

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

GENERAL INFORMATION

Course inform	Course information		
Name	Aplicaciones de la Industria Conectada (II)		
Code	DOI-MIC-522		
Degree	MIC		
Year	1		
Semester	Spring		
ECTS credits	3 ECTS		
Туре			
Department	Department of Industrial Organization		
Area			
Coordinator	Bernardo Villazán Gil		

Lecturer	Lecturer		
Name	Bernardo Villazán Gil		
Department	Department of Industrial Organization		
Area			
Office	Chair of Smart Industry		
e-mail	villazan@comillas.edu		
Phone	Phone		
Office hours	Ask for an appointment by email.		
Lecturer	Lecturer		
Name			
Department			
Area			
Room			
e-mail			
Tutorial timetable			

DETAILED INFORMATION

Contextualization of the course

Contribution to the professional profile of the master

The purpose of the course is to provide students with a comprehensive understanding of the Applications (II), levers and value drivers, in relevant industrial sectors.

By the end of the course, students will:

- Know the fundamentals of the Applications.
- Have a complete understanding of the dynamics in relevant industrial sectors.
- Learn from leading industrial companies the real experiences and use cases.

_				
₽.		2111	101	tes
ш	1		131	1

US

CONTENTS

Contents: Theory

Chapter 1: Introduction to Applications (II)

- 1. Definition Recap
- 2. Applications "Know Why" and "Know Who" (II)
- 3. Implications (II)

Case 1 "Chemical"

- 1.1 Manufacturing
- 1.2 Security

Case 2 "Electronics, Telco and IT"

- 2.1. Innovation
- 2.2 Customer experience

Case 3 "Future Applications" (II)

- 3.1 Cognitive Systems
- 3.2 Digital Twins

Contents: Master Classes

MC1. HUAWEI

MC2. TELEFONICA

MC3. LILLY

MC4. INDRA

MC5. ABB

COMPETENCES AND LEARNING OUTCOMES

Competences and Learning Outcomes

Competences

General Competences

- CG3. The capability of adapting to new theories, methods and changing engineering situations based on a sound technical training.
- CG4. The capability of solving problems with personal initiative, efficient decision making, critical reasoning and transmitting technical information in the engineering world.
- CG5. The capability of conducting measurements, calculations, assessments, studies, reports, planning, etc.
- CG10. The ability to work in a multilingual and multidisciplinary environment.

Basic Competences

Specific Competences

Learning outcomes

- RA1. The student understands the basic principles behind Applications (II)
- RA2. The student has a basic and practical experience in researching about Applications (II)
- RA3. The student attends professional forums on Applications in Industries
- RA4. The student participates in encounters with leading industrial companies.
- RA5. The student has practical experience in team working.
- RA6. The student has a practical experience in developing initiative, creativity and autonomy skills identify Smart Industry levers and industrial value drivers.

TEACHING METHODOLOGY

General methodological aspects

Theory and practice will be combined along the course. The teacher will explain the basics of the subject and will go in depth in the more important issues with illustrative examples. The students will be grouped in pairs in order to put in practice the proposed methods and techniques in a collaborative way.

In-class activities

- 1. Lectures and problem-solving sessions: The lecturer will introduce the fundamental concepts of each chapter, along with some practical recommendations, and will go through worked examples to support the explanation. Active participation will be encouraged by raising open questions to foster discussion and by proposing short application exercises to be solved in class either on paper or using a software package.
- 2. Assessment Test

Off-class activities

1. Personal study of the course material and resolution of the proposed exercises

ASSESSMENT AND GRADING CRITERIA

Assessment activities	Grading criteria	Share
Continuous evaluation	Understanding of the theoretical concepts.	40%
	Application of these concepts to problem- solving.	
Final exam	Understanding of the theoretical concepts.	60%
	Application of these concepts to problem- solving.	

GRADING AND COURSE RULES

Grading

Regular assessment

• Theory will account for 40%, of which:

Continuous evaluation: 10%

Final exam: 30%

Lab will account for the remaining 60%

In order to pass the course, the mark of Theory must be greater or equal to 5 out of 10 points.

Retakes

There will be only a final exam which will be the 100% of the grade

Course rules

- Class attendance is mandatory according to Article 93 of the General Regulations (Reglamento General) of Comillas Pontifical University and Article 6 of the Academic Rules (Normas Académicas) of the ICAI School of Engineering. Not complying with this requirement may have the following consequences:
 - Students who fail to attend more than 15% of the lectures may be denied the right to take the final exam during the regular assessment period.
 - Regarding laboratory, absence to more than 15% of the sessions can result in losing the right to take the final exam of the regular assessment period and the retake. Missed sessions must be made up for credit.
- Students who commit an irregularity in any graded activity will receive a mark of zero
 in the activity and disciplinary procedure will follow (cf. Article 168 of the General
 Regulations (Reglamento General) of Comillas Pontifical University).

WORK PLAN AND SCHEDULE

In-	and out-of-class activities	Date/Periodicity	Deadline
•	Continuous evaluation activities to review and self-study of the concepts covered in the lectures	Periodically on demand.	-
•	Final exam	Last week	-
•	Lectures	Weekly	-
•	Review and self-study of the concepts covered in the lectures	Weekly	-

STUDENT WORK TIME SUMMARY			
IN-CLASS HOURS			
Lectures			
30			
OFF-CLASS HOURS			
Self-study			
60			
		ECTS CREDITS:	3 (90 hours)

BIBLIOGRAPHY

Basic	
	Presentations prepared by the lecturer (available in Moodle).
Complen	nentary