

Object detection, Kalman filtering and
Collision detection in a collision warning

system with LIDAR and Camera

Escuela Técnica Superior de Ingeniería (ICAI)

Author: Roberto Rioja García
Director: Dr. Joydeep Ghosh

Madrid
Junio 2018

 Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

 Detección de objetos, filtrado de Kalman y detección de colisiones en un

sistema de detección de colisiones con LIDAR y cámara

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2017/18 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es

plagio de otro, ni total ni parcialmente y la información que ha sido tomada

de otros documentos está debidamente referenciada.

Fdo.: Roberto Rioja García Fecha: 15/ 05/ 2018

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Joydeep Ghosh Fecha: 21/ 05/ 2018

1

CONTENTS

TABLES iv

FIGURES vi

EXECUTIVE SUMMARY 5

1.0 INTRODUCTION 8

2.0 DESIGN PROBLEM STATEMENT 9

 2.1 Design Objective

 2.2 Specifications

3.0 DESIGN PROBLEM SOLUTION 11

3.1 Overview 11

3.2 Sensors 12

3.3 Object Detection 12

3.4 Sensor Data Syncing 15

3.5 LIDAR-Camera Transformation 15

3.6 Object Locator 16

3.7 Kalman Filter 17

3.8 Collision Detection and Alert 19

4.0 DESIGN IMPLEMENTATION 20

 4.1 Failed Design Components 21

 4.1.1 Apollo 21

 4.1.2 ROS 21

 4.1.3 KITTI 21

 4.2 Design Choices 23

 4.2.1 YOLO 24

 4.2.2 LIDAR-Camera Calibration 24

 4.2.3 Object Locator 27

 4.2.4 Kalman Filter 27

 4.2.5 Collision Detection 28

2

 4.2.6 Alert 29

 4.3 Cost/Benefit Analysis 29

5.0 TEST AND EVALUATION 30

 5.1 Sensors 31

 5.1.1 LIDAR 31

 5.1.2 GPS 33

 5.2 Object Detection 34

 5.3 Data Syncing 38

 5.4 Object Locator 39

 5.5 Kalman Filter 42

 5.6 Collision Detection 44

 5.7 Overall Time 45

 5.8 System Testing 46

6.0 TIME AND COST CONSIDERATIONS 48

7.0 SAFETY AND ETHICAL ASPECTS OF DESIGN 48

8.0 RECOMMENDATIONS 49

9.0 CONCLUSIONS 49

REFERENCES 52

APPENDIX A – Object Locator Distance Test A-1

APPENDIX B – Collision Detection Code A-2

APPENDIX C – Kalman Filter Code A-3

3

TABLES

1 Ideal Testing Conditions 10

2 Performance Specifications 10

3 YOLO Data Packet Structure 14

4 Final LCT Calibration Measurements 26

5 Time to Receive LIDAR Data 31

6 Results of GPS Speed Test 34

7 Accuracy and Speed Test Results 37

8 Results of Data Sync Tests 38

9 Time Spent per Module 46

10 Collision Detection Test Summary 47

4

FIGURES

1 System Block Diagram 12

2 Overview of YOLO System 13

3 Illustration of 3D-2D Projection 16

4 Location Selection of Truck using Our LCT 17

5 Collision Detection 20

6 LIDAR-Camera KITTI Calibration Checkerboard 22

7 Ponale Mapping (Left) and LIDAR Mapping (Right) 23

8 Point Cloud Left and Photo of Truck LCT Setup 25

9 Image of Point Cloud Overlaid on Truck Using LCT 26

10 LCT Used on Two Trucks, a Pillar, and Person 26

11 LIDAR Point Cloud 3D Plots 33

12 YOLO Output on a Daytime Image 35

13 YOLO Output on a Nighttime Image 36

14 Object Locator Distance Test Setup 40

15 Average Percent Accuracy vs. Position 41

16 Total Accuracy vs. Distance 42

17 Comparing Inputs and Results for Kalman Filtering with 1 Object 43

18 Comparing Inputs and Results for Kalman Filtering with 2 Objects 44

19 Visualizing Objects and Collisions 45

5

EXECUTIVE SUMMARY

This project was done by Roberto Rioja García at the University of Texas at Austin with the
support of Dr. Ghosh, the CARSTOP research team and the Texas Department of Transportation.
The project was focused on developing a vehicular collision detection and warning system. This
system should constitute an affordable way to help cut down on the number of car crashes. The
project was focused on creating a system that works in real time, can accurately predict
collisions, and alert the driver in a timely fashion. It is only designed to detect possible collisions
and alert the driver; this system does not take action to prevent these collisions from occurring.
The goals were to have an object location accuracy higher than the 46% of the previous year´s
team, to give the driver 3 seconds of warning for a collision, and to have a false positive rate
below 30%, and process each frame in less than 250 milliseconds.

This system uses several sensors to find the location of objects relative to the car, track the
direction that they are travelling, compare that path to the movement of our car, detect if these
two paths ever intersect and provide a sound alert in the case of a potential collision. The final
system design utilizes three sensors: Light detection and ranging (LIDAR), camera and global
positioning system (GPS). The LIDAR is used to provide measurements about the distance of
objects to the car, the camera provides visual data about objects in front of the car and the GPS
provides the speed that our car is travelling at.

The initial project idea was to work using an open source autonomous vehicle platform called
Apollo, created by the technology company Baidu. This previous system was rejected due to
compatibility problems with the current sensors owned by the CARSTOP research team.

The final system is divided in 8 distinct and independent subsystems: sensors, object detection,
LIDAR-camera synchronization, LIDAR-camera transformation, object location, Kalman
filtering, collision detection and alert. The sensors LIDAR and camera collect data on potential
obstacles in front of the vehicle while the GPS is used to determine the velocity of our own
vehicle. The object detection module uses camera data to identify potential obstacles and assign
bounding boxes to them, which is sent to the LIDAR-camera synchronization module. This
synchronization module collects LIDAR point cloud data and bounding box information from
camera data at the same instant in time, which is used in the LIDAR-camera transformation
module. This module projects the 3D LIDAR points onto the 2D image captured by the camera,
making it possible to assign a distance collected from the LIDAR point cloud to the objects
within the bounding boxes. The bounding box and LIDAR data is used by the object locator
module to determine how far away each object is. Next, the Kalman filtering section creates a
model used to predict the path of objects based on their current position and velocity. This model
is used in the collision detection section to predict whether our vehicle will collide with any of
the objects 1 second in the future. If a collision is detected, the alert module will notify the
driver.

My individual function in the project was to design and implement the object detection, Kalman
filtering and collision detection subsystems which includes the sound alarm. The object detection
submodule uses an open source code called “You Only Look Once” (YOLO), this code receives
images from the webcam and uses neural networks to create a bounding box for each detected

6

object and classify it into one of 9000 possible object categories. The Kalman filter predicts the
velocity and position when the filter receives the next input. For this approximation the Kalman
filter uses the positions calculated by the object locator as input and compares these with the
predicted ones. It actualizes itself changing the weights of the variables as a function of the
errors that it gets while comparing the approximated positions to the real ones. This Kalman
filter was done under the supposition that within the time that it takes to actualize, objects
movement can be approximated as a straight line and its velocity is constant. Last, the collision
detection submodule describes the path of the user’s vehicle during the next second using GPS
data and if this path ever intersects with the ones that we get from the outputs of the Kalman
filter, that are the ones from the obstacles, it sends a signal to beep the alarm. The testing of each
submodule was done by the person responsible of it, while the rest was done by all of the
members together as it needed the use of multiple subsystems at the same time.

The systems were first tested separately, once all of them worked they were combined into two
subcategories: object location and collision prediction. Object location had LIDAR and camera
sensors, object detection, LIDAR-camera synchronization, LIDAR-camera transformation and
object location. This submodule had the inputs of the two sensors and used them to return the
position relative to the car of possible obstacles. Collision prediction had the GPS input data,
Kalman filtering, collision detection and alert. With the owner´s vehicle velocity and object
locator´s output of obstacle´s relative velocity and position this system returned a noise alarm
once it detected one possible collision. The last step was to test the entire system. Most of the
testing for each submodule consisted of debugging during our implementation phase. The two
most important tests were the system tests that the accuracy of our system’s ability to measure
distance and the accuracy of our system’s ability to predict collisions. The idea was to set up a
test to measure the distance of objects at multiple distances with objects in the left, center, and
right of our image with both cars and people. The result was that the object locator had
approximately 60%, 90%, and 75% accuracy for the left, center, and right, respectively. While
looking for the cause it was noticed that as objects became closer to the edge of the image that
the calibration projects them further to the edge than they actually were. This issue is someone
alleviated by using closest point to the center of the bounding box, however at a certain point the
LIDAR projection and image diverge too far, and the system picks a point on the ground instead
of the actual object. It was also noticed that the system had above 88% accuracy up to 10 meters
away but at 15 meters away it dropped down to 59%. The results were similar for cars and
people, but cars had a slightly higher accuracy due to their larger size. This is because further
objects have less LIDAR points on them. The next test was the ability of the system to detect
collisions. People walked and ran at the car and drove another car towards it. During this testing
the alert time was lowered to 1 second because the system provided too many false alerts at 3
seconds. Once this change was done, the system had a 90% true positive alert rate and a 33%
false negative alert rate. The final system did not meet the initial requirements for alert time or
false positive rates.

The system is capable of detecting collisions with a 90% true positive rate. However, due to time
constraints it was necessary to limit the system to only tracking one object at a time. It was also
reduced the alert time to only one second to improve the accuracy of the system. Because the
purpose of the project is to prevent possible collisions, an ethical standpoint was taken and
therefore accuracy was prioritized. Further work on this project should be aimed at adding

7

multiple object functionality, further increasing accuracy, and increasing alert time. In order to
add multiple object functionality, it is needed to create a module that can determine if objects
between two different time frames are the same object. Once this system is completed the object
detector and locator, Kalman filter, and collision detection module are already formatted to
handle multiple objects. In order to increase the accuracy of the system it is needed to increase
the accuracy of the system’s calibration. This could be done by focusing on the edges of the
frame. Once the calibration is more accurate the system would be able to increase the alert time
to meet the initial target of 3 seconds.

In this project, a system that detects collisions with a high level of accuracy was successfully
created. Also achieving the goal of increasing our location accuracy over last year’s team and
running time of less than 250 ms and came close to meeting the goal for false positives.
However, it failed to meet the goal of providing a 3 second alert time, which is the average
reaction time of a driver, because accuracy was considered a priority during the testing.

8

1.0 INTRODUCTION

This report discusses the problem, the goals, the design solution, the design implementation,

testing, and results of the CARSTOP vehicular collision detection and warning system focusing

in the creation of the submodules individually created by me. This system is primarily for

research in the field of autonomous driving as a continuation on last year’s project group. With

discussion on difficulties faced in the process as well as various safety and ethical concerns.

Finally, recommendations for potential improvements given that demanded more time and

resources, and for groups interested in implementing their own collision detection system.

This design used various sensors: LIDAR, camera, and GPS. It passed the input from the camera

through an object detection system to sense pedestrians and vehicles using the open-source

YOLO (You Only Look Once) object detection software. Then with our LIDAR-Camera

transform it gets the distances of these objects from the LIDAR. Using those distances, our

system has the ability to track objects in the field of view and predict their paths using Kalman

filtering in order to predict potential collision and alert the driver.

In order to test the system, the set-up experiments were needed, to ensure the hardware sensors,

object detection, LIDAR-camera calibration, and collision detection worked as expected. During

this process, LIDAR and GPS tests to ensure the accuracy in real time were done. There were

also tests on object detection and calculated the accuracy with the goal of improving on last

year’s accuracy. To test calibration, the code was visualized and tested the distances of objects to

the owner´s car at different angles and distances. Finally, the tests on the collision detection

system at different angles to see the accuracy of our system in predicting collisions.

The cost and ethical considerations for the project by discussing the required hardware and safety

goals needed to meet were analyzed. This is a research project so the considerations for this

project will differ from a project for commercial use. For this project, the focus was to test the

feasibility of standardization in a collision detection system. In the end, there are

recommendations for future work such as upgrade hardware, focus on improving calibration, and

improve the advance time before collision.

9

2.0 DESIGN PROBLEM STATEMENT

This whole idea of the project was to create a system capable of detecting collisions and of

alerting the driver with reasonable warning time. This report is focused on the creation of an

object detection system using a webcam, a Kalman filter to predict positions and velocities of

different objects through the time and an alert system that will trigger a sound alarm in the case

of detecting a possible collision with the data obtained from the Kalman filter. The system

needed to perform in reasonable testing environments, which were defined as situations with

moderate temperature, no precipitation, and reasonable visibility. It also needed to meet

performance specifications such as surpassing the object detection accuracy reported by prior

senior design teams and keeping processing time low enough to function in real-time.

2.1 Design Objective

The goal was to create a collision prediction system that can warn drivers of impending

collisions, thus helping prevent some of the 94% of accidents that are caused by human error [1].

The aim was to use LIDAR, camera, and GPS information to predict vehicle collisions with

objects, pedestrians, and other motor vehicles and notify the driver if a collision is detected. The

design will have to accurately detect objects and predict collisions, perform correctly in ideal

testing conditions, and do so in real-time.

2.2 Specifications

The primary stakeholders, the CARSTOP research group and the Texas Department of

Transportation (TxDOT) will use this project to guide further research and to shape future public

policy in transportation safety. To satisfy the stakeholders, the system will have to meet certain

operating environment and performance specifications. CARSTOP and TxDOT do not expect

this system to be exposed to extreme environments, therefore it only needs to be tested for fair

weather conditions. To meet performance requirements, the system will have to achieve a

sufficient level of accuracy while being able to process data in real-time.

Ideally the system would work in any condition that a driver might regularly face. However,

because the system is going to be used for research purposes, operating environments are

10

restricted to reasonable testing conditions, which is clear weather, temperature between 10℃ to

35℃, and a driving speed of less than 45 miles per hour. Table 1 describes the conditions that

the system will operate in.

 Table 1. Ideal Testing Conditions

Condition Operating conditions

Precipitation 0%

Temperature Range 10℃ to 35℃

Fog 0% (perfect visibility)

Maximum Speed 45 mph

In terms of its performance, the system needs to prioritize detection accuracy and speed. The

goal is to improve upon the object detection accuracy achieved by the previous senior design

team, which was 46.39% [2]. The system should also take less than 250 milliseconds on average

to process each chosen frame from the camera footage, as that is close to the fastest reaction

times possible for a human [3]. Since preventing a collision is more important than distracting

the driver, outputting a false positive is preferable to outputting a false negative. However, false

positives can distract the driver, so they should be no more than 30% of alerts. In addition to

accuracy, the driver needs to receive enough notice to take corrective measures. Therefore, the

system should provide 3 seconds of notice before any collision. Table 2 lists the performance

specifications required for our design.

Table 2. Performance Specifications

Measurement Quality

Detection Accuracy Improve upon previous group’s accuracy of

46.39% [2]

11

Alerting Driver in Timely Manner Should provide the driver 3 seconds notice of

possible collisions

Processing Time Should take less than 250 milliseconds to

process each selected frame

Collision Alert No more than 30% false positives

3.0 DESIGN PROBLEM SOLUTION

3.1 Overview

The objective of the project is to create a collision prediction system that can warn drivers of

impending collisions, thus preventing a substantial portion of accidents that are caused by human

error. The design will have to perform accurately in ideal testing conditions, be accurate in

detecting objects and predicting collisions, and do so in real-time.

This collision detection system design has 8 distinct modules: sensors, object detection, LIDAR-

camera synchronization, LIDAR-camera transformation, object location, Kalman filtering,

collision detection, and alert. See Figure 1 for a block diagram illustrating how all these modules

work together.

Here is a high-level description of the design: Starting with the sensor modules, the LIDAR and

camera collect data on potential obstacles in front of the vehicle while the GPS is used to

determine the velocity of the own vehicle. The object detection module uses camera data to

identify potential obstacles and assign bounding boxes to them, which it sends to the LIDAR-

camera synchronization module. This synchronization modules collects LIDAR point cloud data

and bounding box information from camera data at the same instant in time, which is used in the

LIDAR-Camera transformation module. This module projects the 3D LIDAR points onto the 2D

image captured by the camera, making it possible to assign a distance collected from the LIDAR

point cloud to the objects within the bounding boxes. The bounding box and LIDAR data is used

by the object locator module to determine how far away each object is. Next, the Kalman

filtering section creates a model used to predict the path of the objects based on their current

position and velocity. This model is used in the collision detection section to predict whether the

12

vehicle will collide with any of the objects 1 second in the future. If a collision is detected, the

alert module will notify the driver.

Figure 1: System Block Diagram

3.2 Sensors

The three sensors used in this system are camera, LIDAR, and GPS. This project is using a

Logitech C920 1080p HD webcam, the Velodyne PUCK VLP 16 LIDAR, and a modified

Garmin GPS that is specifically tuned to interact with the VLP 16 LIDAR. The webcam is used

with the object detection algorithm to detect obstacles. The system uses LIDAR point cloud data

to measure how far away obstacles are from the vehicle. GPS is used to determine the vehicle’s

velocity.

3.3 Object Detection

The object detection module receives frames from the camera and uses those to determine

whether there are objects present in the frame and creates bounding boxes around detected

objects. This looks for objects in front of the car and the bounding boxes of those are going to be

considered the possible obstacles that the system will have to follow to predict whether there is a

possible future collision or not. After obtaining the bounding box coordinates of each detected

object, the module sends the bounding box data to the sync module, which matches the LIDAR

point clouds to corresponding object detection data. This will allow the system to obtain distance

information for each detected object, which will be used to track the objects and predict

collisions.

13

In order to accomplish object detection, an algorithm called You Only Look Once (YOLO) was

used, which is capable of detecting over 9000 object categories in real-time using a webcam [4].

YOLO is different from other object detection methods in that it is essentially a regression

problem: it goes straight from image pixels to bounding box coordinates and class probabilities.

This is where the name comes from - you only look at the image once to predict the objects in it

and where they are. Many other object detection algorithms have much more complex pipelines

which are slow and hard to optimize, whereas YOLO’s simplicity allows it to run extremely fast

and still achieve a high detection accuracy. YOLO works by unifying the separate components of

object detection into a single neural network while other object detection algorithms go through

multiple neural networks [5]. It uses features from the entire image to predict bounding boxes

and predicts all bounding boxes across every class simultaneously. An overview of the system is

shown in Figure 2 below.

Figure 2. Overview of YOLO system

This algorithm was used by the previous year´s senior design project team so another advanteage

was the knowledge of how to work with it, however it was necessary to modify some of the

settings to process each frame in less than 250 ms. These modifications consisted of reducing

14

the number of divisions on the grid. The main problem of this was to find an equilibrium

between time and accuracy. At last the selected number of divisions for the grid that worked with

the lab´s computer at a reasonable speed and accuracy, that will be mentioned in the testing

section, was 288x288.

YOLO divides the input image into an S x S grid of cells and if the center of an object falls into a

grid cell, that cell is responsible for detecting that object. Each grid cell predicts B bounding

boxes and confidence scores for those boxes. Each bounding box has predictions for the (x, y)

coordinates representing the center of the box, the width and height of the box, and the

confidence score. Additionally, each grid cell predicts C conditional class probabilities, Pr

(Classi | Object), and uses those to create a class probability map. Finally, the bounding box

predictions and the class probability map are combined to produce the final detections and the

corresponding classes. Note that S, B, and C are tunable parameters that can be adjusted to

improve detection performance. This model is implemented as a convolutional neural network

consisting of 24 convolutional layers followed by 2 fully connected layers, that gives us a width

and height of 288. This setting allows us to work at a fast speed getting a sufficient accuracy.

The initial convolutional layers of the network extract features from the image while the fully

connected layers predict the output probabilities and coordinates.

After obtaining the bounding boxes, this module sends a data packet to the sync module. The

structure of the packet is shown in Table 3 below.

Table 3. YOLO Data Packet Structure

Location in Packet Description

Bytes 0-3 A header (0x12345678)

Bytes 4-7 Timestamp of packet (in milliseconds since
Jan 1 1970)

Bytes 8-11 Number of objects detected by YOLO in that
frame

Each subsequent batch of 16 bytes The left, right, top, and bottom pixel
coordinates of each object’s bounding box

15

This data packets were sent then to the LIDAR-camera synchronization module only once a

LIDAR point cloud is received as the velocity of YOLO was higher than LIDAR velocity.

3.4 Sensor Data Syncing

The LIDAR point clouds and YOLO packets are sent at different rates, so this system is

responsible for synchronizing them by matching YOLO packets with the point cloud whose

timestamp is closest in time to the received YOLO packet’s timestamp. Since the point clouds

are sent at a slower rate than the YOLO packets, this module first waits to receive a point cloud,

then after it has received one, it receives a YOLO packet, which would correspond to the object

detections nearest in time to the received point cloud. After the module has received both the

LIDAR and object detection data, it sends it to the LIDAR-Camera transformation module.

3.5 LIDAR-Camera Transformation

Although the object detection system works on 2D images, our LIDAR provides distances in 3D

point clouds. Therefore, this system helps to correlate points in the point cloud to points on the

images so that we can determine the distance to objects detected by this system. This is done by

calibrating the LIDAR and camera in the position that they will be held by their mounts.

Equation 1 shows the equations that will be used to help with the projections. The 3D

coordinates x, y, and z are converted to the 2D coordinates u and v through matrix multiplication

[6]. The r matrix contains coefficients determined during the calibration of the two sensors. The

variables 𝑐 and 𝑐 represent the center of the photo while 𝑓 and 𝑓 represent the focal lengths.

Figure 3 shows an illustration of how our 3D point cloud would be projected onto our 2D image.

(1)

Equation 1. 3D-2D Point Projection Equations [6]

16

Figure 3. Illustration of 3D-2D Projection [6]

3.6 Object Locator

Now that points in the point cloud and pixels on the image are correlated we need to create a

system to identify the locations of objects detected by the object detection system. It was decided

to select the closest LIDAR point to the center of the bounding box of a detected object. The

formula can be seen below in equation 2. X and Y are the relative location of the object

compared to the car, xp and yp are the pixel coordinates of our LIDAR points after passing

through the LCT, and xcenter and ycenter are the center location of the bounding box.

(𝑥, 𝑦) = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚((𝑥 − 𝑥)2 + (𝑦 − 𝑦)2) (2)

This system was initially tested on the initial truck photo that was used to calibrate our LCT.

Minimizing this error picked a LIDAR location at the center of the bounding box created by the

object detection system. The point selected can be seen located in red in Figure 4.

17

Figure 4: Location Selection of Truck Using Our LCT

3.7 Kalman Filter

Kalman filtering is an algorithm that allows us to estimate accurately unknown variables using

single measurements of the input and output along with measurements of the statistical noise and

inaccuracies. We can divide this algorithm in two steps. The first one that can be called

“Prediction-step” gets an uncertain estimation of the current state values, this will be an output of

our Kalman filter. The second step is the “Correction-step”, in this step the algorithm updates

itself with weighted averages giving more weight to those more accurate estimations. We

measure this by comparing the “Prediction-step” state values with the ones measured during this

step.

The Kalman filter, developed by Rudolf E. Kalman on 1960, is a recursive algorithm that can

work in real time using the actual inputs of the system and the previous ones. It has many

different applications in technology and now is being really used in autonomous driving

platforms.

In order to detect if there is going to be a collision it is needed to track the objects around the car

and be able to predict where they will be at a later point in time. The system is going to track

objects around the car using an Extended Kalman filter. This approach helps to account for

variations in measurement and create a more accurate tracking system. These formulas can be

18

seen in Equations 3-9 below [8]. The input to our tracking system are the x and y coordinates

and velocities of an object relative to the location of the car. The Kalman filter will then use this

data to create a prediction model for where it expects the object to be located and how fast it will

be going the next time it receives an input. For this we consider that the object is going to move

in a straight line and at the same speed the whole time between one prediction and the next one.

This predicted model location (x’) can be seen in equation 3 below. Equation 4 shows how much

error (P’) we expect to have in our predicted model. This is based off of our predicted model (F)

and our covariance matrix (Q). The error we predict to have is going to be the acceleration of the

objects because our inputs do not consider it, so it will be considered noise. The next time that

we receive a measurement we calculate the error (y) between our predicted model (x’) and in our

input (z) this can be seen in equation 5. Equations 6 and 7 show how we use the expected error in

our prediction to find our Kalman filter gain (K) where our error in measurement is (R) and H is

a matrix to shape our matrices. Our next state (x) is then calculated as our predicted location (x’)

plus the difference in our predicted location (x’) and the measured location (z) multiplied by our

gain(K). This is shown in equation 8. Equation 9 then updates the expected error (P) in our

predicted system for the next round. The Kalman Filter then updates our location using both our

predicted and measured locations giving a greater weight to the method with lower error.

𝑥′ = 𝐹𝑥 + 𝑢 (3)

𝑃′ = 𝐹𝑃𝐹 + 𝑄 (4)

 𝑦 = 𝑧 − 𝐻𝑥′ (5)

𝑆 = 𝐻𝑃′𝐻 + 𝑅 (6)

𝐾 = 𝑃′𝐻 𝑆 1 (7)

x = x’ + ky (8)

𝑃 = (𝐼 − 𝐾𝐻)𝑃′ (9)

Equations 3-9. Kalman Filter Equations [8]

As mentioned before, the Kalman filter actualizes itself continuously comparing previous inputs

with the actual ones and changing the weights of the variables giving more importance to the

more accurate ones. The predictions of it get more accurate as more updates are done being the

first prediction a blind pick. This submodule sends the next predicted positions to the collision

19

detection system which will calculate if during this path the position of the detected objects ever

intersects with the position of the car.

3.8 Collision Detection and Alert

The collision prediction module uses data from the GPS along with data about objects

surrounding the user on the road from the object locator and the movement predictions

previously made by the Kalman filter to detect a potential collision and tell the alert system to

warn the driver.

The collision detection module was created on the basis that within the one second time period

that our overall system attempts to predict into the future, the user’s car will continue to go

forward at a constant velocity, this is the same basis as the used in the Kalman filter. This

approximation simplifies the calculations and the error are acceleration and possible changes on

the direction of the vehicle. The module uses GPS information to determine the car’s velocity

and generates a straight path in front of the car, in the direction that it is going, based on the

velocity, multiplied by the time increment (one second in this case). The module will then use

information about potential objects (size, location, angle of approach, and velocity) from the

object locator and object tracking modules to generates paths for these objects. Lastly, the

module will check for any intersections between any paths. If any are found, a signal is sent to

the alert system to warn the driver. This is all meant to occur in real-time, with minimal

processing delay such that the alert can be sent within a three second timeframe.

Figure 5 graphically demonstrates the collision detection module. The dark red box represents

the user’s car, and the dark blue box represents some other car/object. The lighter colored long

boxes represent the object's’ paths. As shown, the paths intersect, and a crash was detected.

20

Figure 5. Collision Detection

Once this system detects a possible collision it makes the user computer sound using a python

library. The alarm system is presented as a distinct module, but it was all included in the

collision detection system because of its simplicity. The python library creates a “beep” using a

square wave.

4.0 DESIGN IMPLEMENTATION

The final system design evolved substantially from the original design, which had included

platforms such as Apollo and the Robot Operating System (ROS) along with other resources like

the Karlsruhe Institute of Technology (KITTI). Compatibility and accuracy issues forced to

change the design and use modules from the internet and self-designed. For the final design,

YOLO was chosen for object detection primarily for its speed, after this the lidar-camera

transformation aligns point clouds and images using rotation and translation matrices and uss this

transformation to locate objects which were tracked using Kalman filters.

21

4.1 Failed Design Components

Several designs were tried before finding they were unsuccessful and settling on the final design

solution. Some of the components that were tried but ended up not been used were basing the

solution on platforms like Apollo and ROS and using KITTI to calibrate our LIDAR and camera.

4.1.1 Apollo

The first design used an open-source autonomous driving platform called Apollo from Baidu, but

after a few months of working with it, it was decided not to use it because of time and resource

constraints. While working with Apollo, it was found that the Apollo platform is more difficult

to modify and less robust than what was anticipated at first. While running the Apollo simulation

demos successfully, it was impossible to modify the software to be compatible with the sensors

even after reaching out to the Apollo developers on their online forum. After weeks of working

on integrating one sensor with no success, the determination was that in the interest of time and

to avoid buying new expensive sensors it would be best to move on to other platforms for the

design.

4.1.2 ROS

Another platform tried was ROS (Robot Operating Systems), which ended up not using because

of software issues. ROS was considered because Apollo is based on ROS software and ROS is a

commonly used platform in industry and research projects. Also, ROS is compatible with many

premade software packages related to the sensors. It was successfully installed the latest version

of ROS and the software packages related to the sensors, but it also was impossible to install the

software needed to sync the camera and LIDAR together. Since syncing the camera and LIDAR

data is essential to this project, it was decided to not use ROS as a platform and create the

software modules and architecture seen in the final design without using any premade open-

source code.

4.1.3 KITTI

The first attempt at a LIDAR-Camera Transformation (LCT) involved an online program from

the Karlsruhe Institute of Technology (KITTI). This program uses photos of black and white

checkerboards in junction with a LIDAR point cloud to calculate a rotation matrix. In order to

22

get the transformation from this program the first step was to set up our LIDAR and camera on

the car in the position that they will be used. The LIDAR was placed on the mount on the top of

the car and taped the camera on the top of the dashboard facing the front of the car. Next, it was

necessary to setup the black and white checkerboards in front of the car facing different angles.

Because this system calculates the rotation matrix using the normal of the boards in the point

cloud, it is important that these face multiple different angles. A photo of this setup can be seen

in Figure 6 below. After setting up the test we then took a photo of the boards and collected a

LIDAR point cloud. These photos and LIDAR point cloud are then uploaded to their website

where they calculate the rotation matrix.

Figure 6: LIDAR-Camera KITTI Calibration Checker Board Setup

The program then tries to find the most accurate matrix for the setup. If it finds a good solution,

then it outputs one transformation. If it does not, then it sends multiple for you to choose from. It

gave 23 separate LCTs to choose one from these. This means that the results are not accurate and

most likely would not meet the previous expectations. The next step was to look through the

options and found the transformation shown in Figure 7 to be the most accurate. The photo on

the left shows the photo that we submitted and the identified boards which are each assigned a

color. The photo on the right shows these color mapped boards inside the plane of the LIDAR. It

is easy to see that each of the boards is approximately in the correct location of the point cloud

23

and leaning in the right direction. However, it appears that the boards were translated further to

the right then they actually were. Because of this translation it was decided that this

transformation was not accurate enough for the purposes. This means that it would be necessary

to create a calibration in particular using matrix for the position of the sensors. It was done with

code in python based off equation 1 in the LIDAR-camera transformation section of the design

problem solution. The process used is described in detail later on in the implementation section.

Figure 7: Panel Mapping (Left) and LIDAR Mapping (Right)

4.2 Design Choices

In the section it will be discussed the reasons for the current design. Each module was designed

to work with the previous module and give an output to the next module. YOLO was used

because it could process data quickly in real time. After investigating many other calibration

options, it was decided that the created LIDAR-camera transformation would be faster and more

reliable than other sources. The center of the bounding box was used for object locator because it

gives more accurate results than anywhere else in the box, since an object is most likely to exist

in the center. To track objects, Kalman filtering is the most reliable method, and transcribed

MATLAB code into Python. For collision detection, it was assumed that the car would be in an

approximate straight line with respect to the previous frame, and updating the data quickly

enough, so it could predict a collision in 3 seconds. The final decisions because of the time

constraints was to build an audio alert rather than a haptic alert.

24

4.2.1 YOLO

YOLO was used for the object detection algorithm primarily because of its speed, but also

because of its familiarity and ease of use. Keeping processing time minimum was crucial to the

project as the application was inherently a real-time one. It was essential that this system took

less than 250 milliseconds to process information, as this is close to the fastest reaction times a

human is capable of. YOLO was the only algorithm that met this requirement. In preliminary

speed testing, YOLO took around 30-50 milliseconds per image, and consistently ran at more

than 25 frames per second when tested on video from a webcam. Other algorithms, such as

VoxelNet [9], took upwards of one second to process a single image.

YOLO also had the advantage of being familiar. The previous year’s senior design team, which

had also worked on some real-time object detection, had used YOLO in their system and the

availability of some of their code as examples was helpful to create the module in the shortest

possible period upgrading what the previous year´s team had. Furthermore, the project´s faculty

mentor’s graduate students were already knowledgeable with it and could provide guidance if

needed. There was helpful documentation online. All of this made it possible to have an object

locator algorithm with great precision and that can track and classify multiple objects of different

categories at the needed speed.

4.2.2 LIDAR-Camera Calibration

The next attempt at creating an LCT involved a similar process to the previous one however, this

time it was decided to calculate the rotation matrix instead of using one calculated with an open-

source algorithm. For this task it was necessary that the LCT was using objects that are easily

identifiable by eye in the point cloud. For this reason, the point cloud and image of a truck were

aligned. This object is easily identified and can be moved on top of the photo of the truck to

calibrate our LCT. The owner´s car was moved to the roof of the parking where it was parked

and positioned in front of another truck to get the images and make the calculations using those.

Figure 8 shows the LIDAR point cloud and photo that we used to set up our LCT calibration. In

the point cloud the truck can be seen towards the top left near the rings of the circles.

25

Figure 8: Point Cloud (Left) and Photo (Right) of Truck LCT setup

After the data the next task was to write code to overlay the point cloud on the photo. The start

off the rotation matrix was an identity matrix. At this point the photo was checked to see if it was

possible to find the truck in these points. Once the truck was identified, the next stage was to see

how our point cloud should rotate to accurately place the truck on top of the photo. At first, the

object was only rotated along the x, y, z values by 90 degree rotations. Once this rotation got the

truck to be in the right alignment the tune of our rotations was started in order to make our

rotation more exact. Then a translation matrix was added to shift the cloud to make the final

adjustments. The reached values can be seen below in Table 4. These rotations gave the result

shown in Figure 9. It is possible to check that it overlays the points on the truck rather closely.

This places the points on the truck and within the region where it would be expected a bounding

box to surround the truck. The rotation matrix was then used on several other photos and point

clouds that were took in order to verify that it worked in multiple situations. The results of these

LCT uses can be seen in Figure 10. From these results it is possible to see that the LCT worked

really well on the pillar, rather well on the two trucks, and poorly on the person. Before taking

the photo of the person the camera was accidentally knocked to the side. The attempts to correct

this mistake were not completely effective so there exists a shift between the point cloud and the

image.

26

Table 4. Final LCT Calibration Measurements

 Rotation (degrees) Translation (meters)

x 90.53 -1

y -81.36 3

z 90.53 0.7

Figure 9: Image of point cloud overlaid on truck using LCT

27

Figure 10: LCT Used on Two Trucks (Top Left), a Pillar (Top Right), and person (Bottom)

4.2.3 Object Locator

Using the data from the object detection and LCT module, it was necessary to get the distance of

the object from the car. Using the bounding box coordinates, it is possible to localize the objects

within the frame. Since the LIDAR point cloud was transformed into camera coordinates

already, it was possible to use the object locator module to find the points from the LIDAR point

cloud that are in or near the bounding box and get their corresponding distances. The initial idea

consisted of just picking any point within the bounding box. However, after consideration, it was

decided this would not work because at any random point inside the bounding box where there is

a person, there is a chance that the random point we choose may be a point underneath their arm

or beside their head which will give us the wrong distance of the object in the bounding box.

Therefore, the solution was to use the center of the bounding box, which is far more likely to

actually contain the object. It was also important for this function to work well with our other

submodules, so calculations and code were done for the module immediately after the LCT

module. We felt this met the time processing and accuracy demands.

4.2.4 Kalman Filter

The initial Kalman filter used code from an Extended Kalman Filter developed by Yunming

Shao, a PhD student from Ohio State [10]. This code helped to understand how Kalman Filters

worked and what they did. This code used noisy paths generated by MATLAB and tracked them

helping to reduce the noise. However, it was soon realized that this system would not suit the

needs for real time tracking. The format was based on file input and was difficult to change to fit

our needs. As a result, the final idea involved creating the Kalman Filter code in Python. Because

writing the code made it easier to understand and modify than the one originally used. After

getting the Kalman filter to work on one object the code was changed to work in a class system.

This allowed it to create new Kalman filters for each object that was wanted to track.

With enough time to help differentiate between different objects this Kalman filter would already

be capable of tracking all of them at the same time. For that an idea that did not materialized was

to create a New vs Old subsystem which would allow the system to differentiate objects that

were already detected by YOLO from objects that are new and ones that are now out of sight.

28

Most of the New vs Old subsystems found online were only based on the position of the object

and compare it to the predicted position. It was possible during the project no matter time

constraints to try this method but it was not accurate enough so it was decided not to implement

it. For this system three characteristics would be considered for each object to make sure that it

worked and reduce the number of errors. An object would be a previously detected one if it was

in a position relatively close to the one predicted by this object´s Kalman filter, if its bounding

box height vs width relation was equal or similar and if the object class detected by YOLO

algorithm was the same.

4.2.5 Collision Detection

The Collision Detection Module is where the outputs of all of the other modules, as well as from

the GPS comes together to output the final alert to the user. The most important assumption that

guides the implementation of this module is that within a short period of time, the path of the

user’s car will be approximately straight. Initially, this short period of time was three seconds,

however, later the decision to reduce it to one second in order to maximize accuracy was made.

The module uses velocity taken from the GPS to determine the car’s path as a narrow rectangle

directly in front of it, where its width is the width of the car, and its length is the distance it will

go within the time interval (its velocity multiplied by one second). The module then uses

information about potential objects (size, location, angle of approach, and velocity) from the

object locator and object tracking modules to generates paths for these objects. A collision is

defined as an intersecting path. If any are found, an auditory alert warns the driver.

The Module uses object-oriented programming with Car classes representing vehicles. Various

functions such as update_speed() to get velocity from the GPS, and update_path() to generate

paths work in tandem to detect collisions. Object-oriented structure was used so that the system

could be easily extended to multiple objects and so that in the future, different objects could have

different attributes - such as a person having a different bounding box size than a car. The system

was ready to work for multiple collision detection and tested successfully in lab with fake data of

both cars and people.

29

4.2.6 Alert

The alert module outputs a beeping sound when a collision is detected. The original plan was to

use a haptic alert embedded in the driver’s seat, where different regions of the seat would vibrate

based on the direction of the collision. The haptic alert was considered at first because it would

be able to provide the driver information about expected collision direction, and it also seemed

more reliable than an auditory alert because all drivers make contact with the car seat, whereas

not all people would be able to hear an auditory alert. However, the haptic alert would have been

costlier because it would have required to buy many vibration motors, and it would have taken

longer to implement because to write code for a microcontroller to interface with each motor and

then only vibrate certain ones based on direction is a time demanding task. Due to the increased

cost and the limited amount of time, the final decision was an auditory alert because it could be

easily generated using a laptop, it still provides the driver collision information without being too

distracting, and its ease of implementation allowing to focus more on the functionality and

accuracy of the system.

The first and rejected idea was to use a visual alert because it will be too distracting to the driver

as during a possible accident, to have your eyes focused on the road is a priority.

4.3 Cost/Benefit Analysis

This section describes the cost that the project involved and compares them with the benefits

which are expected to result from the developed system. As the project was intended primarily

for research purposes and not to obtain an actual quantifiable benefit, there is no way to give

actual financial benefits and it is not possible to calculate a payback period.

The sensors used for the project, the Velodyne PUCK VLP 16 LIDAR, the Logitech C920 1080p

HD webcam, the Honda Accord and the laptop, were already owned by the CARSTOP research

team so the only actual economic expense of the project was the Modified Garmin GPS. During

the project, an important decision was whether to buy a more precise Velodyne LIDAR with 64

layers instead of 16 because it could worth it due to compatibility problems. However, due to the

high cost of the 64 layer LIDAR the decisions was not to pursue this path.

30

Although there only was one actual expense, so in terms of time spent vs benefits, the benefits

were well worth the time putted in. In less than a semester a functional collision prediction

system accurate in predicting collisions with one object was created. With more time, this system

could be developed further into a cheaper alternative to expensive autonomous driving systems.

This could potentially provide the benefits of being compatible with many different types of cars

and could function as an affordable predictive safety solution which would increase safety while

driving. This system is the first step to a complete usable collision prediction and avoidance

system which is an essential part of autonomous driving.

5.0 TEST AND EVALUATION

After designing the system it was time to start to work on creating each module. Most of the

testing occurred while building the system. Each module was tested individually as it was being

built, then began testing how each system worked together, and then finally the total system. The

first tests performed were to make sure that the system was receiving the accurate data. Next, the

object detection system was tested to make sure that it could output the bounding boxes of

detected objects. Then the syncing of data between the object detection and LIDAR was the one

tested. After the calibration and location sections were finished it was time to see how they

worked in conjunction with the LIDAR and object detection systems to determine the locations

of objects in real time. The Kalman filter and collision detection systems where the final ones

and used paths that were created in lab. Next step was to make sure that the system operated

quickly enough to meet the goal of real time prediction. Once this was verified and all of these

systems worked together we tested the entire system in different scenarios with and without

collisions.

 Each member of the team tested his own module while the testing for sensors, the interaction

between modules and the overall system was done by all the members of the team together. This

was necessary as each test would need deep knowledge of distinct submodules and the ability to

change it during the experiments.

31

5.1 Sensors

The tests of LIDAR and GPS sensors were done individually. For LIDAR, the idea was to check

the validity of the data collected and the timing of the methods with the design constraints in

mind. The accuracy of the GPS was also tested with the car running at 5, 10 and 15 mph and

with a simple Python code that was able to output to the computer the speed of the car at each

moment.

5.1.1 LIDAR

The task was to test the software wrote to collect LIDAR data by measuring how long it takes to

receive one packet of data and by writing code to visually verify if the system would be getting

the correct LIDAR data.

To test how long it takes to collect one packet of data from the LIDAR a Python module was

used to measure the current time in microseconds at the start of the packet and at the end of the

packet. The time to receive one packet was measured with the difference between the start and

end time. A similar method was used to measure how long it takes to receive one point cloud. A

point cloud consists of about 90 packets. Initially, it was found that it took 13 milliseconds to

receive one packet of data and 5 seconds to receive an entire point cloud of data, which is too

slow for this design requirement of processing each frame in less than 250 milliseconds. This is

because the code was using a data structure called a DataFrame to store the point cloud data. So

the solution was to switch it to simply using arrays in Python and had much better results. With

arrays, it took 1.312 ms (averaged over 90 trials) to receive one packet of data from the LIDAR

and the time to receive one point cloud was about 118.141 ms. Because this system is the most

time intensive a time of 118 ms is sufficient for the system to reach the goal of 250 ms per frame.

A summary of the testing for the LIDAR packet data tests can be found in Table 5.

Table 5. Time to Receive LIDAR Data

Data Structure Time to receive packet (ms) Time to receive point cloud (ms)

DataFrame 13 5000

Array 1.312 118.141

32

More code was used to verify that the system would be collecting data from the LIDAR

correctly. The code used receives data from the LIDAR directly from the computer ethernet port.

It decodes the packet data and convertes the given spherical coordinates to cartesian coordinates

using these equations:

x = r sinθ cosφ (10)

y = r sinθ sinφ (11)

z = r cosθ (12)

Where 𝑟 is the distance from the sensor, 𝜃 is the elevation angle, and 𝜑 is the azimuthal angle.

To test the validity of the data point conversions, the data collected from the packets was plotted

in 3D coordinates using the MATLAB plotting library in Python and compared it visually

against the data collected from VeloView. VeloView is the software that the LIDAR is shipped

with, so users know data is correct. To compare the data, it was necessary to caputre one point

cloud of the same environment in VeloView and one point cloud with the tool we created within

a few seconds of each other and plotted the data for each in 3D. The plots were compared

visually then looking at individual points and compared their X, Y, Z coordinates to see if they

were similar. Initially, it was found that the data did not match with the VeloView software, as

the two plots shown in Figure 11 were drastically different. After some debugging, it was

discovered that the difference was because of the use of degrees instead of radians in the

calculations. Once changed to radians, the results became more visually similar, showing that the

data collected from the packets is correct. It was also verified that the data collected is correct by

confirming that their point’s X, Y, and Z coordinates matched the VeloView X, Y, Z points.

33

Figure 11. LIDAR point cloud 3D plots

5.1.2 GPS

The test of the GPS’s ability to track the speed of a car at 5, 10, and 15 mph found that it is

generally capable of tracking the speed of the car but is more accurate at higher speeds. The GPS

measures speed in nautical miles per hour (NMPH) so it is necessary to convert this data into

miles per hour (MPH) to test it. In order to convert to miles, the code simply multiply nautical

miles by 1.15. The test conducted evaluated the accuracy of the GPS speed acquired vs actual

speed. A short program that would fetch the GPS data whenever the function is called was wrote,

and it would output the current speed which the system use along with longitude and latitude

which we do not need for this purposes. To ensure the GPS functions correctly, a simple test was

done with the car driving steadily at three different speeds. Then the code gathered the data for

five different runs, and the results are seen in Table 6.

Considering that an speedometer cannot have an error of more than a ±2.5% relative to the actual

speed according to manufacture tolerances and supposing that the cars conditions were ideal it

34

got a maximum percent error of 30.841% for 5 mph, 32.996% for 10 mph and 3.746% for 15

mph. Although at very low speeds there are some potential issues with accuracy, the tests at

higher speed are more accurate. The conclusion was that the GPS tests were successful and

confirmed the functionality that satisfies the requirement of getting the speed of the vehicle as

most of the time user´s vehicle is going to be running at speeds higher than 15 mph if it is taken

into account that the minimum common United States roadway speed limit is 15 mph for school

zones.

Table 6. Results of GPS Speed Test

Run NMPH at 5 NMPH at 10 NMPH at 15 MPH at 5 MPH at 10 MPH at 15

1 2.0 7.8 11.9 2.3 11.76084 13.694282

2 2.4 8.1 14.1 2.761872 12.21318 16.225998

3 4.1 9.2 12.3 4.718198 13.87176 14.154594

4 4.3 8.9 12.5 4.948354 13.41942 14.38475

5 2.6 9.0 13.5 2.992028 13.6 15.53553

Average 3.08 8.6 12.86 3.5444024 12.96708 14.7990308

5.2 Object Detection

The first test of the object detection module was on images to get some confidence in the YOLO

algorithm’s functionality, and then on video. To test YOLO’s accuracy, the process consisted on

running the algorithm on 10 images and calculated its precision and recall on each image. To test

the algorithm’s speed, it was measured the time it took to process the entire frame. For video

testing, the average frames per second (FPS) of the algorithm were calculated.

35

This test involved calculating the precision, recall, and accuracy for each image in our set of 10

testing images we sourced from the internet. These pictures were taken from positions inside the

car from a position similar to the webcam’s position in this project´s design and so looked

similar to the images the object detection would have to work with. This set of images contained

4 nighttime pictures, and 1 picture which was taken in heavy snow. As this mix of images would

provide a better understanding of the algorithm’s accuracy and robustness. As seen below, the

object detection module was able to detect the vast majority of objects in both daytime and

Figure 12. YOLO Output on a Daytime Image

36

Figure 13. YOLO Output on a Nighttime Image

To get a quantitative value on the accuracy, the metrics of Precision (P), Recall (R), and

Accuracy (A) were used. Precision is the proportion of detected objects in the image which were

actually objects, recall is the proportion of objects that should have been selected which were

actually selected, and accuracy is the proportion of correctly detected objects. These metrics are

closely related to the concepts of a true positive, a false positive, and a false negative. A true

positive (TP) is an object which is actually present in the image, and which is also detected by

the algorithm, a false positive (𝐹𝑃)is an object which is not actually present in the image, but

which our algorithm erroneously detects, and a false negative (𝐹𝑁)is an object which is actually

present in the image, but which is missed by the system. The formulas for P, R and A are given

below.

𝑃 =

 (13)

𝑅 =

 (14)

𝐴 =

 (15)

37

After testing on 10 images, 9 of which had multiple objects, the object detection module had an

average precision of 0.812, an average recall of 0.733, and an average accuracy of 0.616. To get

the algorithm’s processing speed, it was necessary to measure the time it took for YOLO to

handle the image. On the same 10 images as before, the module took on average 147.55

milliseconds per image, with a standard deviation of 3.62 milliseconds. The details of this

accuracy and speed tests are given in Table 7 below. The accuracy of 0.616 is successful because

it it meets our goal of beating last year’s accuracy of 0.4639.

Table 7. Accuracy and Speed Test Results

Image
Number

True
Positives

False
Positives

False
Negatives

Precision Recall Accuracy Time (in
milliseconds)

1 1 1 0 0.5 1 0.5 150.7

2 2 0 1 1 0.67 0.67 151.6

3 3 1 2 0.75 0.6 0.5 143.9

4 4 1 3 0.8 0.57 0.5 142.2

5 8 0 2 1 0.8 0.8 148.6

6 4 1 2 0.8 0.67 0.57 149.1

7 2 1 2 0.67 0.5 0.4 151.4

8 5 0 1 1 0.83 0.83 149.9

9 8 2 1 0.8 0.89 0.72 143.2

10 4 1 1 0.8 0.8 0.67 144.9

Average: 0.812 0.733 0.616 147.55

After performing the above tests on images, the following step was to test the algorithm’s

performance on video file inputs. It was not necessary to test separately the accuracy on a video

input because the algorithm internally breaks a video down into its constituent frames, so the

previous accuracy tests which had been performed on images would still be relevant. Therefore,

this test focused on the algorithm’s speed when supplied with video. It used 3 videos, each of

38

which were between 70 and 90 seconds in length and were taken from the dashboard of a car

driving in urban traffic situations - one in suburban London, one in downtown Los Angeles, and

one on an interstate highway. The average FPS over the 3 videos was 29.4 FPS. The conclusion

was that these tests were successful because the average FPS is well within the specification of

processing each frame within 250 ms, which is about 4 FPS.

 5.3 Data Syncing

The syncing module receives data from both the object detection and LIDAR modules, so in

order to test its speed it was necessary to start testing the average rate that each module sends

data. The method used to test the LIDAR speed is explained in the LIDAR section. In order to

test the rate that the object detection module sent data, the test received 200 packets from it,

found the time difference between each packet’s timestamp, and then averaged the time

differences. After testing each modules’ data rate separately, the code then combined them and

measured the total time that the sync module took to execute. This was done by measuring the

elapsed time to receive both data packets and averaging that over 100 trials.

 From the individual module testing, it was found that the LIDAR sends point clouds

approximately every 118 ms, while the object detection module sends packets every 82 ms. As a

result of this tests, it was discovered that the faster data rate of object detection was causing its

buffer to overfill, which produced inaccuracies in the synchronization between point clouds and

object detection packets. This was fixed by only sending every 5th object detection packet,

which allowed both modules to send data at approximately the same rate and produced

synchronization. After fixing that issue, the combined sync test revealed that the average total

time the module takes is 118.276 ms. The results of the tests are summarized in Table 8.

Table 8. Results of Data Sync Tests

Module Time to receive data (ms)

LIDAR 118.141

Object Detection after LIDAR 0.135

Total Sync Time 118.276

39

This testing showed that the syncing time is well under the 250 ms requirement, which allowed

the processing time of the entire system to be under our requirement. However, as a result of the

testing the necessity of skipping some of the object detection frames in order to synchronize the

speeds of the modules was found. This was necessary so that the system could operate in real-

time, but it does have the drawback of not being able to process every single frame, which

decreases resolution and could possibly decrease the accuracy of the overall system. If the

system was tracking a vehicle moving at a high speed, then this skipping could be problematic

and possibly cause a false negative.

5.4 Object Locator

In order to test the object locator, it was necessary to set up a testing environment with several

different distances located in different parts of the frame. The car was then taken to an open

parking lot and parked it facing a direction where the camera did not detect any objects; this

helps to ensure that any object detected by the system is the object that we want to measure the

distance of. At that moment people were placed in the frame and began to measure the distance

from the LIDAR to the person with a measuring tape and comparing that value to the one output

by the system. The first two tested scenarios involved a person standing in the center of the

frame at 2.5 and 8 meters away. After verifying that these two initial values had an accuracy

greater than 90% it was time to proceed to set up the test measuring multiple distances at

different angles. This was done by placing markers on the left side, center of, and right side of

our image at 5, 10, and 15 meters. Figure 14 shows an example of this test setup. Then someone

stand on one of the markers and recorded the distance determined by the object locator. This test

was repeated using a car in each location instead of a person.

40

Figure 14. Object Locator Distance Test Setup

Tables of each of these recorded values can be seen in Appendix A. There were two noticeable

trends in the data. The system provided more accurate data when the object was closer to the car

and when the object was at the center of the frame. Figure 15 shows how the system performs on

the different positions. When objects were at the center of the frame the distance accuracy was

greater than 90%, on the right around 75%, but it drops dramatically towards 60% for the left

side of the frame. While searching for the cause of these drops the solution was to view the

calibration projection in real time. The conclusion was that when objects were close to the edge

of the screen the calibration projects the points further away from the center of the picture than

they actually were. When this mismatch in calibration is small the system can handle it because

we pick the closest point to the center of our bounding box, however, when the difference

between the object in the picture and the projection become too large the closest point to the

center of the box becomes one of the ground points. This causes the system to record a distance

which is much closer than the actual distance. This effect was more pronounced on the left side

than on the right, but it is still unknown why this affects one side more heavily than the other.

With this calibration the goal of higher accuracy than last year’s team was achieved for every

position. With more time it would have been possible to have further improved the accuracy by

focusing on improving the edges of the frame.

41

Figure 15. Average Percent Accuracy vs. Position

The next objective was the system performance with regards to the different distances. The

results can be seen in Figure 16. As can be seen it has a high level of accuracy higher than 88%

for distances less than 10 meters but it starts to decrease sharply after that. At 15 meters, this

module only has an accuracy of 59%. The accuracy decreases at further distances because the

layers of the LIDAR are further spread apart than they are at closer distances. At 5 meters it can

typically have 8 layers overlayed on a person but at 15 meters this number can be reduced to 2

layers of LIDAR on objects the size of a truck. However, once again, the total average accuracy

was higher than last year’s for all distances. Since this calibration was able to beat the goal for

different position and different distances we believe it is sufficient for this particular design.

42

Figure 16. Total Accuracy vs. Distance

5.5 Kalman Filter

The first test performed on the Kalman filter was determining how accurately it was able to track

a single object. This test used MATLAB to create a file storing unitless x and y values and a

timestamp. Then, it used this file as the input to the Kalman filter. Next, plotted the results of the

filter on the same graph as the one that contained the plotted input. As seen in Figure 17, the

Kalman filter was able to accurately follow the input path. This shows that the Kalman filter is

capable of tracking the system while creating its own prediction model. The Kalman filter is also

able to reduce the noise in the system. This can be seen visually at the top and bottom of the

graph where there are sharp turns and during the straight edge in between the turns.

43

Figure 17. Comparing Inputs and Results for Kalman Filtering with 1 Object

Because Kalman filters use specific coefficients relating to each object it is necessary to create a

Kalman filter for each object that the system intend on tracking. A class system was developed

where each object it wished to track would have its own gain and matrices. Then ran the tests for

the Kalman filter on running two different objects at the same time. The results of this test can be

seen below in Figure 18. The results of this test were similar to those of the previous test on one

object. For the same reasons the conclusions was that it was successful on one object and that the

class-based system was successful on tracking multiple objects.

44

Figure 18. Comparing Inputs and Results for Kalman Filtering with 2 Objects

5.6 Collision Detection

In testing the collision detection module, vehicles and objects were visualized in bird’s eye view

using the shapely and descartes libraries in Python as shown in Figure 19 below. The dark red

box represents the owner´s vehicle, the dark blue box is an object, and the lighter red and blue

boxes are their paths, respectively.

45

Figure 19. Visualizing Objects and Collisions

The paths in Figure 19 intersect, and the module printed a “***COLLISION DETECTED***” to

the console. In a similar manner, testing was conducted with all possible combinations of the

following factors: 0 or 1 objects; collision or no collision; and velocities of 0, 1, and an arbitrary

number greater than 1.

Another consideration was timing analysis (determining the amount of time this module requires

to run, as it scales with the number of objects). After much testing, (the testing methodology is

specified in the “Total Time” section below), it was discovered that the module averaged 3.9

milliseconds per object.

5.7 Overall Time

Because processing power is limited, and the system is time sensitive (it is crucial that the user is

alerted of a possible collision as soon as possible), timing analysis were performed on all the

constituent modules of the system. These time values were calculated as an average of multiple

trials while using the laptop that was used in the final system in the car. Since the CPU is

typically downclocked when running on battery power, as the laptop would typically be in the

car, these tests were conducted with the laptop unplugged.

46

The vast majority of the processing time is spent in receiving the LIDAR packets. This operation

takes up about 118 of the approximately 124 milliseconds required for the entire pipeline. The

data syncing and LCT operations together take less than 2 ms, and the collision detection takes

slightly less than 4 ms. Timing details for each module are given in the Table 9 below.

Table 9. Time Spent per Module

Module Time (milliseconds)

LIDAR packets 118.14

Sensor Data Syncing 0.14

LIDAR-Camera Transform 1.57

Kalman Filter 0.23

Collision Detection 3.90

Total 123.98

Through this time testing, it was confirmed that the system is able to operate in real-time and

meet the processing time requirements. The goal was a processing time of less than 250 ms per

frame, and the system is well under that, processing frames about twice as fast as required.

5.8 System Testing

To test the overall system, it was necessary a setup similar to the one used to test the object

locator module, which consisted of locations 5, 10, and 15 meters from the car in the right,

middle, and left of the image. A diagram of this testing setup was shown in Figure 14. An entire

suite of tests was performed with a person in the image, signifying pedestrian tests, and another

suite of tests with a car, signifying vehicle tests. A successful test was one in which an alert was

expected, and the system produced an alert one second before the collision would have taken

place. A failed test was one in which the system either did not produce the expected alert or

produced one less than one second in advance.

The pedestrian tests were done by using a person walking and running to the car from each of the

9 locations mentioned above. Those also included tests where a person walked sideways through

47

the frame, diagonally near but not to the car, and where a person ran away from the car. The

vehicle tests involved driving a car towards the car with our system. They were analogous to the

pedestrian tests but with the exception that these tests were not conducted at two different

speeds. Although the second vehicle only drove in low speed out of safety concerns, it has been

proved that the system will function as expected within the specified maximum speed of 45 mph.

One of the original goals was to alert the driver 3 seconds before an imminent collision.

However, during preliminary testing it was discovered that predicting the movement of the other

object 3 seconds in advance led to a substantial worsening of our accuracy and false positive

rate. This was due to our assumption that the trajectory of the other vehicle is approximately

linear. While this assumption holds for short intervals of time, it is not a reasonable assumption

to make for a period of 3 seconds. In that time, a vehicle can speed up, slow down, or change

direction substantially. When we tested with the system predicting 3 seconds in advance, on

many occasions it predicted an accident even when the driver was slowing down. This

deceleration was not captured by our Kalman filter. Faced with this accuracy-time tradeoff, the

decision was to focus on accuracy as it is a more important metric for this particular project,

especially as the system is currently facing the front of the car. For that reason, the desired

warning time was reduced to 1 second.

The results of the tests are summarized in Table 10 below. Our system’s 33.3% false positive

rate narrowly missed our target of 30%. However, it was found that it was very accurate in

predicting actual collisions, with a true positive rate of 90% so the safety concerns of the system

were fulfilled.

Table 10. Collision Detection Test Summary

True Positives False Positives

90% 33.3%

False Negatives True Negatives

10% 66.7%

48

6.0 TIME AND COST CONSIDERATIONS

The result of this project was a working system to track one object relative to a user´s car and

predict possible collisions with it within the assigned time and budget. The only expense of it

was a Garmin modified GPS which was used to track the speed of the user´s car. However, due

to the limited time and budget it was not possible complete some desired features.

First, it was necessary to change its path in late February because of the previously described

problems with Apollo due to not having compatible hardware that was above budget constraints.

Apollo requires hardware that is very expensive, with the 64-layer LIDAR alone costing up to

$85,000. Despite losing time trying to use Apollo with the previously owned lower cost sensors,

it was possible to create the described system within 2 months. However, it was not possible to

add some previously desired features that Apollo had within this time frame. Multiple object

tracking for example, is not available. The intention was to make a New vs Old subsystem to

differentiate between objects that were previously detected and the ones that were detected for

the first time, but the lack of time to implement it made it necessary to reject that possibility. The

LIDAR camera calibration was also not completely finished, as the left and right side of the

camera view was less accurate than the center. Another intention that could not be done because

of the time constraints was to improve the calibration accuracy.

7.0 SAFETY AND ETHICAL ASPECTS OF DESIGN

With a collision detection system, one of main concerns is reducing injury due to vehicles. The

system was designed with a focus on addressing human errors. One way this safety concern was

addressed is for the system to process data faster than humans can. This system processes data in

about half the time a human can react, so it was a satisfactory improvement. While it does not

have perfect accuracy on the overall system, there is a sufficiently high level of accuracy in the

system for research purposes. Overall, the that LIDAR is capable of working in many types of

weather conditions. Furthermore, the YOLO object detection system works in night conditions,

which addresses two main concerns about the usability of this design.

49

For the alert system itself, the focus was the accuracy of the alert, such as predicting an alert

correctly. Accuracy was prioritized rather than giving the driver more than 3 seconds, with the

opinion that this is the more ethical choice because giving false positives or false negatives could

be more harmful to the driver. This design also detects crashes with both pedestrians and cars. It

does not discriminate or prioritize either, and detects both in the same fashion.

A major safety concern when working on this project was how to perform testing. It was

necessary to actually be able to test whether the collision prediction system worked, but also to

prioritize safety and not put anyone in any potentially dangerous situations. As a result, the

system was only tested it in a very controlled environment. This was beneficial for the sake of

safety, but it also meant that the system was not tested in any real-life scenarios, like on an actual

road. Because of this, if the system were to be used in the future a lot more testing would need to

be done in different scenarios. As of now, the system is only usable for research purposes where

testing variables can be controlled, and it would need to be improved and further tested before

being exposed to real-world driving scenarios.

8.0 RECOMMENDATIONS

Future improvements in the system involve upgrading the hardware, tuning current subsystems,

and adding modules for multiple object tracking. For the sensor hardware, the camera resolution

was sufficient, but it used only one camera in the forward direction. In the future, more cameras

could be added in order to provide a 360-degree field of view. Another potential improvement is

to upgrade the LIDAR. The current 16-layer LIDAR is not very accurate at long distances, and

with a higher resolution LIDAR the system would be more accurate at longer distances.

Furthermore, the LIDAR-camera calibration could be improved. Although trying a variety of

tools, software, and outside resources, it could not achieve a very accurate calibration. This

calibration was the main point of inaccuracy in the system, especially when used on objects near

the edges of the camera. With more time the calibration could be made more accurate which

would improve objectively.

An important addition is to make the track for multiple objects. Currently this system works for

one object, so the recommendation is to use the YOLO classification of the object as well as the

bounding box to track multiple objects. Finally, future projects could improve the buffer time

50

between collision detection and alert. It was necessary to decide during the project between

improving the detection accuracy or advancing detection time. The decision was to focus on

collision detection accuracy, and that meant it could alert the driver only one second in advance.

Furue groups can improve on this while not sacrificing accuracy.

9.0 CONCLUSION

Overall, this project was successful in creating a collision prediction system which was able to

detect collisions and alert the driver before the collision occurred. The system achieved an object

detection accuracy of 61.6%, which met the specification of improving upon last year’s

accuracy, which was 46.39%. Additionally, it met out processing time requirement of 250 ms, as

the system operated at an average of 124 ms per frame. Finally, it was discovered that the system

was very accurate in predicting impending collisions, as it achieved a 90% true positive rate. As

a result of the project, a conclusion was that it is possible to create a collision warning system

with lower-cost sensors than those used in the majority of existing systems.

Although being able to create a functioning collision detection system, it did not meet all of the

original requirements. The original goal was to use Apollo, but due to hardware incompatibility

and the complexity of the codebase, it was necessary to eventually abandon Apollo and instead

create another system using many individual modules. This project also missed the desired false

positive rate by 3.3%, achieving a rate of 33.3% instead of the 30% from the specifications.

Additionally, this system only alerted the driver one second before the collision occurred instead

of three seconds due to a dramatic decrease in accuracy when attempting to provide three

seconds of warning. Lastly, it was originally wanted for the system to be able to track multiple

objects, but ended up only being able to track one at a time because of the complexity of

identifying and tracking old and new objects. Although not meeting all of the original

specifications, it is obvious that with more time this system could be improved and exceed the

requirements.

There are many improvements that could be made to the system, but one that would have the

most immediate impact is LIDAR-camera calibration accuracy, as that was a major point of

inaccuracy for our system. With a better calibration, the system would be better at determining

object distances and velocities regardless of where in the frame the object is. Other potential

51

improvements include the ability to track multiple objects and increasing the alert time while still

maintaining a high level of accuracy. Lastly, there are hardware improvements that could be

made as well - by either adding more sensors or using higher resolution sensors, the system

could achieve an even higher accuracy. There is a lot of room for improvement in the system,

and this proejct can serve as a strong base for future research in the field of autonomous driving.

52

REFERENCES

[1] “Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash
Causation Survey”, Crashstats.nhtsa.dot.gov, 2015. [Online]. Available:
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115. [Accessed: 6- Oct-
2017].

[2] T. DePalatis et al, “Object Detection Using Sensor Fusion on Vehicles”, University of

Texas at Austin. [Accessed: 26- Mar -2018].

[3] “Experiment: How Fast Your Brain Reacts to Stimuli”, Backyardbrains.com, 2018.

[Online]. Available: https://backyardbrains.com/experiments/reactiontime. [Accessed: 3-
May- 2018].

[4] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” arXiv: 1612.08242.

[Online]. Available: https://arxiv.org/pdf/1612.08242.pdf. [Accessed: 22- Feb- 2018].

[5] J.Redmon, “YOLO: Real-Time Object Detection,” 2016 [Online]. Available:

https://pjreddie.com/darknet/yolo/. [Accessed: 22- Feb- 2018]

[6] OpenCV, “Camera Calibration and 3D Reconstruction,” Camera Calibration and 3D

Reconstruction - OpenCV 2.4.13.6 documentation. [Online]. Available:
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruct
ion.html. [Accessed: 22- Feb- 2018].

[7] M. Vernier, “ros-camera-lidar-calibration,” GitHub. 12-Dec-2016. [Online]. Available:

https://github.com/swyphcosmo/ros-camera-lidar-calibration.

[8] Udacity and Mercedes, “Self Driving Car ND - Sensor Fusion - Extended Kalman Filters

,” tech.

[9] Zhou, Y. and Tuzel, O. (2018). VoxelNet: End-to-End Learning for Point Cloud Based

3D Object Detection. [online] Arxiv.org. Available at:
https://arxiv.org/abs/1711.06396v1 [Accessed: 4- May- 2018].

[10] Y. Shao, “Object Tracking using EKF by Fusing Lidar and Radar data,” GitHub.

[Online]. Available: https://github.com/ymshao/Object-Tracking-using-EKF-by-Fusing-
Lidar-and-Radar.

53

APPENDIX A – Object Locator Distance Test

Position
Measured distance
(m)

Actual Distance
(m)

Difference
(m) % Error

%
Accuracy

Person Left 4.60 5.00 0.40 8.00 92.00

Person Left 4.88 10.00 5.12 51.20 48.80
Person Left 4.60 15.00 10.40 69.33 30.67

Person Center 5.35 5.00 0.35 7.00 93.00

Person Center 10.40 10.00 0.40 4.00 96.00

Person Center 15.90 15.00 0.90 6.00 94.00
Person Right 5.25 5.00 0.25 5.00 95.00

Person Right 10.40 10.00 0.40 4.00 96.00
Person Right 4.88 15.00 10.12 67.47 32.53

Car Left 5.23 5.00 0.23 4.60 95.40
Car Left 4.82 10.00 5.18 51.80 48.20

Car Left 4.83 15.00 10.17 67.80 32.20
Car Center 5.16 5.00 0.16 3.20 96.80

Car Center 12.50 10.00 2.50 25.00 75.00

Car Center 17.41 15.00 2.41 16.07 83.93

Car Right 5.64 15.00 9.36 62.40 37.60
Car Right 10.24 10.00 0.24 2.40 97.60

Car Right 5.56 5.00 0.56 11.20 88.80
Test Center 2.50 2.29 0.21 9.36 90.64

Test Center 8.06 7.62 0.44 5.77 94.23

Person
Actual Average Measured Difference % Error: % Accuracy:

2.29 2.50 0.21 9.36 90.64

5.00 5.07 0.07 1.33 98.67

7.62 8.06 0.44 5.77 94.23
10.00 8.56 1.44 14.40 85.60

15.00 8.46 6.54 43.60 56.40

54

Car

Actual distance Average measured Difference % Error % Accuracy
5.00 5.32 0.32 6.33 93.67

10.00 9.19 0.81 8.13 91.87

15.00 9.29 5.71 38.04 61.96

Both
Actual: Average: Difference % Error % Accuracy

2.29 2.50 0.21 9.36 90.64
5.00 5.19 0.19 3.83 96.17

7.62 8.06 0.44 5.77 94.23
10.00 8.87 1.13 11.27 88.73

15.00 8.88 6.12 40.82 59.18

Position Average Percent Error Average Percent Accuracy

Left 42.12 57.88

Center 9.55 90.45
Right 25.41 74.59

55

APPENDIX B – Collision Detection Code

56

57

58

59

60

APPENDIX C – Kalman Fitler Code

61

62

