable costs are very low. In Spain there are also 7573 MW of nuclear plant capacity which
usually offer at zero prices when available in order to avoid stops that are not profitable due to
their lack of flexibility in production (REE, 2017). As to reservoir hydroelectric power plants,
their strategy consists in using the water in periods where the marginal prices are higher.
Discounting the production of these technologies from the demand yields the so-called thermal
gap, the part of the demand that has to be covered with fossil fuel power plants. Due to lower
coal prices with respect to natural gas in Spain and low carbon emission prices in the EU in the
last years, the variable cost of coal plants is usually lower than the variable cost of natural gas
power plants, thus making coal precede CCGTs in the merit order for dispatch. The marginal
cost in the Spanish power system is usually set by coal or natural gas power plants, depending

mainly on the demand and the renewable production.

It is therefore observable that the main variables which explain the electricity prices in Spain
are the cost coal and natural gas and the thermal gap. This last variable is affected by several
factors including renewables production, yearly hidraulicity and availability of power units,

especially nuclear.

2.3.3. Evolution of the Spanish electricity prices

Since 2012 the Spanish electricity mix has barely changed, due to several reasons. First, these
years there has been system power overcapacity with respect to national demand, after its
drastic decrease during the financial crisis which hit Spain severely between 2008 and 2015.
As a consequence, there has not been more space in the electricity mix for new nuclear, gas
and coal plants. Regarding renewables, the approval of the RD Law 1/2012 eliminated all the
subsidies in their installation from 2012, which led to a stop in investments in these

technologies in Spain.

However, in order to comply with the 2020 European energy objectives several auctions for
installation of renewable technologies have taken place in 2016 and at the beginning of 2017,
or are planned for the next months. The January 14, 2016 auction allowed the installation of
500 MW of wind energy installed capacity and 200 MW of biomass energy. The May 17, 2017
auction allowed the installation of 2,979 MW of wind energy, and there is another auction for

3,000 MW of renewable power which will take place in 2017. Therefore, in the following years,
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there will be an increase in renewable installed capacity when these new installations are

completed.

Regarding coal plants, on April 28, 2017, a committee of Member States agreed setting stricter
limits for NOx and SOx emissions, to be applied from 2021 (Wynn, 2017). This will force most
of the plants to either invest especially in denitrification systems or be withdrawn from the
power system. In Spain, some coal power plants are expected to be shut down. Endesa has
shown intentions of closing Compostilla (1,200 MW) and Teruel (1,102 MW) and make
investments in As Pontes (1,468 MW) and Litoral (1,159 MW). It will also shut down Anllares
(365 MW) and install denitrification systems in La Robla (655 MW), both shared with Gas
Natural Fenosa. EDP has installed denitrification systems in Abofio (916 MW), and plans to
do so in Soto de Ribera (600 MW) although reducing their capacity. Viesgo has also concluded
with the intention of expanding Los Barrios (589 MW) lifetime to 2030. In total, there are
expectations of removal of at least 3256 MW from the Spanish mix, however this could change
if the Government grants subsidies to the necessary investments to survive after 2020. Other
power plants for which there is higher uncertainty have not been mentioned. Therefore in the

near horizon there can be important changes in the electricity mix. (REE, 2013) (Sources: news)
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Figure 4. Installed power capacity and renewable production in Spain 2007-2016 (REE, 2017)

The dynamics of the prices reflects how much Spain’s power spot prices depend on renewable
production. 2013, 2014 and 2016 were with high renewable production, mainly due to
hydroelectricity and wind. These average price in these years were 44.25 €/ MWh, 44.12
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€/MWh and 40.32 €/ MWh, respectively, with periods of prices below 306/MWh especially in
spring. On the other hand, renewable production was shorter in 2012 and 2015, contributing to

higher average prices of 47.23 €/ MWh and 50.32 €/ MWHh, respectively.
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Figure 5: Spot electricity prices in Spain (Thomson Reuters)
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2.4 Gas markets

2.4.1. Introduction

Natural gas is a gaseous fossil fuel primarily consisted by methane (CH4). It can also contain
quantities of other hydrocarbons, such as propane and butane or even non-hydrocarbons.
According to the IEA, in 2014 natural gas represented 21.2% (2,904.2 Mtoe, approximately
3,226.9 bcm) of total primary energy supplied (13,669 Mtoe), being the third energy source
only after oil (31.3%, 4287.7 Mtoe) and coal (28.6%, 3917.4 Mtoe). (IEA, 2016)

In 2015, the main natural gas producers were the United States (767.3 bcm) and Russia (573.3
bem). Other important producers are some MENA countries, mainly Iran, Qatar, Saudi Arabia
and Algeria; as well as China, Norway, and Turkmenistan, all with quotas below 200 bem. (BP,
2016)

The main natural gas exporters are Russia (192 bem in 2015, mainly though pipelines), Qatar
(115 bem, mainly by LNG) and Norway (115 bem, through pipelines and LNG). The exports
from the three countries amounts more than half the world exports (50.8%). The biggest natural
gas importers are located in the developed Far East countries, mainly Japan, China and South

Korea, as well as in the European Union. (IEA, 2016)

In the past years the development of the sector of Liquefied Natural Gas (LNG), which allows
to transport gas to far destinations, has caused a decrees in its prices, establishing competition
with gas transported through pipelines, especially in Europe. Qatar is the LNG global leader,
producing almost one third of LNG worldwide. There are other important suppliers on nearly
any continent, such as Australia, Malaysia, Nigeria, Trinidad and Algeria. On the other hand,

main importers are the Far East biggest economies as well as the UK and Spain in Europe.
(Figure 6)
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Figure 6: main LNG exporters (left) and importers (right) in MT in 2015 (IGU, 2016)
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In the past decade, the development of the unconventional gas industry mainly in the United
States and Canada has had a several impact in the world natural gas market structure. This has
allowed the US to become a net exporter, while it depended heavily on imports from Canada

historically.
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Figure 7: Historical and forecasted unconventional gas production in the US. (US EIA, 2017)

Three world zones can be distinguished from the supply and demand analysis: North America,
European countries and Far-East Asian countries. The main references for natural gas each

zone are Henry Hub, in USA; NBP in the UK or TTF in the Netherlands and JCC, in Japan.
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Figure 8: Prices in the reference worldwide hubs 1998-2015 ($/MMBtu) (BP, 2016)
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2.4.2. America

In 2015, production in North America summed 984.0 becm in North America (767.3 bem in the
US, 163.5 becm in Canada and 53.2 bem in Mexico). Total consumption in North America
accounted for 963.6 bem (778.0 bem in the US, 102.4 bem in Canada and 83.2 bem in Mexico),
thus being the supply very balanced with demand in the region (BP, 2016). The recent
development of the shale gas industry in the US and Canada along with the limited liquefaction
capacity has caused the Henry Hub price, the reference natural gas benchmark in the United
States, to have dropped at certain periods even below 3 $/MMBtu. This is a major decrease
from the price spike above 13 $/MMBtu in spot price after hurricane Katrina (August 2005)
and the prices around 7 $/MMBtu which were common between 2006 and 2008.

2.4.3. Asia

The Asian advanced economies are among largest natural gas importers. Japan is the top
worldwide importing country for natural gas (117 becm in 2016), being China (56 bem) and
South Korea (43 bem) also relevant. (BP, 2016)

With the exception of China, which produced 138 becm in 2015 which serves to cover a 70%
of'its demand (197.3 becm), both Japan and South Korea are dependent on LNG imports, coming
from countries as Indonesia, Malaysia, the Middle East and Australia (BP, 2016). This
dependence as well as the increase in Japanese natural gas consumption following the
Fukushima accident has explained the increase in the natural gas prices in Japan in recent years.
However, thanks to the development of the worldwide LNG industry and the supply

competition, prices have recently converged towards the NBP reference.

2.4.4. Europe

EU countries are also important net gas importers. As of 2015, EU production amounted to
120.1 bem, only covering 29.9% of total a consumption of 402.1 bem (BP, 2016). According
to projections made by (Teusch, 2012), EU demand will sum 644 bcm, while internal gas

production will only account for 165 bem in 2035, representing only 26% of total consumption.

From a steady growth in natural gas demand in the European countries, there has been a sharp

decrease in demand since the beginning of the 2008 financial crisis, which has been sustained
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due to several factors such as an increase in energy efficiency and especially in electricity
efficiency which has decimated demand and an upsurge in renewables penetration. Besides,
the low greenhouse gas emission prices during these years have benefited coal over gas in

electricity supply.

The top four main suppliers for EU countries are Russia, Norway, Algeria and Qatar,
amounting to 93.7% of total imports, according to Eurostat. Russia, Norway and Algeria
mainly export gas to the EU through pipelines. These three providers have very large influence
in regional markets, especially Russia in Eastern Europe, where it is the sole gas supplier for

many countries.

Algeria fundamentally exports to Spain and Italy through pipelines which cross the
Mediterranean Sea, but also exports in form of LNG. Other important LNG suppliers are Qatar,
which is the main LNG provider and covers a third of the worldwide LNG demand and Nigeria.
The main recipients for LNG in Europe are Spain, UK, France and Italy, in descending order.
The EU importing LNG capacity is currently underutilized. It allows to cover 43% of gas
demand. In the following years, thanks to the development of the LNG global market which is
more diversified, Europe could diversify its gas providers and reduce gas prices. (European

Commission, 2016)

Partner Value (Share %) MNetmass (Share %)
Russia 391 375
Norway 348 ar.3
Algeria 11.6 10.6
Qatar 74 8.3
Libya 26 23
Nigeria 1.7 1.7
Others 23 23

Figure 9: Imports of natural gas in the European Union (Source: Eurostat)
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Spain

In Spain, internal gas production summed only 24 mcm in 2014, while natural gas accounted
for 20.8% (26.3 bem) of primary energy supplied, and 17.2% (47.11 TWh) of total generated
electricity. Almost all the natural gas is imported, being Algeria the main supplier, transferring
57.9% of the total gas. Around 20 becm yearly are imported from Algeria through the Maghreb
pipeline (12 becm) and through the Mezgas pipeline (8 becm), which crosses Morocco. The rest
of the gas supply is more diversified, with around 10 countries exporting gas to Spain mainly
by LNG. Norway, (11.5%), Qatar (8.6%) and Nigeria (7.8%) were the most important. Other
exporters were Trinidad and Tobago, Peru and Portugal. (IEA Spain 2015 Review, 2015).

In 2015, 58% of the imports came through pipelines, while the other 42% was in form of LNG.
Spain has interconnections with Portugal, France, Morocco and Algeria. Spain has six
regasification plants located in Barcelona, Bilbao, Cartagena, Huelva, Mugardos and Sagunto
which provide excessive regasification capacity (7.063 mcm/h, 61.87 bcm/year), one third of

regasification capacity in the EU. (Sedigas, 2015) (IEA Spain 2015 Review, 2015).

However, due to limited capacity especially in the Spain to France pipelines (5.4 bcm/year)
and in the Spain to Portugal pipelines (5.2 bcm/year), Spain does not use all of its regasification
capacity. In 2013, only 20.6% (12.74 bem) of its regasification capacity was used. (IEA Spain
2015 Review, 2015).

Demand has experienced a drastic decrease in the last decade, having reached its peak in 2013
with 349.83 becm (IEA, 2015) and declining at a rate above 9% rate in 2013 and 2014. However
in 2015 the tendency was again reversed and demand increased a 4.4%, having reached 315.14

GWh. (Sedigas, 2015)
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3. RISK MANAGEMENT

3.1 Introduction

According to Collins Dictionary, risk is the possibility of incurring misfortune or loss. In every

business, possible losses have to be estimated. The main risks a utility faces are:

Type of risk Description

Operational risk Risk or loss resulting from “inadequate or failed internal process,
people, systems or from external events” (Bank for International
Settlements, 2016). Some types of operational risks are system

failures, for example cyberattacks or personnel errors.

Credit risk Risk that a counterparty defaults on the payments agreed to pay their
debt obligations. In the case of an energy utility, it will incur in credit
risk when selling energy to another party. The higher the risk of
default of a party, the higher the premium they will need to pay in

order to borrow an amount of money.

Liquidity risk Type of financial risk which refers to the situations where the assets
cannot be sold in a short time of period in exchange for the value

they are supposed to have.

Market risk Possibility that the value of an assets decreases due to fluctuations
in the markets. The risk is higher the higher the volatility of the

market is.

Systemic risks They refer to the probability of collapse on an entire
interdependent system. Systemic risks are important in the

banking sector every bank is exposed to immense credit risks

from other financial counterparts.

Table 1: Types of risks
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3.2 Market risk

The most relevant market risk of a utility are the prices of the commodities, which vary every
day. A utility could face risks as many customers are signed with fixed-price contracts, or
contracts which do not reflect the volatility of the spot market. The utility has several options

to deal with these risks: accept them or look for a hedge.

A position where a participant is assuming the risk of the market is said to be an open position.
However, utilities may try to eliminate part of the risk through derivative markets and OTC
contracts, closing their position on their assets and reducing the risk of their portfolio. Another
behavior which can reduce market prices is diversification. In the short term this is complicated
for utilities as they have to deliver constantly the power or gas. In the long term, especially in
the power market, a utility may diversify the technologies its portfolio of generating plants,

reducing risk.

An agent can enter a derivative market with different interests. On one hand, there are agents
who will try to hedge their risks, this is reducing the volatility of their portfolio. However,
agents need to find a counterpart who agrees to assume these risks. In exchange for reducing
risks, the counterpart will typically ask for a risk premium. The agents who enter open positions
in markets intending to make larger profits are known as speculators. Finally, arbitrators try to
find opportunities in markets, typically buying in a cheaper market and selling in another more
expensive. This is very usual in energy business. For example, a natural gas agent with storage
capacity may buy cheap gas in the spot market and sell it in a future market at a higher price,

if there is a situation of contango (commodity prices are rising for the future months).

Although for energy companies hedging is vital, they can behave as speculators or arbitrators

depending on the opportunities and their strategy.
Mark to market and VaR are indicators which can help assess the risk of a portfolio of assets:

e Mark to market
Refers to the fair value of an asset based on its current price. In exchange markets, futures
are usually marked-to-market daily, and the traders who suffer losses in their values have

to deposit that loss to the exchange.
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Value at risk (VaR)

Value at Risk is a statistical measure which quantifies the largest loss which can be suffered
in a time period with a certain probability given normal conditions. VaR is measured with

an a confidence level, usually between 95% and 99%.

5% Probability

$42m $50m Portfolio value

Figure 10: VaR

(Source: Kaplan Financial Knowledge Bank)

There are several methods to calculate VaR: (Farid, 2010)

Historical Simulation: this method assumes that future returns will follow the same

distribution as historical returns. Historical percentage changes in spot prices from one day
to the following are studied. Then, the percentage loss in the a percentile is applied to the
present spot price of the asset.

Monte Carlo VaR: this method and historical simulation are much alike, but in Monte Carlo

the distribution of the returns is determined by a probability distribution chosen by the
analyst. The Monte Carlo tool developed can be used to perform the VaR calculation.

Delta-Normal approach: this method, also known as variance-covariance, computes

historical variances and covariances of all the risk factors. It implies all the asset returns

follow a normal distribution. (Jorion, 2996) (Johnson, 2001)

Being X the covariances matrix of the returns of the portfolio, estimated from historical

data, the variance of the portfolio is obtained by a linear combination of the risk factors.
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o, =v'Zv
Where v is the vector of coefficients which weighs the risk factors.
Then, the VaR can be obtained:
VaR(a,t) = 0,2\t

Where z, is the value of inverse normal distribution at an a probability level.

e Conditional Value at risk (CVaR)

CVaR estimates the expected loss evaluating only the % worst probabilities scenarios.

Delta hedging

The delta hedging strategy consists in obtaining a position where the value of the portfolio does

not change with small changes in market prices. The delta of a portfolio is expressed as:

A 1%
—aS(b)

Where V' is the value of the portfolio and S is the market value of an asset.

The delta position can be approximated by the expression: (Burguer, 2014)

V[S + AS] — V[S — AS]
2AS

~

The delta hedging strategy consists in obtaining a position where the delta is neutral or zero, as
the value of the portfolio will not be affected by small changes in the market price. A long
position (buy) is attained when A > 0. It means that the value of the portfolio will be higher if
the commodity increases its price. A short position (sell), obtained when A < 0, reduces the

value of the portfolio if the price of the commodity rises.

For European options delta can be computed as follows:
Ac = e "T"ON(dy)

Ap = e "TT-ON(d, — 1)
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3.3 Products traded in energy derivative markets

Forwards and futures: forward and futures contracts between two counterparts in order to

buy or sell a specific amount of electricity or gas at a designated time.

Forward contracts are arranged in Over-The-Counter (OTC) markets bilaterally. Typically
forward are settled at the maturity. Therefore one of the biggest inconvenient to set up forwards

is be credit risk, as there can be no guarantee that the counterpart is trustworthy.

On the other hand, future contracts are traded in Organized Exchanges with common rules. In
most exchanges, gains and losses are generally settled periodically, every day or week. One of
the advantages of participating in an Organized Exchange is that there is higher liquidity and
this allows the party to see at each moment the bid and the ask price for a product. They
typically provide a bigger hedge against non-payments as they usually require the players to
meet certain criteria in order to make trades. To participate in the exchange market agents are

asked for a fee.

The buyer of the future is said to hold a long position, and will have a positive payoff in case
the price of the underlying assets is higher at maturity than the agreed price. The seller of the
future is said to hold a short position, and will have a negative payoff in case the price of the

underlying assets is lower at maturity than the agreed price.

Payoff Payoff
Future Future
1 spot price spot price
Agreed Agreed
future Price future Price
(K) (K}
LONG POSITION SHORT POSITION

Figure 11. Payoff of a future

Being r the continuously compounding interest rate, 7 the maturity and ¢ the time when the
contract is set up, the non-arbitrage price of a future can be determined from the future spot

price of the underlying asset:
Fer = Ster(T_t)
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However this formula has to be adjusted by including the cost of carry u or costs of storing the
commodity, as well as the convenience yield ¢ or benefits associated with holding the

commodity, typically in situations of shortage of supply, resulting in:

Ft = Ste(r+u—c)(T—t)

When the convenience yield is lower than the sum of the cost of carry and the interest rate (¢ <
r + u), future prices at maturity 7 are higher than spot prices at that time. This is the situation
of a market in contango. This situation may happen when there are expectations of a demand
increase or a supply shortage in the following months. There are incentives to use storage for

those agents who are able to do it.

On the opposite, if the convenience yield is higher than the sum of the cost of carry and the
interest rate (¢ < r + u), the market is said to be in backwardation. This is very typical in oil

and gas markets when there is shortage of supply in the short term.

Futures Price of a Contract Due in One Year
(Going Forward in Time)

$90
580 = =Expected Future
570 Spot Price
SGO =de=CoOntango
S50
S40
-8-Normal
530 Backwardation

Today +1M +6M +1Y

Figure 12: Representation of contango and backwardation situations.

(Source: Investopedia)

Swaps: a swap is an exchange of a variable price for a fixed price. It allows a party, for example

the producer, to sell the commodity at a fixed price. Swaps are usually traded in OTC markets.
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Options: an option is a financial derivative which gives the buyer the right, but not the
obligation, to buy (call) or sell (put) an asset on a specific date or during a certain period of
time at an agreed price K (exercise or strike price). The simplest options, known as vanilla
options, can be traded in most derivative markets. More complex options are in most cases

traded OTC.

Call options

An agent who buys a call option wants to hedge the risk against high prices, in exchange for
giving a premium. The operation is more profitable for the buyer the more the spot price goes
up at maturity. The breakeven point (zero payoff) is given when the spot price in the future

equals the exercise price plus the premium.

An agent who sells a call option assumes an unlimited risk in event of high prices in exchange
for receiving a premium. The agent would receive the maximum payoft if the prices do not

increase over the exercise price, being it the premium of the option.

K Future N\ Future
/ spot price K \ spot price

BUY CALL SELL CALL

Figure 13: Representation of the payoff of a call option

Put options

An agent who buys a put option wants to hedge the risk against low prices, in exchange for

giving a premium. The operation is more profitable for the buyer the more the spot price goes
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down at maturity. The breakeven point (zero payoff) is given when the spot price in the future

equals the exercise price minus the premium.

An agent who sells a put option assumes an unlimited risk in event of high prices in exchange
for receiving a premium. The agent would receive the maximum payoff if the prices do not

decrease below the exercise price, being it the premium of the option.

\ K Future 7 Future
~ spot price / K spot price

BUY PUT SELL PUT

Figure 14: Representation of the payoff of a put option

Spreads

Options may be contracted in order to hedge for the difference in the price or spread between
two products. This is the case for spread between countries or between different commodities.
The spark spread refers to the difference in prices between electricity and gas for a unit of
energy, typically MWh. The dark spread measures the difference between electricity and coal
prices, while the quark spread is the difference between electricity and nuclear fuel prices. If
the spreads include the costs of the CO2 emissions they are the referred also as “clean” spreads,

while are denoted as “dirty” when they omit them.

Value of the option

The option value is the sum of its intrinsic value and its time value. For a call option, the
intrinsic value is the difference between the price of the underlying spot price and the strike
price, at the moment when the option is bought. Depending on this difference, options are

classified as:
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Type of option Characteristic
Out-of-the-money option K> S;
At-the-money option K = S;
In-the-money option K <S;

Table 2: Types of option according to the relative price of the strike to the underlying asset

Put-call parity

One important relation between the call and the put prices is the put-call parity, which is given

in an arbitrage-free market by the relation:
C—P=5t)—Ke T8 = g0 (F _ )

If an agent buys a call option and sells a put option, at T = t, if S(T) > K, the call option will
be exercised and the will have a payoff of S(T) — K, while the put option will not be exercised.
If S(T) < K it will be the put option which will be exercised with a payoff of S(T) — K, while
the call option will not be exercised. The added profit resulting from both options is equivalent

to what a forward contract would have delivered. (Zhang, 2009)

Put-call parity

20
—— Long call —— Short put Forward contract

-~
, _— _—
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Frofitloss

-20
0 ] 10 15 20 25 30

Underlying price

Figure 15: Representation of the put-call parity (Source. Investopedia)
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Types of options

Depending on when they are exercised, there are three basic types of vanilla options:

- European options: can only be executed only at the expiration date of the option, which ¢

- American options: they can be executed at any time during a time window.

- Asian options: they are executed after delivery, on the average of the prices of the
underlying asset during a time period.

- Bermudan options: can only be executed at certain dates.
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3.4 Valuation of European Options

The most extended approach to valuate European options was proposed in 1973 by Fisher
Black and Myron Scholes. It supposes the underlying asset follows a Geometric Brownian
Motion (developed in section 3.5.1). The model makes several assumptions: there are no
arbitrage opportunities, the riskless assets are supposed to earn a known and constant risk-free
interest rate and markets are perfectly efficient. It also implies that there are no transaction
costs to acquire the option, and that the option does not pay dividends. (Colin Betancourt, 2014)
(Burger, 2014)

The payoffs at the maturity for the call C and put P options are:
C = max(Sr — K, 0)
P = max(K — S, 0)

By the risk-neutral world assumption, the option price at its time of purchase is the present

value of the expectation of payoff.
C = e TTY E; [max(S; — K,0)]
P = e 7T E; [max(S; — K, 0)]

The expectation of the payoff is defined by:
Er [max(S; — K,0)] = f max(Sy — K)
0

The Black-Scholes price of the European call option is given by:
C=SN(d,)—Ke "T-YN(d,)
P=-SN(=d) +Ke TTUN(-d,)
Where
ln%-&- (r —%02) (T—-1)
o VT —t
dy=dl—oVT -t

d1=
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3.5 Valuation of Asian Options

The payoff in the Asian options, contrary to the European, is not function of the price of the

underlying option at a specific date, but to its average price during a certain time period.

The call option or cap will be exercised if the average price during the period is larger than the

exercise price of the option: being the payoft:
C = max[A(T) — K, 0]

Alternatively, the put option or floor will be exercised if the strike of the option is larger than

the average price during the period.

P = max[K — A(T), 0]

Where A; is the arithmetic average price:

1 N
A(T) = NZ S.,
=1

This characteristic leads to the Asian option having typically lower volatilities than European
or American options (Zhang). Another characteristic which favors Asian option is the fact that
it reduces the incentives to price-makers to alter prices by exercising speculative actions,

contrary to American options.

Asian options are path-dependent, thus the payoff depends on the path of spot prices during the
option period. (Wiklund, 2012).

Many methods have been proposed to value Asian options. They can be classified in Monte

Carlo techniques or approximating expressions:
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Advantages Disadvantages

- Path dependent: suitable to compute

the value of Asian options.

- Adequate to value complex products, - [igh sounpriaomel e

for which it is difficult to find | ~ [iighprogramming effort

Monte Carlo approximating formulas. > DU Cn i S0

- Assumptions are easy to understand. price model ntilized.
- Flexible: Can be equipped with

different spot price models.

- Provide a suitable approximation of

the payoff of an Asian option. - Rely heavily on

Appl‘Oleatrlng : : assumptions which may
methods (Lévy, | - Low computational time
Vorst,etc) |- Lower programming effort (some be difficult to understand.

exceptions)

Table 3: Techniques to estimate the payoffs of Asian option

3.5.1 Monte Carlo methods

Monte Carlo methods are a range of computational algorithms which are used to solve
stochastic problems. Being originally used by the casinos placed in the gambling resort which
gives name to the technique to estimate their probable profits or losses in each game, these
methods are currently being used in nearly any complex problem where randomness intervenes
in fields as diverse as physics, biology, engineering or finance. It is very suitable for problems
which cannot be solved with other techniques, for example some non-linear problems. (Murthy,

2003)

Monte Carlo simulation is one of the most common methods to estimate the fair price of Asian
options. One of the biggest advantages of using this technique is that it provides a path-
dependent payoff, as the Asian options themselves have. The main drawback of the technique

is the great computational effort required to obtain accurate estimations.
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The idea behind any Monte Carlo algorithm is to make a large number of independent random
paths using a known distribution, and finally obtain the results by giving each sample the same

probability and averaging the results.

When applied to an Asian option, Monte Carlo simulations relies greatly on the spot price
model utilized. There are many different price generators to model the spot energy markets. In
this thesis we will focus on three: Geometric Brownian Motion, Vasicek and ARIMA. A path
of prices is obtained from the spot price model and a random number generator. Usually
computer programs are equipped with pseudo-random number generators which simulate very
well random numbers. Indeed, the reason why they are called pseudo-random numbers is
because although they are obtained by deterministic algorithms, the obtained sequences of

pseudo-random generators pass the randomness tests. (Biebighauser)
The payoff of an Asian option is calculated in one path by the already mentioned expressions:
0; = max[A(T) — K, 0]; 8, = max[K — A(T), 0]

The Monte Carlo method is more precise the more price paths are generated. The average

payoff is computed from the payoffs of the individual paths.

Finally, the price of the option is calculated as the present value of the expected payoff, at the

moment of purchase.
Price =PV(f) =e™"T 8

Where ¢ is the time to maturity

MONTE CARLO SIMULATION
INPUT PARAMETERS NAIVE
N W POSSIBLE VARIANCE ANTITHETIC
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Figure 16: Flowchart of the Monte Carlo simulation methods
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3.5.3.1. Monte Carlo techniques (variance reduction)
Naive Monte Carlo (Zhang, 2009)

The Naive Monte Carlo method is the simplest technique to perform a Monte Carlo simulation.
By this approach, no variance reduction techniques are applied to accelerate the model. If a

variable 0 is function of independent random observations X:

6 = E[f(X)]

When valuating Asian options, the searched variable 6 is the payoff of the option and X is the
spot price S.

For every path, the calculation of the payoff 8 is performed. If a large number of paths are
simulated, then the estimator 8 of the payoff can be obtained, as the average of the payoffs of

each path.

0 =

Sl

n
0,
=1

The estimator 8 is unbiased, as its mathematical esperance is the actual parameter 6.

[E[é]—[Eln —1n]E I
= EZXL' _Ez [x;] = —nb =
=1 =1

The expression of the unbiased estimator of the variance of 6 is:

n
~ 1 ~
S = VCI,T(H) = mE(X’l - 9)2
i=1

By the central limit theorem, if a large number of simulations (n) is made, 8 — 8 tends to a

normal distribution. Its confidence interval at an @ confidence level is given by:

~ s 4 S
[H—Za—,9+za£

Vn

The concern when using Monte Carlo simulation (especially the Naive method) to price option

is that accurate estimates can very time consuming to obtain. In order to reduce the
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computational time, several variance reduction techniques have been proposed in recent years,

such as Antithetic variables, control variates or stratified. (Wiklund, 2012)

Antithetic technique

The Antithetic MC is a variance-reduction method which consists in taking for every path
generated by the random numbers (U, U,, ...,U,,) a path given by the random numbers

1-U,1-U,,...,.1=U,).
The estimated payoff 8 will be therefore: (Wiklund, 2012)

fWU, Uz, s Up) + f(A = Uy, 1= Uy, 1= Upy) 6, + 0,

0 =
2 2

The aim of this technique is to reduce the variance of the estimate, which is interesting as it
allows to reduce the confidence interval. Being 8, the estimator for the randomly generated

paths and 8, the estimator for the antithetic paths, the variance of the estimate 8 (payoff) will
be:

Var (8,) + Var(9,) + 2 Cov(6,,8,)
2

Var (@) =

The method is sustained by the hypothesis that Cov(@l, @2) <0, as Var (91) ~ Var(@z).
Therefore

Var (él) + Var(éz)

Var (9) < >

3.5.3.2 Spot price generators

The central element of the Monte Carlo simulation method is the spot price generator. Several
spot price models common in option valuation are reviewed: Geometric Brownian Motion,
Vasicek and ARIMA. Tools to make estimations of the parameters of the first three models

have been developed, as well as to generate spot prices from them.
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Geometric Brownian Motion

One of the simplest stochastic processes used to model spot energy prices is the Geometric
Brownian Motion. In this process, the logarithm of the variable follows a Brownian motion (or
Wiener Process), existent in Nature in collision between fast-moving atoms and molecules in

liquids and gas.

The stochastic process S; follows a Geometric Brownian Motion if it satisfies the following

expression:
dSt :H'St dt+0-5t th-

- wis commonly referred as drift and denotes the continuously compounded expected return.

- o is the volatility of the process.

- W, is the Wiener process. It is characterized for having independent Gaussian increments
with W has Gaussian increments with mean 0 and variance 1 (dW; ~ N(0,1)) and
continuous paths.

The Wiener process is commonly characterized in discretized processes as dW, = ev/t,

where € is a random normal variable.

The impact of the drift of the GBM is assessed in the figure below:

300.00 R o
e GBM positive drift GBM negative drift
250.00
200.00
)
-2 150.00
a
100.00
50.00
0.00
AN OO A NN AN OO AN A N~NM
N < O 0D AN ON~NOODO NSNS0 O N MW
T A A A A AN AN AN AN AN AN NN o
Simulation days

Figure 17: Representation of GBM with positive and negative drifts
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Obtention of a closed form

If a stochastic variable X follows an Ito process: (Wiklund, 2012)
dX = a(X,t)dt + b(X,t)dz

A function f (X, t) follows the process

af of 102 ) af
df (X,t) = ﬁﬂ&ﬂ*‘a"‘imb (X, t) dt +-%b dz

Applying this to the Geometric Brownian Motion process for the spot price, with f = In(S;)

1 1 1\ , o 1 o?
dln(St):(S_tHStdt+§(—§)U St)dt+S_tUSdZ: K= dt+odz

Discretizing, dt = At is applied:

2

Aln(S,) = <# —%) At + o e VAt

This results in:

S o?
In(Sesne) —In(Sy) = ln( t;At> = <u - 7) At + o e VAt
t

Which results in the closed-form expression:

o2
StzSoexpl<u—7>t+06\/E

The main problems of the Geometric Brownian Motion (Johnson and Barz 1999, Steele 2010)
are that it does not allow to represent mean-reversive processes characteristic in energy markets
or seasonal changes. There can also be price spikes as well as too much dependence between

price and volatility.

If the mean of the spot price is considered to be constant, then pu can be considered to be 0 in
the long-term. This is a common assumption in energy markets. The volatility ¢ is commonly
estimated as the standard deviation of the logarithm of the spot price returns. (Burger, 2014)

Si—Si1

X; =
S;
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Ornstein-Uhlenbeck processes

1y = In(S;) — In(S;_1)

The Ornstein-Uhlenbeck process is also a physical process which describes the one-

dimensional movement of a Brownian particle under friction. They can be more suitable to

model power and gas spot prices as they consider mean reversion. There is a drift towards the

long-term mean, more intense the higher the deviation to the mean is.

- Vasicek: dS; = A(u — S;) dt + o dW,

- Cox-Ingersoll-Ross: dS; = A(u—S;)dt+ o \/S_t dw,

The Vasicek approach assumes a constant volatility while the Cox-Ingersoll-Ross approach

considers the volatility dependent to the spot price.

Vasicek model

The Vasicek model is described by the expression

Where A > 0, u > 0 and o > 0 is the volatility.

A is the mean reversion rate, y is the long-term mean and o > 0 is the volatility.

There are two approaches for parameter estimation: the Least Squares method and the

maximum likelihood. (van den Berg, 2011)
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Least Squares method: it is based on the assumption that there is a linear regression

model can be obtained between consecutive observations S;,; and S;:

Si+1=a5i+b+e

The parameters of the models can be easily obtained: (van den Berg, 2011)

a= n2?=1 S Si1— ?=1 Sic1 Z?=1Si
nzlivzlsiz—1 - (Zlivzlsi)z

n n
i=19i — a2i=1 Si—1

b =
n

_ oS8 = B S)* —a Xl Sie1 XL Si
sd(e) = nn=2)

In MS Excel a and b can be obtained with the slope and intersection commands,
respectively. For a set of data contained from cells A2 to A100:
a=SLOPE(A3:A100;A2:A99)

b=INTERSECTION(A3:A100;A2:A99)

The parameters of the Vasicek model can be obtained: (van den Berg, 2011)

In(a)
At

A=

—2In(a)
o= Sd(E) m

Maximum likelihood: in this model, the parameters are obtained by maximizing the
,Sn): (van den Berg, 2011)

likelihood function of the set of observations (S, Sy, .-
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n
L 2,0) = ) I f(SySeait o)
i=1

n
n . 1 _ - 2
= —Eln(Zn) —nln(g) — ﬁZ[Si —S;_1e7 Mt — (1 — e8]
i=1

The maximum of the function is obtained by making the partial derivatives equal to

Z€ero:
n
5£(u,/1 o) _ - 2
== Z[Si — S —p(1—e )] =
i=1
n
5L(u, A,0) Ate~At _
S Z(Si — W (Sio — ) — e (S — )2 =0
i=1
n
6L(u,A,o) n 1 _
TR =E—§Z[(si—ﬂ—e (S —w]F=0
i=1
Obtaining:
f= =18 — Si—le_lAt

n(l — e~14t)

A= —i]n< ?=1(Si - DS — ﬁ))

i=1(Si — A)?

n
1
62 == > (S == e (Siy —
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Cox-Ingersoll-Ross

The Cox-Ingersoll-Ross (CIR) model is described by the expression
dS, = A(u — Sp) + 0. /S; dW,
A is the mean reversion rate, u is the long-term mean and o > 0 is the volatility.

The CIR process is one of few cases, among the diffusion processes, where the

transition density has a closed form expression. (Kladivko) (Chou, 2006)

NIQ

P(SeraclSei, A,0) = ce™” ”( ) ¢(2Vuw)

Where

22

¢= 0-2(1 _ e—lAt)

u = cS,e Mt

V= CStint

2Au
a=—7-1

And Iq(Z\/uv) is the modified Bessel function of the first kind and order q.

By the Ordinary Least Squares approach suggested by Kladivko, the estimators of the
CIR of model are:

1 _ 41 S
A=

(N2—2N+1—z Stz{Vll;)

(N = DTG S — T 520 3

= i . ;
N2 —=2N+ 1+ YN 1S A 2N ‘115 —yN-ts, ?]:_1157 —(N-1)3N t+At
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& 1is found as the standard deviation of residuals.

ARIMA

The ARIMA (Autoregressive Integrated Moving Average) model is a widely used method to

approximate and forecast time series.

An ARIMA (p,d,q) process is described by the expression:

(1 — zp: q,’>l-Li> (1-L)X, = (1 - Zq: gbiLi) &

Where L is the lag operator:

Lyt = yt—1

The I for integrated indicates the number of differences applied to the original time series. A

first order difference is expressed as:

Ve =Yt — Ye1

The AR(p) term indicates that the output depends on a linear combination of its previous p
values. The MA(q) term, indicates that the output depend on the linearly on current and g past

values of a white-noise variable.
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3.5.2 Vorst model

The (Vorst, 1992) approximation model assumes that spot prices follow a GBM of drift 4 and
volatility o. With these parameters as well as the number of days of the averaging period of the
Asian option n, the duration of the averaging period 7, and the first price S,, Vorst provides an

estimation for the payoff of the option.

The approximation takes advantage of the fact that the geometric average G (T') is always lesser
than the arithmetic average A(T), providing a lower bound for the pricing of the option. Vorst
also manages to obtain an upper bound for the option referred to the geometric option price,
and provides an approximation of the average price by computing the price of the Asian

geometric option price on an option with a an adjusted strike K'. (Burger, 2014)

The geometric average G(T):

The adjusted strike K’ of the option is given by:

K' =K — (E[A(D)] - E[G(TD)])

Supposing S; follows a GBM, the geometric mean is log-normally distributed, as it has

independent increments: (Burger, 2014)

1 B Q - Sti
InG = EZIHSH =1InS, + Z(lnSti - lnSti_l) =1InS, + Z lnS—
. . ; 0

i=1 i=1 i=1

Under the assumption that the differences of the instants ty, ty, ..., t, are uniform, Nielsen

obtains a closed form for the mean and the variance of the logarithm of the geometric mean.

(Nielsen, 2011)

_15+( 1 2>T+h
Ue =1nS, T 20 >
2n—1

Var(G) = a?(h+ (T — h)

48



. T
Being h = —

Vorst solution to price the Asian Geometric option is given by:
1
Co = e [MG*EV‘"(‘” N(d,) — K N(d,) ]

Where

U —InK + Var(G)

JVar (G)
d, =x—+/Var (G)

d1:

By substituting K by K’, the Vorst approximation for the arithmetic option is obtained.

Upper and lower bounds

Vorst obtains a lower and an upper bound for the pricing of the option. Given that the arithmetic
average is larger than the geometric average, the arithmetic option price will always be larger

than or equal to the geometric option price. (Nielsen, 2011)
The arithmetic option price is given by:
C = exp(—rT) E[max(A — K, 0)]
The geometric option price, or lower bound of the arithmetic option price, is given by:

C = C; = exp(—1T) E[max(G — K, 0)]

The lower bound can be obtained from the inequality (Nielsen, 2011):
max(A—K,0) =max(G—K,G—A)+A—G<max(G—K,0)+A—G

And leads to the upper bound:

C = exp(—rT) E[max(G — K,0) + A—G] = C + e~ "t (E[A] — E[G])
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Therefore the price of the arithmetic option will be bounded: € < C < c

VALUATION PRICE
4
Upper Bound

Vorst Price

Lower Bound

Figure 18: Vorst valuation price of an Asian option

Vorst’s suggestion is a price located between both bounds. However any other price
respecting this criteria could also be proposed. As it has been mentioned, the fair value

proposed by Vorst is:
1
C=e T [e"“i"“’(‘” N(dy) — K' N(dy) ]

With

U —InK' 4+ Var(G)

JVar (G)
d, =x—+/Var (G)

K' = K — (E[A(T)] — E[G(T)])

d1=

Application

Vorst option valuation expression is straightforward once the spot prices are characterized as a
GBM with drift 4 and volatility ¢ (annualized) with iterations every / years. Generally 4
=1/365 as average daily prices are computed. The only other inputs needed is the period of the

option.
To assess the value of the put, the put-call parity is employed:

C—P=e"TDAW) —K)
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4. METHODOLOGY

4.1 Software developed

4.1.1 Selection of the support and implications

The selection of VBA/Excel as the support of the application is explained by the need of the
utility of having an application which can be simply used by non-experts, and the visibility of

its results.

Nevertheless, the choice of MS Excel has complicated greatly the development of the tool, as
this software is not the optimal to work with numerical vectors. In fact, to compute easy
operations such as the mean, standard deviations or an a percentile of an array, it is necessary
to either print all the numbers in the Excel worksheet and apply the predefined functions, or

manufacture all the functions in the VBA code, a task which can be really arduous.

The choice of the author was to rely as much as possible on the functions implemented in Excel,
for which it was necessary to print all the numbers in the Excel worksheets. This, besides
complicating the results calculation due to having to search for the desired data between the
rows and columns, had severe implications in computational time and in the number of price
paths that the model could generate. Each path is placed in a column and Excel v. 7.0 sheets

have a maximum of 16384 columns.

As having this number of price paths is not enough to carry out precise calculations, the first
approach to solve this was to implement an Antithetic Monte Carlo, in order to reduce the
variance of the payoffs and be able to reduce the confidence intervals. As this proved to be
insufficient, a generalization of the tool had to be made to several sheets, so that the price paths
are allocated in a different sheet once the previous one is completed, and then the results take
into account all the sheets. With this approach, computations of hundreds of thousands of

simulations can be made, in a quite acceptable time.

The price generators needed for the Monte Carlo model, GBM and Vasicek, were also
developed with VBA/Excel. The sole exception were the ARIMA models, which were

produced using R software, however their results are easily integrated in the Excel package.
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4.1.2 Inputs

A Monte Carlo evaluation tool has been implemented in the platform Excel/VBA. The user can

enter several inputs.

e Start date.
e Simulation days. The final date is obtained from this number.
e Number of trials.

e Monte Carlo technique: A choice can be made between GBM or Vasicek model.

Input Data Monte Carlo
Today 01/10/2015
Sim. Days 93
number trials 7500
Spot price generator Geometric Brownian
Final date 01/01/2016
Simulation method Antithetic Monte Carlo

Figure 19: Input data for the Monte Carlo tool

The parameters of the spot price model are also inputs in the software: Drift (u), volatility (o)
for both models, long-term mean (i) for the Vasicek model, and reversion speed (A1) for the
Vasicek model. There are parallel applications in order to estimate the parameters of the GBM

and the Vasicek model, the latter with either Least Squares or Maximum Likelihood

techniques.
Input spot price generator
Drift (GBM) 0.05
Volatility (GBM, Vasicek) 0.6798
Ref price - Mean (Vasicek) 18.67
Lambda (Vasicek) 205.94

Figure 20: Input data for the spot price generator integrated in the Monte Carlo tool

The valuation of the Asian options can be performed at the strike K that the user prefers.

Valuation Asian options
K 50
Valuation period (days) Month

Figure 21: Input data for the Asian option valuation
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The main advantage of this software is that it allows to compute daily, weekly, monthly and
yearly average prices, from where caps, floors and futures can be valuated. This allows the

utility to valuate contracts in the long term.

Spot price generator PATH1 Spot price generator PATH2

Weekday Date

lu. MI04/2018 17.77933228 18.01038277 17.579258608 17.353776

ma. 02i01/2018 17.79357603 1822432143 17.58259042 17.148177

mi. 03/01/2018 17.83041679 17.82303852 17.5250895 17.434524

ju. 04/01/2018 17.72621348 1823251344 1782617877 17136716

i, 05/01/2018 17.62023542 1816526722 1772119786  17.19827

s4. 06/01/2018 17.76808615 18.17613676 1758080656 17.185102

do. 0710412018 17.36316385 18.31444554 1798881271 17.054445

Tu. 08i01/2018 17.49148549 18.00703344 17 85488168 17.343604

ma. 09/01/2018 17.6550845 18.05018451 17.68748664 17.300335

mi. 10/01i2018 17.75617393 18.03436245 17.5848712 17.312816

ju. 11/01/2018 17.44353496 17.93385817 17.89808178 17.408933

vi. 12/01i2018 1740286713 17 55144791 17.93783788 17.351111

sd. 13/01/2018 17.60211755  18.0620861 17.73254567 17.281378

do. 14101/2018 17.75088074 1794203454 1758260395 17.395084

lu. 15/01/2018 17.68988426 17.83155257 17.64108835 17.500943

Tot. Avg Path 1 Tot. Avg Path 2
Average Path 1 I 17 545489771 18 05939633 17.85269305 Average Path 2 1770027287 17283807 17.497
Asian option payoff Path 1 1.645489771 2059895331 1.852693051 Asian option payoff Path 1.700272868 1.2938058 1.49704
Week 1 Avg 17.69862914 1814544378 17.92403646 Week 1 Avg " 17654897957 17.216001 17.4354
Week 2 Avg 17.58600833 18.002965356 17.79448884 Week 2 Avg " 17754101297 17.342022 17.5481
Week 1 Asian Payoff 1.698629144 2145443762 1.924036463 Week 1 Asian Payoff 1554857953 1.2160013 1.43545
Week 2 Asian Payoff 1.585008327 200296935 1.794488844 Week 2 Asian Payoff 1754101286 1.3420215 1.54806
SINGLE PATH

Asian option payoff Whole period 0.822744335 1.029%43185 0.926346525
Week 1 Asian Payoff 1.6767T63548 16827225684 1.679743056
Week 2 Asian Payoff 1.670054807 1.672485434 1.67127512

5td payoff r 0.313561745

LBound Confint 0.618056015

UBound Confint 1.233637036

Figure 22: Results of the Monte Carlo simulator (Antithetic version)

With the results from all the simulated paths, risk metrics such as VaR and CVaR can be
computed. To assess the results of the model in option valuation, other valuation tools have

been implemented such as Black-Scholes and Vorst approximation.
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4.1.3 Option valuation

The objective of this section is to evaluate the price of Asian options in real situations in the
Spanish market, by means of Monte Carlo simulations relying on different spot price
generators: GBM, Vasicek and ARIMA models are utilized, and their results are compared

with other the Vorst option valuation methods for Asian options such.

The aim is to provide a valuation tool for periods where future market behavior is considered
to have resemblances with the periods where the models are estimated. This excludes from this
study periods when prices do not show relatively normal behavior, both in values and volatility,
where expected prices could be better predicting by understanding the fundamentals models of
the market rather than by reproducing historical behavior. Due to the non-standard behavior of
the market prices during the years 2016, and the beginning of 2017, year 2015 is selected as

the benchmark for the option valuation.
For the valuation of options, the following approach steps are followed:

1. For each spot price model, its parameters are estimated during a time period, the
training set.

2. A Monte Carlo simulation is performed simulating the Asian option payoffs for
different strike prices. These payoffs are compared to the actual payoffs during that
period to observe how well models behave with respect to reality. The payoffs of the
Asian option are important as they determine the fair price of buying/selling that Asian
option during that period.

3. A Monte Carlo simulation is performed on a future time window determining the fair
value of the Asian option according to the spot price model used before its start. The
aim is to simulate what would be the price to pay for an Asian option in the determined

period.

Although the developed approach is mainly based on historical behavior, it is known that the
price of any derivative depends on future expectations. To address this, the future price of the
valuation period before its beginning is considered, and is used as the start price in the GBM,
as the start price and long-term mean in the Vasicek model, and to correct the estimates

afterwards in the ARIMA model.

It is remarked that, in order to obtain good results, there has to be certain similarity in the

behavior of the prices between the training period and the valuation of period, as the models
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are primarily based on historical performance of the spot market. This is an analysis that traders
must make when using historical prices to estimate the prices in the future: they need to

understand what historical period is better to assess future market behavior.
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S. RESULTS

5.1 Comparison Antithetic — Naive Monte Carlo performance

A same MC experiment has been designed to assess the performance of the two methods
implemented. The objective is to obtain the price of the Asian option of the next month, the
day before its start. The chosen spot price generator is GBM and the values of the parameters
are set as follows: valuation time T=30 days, strike price K=25 €/MWh, start price S, =
23 €/MWh, o = 20%. The simulation is performed for a total N number of paths:

NAIVE MC ANTITHETIC MC
A t
verage S d, Average Std deviation
[Confidence deviation -
N interval 95%] DAyt [Confidence interval payoff
(1]
95%)] (€/MWh €/MWh
(€/MWh) (€/MWh) ol ( ) ( )
100 3.06 [2.92, 3.21] 0.72 3.00[2.85, 3.14] 0.73
1000 2.96 [2.91, 3.01] 0.78 3.00[2.95, 3.04] 0.79
10000 3.00 [2.99, 3.02] 0.77 3.00[2.99, 3.01] 0.77

Table 4: Comparison of average and standard deviation of the payoff of an option with Naive and
Antithetic MC methods

It is observed that, contrary to what was believed (see section 3.5.1), the standard deviation of
the payoffs does not decrease when using the antithetic technique. However, an improvement
in the computational time was observed, therefore the Antithetic Monte Carlo was the model

further developed, and used in the rest of the document.

Computational time can be one of the biggest difficulties when performing Monte Carlo
Simulation. In VBA there are four commands which can speed up the simulations. They have
to be added at the beginning and at the end of the code.

Application.Display.Alerts = False

Application.ScreenUpdating = False
Application.Calculation = xlCalculationManual
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Application.EnableEvents = False

€9999999999999999999999999999999999999999999999999995999%99%9%)9

CODE

€99999999999999999999999999999999999999999999999999999%9%9%9%)

Application.Display.Alerts = True
Application.ScreenUpdating = True
Application.Calculation = xlCalculationAutomatic
Application.EnableEvents = True

The author suffered for a long time the consequences of not including these lines in the code.
The improvement in simulation time that these lines of code provide is dramatic. Although
computational time depends on the computer utilized as well as on the level of optimization of
the code, a comparison of the results obtained adding or removing these lines when performing

the previous simulation is shown.

NAIVE MC ANTITHETIC MC
N Without code With code Without code With code
accelerator accelerator accelerator accelerator
100 143.45 1.70 40.54 1.5
1000 1514 13.89 423.20 9.96
10000 15984 598 4560 100.62

Table 5: Comparison in Computational time (seconds) in Naive and Antithetic versions
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5.2 Suitability of spot price generators

The objective of this section is to assess if spot price generators developed (GBM, Vasicek and
ARIMA) are suitable to simulate spot power and gas prices in a market as well as power and

gas spreads between two countries.
5.2.1 Power spot
The power spot prices in Spain, France and Germany during January 1, 2011 and March 31,

2017 are shown below:

340.00 —E —FR —GE
290.00

240.00

Price (€/MWHh)
=
8
o
o

-
8
o
o

90.00

2000 T

-10.00

-60.00 Simulation days

Figure 23: Average daily power spot prices in Spain, Germany and France

As outliers causes the charts to be tiny, in the figure below only values between -206/MWh
and 100 €/ MWh are shown:

100.00
—ES ——FR GE

80.00

60.00

Price (€/MWh)

40.00

20.00

0.00

-20.00

Simulation days

Figure 24: Average daily power spot prices in Spain, Germany and France (without outliers)

The 20-day moving average volatilities of power spot prices in Spain, France and Germany are

analyzed, from the start of 2011 to the end of 2017Q]1.
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Figure 25: 20-day moving-average volatility in power spot prices in Spain, Germany and France

It is observed that there are very high volatilities in the spot price in all three countries, with

averages over 350% and peaks over 1000% in all cases.

Parameter ES FR GE
a 0 0 0 0 0 0
20-day annual Min 57% (3.59%) 121.4% (7.65%) 137.1% (8.6%)
(daily) Max 2693% (169.6%) 1091.7% (68.7%)  1726.2% (108.7%)

volatilities (%)
Average 381% (24%) 422.6% (26.6%) 457.5% (28.8%)

Average price (E/MWh) 45.97 42.01 37.63

Table 6: 20-day moving average volatilities and average prices and in Spain, France and German
power spot markets
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5.2.1.1 GBM

A Geometric Brownian Motion is calibrated with the parameters of the Spanish spot market.
As prices are seen to reverse to the mean, drift is assumed to be zero (u = 0), start price Sy =
45.97 €/MWh and annual volatility ¢ = 381%, the average volatility of the Spanish power
spot market between 01/01/2011 and 1/9/2017.

5 paths of a 5-year GBM simulation with these parameters is made:

200.00
150.00
100.00

50.00

J
0.00 u‘
-50.00 MW

-100.00

Price (€/MWh)

Date

e GBM 1 == GBM 2 GBM 3 GBM 4 emm==GBM 5

Figure 26: Simulation of 5 paths of a GBM calibrated with the parameters of the Spanish spot market

It is observed that the results obtained are disastrous, even if there is a cap of 180€/MWh. There
can be seen severe price spikes and finally, all the simulations converge to zero. The reason is
that in the GBM equation, in the increment between prices, the stochastic term is dependent on

the previous price.
dSt zﬂSt dt‘l‘O-St th

For high prices, volatility is extremely high, therefore at each iteration, the price can either
contrinue growing towards very high values or drop dramatically. On the other hand, for low
prices, volatility is very small, and at the following iteration the spot price will be very similar
to the previous one, getting trapped at low prices. To avoid this, a floor on the prices has been

set at 4€/MWh. 5 simulation paths are shown:
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Figure 27: Simulation of 5 paths of a GBM calibrated with the parameters of the Spanish spot market
after imposing a floor of 4€/MWh

After the corrections made, the model continues having serious flaws. There are severe price
spikes (three series over 200 €/ MWh at some point), as well as volatility traps in low prices.
The model is not representative of the Spanish power spot market. For France and Germany
power spot prices, the model should behave even worse, as their average price volatility is even

higher than for the Spanish case.

5.2.1.2 Vasicek

The Vasicek model is trained with the average daily Spanish prices from the start of 2011 until

the end of 2017Q1. The maximum likelihood parameters are:

e Long term mean ji = 45.88
e Vasicek Volatility 6 = 166.05

e Mean reversion tem 1 = 76.43

The simulation is programmed to start from S, = u.
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The results of one simulation path of the Vasicek model are confronted with the actual prices

during the 5 years and a quarter period.

100.00 ——Actual prices ES PWR SPOT
——Vasicek Estimation
80.00
| 4 ‘
. 60.00 ( \ ‘
£ |
= i
2
@ 40.00 | .
3 m
o |
% 20.00 “ ‘ N
0.00
= QU N A~ M D~ M= QO M~"Mm o2 N = T o o T B o ) I 0 B s TR B ) |
CORANRISTIOEIRNGBaSBaRABIIRBRRBESI S
L I B B I B B B I I B B B B IR B o I o Y |
-20.00

Simulation Days

Figure 28: Comparison of 5 paths of Spain daily power spot prices to Vasicek estimation

The Vasicek model is observed to deliver a much better representation of the spot daily average
prices behavior. Its aim is not to predict prices every day, but to offer an acceptable
approximation to value derivatives during a period. It is seen that, the volatility of the curve is
very similar to the real spot prices, thus it can be a good value to assess the temporary value of

Asian options.
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5.2.2 Gas spot

The gas spot daily prices in MIBGAS, TRS and TTF between the beginning of 2014 until the
end of March 2017 are shown below. The MIBGAS started operations at the end of 2015,

however it was not until March 14 when there was a Day Ahead clearing was performed daily.
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Figure 29: Comparison of 5 paths of Spain power spot prices to Vasicek estimation

Parameter MIBGAS TRS TTF
(Jan 16-Mar17) (Jan 14-Mar 17) (Jan 14-Mar 17)
3 V) 0 V) 0 0 0
20-day anual Min 14.3% (0.9%) 16.8% (1.1%) 10.3% (0.65%)
(daily) Max 179.9% (11.3%) 215.2% (13.6%) 87.5% (5.6%)
volatilities (%)
Average 53.9% (3.4%) 64.4% (4.1%) 41.2% (2.6%)
Average price (€/MWh) 45.97 20.47 37.63

Table 7: Volatilities and average prices and in Spain (MIBGAS), South France (TRS) and
Netherlands (TTF) gas spot markets
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5.2.2.1. GBM

A Geometric Brownian Motion model is calibrated with the TTF spot market prices. In this
case, as it appears to be a downward tendency in TTF prices, but there is a rebound at the end.

The estimators for volatility ¢ and drift 4 from the data in the whole period are:

e Volatility 6 = 44.16%

= =2
o Driftj=——+%=-0.139

i—ti-1 2

The start price S is taken at the start price the first day of the period: Sy = 26.30 €/MWh
Five simulation paths are shown in the image, along with actual TTF prices (in green):
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Figure 30: Simulation of GBM (5 paths) calibrated with the TTF prices

It is observed that, while for power spot prices the GBM had much faults, for gas spot prices it
is @ much more precise model. This is due to the fact that volatilities in daily spot gas prices
are much lower than for average daily power prices. Therefore in the GBM model there are not
big increments between one price and the following, and this allows to avoid both spikes and

lower prices where the GBM model gets trapped.
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5.2.2.2. Vasicek
The calibration of the Vasicek model with the TTF prices for the same period yields:

e Long-term mean i = 13.69
e Vasicek volatility 6 = 13.91

e Mean reversion parameter 1=261

In this case the start price S = 26.30 €/MMBtu on January 2, 2014 is far from the long-term

mean, so it does not make sense to start from /.

5 paths of Vasicek simulations are compared with the TTF reference:
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Figure 31: Simulation of Vasicek model (5 paths) calibrated with the TTF prices

The Vasicek simulation does not take into account the drift or tendency. It is seen that the
spread between the simulations and the TTF price is much bigger than the spread between the
GBM and the TTF. In the Vasicek model, the Vasicek “volatility” o is typically larger than its
counterpart in the GBM, but the reversion term allows to adjust to the mean values. However,
in this example A is very small, causing high differences between the Vasicek simulation and

the TTF prices.
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5.3 Valuation of options in Spanish electricity market

The aim is to make valuation of Asian options for year 2015 as in real conditions. An in-sample
test will be made for 2014Q4. Although prices in 2014 were lower than in 2015 due to high
renewable production, during the last quarter prices showed very similar behavior to 2015

prices, therefore it is used as the training set to valuate options in the beginning of 2015.

5.3.1 In-Sample Testing
In-sample testing for Q4 2014

Monthly caps are valuated for the last quarter of 2014, with the valuation models (GBM MC,
Vasicek MC) trained within that period. The only exception is the ARIMA model, for which
the training period has been set to include three months prior, which has been observed to be a

more robust choice.

The models are fitted and their payoffs of the monthly caps during 2014Q4 are computed. In
the case of the Monte Carlo models (GBM and Vasicek spot price generators), the payoftf is
calculated as the average of 7,500x2 antithetic paths. For the ARIMA model, the payoff is
computed for the fitted model. The monthly payoffs are averaged for different strike prices (K)

and compared to the actual results of real monthly caps during that period.

The value of the option is the expectation of profits, discounted three months at an interest rate
r. The risk-free interest rate » will be assumed to be zero, therefore the value of the option will

be the same as the expectation of profits.

TODAY
1 JAN 2015

I I I
! | 201404 |

1JUL2014 1 0CT 2014

TRAINING SET
GBM, VASICEK

TRAINING SET ARIMA

Figure 32: Representation of the training sets of the GBM, the Vasicek and the ARIMA price
generators
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The average price of the period was 49.82 €/ MWh, while volatility was 379% for 2014Q4.

Therefore, in the GBM the parameters are set to:

e The assumption drift u = 0 is made,
o S,=49.82€/MWh
e 0=379%%

The parameters for the Vasicek model are estimated during the same period (2014Q4),

obtaining:
e (=238
e 1=20594

e Long-term mean u = 49.82 €/MWh

The ARIMA model is trained for the last previous six months to the date of valuation (2014Q3
& Q4). The best fit was achieved for ARIMA(1,0,1)(1,0,0)[7]. It is observed that the

coefficients are significant, and the ACF and PCF plots do not suggest significant correlation.

Estimate std. Error z wvalue

arl O.448481 0.092733 4.8363
mal 0.330681 0.095167 32.4747
sarl 0.446894 O.066422 6.72E81

intercept 931.671731 60.596270 15.3751

signif. codes: 0 “#=%=' 0,001 **=° 0.01

Figure 33: Significance of coefficients in the ARIMA model
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Figure 34: ACF and PCF of the residuals of the ARIMA model
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Sample Quantiles

The QQ plot and the Ljung-Box test indicate normality and independence between the

residuals, respectively:

Normal Q-Q Plot

100 300
I I
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=300
I

0 1 2

Theaoretical Quantiles

Figure 35: QQplot of the residuals and Ljung-Box test of the ARIMA model

Box-Ljung test

data: yarima$residuals

¥-squared = 11.715, df = 14, p-value

= 0.6291

The actual average monthly prices for the 2014Q4 are shown, together with the average prices

and payoffs per month obtained by each method.

Month Parameter Actual | GBM-MC Va;;?k' ARIMA
ST Average Price 55.10 49.51 49.79 54.68
Payoff (K=48) 7.10 13.37 2.59 6.68
o Average Price 46.80 49.70 49.84 48.87
Payoff (K=48) 0 23.73 2.71 0.87
Average Price 47.47 49.51 49.78 48.86
DEC
Average Payoff 0 31.08 2.60 0.86
(K=48)
Average
49.92 49.57 49.80 50.81
AVERAGE Monthly Price
OCT-DEC Average Payoff
0 31.08 2.60 2.80
(K=48)

Table 8: In-sample computation of payoffs of monthly caps during 201404

It is noted that in the Monte Carlo based models, the payoff is not the difference between the

average monthly price and the strike price (K). This would only be the case if all the price paths
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had average price over K. However, as there are paths with average monthly price below K, the

averaging of the path payoffs does not reflect any more the average price of the month.

The real payoff of the Asian option at different strikes is compared to the average monthly

payoffs estimated with the three different methods. Nevertheless, in the GBM only the results

of the first month are considered, as the model diverges quickly and the estimations of the

payoffs in the latter months are totally unrealistic in this case. The results are shown below:

K 44 46 48 49 50 52 54 56
OCT 11.10 | 9.10 | 7.10 | 6.10 | 5.10 | 3.10 1.10 0
NOV 2.80 | 0.80 0 0 0 0 0 0
DEC 347 | 1.47 0 0 0 0 0 0
AVG (OCT- 579 | 3.79 | 237 | 2.03 1.70 1.03 0.37 0
NOV)
ANTITHETIC -
VASICEK (15000 | 593 | 4.15 | 2.63 | 2.01 1.47 | 0.71 0.28 0.09
sim)
ANTITHETIC - 10.7
GBM (15000 sim) 1495 | 14.14 | 13.37 | 13.00 | 12.65 | 11.97 11.34 5
ARIMA 6.80 | 4.80 | 2.80 1.71 1.89 | 0.89 0.23 0

Table 9: Average payoffs during the training period of the 3 developed models, compared with the
actual payoffs
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Figure 36: Average payoffs during the training period of the 3 developed models, compared with the
actual payoffs

In this example, it is observed that both the valuation with both Monte Carlo Vasicek and the

ARIMA fitted values shows very similar payoffs to the actual payoffs in the period.
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5.3.2 Out-of-Sample Testing

In this section, monthly caps and floors will be evaluated for all the different quarters in 2015.
The valuation will be done the day before starting the quarter. The models are trained with the
prices of the quarter before, in the case of the Monte Carlo GBM and Vasicek models, and with
the data of the last six months, in the case of the Monte Carlo ARIMA model. For 2015Q1, the

training sets for each model are shown below:

TODAY

1JUL 2014
10CT 2014 1 JAN 2015 1 APR 2015 1JUL 2015

4

201404 | 201501 |

TRAINING SET  VALIDATION SET
GBM, VASICEK (Q+1)

I
TRAINING SET ARIMA

Figure 37: Representation of the training and validation sets of the GBM, the Vasicek and the ARIMA
price generators

In order to make a valuation of the options, it is important not only to look at the historical data,
but to correct the values according to future expectations. For this reason, an adjustment has
been made in the models, comparing the average prices during the training period the Q+1

future the day before the valuation quarter will be considered as the price reference.

For the GBM and Vasicek spot price models 7,500x2 antithetic Monte Carlo paths are
simulated in the valuation period, and the average payoff of the Asian option is computed. For
the GBM and Vasicek, the Q+1 future the day before the start of the valuation period is set as

the start price. For the Vasicek model it is also fixed equal to the long-term mean p..

For the ARIMA model, the parameter estimation is performed in the six months before the start
of the valuation period. 1,000 random Monte Carlo simulations are performed for the valuation

period, and the average payoff of the Asian option is computed.
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A corrected ARIMA valuation is performed. This approach takes the random ARIMA
forecasts, and adds to each path the difference between the Q+1 price in the following period
and the average price of the training period. This approach is performed to eliminate the gap
between historical behavior and future expectations, which are key when assessing option

prices.

The results will be compared with Vorst estimation and with the actual payoffs. The risk-free
interest rate 7 is set to 0.0001, to avoid problems with the Vorst estimation, where » cannot be

set to zero

Estimation of the price of a monthly cap for 2015Q1

The three models have been trained in Q4 2014, therefore its parameters, except the average
are estimated in this period, and have been obtained in the previous section. S, and pu are fixed

to 44.13 €/MW h, the price of Q+1 on December 31, 2014.

The ARIMA model employed is the (1,0,1)(1,0,0)[7] discussed in the previous section. The
normality and independence of its residuals is analyzed in Annex I. Its simulation forecasts

(percentiles 60 and 95%) are compared to the actual spot prices (in red) and can be seen below:
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Figure 38: Representation of the forecasts of daily prices in date 12/31/2014 (in blue, 60% and 95%
percentiles shown) of the ARIMA model, and the actual average daily prices in the following quarter
(red)

Five random ARIMA paths are shown below for the forecasted period:
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Price (€/MWh)

Figure 39: Representation of 5 random paths of the ARIMA forecast, during 201501

A comparison is made between the real actual payoffs of the Asian period and the fair price of

the Asian options according to the Monte Carlo estimations, after averaging the payoffs of the

three months:

60

40

Time (days)

K 38 40 42 43 44 45 46 48
JAN 13.60 | 11.60 | 9.60 8.60 7.60 6.60 5.60 3.60
FEB 4.57 2.57 0.57 0 0 0 0 0
MAR 5.11 3.11 1.11 0.11 0 0 0 0
AVG (JAN-
MAR) 7.76 5.76 3.76 2.90 2.53 2.19 1.87 1.20
ANTITHETIC
— VASICEK 6.22 3.97 2.82 2.17 1.61 1.14 0.81 0.34
(15000 sim)
VORST 12.72 | 11.81 | 10.97 | 10.57 | 10.18 | 9.82 9.47 8.80
ANTITHETIC
— GBM (15000 | 14.04 | 12.87 | 12.20 | 11.97 | 11.68 | 11.15 | 10.54 9.92
sim)
ARIMA 9.66 7.77 5.98 5.13 4.34 3.62 2.95 1.84
ARIMA
CORRECTED 6.35 4.67 3.22 2.59 2.05 1.58 1.18 0.61

Table 10: Out-of-sample estimation of the average payoffs of monthly caps during 201501, during the
training period, and comparison with the actual payoffs
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Figure 40: Comparison of the forecasted payoffs for monthly caps in 201501 for different methods,
and the actual payoffs which would have delivered these caps during 201501.
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Figure 41: Comparison of the forecasted payoffs for monthly caps for 201501 for the most reliable
methods and the actual payoffs which would have delivered these caps during 201501.

In this case, the corrected MC-ARIMA method is the one which would have predicted prices
better with the MC-Vasicek being the next one. It is reminded that the appearance of errors in
an estimation does not imply that the estimation is poor, as prices can change. As a matter of
fact, the average price in the Vasicek model was 44.14 €/ MWh, almost similar to its long-term
mean, while finally the actual average price in the period was 45.76 €/ MWh meaning that there

was an increase in the prices with respect to the expectations. It is seen that Vorst estimation
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and the MC-GBM do not provide a nice approximation in this context of high volatilities. This
is coherent with the (Nielsen, 2011) finding that the Vorst model fails in context of high

volatilities, as it is the case.

The utility may face risk high market prices in case it decides not to hedge them average

monthly price in 95% percentile is 50.14 €/ MWh (a 13.6% increase in market prices).
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Figure 42: Percentage of paths with a certain average monthly price (rounded to the closest unit)
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Figure 43: Cumulative percentage of paths with a certain average monthly price (rounded to the
closest unit)

An approximation delta of a monthly option of strike K = 43 €/MWh is computed for the
MC-Vasicek method at the current reference price S = 44.13 €/MWh.

A VIS +AS]—V[S—AS] _V[44.13+0.5] — V[44.13 — 0.5] _ 553 191 — 0.62
- 2 AS - 2 0.5 - T
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Estimation of the price of a monthly cap for 2015Q2
The Q+1 on March 31, 2015 was 44.29 €/ MWh. The estimation of the parameters during
2015Q1 yields 6 = 4.19 (annually) for GBM and & = 219.68 (annually), A = 189.02 for

Vasicek.

The ARIMA model trained during periods 2014Q4 and 2015Q1 is again (1,0,1)(1,0,0)[7]. It is

shown to reflect insignificance of coefficients, independence and normality of residuals (Annex

0.

A forecast of 2015Q2 delivered by ARIMA model is shown (percentiles 60% and 95%)

compared to the actual spot prices which were obtained for the period:
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Figure 44: Representation of the forecasts of daily prices in date 3/31/2014 (in blue, 60% and 95%
percentiles shown) of the ARIMA model, and the actual average daily prices in the following quarter
(red)

75



K 38 40 42 43 44 45 46 48
APR 7.34 5.34 3.34 2.34 1.34 0.34 0 0
MAY 7.12 5.12 3.12 2.12 1.12 0.12 0 0
JUN 16.73 | 14.73 | 12.73 | 11.73 | 10.73 9.73 8.73 6.73
AVG (APR-
JUNE) 10.40 8.40 6.40 5.40 4.40 3.40 2.91 2.24
ANTITHETIC
— VASICEK 6.38 4.57 2.97 2.30 1.71 1.26 0.85 0.35
(15000 sim)
VORST 13.51 | 12.63 | 11.82 | 11.44 | 11.07 | 10.71 | 10.37 9.71
ANTITHETIC
— GBM (15000 | 15.04 | 14.21 | 13.46 | 13.09 | 12.70 | 1237 | 12.03 | 11.46
sim)
ARIMA 9.66 7.78 5.98 5.14 4.35 3.62 2.95 1.84
ARIMA
CORRECTED 6.41 4.73 3.28 2.67 2.12 1.65 1.26 0.68

Table 11: Out-of-sample estimation of the average payoffs of monthly caps during 201502, during the
training period, and comparison with the actual payoffs
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Figure 45: Comparison of the forecasted payoffs for monthly caps for 201502 for different methods,

and the actual payoffs which would have delivered these caps during 2015Q2.
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In this case, an increase in the prices in June (54.73€/MWh) during 2015Q2 with respect to the
expectations (44.29 €/ MWh) implies that all the valuation models’ payoff expectation were
short. The corrected ARIMA and the MC-Vasicek estimate nearly the same payoffs. Vorst
estimation and MC-GBM do not provide accurate estimations, due to the high volatilities of

power spot markets.

Estimation of the price of a monthly floor for Q3 2015

The Q+1 on June 30, 2015 was 53.52 €/MWh. The estimation of the parameters during 2015Q1
yields & = 2.87 (annually) for GBM and & = 229.29 (annually), 1 = 247.57 for Vasicek.

The ARIMA model trained during periods 2015Q1 and 2015Q2 is the model ARIMA
(1,0,2)(0,1,D)[7].
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Figure 46. Representation of the forecasts of daily prices in date 6/30/2014 (in blue, 60% and 95%
percentiles shown) of the ARIMA model, and the actual average daily prices in the following quarter
(red)
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K 48 50 52 53 54 55 56 58
ANE (LI 0 0 0.041 | 0.374 | 0.707 | 1.041 | 1.512 | 2.845
SEP)
ANTITHETIC
— VASICEK 0.06 | 0.21 | 0.65 1.03 1.52 | 2.13 | 2.86 | 4.58
(15000 sim)
VORST 6.74 | 7.79 | 890 | 9.48 | 10.07 | 10.69 | 11.31 | 12.04
ANTITHETIC
- GBM (15000 | 7.18 | 8.25 | 9.39 | 9.98 10.6 | 11.22 | 11.85 | 12.61
sim)
ARIMA 1.86 | 296 | 439 | 522 6.1 7.02 | 798 | 9.95
ARIMA
CORRECTED 031 | 0.56 | 0.98 1.3 1.69 | 2.15 | 2.71 4.08

Table 12: Out-of-sample estimation of the average payoffs of monthly floors during 201503 and
comparison with the actual payoffs
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Figure 47: Comparison of the forecasted payoffs for monthly caps for 201503 for different methods,
and the actual payoffs which would have delivered these caps during 201503.
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In this case the prices drop a little, therefore being payoff estimations a bit overvalued. There
are still similarities between the estimation of the corrected ARIMA and the MC-Vasicek

models, providing once again to be a fairly good estimation.

Estimation of the price of a monthly floor for Q4 2015

The Q+1 on September 30, 2015 was 47.85 €/ MWh. The estimation of the parameters during
2015Q13 vyields 6 = 2.27 (annually) for GBM and 6 = 219.91 (annually), 1 = 285.73 for

Vasicek.

The ARIMA model trained during periods 2015Q2 and 2015Q3 is again an ARIMA
(1,0,2)(0,1,)[7].

Forecasts from ARIMA(1,0,2)(0,1,1)[7]
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Figure 48: Representation of the forecasts of daily prices in date 9/30/2014 (in blue, 60% and 95%
percentiles shown) of the ARIMA model, and the actual average daily prices in the following quarter
(red)
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K 42 44 46 47 48 49 51 53
AVG (OCT-
DEC) 0 0 0 0 0 0 0.37 1.76
ANTITHETIC
— VASICEK | 0.011 | 0.08 | 0.37 0.67 1.12 1.72 3.30 5.17
(15000 sim)
VORST 391 | 483 | 5.84 6.38 6.95 7.54 8.78 10.11
ANTITHETIC
— GBM (15000 | 4.30 | 5.18 | 6.22 6.88 7.46 8.06 9.33 10.53
sim)
ARIMA 3.10 | 3.61 | 4.24 4.61 5.01 5.44 6.47 7.72
ARIMA
CORRECTED 431 | 5.09 | 6.04 6.59 7.20 7.85 9.33 10.99

Table 13: Out-of-sample estimation of the average payoffs of monthly floors during 201504 and
comparison with the actual payoffs
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Figure 49: Comparison of the forecasted payoffs for monthly caps for 201504 for different methods,
and the actual payoffs which would have delivered these caps during 201504.

The prices drop in the last quarter of 2015. The ARIMA model does not provide a good
estimation of the results. In fact, this was predictable studying the forecasts of the model
(Figure 48), which did not have enough quality. MC-Vasicek do not estimate as weel the
payoffs because of the fall in the prices.
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5.4 Risk assessment

In this section it is shown how to perform calculations of the risk indicators, according to

historical tools and the Monte Carlo simulations.
5.4.1 Computation of MTM

On February 7, the price of the MAR17 future is 48 €/ MWh. Therefore, the Mark-to-Market

of the future contract is:
MTM = 50,000 [48 — 49.20 ] = —60,000 €

5.4.2 Computation of VaR

VaR Case 1: Computation of VaR for the following day

Supposing 50,000 MWh of a Spanish power MAR17 future are bought on February 6, 2017,
at a price of 49.20 €/ MWh.

To estimate the highest loss (with a 5% probability) on February 8, three approaches can be

made:

Historical simulation

The evolution of prices of the Spanish power MAR17 product is:

52.00
50.00
48.00
46.00

44.00

Price (€/MWh)

42.00

Figure 50: Representation of the evolution of Spanish power MARI7

The daily log returns of the previous 20 days are computed:
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MAR 18 ANNUALIZED LOG

Date (€/MWh) LOG RETURN RETURN
10/01/2017 48.80
11/01/2017 50.38 3.18% 50.42%
12/01/2017 49.75 -1.25% -19.82%
13/01/2017 49.25 -1.01% -16.03%
16/01/2017 48.00 -2.58% -40.94%
17/01/2017 48.00 0.01% 0.17%
18/01/2017 48.39 0.82% 12.94%
19/01/2017 48.40 0.01% 0.08%
20/01/2017 48.65 0.52% 8.28%
23/01/2017 50.00 2.74% 43.44%
24/01/2017 48.40 -3.26% -51.70%
25/01/2017 48.75 0.72% 11.50%
26/01/2017 48.00 -1.55% -24.59%
27/01/2017 46.75 -2.64% -41.88%
30/01/2017 48.00 2.63% 41.76%
31/01/2017 48.35 0.74% 11.78%
01/02/2017 49.49 2.33% 37.02%
02/02/2017 51.24 3.47% 55.15%
03/02/2017 51.30 0.10% 1.60%
06/02/2017 49.20 -4.18% -66.34%
07/02/2017 48.00 -2.47% -39.23%

The 5% percentile of returns (the worst return in 20 days) is -4.18%. From this figure
the VaR is deduced:

VaR(per MWh) = 0.0418 * 48 = 2.01 €/MWh
This is a total VaR = 2.01 * 50,000 = 100,500 €

Price(8 Feb,5%) = 48 — 2.01 = 45.89 €
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Estimation directly from the distribution

This method can only be made to account for one iteration.

According to estimation data, volatility 644, = 2.26% (daily), annually. If the prices

follow a GBM, the change in the prices would be:
Change in prices = € 0 S;_1 \t

With t = 1 as volatility is daily. € follows a standard normal distribution. The value of

inverse standard normal distribution at 5% probability is £(0.05) = —1.64
VaR(per MWh,5%,1 day) = 1.64 * 0.02266 x 48 = 1.78 €/MWh
This is a total VaR( 5%, 1 day) = 1.78 * 50,000 = 89,000 €

Price(8 Feb,5%) = 48 — 1.78 = 46.22 €

Estimation from Monte Carlo method

This method allows to compute the VaR for longer periods of time.

15,000 simulations of a GBM are made, with Fy, = F(7 Feb) = 48€ and o4yq =
Oqay = V365 2.26 = 43.1%.

Only the price of the following day is computed:
The average price of the 15,000 simulations for February 8 is 48.00 €, as it is logical.

The price in the 5% percentile is 46.22 €, therefore VaR (per MWh, 5%, 1 day) =
48 — 46.22 = 1.78 € /MW h, logically coinciding with the estimation based on the

distribution.
This is a total VaR (5%, 1 day) = 1.78 * 50,000 = 89,000 €

CVaR (5%) is obtained rapidly in the Monte Carlo simulation tool from the average of

prices below the 5% percentile:

Avg prices (Percentile < 5%) = 45.79 €/ MWh
CVaR (per MWh,5%,5 days) = 48 — 45.79 = 2.21 €/MWh
CVaR (5%,5 days) = 50,000 = 2.21 = 110,500 €
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VaR Case 2: Computation of VaR for 5 days after

Estimation from Monte Carlo method

One of the best characteristics of the Monte Carlo simulation is that it allows to easily

calculate VaR for dates further in the future.

If the VaR in a 5-day period time is wanted, only a Monte Carlo simulation has to be
implemented for this period. The future prices are modelled as a GBM of known drift
and volatility. For the previous case, VaR on the MAR17 estimated at February 7, 2017,

the same volatility 04,0 = 0.431 is considered (with zero drift).

15,000 simulations are made. The average price obtained is 48 €/ MWh. The price in
the 5% percentile is 44.06 €/MWh, therefore VaR:

VaR(per MWh,5 days) = 48 — 44.06 = 3.95 €
VaR(5 days) = 3.95 x 50,000 = 197,500 €

This is a logical result as prices there can be higher change in the prices in longer

periods.

The CVar calculation yields:

Avg prices (Percentile < 5%) = 43.134 €/ MWh

CVaR (per MWh,5%,5 days) = 48 — 43.13 = 4.87 €/MWh
CVaR (5%,5 days) = 50,000 * 4.87 = 243,500 €

84



6. CONCLUSIONS

In this work a flexible Monte Carlo simulation tool has been implemented in VBA/Excel,
which allows to calculate easily the value of future Asian options, including caps and floors
of periods of different range. An Antithetic and a naive MC methods have been implemented,

with the antithetic consuming less time.

A number of different spot price models has been compared to the power and gas daily spot
market prices. It has been observed that the GBM is a very flawed model to simulate electricity
prices due to high volatilities, while Vasicek model is more robust and provides a better
approximation for the valuation of the options. An ARIMA price model has also been
implemented to value options. It is a methodology which is not common in literature, but it has
proven to provide fairly accurate results to option valuation, providing that conditions do not
change abruptly. It has been shown that Vasicek and ARIMA together can provide a sensible

estimation of the fair value of an Asian option.

In the case of power spot markets, these two models overperform Vorst estimation for Asian

options common GBM approaches, due to mainly high volatility in the prices.

Regarding gas prices, GBM behaves better thanks to lower volatilities, and to the fact that it
allows to estimate and capture drift. For this reason Vorst estimation is expected to work well.
Vasicek model is not as robust, as gas prices are not as mean-reverting as power prices,

producing bigger errors.

The model allows to predict the probabilities of having certain prices, and calculate VaR and

CVar for different time periods.

In the following steps, more complex spot price models can be integrated, for example Cox-

Ingersoll-Ross, 2-factor models as Schwartz or ARMA-GARCH models.
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8. ANNEXES

8.1 Annex I: Fitting an ARIMA model (Practical Case)

An ARIMA model in R has been fitted to the daily power spot prices of Spain during the first

semester of 2015.

70.00
60.00
50.00
40.00

30.00

Price (MWh)

20.00
10.00

0.00
0l-ene.-15 01-feb.-15 01-mar.-15 01-abr.-15 01-may.-15 01-jun.-15

Date

In order to adjust volatility. In order to stabilize variance, a Box-Cox transformation is made.
R software delivers @ = 1.95 as the Box-Cox parameter by the log likelihood maximization

method, applying thus:
y = 1.95In(x)

Where x is the original spot price series and y is the Box-Cox transformation. The transformed

trime series 1s shown below:

&9



75

55
|

| | | |
0 20 100 150

Time
Still after having applied the Box-Cox transformation, there are still some concerns regarding

volatility between days 30 and 50. Next, measures are taken to stabilize mean. The ACF and

PCF are then analyzed to obtain an idea of the possible ARIMA model.

Series y Series y
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The declining trend in the lags multiple of 7 in the ACF suggests a weekly AR(1) seasonality.

To solve it, seasonal differentiation is applied. The resulting time series is:
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y2
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It is seen that after applying seasonal differences the mean has been stabilized. ACF and PCF

of time series y2 are then studied again.

Series y2
&y —
S — w__p__L_L__L_L__I__J__J__J __________________
; i [ A [ ]
5 J 'H"'H _____ [t

Lag

The downward trend of the first lags in the ACF suggests a weekly seasonal differencing
process could explain some of the series. After applying this ARIMA model, the p-value of the
coefficient (0) suggests it I an explanatory variable. By inspection, studying constantly the

form, ACF and PACF of the residuals of the different ARIMA method trials, an ARIMA
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(1,0,2)(0,1,1)[ 7] applied on the Box-Cox transformation of the original time series is believed

to be the best fit for the six-period month.
The significance of the coefficients is calculated:

Estimate std. Error 2z value Pr{=|z]|)
arl 0. 894755 0.067434 13,2685 =« 2.2e-16 ##%
mal -0.189061 0.106723 -1.7715% 0.076476 .
maz -0.260081 0.095%613 -2.7201 0.006525 #*
smal -0.999989 0.063213 -15.8192 =« 2.2e-16 #*¥

Signif. codes: 0O “##*%' Q0,001 **=' 0.01 =" 0.05 *.” 0.1 * " 1

The residuals are normally distributed and independent according to their curve, the QQ plot,

the ACF and the PCF.
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Series yarima$residuals
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The fitted model is shown in black in the next figure, while the real prices are shown in red in

the figure below:
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Finally, the Ljung-Box test is applied. (Hyndman, 2014) suggests # = 2 m degrees of freedom,
where m is the period of seasonality. Therefore 14 degrees of freedom are selected. The results

of the Ljung-Box tests are:
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Box-Ljung test

data: warima%residuals
¥-squared = 3.7087, df = 14, p-value = 0.997

As the p-value is much larger than 0.05, the null hypothesis which states that the residuals are

independently distributed cannot be rejected.
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ARIMA model used to forecast of Asian monthly call option for 2015Q2
Calibration for period 2014Q1 & 2014Q2

z test of coefficients:

Estimate std. Error z wvalue Pri{=|z|)

arl 0.463746 0.097026 4.7796 1.757e-06 ##=®
mal 0. 289561 0.103633 2.7941 0.005204 #=*
sarl 0.432346 0.067907 6.2668 1.930e-10 #=*#*

intercept 437.390853 32.909070 13.2909 < 2.2e-16 ®*®*

signif. codes: O f##%%' 0,001 ‘**' 0,01 ‘%' 0.05% . 0.1 * ' 1
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ARIMA model used to forecast of Asian monthly call option for 2015Q4
The ARIMA model trained during periods 2015Q2 and 2015Q3 an ARIMA (1,0,2)(0,1,1)[7].
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0.15

0.05

Estimate std. Error z value Pr=|z|)
arl 0.993098 0.019348 51.3271 < 2.2e-16 #*%*
mal -0.259737 0.072727 -3.5714 0.0003551 #*#=*
maz -0.425327 0.075600 -5.6260 1.844e-08 ##%
smal -0.999846 0.124636 -B.0221 1.03%e-15 #*#=*

signif. codes: 0 *#*%' 0,001 “**=' 0.01 “*' Q.05 *." 0.1 * " 1
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8.2 Annex II: Code

Sub Macro2()

Application.DisplayAlerts = False
Application.ScreenUpdating = False
Application.Calculation = xlCalculationManual
Application.EnableEvents = False

'"Timer
Dim PauseTime, Start, Finish, TotalTime
Start = Timer ' Set start time

Call Eraser

'"Variable declaration

Dim days_sim As Integer

Dim nb_trials As Long

Dim nb _trials last As Integer
Dim n_sheets As Integer

Dim ref spot_price As Double
Dim annual_vol As Double

Dim drift As Double

Dim tenor As Double

Dim acc_parameter OU As Double
Dim today date As Date

Dim select _val period As String
Dim nsim As Long

Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim p As Integer

' Get inputs

days_sim = Worksheets("MonteCarlo1").Range("B3").Value

nb_trials = Worksheets("MonteCarlo1").Range("B4").Value

annual_vol = Worksheets("MonteCarlo1").Range("B10").Value
acc_parameter OU = Worksheets("MonteCarlo1").Range("B12").Value
tenor = Worksheets("GBM SPG").Range("B7").Value

today date = Worksheets("MonteCarlo1").Range("B2").Value

drift = Worksheets("GBM SPG").Range("B9").Value

n_sheets = nb_trials / 7500
nb_trials last =nb_trials Mod 7500
If (nb_trials last =0) Then
nb_trials last = 7500
End If
nsim = CLng(15000 * (CLng(n_sheets) - 1) + CLng(nb_trials_last) * 2)

'Generate spot price for nb_trials

Dim sim MC_mode As String

Dim select model PG As String

Dim prev_price As Double

Dim prev_pricel As Double

Dim prev_price2 As Double

ReDim PriceGenl1(days_sim, 7500, n_sheets) As Double



ReDim PriceGen2(days_sim, 7500, n_sheets) As Double
ReDim PriceGen(days_sim, 7500, n_sheets) As Double
Dim TotAvgPrice As Double

Dim rand As Double

Dim path_numb As Integer

sim_MC_mode = Worksheets("MonteCarlo1").Range("B8").Value
select_model PG = Worksheets("MonteCarlo1").Range("B6").Value

Select Case sim_MC_mode
Case "Naive Monte Carlo"

Call WriteDates(today date, days_sim, n_sheets) "Write dates for the period chosen
Call WriteTitles(days_sim, nb_trials) 'Write titles
Call WriteTrialsHeader(nb_trials) 'Write trials

Select Case select model PG
Case "Geometric Brownian"
Forj=1Tonb_trials
ref spot_price = Worksheets("MonteCarlo1").Range("B11").Value
prev_price = ref_spot_price

Fori=1 To days sim
rand = Rnd()
PriceGen(i, j) = PriceGeneratorGBM(prev_price, annual_vol, tenor, drift, rand)
prev_price = PriceGen(i, j)

Worksheets("MonteCarlo1").Cells(i + 7, j + 4).Value = PriceGen(i, j)
Next i
Next j

Case "OU Vasicek Mean Reversion"
Forj=1Tonb_trials
ref_spot_price = Worksheets("MonteCarlo1").Range("B11").Value

prev_price = ref spot price

Fori=1 To days_sim
rand = Rnd()

PriceGen(i, j) = PriceGeneratorOU(ref spot_price, prev_price, acc_parameter OU, annual_vol, tenor, rand)

prev_price = PriceGen(i, j)
Worksheets("MonteCarlo1").Cells(i + 7, j + 4).Value = PriceGen(i, j)
Next i
Next j
End Select

path_numb = 1

Call CalculateAsian(PriceGen(), nb_trials, days_sim, today date, path_numb, n_sheets, nb_trials_last, nsim)
'Call CalculateVaR(PriceGen(), nb_trials, days sim

Case "Antithetic Monte Carlo"

If (n_sheets >= 2) Then
ReDim sheet_exists(1 To n_sheets) As Double

For j=2 Ton_sheets
For i =1 To Worksheets.Count
If Worksheets(i).Name = "MonteCarlo" & j Then
sheet_exists(j) = True
End If
Next i

If Not sheet_exists(j) Then
Worksheets.Add.Name = "MonteCarlo" & j
End If
Next j
End If

Call WriteDates(today_date, days_sim, n_sheets) "Write dates for the period chosen
Call WriteAntitheticTitles(days sim, nb_trials_last, n_sheets)
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Call WriteAntitheticTrialsHeader(nb_trials_last, n_sheets) '"Write trials
Select Case select_model PG
Case "Geometric Brownian"

Ifn_sheets >=2 Then
Fork=1 Ton_sheets - 1
Forj=1 To 7500
ref_spot_price = Worksheets("MonteCarlo1").Range("B11").Value
prev_pricel =ref spot price
prev_price2 =ref spot_price

Fori=1 To days sim
rand = Rnd()
PriceGenl(j, j, k) = PriceGeneratorGBM(prev_pricel, annual vol, tenor, drift, rand)
prev_pricel = PriceGenl(i, j, k)
rand = 1 - rand
PriceGen2(i, j, k) = PriceGeneratorGBM(prev_price2, annual_vol, tenor, drift, rand)
prev_price2 = PriceGen2(i, j, k)
Worksheets("MonteCarlo" & k).Cells(i + 7, j + 4).Value = PriceGen1(i, j, k)
Worksheets("MonteCarlo" & k).Cells(i + 7, j + 7 + 7500).Value = PriceGen2(i, j, k)

Next i

Next j
Next k

Forj=1Tonb trials last
ref_spot_price = Worksheets("MonteCarlo1").Range("B11").Value
prev_pricel =ref spot price
prev_price2 = ref spot price

Fori=1 To days_sim
rand = Rnd()
PriceGenl(i, j, k) = PriceGeneratorGBM(prev_pricel, annual_vol, tenor, drift, rand)
prev_pricel = PriceGenl(i, j, k)
rand = 1 - rand
PriceGen2(i, j, k) = PriceGeneratorGBM(prev_price2, annual vol, tenor, drift, rand)
prev_price2 = PriceGen2(i, j, k)
Worksheets("MonteCarlo" & k).Cells(i + 7, j + 4).Value = PriceGen1(i, j, n_sheets)
Worksheets("MonteCarlo" & k).Cells(i + 7, j + 7 + nb_trials_last).Value = PriceGen2(i, j, n_sheets)

Next i

Next j

Elselfn_sheets = 1 Then
k=1
Forj=1Tonb trials last
ref spot price = Worksheets("MonteCarlo1").Range("B11").Value
prev_pricel =ref spot price
prev_price2 =ref spot price

Fori=1 To days_sim
rand = Rnd()
PriceGenl(i, j, k) = PriceGeneratorGBM(prev_pricel, annual vol, tenor, drift, rand)
prev_pricel = PriceGenl(i, j, k)
rand = 1 - rand
PriceGen2(i, j, k) = PriceGeneratorGBM(prev_price2, annual vol, tenor, drift, rand)
prev_price2 = PriceGen2(i, j, k)
Worksheets("MonteCarlo" & 1).Cells(i + 7, j +4).Value = PriceGen1(i, j, n_sheets)
Worksheets("MonteCarlo" & 1).Cells(i + 7,j + 7 + nb_trials_last).Value = PriceGen2(i, j, n_sheets)

Next i

Next j
End If

Case "OU Vasicek Mean Reversion"
Ifn_sheets >=2 Then
Fork=1 Ton_sheets - 1
Forj=1 To 7500
ref spot_price = Worksheets("MonteCarlo1").Range("B11").Value
prev_pricel =ref spot price
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tenor, rand)

tenor, rand)

tenor, rand)

tenor, rand)

tenor, rand)

tenor, rand)

prev_price2 =ref spot_price

Fori=1 To days_sim
rand = Rnd()
PriceGenl(i, j, k) = PriceGeneratorOU(ref spot price, prev_pricel, acc_parameter OU, annual vol,

prev_pricel = PriceGen1(i, j, k)
rand =1 - rand
PriceGen2(i, j, k) = PriceGeneratorOU(ref spot_price, prev_price2, acc_parameter OU, annual vol,

prev_price2 = PriceGen2(i, j, k)

Worksheets("MonteCarlo1").Cells(i + 7, j + 4).Value = PriceGen(j, j, k)

Worksheets("MonteCarlo1").Cells(i + 7, j + 7 + 7500).Value = PriceGen2(i, j, k)
Next i

Next j
Next k

Forj=1Tonb trials last
ref _spot_price = Worksheets("MonteCarlo1").Range("B11").Value
prev_pricel =ref spot price
prev_price2 = ref spot price
Fori=1 To days_sim

rand = Rnd()
PriceGenl(i, j, k) = PriceGeneratorOU(ref spot price, prev_pricel, acc_parameter OU, annual vol,

prev_pricel = PriceGenl(i, j, k)
rand = 1 - rand
PriceGen2(i, j, k) = PriceGeneratorOU(ref spot price, prev_price2, acc_parameter OU, annual vol,

prev_price2 = PriceGen2(i, j, k)
Worksheets("MonteCarlo" & k).Cells(i + 7, j + 4).Value = PriceGen(i, j, k)
Worksheets("MonteCarlo" & k).Cells(i + 7, j + 7 + nb_trials_last).Value = PriceGen2(i, j, k)

Next i
Next j

Elselfn_sheets = 1 Then

Forj=1Tonb trials last
ref spot price = Worksheets("MonteCarlo1").Range("B11").Value
prev_pricel =ref spot price
prev_price2 =ref spot_price
Fori=1 To days_sim

rand = Rnd()
PriceGenl(i, j, k) = PriceGeneratorOU(ref spot price, prev_pricel, acc_parameter OU, annual vol,

prev_pricel = PriceGenl(i, j, k)
rand = 1 - rand
PriceGen2(i, j, k) = PriceGeneratorOU(ref spot price, prev_price2, acc parameter OU, annual vol,

prev_price2 = PriceGen2(i, j, k)
Worksheets("MonteCarlo" & k).Cells(i + 7, j + 4).Value = PriceGen1(, j, k)
Worksheets("MonteCarlo" & k).Cells(i + 7, j + 7 + nb_trials_last).Value = PriceGen2(i, j, k)

Next i
Next j

End Select
path_numb =1
Call CalculateAsian(PriceGen1(), nb_trials, days_sim, today_date, path numb, n_sheets, nb_trials_last, nsim)
path_numb =2
Call CalculateAsian(PriceGen2(), nb_trials, days_sim, today_date, path numb, n_sheets, nb_trials_last, nsim)
Call CalculateSTD

End Select

100



Application.DisplayAlerts = True
Application.ScreenUpdating = True
Application.Calculation = xlCalculationAutomatic
Application.EnableEvents = True

Finish = Timer ' Set end time.

TotalTime = Finish - Start ' Calculate total time.

Worksheets("MonteCarlo1").Range("D1").Value = TotalTime
End Sub

'Calculate average spot price during the period & Asian option payoff valuation
Sub CalculateAsian(ByRef PriceGen() As Double, nb_trials As Long, days_sim As Integer, today date As Date, path_numb
As Integer, n_sheets As Integer, nb_trials last As Integer, nsim As Long)

Dim final_date As Date

Dim ini_square As Range

Dim rolling_rng As Range

Dim period rng As Range

Dim ini_row_period As Integer
Dim final row period As Integer

Dim tot_avg_period As Double
Dim asian_payoff period As Double

Dim finalStdPayoff As Double

Dim K _asian As Double

Dim pos_payoff As Double

Dim select_val period As String
Dim valuation_period As Double
Dim count_weeks As Integer
Dim count_months As Integer
Dim count_years As Integer

Dim count periods As Integer
Dim start_month As Integer
Dim final month As Integer
Dim month_oneday As Integer

Dim month_nextday As Integer

Dim year oneday As Integer
Dim year nextday As Integer

ReDim AvgPrice(1 To 7500) As Double

ReDim AsianPayoff(1 To 7500) As Double

ReDim DeviationAsianPayoff(1 To 7500) As Double
Dim final AvgPayoff As Double

Dim summary average As Double

Dim summary sum_squares As Double

Dim summaryStdev As Double

'Get inputs

final_date = today date + days_sim - 1
Worksheets("MonteCarlo1").Range("B7").Value = final_date

K asian = Worksheets("MonteCarlo1").Range("B44").Value
select_val period = Worksheets("MonteCarlo1").Range("B45").Value
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count_weeks = CountWeeks(days_sim) 'count weeks
count_years = CountYears(today_date, final date) 'count years
count_months = CountMonths(today date, final date, count years) 'this function gets arguments from count_years!

count_periods = CountPeriods(select val period, days sim, count weeks, count months,
count_years) 'count periods

'Call WriteGreeksHeaders(days_sim, nb_trials, count_periods)

ReDim AvgPricePeriod(1 To (count_periods), 1 To nb_trials) As Double
ReDim TotAvgPricePeriod(1 To (count_periods)) As Double

ReDim AsianPayoffPeriod(1 To (count periods), 1 To nb_trials) As Double
ReDim AvgAsianPayoffPeriod(1 To (count periods)) As Double

'Call delta
ReDim CDAsianPayoffPeriod(1 To (count_periods), 1 To nb_trials) As Double
ReDim CDAvgAsianPayoffPeriod(1 To (count periods)) As Double

'Put delta
ReDim PDAsianPayoffPeriod(1 To (count periods), 1 To nb_trials) As Double
ReDim PDAvgAsianPayoffPeriod(1 To (count periods)) As Double

Set ini_square = Range("D8")
Set rolling_rng = Range("D7")
rolling_rng.Select

k=1 ‘'Initialization

Select Case select_val period
Case "Day"

Ifn_sheets >=2 Then
Forp=1Ton_sheets - 1
Worksheets("MonteCarlo" & p).Activate
For k=1 To count_periods
Worksheets("MonteCarlo" & p).Cells((days_sim + k + 18 + count_periods), 4 + (path_ numb - 1) * (7500 +
3)).Value = "Day " & k & " Asian Payoft"
Forj=1 To 7500
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, PriceGen(k, j, p) - K_asian)
CDAsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, PriceGen(k, j, p) - K_asian)
Cells(days_sim + count periods + k + 18, j + 4 + (path_numb - 1) * (7500 + 3)).Value =
AsianPayoffPeriod(k, j)
Next j

AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5
+ (path_numb - 1) * (7500 + 3)), Cells(days sim + k + 18 + count periods, 7500 + 4 + (path_numb - 1) * (7500 + 3))))

With Cells(days_sim + k + 18 + count_periods, 7500 + 5 + (path_numb - 1) * (7500 + 3))
.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True

End With

Next k
Next p

Worksheets("MonteCarlo" & p).Activate
For k=1 To count_periods
Worksheets("MonteCarlo" & p).Cells((days_sim +k + 18 + count_periods), 4 + (path_ numb - 1) * (nb_trials last
+3)).Value ="Day " & k & " Asian Payoft"
Forj=1Tonb trials last
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, PriceGen(k, j, p) - K_asian)
CDAsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, PriceGen(k, j, p) - K _asian)
Cells(days_sim + count periods + k + 18, j + 4 + (path numb - 1) * (nb_trials last + 3)).Value =
AsianPayoffPeriod(k, j)
Next j
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AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5 +
(path_numb - 1) * (nb_trials_last + 3)), Cells(days_sim + k + 18 + count_periods, nb_trials last + 4 + (path_numb - 1) *
(nb_trials_last + 3))))

With Cells(days_sim + k + 18 + count_periods, nb_trials_last + 5 + (path_numb - 1) * (nb_trials_last + 3))

.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True
End With
Next k

Elselfn_sheets = 1 Then
p=1
Worksheets("MonteCarlo" & p).Activate
For k=1 To count periods
Worksheets("MonteCarlo" & p).Cells((days_sim + k + 18 + count periods), 4 + (path_ numb - 1) * (nb_trials_last
+ 3)).Value ="Day " & k & " Asian Payoft"
Forj=1 Tonb_trials last
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, PriceGen(k, j, p) - K_asian)
CDAsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, PriceGen(k, j, p) - K_asian)
Cells(days_sim + count periods + k + 18, j + 4 + (path numb - 1) * (nb_trials_last + 3)).Value =
AsianPayoffPeriod(k, j)
Next j

AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5 +
(path_numb - 1) * (nb_trials_last + 3)), Cells(days_sim + k + 18 + count_periods, nb_trials last + 4 + (path_ numb - 1) *
(nb_trials_last + 3))))

With Cells(days_sim + k + 18 + count_periods, nb_trials last + 5 + (path_numb - 1) * (nb_trials_last + 3))

.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True
End With
Next k
End If

Case "Week"

Ifn_sheets >=2 Then
Forp=1Ton_sheets - 1
Worksheets("MonteCarlo" & p).Activate
k=1
Set ini_square = Range("D8")
Set rolling_rng = Range("D7")
rolling_rng.Select

Fori=1 To days sim - 1
Set rolling_rng = rolling_rng.Offset(1, 0)

If (StrComp(Cells(i + 7 + 1, 3).Value, "lu.", vbTextCompare) = 0) Then
Range("D" & (days_sim + k + 16)).Value ="Week " & k & " Avg"
Range("D" & (days_sim + k + 18 + count_periods)).Value = "Week " & k & " Asian Payoff"
ini_row_period = ini_square.Row
final row_period = rolling_rng.Row

For j=1 To 7500
AvgPricePeriod(k, j) = WorksheetFunction.Average(Range(Cells(ini_row_period, j + 4 + (path_numb -
1) * (7500 + 3)), Cells(final_row_period, j + 4 + (path_numb - 1) * (7500 + 3))))
Cells(days sim+k + 16, j +4 + (path_numb - 1) * (7500 + 3)).Value = AvgPricePeriod(k, j)
TotAvgPricePeriod(k) = WorksheetFunction.Average(Range(Cells(days sim + k + 16, 5 + (path_numb -
1) * (7500 + 3)), Cells(days_sim + k + 16, 7500 + 4 + (path_numb - 1) * (7500 + 3))))
With Cells(days_sim + k + 16, 7500 + 5 + (path_numb - 1) * (7500 + 3))
.Value = TotAvgPricePeriod(k)
.Font.Bold = True
End With
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, AvgPricePeriod(k, j) - K_asian)
Cells(days sim + k + 18 + count periods, j + 4 + (path numb - 1) * (7500 + 3)).Value =
AsianPayoffPeriod(k, j)

Next j
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AvgAsianPayoffPeriod(k) = WorksheetFunction.Average(Range(Cells(days_sim + k + 18 + count_periods,
5+ (path_numb - 1) *

(7500 + 3)), Cells(days_sim + k + 18 + count_periods, (7500 + 4) + (path_numb - 1) * (7500 + 3))))

With Cells(days_sim + k + 18 + count_periods, 7500 + 5 + (path_numb - 1) * (7500 + 3))
.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True

End With

Set period_rng = Range(ini_square, rolling_rng)
period_rng.Select

Set ini_square = rolling_rng.Offset(1, 0)
k=k+1
End If

Next i
Next p
Worksheets("MonteCarlo" & p).Activate
k=1
Set ini_square = Range("D8")
Set rolling_rng = Range("D7")

Fori=1 To days_sim- 1
Set rolling_rng = rolling_rng.Offset(1, 0)

If (StrComp(Cells(i + 7 + 1, 3).Value, "lu.", vbTextCompare) = 0) Then
Range("D" & (days_sim + k + 16)).Value = "Week " & k & " Avg"
Range("D" & (days_sim + k + 18 + count_periods)).Value = "Week " & k & " Asian Payoff"
ini_row_period = ini_square.Row
final row_period = rolling_rng.Row

Forj=1Tonb_trials last
AvgPricePeriod(k, j) = WorksheetFunction. Average(Range(Cells(ini_row_period, j + 4 + (path_numb - 1) *
(nb_trials last + 3)), Cells(final_row_period, j + 4 + (path_numb - 1) * (nb_trials last + 3))))
Cells(days sim+k + 16, j+ 4 + (path_numb - 1) * (nb_trials_last + 3)).Value = AvgPricePeriod(k, j)
TotAvgPricePeriod(k) = WorksheetFunction.Average(Range(Cells(days sim +k + 16, 5 + (path_numb - 1)
* (nb_trials_last + 3)), Cells(days_sim +k + 16, nb_trials last + 4 + (path_ numb - 1) * (nb_trials_last + 3))))
With Cells(days_sim + k + 16, nb_trials last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = TotAvgPricePeriod(k)
.Font.Bold = True
End With
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, AvgPricePeriod(k, j) - K_asian)
Cells(days_sim + k + 18 + count periods, j + 4 + (path_numb - 1) * (nb_trials last + 3)).Value =
AsianPayoffPeriod(k, j)

Next j

AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5
+ (path_numb - 1) *

(nb_trials last + 3)), Cells(days_sim + k + 18 + count_periods, (nb_trials_last + 4) + (path_numb - 1) *
(nb_trials_last + 3))))

With Cells(days_sim + k + 18 + count_periods, nb_trials last + 5 + (path_ numb - 1) * (nb_trials_last + 3))
.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True

End With

Set period_rng = Range(ini_square, rolling_rng)
period_rng.Select

Set ini_square = rolling_rng.Offset(1, 0)
k=k+1
End If
Next i

Elselfn_sheets = 1 Then
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Fori=1 To days_sim - 1
Set rolling_rng = rolling_rng.Offset(1, 0)

If (StrComp(Cells(i + 7 + 1, 3).Value, "lu.", vbTextCompare) = 0) Then
Range("D" & (days_sim + k + 16)).Value = "Week " & k & " Avg"
Range("D" & (days_sim + k + 18 + count_periods)).Value = "Week " & k & " Asian Payoff"
ini_row_period = ini_square.Row
final row_period = rolling_rng.Row

Forj=1Tonb_trials last
AvgPricePeriod(k, j) = WorksheetFunction. Average(Range(Cells(ini_row_period, j + 4 + (path_numb - 1) *
(nb _trials last + 3)), Cells(final row period, j +4 + (path_numb - 1) * (nb_trials last + 3))))
Cells(days sim+k + 16,j+ 4 + (path numb - 1) * (nb_trials_last + 3)).Value = AvgPricePeriod(k, j)
TotAvgPricePeriod(k) = WorksheetFunction.Average(Range(Cells(days sim +k + 16, 5 + (path_ numb - 1)
* (nb_trials_last + 3)), Cells(days sim +k + 16, nb_trials last + 4 + (path numb - 1) * (nb_trials_last + 3))))
With Cells(days_sim + k + 16, nb_trials last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = TotAvgPricePeriod(k)
.Font.Bold = True
End With
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, AvgPricePeriod(k, j) - K asian)
Cells(days_sim + k + 18 + count periods, j + 4 + (path numb - 1) * (nb_trials last + 3)).Value =
AsianPayoffPeriod(k, j)

Next j

AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5

+ (path_numb - 1) * _
(nb_trials last + 3)), Cells(days_sim + k + 18 + count_periods, (nb_trials last + 4) + (path_numb - 1) *

(nb_trials_last + 3))))

With Cells(days_sim + k + 18 + count_periods, nb_trials last + 5 + (path_ numb - 1) * (nb_trials_last + 3))
.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True

End With

Set period_rng = Range(ini_square, rolling_rng)
period_rng.Select

Set ini_square = rolling_rng.Offset(1, 0)
k=k+1
End If
Next i
End If

Case "Month"
Ifn_sheets >=2 Then
Forp=1Ton_ sheets - 1
Worksheets("MonteCarlo" & p).Activate
k=1
Set ini_square = Range("D8")
Set rolling_rng = Range("D7")

Fori=1 To days sim - 1
Set rolling_rng = rolling_rng.Offset(1, 0)
month_oneday = Month(Cells(i + 7, "D").Value)
month nextday = Month(Cells(i + 8, "D").Value)

If month_oneday <> month_nextday Then
With Range("D" & (days_sim + k + 16))
.Value="Month " & k & " Avg"
.Font.Bold = True
End With

With Range("D" & (days_sim + k + 18 + count_periods))

.Value ="Month " & k & " Asian Payoft"
.Font.Bold = True
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End With

ini_row_period = ini_square.Row
final row_period = rolling_rng.Row

Forj=1 To 7500
AvgPricePeriod(k, j) = WorksheetFunction. Average(Range(Cells(ini_row_period, j + 4 + (path_numb - 1) *
(7500 + 3)), Cells(final_row_period, j +4 + (path_numb - 1) * (7500 + 3))))
Cells(days_sim + k + 16, j + 4 + (path_numb - 1) * (7500 + 3)).Value = AvgPricePeriod(k, j)
TotAvgPricePeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim +k + 16, 5 + (path_numb - 1)
* (7500 + 3)), Cells(days_sim + k + 16, 7500 + 4 + (path_numb - 1) * (7500 + 3))))
With Cells(days_sim +k + 16, 7500 + 5 + (path_numb - 1) * (7500 + 3))
.Value = TotAvgPricePeriod(k)
.Font.Bold = True
End With
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, AvgPricePeriod(k, j) - K_asian)
Cells(days sim + k + 18 + count periods, j + 4 + (path_numb - 1) * (7500 + 3)).Value =
AsianPayoffPeriod(k, j)

Next j

AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5
+ (path_numb - 1) *
(7500 + 3)), Cells(days_sim + k + 18 + count_periods, (7500 + 4) + (path_numb - 1) * (7500 + 3))))

With Cells(days_sim + k + 18 + count_periods, 7500 + 5 + (path_numb - 1) * (7500 + 3))
.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True

End With

Set period_rng = Range(ini_square, rolling_rng)
period_rng.Select

Set ini_square = rolling_rng.Offset(1, 0)
k=k+1
End If
Next i
Next p

Worksheets("MonteCarlo" & p).Activate

k=1

Set ini_square = Range("D8")

Set rolling_rng = Range("D7")

Fori=1 To days sim - 1
Set rolling_rng = rolling_rng.Offset(1, 0)
month_oneday = Month(Cells(i + 7, "D").Value)
month_nextday = Month(Cells(i + 8, "D").Value)

If month_oneday <> month_nextday Then
With Range("D" & (days_sim + k + 16))
Value="Month " & k & " Avg"
.Font.Bold = True
End With

With Range("D" & (days_sim + k + 18 + count_periods))
.Value ="Month " & k & " Asian Payoff"
.Font.Bold = True

End With

ini_row_period = ini_square.Row
final row_period = rolling_rmg.Row

Forj=1 Tonb trials last
AvgPricePeriod(k, j) = WorksheetFunction.Average(Range(Cells(ini_row_period, j + 4 + (path_ numb - 1) *
(nb_trials last + 3)), Cells(final_row_period, j + 4 + (path_numb - 1) * (nb_trials last + 3))))
Cells(days_sim +k + 16, j + 4 + (path_numb - 1) * (nb_trials_last + 3)).Value = AvgPricePeriod(k, j)
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TotAvgPricePeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 16, 5 + (path_numb - 1) *
(nb_trials last + 3)), Cells(days_sim + k + 16, nb_trials_last + 4 + (path_numb - 1) * (nb_trials_last + 3))))
With Cells(days_sim + k + 16, nb_trials last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = TotAvgPricePeriod(k)
.Font.Bold = True
End With
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, AvgPricePeriod(k, j) - K asian)
Cells(days_sim + k + 18 + count periods, j + 4 + (path numb - 1) * (nb_trials_last + 3)).Value =
AsianPayoffPeriod(k, j)

Next j

AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5 +
(path_numb - 1) *
(nb_trials last + 3)), Cells(days_sim + k + 18 + count periods, (nb_trials last + 4) + (path numb - 1) *
(nb_trials last + 3))))

With Cells(days_sim + k + 18 + count_periods, nb_trials last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True

End With

Set period_rng = Range(ini_square, rolling_rng)
period_rng.Select

Set ini_square = rolling_rng.Offset(1, 0)
k=k+1

End If

Next i
Elselfn_sheets = 1 Then

Worksheets("MonteCarlo1" & p).Activate

k=1

Set ini_square = Range("D8")

Set rolling_rng = Range("D7")

Fori=1 To days_sim- 1
Set rolling_rng = rolling_rng.Offset(1, 0)
month_oneday = Month(Cells(i + 7, "D").Value)
month nextday = Month(Cells(i + 8, "D").Value)

If month_oneday <> month_nextday Then
With Range("D" & (days_sim + k + 16))
.Value="Month " & k & " Avg"
.Font.Bold = True
End With

With Range("D" & (days_sim + k + 18 + count_periods))
.Value = "Month " & k & " Asian Payoff"
.Font.Bold = True

End With

ini_row_period = ini_square.Row
final row_period = rolling_rng.Row

Forj=1 Tonb trials_last
AvgPricePeriod(k, j) = WorksheetFunction.Average(Range(Cells(ini_row_period, j +4 + (path_ numb - 1) *
(nb_trials_last + 3)), Cells(final_row_period, j + 4 + (path_numb - 1) * (nb_trials_last + 3))))
Cells(days_sim+k + 16, j + 4 + (path_numb - 1) * (nb_trials_last + 3)).Value = AvgPricePeriod(k, j)
TotAvgPricePeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 16, 5 + (path_numb - 1)
* (nb_trials_last + 3)), Cells(days_sim + k + 16, nb_trials last +4 + (path_numb - 1) * (nb_trials_last + 3))))
With Cells(days_sim +k + 16, nb_trials last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = TotAvgPricePeriod(k)
.Font.Bold = True
End With
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, AvgPricePeriod(k, j) - K asian)
Cells(days_sim + k + 18 + count periods, j + 4 + (path_numb - 1) * (nb_trials last + 3)).Value =
AsianPayoffPeriod(k, j)
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Next j

AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5

+ (path_numb - 1) *
(nb_trials last + 3)), Cells(days_sim + k + 18 + count_periods, (nb_trials _last + 4) + (path_numb - 1) *

(nb_trials_last + 3))))

With Cells(days_sim + k + 18 + count_periods, nb_trials_last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True

End With

Set period_rng = Range(ini_square, rolling_rng)
period_rng.Select

Set ini_square = rolling_rng.Offset(1, 0)
k=k+1
End If
Next i
End If

Case "Year"
Ifn_sheets >=2 Then
Forp=1Ton sheets -1
Set ini_square = Range("D8")
Set rolling_rng = Range("D7")

Worksheets("MonteCarlo" & p).Activate

k=1

Fori=1 To days sim - 1
Set rolling_rng = rolling_rng.Offset(1, 0)
year_oneday = Year(Cells(i + 7, "D").Value)
year_nextday = Year(Cells(i + 8, "D").Value)

If year_oneday <> year nextday Then
With Range("D" & (days_sim + k + 16))
Value="Year" & k & " Avg"
.Font.Bold = True
End With

With Range("D" & (days_sim + k + 18 + count_periods))
.Value ="Year " & k & " Asian Payoff"
.Font.Bold = True

End With

ini_row_period = ini_square.Row
final row period = rolling rng.Row

Forj=1 To 7500
AvgPricePeriod(k, j) = WorksheetFunction. Average(Range(Cells(ini_row_period, j + 4 + (path_numb - 1) *
(7500 + 3)), Cells(final_row_period, j + 4 + (path_numb - 1) * (7500 + 3))))
Cells(days_sim +k + 16, j + 4 + (path_numb - 1) * (7500 + 3)).Value = AvgPricePeriod(k, j)
TotAvgPricePeriod(k) = WorksheetFunction.Average(Range(Cells(days sim +k + 16, 5 + (path_numb - 1)
* (7500 + 3)), Cells(days_sim + k + 16, 7500 + 4 + (path_numb - 1) * (7500 + 3))))
With Cells(days_sim +k + 16, 7500 + 5 + (path_numb - 1) * (7500 + 3))
.Value = TotAvgPricePeriod(k)
.Font.Bold = True
End With
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, AvgPricePeriod(k, j) - K_asian)
Cells(days sim + k + 18 + count periods, j + 4 + (path_ numb - 1) * (7500 + 3)).Value =
AsianPayoffPeriod(k, j)

Next j
AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5

+ (path_numb - 1) * _
(7500 + 3)), Cells(days_sim + k + 18 + count_periods, (7500 + 4) + (path_numb - 1) * (7500 + 3))))
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With Cells(days_sim + k + 18 + count_periods, 7500 + 5 + (path_numb - 1) * (7500 + 3))
.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True

End With

'Set period_rng = Range(ini_square, rolling_rng)
‘period_rng.Select

Set ini_square = rolling_rng.Offset(1, 0)
k=k+1
End If
Next i
Next p
Worksheets("MonteCarlo" & p).Activate
k=1
Set ini_square = Range("D8")
Set rolling_rng = Range("D7")
Fori=1 To days sim - 1
Set rolling_rng = rolling_rng.Offset(1, 0)
year_oneday = Year(Cells(i + 7, "D").Value)
year_nextday = Year(Cells(i + 8, "D").Value)

If year_oneday <> year nextday Then
With Range("D" & (days_sim + k + 16))
Value ="Year " & k & " Avg"
.Font.Bold = True
End With

With Range("D" & (days_sim + k + 18 + count_periods))
Value ="Year " & k & " Asian Payoff"
.Font.Bold = True

End With

ini_row_period = ini_square.Row
final row_period = rolling_rng.Row

Forj=1 Tonb trials last
AvgPricePeriod(k, j) = WorksheetFunction.Average(Range(Cells(ini_row_period, j + 4 + (path_numb - 1) *
(nb_trials last + 3)), Cells(final row period, j + 4 + (path_numb - 1) * (nb_trials_last + 3))))
Cells(days_sim +k + 16, j + 4 + (path_numb - 1) * (nb_trials_last + 3)).Value = AvgPricePeriod(k, j)
TotAvgPricePeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim +k + 16, 5 + (path_numb - 1) *
(nb_trials last + 3)), Cells(days_sim + k + 16, nb_trials_last + 4 + (path_numb - 1) * (nb_trials_last + 3))))
With Cells(days_sim + k + 16, nb_trials last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = TotAvgPricePeriod(k)
.Font.Bold = True
End With
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, AvgPricePeriod(k, j) - K asian)
Cells(days_sim + k + 18 + count periods, j + 4 + (path numb - 1) * (nb_trials_last + 3)).Value =
AsianPayoffPeriod(k, j)

Next j

AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5 +
(path_numb - 1) *
(nb_trials last + 3)), Cells(days_sim + k + 18 + count periods, (nb_trials last + 4) + (path_ numb - 1) *
(nb_trials_last + 3))))

With Cells(days_sim + k + 18 + count_periods, nb_trials last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True

End With

Set period_rng = Range(ini_square, rolling_rng)
period_rng.Select

Set ini_square = rolling_rng.Offset(1, 0)
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k=k+1
End If
Next i
Elselfn_sheets = 1 Then
Worksheets("MonteCarlo1").Activate
k=1
Set ini_square = Range("D8")
Set rolling_rng = Range("D7")
Fori=1 To days sim - 1
Set rolling_rng = rolling_rng.Offset(1, 0)
year_oneday = Year(Cells(i + 7, "D").Value)
year nextday = Year(Cells(i + 8, "D").Value)

If year oneday <> year nextday Then
With Range("D" & (days_sim + k + 16))
Value ="Year " & k & " Avg"
.Font.Bold = True
End With

With Range("D" & (days_sim + k + 18 + count_periods))
Value="Year " & k & " Asian Payoff"
.Font.Bold = True

End With

ini_row_period = ini_square.Row
final row_period = rolling_rng.Row

Forj=1 Tonb trials last
AvgPricePeriod(k, j) = WorksheetFunction.Average(Range(Cells(ini_row_period, j + 4 + (path_ numb - 1) *
(nb_trials last + 3)), Cells(final_row period, j + 4 + (path_numb - 1) * (nb_trials last + 3))))
Cells(days_sim+k + 16, j+ 4 + (path_numb - 1) * (nb_trials_last + 3)).Value = AvgPricePeriod(k, j)
TotAvgPricePeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 16, 5 + (path_numb - 1) *
(nb_trials_last + 3)), Cells(days_sim + k + 16, nb_trials_last + 4 + (path_numb - 1) * (nb_trials_last + 3))))
With Cells(days_sim + k + 16, nb_trials last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = TotAvgPricePeriod(k)
.Font.Bold = True
End With
AsianPayoffPeriod(k, j) = WorksheetFunction.Max(0, AvgPricePeriod(k, j) - K asian)
Cells(days sim + k + 18 + count periods, j + 4 + (path numb - 1) * (nb_trials last + 3)).Value =
AsianPayoffPeriod(k, j)

Next j

AvgAsianPayoffPeriod(k) = WorksheetFunction. Average(Range(Cells(days_sim + k + 18 + count_periods, 5 +
(path_numb - 1) *
(nb_trials last + 3)), Cells(days_sim + k + 18 + count periods, (nb_trials_last + 4) + (path numb - 1) *
(nb_trials last + 3))))

With Cells(days_sim + k + 18 + count_periods, nb_trials last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = AvgAsianPayoffPeriod(k)
.Font.Bold = True

End With

Set period_rng = Range(ini_square, rolling_rng)
period_rng.Select

Set ini_square = rolling_rng.Offset(1, 0)
k=k+1
End If
Next i
End If
End Select

'Calculation Asian option payoff
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ReDim AvgPricelnterval(count periods, nb_trials) As Double

Ifn_sheets >=2 Then
Forp=1Ton_sheets - 1
Worksheets("MonteCarlo" & p).Activate
Forj =1 To 7500
Fori=1 To days_sim
'Worksheets("RandNumb").Cells(i + 1, j + 3).Value
WorksheetFunction.Round(Worksheets("RandNumb").Cells(i + 1, j + 1), 2)

Next i
AvgPrice(j) = WorksheetFunction. Average(Range(Cells(8, j + 4 + (path_numb - 1) * (7500 + 3)), Cells((days_sim
+7),j+4+ (path_numb - 1) * (7500 + 3))))
Worksheets("MonteCarlo" & p).Cells(days_sim + 10, j + 4 + (path_numb - 1) * (7500 + 3)).Value = AvgPrice(j)
Next j

Forj=1 To 7500
AsianPayoff(j) = WorksheetFunction.Max(0, AvgPrice(j) - K_asian)
Worksheets("MonteCarlo" & p).Cells(days_sim + 12, j +4 + (path_numb - 1) * (7500 + 3)).Value = AsianPayoff{j)

Next j

TotAvgPrice = WorksheetFunction. Average(Range(Cells(days sim + 10, 5 + (path numb - 1) * (7500 + 3)),
Cells(days_sim + 10, 7500 + 4 + (path_numb - 1) * (7500 + 3))))
With Worksheets("MonteCarlo" & p).Cells(days_sim + 10, 7500 + 5 + (path_numb - 1) * (7500 + 3))
.Value = TotAvgPrice
.Font.Bold = True
End With

final AvgPayoff = WorksheetFunction. Average(Range(Cells(days_sim + 12, 5 + (path numb - 1) * (7500 + 3)),
Cells(days_sim + 12, 7500 + 4 + (path_numb - 1) * (7500 + 3))))
With Worksheets("MonteCarlo" & p).Cells(days_sim + 12, 7500 + 5 + (path_numb - 1) * (7500 + 3))
.Value = finalAvgPayoff
.Font.Bold = True
End With

Dim meanfinal AvgPayoff As Double

If (Range("B8").Value = "Antithetic Monte Carlo") Then
meanfinal AvgPayoff = 0.5 * (Cells(days_sim + 12, 7500 + 5) + Cells(days_sim + 12, 2 * 7500 + 8))
finalStdPayoff = WorksheetFunction.StDev_S(Range(Cells(days_sim + 12, 5), Cells(days_sim + 12, 7500 + 4)),

Range(Cells(days_sim + 12, 8 + 7500), Cells(days_sim + 12, 2 * 7500 + 7)))

Else

finalStdPayoff = WorksheetFunction.StDev_S(Range(Cells(days_sim + 12, 5 + (path_numb - 1) * (7500 + 3)),
Cells(days_sim + 12, 7500 + 4 + (path_numb - 1) * (7500 + 3))))
End If

With Worksheets("MonteCarlo" & p).Cells(days_sim + 14, 4)
.Value = finalStdPayoff
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & p).Cells(days sim + 14, 3)
.Value = "Std payoff"
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & p).Cells(days_sim + 15, 3)
.Value = "LBound ConfInt"
.Font.Bold = True
End With
If Range("B8").Value = "Antithetic Monte Carlo" And path_numb = 2 Then

With Worksheets("MonteCarlo" & p).Cells(days_sim + 15, 4)
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.Value = meanfinal AvgPayoff - 1.96 * finalStdPayoff/ Sqr(2 * 7500)
.Font.Bold = True
End With

With Worksheets("MonteCarlo" & p).Cells(days sim + 16, 4)
.Value = meanfinal AvgPayoff + 1.96 * finalStdPayoff/ Sqr(2 * 7500)
.Font.Bold = True

End With

Elself (Range("B8").Value = "Naive Monte Carlo") Then

With Worksheets("MonteCarlo" & p).Cells(days_sim + 15, 4)

.Value = finalAvgPayoff - 1.96 * finalStdPayoff / Sqr(7500)

.Font.Bold = True

End With

With Worksheets("MonteCarlo" & p).Cells(days sim + 16, 4)
.Value = final AvgPayoff + 1.96 * finalStdPayoft / Sqr(7500)
.Font.Bold = True

End With

End If

With Worksheets("MonteCarlo" & p).Cells(days_sim + 16, 3)
.Value = "UBound ConflInt"
.Font.Bold = True

End With

With Cells(days_sim + 26 + 2 * count_periods, "E")
.Value = "SINGLE PATH - SHEET " & p
.Font.Bold = True
.Font.Size = 20

End With

If (Worksheets("MonteCarlo1").Range("B8").Value = "Antithetic Monte Carlo") Then
Range("D" & (days_sim + 28 + 2 * count_periods)).Value = "Asian option payoff Whole period"

For j =1 To 7500
Cells(days_sim + 28 + 2 * count_periods, j + 4).Value = _
0.5 * (Cells(days_sim + 12, j + 4).Value _
+ Cells(days_sim + 12, j +4 + (7500 + 3)).Value)
Next j

With Cells(days_sim + 28 + 2 * count_periods, 7500 + 5)
.Value = WorksheetFunction. Average(Range(Cells(days_sim + 28 + 2 * count_periods, 5), Cells(days_sim + 28
+ 2 * count_periods, 7500 + 4)))
.Font.Bold = True
End With

For k=1 To count periods
Range("D" & (days_sim + k + 30 + 2 * count_periods)).Value = select_val period & k & " Asian Payoff"
Forj=1 To 7500
Cells(days_sim + k + 30 + 2 * count_periods, j + 4).Value = _
0.5 * (Cells(days_sim + k + 18 + count_periods, j + 4).Value _
+ Cells(days_sim + k + 18 + count_periods, j +4 + (7500 + 3)).Value)
Next j
With Cells(days_sim + k + 30 + 2 * count_periods, 7500 + 5)
.Value = WorksheetFunction. Average(Range(Cells(days_sim + k + 30 + 2 * count_periods, 5), Cells(days_sim +
k+ 30+ 2 * count_periods, 7500 + 4)))
.Font.Bold = True
End With
Next k
End If
Next p

Worksheets("MonteCarlo" & p).Activate

Forj=1Tonb_trials last
Fori=1 To days sim
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'Worksheets("RandNumb").Cells(i + 1, j + 3).Value =
WorksheetFunction.Round(Worksheets("RandNumb").Cells(i + 1, j + 1), 2)

Next i
AvgPrice(j) = WorksheetFunction.Average(Range(Cells(8, j + 4 + (path_ numb - 1) * (nb_trials last + 3)),
Cells((days_sim + 7), j +4 + (path_numb - 1) * (nb_trials_last + 3))))
Worksheets("MonteCarlo" & p).Cells(days_sim + 10, j + 4 + (path numb - 1) * (nb_trials_last + 3)).Value =
AvgPrice(j)
Next j

Forj=1Tonb_trials last
AsianPayoff(j) = WorksheetFunction.Max(0, AvgPrice(j) - K_asian)
Worksheets("MonteCarlo" & p).Cells(days sim + 12, j + 4 + (path_ numb - 1) * (nb_trials last + 3)).Value
AsianPayoff{j)

Next j

TotAvgPrice = WorksheetFunction. Average(Range(Cells(days_sim + 10, 5 + (path_numb - 1) * (nb_trials last + 3)),
Cells(days_sim + 10, nb_trials last + 4 + (path_numb - 1) * (nb_trials_last + 3))))
With Worksheets("MonteCarlo" & p).Cells(days_sim + 10, nb_trials last + 5 + (path_ numb - 1) * (nb_trials_last + 3))
.Value = TotAvgPrice
.Font.Bold = True
End With

finalAvgPayoff = WorksheetFunction. Average(Range(Cells(days_sim + 12, 5 + (path_numb - 1) * (nb_trials_last + 3)),
Cells(days_sim + 12, nb _trials last +4 + (path_numb - 1) * (nb_trials_last + 3))))
With Worksheets("MonteCarlo" & p).Cells(days_sim + 12, nb_trials_last + 5 + (path_ numb - 1) * (nb_trials_last + 3))
.Value = final AvgPayoff
.Font.Bold = True
End With

'Dim meanfinal AvgPayoff As Double

If Worksheets("MonteCarlo1").Range("B8").Value = "Antithetic Monte Carlo" Then
Worksheets("MonteCarlo" & p).Activate
meanfinal AvgPayoff = 0.5 * (Cells(days_sim + 12, nb_trials_last + 5) + Cells(days_sim + 12,2 * nb_trials_last + 8))
finalStdPayoff = WorksheetFunction.StDev_S(Range(Cells(days_sim + 12, 5), Cells(days_sim + 12, nb_trials_last +
4), _

Else
finalStdPayoff = WorksheetFunction.StDev_S(Range(Cells(days_sim + 12, 5 + (path_numb - 1) * (nb_trials last +
3)), Cells(days_sim + 12, nb_trials last + 4 + (path_numb - 1) * (nb_trials last + 3))))
End If

Range(Cells(days_sim + 12, 8 + nb_trials_last), Cells(days sim + 12, 2 * nb_trials_last + 7)))

With Worksheets("MonteCarlo" & p).Cells(days sim + 14, 4)
.Value = finalStdPayoff
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & p).Cells(days_sim + 14, 3)
.Value = "Std payoff"
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & p).Cells(days_sim + 15, 3)
.Value = "LBound ConfInt"
.Font.Bold = True

End With

If Worksheets("MonteCarlo1").Range("B8").Value = "Antithetic Monte Carlo" And path_numb = 2 Then
With Worksheets("MonteCarlo" & p).Cells(days_sim + 15, 4)
.Value = meanfinal AvgPayoff - 1.96 * finalStdPayoff/ Sqr(2 * nb_trials_last)

.Font.Bold = True
End With
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With Worksheets("MonteCarlo" & p).Cells(days_sim + 16, 4)
.Value = meanfinal AvgPayoff + 1.96 * finalStdPayoff/ Sqr(2 * nb_trials_last)
.Font.Bold = True

End With

Elself (Range("B8").Value = "Naive MonteCarlo") Then

With Worksheets("MonteCarlo" & p).Cells(days sim + 15, 4)
.Value = finalAvgPayoff - 1.96 * finalStdPayoff / Sqr(nb_trials_last)
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & p).Cells(days sim + 16, 4)
.Value = finalAvgPayoff + 1.96 * finalStdPayoff/ Sqr(nb _trials last)
.Font.Bold = True
End With
End If
With Worksheets("MonteCarlo" & p).Cells(days_sim + 16, 3)
.Value = "UBound ConfInt"
.Font.Bold = True
End With

With Cells(days_sim + 26 + 2 * count_periods, "E")
.Value = "SINGLE PATH"
.Font.Bold = True
.Font.Size = 20

End With

If (Worksheets("MonteCarlo1").Range("B8").Value = "Antithetic Monte Carlo") Then
Worksheets("MonteCarlo" & p).Range("D" & (days_sim + 28 + 2 * count periods)).Value = "Asian option payoff
Whole period"

Forj=1Tonb trials last
Cells(days_sim + 28 + 2 * count_periods, j + 4).Value = _
0.5 * (Cells(days_sim + 12, j +4).Value _
+ Cells(days_sim + 12, j + 4 + (nb_trials_last + 3)).Value)
Next j

With Cells(days_sim + 28 + 2 * count_periods, nb_trials_last + 5)
.Value = WorksheetFunction.Average(Range(Cells(days_sim + 28 + 2 * count_periods, 5), Cells(days sim + 28 +
2 * count_periods, nb_trials last + 4)))
.Font.Bold = True
End With

For k=1 To count periods
Range("D" & (days sim + k + 30 + 2 * count_periods)).Value = select val period & k & " Asian Payoff"
Forj=1Tonb trials last
Cells(days sim +k + 30 + 2 * count_periods, j +4).Value = __
0.5 * (Cells(days_sim + k + 18 + count_periods, j +4).Value _
+ Cells(days_sim + k + 18 + count_periods, j +4 + (nb_trials_last + 3)).Value)
Next j
With Cells(days_sim + k + 30 + 2 * count_periods, nb_trials last + 5)
.Value = WorksheetFunction.Average(Range(Cells(days_sim +k + 30 + 2 * count_periods, 5), Cells(days_sim + k
+ 30 + 2 * count_periods, nb_trials_last + 4)))
.Font.Bold = True
End With
Next k
End If

Elselfn_sheets = 1 Then
p=1
Forj=1 Tonb trials last
Fori=1 To days_sim
"Worksheets("RandNumb").Cells(i + 1, ] + 3).Value
WorksheetFunction.Round(Worksheets("RandNumb").Cells(i + 1, j + 1), 2)

Next i
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AvgPrice(j) = WorksheetFunction. Average(Worksheets("MonteCarlo" & p).Range(Cells(8, j +4 + (path_numb - 1) *
(nb_trials last + 3)), Cells((days_sim + 7), j + 4 + (path_numb - 1) * (nb_trials_last + 3))))
Worksheets("MonteCarlo" & p).Cells(days sim + 10, j + 4 + (path_numb - 1) * (nb_trials_last + 3)).Value
AvgPrice(j)
Next j

Forj=1Tonb trials last
AsianPayoff(j) = WorksheetFunction.Max(0, AvgPrice(j) - K_asian)
Worksheets("MonteCarlo" & p).Cells(days sim + 12, j + 4 + (path_numb - 1) * (nb_trials_last + 3)).Value =
AsianPayoff(j)

Next j

TotAvgPrice = WorksheetFunction. Average(Range(Cells(days_sim + 10, 5 + (path_numb - 1) * (nb_trials last + 3)),
Cells(days_sim + 10, nb_trials last + 4 + (path numb - 1) * (nb_trials_last + 3))))
With Worksheets("MonteCarlo" & p).Cells(days_sim + 10, nb_trials_last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = TotAvgPrice
.Font.Bold = True
End With

finalAvgPayoff = WorksheetFunction. Average(Range(Cells(days_sim + 12, 5 + (path_numb - 1) * (nb_trials_last + 3)),
Cells(days_sim + 12, nb_trials_last + 4 + (path_numb - 1) * (nb_trials_last + 3))))
With Worksheets("MonteCarlo" & p).Cells(days_sim + 12, nb_trials_last + 5 + (path_numb - 1) * (nb_trials_last + 3))
.Value = final AvgPayoff
.Font.Bold = True
End With

'Dim meanfinal AvgPayoff As Double

If (Worksheets("MonteCarlo1").Range("B8").Value = "Antithetic Monte Carlo") Then
Worksheets("MonteCarlo" & p).Activate
meanfinal AvgPayoff = 0.5 * (Cells(days_sim + 12, nb_trials last + 5) + Cells(days_sim + 12, 2 * nb_trials_last + 8))
finalStdPayoff = WorksheetFunction.StDev_S(Range(Cells(days_sim + 12, 5), Cells(days_sim + 12, nb_trials_last +
), _

Else
finalStdPayoff = WorksheetFunction.StDev_S(Range(Cells(days_sim + 12, 5 + (path numb - 1) * (nb_trials last +
3)), Cells(days_sim + 12, nb_trials_last + 4 + (path_numb - 1) * (nb_trials_last + 3))))
End If

Range(Cells(days_sim + 12, 8 + nb_trials_last), Cells(days sim + 12, 2 * nb_trials_last + 7)))

With Worksheets("MonteCarlo" & p).Cells(days_sim + 14, 4)
.Value = finalStdPayoff
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & p).Cells(days sim + 14, 3)
.Value = "Std payoff"
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & p).Cells(days sim + 15, 3)
.Value = "LBound ConfInt"
.Font.Bold = True

End With

If Worksheets("MonteCarlo1").Range("B8").Value = "Antithetic Monte Carlo" And path_numb =2 Then
Worksheets("MonteCarlo" & p).Activate
With Worksheets("MonteCarlo" & p).Cells(days_sim + 15, 4)
.Value = meanfinal AvgPayoff - 1.96 * finalStdPayoff/ Sqr(2 * nb_trials last)
.Font.Bold = True
End With

With Worksheets("MonteCarlo" & p).Cells(days_sim + 16, 4)

.Value = meanfinal AvgPayoff + 1.96 * finalStdPayoff/ Sqr(2 * nb_trials_last)
.Font.Bold = True
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End With
Elself (Range("B8").Value = "Naive MonteCarlo") Then
With Worksheets("MonteCarlo" & p).Cells(days_sim + 15, 4)
Value = finalAvgPayoff - 1.96 * finalStdPayoff/ Sqr(nb_trials_last)
.Font.Bold = True
End With

With Worksheets("MonteCarlo" & p).Cells(days_sim + 16, 4)
.Value = finalAvgPayoff + 1.96 * finalStdPayoff/ Sqr(nb_trials last)
.Font.Bold = True
End With
End If
With Worksheets("MonteCarlo" & p).Cells(days sim + 16, 3)
.Value = "UBound ConfInt"
.Font.Bold = True
End With

With Cells(days_sim + 26 + 2 * count_periods, "E")
.Value = "SINGLE PATH"
.Font.Bold = True
.Font.Size =16

End With

If (Worksheets("MonteCarlo1").Range("B8").Value = "Antithetic Monte Carlo") Then
Worksheets("MonteCarlo" & p).Activate
Range("D" & (days_sim + 28 + 2 * count_periods)).Value = "Asian option payoff Whole period"

Forj=1Tonb trials last
Cells(days_sim + 28 + 2 * count_periods, j + 4).Value= _
0.5 * (Cells(days_sim + 12, j +4).Value _
+ Cells(days_sim + 12, j +4 + (nb_trials_last + 3)).Value)
Next j

With Cells(days_sim + 28 + 2 * count_periods, nb_trials last + 5)
.Value = WorksheetFunction.Average(Range(Cells(days_sim + 28 + 2 * count_periods, 5), Cells(days_sim + 28 +
2 * count_periods, nb_trials last + 4)))
.Font.Bold = True
End With

For k=1 To count periods
Range("D" & (days_sim + k + 30 + 2 * count_periods)).Value = select_val period & k & " Asian Payoff"
Forj=1Tonb_trials last
Cells(days_sim +k + 30 + 2 * count_periods, j + 4).Value = _
0.5 * (Cells(days_sim + k + 18 + count_periods, j +4).Value _
+ Cells(days_sim + k + 18 + count_periods, j + 4 + (nb_trials_last + 3)).Value)
Next j
With Cells(days_sim + k + 30 + 2 * count_periods, nb_trials_last + 5)
.Value = WorksheetFunction. Average(Range(Cells(days_sim + k + 30 + 2 * count_periods, 5), Cells(days_sim + k
+ 30 + 2 * count_periods, nb_trials_last + 4)))
.Font.Bold = True
End With
Next k
End If
End If

"SUMMARY RESULTS
If (Worksheets("MonteCarlo1").Range("B8").Value = "Antithetic Monte Carlo") Then
With Worksheets("MonteCarlo1").Cells(days_sim + k + 34 + 3 * count_periods, 4)
.Value = "SUMMARY RESULTS"
.Font.Bold = True
.Font.Size =20
End With

For p=1 To n_sheets
summary_average = summary_average + Worksheets("MonteCarlo" & p).Cells(days_sim + 28 + 2 * count_periods,
nb_trials last + 5)
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Next p

summary_average = summary_average / n_sheets

With Worksheets("MonteCarlo1").Cells(days_sim + k + 36 + 3 * count_periods, 3)
.Value = "SUMMARY AVERAGE"
.Font.Bold = True
.Font.Size =12

End With

With Worksheets("MonteCarlo1").Cells(days_sim + k + 36 + 3 * count_periods, 4)
.Value = summary average
.Font.Bold = True
.Font.Size = 12

End With

"Deviation in each Asian payoff

With Worksheets("MonteCarlo1").Cells(days_sim + 13, 4)
.Value = "Asian payoff deviation"
.Font.Bold = True
.Font.Size = 12

End With

Forp=1 To n_sheets

Worksheets("MonteCarlo" & p).Activate
If (p <n_sheets) Then
For path_numb =1 To 2
Forj=1Tonb_trials last
DeviationAsianPayoff(j) = summary average - Cells(days_sim + 12, j + 4 + (path_numb - 1) * (7500 +
3)).Value
Worksheets("MonteCarlo" & p).Cells(days_sim + 13, j + 4 + (path_numb - 1) * (7500 + 3)).Value =
DeviationAsianPayoff(j)
Next j
Next path_numb
Else
For path_numb =1 To 2
Forj=1Tonb trials last
DeviationAsianPayoff(j) = summary_average - Cells(days sim + 12, j + 4 + (path numb - 1) * (nb_trials_last
+ 3)).Value
Worksheets("MonteCarlo" & p).Cells(days sim + 13, j + 4 + (path_numb - 1) * (nb_trials_last + 3)).Value =
DeviationAsianPayoff(j)
Next j
Next path_numb
End If
Next p

' With Worksheets("MonteCarlo1").Cells(days_sim + k + 37 + 3 * count_periods, 3)
! .Value = "SUMMARY STD DEVIATION"

' .Font.Bold = True

! .Font.Size =12

' End With

summary sum_squares = 0

' For p=1 To n_sheets

' Worksheets("MonteCarlo" & p).Activate

' If (p <n_sheets) Then

' summary_sum_squares = summary_sum_squares + WorksheetFunction.SumSq( _

' Range(Cells(days_sim + 13, 5), Cells(days_sim + 13, 7500 + 4)),

' Range(Cells(days_sim + 13, 8 + 7500), Cells(days_sim + 13, 2 * 7500 + 7)))

' Else

' Worksheets("MonteCarlo" & p).Activate

summary_sum_squares = summary_sum_squares + WorksheetFunction.SumSq( _

' Worksheets("MonteCarlo" & p).Range(Cells(days_sim + 13, 5), Cells(days_sim + 13, nb_trials last +4)),
' Worksheets("MonteCarlo" & p).Range(Cells(days_sim + 13, 8 + nb_trials_last), Cells(days_sim + 13, 2 *
nb_trials last + 7)))

' End If

! Next p

' nsim = CLng(15000 * (n_sheets - 1) + nb_trials_last * 2)
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summaryStdev = Sqr(summary_sum_squares / (nsim - 1))

' With Worksheets("MonteCarlo1").Cells(days_sim + k + 37 + 3 * count_periods, 4)
' .Value = summaryStdev
' .Font.Bold = True
' .Font.Size = 12
' End With
End If

' With Worksheets("MonteCarlo1").Cells(days_sim + k + 38 + 3 * count_periods, 3)
' .Value = "LOWER CONF.INT. BOUND"

' .Font.Bold = True

' .Font.Size = 12

" End With

' With Worksheets("MonteCarlo1").Cells(days_sim + k + 38 + 3 * count_periods, 4)
.Value = summary_average - summaryStdev * 1.96 / Sqr(nsim)

' .Font.Bold = True

' .Font.Size = 12

End With

With Worksheets("MonteCarlo1").Cells(days_sim + k + 39 + 3 * count_periods, 3)
! .Value = "UPPER CONF.INT. BOUND"

' .Font.Bold = True

' .Font.Size =12

' End With

' With Worksheets("MonteCarlo1").Cells(days_sim + k + 39 + 3 * count_periods, 4)
' .Value = summary average + summaryStdev * 1.96 / Sqr(nsim)

' .Font.Bold = True

! .Font.Size =12

' End With

'nsim = 15000 * (n_sheets - 1) + nb_trials_last * 2

With Worksheets("MonteCarlo1").Cells(days_sim + k + 40 + 3 * count_periods, 3)
.Value = "APROX STD DEVIATION"
.Font.Bold = True
.Font.Size = 12

End With

With Worksheets("MonteCarlo1").Cells(days_sim + k + 40 + 3 * count_periods, 4)
.Value = Worksheets("MonteCarlo1").Cells(days_sim + 14, 4)
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + k + 41 + 3 * count_periods, 3)
.Value = "APPROX LOWER CONF.INT. BOUND"
.Font.Bold = True
.Font.Size = 12

End With

With Worksheets("MonteCarlo1").Cells(days_sim + k + 41 + 3 * count_periods, 4)

Value = CDbl(summary average) - CDbl(1.96) * CDbl(Worksheets("MonteCarlo1").Cells(days sim + 14, 4)) /

Sqr(CDbl(nsim))
.Font.Bold = True
.Font.Size =12

End With

With Worksheets("MonteCarlo1").Cells(days_sim + k + 42 + 3 * count_periods, 3)
.Value = "APPROX UPPER CONF.INT. BOUND"
.Font.Bold = True
.Font.Size = 12

End With
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With Worksheets("MonteCarlo1").Cells(days_sim + k + 42 + 3 * count_periods, 4)
.Value = summary average + 1.96 * CDbl(Worksheets("MonteCarlo1").Cells(days_sim + 14, 4)) / Sqr(CDbl(nsim))
.Font.Bold = True
.Font.Size = 12

End With

If (p = n_sheets) Then
MsgBox (summary average)
End If
End Sub

Function PriceGeneratorGBM(prev_price As Double, annual vol As Double, tenor As Double, drift As Double, rand As
Double) As Double

Dim price As Double

Dim nrm_var As Double

If rand = 0 Then

rand = 0.0001
End If
Ifrand = 1 Then
rand = 0.9999
End If
price = prev_price * Exp((drift - 0.5 * (annual_vol) * (2)) * tenor + annual vol * WorksheetFunction.NormSInv(rand) *
Sqr(tenor))

PriceGeneratorGBM = price
End Function
Function PriceGeneratorOU(ref _spot_price As Double, prev_price As Double, beta As Double,
annual vol As Double, tenor As Double, rand As Double) As Double
Dim price As Double
Dim nrm_var As Double

Dim rev_term As Double
Dim stoch_term As Double

Dim incr_price As Double
If rand = 0 Then
rand = 0.0001
End If
Ifrand = 1 Then
rand = 0.9999
End If

rev_term = beta * (ref_spot_price - prev_price) * tenor
stoch_term = annual_vol * WorksheetFunction.NormSInv(rand) * Sqr(tenor)

incr_price =rev_term + stoch_term
price = prev_price + incr_price
PriceGeneratorOU = price

End Function
Sub Eraser()
Range("E6", "AAA6").Clear
Range("C8", "AAA400").Clear
Range("E7", Range("D7").End(x1ToRight)).Clear
Range("C8", Range("C8").End(x1ToRight).End(xIDown).End(xIDown).End(x1Down)).Clear
Range("D8", "BBB1000").Clear

Worksheets("Daily Return").Range("A1", "AA200").Clear
End Sub
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Sub WriteTitles(days _sim As Integer, nb_trials As Long)
With Worksheets("MonteCarlo1").Range("E6")
.Value = "Spot price generator"
.Font.Bold = True
End With

With Worksheets("MonteCarlo1").Range("D7")
.Value = "Date"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(6, nb_trials + 8)
.Value = "Returns"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Range("C7")
.Value = "Weekday"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 12, 4)
.Value = "Asian option payoft"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 10, nb_trials + 7)
.Value = "Avg Return"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 11, nb_trials + 7)
.Value = "stdReturn"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 14, nb_trials + 7)
.Value ="VaR"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 10, 4)
.Value = "Average"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 9, nb_trials + 5)
.Value = "Tot. Avg"
.Font.Bold = True
End With
End Sub

Sub WriteAntitheticTitles(days_sim As Integer, nb_trials_last As Integer, n_sheets As Integer)

With Worksheets("MonteCarlo1").Range("E6")
.Value = "Spot price generator PATH1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Range("D7")
.Value = "Date"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(6, 7500 + 8)
.Value = "Spot price generator PATH2"
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.Font.Bold = True
End With

With Worksheets("MonteCarlo1").Cells(6, 2 * 7500 + 11)
.Value = "Returns PATH 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(6, 3 * 7500 + 14)
.Value = "Returns PATH 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Range("C7")
.Value = "Weekday"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 12, 4)
.Value = "Asian option payoff Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 10, 2 * 7500 + 10)
.Value = "Avg Return Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 11, 2 * 7500 + 10)
.Value = "stdReturn Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 14, 2 * 7500 + 10)
.Value = "VaR Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 10, 4)
.Value = "Average Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 9, 7500 + 5)
.Value = "Tot. Avg Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 12, 7 + 7500)
.Value = "Asian option payoff Path 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 10, 3 * 7500 + 13)
.Value = "Avg Return Path 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days sim + 11, 3 * 7500 + 13)
.Value = "stdReturn Path 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 14, 3 * 7500 + 13)
.Value = "VaR Path 2"
.Font.Bold = True

End With
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With Worksheets("MonteCarlo1").Cells(days_sim + 10, 7 + 7500)

.Value = "Average Path 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo1").Cells(days_sim + 9, 2 * 7500 + 8)
.Value = "Tot. Avg Path 2"
.Font.Bold = True

End With

Ifn_sheets >=2 Then
Fori=1 Ton_sheets

With Worksheets("MonteCarlo" & n_sheets).Range("E6")
.Value = "Spot price generator PATH1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & n_sheets).Range("D7")
.Value = "Date"
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & n_sheets).Cells(6, nb_trials last + 8)
.Value = "Spot price generator PATH2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo"&n_sheets).Cells(6, 2 * nb_trials_last + 11)
.Value = "Returns PATH 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo"&n_sheets).Cells(6, 3 * nb_trials_last + 14)
.Value = "Returns PATH 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & n_sheets).Range("C7")
.Value = "Weekday"
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & n_sheets).Cells(days_sim + 12, 4)
.Value = "Asian option payoff Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo"&n_sheets).Cells(days_sim + 10, 2 * nb_trials_last + 10)
.Value = "Avg Return Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo"&n_sheets).Cells(days_sim + 11, 2 * nb_trials_last + 10)
.Value = "stdReturn Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo"&n_sheets).Cells(days_sim + 14, 2 * nb_trials_last + 10)
.Value ="VaR Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & n_sheets).Cells(days_sim + 10, 4)
.Value = "Average Path 1"
.Font.Bold = True

End With
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With Worksheets("MonteCarlo" & n_sheets).Cells(days_sim + 9, nb_trials_last + 5)
.Value = "Tot. Avg Path 1"
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & n_sheets).Cells(days sim + 12, 7 + nb_trials_last)
.Value = "Asian option payoft Path 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo"&n_sheets).Cells(days_sim + 10, 3 * nb_trials_last + 13)
Value = "Avg Return Path 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo"&n_sheets).Cells(days_sim + 11, 3 * nb_trials_last + 13)
.Value = "stdReturn Path 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo"&n_sheets).Cells(days_sim + 14, 3 * nb_trials_last + 13)
.Value = "VaR Path 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo" & n_sheets).Cells(days_sim + 10, 7 + nb_trials_last)
.Value = "Average Path 2"
.Font.Bold = True

End With

With Worksheets("MonteCarlo"&n_sheets).Cells(days_sim + 9, 2 * nb_trials_last + &)
.Value = "Tot. Avg Path 2"
.Font.Bold = True

End With

Next i
End If

End Sub

Sub WriteDates(today date As Date, days_sim As Integer, n_sheets As Integer)
For p=1 To n_sheets
Worksheets("MonteCarlo" & p).Activate
Fori=1 To days sim

Ifi=1 Then
With Cells(i + 7, "D")
.Value = today_date
.Font.Bold = True
End With

With Cells(i + 7, "C")
.Value = WeekdayName(Weekday(today date), True, vbSunday)
.Font.Bold = True

End With

Else
With Cells(i + 7, "D")
.Value = DateAdd("d", 1, Worksheets("MonteCarlo1").Cells(i + 6, "D").Value)
.Font.Bold = True
End With

With Cells(i + 7, "C")
.Value = WeekdayName(Weekday(Cells(i + 7, "D")), True, vbSunday)
.Font.Bold = True
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End With
End If
Next i
Next p
End Sub

Sub WriteTrialsHeader(nb_trials As Long)

Forj=1 Tonb_trials
With Cells(7, j + 4)
Value="T" &
.Font.Bold = True
.Horizontal Alignment = x1Center
End With

Next j
End Sub

Sub WriteAntitheticTrialsHeader(nb_trials last As Integer, n_sheets As Integer)
Ifn_sheets >=2 Then
Fori=1 Ton_sheets - 1
Forj =1 To 7500
With Worksheets("MonteCarlo" & i).Cells(7, j +4)
Value="T" &
.Font.Bold = True
.Horizontal Alignment = xlCenter
End With

With Worksheets("MonteCarlo" & i).Cells(7, j + 7500 + 7)
Value="T" &
.Font.Bold = True
.Horizontal Alignment = xlCenter
End With
Next j
Next i

Forj=1Tonb trials last
With Worksheets("MonteCarlo" & n_sheets).Cells(7, j + 4)
Value="T" &
.Font.Bold = True
.Horizontal Alignment = xlCenter
End With

With Worksheets("MonteCarlo" & n_sheets).Cells(7, j + nb_trials last + 7)
Value="T" &

.Font.Bold = True

.Horizontal Alignment = x1Center

End With

Next j

Elselfn_sheets = 1 Then
Forj=1 Tonb trials last
With Worksheets("MonteCarlo" & n_sheets).Cells(7, j + 4)
Value="T" &
.Font.Bold = True
.Horizontal Alignment = xlCenter
End With

With Worksheets("MonteCarlo" & n_sheets).Cells(7, j + nb_trials last + 7)
Value="T" &

.Font.Bold = True

.Horizontal Alignment = x1Center

End With

Next j
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End If
End Sub

Function CountWeeks(days_sim As Integer)
Dim count_weeks As Integer

count_weeks = 1

Fori=1 To days_sim
If (StrComp(Cells(i + 7 + 1, 3), "lu.", vbTextCompare) = 0) Then
count_weeks = count_weeks + 1
End If

Next i

CountWeeks = count_weeks

End Function

Function CountYears(today_date As Date, final _date As Date)
Dim start_year As Integer

start_year = Year(today_ date)

final_year = Year(final date)

CountYears = final_year - start_year + 1
End Function

Function CountMonths(today date As Date, final date As Date, count years As Integer)

Dim start_month As Integer
Dim final _month As Integer

start month = Month(today_date)
final_month = Month(final date)

CountMonths = final month - start month + 1 + (count_years - 1) * 12

Range("H1").Value = CountMonths

End Function

Function CountPeriods(select_val period As String, days sim As Integer, count weeks As Integer,

count_months As Integer, count_years As Integer)

If (StrComp(select_val period, "Day", vbTextCompare) = 0) Then
CountPeriods = days_sim

Elself (StrComp(select_val_period, "Week", vbTextCompare) = 0) Then

CountPeriods = count_weeks

Elself (StrComp(select_val period, "Month", vbTextCompare) = 0) Then

CountPeriods = count_months

Elself (StrComp(select _val period, "Year", vbTextCompare) = 0) Then

CountPeriods = count_years
End If

End Function
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