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RESUMEN DEL PROYECTO  
Este proyecto busca optimizar el procedimiento de cálculo de rutas múltiples de la empresa 
Baolau. Esto implica la mejora del acceso a la base de datos de la rutas así como la selección, 
desarrollo e implementación de un algoritmo de cálculo de rutas múltiples para sustituir al 
que está actualmente en uso (Dijkstra), y poder comparar el rendimiento de ambos. 

Palabras clave: IEA, Dijkstra, rutas múltiples, algoritmo.  

1. Introducción 

Baolau es una compañía de búsqueda multi-transporte en el sureste asiático que gestiona 
la información sobre las rutas de interconexión de ciudades, las reserva de viajes y los 
pagos. Facilita tanto las rutas directas entre dos puntos como las combinadas que las 
unen. Dijkstra ha sido el algoritmo empleado para ello hasta ahora. Sin embargo, debido 
a la expansión de la compañía a otros países y su consecuente incremento de los nodos 
en su sistema, este algoritmo no alcanza a enfrentarse a los nuevos retos que han surgido. 

2. Definición del Proyecto 

El principal objetivo de este proyecto es mejorar el método de la empresa para el cálculo 
de rutas múltiples. Para ello, el algoritmo actual ha de ser sustituido por uno que pueda 
cumplir con las nuevas expectativas. Se ha llevado a cabo una investigación detallada 
para seleccionar el sustituto óptimo: el Algoritmo de Enumeración Iterativa (IEA). Se ha 
procedido con su desarrollo e implementación en el sistema de la compañía así como con 
el diseño del nuevo acceso a la base de datos de rutas. 

3. Descripción del modelo/sistema/herramienta 

El propósito de encontrar un sustituto al algoritmo de Dijkstra es emplear uno capaz de 
proporcionar más de una sola solución y suficientemente eficiente para trabajar con 
grandes cantidades de información. Dijkstra es un algoritmo que obtiene el camino más 
corto desde un origen y que necesita ser ejecutado tantas veces como resultados 
adicionales se deseen, eliminando cada vez un enlace entre nodos (Algoritmo de Yen). 
El proceso de encontrar rutas combinadas resulta ser arbitrario, ineficiente y extenso. 

IEA se ha seleccionado tras una comparación de los pros y contras de los diferentes 
algoritmos de la investigación. Algoritmos de búsqueda como Breadth y Depth-First 
Search son demasiado simples y no siempre proporcionan una solución. Bellman-Ford 
trabaja con pesos negativos y Floyd-Warshal o Johnson generan el camino más corto 
entre todos los pares de nodos, características no deseadas en este caso. El algoritmo de 
programación dinámica A* es rápido y eficiente gracias a la función heurística que 
aplica, cuya complejidad puede llegar a ser su mayor desventaja. Los algoritmos que 
proporcionan los k caminos más cortos, como Yen o Eppstein, podrían haber sido 



escogidos si no fuese por la incertidumbre del primero y la complejidad del último. IEA 
también pertenece a esta categoría y, gracias a su estructura de etiquetas y predictibilidad, 
ha sido el seleccionado. 

La operación de IEA se basa en el uso de etiquetas asignadas a cada nodo y que recogen 
información acerca del camino empleado para llegar a dicho nodo. Una etiqueta 
corresponde con una determinada ruta que une dos puntos directamente. Estos datos 
incluyen el peso acumulado del camino así como los nodos por lo que pasa, el índice de 
la etiqueta dentro de dicho nodo y si la etiqueta ha sido considerada hasta ahora o no. La 
Ilustración 1 representa el funcionamiento del algoritmo a partir de estas etiquetas. 

 

Ilustración 1 – Diagrama de flujo de operación y estructura de etiquetas de IEA. 

El primer nodo en el proceso es el punto de origen. Las etiquetas solo serán extendidas 
a sus vecinos y éste será el predecesor incluido en cada una de dichas etiquetas (paso 1). 
Después, el nodo que contenga la etiqueta con menor peso acumulado será seleccionado 
para ocupar el lugar del nodo inicial. La etiqueta se marcará como considerada para que 
no esté disponible en el futuro. También el nodo se marca como visitado para que sus 
etiquetas ya no sean estudiadas en esta iteración (paso 2). El proceso se repite (pasos 3 y 
4), hasta el nodo seleccionado sea el destino, evitando en cada iteración extender 
etiquetas a los nodos que sean predecesores del nodo seleccionado en el momento. A 
continuación se obtiene el primer camino a partir de los predecesores del nodo en el que 
se encuentran la etiqueta. Los nodos pertenecientes al camino se “resetearán”, esto es, se 
marcarán como no visitados para que sus etiquetas disponibles puedas ser consideradas 
en el futuro. 

El proceso comienza de nuevo obteniendo un camino diferente cada vez (k caminos más 
cortos). Una ventaja de IEA es que su estructura de etiquetas se puede adaptar fácilmente 
a escenarios dependientes del tiempo (transportation networks), donde las rutas están 
sujetas a horarios. La modificación simplemente consiste en añadir dos campos a las 
etiquetas: el tiempo de salida de la ruta y de llegada al nodo al que pertenece la etiqueta. 
De esta manera solo las etiquetas que cumplen con las restricciones oportunas podrán 
añadirse a los nodos. Si una ruta cuyo tiempo de salida es previo al tiempo de llegada de 
la anterior a dicho nodo, la etiqueta no se creará. Esto resulta ser una gran ventaja para 
la elección del algoritmo, ya que otros como Eppstein no pueden ajustarse a este tipo de 
cambios.  



4. Resultados 

En este proyecto IEA se ha implementado en PHP y se ha adaptado para poder trabajar 
con la estructura de rutas de Baolau. También el acceso a la base de datos de rutas se ha 
modificado para poder optimizar todo el proceso de cálculo de rutas múltiples. El 
rendimiento global se ha comparado con el de Dijkstra en cuanto a tiempo de ejecución 
y eficiencia en un escenario (entre otros) donde ambos han de calcular el mismo número 
de caminos entre dos determinados puntos del grafo. Cada ejecución se ha repetido 10 
veces para un cierto número de caminos. 

 

Ilustración 2 – Comparación de rendimiento de IEA y Dijkstra. 

Tal y como muestra la Ilustración 2, Dijkstra junto al acceso a la base de datos, resulta 
en tiempo de ejecución sumamente alto comparado con el de IEA, el cual está incluso 
operando con un número mayor de rutas debido a la nueva consulta diseñada. 

5. Conclusiones 

Con la investigación que se ha llevado a cabo en este proyecto se ha considerado a IEA 
como el mejor algoritmo de sustitución de Dijkstra debido a la ausencia de incertidumbre 
que su estructura de etiquetas proporciona, ya que ayuda a mantener un registro de todos 
los posibles caminos desde cada nodo. Además se ha probado cómo el tiempo de 
ejecución para el cálculo de rutas múltiples se ha reducido  y la eficiencia incrementado 
gracias a su capacidad de trabajar con mayor cantidad de rutas. 
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ABSTRACT  
This project aims at optimizing the multiple-route calculation procedure used so far in the 
company Baolau. This implies improving the route database access as well as selecting, 
developing and implementing a multiple-route calculation algorithm in order to substitute 
the currently used Dijkstra’s algorithm and compare both algorithm’s performance. 

Keywords: IEA, Dijkstra, multiple-route, algorithm.  

1. Introduction 

Baolau is a multi-transport search company in South-East Asia that provides information 
about city interconnection routes, and manages trip reservations and payments. Apart 
from supplying direct routes between two points, it also displays combinational routes 
to link them. Dijkstra has been the algorithm used to do so, so far but, due to the 
expansion of the company to other countries and the consequent increase of nodes in 
their system, this algorithm falls short on meeting the new challenges aroused. 

2. Project definition 

The main goal of this project is to improve the multiple-route calculation methodology 
the company has already developed. For this purpose, the current algorithm in use must 
be replaced by one that can meet the company’s new expectations. A detailed research 
on the different possibilities has been carried out to select the optimal substitute: Iterative 
Enumeration Algorithm (IEA). Its development and implementation have followed as 
well as its adaptation to the company’s system and new access to the database. 

3. Model description 

The principal purpose for finding a replacement for Dijkstra’s algorithm is to employ 
one capable of finding more than one solution (the shortest) and efficient enough to work 
with large amounts of data. Dijkstra is a single-source shortest path algorithm which 
needs to be executed as many times as the desired number of different results, eliminating 
each time an edge of the graph (Yen’s algorithm). This renders the multiple-route 
calculation process arbitrary, inefficient and time-consuming. 

Selecting IEA among the other considered possibilities is the result of a thorough 
research that has helped to determine the pros and cons of all of them. The studied search 
algorithms, such as Breadth-First and Depth-First Search, are too simple and not always 
provide a solution. Bellman-Ford works with negative weights, and Floyd-Warshal or 
Johnson are examples of all-pairs shortest-path graph algorithms, all too complex and 
with additional features not interesting for this project. The dynamic-programming 
algorithm A* is fast and efficient thanks to the heuristic function it applies, whose 
complexity can become also its drawback. K-shortest paths algorithms, such as Yen and 



Eppstein, could have become potential replacements for Dijkstra if not for the 
uncertainty of the first one and great complexity of the latter. IEA also provides k-
shortest paths and, thanks to its labeled structure and unpredictability avoidance, has 
been the best option chosen to be implemented. 

IEA’s operation is based on labels assigned to each node and that store information about 
the path used to reach that node. A label corresponds to a certain route connecting two 
specific nodes. This data includes the accumulated weight and the nodes belonging to 
that path, the index of the label in the node’s label set and finally, if the label has been 
employed or not for future calculations. Illustration 1 depicts the algorithm’s functioning 
by means of these labels. 

 

Illustration 1 – Operation flowchart and IEA label structure. 

The first node to be considered is the start point. Only labels will be extended to this 
node’s neighbors and the start node will be set as the predecessor of these nodes and 
stated this way in each label (step 1). Then, the node whose label owns the lowest 
accumulated weight will be selected and will occupy the beginning node’s place. As the 
label has been considered it will no longer be available in future iterations. Also this node 
is set to visited so its labels will no longer be studied in this iteration (step 2). The process 
is reiterated (steps 3 and 4), until the chosen node is the destination point, now avoiding 
to extend labels to nodes that are predecessors of the selected node. Next, the first path 
can be extracted by the predecessor’s node stored in each label. Afterwards, the nodes 
belonging to the last extracted path will be “reset”, that is, set to unvisited so their 
available labels can be considered in the future.  

The process begins once again, obtaining a different path in each iteration and achieving 
this way the k-shortest paths extraction so distinctive of this algorithm. One particular 
advantage of its labeled structure is that it can be easily adapted to time-dependent 
scenarios (transportation networks) where the routes are subjected to timetables. The 
modification introduced simply consist on adding two fields to the labels: the route’s 
departure time and the arrival time to the node to which the label belongs. This way, only 
the labels that comply with the time restrictions will be extended in each node. This 
means that a route whose departure time is earlier than the previous arrival to that node 
will not be created. This proves to be a great advantage as other algorithms, such as 
Eppstein’s, could not be submitted to any adjustment of this kind. 



4. Results 

In this project, IEA has been implemented in PHP. It has been adapted to operate with 
Baolau’s own route structure. Also the access to the routes database has been changed in 
order to optimize the whole multi-route searching process. The overall performance has 
been compared to that of Dijkstra in terms of execution time as well as efficiency in a 
scenario (among others) where both calculate an equal number of paths between the same 
two points. Each execution has been repeated 10 times for each number of paths. 

 

Illustration 2 – Performance comparison between IEA and Dijkstra. 

As Illustration 2 shows, Dijkstra execution together with the former database access 
procedure, results in an extremely high execution time compared to IEA, which is 
operating with a higher amount of routes due to the new database query. 

5. Conclusions 

The detailed research carried out in this project deemed IEA the best algorithm to replace 
Dijkstra, thanks to the uncertainty avoidance provided by its labeled structure which 
allows to keep record of all possible paths from every node. Moreover, it has been proven 
how the execution time has been reduced and the efficiency increased, due to its 
capability of operating with a higher number of routes.  
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Chapter 1.  INTRODUCTION 

Tourism is an activity that has been growing for the past few years and Asia has been one of 

the main destinations among international travelers. Specifically, 1.24 billion tourists were 

arriving in Asia by 2016 [70]. Consequently, more companies and travel service providers 

have been offering a wide range of new connections and means of transportation to journey 

between cities and sightseeing sites in these regions. 

A few years ago, search machines programs and booking companies encountered here a 

market niche that has been deeply explored since then. The extensive travel connections, 

timetables and fares conform a broad arrangement of trip possibilities each company 

manages differently in terms of efficiency, readiness and price. Baolau is one of these 

companies which immersed its activities in this business nook. 

Baolau is a multi-transport search company in south-east Asia. It applies a search engine in 

its web page www.baolau.com [69]. Its beginnings date back to 2013 in Vietnam being 

established now both in Vietnam and Singapore. Since then, the business has extended its 

services to countries such as Cambodia, Laos and Thailand apart from Vietnam, where it 

grew since its dawn. Its employees conform an intercultural team gathering people from 

Vietnam, Spain, Singapore, Italy and Japan. 

Among the services offered by the company, it provides the possibility of accessing to 

connection routes between different destination points and to information about the 

providers supplying their services. Also they offer the available timetables and the 

reservation of combined trips by bus, train, plane and ferry, helping this way to the planning 

of journeys in these countries. 

In this context, the company has employed Dijkstra’s algorithm for the combined routes 

calculation between two cities and regions. Dijkstra is a graph algorithm that calculates the 

shortest path between two nodes located in this graph. This a very extended algorithm for 
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multi-route calculation applied in numerous situations nowadays thanks to its simplicity and 

efficiency [59]. The algorithm provides the shortest path between one node and the rest in 

the graph and, therefore, its capability is restricted to finding just one connection between 

two certain nodes. In order to be able to obtain more connections, Dijkstra needs to be run 

more times, each time removing a different edge so a different solution is forced out from 

the algorithm’s usual functioning (Yen’s algorithm [26]). 

At the beginning, when the number of nodes conforming the transport graph managed by 

Baolau was moderately small, Dijkstra could show all the optimal connection results 

between two points in a fast and effective way thanks to its simplicity and efficiency. Thus, 

running the algorithm several times removing edges in each iteration so new results could 

be obtained, did not imply an overload problem for the system. However, due to the 

company’s expansion to new regions and countries, the transport network has grown into a 

more complex mesh where nodes have increased in number as well as the routes 

interconnecting them. The implications of this growth have affected directly the algorithm 

application into the system. The amount of nodes over which the algorithm must iterate is 

indeed too extensive, having a negative effect on the time necessary to obtain the results. 

This prolongation in the execution time has even impacted the whole system’s integral 

operation. 

Optimization of Real-Time Route Calculation Algorithm is a project in collaboration with 

Baolau, and whose main objective is the study, selection, development and implementation 

of a new route calculation algorithm. It must be able to procure several connection solutions 

between two nodes in the graph in a quick and proficient way taking into account the vast 

amount of information with which the company works now. Its application into the system 

must provide a solution to these problems it is currently facing. 

It is expected that the execution of this new algorithm will not only ensure the correct system 

integral functioning, but also provide a collection of different routes connecting two nodes 

in a shorter overall execution time and owning a variety of combinations Dijkstra was not 

capable of obtaining. 
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1.1 MOTIVATION 

As mentioned before, Dijkstra is an algorithm very much extended in applications and 

systems whose main objective is finding the shortest path between two nodes. However, this 

shortest path can be found according to different criteria: time, price, waiting time… Some 

users may prefer one of these measures but other may choose another one entirely. 

Consequently, it is in the company’s best interest to provide different solutions regarding 

these different choices. On the other hand, Baolau, as well as similar companies, keeps 

growing and expanding to the countries it wishes to offer its transport organization services. 

This growth implies, not only the inclusion of the new routes acquired by the different 

providers but also the integration of the information regarding time schedules, prices and 

trip conditions. 

The provision of a new algorithms is based in two solid grounds: the need to provide more 

than one solution and the ability to work with such loads of information as these kind of 

companies are expected to operate with. 

Then, it has been proven that all the amount of information the company needs to handle 

exceeds Dijkstra’s capabilities in its current implementation. Specifically, the algorithm was 

executed at least three times in which the edges connecting the nodes were weighted in terms 

of time, price and waiting time. Afterwards, if more results were needed, edges began to be 

removed from the graph. This is the philosophy followed by Yen’s algorithm: the application 

of a single-source shortest path algorithm (such as Dijkstra) several times, removing an edge 

each time so solutions differ. 

The main disadvantage of applying this procedure is that no criteria for removing edges 

could be found. This lead to the elimination of edges that did not affect to the solution 

obtained, making the reiteration of the algorithm necessary. All this process can be 

summarized in an unneeded loss of time and resources. Another problem encountered is the 

uncertainty faced when removing the edges for new solutions, as finding the next optimal 

path cannot be in any way ensured. As a consequence, pivot nodes had to be designated. 
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These nodes are some important cities or regions through which some routes were forced to 

go in order to ensure the algorithm provided at least some coherent results. 

As a summary, these are the main problems encountered when executing Dijkstra’s current 

implementation in the company: 

• The algorithm’s inherent design forced its execution as many times as different paths 

wanted to be found. Sometimes even more times, as the paths obtained could have 

been repeated before. 

• This previous practice resulted in an unnecessary consumption of time and resources 

essential for the system’s correct functioning. As a result, the system itself collapsed 

due to the excessive use of its assets. 

• There was no possibility of charging more results added to the ones already obtained 

as no methodology to store which edges have been removed had been implemented. 

Thus, the algorithm needed to be executed once again but set to obtain a larger 

number of paths, wasting time and resources in the process. 

• Pivot nodes were needed in the graph. Pivot nodes are certain points in the graph that 

have been selected due to its importance in terms of high influx of routes, and that 

are chosen to force some combined trips to go through them. Hence, Dijkstra’s 

approach uncertainty due to the random removal of edges could be reduced knowing 

the paths obtained were going to travers certain nodes were routes are known to 

already exist. 

Therefore, this project seeks to avoid all these difficulties and provide a solution for all the 

problems confronted so far. A thorough research on the different available and applicable 

algorithms is needed in the first place. After analyzing the advantages and disadvantages of 

each one of these algorithms, their suitability for the company’s system structure and 

preference must be studied in order to estimate the effects its development and execution 

may have. 
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The main aspects the new algorithm must include are speed and effectiveness in finding 

several combined routes between two nodes. After the research that will conclude with the 

selection of the most suitable algorithm, the next step would be its implementation in the 

system in the most efficient way. The overall result would be the provision of more 

information to the user in less time but also with more accurate data than before and with 

absolutely no danger for the system operation. 

Last but not least, the development of this project may have multiple future applications. For 

instance, the possibility of finding more than one solution in a fast and effective way may be 

of great interest to any route-calculation application or system whose main goal is to provide 

the best and most accurate information to the user. Finding and developing such algorithm 

could mean the extension of its capabilities to other fields and applications different from 

the current ones. 

All in all, all these aspects are what render this project complete and challenging enough to 

make it attractive for further study and development in its applicability in different grounds 

and fields of expertise. 
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Chapter 2.  RESOURCES DESCRIPTION 

The main resource used in this project is the programming language PHP version 7.2.2 [71]. 

Baolau’s web page has been written in the same language and it will be the same used for 

the implementation and development of the new algorithm. 

The tests applied on the algorithm’s functioning will be performed locally in order to avoid 

affecting the real search structure in the server. Consequently, an Apache local server will 

be employed to execute the code while in development and testing, so the new features and 

modifications applied to the code can be checked without the risk of endangering the real 

operations. 

The Apache server connection is provided by MAMP [72], a software tool designed 

specifically for Mac for this purpose. MAMP also includes a link to a MySQL [73] server 

that provides a connection to the database. This database is stored locally and previously 

populated with the chosen tables and fields selected from the real databases. 

Baolau’s successful activities depend on the coordinated work of its employees. Anyone of 

them can introduce changes to the code, adding and removing lines depending on the task at 

hand. In order to ensure this process is carried out smoothly and without the risk of 

overwriting legitimate code, a web-based repository called Bitbucket [74] is used. This 

service allows to upload the changes made in the code locally only after the ones applied 

before by one of the parties has already been integrated. Also, different branches can be 

opened in order to merge gradually the changes to the main branch and make all this process 

neat and simple.  

On the other hand, Sourcetree [75]. is the interface that allows to work with Bitbucket’s 

version-control service.  
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Chapter 3.  STATE OF THE ART 

Since a few years, a myriad of web-based applications based on search engines have been 

developed. Several are focused on reservations such as Booking, Trivago or Kayak, others 

provide flight booking like Skyscanner, Momondo or Google Flights, and so on. Baolau is 

included in this last classification, and as such, is in need of an algorithm that provides the 

different connections when a direct solution is not possible. 

Baolau, like the other companies mentioned above, bases its success on expanding to other 

regions and countries. This implies an increase in the information and data to be managed, 

and so, the algorithm receiving the increasing material needs to be able to handle it as well 

as the complexity of the input received. 

An algorithm is a computational procedure which, taking a series of input values, is capable 

of obtaining output data following certain computational steps [1]. Algorithms existed much 

earlier than the development of computers that can now easily execute them. As a result, 

computers have implied an extended generation of algorithms now more complex and 

effective than before.  

However, Dijkstra, which was developed in 1956 [76], is said to be used in most applications 

that find combined routes between two points. These include geographical maps, telephone 

work and also in IP routing [59]. Its simplicity and easy implementation has allowed the 

algorithm to become one of the most widely used around the world for route-calculation 

problems. Baolau chose this algorithm to calculate the combined routes that connect two 

cities or regions and is now facing problems due to some of the algorithm’s limitations. 

Apart from Dijkstra, there are several options of route calculation algorithms that could be 

applied to the problem at hand. They can be classified based on different criteria according 

to their implementation, the paradigm design they deal with, the optimization of their 

solution or their complexity [77]. Taking into account the characteristics of the problem that 
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needs to be dealt with, only a certain type of these algorithms will be considered in this work. 

These are included in graph, greedy, recursive, search and dynamic programming 

algorithms. 

Dijkstra is a graph algorithm as it works inside a graph conformed of nodes and edges. 

Johnson’s algorithm can also be included in this category. Dijkstra is also classified as a 

greedy algorithm that chooses the best solution in each internal iteration with hopes of 

finding the optimal solution at the end [81]. It can also be considered a recursive algorithm 

[82] as its executions involves the repetition of several procedures until a condition is met. 

Search algorithms also include this recursive feature, as they must perform the same 

operations in each node in order to obtain the next node to analyze, until a final solution is 

reached. Breadth-first search and Depth-First search are two examples of search algorithms 

[68]. 

Dynamic programming algorithms [24] also incorporate a recursive behavior as their 

procedure for finding the optimal solution consists on dividing the main problem at hand in 

different sub-problems, and using in each one of them information extracted from the 

previous solutions. Floyd-Warshall, Bellman-Ford and A* are examples of this type of 

algorithms. 

All of the algorithms mentioned above have a common feature: they provide just one path 

as a solution. There is another type of algorithms that have not been mentioned before and 

these are the k-shortest path algorithms [38]. As their category name indicates, these 

algorithms provide not only one solution but k solutions so they fall into a completely 

different group of algorithms. Yen [26], Eppstein [3] or Iterative Enumeration Algorithm 

(IEA) [2] are examples classified as such. 

In particular, IEA can be applied in the denominated transportation networks [9]. These are 

networks oriented to time-dependent transport where timetables, arrival and departure times 

are inherent to the routes, such as road networks or timetable networks of public 

transportation. These networks are usually too large for Dijkstra’s algorithm, whose 
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execution takes up too much time. Other algorithms seem to be better suited, but still they 

only work for positive and real-weighted edges in a graph. However, there are real-life cases 

in which problems are not that simple: edges are time-dependent, there are road constrictions 

or multiple source and destination nodes to be taken into account [8]. 

There are many techniques to overcome these difficulties [11]. For instance, Contraction 

Hierarchies (HC) work to contract the graph in a set of nodes in order to simplify the problem 

instead of performing all operations with all the nodes, which would take a lot of time a 

resources. Multi-Level Overlays is a method that precomputes solutions to the problem in 

the form of partial paths to the destination. This technique is based on the idea that many 

long-distance share large sub-paths. On the other hand, Hub Labeling [13] is a method 

similar to IEA in that they employ labels attached to each node that store information about 

the distance separating them, among other pieces of information. The main difference is that 

Hub Labeling is more oriented to broad graphs with large quantities of nodes and edges. 

All in all, transportation networks algorithms are better suited for large graphs where the 

amount of information needed to be stored far exceeds the one stocked by simpler graphs. 

For instance, finding the shortest path between two points by car where the possibilities of 

traversing the city’s streets are plentiful. The same does not happen for graphs such as the 

one Baolau owns. They are in charge of providing connection between discrete and fixed 

points defined by the providers with whom they are partnered. Therefore, the nodes and 

edges to be considered and entered into the algorithm are far less and their connection less 

complex than that of a transportation network. What Baolau’s graph and that of 

transportation networks may have in common is the necessity of adjusting their routes to 

time dependent lines and connections that affect the different links between nodes. 

As a result of this simplified analysis of the state of the art regarding route-calculation 

algorithms, it can be concluded that the research and study of this project must be centered 

in simple but efficient algorithms, instead of those too complex and more oriented to far 

more elaborate graphs, such as those classified for transportation networks. Chapter 5.  will 

be centered in presenting a thorough analysis on the possible algorithms to adopt.   
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Chapter 4.  PROJECT DEFINITION 

4.1 JUSTIFICATION 

Baolau is a growing enterprise who seeks to gradually expand its business to different 

regions and countries. As the graph conformed by the cities, territories and routes 

interconnecting them increments in size and complexity, the algorithm that calculates 

different paths between two points in the mesh (Dijkstra), fails to operate fast and efficiently. 

This project aims to conduct the research necessary to select the algorithm among the ones 

mentioned in Chapter 3. , most suitable for the company. This algorithm must be able to 

overcome the difficulties Dijkstra’s algorithm was facing due to the increasing graph’s 

intricacy as well as provide new functionalities that were previously prevented from being 

adopted due to Dijkstra’s limitations. 

Just as Baolau keeps expanding, so have other companies and search platforms who have 

included the possibility of obtaining more than one result when finding the shortest route 

between two points in a graph. Consequently, this has been considered one essential feature 

the new algorithm must be able to acquire. Additionally, it has been determined that it is in 

the user’s best interest to have as many route interconnection possibilities at his disposal as 

possible. This leads to consider which characteristics the algorithm must include in order to 

be able to keep loading new routes even if some have already been displayed. 

All in all, the development and implementation of this new algorithm into the company’s 

system can eventually provide considerable changes that would become an important boost 

for the company’s success. The system will no longer be in danger of failing and being 

rendered inaccessible due to an over-consumption of resources by an outdated algorithm. 

Moreover, new features will be included into the user’s search experience that will increase 

its appeal and affect positively to its expansion to more users and even more countries and 

areas.  
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4.2 OBJECTIVES 

The main objective of this project is to modify the route-calculation procedure so searching 

for combined results between two points in the graph can become an efficient process. This 

procedure will be constituted by two main blocks: finding a new algorithm that substitutes 

the one currently at use and handling the routes database as proficiently as possible. 

The first block will imply the analysis, development and implementation of the algorithm 

whose characteristics recommend it as the optimal candidate for substituting the current 

algorithm in use in Baolau’s search engine: Dijkstra.  

For this, an exhaustive and extensive research about the algorithms presented in Chapter 3. 

needs to be carried out. Furthermore, a thorough study must be performed on each one of 

them in order to determine which one will be the most suitable to be included into the 

company’s system. 

Once the algorithm has been selected, it will be developed and implemented using the web 

page’s programming language PHP. Afterwards, its performance needs to be measured and 

compared to that of Dijkstra in order to evaluate the effectiveness and operation advantages 

over those of the previous algorithm in use. 

If the results are acceptable enough, the next step consists con adding the incorporating 

features the company seeks to include, so the user’s searching experience is enhanced in the 

best possible way. One of this features is the possibility of loading more results once some 

of them have already been displayed. Also some search filters are intended to be added 

regarding time, prices, waiting times and the trip’s number of steps. This would imply 

modifying the algorithm so it can work with this new arrangement. 

For the second block mentioned above, that of accessing the available routes, a new query 

needs to be designed so that not only time is saved when retrieving the routes with which 

the algorithm is going to work, but also to obtain as many routes as feasible so all possible 

routes connecting two points can be procured and passed on to the algorithm. 
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The combination of these two accomplishments will provide an entirely new search 

mechanism that, while remaining completely transparent to the user, its arrangement will 

imply important savings in time and resources. 

4.3 METHODOLOGY 

The first task to be performed in this project is the research on the algorithms that could 

become potential substitutes of Dijkstra. This research will comprise of a rigorous study on 

the algorithm’s characteristics and the advantages and disadvantages its application would 

bring into the company’s operation. 

Once the algorithm has been chosen, it will be implemented in PHP and tested on a simplistic 

scenario with non-time-dependent routes and sparse nodes. If the results are satisfactory 

enough, then the algorithm will be tested on more complex graphs and with time-dependent 

routes until its degree of development allows to apply it on the real graph with the actual 

routes used in the company. 

The algorithm must be modified each time so it can adjust to the scenarios at hand until it is 

completely accommodated to the company’s data structure (nodes and routes). Once the 

algorithm has been proven to work correctly with the original data structure employed by 

the company, the next steps consists on reformulating the query that will change the access 

to the routes table and therefore, provide an entirely new set of routes passed on to the 

algorithm. On its part, the algorithm must be modified again to assimilate these changes and 

still work correctly. 

Finally, when this process has been finished and successfully accomplished, the additional 

features thought to make the user experience more friendly and easy to manage (filters and 

loading of more results) will be developed and integrated into the system. 
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4.4 PLANNING AND ECONOMIC ESTIMATION 

This project has been developed in an internship in Baolau. The duration of the internship as 

well, as that of the project itself, has been of 5 months, from January 5th 2018 to June 5th 

2018. The procedure followed has been explained in Section 4.3 and is now represented in 

Table 1. 

 

Table 1. Project time line. 

 

The project economic estimation results to be straightforward as all tools used are open 

source and the licenses employed, free. 

The calculations required by the algorithm are not too many nor too complex, just repetitive. 

Therefore, a mid-range computer has been sufficient when implementing the algorithm. The 
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average price of this computer is around 1000€. The model is a MacBook Pro with a 2,7 

GHz Intel Core i5 microprocessor. It uses 8 GB 1867 MHz DDR3 of memory. 

On the other hand, the working hours during this five-month internship would cost around 

6000€, conforming the majority of the budget. 

Taking into account that tools such as MAMP, Sourcetree, Bitbucket or PHP are completely 

free and therefore its used can be excluded from this economic estimation. Table 2 presents 

a summary of the project overall cost. 

Element Estimated cost 

Computer 1000€ 

Working hours 6000€ 

Software Tools 0€ 

Total 7000€ 

Table 2. Project cost estimation. 
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Chapter 5.  RESEARCH ON ALGORITHMS 

An algorithm is a series of specifications that indicate a set of steps and the order in which 

they need to be executed in order to reach a certain solution, solving this way the problem at 

hand. Depending on the problem and the variables to take into account, there are many 

different ways to solve a problem, leading to a wide range of algorithms available to find the 

solution. But first of all, it is necessary to present the problem at hand.  

5.1 ALGORITHM CLASSIFICATION 

A list of different algorithms classes is presented in the table below, providing a short 

description of each one of them. They are organized by implementation, design paradigm, 

optimization and complexity (10). 

Algorithms Examples 

By implementation 

Recursive 
The algorithm repeats certain 
directives obtaining a result when 
a certain condition is reached 

Dijkstra, Dynamic 
Programming… 

Logical 
Algorithms controlled by logical 
inference captured in 
computational axioms 

Abductive logic 
programming, constraint 
logic programming… 

Serial, parallel or 
distributed 

Depending on how the 
instructions are executed: one at a 
time, several simultaneously in the 
same or different hardware 
architecture, respectively 

Newton’s method, Paxos 
algorithm… 

Deterministic/non-
deterministic 

Depending on which type of 
decisions are taken: an exact one 
or one made by guesses 
(heuristically at best), respectively 

Gompertz curve, PCA… 
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Exact or 
approximate 

Depending on the solutions given 
at the end 

Lenstra, Shmoys, 
Tardos… 

Quantum Used in quantum computation Quantum computation 

By Design Paradigm 

Brute force It consists on trying every possible 
solution Brute-force sear 

Divide and conquer 

These algorithms splits the 
problem in smaller sections, 
recursively sometimes, that can be 
solved more easily 

Divide and conquer 
algorithm, merge sorting 

Search 
These are performed in graphs 
where rules to move around are 
specified 

Breadth-First-Search, 
Depth-First-Search… 

Randomized The algorithm makes choices in a 
random way Monte Carlo, Las Vegas 

Reduction of 
complexity 

It involves transforming the 
problem so simpler algorithms can 
be used to solve it 

Selection algorithm, 
Asymptotically optimal 
algorithms… 

Optimization algorithms 

Linear 
programming 

Used to solve linear problems in 
which the problem’s own 
constraints can be used to obtain 
the optimal solutions 

Simplex algorithm, 
maximum flow 
algorithm… 

Dynamic 
programming 

The optimal solution is obtained 
by optimal solutions of sub-
problems procured from the main 
one. In this case, the sub-problems 
are related whereas in Divide and 
Conquer, they are not 

Floyd-Warshall, Bellman–
Ford Algorithm, A*… 

Greedy algorithms 

They also play with substructures 
but in this case of the solution 
instead of the problem (see 
dynamic programming) 

Dijkstra, Huffman 
Coding, Kruskal’s and 
Prim’s Minimum 
Spanning Tree Algorithm 
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The heuristic 
method 

They find the optimal solution 
closest to the actual one, as finding 
the real would be unfeasible 

Genetic algorithms, 
simulated annealing… 

By complexity: time to run 

• Constant time 
• Linear time. 
• Logarithmic 

time. 
• Polynomial time. 
• Exponential 

time. 

 

Binary search algorithm, 
bubble sort… 

Table 3. Algorithm classification, definition and examples. 

5.2 O-BIG NOTATION 

When comparing different algorithms’ performance, a specific notation is used: O-Big 

notation. This notation defines the time-complexity of an algorithm. It is a mathematical 

notation that indicates the limiting performance of a function when the argument tends to 

infinity. The best way to understand the meaning of this notation is with some examples 

[79]. 

- O(1) defines an algorithm whose execution is always the same independently of the 

input size. 

- O(N) describes an algorithm whose execution time will grow linearly depending on 

the input size. 

- O(N2) refers to an algorithm that takes a time proportional to the square of the input 

size. The same happens with O(N3), O(N4), etc. 

- O(log N) is applied to algorithms whose time complexity that has a peak in the 

beginning and slowly flattens out, as it happens with the binary search. 

All in all, O-Bog notation is used to asymptotically bound the time growth of an algorithm 

depending on the input size [80].  
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Figure 1. Algorithms’ time complexity in O-Big Notation [80]. 

5.3 DESIGN 

Baolau possesses a database with nodes and routes or edges that interconnect them in 

structure called a graph. The main objective is, as clarified before, to find the shortest paths 

from one node to another that the user has already specified. Given these conditions, there 

are some algorithms incompatible with this layout that can be discarded since the beginning. 

Due to the accuracy needed in the results and the large amount of information that has to be 

handled, the randomized or brute force algorithms are completely left out of consideration. 

As Baolau looks for different optimal solutions to represent the various ways to reach a 

certain destination given different nodes and routes available, the basic problem on which 

the algorithm must work is this type of graph. Also, routes are only available at fixed dates 

and hours, which another feature that must be taken into account. Figure 2 shows the concept 

of a graph. 
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Figure 2. Simplified example of a nodes graph. 

Therefore, the graph with which Baolau works has the following characteristics: 

- It is directed. It means that the edges that connect the different nodes have a 
direction specified. 

- It is positive weighted. Each one of the edges has an associated positive weight that 
is a combination of the time that it takes to travel through that edge, the price and 
the waiting time, although these specifications will be analyzed deeper later on. 

Considering then the main problem at hand in Baolau, only some types of algorithms had 

been chosen for a deeper analysis: the recursive, search, dynamic programming and greedy 

algorithms.  

• Recursive algorithms 

A recursive algorithm consist on the iterative execution of instructions until a certain 

condition is met or the solution has been found. These are very interesting in graph 

algorithms where rules need to be applied if specific conditions are met, advancing 

throughout the whole graph until the destination is found. 
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A lot of the algorithms that will be studied have this characteristic, such as Depth-first 

search or the Iterative Enumeration Algorithm. 

• Search algorithms 

These algorithms are used to retrieve some information stored in a data structure or 

problem domain, such a search tree or a linked list. This term is also used for graph 

exploration techniques, such as Depth-First and Breath-first search, which also apply 

recursive techniques. In fact, there are a great amount of graph algorithms apart from 

these two, considered elementary graph algorithms.  

• Dynamic Programming 

Dynamic programming algorithms find the optimal solution to a problem by obtaining 

optimal solutions to parts of the problem or sub-problems and using the intermediate 

results as input for the following iterations. There is an important difference between 

dynamic programming algorithms and divide and conquer algorithms, as these last ones 

obtain intermediary solutions that are independent from each other. 

Dynamic programing counts also with an important contribution of recursive 

mechanisms, but the main difference lies in the fact that dynamic programing caches or 

stores the results of the recursive calls, reducing the complexity of the problem. This is 

only possible to apply in problems that count with substructures dependent on each other 

and where repetition is required to obtain an optimal solution. Floyd–Warshall, 

Bellman–Ford Algorithm and A* algorithm are examples of dynamic programming. 

• Greedy algorithms 

Greedy algorithms work similarly to dynamic programming algorithms. The main 

distinction is that the first ones work on solutions of substructures of previous solutions 

and not of sub-problems, as dynamic programming algorithms do. This implies that the 

algorithms start obtaining one solution and make modifications to the structure in order 

to obtain better results. In this classification Dijkstra, Huffman Tree, Kruskal, or Prim 

can be found. 
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• Graph algorithms 

Given the problem the company needs to resolve, this project is going to be focused on 

the so-called graph algorithms, that find a solution for connecting two nodes in a graph. 

Graph algorithms include some belonging to the previous classes such as search and 

greedy algorithms. This will be explained later more in detail. 

Minimum Expanding Trees and algorithms that find the shortest path between two nodes 

in a graph also belong to these group. In fact, an additional classification can be applied 

for these last ones. 

o  Single-source shortest paths algorithms.  

They find the shortest path from one single node to the rest of them in the 
graph. Dijkstra and Bellman-Ford provide this type of solutions. 

o Single-destination shortest paths algorithm. 
In this case, paths are found from each node to a single defined one in the 
graph. An example of these algorithms is the Multiple Sources Single-
Destination (MSSD) algorithm. 

o All-pairs shortest path algorithm. 
The algorithms find the shortest path between all pair of nodes in the graph. 
Floyd–Warshall algorithm, Seidel's algorithm, Williams, Pettie & 
Ramachandran and Thorup can be considered examples of this type. 

o Single pair shortest path algorithm. 
Only the shortest solution between two fixed nodes in the graph is found. A* 
algorithm is an example of these. 

Also, due to the approach dynamic programming algorithms take, these are also interesting 

to analyze in this project. 

The following section will present the current algorithm in use in the company’s web and its 

main characteristics, as well as the problems its application comes with. 
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5.4 CURRENT ALGORITHM IN USE: DIJKSTRA 

 

Table 4. Dijkstra’s specifications. 

Edsger Dijkstra (1930-2002) was born in the Netherlands where he was employed as a 

university research professor till 1984 [76], when he moved to the United States. During the 

so called Structured Programming movement, which he set up himself, he developed a 

methodology for building computer programs based on nested loops and sequences that 

avoided the arbitrary jumps wide extended by then.  

It was in 1959 when his famous Dijkstra algorithm was first published [78]. The algorithm 

provides the shortest path from a single source to all the different nodes in the same graph 

in a single execution. The functioning consists on building up a priority queue that stores in 

each node the accumulated weight a specific path has brought from the start point. Then the 

next node to be visited will be the one with the smallest accumulated weight. 

5.4.1 ORIGINAL IMPLEMENTATION 

At the beginning, the start point has an accumulated weight of 0 as the distance to itself is 

null. Then, all the nodes that are directly connected to the start point are updated with the 

weight of the edge that connects them to it. The node with the smallest accumulated weight 

will be picked and considered visited so it is not analyzed again. All the nodes connected 

with a single step to this node will be studied, updating their accumulated weight. The one 

with the smallest weight will be marked as visited and the process continues until all nodes 

have been visited [31]. 
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In the company a new feature to the algorithm was added so it could be functional with 

timetables and routes fixed by the time of departure. For that to be possible, the time that it 

takes to reach each node by each one of the routes is stored. Consequently, only routes or 

edges with a departure time later than the arrival time at each node are considered as potential 

future paths. 

5.4.1.1 Pseudocode 

In the following lines, the pseudocode for Dijkstra algorithm as it was used in the company 

is presented. 

 

Pseudocode 1. Dijkstra’s Algorithm. 

5.4.1.2 Operation 

Let us consider the following graph (Figure 3) with 5 nodes and the edges connecting them 

with their weights. 
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Figure 3. Example of a graph with its nodes and edges. 

 

Figure 4. Steps for Dijkstra Algorithm. 
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Figure 4 shows the process Dijkstra algorithm follows. In the first place, x1 is marked as 

visited as it is the start node. Then all nodes directly connected to x1 are updated with the 

weight of the connection edge (I). X2 is chosen as the next node to be analyzed thanks to its 

lowest accumulated weight. From this node, x3 and x6 can be accessed. As the accumulated 

weight to x3 going through x2 is lower than going directly from x1, the edge from x1 to x3 

is no longer considered (II). The same happens in III when the accumulated weight from x1 

to x6 going through x2 and x3 is lower than going only through x2. The graph shown in VI 

shows the shortest path from x1 to any other node in the graph. 

5.4.1.3 Time complexity 

Following the Bog-O notation described early, and supposing a graph of V nodes and E 

vertexes, the time complexity of this algorithm can be simplified to: 

Ο( 𝑉 $) 

In fact, the actual complexity depends on the nature of the priority queue Q applied in the 

algorithm for storing the vertexes. In the existing implementation of the algorithm a simple 

priority queue is used, which gives a time complexity of: 

Ο 𝐸 + 𝑉 $ ≅ Ο( 𝑉 $) 

Formula 1. Dijkstra’s time complexity. 

 

5.4.2 MODIFIED IMPLEMENTATION: THE REMOVAL OF EDGES 

Given this functioning, Dijkstra only procures a single path to a certain destination node. In 

case more paths are wanted to be found, the algorithm needs to be run again but eliminating 

one or more edges, so the algorithm is forced to pick a different path. This is Yen’s algorithm 

philosophy: to use a single-source shortest path algorithm and apply it repeatedly removing 

edges each time. In Figure 5 an example is shown on how the algorithm would be applied to 

a scenario where an edge has been removed. Figure 6 shows the algorithms procedure. 
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Figure 5. Example of a graph with and edge removed. 

 

Figure 6. Steps for Dijkstra Algorithm eliminating edges. 
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In this case, the first node that is visited after x1 is x3 instead of x2. Following the same 

steps as before, it can be seen that the shortest path to the rest of the nodes are different and 

with a higher accumulated weight. If this process is executed several more times, each time 

removing a different edge, differing results will be obtained. 

This is basically the process the company is following in order to obtain different results 

when a user inputs an origin point and a destination. Even though this is a very extended 

practice when looking for more than one path between two nodes in a graph when applying 

a single-source shortest-path search algorithm, it comes with some unavoidable problems. 

• As the network increases its dimensions, the number of nodes and edges to be 
considered increases, making the algorithm more difficult to run. This affects 
directly the time that it takes to run the algorithm only just once. If it needs to be 
called more than once, the effects are very severe. 

• As the company has been recently expanding to more areas and countries, the mesh 
of nodes and edges has considerably increased. Executing the algorithm only once 
would take too much time, and the subsequently calls would have a great impact 
on the system, driving it to a collapse sometimes. 

• When removing the edges, no special criteria is followed. This means that the 
additional results obtained when applying this scheme are not necessarily the next 
optimal ones, that is, the next shortest or less expensive ones. Only when the 
required amount of results has been procured, then they are independently sorted. 

In a general perspective, we can relate to the other problems already commented at the 

beginning. 

• Baolau is facing some difficulties regarding the time it takes the algorithm to 
execute just once due to the higher amount of nodes the company is dealing with 
now. 

• The current implementation of the algorithm requires at least three executions in 
order to give more significance to time, price and waiting time in each connection. 
That is, the edges are modified each one of these three times so the paths obtained 
are the fastest, cheapest and more convenient, respectively. 

• Some pivot nodes are required in the current code. Pivot nodes are points some 
routes are forced to run through due to some characteristics that render them more 
desirable than others. They are chosen by the company as they believe those routes 
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are the best ones and do not want to risk the algorithm not showing them. The need 
to implement these pivots nodes comes from the uncertainty of the algorithm, as 
well as the act of removing random edges.  

Given this situation where a lot of obstacles prevent a smooth calculation of different paths 

between two points in a graph, it is more than necessary to find and implement a new 

algorithm good enough to avoid these difficulties. In the following subsections, a series of 

algorithms will be presented and analyzed in order to determine if they are plausible and 

potential substitutes for Dijkstra’s algorithm. 

5.4.3 ADVANTAGES AND DISADVANTAGES 

Advantages 

One of the main advantages of using Dijkstra is the simplicity of its structure and 

implementation. The use of a priority list simplifies the whole process of finding the shortest 

path between two given nodes in a graph. 

It is one of the most extended algorithms used in a wide range of fields of study around the 

world. It is applied geographical maps as well as in networks. 

It can be modified to obtain more than one result by eliminating some edges in the graph. 

Disadvantages 

The main disadvantage of this algorithm is the blind search it applies which results in a waste 

of time and resources when finding the shortest paths between two nodes. In fact, this can 

be seen as the algorithm calculates the shortest path between the source and any node in the 

graph, while the optimal solution would be just obtaining a single result. 

This algorithm cannot handle negative weights, which can lead to problems in other 

situations where the path that needs to be found is not the shortest but the one that has the 

lowest accumulated weight (networks). Specifically, when negative weights are being used, 

low-weight shortest paths usually have more edges than higher-weight paths. 
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This features lead to acyclic graphs that prevent the algorithm from finding the correct 

shortest path. 

5.5 ALGORITHMS INCLUDED IN THE RESEARCH 

This section provides an introduction to the various algorithms that have been considered as 

potential candidates to substitute the present one at use: Dijkstra’s algorithm. They will be 

presented following the classification applied in the previous section. Their characteristics 

will be described and their functioning demonstrated with the same graph with which 

Dijkstra was displayed. Afterwards, the reasons for considering or not the algorithm as a 

substitute will be explained. Finally, after all algorithms have been examined, a table will 

show the comparison between their most important characteristics. 

5.5.1 SEARCH ALGORITHMS 

First of all, two elementary graph algorithms will be studied: Breadth-first and Depth-First 

search algorithms. As mentioned before, search algorithms look for extracting information 

from a certain structure. In this case, they can be applied to graphs. The process they follow 

is also called graph traversing, which refers to the process of searching through or traversing 

through the data in a graph [22],[23]. 

One thing to consider about these two algorithms is that they work with unweighted graphs, 

that is, the edges do not have any kind of weight. Although this characteristic renders them 

completely unsuitable for the problem at hand, it is important to analyze their functioning as 

they are used by other algorithms, such as Eppstein’s algorithm. This one will be studied 

further on (see section 5.5.4.2). Also, it could be possible to use these algorithms if they are 

modified so they can operate with weights. 

Breadth-search and Depth-search algorithm both work recursively. The main difference 

between them is the type of the solution they offer and how they obtain it. 
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5.5.1.1 Breadth-First Search Algorithm 

 

Table 5. Breadth-First Search specifications. 

This algorithm, also known as BFS, indicates which paths are shortest connecting a node 

with the rest in a graph. Its procedure consists on analyzing one node and all the neighbors 

surrounding it, instead its children. This way, it works very similarly to Dijkstra with the 

exception that the weights are substituted by jumps to the starting node. If a node is reached 

twice, the value that it will keep will be the first one as it is the result of less jumps. 

Pseudocode 

The pseudocode for Breadth-First algorithm is specified as follows in the following lines: 

 

Pseudocode 2. Breadth-First Search Algorithm. 
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Operation 

Considering the initial graph with which Dijkstra was demonstrated, the following sequence 

shows the functioning of breadth-search algorithm. No weights are shown. 

 

Figure 7. Diagram without weights. 

In Figure 8 the procedure followed by the algorithm is shown. In first place, node x1 has a 

distance 0 from the origin as it is the starting point. Then, x2, x3 and x4 are updated with a 

distance 1 from x1. X2 is chosen then and x6 is updated to 2 jumps. X3 is not modified 

because it has a direct access to x1. Then x3 is analyzed and x6 is not modified because the 

value is the same. However, x5 is visited and updated with 2 jumps. With x4, something 

similar happens and x5 is not modified. The process continues until all nodes have been 

selected. The result shows the distance of each one of the nodes to the origin. However, it 

does not show which is the path that needs to be taken in order reach each one of these nodes. 

This path can be known thanks to the tree that is shown next to the graph in Figure 8. The 

tree represents the children from each node and the order in which they are visited. At the 

end we have enough information to know what is the distance between the origin and 

destination point and which is the path that has been followed. For example, from x1 to x6, 
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the final image in step 6 shows that x6 is 2 jumps from x1 and that the path followed to reach 

it is x1-x2-x6, thanks to the tree besides the graph. 

 

Figure 8. Steps for Breadth-Search Algorithm. 

A modification can be applied to the algorithm in order to store the path information as the 

process takes place. This way the distance to the origin can be known as well as the path 

needed to be taken. For this, an adjacency list could be used. 

An adjacency list is a group of unordered lists that help to represent a finite graph. Supposing 

a graph with V nodes and E edges, when |E| is much lower than |𝑉|$ then and adjacency list 

can be used. When |E| is closer to |𝑉|$ then it is better to use an adjacency matrix. This is a 

matrix whose rows and columns represent graph vertices. If a single graph does not have 
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loops, then the adjacency matrix has 0 in its diagonal. For undirected graphs, it is symmetric 

[49]. 

In this case, an adjacency list can be used as follows. 

 

Figure 9. Breadth-Search Algorithm with adjacency list. 

As Figure 9 shows, the list is filled for each node with the nodes adjacent to it. It helps to 

see which node needs to be visited next. For example, for x1, the adjacency list has stored 

x2, x3 and x4 in that particular order. Then, these nodes need to be visited in that same 

sequence. The node being analyzed is marked un the first column in red and the next node 
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to be visited is underlined. If an underlined node has already been visited, then the next 

underlined node will be the one considered. So, x2 is visited next and its adjacent nodes are 

stored in the list (x3 and x6). In step IV the next node that is supposed to be visited is x3 but 

it has already been considered, so the next node will be x6, that is why both are underlined. 

The process follows until all nodes in the list have been underlined and considered for 

analysis. 

Time complexity 

The time complexity depends of the nodes and the edges connecting them. Every node needs 

to be visited and the number of edges depends on the graph being directed or undirected, 

being the amount 2|E| or |E|, respectively. 

In any case, the time complexity of this algorithm is covered by: 

Ο(|𝑉| + |𝐸|) 

Formula 2. Time complexity of Breadth-First Search Algorithm. 

Advantages and Disadvantages 

Advantages 

The existence of a solution means the algorithm will always find it. It may not exist, though. 

If more than one solution exists, then the algorithm will find the one that requires a less 

number of steps. 

Thanks to the explorations of each child instead of going deep into the graph (depth-first 

search), the algorithm will never get trapped in a never ending path. 

Disadvantages 

The memory that it requires is one of the main disadvantages of the algorithm, as explained 

before. This happens because the algorithm saves the nodes it studies in each level, 

increasing the memory usage. 
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If the solution is not near enough from the source point, the time consumption of the 

algorithm can be high. 

The algorithm works with unweighted graphs. 

5.5.1.2 Depth-First Search Algorithm 

 

Table 6. Depth-First Search Specifications. 

This algorithm (also known as DFS), like Breadth-First algorithm works with an unweighted 

graph. The main difference between them is that, while Breadth-First algorithm determines 

the shortest path between two nodes, Depth-First will dictate if a path exists or not between 

them. In order to achieve this, the algorithm traverses the graph analyzing a node and its 

children before reaching out to its neighbors. 

Pseudocode 

Next the pseudocode for Depth-First search algorithm is presented. 
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Pseudocode 3. Depth-First Search Algorithm. 

Operation 

In the following figures, the functioning of the algorithm can be seen. One feature of this 

algorithm its heavy reliability on recursion. When a branch is found to be connectionless for 

two particular nodes, then the beginning of that branch needs to be reconsidered. 

 

Figure 10. Tree for Depth-First Search algorithm. 

In Figure 10, the tree formed using the same graph as in Breadth-First search, is traversed 

from the top to the bottom, analyzing children first rather than neighbors. All the branches 

are all the possible ways to reach a certain node without entering into a loop. This way, the 

shortest path to each one of the nodes can be obtained. In Figure 10 they are marked in red. 
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Figure 11. Depth-First Search Algorithm. 

Figure 11 follows the previous tree but in the graph being used. As it can be seen, nodes are 

visited in a chain fashion. Supposing our starting point is x1, the next node that is visited 

will be x2. Afterwards, the next node will be one of x2’s children (x3 or x6); x3 is chosen. 

Then one of x3’schildren (x5 or x6) will be considered and so on until step 5 is reached. 

Here, an end of the chain is met because the only node that can be visited from x5 is x6, 

which has already been visited. So now the branch needs to be retraced until a node that has 

a child that has not been considered yet. Going back to 3 jumps in the tree, x6 has x2 as a 

child but x2 has already been visited and the path through x6 is not shorter than the one 

already been found to x2. So the branch keeps being traced backwards to 2 jumps in the tree 

and x3 is reached. Here x3 has a child (x5) that has already been considered but a shorter 
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path can be found going directly through x3 than through x6 like before. So x5 is updated 

with the new distance from x1 (step VI). But now the same end is found so this branch needs 

to be traced backwards until x2 is found. Apparently no other path can be found to its 

children that are shorter that the ones already found. In step VII node x4 is visited and in 

step VIII x5 distance to x1 is updated. 

 

Figure 12. Depth-Search Algorithm with stack. 

In order to keep track of the parent of each node to find the shortest path something similar 

to Breadth-First search can be applied. In this case, instead of using a list or queue, a stack 

will be more suitable for the algorithm’s features. The main difference between a queue and 

stack is that the first owns a FIFO (First In First Out) quality while a stack gets to be LIFO 
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(Last In Last Out). And this is the main difference in both pseudocodes from Depth-First 

and Breadth-First search. In the given graph the contrast between their functioning can be 

seen and Figure 12 shows how the stack works. 

First of all, when a node is considered, it is marked in red in the first column and its children 

are inserted in the matrix. In this case, nodes in bold mean they are maintained “on-hold”, 

that is that they are going to be traced back when a dead end is met on the chain. Nodes are 

marked in red when they have already been considered in the study. In step 5 a dead end has 

been found because node x6 has already been visited. In step 6 the path that has been 

followed so far is traced back to the first node that has another child that has not been 

considered yet, even if it has been visited. In this case, this node is x3 that had, apart from 

x6, a child in x5. So x5 is updated. This process is carried out until all nodes have been 

considered and visited. 

Time Complexity 

The time complexity for Depth-First search is the same as for Breadth-First search: 

Ο( 𝑉 + |𝐸|) 

Formula 3. Time complexity of Depth-First Search Algorithm. 

The reason is because in both cases all nodes and edges need to be analyzed even if the 

followed pattern differs.  

Advantages and Disadvantages 

Advantages 

The memory usage is linear with respect to the number of nodes. This is because only the 

stack of nodes from the path to the node being analyzed need to be stores instead of all the 

levels of the tree (Breadth-First search). 
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If the solution that is being looked for is found relatively soon, then the time and space 

needed are much lower than in Breadth-First search. This is thanks to the fact this algorithm 

analyzes the children of a node instead of going through all the levels. 

Disadvantages 

This algorithm does not guarantee finding the solution even if it exists. And if more than one 

exists and one has been found, nothing ensures that this solution is the optimal one. This 

characteristic renders the algorithm practically implausible for applying it to the problem at 

hand. Also the fact that it can only be applied in unweighted graphs implies that this 

algorithm cannot be considered as a potential substitute for the actual implementation of 

Dijkstra. 

There is the possibility of the algorithm entering into an infinite loop as, even if the graph is 

finite, the tree obtained might be infinite. Although there is a solution to this problem: cutting 

the exploration of a certain branch given a desired level of depth. 

5.5.1.3 Comparison between Breadth-First and Depth-First Search 

As mentioned before, as these two algorithms work with an unweighted graph, their use 

cannot be applied directly to the problem at hand. However, they can become useful when 

other analyzed algorithms have a need of them. Breadth-First search helps to find the shortest 

path between two nodes. However, its neighborly approach implies that more information 

than necessary is stored as the result will come when all nodes are analyzed. This can be an 

inconvenience when the graph is very large. On the other hand, Depth-First search may be 

faster in finding a solution but it may result to be not the shortest one, and even the longest. 

Nevertheless, the fact that some results can be found analyzing just the children of a node 

and the whole matrix implies a saving time and memory. 
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Main differences: 

Breadth-First Search Algorithm Depth-First Search Algorithm 

Analyzes neighbors before children Analyzes children before neighbors 

Uses a queue structure Uses a stack structure 

Good for finding the shortest path Good to know if the shortest paths exists 

May use memory unnecessarily Good for saving memory if a path has 
already been found. 

Table 7. Breadth-First and Depth-First comparison. 

5.5.2 DYNAMIC PROGRAMMING ALGORITHMS 

Dynamic Programming algorithms seek to obtain the optimal solution to a problem by 

finding the optimal solutions to sub-problems constructed from the principal one. This is 

possible thanks to the recursion employed by these algorithms. The results obtained in each 

one of the iterations are passed as inputs to the next iterations, so information is reused in 

order to acquire the optimal solution to each one of the subparts of the problem. 

Floyd–Warshall, Bellman–Ford Algorithm are examples of dynamic programming 

algorithms but they will be studied later as graph algorithms. In this section the A* algorithm 

will be analyzed. 

5.5.2.1 A* Algorithm 

 

Table 8. A* Specifications. 
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A* (A Star) algorithm was first described by Peter Hart, Nils Nilsson and Bertram Raphael 

in 1968 [65]. It is a computer algorithm that has been widely used in graph traversal and 

pathfinding since its beginnings thanks to its flexibility and applicability to different 

contexts. It can be defined as an informed search algorithm or best-first search as it always 

looks for the optimal solution among all the possible paths. This is done by choosing in each 

iteration the one that incurs the smallest cost (whether is distance, time or price). And among 

all these possibilities, it chooses the one that will lead faster to the solution. 

A* algorithm can also be classified as a graph algorithm as it helps to find a path between 

two nodes in a graph. Specifically, it is a single-pair shortest path algorithm. It basically 

follows the same idea as Dijkstra’s algorithm, but the main difference lies in the use of 

heuristics to guide the decisions the algorithm makes in each iteration. Specifically, A* 

decides on the path that minimizes the following formula: 

𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛) 

Formula 4. Function for A* algorithm. 

Where n is the last node in the graph being considered. 

¨ g(n) is the total cost from the origin to node n. 
¨ h(n) is the heuristic function applied to estimate the cheapest path from node n to 

the destination point. 

This formula is applied in each node that is being chosen to be analyzed until the destination 

point is reached. 

Heuristics 

In computer science, heuristics refers to methods that provide a faster solution than 

traditional methods. They are also used to find an approximate solution when the traditional 

approaches fail to provide an exact one [83]. Specifically, in search algorithms, heuristics 

are used to evaluate each possibility at each step with the available information in order to 

choose the option that will provide a faster and more accurate solution. 
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When applying Formula 4 in a graph, two situations may be presented: 

• The exact value of h can be calculated. 

A pre-computation is needed in order to calculate the distance between the different node 

in a graph before running the algorithm. In case there are no obstacles between origin 

and destination, this pre-computation is not necessary as the formula for calculating the 

Euclidean Distance between these two points can be applied. 

• An approximation of h is needed using heuristics. 

As h in Formula 4 referrers to the physical distance between a node and the destination 

point, this distance can be calculated in three different ways (25): 

o Manhattan distance 

h can be calculated by summing the absolute 

value of the difference between x and y 

coordinates of the current node being analyzed 

and the destination point.  

Figure 13. Manhattan distance. 

ℎ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡4567. 𝑥 − 𝑑𝑒𝑠𝑡. 𝑥 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡4567. 𝑦 − 𝑑𝑒𝑠𝑡. 𝑦  

Formula 5. Manhattan distance. 

This approach is adequate when movement in the four principal directions is 

allowed. 
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o Diagonal distance. 

This method takes the largest difference 

between the coordinates of the current node and 

the destination point, as Formula 6 indicates. 

Figure 14. Diagonal distance. 

ℎ = max	{ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡4567. 𝑥 − 𝑑𝑒𝑠𝑡. 𝑥 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡4567. 𝑦 − 𝑑𝑒𝑠𝑡. 𝑦 } 

Formula 6. Diagonal distance. 

This method should be used when movement is allowed in eight directions 

(similar to the King in Chess). 

o Euclidean distance. 

This consists in the Euclidean computation 

of the distance between two nodes, as the 

length of the line that connects them directly. 

Figure 15. Euclidean distance. 

ℎ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡4567. 𝑥 − 𝑑𝑒𝑠𝑡. 𝑥 $ + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡4567. 𝑦 − 𝑑𝑒𝑠𝑡. 𝑦 $ 

Formula 7. Euclidean distance. 

When movement in every direction is permitted, this method is the most 

suitable for use. 

 

Pseudocode 

The following lines show the pseudocode for A* algorithm. It is very similar to that of 

Dijkstra, the main difference lying in the fact that the accumulated weight of each node adds 

the value of the h(n) function. 
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Pseudocode 4. A* Algorithm. 

Operation 

The procedure that A* algorithm chooses to find the optimal path to the destination point is 

very similar to Dijkstra. In fact, Dijkstra is a specific case of A* where h=0 for all nodes. 

Figure 16 shows the graph used in the previous examples and the one employed to 

understand A* functioning. The origin is x1 and the destination is x6. Also another 

difference between this graph and the previous graphs is that h has obtained a value for each 

node. In this case h(n) is the supposed Euclidean distance between each one of the nodes and 

the destination point (x6) in this case. 
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Figure 16. Graph for A* with h(n). 

In Figure 17 the functioning of A* is depicted. In step 1, in order to see the cost to reach x2, 

x3 and x4, not only does the weight of each route need to be taken into account but also the 

h(n) function in each one of this nodes, that is, the physical distance between them and the 

destination point x6.  

Opposite to Dijkstra, A* chooses the following node x3 instead of x2, as the cost to reach 

x2 is 29 and to x3 13 (step I). Even though x4 is chosen as the next node to be analyzed (step 

II), in step III the final node is reached and so the algorithm stops to run in step IV when x6 

is selected.  

The number of iterations is cut short to 4, instead to the six steps needed for Dijkstra in this 

same graph. 
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Figure 17. Steps for A* algorithm. 

Time Complexity 

The time complexity of A* algorithm depends on the heuristic function h(n) that is being 

used. In an unbounded search space, this complexity can be calculated as: 𝑂(𝑏6), where d 

is the shortest path to be found and b is the branching factor, that is, the number of children 

of a single node. One of the advantages of A* is that the algorithm prunes a considerable 

amount of nodes another method would expand to. As this is a direct result of using 

heuristics, the best heuristics that could be used are those that would lower the effective 

branching factor. 
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As a conclusion, the time complexity of A* algorithm is polynomial if the following 

conditions are met: 

• The search space is a tree. 
• Only a goal exists. 
• The heuristic function h follows the condition: 

ℎ 𝑥 − ℎ∗ 𝑥 = 𝑂(log ℎ∗(𝑥)) 

Formula 8. Heuristics condition for A* Algorithm. 

Being h*(x) the optimal heuristic that obtains the exact cost of reaching the destination point. 

An algorithm with a polynomial time complexity means that its running time is upper 

bounded by a polynomial expression that depends on the input of the algorithm, being the 

input in this case the graph, with its nodes and edges. 

Advantages and Disadvantages 

Advantages 

The algorithm is very fast as it does not consider useless braches in its development as 

Dijkstra and BFS do. This means that it does not apply a blind search. How fast it can become 

or the memory needed depends on the heuristic function that is being used. 

The algorithm is complete and optimal. This means that if a solution exists, the algorithm is 

going to find it and it will be the optimal one. 

Its efficiency makes it very suitable for complex problems where securing a solution is time 

bounded. Also it is optimally efficient, which means that there is no other algorithm that uses 

a lower number of nodes to expand in order to find the optimal solution. 

These advantages make A* algorithm very suitable for the problem at hand and one that will 

be as a potential substitute for the actual Dijkstra implemented in the company. 
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Disadvantages 

The algorithm is actually complete if the branching factor b is a finite number and a fixed 

cost is associated to each action. 

The speed of the execution of the algorithm depends entirely on the heuristic function that 

is being used. Also the memory usage can become a limitation for the algorithm when the 

problem is very complex. 

5.5.3 GRAPH ALGORITHMS 

As explained in section 5.1, graph algorithms are applied two find the connecting path 

between two nodes in a graph. Some of the algorithms that are going to be studied in this 

section can be classified otherwise, such as Floyd-Warshal which is an example of a dynamic 

programming algorithm or Dijkstra, which is a greedy algorithm. The way these algorithms 

work places them in these different categories but as they can also be used to find the shortest 

path connecting two nodes in a graph, they can also be included in the graph algorithm 

classification. 

As stated before, graph algorithms can be organized in four groups: single-source, single-

destination, all-pairs, and single pair shortest path algorithms. They are explained in section 

5.1. The ones that are going to be analyzed in this section are Bellman-Ford, Floyd-Warshal 

and Johnson algorithm. 

5.5.3.1 Bellman-Ford Algorithm 

 

Table 9. Bellman-Ford specifications. 
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Bellman-Ford algorithm was initially developed by Alfonso Shimbel in 1955 but its name 

comes from Richard Bellman and Lester Ford who published its functioning in 1958 and 

1956, respectively [62]. Also Edward F. Moore published the algorithm in 1957, so it is 

sometimes known as Bellman-Ford-Moore Algorithm. 

Apart from being a graph algorithm, Bellman-Ford can also be categorized as a dynamic 

programming algorithm thanks to its iterative approach and the division in subparts of the 

problem.  

This algorithm calculates the shortest path between one node and the rest in a weighted 

graph, just as Dijkstra in what is referred to as single-source shortest-path problem. But it is 

more versatile than Dijkstra as it is compatible with negative weights on the edges. It returns 

a Boolean value determining the presence of negative-weighted cycle reachable from the 

source. If this cycle exists, the algorithm indicates that no solution exists for the problem. 

Also, the number of iterations needed are |V|-1, as it will be seen in the example. 

As stated before, the fact of working with negative weights is not included in the scope of 

this project. However, the study of the functioning of the algorithm when all weights are 

positive may be interesting in order to decide which could be the advantages of applying this 

algorithm to the problem at hand. 

Pseudocode 

The following lines present the pseudocode for Bellman-Ford algorithm. 
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Pseudocode 5. Bellman-Ford Algorithm. 

The main procedure in the algorithm, as it will be seen in the following subsection, is iterated 

a number of times equivalent to the total numbers of nodes in the graphs minus 1, even if 

the last iterations probably won’t change the result at all in most of the cases. In each 

iteration, every edge in the graph will be analyzed and only if the nodes in both ends of the 

edge have a distance set different from ∞, then the distance of the nodes to the source could 

be changed if the condition is met.  

This process of analyzing the edges is named relaxation. Bellman-Ford provides a relaxation 

process on all the edges and |v|-1 times, while Dijkstra only applies it on the edges of the 

node that is being considered. 

Operation 

Following the pseudocode in the previous subsection, the next image shows the functioning 

of the algorithm in the graph that has been being used in the previous algorithms. As said 

before, this algorithm has the advantage of being capable of working with negative weights 

but in this case the algorithm will be applied in the usual graph where all the edges have 

positive weights. 

As the graph has 6 nodes, the algorithm needs to apply 5 iterations. In the first iteration, 

when considering x1, the distances to x2, x3 and x4 are 4, 8 and 10, respectively. However, 

in this same iteration but considering x2, the distance to x3 gets changed to 5. And it can be 

changed because both ends of this edge are known. X6 remains as ∞ because that end was 

unknown. This process is followed in the rest of iterations. 
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Figure 18. Steps for Bellman-Ford Algorithm. 

 

Time Complexity 

The time complexity of this algorithm can be stated as follows: 

𝑂( 𝑉 · 𝐸 ) 

Usually, the value of E can be represented as: 

|𝐸| ≈ |𝑉|$ 

Which will result in a time complexity for the whole algorithm expressed as: 
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𝑂 𝑉 · 𝐸 ≈ 𝑂( 𝑉 $) 

Formula 9. Approximated time complexity of Bellman-Ford. 

Advantages and Disadvantages 

Advantages 

Given the previous algorithms that have been studied, one of the main advantages of this 

algorithm is its capability of working with negative weights. It is already known that the 

graph the company works with lacks of this type of edges, where the weight might be 

negative, so this feature hardly comes as a plus for considering Bellman-Ford algorithm as 

a potential substitute. 

When a solution does not exist, the algorithm indicates this fact. 

The relaxation process the algorithm applies to all the edges in each one of the iterations 

allows for a wider class of inputs to be introduced to the algorithm, compared to those 

allowed in Dijkstra, as its relaxation process only cover the edges of the node being analyzed. 

Disadvantages 

The main the disadvantage encountered when considering this algorithm as a substitute for 

Dijkstra is that it is actually more complex. The time complexity is 𝑂 |𝑉| · |𝐸|  while 

Dijkstra’s is 𝑂( 𝑉 $). This is because of the relaxation process which is more elaborated 

than that of Dijkstra. 

As stated before, the fact that this algorithm is more suitable than Dijkstra in the case the 

weights are negative leads to discard it as substitute of the latter. 
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5.5.3.2 Floyd-Warshall Algorithm 

 

Table 10. Floyd-Warshall specifications. 

This algorithm is also categorized as a dynamic programming algorithm. It was first 

published as it is currently known in 1962 by Robert Floyd. However, publications by 

Bernard Roy in 1959 and Stephen Warshall in 1962 were also recorded. Hence the various 

names assigned to this algorithm: Floyd's algorithm, Roy–Warshall algorithm or Roy–Floyd 

algorithm [63]. 

This algorithm is capable of finding the shortest paths between every pair of nodes in a 

weighted graph, so it is classified as an all-pairs shortest path algorithm. The edges weights 

can be either positive or negative, but it cannot work with cycles, opposite to Bellman-Ford 

algorithm. 

The original development of the algorithm does not provide details on the paths found 

between each pair of nodes in the graph, but a modification can be applied in order to obtain 

this information. 

Pseudocode 
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Pseudocode 6. Floyd-Warshall Algorithm. 

In the first place a matrix is initialized with all its values to ∞. Then the elements in the 

diagonal are set to 0, and the edges to the value of the corresponding weights. Then the next 

three nested for-loops are executed and the values updated if the condition exposed is met. 

The following pseudocode shows a way of obtaining information about the paths between 

every pair of nodes. 
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Pseudocode 7. Floyd-Warshall Algorithm with path reconstruction. 

With the pseudocode provided, the path between two nodes can be computed by means of 

another matrix that stores the information computed in the execution of the algorithm. 

Operation 

The functioning of this algorithm relies on the presence of a matrix that stores the distances 

between the different nodes. The updating of this matrix is done exactly following the 

condition stated in the pseudocode.  

Figure 19 depicts the initialization format of the matrix that stores the distances between 

each node. The diagonal has a value of 0 because it is the distance to go from one node to 

the same one. Then the origin is read on the row indexes, and the destination on the column’s. 

For instance, the distance from node x1 to x3 is 8, which it is already known because it is a 

direct route. 
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Figure 19. Initialization for Floyd-Warshall algorithm. 

Figure 20 shows the distance matrix for some cases in which there are variations in the 

matrix, that is, when the condition determined in the pseudocode has been met. 

 

Figure 20. Distance matrix for Floyd-Warshall. 
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Figure 21 represents the distance matrix in the last iteration, showing the shortest paths 
between each pair of nodes. 

 

Figure 21. Last iteration of Floyd-Warshall algorithm. 

For instance, the shortest path from x5 to x3 has a total accumulated weight of 13. The path 

itself is unknown but it can be computed the following way: x5 à x6, x6 à x2 and x2 à 

x3. As stated before, there is a way to modify this algorithm in order to store the path chosen 

to obtain each one of the values in the distance matrix. This is analyzed in the following 

images. 

 
Figure 22. Modification of Floyd-Warshall Algorithm. 
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Next Matrix stores the predecessors for each node. At the beginning, in Figure 22, only the 

known predecessors are written in the table, the rest are set to null. Figure 23 shows the 

updating of this matrix for the same iterations as in Figure 20. 

 

Figure 23. Next Matrix for Floyd-Warshall Algorithm. 

Figure 24 shows the final version of Next Matrix where the predecessors of each node for 

the shortest paths between each pair has been calculated. With this last version the 

calculation of the shortest path between every pair of nodes is possible. It can be known, not 

only the length of the shortest path, but also its details. For example, the shortest path 

between x1 and x6 can be calculated as the formula on the pseudocode states and it is 

explained as follows: 

1. The first position of the path is the origin: path[1] = x1. 
2. In Next Matrix the value of [x1,x6] is taken as path[2]. That results in path[2] = x2. 
3. Now the value of [x2,x6] is searched in the matrix, path[3] = x3. 
4. The process repeats. path[4] = [x3,x6] = x6. 
5. Now the destination point has been reached. 
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So the shortest path between x1 and x6 is: [x1,x2,x3,x6], with an accumulated weight of 7, 

which is known thanks to the distance matrix. 

 

Figure 24. Last iteration of the modified Floyd-Warshall algorithm. 

 

Time complexity 

The three nested for-loops provide Floyd-Warshall algorithm of a time complexity of 

𝑂 𝑉 L  

Formula 10. Time Complexity for Floyd-Warshall Algorithm. 

This time complexity is higher than that of Dijkstra or Bellman-Ford algorithms but the 

information obtained when running this algorithm is higher, as it provides the shortest paths 

between every pair of nodes. 
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Advantages and Disadvantages 

Advantages 

The main advantage of this algorithm is that it provides the shortest path between every pair 

of nodes in a positive or negative weighted graph. Also, it can be easily modified in order to 

find the details of the paths it finds. 

Only one execution is needed to find all the solutions. Also the structure and functioning of 

the algorithm is very simple and very easy to implement. 

Disadvantages 

The original implementation of the algorithm does not include information about the shortest 

paths found for each pair of nodes. However, it has been proved that modifying the algorithm 

to include this feature is a fairly easy task. 

The shortest paths can only be found when there are no negative cycles. Also this algorithm 

may run slower than others that provide the same results (such as Johnson’s, see section 

5.5.3.3). 

All in all, this algorithm works fine when the objective is to find the shortest paths between 

every pair of nodes in the graph with just one iteration. Nevertheless, this is not the main 

goal of this project, which is to find several paths between the same pair of nodes. 

5.5.3.3 Johnson’s Algorithm 

 

Table 11. Johnson specifications. 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MÁSTER EN INGENIERÍA DE TELECOMUNICACIÓN 
 

RESEARCH ON ALGORITHMS 

70 

This algorithm receives its name from Donnald B. Johnson, who first published it in 1977. 

Like Floyd-Warshall algorithm, Johnson’s algorithm provides the shortest path between all 

pair of nodes in a positive or negative weighted and directed graph [64]. 

It basically consists on employing Bellman-Ford algorithm to remove the negative weights 

in a graph and then applying Dijkstra to obtain the final results, as this algorithm only works 

with positive weights. 

This algorithm focuses in two main facts: the possibility to work with negative weights in a 

graph and finding the shortest paths between all nodes in a graph. For these two reasons it is 

not the most suitable one for the problem analyzed in this project. On one hand, it has already 

been stated that negative weights will never be consider in a graph as the one provided by 

the company, and on the other hand, algorithms that provide more than one result in finding 

the shortest path between a single pair of nodes are more interesting than those that make 

use of time and resources to calculate what is insubstantial information for the problem at 

hand. Therefore, the operation or pseudocode of this algorithm is not even considered in this 

project. 

Time complexity 

The time complexity of Johnson’s algorithm consists of the combination of the execution of 

Bellman-Ford and Dijkstra’s algorithms. So in first place, Bellman-Ford algorithm provides 

an execution duration of: 

𝑂( 𝑉 · |𝐸|) 

While all |V| executions of Dijkstra’s algorithm to find the shortest path between every pair 

of nodes results in: 

𝑂(|𝑉| log 𝑉 + |𝐸|) 

Then, the total time that it takes Johnson’s algorithm to be executed results in: 

𝑂( 𝑉 $ log 𝑉 + |𝑉| · |𝐸|) 

Formula 11. Time complexity for Johnson’s Algorithm. 
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This makes Johnson’s algorithm faster than Floyd-Warshall’s for sparse graphs, that is, 

where a lower number of edges can be found. This is because Johnson’s algorithm depends 

on the edges whereas Floyd-Warshall’s does not. 

Advantages and Disadvantages 

Advantages 

Johnson’s algorithm is faster than Floyd-Warshall’s algorithm in sparse graphs and provides 

the same results than the latter. 

It can work in negative weighted graphs, which gives it an advantage over Dijkstra’s 

algorithm, which was limited by this fact. 

Disadvantages 

The algorithm may not work as efficiently when the graph contains a lot of edges, as its 

execution time depends entirely on this fact. 

On the other hand, as explained before, the features that make this algorithm so desirable in 

certain situations are not essential for the problem studied in this project. Therefore, the 

algorithm will not be further considered. 

5.5.4 K-SHORTEST PATHS 

In this section, a new range of algorithms are considered. They differ from the ones studied 

previously in that they find, not only the shortest path between two nodes, but the k shortest 

paths that interconnect them. Of course only one will be optimal, but sometimes more than 

one option to reach the destination point is desired, as more than one variable is taken into 

account, such as time or money. 

Therefore, three algorithms will be analyzed in this section: Yen’s algorithm, Eppstein 

algorithm and Iterative Enumeration Algorithm (IEA). 
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5.5.4.1 Yen’s Algorithm 

 

Table 12. Yen specifications. 

This algorithm was first published by Jin Y. Yen in 1971 [26]. The procedure it applies 

consists on calculating the shortest path between two nodes using a single-source shortest 

path algorithm, and then removing edges in order to find k-1 different paths from the same 

origin to the same destination. 

If the initial algorithm applied to find the shortest path is chosen to be Dijkstra then it can be 

concluded that the company has been applying an implementation of Yen’s algorithm. 

Time complexity 

As the algorithm depends on the algorithm applied to find the shortest path between two 

nodes, in order to analyze the time complexity of Yen’s algorithm, Dijkstra is assumed to be 

used. This way, the time complexity of the actual implementation in the company code can 

be computed. 

As seen in section 5.4.1.3 the time complexity of Dijkstra’s algorithm is 

𝑂( 𝑉 $) 

Considering that, Yen’s algorithm calls k·N times, being N the worst case of spur paths. 

Therefore, the total time complexity for Yen’s algorithm in the worst case is: 

𝑂(𝐾𝑁 · 𝑉 $) 

Formula 12. Time Complexity for Yen’s Algorithm. 
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Advantages and Disadvantages 

Advantages 

One of the main advantages of this algorithm is that it provides more than one result when 

finding the shortest path between two nodes. It is true that only the first one, calculated 

without removing any edges, provides the optimal solution. But the possibility of finding 

more results may provide more options that before were not contemplated and that may be 

even more desirable in terms of time or money or any other feature that is being considered. 

Disadvantages 

The principal disadvantage was stipulated in section 5.4.2, where it was mentioned that 

removing edges in an arbitrary way may not lead to the best solutions after the optimal 

solution has been found. Maybe the edge that has been removed is the one that provides the 

best path. Uncertainty is the main disadvantage of this algorithm. 

5.5.4.2 Eppstein’s Algorithm 

 

Table 13. Eppstein specifications. 

David Eppstein is a mathematician and computer scientist from the United States that 

developed the algorithm that carries his own name in 1997 [84]. This algorithm helps to find 

the k-shortest paths between two nodes in a weighted and directed graph. Origin and 

destination points need to be know. 

The basic functioning of this algorithm is as follows. In the first place, Breadth-First search 

algorithm needs to be applied to the reversed graph, that is, with the edges’ orientation 
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changed. This way the shortest paths to the destination can be found. Then, sidetrack edges 

are defined. These edges are those not included in the Breadth-First algorithm results and 

represent the added additional distance if they were taken instead of the ones obtained by the 

algorithm. In the end, the different k paths to the destination will be obtained. 

Pseudocode 

 

Pseudocode 8. Eppstein’s Algorithm. 

Operation 

• Reversed Breadth-First Search algorithm 

Eppstein’s algorithm applies a reversed Breadth-First search on the destination, so the result 

includes all the paths that reach the destination. Figure 25 shows the reversed graph on which 

Breadth-First algorithm should be applied. 
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Figure 25. Reversed graph for Breadth-First search in Eppstein’s algorithm. 

Figure 26 shows the tree used to execute Breadth-First algorithm. As weights need to be 

considered to find the shortest path to the nodes, the whole tree that relates the 

interconnections between the nodes is shown on the left. Then, the final tree where the 

shortest paths can be found is provided on the right. 

 

Figure 26. Tree for reversed Breadth-First Search in Eppstein’s algorithm. 
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The values in blue represent the weights on the edges while the values in red represent the 

accumulated weight to each node. The nodes that have been circled on the left are the ones 

with a lowest accumulated weight and the ones chosen for the tree on the right. 

Figure 27 shows the resulting graph once the tree on the right side of the figure above has 

been applied to the original one. 

 

Figure 27. Graph with shortest paths in Eppstein’s algorithm. 

On the left side of the image, it can be seen that two entire paths can be built that reach the 

destination. On the right side, the same graph is represented but with the accumulated 

distance to the destination inside each node. This will facilitate the following explanations. 

• Calculation of sidetracks 

Sidetracks are the edges that are not included in the graph of Figure 27 and that will add an 

additional cost when using them to reach the destination. The weight of these sidetracks can 

be calculated as follows: 

𝛿 𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑒 + 𝑑 ℎ𝑒𝑎𝑑 𝑒 , 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝑑(𝑡𝑎𝑖𝑙 𝑒 , 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 

Formula 13. Calculation of Sidetrack value. 
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In Formula 13, length(e) refers to the weight of the edge. The head of the edge is the node 

to which the head of the arrow aims, while its tail is the opposite side. Then d(head(e), 

destination) is the distance between the node to which the head of the edge aims and the 

destination. 

Figure 28 shows the sidetracks with dotted arrows. For instance, in the red sidetrack, 𝛿 𝑒  

would be calculated as: 

- length(e) = weight(e) = 10. 

- Head = value at the head of the arrow = 12. 

- Tail = value at the tail of the arrow = 7. 

𝛿 𝑒 = 10 + 12 − 7 = 15 

This means that going from node x1 to x6 through node x4 would increment the total cost in 

15. 

 

Figure 28. Calculation of sidetrack edges. 

The only sidetrack edges that have not been calculated are those that have their origin in x6, 

which is the final destination. The additional cost they provided was that of going to the 

nearest node and come back. 
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• Tree of sidetrack sequences 

The next step is the arrangement of the sidetracks in a tree that provides the 

interdependencies between them. The first level of the tree includes the sidetracks that are 

directly connected to one of the direct paths to the destination. 

If the sidetrack 3 is chosen, then other sidetracks can also be selected to reach the destination, 

such as 2 and then the yellow 5, or just the pink 5. This tree represents which sidetracks need 

to be taken to reach the destination through the two direct paths depicted in the figures. 

 

Figure 29. Tree of sidetracks. 

• Heap of sidetracks 

Once the tree of sidetracks has been procured, a heap of its branches shall be built. A heap 

is a binary tree, which means that every node has only two children. And also, the disposition 

of the nodes is that they are ordered by weight. A heap needs to be built from each level of 

the tree. So in this case, three heaps will be procured. 

Figure 30 shows this disposition. 
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Figure 30. Heaps for the sidetracks. 

 

• Arrangement of heaps 

This process includes several steps. First, the incremental costs in each branch of the heaps 

needs to be recorded. Afterwards, each sidetrack node at the top of the head needs to be 

connected to the heap of its tail in the original tree. Finally, the value of the nodes is 

eliminated so the incremental cost to reach them is the only information remaining. 

 

Figure 31. Final arrangement of heaps. 
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• Execution of Breadth-First Search using heaps 

The purpose of arranging the sidetracks in a heap was to reduce the out-degree of the initial 

tree. The out-degree is the maximum number of children a node in a tree has. In the initial 

tree, the out-degree was 4 but with the new arrangement this number gets lowered to 3, which 

makes the execution of Breadth-First search faster. 

Breadth-First search algorithm is going to be executed now using heaps. Afterwards, the k-

paths will be obtained. The pseudocode of this process is included bellow. 

 

Pseudocode 9. Breadth-First Search with heaps for Eppstein’s Algorithm. 

min_cost refers to the minimum cost from any node to the destination. In this case is 7 from 

x1. The images bellow will explain the functioning specified in the pseudocode. The basic 

idea is to go through the heap tree obtained before and building and updating a new heap 

tree with the children of its nodes. 
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Figure 32. Breadth-First Search on Eppstein’s Algorithm with heaps. 

Figure 32 shows the different paths that can be followed until the destination is reached and 

which is the cost of any of them. The nodes that are being traversed to obtain that cost can 

be extracted with the association of the sidetrack assigned to each heap. For instance, the 

path with cost 22 is the one that starts in x1 and goes through x4 and x5 to reach x6. It 

corresponds with the heap d.15 which is the sidetrack that needs to be traversed in order to 

follow that path. Even though finding the nodes included in each path, this seems to be a 

complex way of keeping track of the different paths found. 

Time Complexity 

First of all, the time complexity needed to execute the Breadth-First search algorithm for the 

first time is: 

𝑂(|𝐸| + |𝑉| log |𝑉| ) 

where E are the edges and V, the nodes. 
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When trying to compute the execution time with un unbounded tree of sidetracks the time 

complexity can be calculated as: 

 

Formula 14. Time complexity for unbounded heap for Breadth-First Search for 

Eppstein’s Algorithm. 

When applying the modifications specified above in order to obtain a bounded tree, the time 

complexity that results in executing the Breadth-First algorithm to a bounded tree can be 

calculated as: 

 

Formula 15. Time complexity for bounded heap for Breadth-First Search for 

Eppstein’s Algorithm. 

The key factor is that in this last formula, the total time for computation does not depend 

additionally on the number of edges and therefore, on the number of nodes, although the size 

of the heap depends on them. All in all, this reduces considerably the time complexity. 
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Advantages and Disadvantages 

Advantages 

Eppstein’s algorithm provides a set of different paths to a certain destination, which makes 

it suitable for the purpose of this project. 

Also, it is provided with an asymptotic performance that makes it fit for situations where the 

main objective is obtaining a large number of paths. 

Disadvantages 

The implementation of this algorithm, simple as it seems explained, would not be possible 

for the problem this projects wants to solve. The reason is that Eppstein’s algorithm cannot 

be applied for time dependent problems, which is the type the company faces.  

This algorithm needs to apply a reverse Breadth-First search on the graph at the beginning, 

which is impossible when the edges are subject to time dependencies. Specifically, this 

cannot be done when the edges that connect the different nodes are routes with a start and 

end time. This way, as the time the destination is reached cannot be predicted if the starting 

time is unknown, the routes that actually reach it are uncertain. 

This is the main reason this algorithm is ruled out from being considered as potential 

substitute of Dijkstra’s algorithm. 

5.5.4.3 Iterative Enumeration Algorithm (IEA) 

 

Table 14. IEA specifications. 
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The Iterative Enumeration algorithm or IEA, is an algorithm that computes the k-shortest 

paths from a single source to all the rest of the nodes in a graph. It has been designed to be 

applied in Transportation Networks. These networks are graphs whose edges or routes are 

time dependent and subject to the type of transportation used in each route (bus, train, car…). 

Also, they are designed to avoid cycles in the solutions even if this increase their time 

complexity, as users are not willing to accept this type of routes. 

IEA, as well other algorithms applied on Transportation Networks, are characterized by the 

employment of labels associated to each route and stored on each node. This is different 

from the rest of the algorithms covered in this study, that made used of a static graph. These 

labels have information regarding times and means of transportations. But one characteristic 

that differentiates this algorithm from others included in Transportation Networks is that 

IEA provides k different paths and not just one. 

As its name indicates, IEA has an important factor based on iteration of different operations 

to reach the different solutions. The labels included in IEA for each route cover the following 

information: 

• If the node has been visited or not. 
• A set of sublabels obtained from each route that include: 

o Accumulated cost if that route would be taken. 
o Predecessor node, which is the start of the route. 
o The predecessor’s label used to obtain the next node. 
o Order number associated to the label. 
o If the label has been considered or not. 

There are two ways of implementing this algorithm: one admitting cycles in the solutions 

and another one, avoiding them. The first one comes with the simplest implementation, while 

the second one requires additional settings. They both will be analyzed in the following 

sections. 

Original Implementation 

Provided with the most straightforward structure, this implementation is the simplest one but 

one that could include cycles in the solutions and additional memory usage because of them. 
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- Pseudocode	

The following lines present the pseudocode that gives an indication of the overall functioning 

of the algorithm.  
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Pseudocode 10. IEA. 

The process of creating a label needs the route’s information, such as the weight of the route. 

The first node to be selected is the origin point. When a node is selected, labels are assigned 

to the nodes attached to it, that is, its neighbors. A label stores information about the 

predecessor node and the label by which the current node has been considered. The next 

node to be selected is the one with the unconsidered label with the lowest accumulated 

weight. If this node is the end point, it means the destination has been reached. Then, the 

next step would be to extract the path by which the destination has been reached. The process 

would check the predecessor node indicated in this label and the label of this predecessor 

that has been used to reach the destination. So if the predecessor is shown as x2(3) it means 

that the third label of node x2 was the one by which the destination was reached. So the 

predecessor of the third label is the one that needs to be analyzed in order to find the list of 

predecessors until the source is reached. Finally, the path will be obtained is this chain of 

predecessor is reversed. 

The following section shows this process with the graph being employed by the previous 

algorithms. 

- Operation	

The graph employed to apply the IEA algorithm is the one presented below, as the previous 

sections show. 
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Figure 33. Graph where IEA is applied. 

The source will be x1 and the destination, x6, so the functioning of this algorithm can be 

shown. In this case, the development of the labels associated to each node will be provided, 

instead of the progress of the algorithm on the graph. 

¨ Initiation 

As the pseudocode indicates, the first step consists on populating the nodes adherent to the 

source (x1) with the first label (Figure 34). As it can be seen, x1 does not have any label 

assigned and it will remain so for the rest of the algorithm development. 

 

Figure 34. First step labels on IEA. 

Nodes x2, x3 and x4 are the ones that connect directly to x1, so they will be the ones to 

receive a label first. As the accumulated weight is 0 so far, the weight associated to each 

label corresponds to the exact weight of the route from x1 to each one of them. 

Figure 35 provides a detailed explanation of the structure of a label. 
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Figure 35. Label structure in IEA. 

¨ Second step 

The next step consists on choosing from all this labels the one that has less accumulated 

weight. In this example, this label belongs to x2, so it is highlighted in bold. Also, this node 

is set to visited and the label is also marked as considered so it is not used in the future. 

Figure 36 depicts this, and also the new labels that are associated to nodes x3 and x6, as 

these are the nodes connected directly to x2. 

 

Figure 36. Second step labels on IEA. 

The new labels associated to x3 and x6 (marked in blue) have an accumulated weight 

calculated as sum of the weight of the label just chosen (the one belonging to x2), which is 

4, and the weight of the route that connects x2 to each one of them. For instance, the 

accumulated weight on x3’s second label is: 

4 weight	on	x2	label + 	1 weight	on	route	from	x2	to	x3 = 5 

Figure 37 shows a detailed analysis con the second label of node x3. 
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Figure 37. Label structure in second step in IEA. 

An important fact to take into account is the information the predecessor gives as it will 

prove crucial when obtaining the path to the destination. In this second step, both new labels 

in x3 and x6 included as a predecessor x2 and the label by which they have been assigned is 

the first one. 

¨ Choosing the next node 

The node to be selected is the one which has not been visited yet and has the 

unconsidered label with the lowest accumulated weight. 

Taken this into account Figure 38 provides the labels created for the next steps of the first 

iteration of the algorithm. 

 

Figure 38. First iteration labels of IEA. 
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Step 3 functions the same way as step 2. The second label in x3 is chosen and new labels are 

included in x2, x6 and x5. These labels have as predecessor x3 and the label used to obtain 

them, the second of x3. 

Finally, in step 4 the next node chosen is x6, which is the destination node. Then the first 

iteration of the algorithm has finished and no new labels are added. The first path to the 

destination can be obtained thanks to the information stored in the labels. 

¨ Obtaining the path 

In order to find the path to the destination, the first thing that needs to be done is to analyze 

the label that has been selected on the destination. It needs to be marked as considered, and 

the node as visited. Then the predecessor and its label need to be taken into account. In this 

case, the label indicates x3 is the predecessor of x6 and that its second label is the one that 

must be analyzed afterwards. 

Node x3’s second label states that its predecessor is x2 and its label to be analyzed is the 

first one. When considering this label, the predecessor found is x1, so the first path, and the 

shortest one, has been found. The total cost is shown in the label selected in x6. 

𝑃𝑎𝑡ℎ	1 = 𝑥1, 𝑥2, 𝑥3, 𝑥6 						𝐶𝑜𝑠𝑡 = 7 

 

Figure 39. Building of path in first iteration in IEA. 

¨ Resetting for next iteration 

As stated before, this algorithm relies entirely on repetition using information stored 

previously, specifically the one provided by the labels added before and that have not been 
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considered yet. But in order to make use of this labels, it is necessary to prepare the stored 

information. 

To be precise, those nodes that have been included in the path that has just been found need 

to marked as unvisited. The labels that have been used so far, that is, the ones that have been 

marked as considered, remain unchanged, still considered. 

Figure 40 shows the result of applying this to the stored labels. 

 

Figure 40. Resetting of labels after first iteration in IEA. 

Coincidentally, the nodes that have been included in the first path obtained were the ones 

visited during the first iteration. However, this not always happens. What needs to be noticed 

is that a node that is visited during a iteration does not need necessarily be included in the 

path resulting from that iteration.  

This can be seen in the following iteration. 

¨ Second iteration 

Figure 41 shows the labels that have been assigned to each node during all the steps of the 

second iteration. 
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Figure 41. Labels for second iteration of IEA. 

The path that is obtained after this iteration is: 

𝑝𝑎𝑡ℎ	2 = 𝑥1, 𝑥2, 𝑥3, 𝑥2, 𝑥3, 𝑥6				𝐶𝑜𝑠𝑡 = 9 

Obviously, the algorithm is providing solutions with cycles, which is completely undesirable 

in transportation networks. Additionally, the presence of cycles implies a higher number of 

labels that need to be stored, which results in an increase of memory usage required to 

execute the algorithm. 

The following section provides a modification in the algorithm to avoid the presence of loops 

and cycles. 
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Cycle Avoidance Implementation 

In order to avoid the problem faced in the previous example, that of cycles appearing in the 

solutions as well as an unnecessary memory consumption, this second implementation 

provides the necessary mechanisms that will ensure a more efficient performance. 

The main idea consists on adding a condition to the process of extending labels to each node. 

Specifically, a label will not be extended to a node if this node is included in the predecessors 

list of the label being considered. 

The pseudocode will be as follows: 

- Pseudocode	
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Pseudocode 11. IEA without cycles. 

The if condition highlighted in the code implements the idea explained before. In the 

following subsection the result of applying this modification will be shown. 

 

- Operation	

 

¨ First iteration 

The operation of the algorithm is the same as in the previous implementation. The first 

difference comes in step 3. The node selected is x3 by means of its second label, which 

indicates the predecessor of x3 if that label is used is x2, and that of x2 using that particular 

label is x1. And so, as x2 is in the predecessor list of x3 [x1, x2], the label that had been 

previously extended to x2 now it is not.  
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Figure 42. New labels extended to nodes in step 3 in first iteration of IEA. 

The labels marked in blue are the new labels extended in step 3, and the label crossed out in 

orange is the label extended to x2 in the previous implementation. This label will no longer 

be taken into account. 

¨ First path 

 

Figure 43. First iteration labels for IEA without cycles. 

Fort the first iteration, the removal of the second label of x2 does not affect the path obtained. 

It is the same: 

𝑃𝑎𝑡ℎ	1 = 𝑥1, 𝑥2, 𝑥3, 𝑥6 				𝐶𝑜𝑠𝑡 = 7 
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However, the difference will be found in the second iteration where the number of labels 

extended is going to get considerably reduced and no cycles will appear in the second path 

obtained. 

¨ Second iteration 

 

Figure 44. Second iteration without cycles IEA. 
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Even though the number of labels in node x6 is the same as in the previous case, those of the 

rest of the nodes have been reduced. This is very advantageous in terms of performance as 

the memory usage decreases. 

¨ Second path 

The second path obtained in this second iteration is extracted by means of the labels attached 

to each node. The label selected in x6 indicates its predecessor is x3. Label 1 in x3 determines 

the predecessor is x1. The cost is 10. 

𝑃𝑎𝑡ℎ	2 = 𝑥1, 𝑥3, 𝑥6 				𝐶𝑜𝑠𝑡 = 10 

 

Figure 45. Building of path in first iteration in IEA without cycles. 

The cost is higher than the second path obtained with a cycle. Also, it can be seen that even 

if all nodes were visited in the process, not all of them are included in the path. 

¨ Third Iteration 

After finding the second path, the third iteration stars with a reset of the labels. As only x3 

and x6 were part of the path apart from the source, only these two nodes will be set to 

unvisited. Then, x3 and x6 are the only ones whose unconsidered labels can be selected in 

the future. All belonging to x3 have already been selected so x6’s labels are the only ones 

that could be chosen now. 
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When there are two labels with the same weigh, it does not matter which one is selected. In 

this example, the first to be analyzed is the one that is chosen. 

 

Figure 46. Third iteration IEA without cycles. 

After one label selected, another path is found. 

¨ Third path 

Now the path has a cost of 12 and the nodes involved are: 

𝑃𝑎𝑡ℎ	3 = 𝑥1, 𝑥2, 𝑥6 				𝐶𝑜𝑠𝑡 = 12 

¨ End of iterations 

The iterations in IEA continue until no new labels are added and all of them have been 

considered. In very large graphs, this number could get too high, that is why it would be 

better to outbound the maximum number of solutions. That is, the k solutions to be found. 

In this particular example, the number of iterations, that is, the number of paths found have 

been 7. In Appendix A the entire solution is shown. 
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Figure 47 shows IEA operation without cycles. 

 

Figure 47. IEA operation flowchart. 

 

Time complexity 

The time complexity of this algorithm is: 

𝑂(|𝐸| + 𝑘 · |𝑉| · log 𝑉 ) 

Formula 16. Time complexity for IEA. 

Where k is the number of solutions expected to be found. This formula is very similar of that 

of Breadth-First search studied for Eppstein’s algorithm (Formula 15), but adding the k 

factor, that is, the number of different paths to be obtained. 
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Advantages and Disadvantages 

Advantages 

This algorithm provides k solutions for finding the shortest path between two nodes in a 

single execution of the algorithm. The inner iterations the algorithm applies are equivalent 

to executing Dijkstra or another single-path-algorithm a certain number of times. Therefore, 

the simplicity of this solution makes it very attractive for solving the problem this project 

faces. 

Its time complexity is similar to that of Breadth-First search but worse than that of 

Eppstein’s. However, it has been proved in [2] that IEA running time is better in practice. 

The fact that this algorithm has been built with Transportation Networks in mind, implies 

that it can be easily adapted to time-dependent and transportation modulated scenarios. This 

is a great advantage in what this project is concerned. 

Disadvantages 

As stated by Formula 16, the time complexity of the algorithm relies heavily on the number 

of paths that need to be found. If this number is too high, the algorithm might cause memory 

usage problems due to the increasing number of labels that need to be stored for future 

implementations. 

On the other hand, the relatively newness of its implementation and scarce information about 

its performance results, leave blank spaces about how good it will do in other topologies, 

and therefore, how well it could be implemented in the graph provided by the company. 

Finally, the use of the modified version of the algorithm in order to avoid cycles, does not 

ensure that the first results to obtained are the shortest ones. This is an important drawback 

that could affect the company’s performance. 
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5.6 ALGORITHMS COMPARISON 

All the algorithms that have been studied in the previous section were analyzed in order to 

provide the advantages and disadvantages of employing them as substitute of Dijkstra’s 

algorithm, currently being used in the company’s solution. 

Table 15 provides a summary of the more important characteristics to be taken into account 

in order to choose the more suitable algorithm for the job of substituting Dijkstra. 

Algorithm Time	Complexity Advantages Disadvantages 

Breadth-First 𝑂(|𝑉| + |𝐸|) - Finds	the	best	solutions. 
- Memory	usage. 
- Unweighted	graph. 

Breadth-First 𝑂(|𝑉| + |𝐸|) - Shorter	time	and	less	
memory	usage. 

- Might	not	find	a	solution. 
- Infinite	loops. 

A* 𝑂(𝑏6) 
- Fast	and	efficient. 
- Good	for	complex	
problems. 

- Dependency	on	heuristic	
function.	

Bellman-Ford 𝑂(|𝑉| · |𝐸|) 
- Negative	weights. 
- Wider	inputs	can	be	
introduced. 

- More	complex	than	
Dijkstra. 

Floyd-
Warshall 

𝑂(|𝑉|L) - All-pairs	shortest	path	in	
one	execution.	

- No	information	about	paths	
(original). 

- Slower	than	other	providing	
same	results. 

Johnson 𝑂( 𝑉 $ · log|𝑉| + |𝑉| · |𝐸|) 

- All-pairs	shortest	path	in	
one	execution. 

- Faster	than	Floyd-Warshall. 
- Negative	weights. 

- Execution	depends	highly	
on	number	of	edges. 

Yen 𝑂(𝐾𝑁 · |𝑉|$) - Provides	more	than	one	
result. 

- Uncertainty	when	removing	
edges	arbitrarily. 

Eppstein 𝑂(𝑘 + 𝑘 · log 𝑘) 
- Provides	more	than	one	
result. 

- Good	when	the	number	of	
paths	needs	to	be	high. 

- Complex	implementation. 
- Not	suitable	for	time-
dependent	situations. 

IEA 𝑂( 𝐸 + 𝑘 · |𝑉| · log |𝑉|) 
- Provides	more	than	one	
result	with	just	one	
execution. 

- Complexity	depends	on	
number	of	paths. 

- Memory	usage	depends	on	
labels. 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MÁSTER EN INGENIERÍA DE TELECOMUNICACIÓN 
 

RESEARCH ON ALGORITHMS 

102 

- Good	performance	in	
practice. 

- Applicable	to	time-
dependent	situations. 

- Scarce	performance	
applicability	and	
performance	results. 

Table 15. Algorithms comparison. 

In order to pick the best algorithm to substitute Dijkstra, it is necessary to highlight what are 

the main objectives the company wants to obtain. Then, given the specifications, some 

algorithms can be ruled out. 

• First of all, the company works with a weighted graph. 
o Algorithms such as Breadth-First and Depth-First search are not taken into 

account. Even if they could be modified to be applied to a weighted graph, 
their drawbacks far surpass the effort of applying the necessary 
modifications. 

• The weights in the graph are always positive. Then, those algorithms whose 
greatest advantage is that of providing a shortest path between two nodes in graph 
with negative weights are not the ones needed at the moment. 

o Therefore, Bellman-Ford algorithm is not going to be further examined. 

• Also, the main goal is to find different routes between two nodes in a graph. As a 
result, the company is not interested in multiple solutions between all the nodes in a 
graph. This is because a user usually looks for a certain itinerary between only two 
points in the graph. 

o Then, algorithms such as Floyd-Warshall and Johnson get rejected. 

• The possibility of providing the user with more than just one result of connections 
between two nodes in the graph is also being considered. Therefore, those 
algorithms that provide k solutions are very attractive at this point. 

o Such as Yen, Eppstein and Iterative Enumeration Algorithm (IEA). 

• A better, more efficient and faster solution is being looked for, given the problems 
Dijkstra’s implementation is causing. 

o A* algorithm would be a good option regarding these characteristics. 

o Not Yen’s algorithm though, as the uncertainty it shares with the current 
implementation of Dijkstra is one of the principal reasons to be avoided. 
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o Eppstein’s algorithm should also be ruled out at this point due to the 
complexity of its implementation. 

As a conclusion, the algorithms that are worth to be taken into account are A* and IEA. A* 

has been proven to be very fast and efficient and, given a correct heuristic function, it could 

provide high-quality solutions. However, it still calculates only one result. 

On the other hand, IEA has the characteristics that render it more desirable than the rest. Not 

only it provides more than one result with only one execution but it also does this within a 

good time range. Even though there are some unknown aspects about its performance in 

certain types of graphs, the relatively simplicity of the one used in the company could 

become the perfect scenario to prove its efficiency. 

For these reasons, it can be concluded that IEA is the algorithm chosen and the one to 

be applied in the company’s graph. 
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Chapter 6.  IMPLEMENTATION OF IEA ALGORITHM 

The Iterative Enumeration Algorithm (IEA) is the algorithm chosen among all the ones 

studied in the previous section thanks to its qualities and potential solution of the problems 

being encountered by the company.  

This section will describe at the beginning what is the position of this algorithm in the overall 

picture of the procedure for providing routes between two points. Then, it will be explained 

the way IEA might supply a solution for the problems enumerated and explained in section 

5.4.2. Then, it will be specified what are the necessary modifications to be added to the 

algorithm to make it time-dependent and suitable for finding the correct routes connecting 

two points given the time of traveling. 

Afterwards, a detailed explanation of the implementation of the algorithm will be provided 

in order to show how it has been modeled to the internal structure to which Dijkstra was 

subjected to. First, this implementation will be applied with the original data structure, 

followed by its adaptation to the enhanced data access arrangement. The results that compare 

both algorithms’ performance will be displayed and discussed in Chapter 7.   

Finally, some additional features added to the algorithm will be explained and how they have 

been developed. 

6.1 THE ROLE OF IEA 

As explained before, IEA will be the algorithm in charge of providing combined routes 

between two cities or regions. First of all, it is necessary to specify its position among the 

rest of functions and procedures that also help to procure a connection between them. 

Figure 48 depicts the flow of actions necessary to extract all the information about the routes 

that connect two points. In the first place, after the user has entered the origin and destination, 

a function is called to check if there are direct results between these points as they are the 
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ones usually preferred. These results are obtained directly from the routes table in the 

database but they might not match the current price. This may happen because the providers 

might have made changes after the routes have been inserted into the table. That is why 

scraping is necessary. This action allows to ask for the newest routes characteristics so an 

accurate description can be provided to the user. 

 

Figure 48. Calculation of routes flowchart. 
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If all these scrapings have been successful, that is, if all the information has been successfully 

retrieved, then pivots are looked for. Pivot nodes are certain points in the graph that have 

been selected due to its importance in terms of high influx of routes, and that are chosen to 

force some combined trips to go through them. Therefore, if no pivots could be found then 

the algorithm to calculate the combined routes is called. Dijkstra took this responsibility 

before but now IEA will take the job.  

In case less than 10 pivots have been found then some scraping will be done again, but this 

time looking for pivots instead of direct results. Again, if all calls have been successful, then 

more combined results can be calculated and so IEA will be called again. 

6.2 PROBLEMS SOLVED BY IEA 

As explained in section 1.1, the company faces certain problems that need to be solved with 

the implementation of the new algorithm found. In this section, the solutions proposed by 

the algorithm will be specified and how they may help overcome the difficulties the company 

is facing. 

Time complexity and system collapse 

It was found that Dijkstra consumed a lot of resources when being executed and that lead to 

an inevitable system collapse every time more than three or four combined results were 

found between two nodes in the graph. This happened due to the continuous calls that needed 

to be made to the algorithm every time a new result had to be found, as the algorithm only 

provides one solution at a time. 

 Additional calls to the algorithm 

In order to obtain solutions that were different in terms of time of traveling, cost or waiting 

time, an array of different weights was created and passed into Dijkstra implementation.  
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Table 16. Weights passed into Dijkstra. 

With the example shown in the previous table, the path that Dijkstra would supply would 

certainly be the shortest as more weight is applied in the first element of the array. 

Specifically, Dijkstra was called up to three times using a different set of this array every 

time so different types of paths could be obtained. For example, the first path procured could 

be the shortest, the next the cheapest one and so on. 

With IEA the presence of more than one of these arrays is not needed and the algorithm is 

called just once. The reason is because the algorithm outputs several solutions with just one 

execution. These solutions are bound to be different in terms of time and cost and obtained 

without the uncertainty of eliminating edges, as it was done with the current implementation 

of Dijkstra. Therefore, the algorithm just receives one array with the equivalent cost of the 

time traveling. 

 

Table 17. Weights passed to IEA. 

The cost_per_hour is a value the company has assigned to the total time spent on a vehicle. 

Then, the price of the travel is assigned the maximum weight. Finally, to the waiting time a 

cost_per_connection is assigned. With this structure, the variety of the solutions is ensured. 

 Impossibility of charging more results 

With the current implementation of Dijkstra it was not possible to load more results once the 

algorithm had already been executed. This is due to an absence of a structure able to store 

the information extracted already by the algorithm. This implies that the same results are not 

obtained if the algorithm is executed more times. 
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The structure of IEA based on labels assigned to each node allows for a simple solution to 

this problem. Every time the algorithm is finished with its execution – limited by time or 

number of extracted results –, the labels assigned to each node can be stored so the ones that 

have not been considered yet can be used in a future execution. This way more paths can be 

obtained without having to execute the algorithm since the beginning. 

This can be very useful if an infinite scroll is implemented as the algorithm just receives the 

overall label state of the last iteration and only needs to carry out the previous execution as 

it had never been stopped. 

The reason why the algorithm is stopped before it calculates all possible solutions is because, 

in this type of graphs where the number of nodes and edges is considerably high, the amount 

of solutions to be found is too elevated and getting all of them would take too much time. 

Using pivot nodes 

Due to the uncertainty generated by randomly removing the edges from the graph in 

Dijkstra’s implementation, pivot nodes were needed, as mentioned in section __. Now that 

IEA is known to procure all the existing paths eventually without the risk of repeating results 

or omitting some, pivot nodes are found to be unneeded. The routes returned by the algorithm 

will be the best obtained and if they are good enough they will go through the important 

cities and regions without the need of forcing them to do so. 

6.3 ORIGINAL IMPLEMENTATION 

IEA has been first implemented with the data structure provided already by the company. 

This data structure refers to the databases used and the entries in each one of the tables. This 

way it can be possible to analyze the IEA performance compared to the current 

implementation of Dijkstra in the same circumstances. 

The main information of this data structure to be taken into account is the specifications of 

the routes that are introduced into the algorithm. This information includes: 
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- Route Identification Number. This number uniquely identifies each route. It is 
generated at the time the route is inserted into the table. 

- Origin/Destination Identification Number. Every node in the graph has an 
assigned id that helps to identify them. 

- Start/End Date. This information refers to the day, month and year the route starts 
and ends. 

- Start/End Time. This alludes to the time in hours, minutes and seconds the route 
departs and reaches its destination, respectively. 

- Duration. The total trip time in minutes. 

- Price. It is included in the currency of the country the route belongs to. 

- Vessel. This identifies the vehicle used in the route: plane, bus, train or taxi. 

- Origin/Destination Country. Knowing this information allows to take different 
time-zones into consideration. 

- Company. It provides the name of the company to which the trip belongs to. 

All of this information is going to be used by the algorithm. When the modified data structure 

is finally applied (section 6.4), some of this data will no longer be necessary and, therefore, 

not fed in into the algorithm. But for now, this is everything that is needed to make IEA work 

with the original data structure. 

In this original structure, the information about the routes is taken from different tables and 

grouped in a MySQL view so it can be accessed directly, instead of launching a query to all 

of these tables. The query launched to this view extracts all the routes in the next 2 days 

since the travel date entered by the user and they are introduced into IEA as input.  

6.3.1 ADAPTATION OF IEA TO TIME-DEPENDENT STRUCTURE 

As stated before, a time-dependent structure is one that is subjected to certain times of arrival 

and departure, and that affects the routes available at each node in a particular time. 

The original development of IEA does not take these aspects into account, but thanks to its 

labeled structure, the incorporation of the time a route starts and when a node will be reached, 
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can be easily added to the data already stored in the label. This way, only the routes that 

depart from this particular node after the calculated time of arrival will be considered to 

extend labels to the corresponding nodes. 

 

Figure 49. Simple time-dependent graph. 

Figure 49 shows the graph that has been used to analyze every potential candidate as 

Dijkstra’s substitute. The difference is that now every route includes a start and end time of 

departure and arrival, respectively. Given the additional time conditions implemented in 

IEA, the labels employed by the algorithm will have the appearance showed in Figure 50. 

 

 

Figure 50. First step of IEA with time dependency. 
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The structure of the label is shown in Figure 51: 

 

Figure 51. Label structure in IEA with time-dependency. 

 

In the second iteration, x2 is chosen as the next node as it has less weight (Figure 52). Labels 

are extended to x3 and x6 because the departure time from x2 is later than arrival time at the 

same node. On step 3, however, the route from x3 to x6 is not considered as the departure 

time is earlier than the arrival to this same node. Only the label to node 5 is extended. 

 

 

Figure 52. Second and third steps of IEA with time-dependency. 

 

Figure 53 shows the number of steps of the first iteration. There are a few more than in the 

previous case, and also the path obtained is a different one and with a different cost from the 
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one extracted without time dependency. This is because some routes could not be considered 

due to the time they take place. 

 

Figure 53. First iteration of IEA with time-dependency. 

Also, with the information of the last label, it can be known the time of arrival to the 

destination, which is 8:30 in the morning. Appendix A shows the complete number of steps 

for the time-dependency version of the graph. 

6.3.2 MODELING OF IEA ADJUSTED TO DATA STRUCTURE 

When describing the modeling of the algorithm, it is necessary to consider the programming 

language used to implement it. In this case it has been PHP 7.2.2 [71]. 

The modeling of the algorithm consists on defining what are the inputs it will receive and 

the outputs to be obtained when executing it. Then, the internal structure of the 

implementation will be specified, explaining the classes and objects created and defined to 

organize the internal structure. Finally, the steps needed to put into action the whole 

performance of the algorithm will be identified and explained. 

6.3.2.1 Inputs 

The inputs the algorithm receives are the route attributes, the number of iterations, the start 

time and the origin and destination points. 
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As stated in section 6.3, the main route attributes to be taken into account are: 

• Route Identification Number. 
• Origin/Identification Number. 
• Start/End Date. 
• Start/End Time. 
• Duration. 
• Price. 
• Vessel. 
• Origin/Destination Country. 
• Company. 

The start time is the time at which the user wants to start looking for trips. What actually 

happens is that the user only enters into the search machine the day desired to be the first of 

the journey, not the time. Then, the first hour of departure is defined internally in the code 

and not by the user. Also, as explained before, routes starting this date and 2 days onwards 

are passed on to the algorithm. 

The origin and destination are the two points entered by the user into the search machine.  

 

6.3.2.2 Outputs 

The output of the algorithm are all the paths that it has found. As it will be explained later, 

the number of paths will be limited by the execution time needed to calculate them. In case 

only few number of paths are available, the execution will finish when all the paths are 

found. 

 

6.3.2.3 Internal Structure 

PHP is a programming language that allows to apply Object Oriented techniques. Thanks to 

that fact, the internal structure of the algorithm when implemented in PHP relies on the 

definition and construction of Objects. 
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¨ Edge 

For each route extracted from the query for combined results, an Object belonging to the 

class called Edge is created. The information included in all Objects created from this class 

include the following attributes. 

Attributes 

- Route id. 
- Start and end points of the route. 
- Weight or price assigned to that route. 
- Additional data associated to the route. 

Methods 

No methods are included in this class except for the constructor. 

¨ Label 

A class representing the labels used by the algorithm has been also created. The information 

associated to the labels is the same specified in the examples in section 5.5.4.3. 

 

Figure 54. Structure of label when implementing IEA. 

Attributes 

- Accumulated weight when the label is used. 
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- The predecessor nodes by which that label has been created. These predecessors 
have a two-field array structure. The first field corresponds to the name of the 
predecessor and the second one to that predecessor’s label used to obtain the 
following labels. 
 
This differs from the label structure presented in the previous examples, which only 
included the previous predecessor. When implementing the algorithm, it was found 
that it was much more efficient to include an array of all the predecessor and the 
labels associated to each one of them. In the Figure 54, an example is shown using 
the first steps of the first iteration of time-dependent IEA. 

In step 2, the second label of x3 does not only include x2[1] as a predecessor 
together with its label, but also x1[1] as it was the predecessor of x2[1]. This way, 
when a label from x6 is chosen in step 6, the path that has been obtained by that 
label can be automatically known thanks to this array of predecessors. In this case, 
the path is x1, x2 and x6. The presence of the label associated to each predecessor 
would seem useless now that the path is being stored in each label, as that was its 
main purpose. However, it is useful to know which label has been chosen if 
additional information such as arrival or departure time, wants to be known. 

- The arrival and departure time stored in the label. 
- All the information associated to the route. 
- If the label has been considered or not. 

Methods 

This class has not methods associated but includes logic in its constructor function regarding 

the predecessor nodes.  

Constructor 

The information used to create a label, that is, the inputs the constructor method receives are 

the accumulated weight, the arrival and departure time and the route information. It also 

receives all the predecessors of the node for which this label is being created, the new 

predecessor that needs to be included in this list and the label index of this predecessor. 

In first place, the predecessors input is assigned to the predecessors’ attribute to be included 

into the label being created. Then the last predecessor to be found is appended to this array 

together with the label index associated to it. This can be seen in the example shown above. 
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There is an exception to this procedure and that is when the label to be created has as 

predecessor the initial node. This is because no information about predecessors can be 

included as the first node does not have any predecessors itself. 

 

¨ Node Holder 

A class has been created to represent the nodes that will include labels assigned to each one 

of them. The “holder” in the class’ name is due to the fact the Objects of this class are not 

the nodes themselves, but a recipient that includes the following information. 

Attributes 

- Identification number of the node. 
- Name of the node. It is necessary include both id and name because, when the node 

is the origin or the destination introduced as inputs, the identification of the node is 
by name rather than by id. 

- If the node has been visited or not. 
- The set of labels associated to this node. This set is an array with Label Objects 

specified in the previous point. 

Constructor 

The constructor of this class receives as inputs just the node id and name. It is automatically 

set to unvisited and the set of labels is created but it is empty.  

Methods 

This class includes some methods. 

• Set the node to visited. 
• Set the node to unvisited. 
• Add a label to the array of labels assigned to the node. For this process, first an 

Object of label is created by means of the constructor of the Label Class and then 
added to the array belonging to the node. 

 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MÁSTER EN INGENIERÍA DE TELECOMUNICACIÓN 
 

IMPLEMENTATION OF IEA ALGORITHM 

117 

¨ Node Holder Finder 

This class creates a single object when executing the algorithm. This object is the one in 

charge of storing the list of all the Node Holders that have been created and to update it each 

time a modification is made. It is the internal motor of the algorithm. 

Attributes 

- List of Node Holders participating in finding paths between origin and destination. 
- The accumulated weight of the path being considered at the moment. 

Constructor 

This class has a simple constructor function that creates only the empty list of the Node 

Holders that will be later populated. 

Methods 

A relatively large part of the algorithm’s logic is built in this class by means of methods. 

• Add Node Holder. As the list created in the constructor is empty at the beginning, 
one of the methods to be called is the one that adds a Node Holder that has been 
created. 

• Update the list. Every time a change is made in the Node Holders (a node is set to 
visited or unvisited, or new labels have been included to a node) the list needs to be 
updated with the latest versions of the Node Holders. 

• Find by Id or by Name. As a Node Holder gets identified by either the id or the 
name or both, it is necessary to implement a function that finds a Node Holder 
when one of them is provided. 

• Find if the node is in the predecessor’s list assigned to a label. This function takes 
as inputs the predecessors’ list of a certain label and the node id and name of the 
node to which a label needs to be extended. Then, it iterates through this list and 
determines if the node is inside or not. 
Find the next node. One of the main tasks of the algorithm is to find the next node 
to be analyzed when new labels are added to the Node Holders, as it was specified 
in section 5.5.4.3. As the Node Holder Finder is the one that has all the information 
about the Node Holders and their labels, to incorporate the logic to this class and 
not outside is the sensible thing to do.  
No inputs are needed when this function is called as all the information needed is 
already stored in the class. The list kept by the Node Holder Finder is going to be 
iterated and each one of the Node Holders is going to be analyzed. 
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• Reset for next path. As explained in the previous section, when a path has been 

found, some modifications need to be applied in the list that now holds the Node 
Holder Finder. These changes are to mark as unvisited the nodes belonging to the 
path that has just been found and to reset the accumulated weight to 0. 
 

¨ IEA Class 

For the algorithm overall operation, a class will be created with its same name. This class 

has the following information. 

Attributes 

- A list of all the nodes so the list of Node Holders can be created and stored inside 
the Node Holder Finder instance. 

- A list of the edges emerging from each one of the nodes. The creating of this array 
will be explained in more detail further on. 

- A Node Holder Finder instance. 

Constructor 

The constructor initializes the Node Holder Finder instance and also populates the nodes 

attribute with the nodes passed as an input. 

Methods 

The methods used by this algorithm are: 

• Add an edge to a node. For each one of the routes passed into IEA, the class is 
going to receive as inputs the route id, the start and end point, the weight of the 
route and the route’s complete information. Now, every time an Edge Object is 
created it is included into an array identified by the origin id of the route. This way, 
the key of an element in the array is the node id and the value is the array of all the 
routes that have as an origin the node specified in the key. 

• Remove an edge. It will be identified by the start point of the edge and the 
identification of the route. 

• Get IEA instance. This method allows to extract the array of all the edges identified 
by their origin as well as the Node Holder Instance. 

• Updating the Node Holder Finder, as mentioned above. 
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• Create or search a node. This will depend on the node having been already created 
or not. 

• Get paths. This method includes all the logic of the algorithm. 

Figure 55 shows the relationships between these classes by means of an UML class diagram 

of IEA internal structure. 

 

Figure 55. UML class diagram for IEA internal structure. 
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6.3.2.4 Operation 

The basic operation of this algorithm is the same as explain in section 5.5.4.3. However, it 

was necessary to modify some of its features in order to embed it inside the internal code of 

the company. 

In this section it will be specified how the algorithm was implemented when adjusted to the 

internal data and code structure as well as the internal modifications needed to adapt it to the 

time-dependency adopted by the company. 

¨ Getting combined results function 

This function outputs the combined results obtained by the algorithm, receives the inputs of 

the user’s request, obtains the appropriate routes to insert to the algorithm, calls the algorithm 

and obtains, evaluates, sorts, stores and outputs its results. 

Inputs 

This function receives as an input the parameters of the search inserted by the user, which 

can be summarized as the origin, destination and the date of the routes that want to be found. 

Queries 

The function needs to prepare a query with the parameters received as input. This query is 

emitted in MySQL language, and has the main purpose of obtaining the appropriate routes 

from the database routes so the algorithm can work to obtain the results. 

In first place, the query looks for all the routes that depart from the start point and those that 

reach the destination stated both by the user. Then it will add a condition to obtain the routes 

departing in the range of time between the date specified by the user and 2 days later. Also 

the routes that do not have a start date will be also required. These need to be considered 

because they can be adapted to the traveling time. For instance, taxi routes are not subjected 

to any schedule most of the times. Also, the expired routes will not be taken into account as 
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well as those routes that only operate during certain days of the week and do not match the 

traveling date specified by the user. 

From all the columns belonging to the routes table, only those matching the attributes used 

by the algorithm and specified in section 5.5.4.3 will be requested, that is: 

- Route Identification Number. 
- Origin/Identification Number. 
- Start/End Date. 
- Start/End Time. 
- Duration. 
- Price. 
- Vessel. 
- Origin/Destination Country. 
- Company. 

Then another query is needed in order to obtain from all these routes that have been just 

obtained, the routes that connect origin and destination with just one jump in the middle. 

Figure 56 shows how routes are selected with these two queries. 

 

Figure 56. Query to obtain routes for combined results. 
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The first query obtains the routes that have as origin the start point specified by the user and 

the destination any node. The same happens with the routes that have as a destination the 

end point indicated by the user. Some of the routes may be direct, that is, their origin is the 

starting point and their destination is the end point at the same time. 

For the second query, these routes have been omitted in the picture. In this case, more routes 

are being included in the results obtained from the routes database. These routes are those 

that have their origin or destination in any point depicted in the first part of the figure. What 

can happen is that routes that have their origin in a second-level node and their destination 

also in a second-level point will be found. But also routes that are connected through a 

second node. Also routes with their origin in a second-level node and their destination in the 

final destination will be obtained. 

The problem of this query is that it provides more routes than the ones needed and which are 

quite useless, causing a considerable delay in the execution of the whole algorithm. The 

improvement of this query will be one the main objectives after the implementation of the 

algorithm. 

 

¨ Creation of Edges 

The next step is the creation of the Objects of class Edge included in the algorithm’s class: 

IEA class. 

Now that all the needed routes have been obtained from the database, only those routes that 

are not direct will be used to create the objects of Edge. The procedure is as follows. 

In first place, the edges radiating from each node are created as explained in the previous 

point regarding IEA Class methods. The result will be an array whose keys are the node ids, 

and whose values are arrays with the routes that have their origin id in the node specified in 

each key. 
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¨ Getting the paths 

Next, the IEA method that gets the paths is called and the result it returns will be all the paths 

the algorithm calculates. As stated before, the input of this method are the origin and 

destination specified by the user, the time of departure and the array of weights explained in 

section 6.2. 

Initial step 

First of all, it is necessary to set the node representing the origin to visited. It needs to be 

taken into account that if the user entered the name of a town, several nodes can be found 

with a name equal to the town name but with a different identification number. For example, 

if the town specified by the user was Ho Chi Minh, several nodes can be found inside the 

city, such as the railway station, the airport and various bus stations. All of them will own 

the name of Ho Chi Minh but their id will differ. 

Therefore, if the user entered a town name in his search, it is necessary to find all the nodes 

inside this town and set them to visited. This is because only the routes whose destination is 

outside the town will be of interest, as several jumps between bus and train inside the same 

city is not desirable, when the final destination is another city. 

Iterative steps 

The next steps are repeated conforming the algorithm’s iterative features analyzed in the 

previous section. 

 First steps 

The first time the loop is executed, the node to be considered is the origin entered as an input 

to the function, the same the user chose. Then every edge parting from this node will be 

analyzed. 

Now the arrival time of the user to the initial node is specified by the one included in the 

route or the one passed as an input. Next, this arrival time at the origin will be compared to 

the departure time of the route. This way it will be validated because it can happen that that 

specific trip has already been missed. 
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Finally, a label will be added to the end point of the first route considered and that departs 

from the origin, that is, to the first edge belonging to the origin point being analyzed. Now, 

for the few following iterations, the rest of the edges departing from the origin point will be 

studied and the same logic explained here will be executed. 

Next steps 

When all the edges starting from the origin have been already analyzed then the node with 

the label with the lowest weight needs to be chosen. For that, the method included in the 

Node Holder Finder instance will be applied. 

When this node has been found then it will take the place the origin node had in the previous 

case. That is, all the edges departing from it will be analyzed as before. However, there are 

some aspects to be taken into account now that these edges are connections. One of them is 

that in each connection, a waiting time between each trip needs to be considered. This 

include the time that it takes to collect the luggage or exit the airport in case of planes. This 

waiting time has been estimated by Baolau or specified by the provider instead. The result 

of applying it will result in ruling out some routes departing too early from the same node. 

Finally, labels will be extended to the nodes that are reached by these routes. Then the next 

node needs to be found. If this node is different from the destination, then all this process 

starts all over again. If it is the same, then a path can be extracted. 

Obtaining a path 

When the node returned by the Node Holder Finder’s method of finding the next node is the 

same as the destination passed as an input to the algorithm class, that is, the same as the user 

specified, then a path can be obtained. 

The path can be extracted using the predecessors’ field in the label selected from the 

destination node just chosen as the next node. Also, as this predecessors’ field is iterated in 

order to find the predecessors, the data (or route information) stored in each of the 

predecessors’ labels is extracted and stocked in an array.  

The information presented in this array includes: 
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- The node id through which the path goes through. 
- The route information with origin in the node specified before. 
- The departure time of the route. 
- The arrival time of the route. 

Step	 Information	

1st	Step	

Id:	364	
	

Data:	

Origin	id:	364	

Destination	id:	370	

Name:	Nha	Trang	

Start	date,	end	date,	start	time,	end	time,	price…	

Start	time:	12:00	
	

End	time:	15:00	
	

2nd	Step	

Id:	370	
	

Data:	

Origin	id:	370	

Destination	id:	395	

Name:	Da	Nang	

Start	date,	end	date,	start	time,	end	time,	price…	

Start	time:	16:00	
	

End	time:	18:00	
	

3rd	Step	 Da	Nang	
	

Table 18. Information returned for each path by IEA. 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MÁSTER EN INGENIERÍA DE TELECOMUNICACIÓN 
 

IMPLEMENTATION OF IEA ALGORITHM 

126 

Reset 

Once a path has been obtained, all the nodes belonging to that path will be marked as 

unvisited so their unconsidered labels can be evaluated in future iterations. 

End of the iterations 

The loop is left when the maximum number of iterations or maximum execution time (this 

will be decided in section 7.2.4) have been reached or when the value returned by the Node 

Holder Finder’s method of finding the next node is null, which means that all possible labels 

have been considered. 

6.3.3 OVERCOMING THE DRAWBACKS 

As mentioned in section 5.5.4.3, one of the main disadvantages of using IEA with cycle 

avoidance is that the results are no longer extracted in order. That is, it may happen that the 

first results to be obtained are not the best ones and this is due to the modification applied to 

the original implementation of the algorithm to avoid loops in the solutions. When including 

the condition of forbidding the extension of labels to nodes that are included in the 

predecessors’ list of a certain label, it may occur that the path that was being followed and 

that could be the next shortest one, is discarded for the moment and another with worse 

characteristics could be chosen before. 

Some options to solve this problem were proposed: 

¨ Execute algorithm always with higher number of iterations than needed 

The algorithm is set to provide more results (more iterations) than the solutions to be 

displayed for the user. For example, the algorithm could work internally with a maximum 

number of 20 paths but show only 5 in the page. 

This procedure can be carried out because the time that it takes the algorithm to obtain 20 

paths does not defer much to that of obtaining just 5 or 10 for a low number of routes (see 

section 7.2.1). However, Baolau was choosing to show few results because of Dijkstra’s 

implementation limitations of time and memory. If IEA algorithm offers better results with 
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20 solutions and they can be obtained in a considerable time span, then these 20 paths will 

be shown, as useful information would be being withheld with no reason at all otherwise. 

With this amount of results, the best one among all of them will have more probabilities of 

being displayed. 

¨ Continuous execution of the algorithm 

Another possibility would be to manage the execution of the algorithm at the same time the 

results are being shown. This way, a short execution of 3 or 4 results could be performed 

followed for more paths obtained afterwards. When these had been acquired, they could be 

added to the table and rearrange it dynamically so the newest additions that provide better 

results would be shown higher in the results table. 

This comes with a serious problem and that is the friendly usage experience provided to the 

user. Even if it would be more efficient to show the user the best results at the beginning of 

the table, the dynamic arrangement could end up being an inconvenience. For instance, if 

the user had already located a good enough option in which he is interested, if this option 

was found to be worse in terms of duration than a newest one just added, then the path would 

be moved to an another location in the table, and there would not way to indicate the user to 

which place it has been moved.  

Therefore, this option gets discarded. 

¨ Fixed execution time 

The maximum time the algorithm is going to be working can also be fixed. After the time 

has been spent then the results obtained will be output. This option may come in handy when 

considering the variability of the amount of routes that can be passed on to algorithm, which 

condition the execution time of the algorithm. 

Also, if this time is fixed high enough to obtain a considerable amount of paths then there 

are possibilities of finding the best ones among them. This option will be further studied in 

section 7.2. The final selection among these possibilities will be presented in section 7.2.4.  
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6.4 NEW DATA STRUCTURE 

A new data structure was decided by the company to be implanted when retrieving the routes 

from the database to calculate the combined paths. 

First of all, due to the long time that the query to the original data structure took, a new data 

structure was decided to be implemented together with the update to a new algorithm for 

path-searching. As seen in section 6.3, the original query obtained routes differentiated by 

the date they took place. In the database, even old routes are stored but they are periodically 

deleted. However, the amount of information accessed by the query was fairly large causing 

the query to take too much time, more than the execution of the algorithm itself. 

Additionally, the user was shown a list of routes that had already been consulted by other 

users. This has proven to be sometimes deceitful as the route was later found to be 

unavailable. The new data structure provides a solution to this problem. 

Taking this into account, a new access to the route database was determined. Instead of 

accessing with the query directly to the routes table, a MySql view has been defined and it 

includes all the routes: those already outdated and those programmed for the near future. The 

main difference is that no date is included in the view, just the schedule for this routes. The 

idea behind this is that it is probable that the routes are repeated over time and the previous 

departure and arrival times could match those of the future routes. 

Also, the price stored for these routes is an average of the prices of those routes that have 

the same origin, destination and vessel and have been found in the routes table. 

Consequently, when launching a query to the database, only the origin and destination are 

going to be defined and so the results are going to include much more routes than with the 

last query. For instance, when searching for routes between Ho Chi Minh and Da Nang, all 

the routes that have been registered in the routes table and that are now stored in the view 

without date are going to be returned. With the former query the result was limited by the 

travel date chosen by the user and introduced in the query. 
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Thanks to this new view, routes can be shown instantly to the user with an approximate value 

of the real price. On the other hand, when the algorithm calculates the different paths 

between origin and destination, these routes are first checked with those in the route table in 

order to see if they actually are available or if scraping is going to be needed. 

Changes introduced in IEA 

One of the consequences of using the new view is that the routes cannot longer be identified 

by an id as it is possible that they do not actually exist in the routes table. Therefore, IEA 

needs to be modified in order to operate without identifying the routes by id. 

Also, all operations regarding the date of the routes must be removed as the new routes do 

not have departure nor arrival date. However, it is necessary to take into account the trip 

time in order to see if the routes were available at a certain time of the day. 

Afterwards, the routes that conformed the paths obtained by IEA need to be identified by 

their origin, destination and vessel employed so they can be somehow looked for in the routes 

table and check if they really exist. Those that have been found in the table will be shown 

directly to the user while those that have not will be set to scrapping (see Figure 48). 

Therefore, all paths found by the algorithm and currently available will be displayed to the 

user one way or another. This provides more flexibility to the user as he can now see routes 

that previously existed and that have been updated with this last access to the routes table. 

With the former query, the routes presented were only the ones that the routes table provided 

for the future. 

As a consequence, the amount of routes returned by the query is going to be much larger 

than with the former query. Therefore, it is necessary to prove IEA can work with so many 

routes. IEA was proven to be effective with the quantity of routes returned by the previous 

query, contrary to Dijkstra that constantly made the system collapse. 

The next step would be to analyze IEA’s performance with this new amount of queries 

obtained with the new query, and what are the advantages of the combination of the new 

data structure and the new algorithm in use. This will be studied in Chapter 7.  
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6.5 ADDITIONAL MODIFICATIONS 

Once the complete functionality of the algorithm has been implemented, some modifications 

have been introduced into the algorithm. These adjustments are: 

• Loading more results after some have been shown to the user. 

• Allowing different users access the information already calculated before. 

• Avoiding parallel access to common resources. 

Fortunately, for the first two features only one change in the structure needed to be made. 

As for the third modification, semaphores have been needed in order to implement it. 

Loading more results 

As specified before, the execution of IEA can either be time-limited or result-bound, 

depending on the chosen approach. Either way, not all the results available are shown after 

the first execution. That is why a button has been added in the interface so the user has the 

possibility of asking for more results. 

During the first iteration, IEA has calculated labels that have not been used yet but that will 

allow the calculation of future paths, that is, they would be helpful if IEA could continue its 

execution from the point it was left on the first time. Therefore, the solution has been to 

extract and store IEA label structure every time an iteration is finished weather because it 

has exceeded the selected time or the maximum number of paths to find. This IEA structure 

is identified by the origin and destination points as well as the travel date. 

When the user wishes to load more results, as the origin, destination and travel date are the 

same, the IEA structure is retrieved and IEA can continue its execution where it was left 

before. This procedure reduces the time taken to obtain more results and avoids wasting 

resources repeating the operations that otherwise would need to be done again. 

Multi-access to already calculated combined routes 

As an IEA structure is stored in case the user wants to load more results, this structure could 

be also used by other users interested in the same itinerary and in the same date. However, 
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it is important to keep track of the information that has been shown to each user so there is 

no overlapping on the routes displayed to each one of them. For example, if a user is shown 

5 combined results and another user a few seconds after looks for the same itinerary and 

date, then this user will be shown this same 5 results. Now if the second user wished to load 

more results another 10 results are shown, for instance. If the first user now presses the 

button for more paths, these 10 results need to be shown before more results are loaded, 

otherwise only the new paths generated by IEA will be directed to the user and not the 

previous ones. 

 

Figure 57. Multiple-access to combined results flowchart. 

The solution to this dilemma consists on always storing in files the latest version of the IEA 

structure as well as all the results obtained from every user so far. But also, each user needs 
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a counter of the exact number of results he is being shown to avoid the problem mentioned 

earlier. Figure 57 explains this procedure for routes searched between Hanoi and Vinh on 

June 14th 2018. 

Scenario 1: A user access for the first time the itinerary. 

- The value of the results being shown to him is 0 (n = 0), and obviously no files will 

exist as no one has created them before. 

- The files are created and IEA is executed in order to obtain x results. Let us say x = 

10 results. 

- These 10 results and the IEA instance are stored in the files. 

- Also the result counter stored on the client side is updated to the new results being 

displayed (n = 10). 

Scenario 2: The same user loads more results. 

- Now n has a value of 10 and the results file as well as that containing an IEA instance 

exist, and they do so because the itinerary is the same as well as the date as the user 

just pressed the button to load more results. 

- The results as well as the IEA instance are retrieved from the files. 

- IEA is executed, and let us say that this time it provides 5 results (y = 5). 

- These 5 results are merged to those obtained from the results file. Now the total 

number of results is 15. 

- From these 15 results (it is essential they are not reordered once they merge) the user 

already has the first 10 (n = 10). Therefore, he will only need the last 15 – 10 = 5 

results, which match the new results obtained. 

- Now n is updated to 15. 

Scenario 3: A new user access the itinerary. 

- For this user the files also exist and he retrieves the 15 results that have already been 

calculated by the other user. 
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- The procedure is the same as in Scenario 2 but now n = 0, so all these results will be 

passed back to the user. 

This way it can be ensured all users are shown every result obtained so far without missing 

one. 

Avoiding parallel access to common resources 

The arrangement shown in Figure 57 allows different users to access the same resources, 

three files specifically: one for routes, another for results and then another one that stores the 

IEA instance to be used on future iterations. Each user will be performing reading and 

writing tasks. The fact that two users read simultaneously a file does not imply any 

inconsistencies. However, writing simultaneously does. Therefore, it is necessary to employ 

some mechanisms, such as semaphores, that prevent two users from accessing the files at 

the same time. 

A semaphore simply locks a resource once it has been accessed by one user. If another user 

tries to access that same resource, the semaphore detects it is already locked and, in this case, 

sends the second user to sleep for a certain time after which he can try again. If the resources 

are still being used, then the same process is repeated. If not, the user is free now to access 

them now that the other one has already released them. 

6.6 INTERFACE MODIFICATIONS 

One of the additional goals of this project was to improve the route-searching interface 

appearance. Therefore, some filters have been added in order to provide the user more 

possibilities when looking for a certain trip. 

There were some filters already implemented regarding means of transportation. They can 

be used to display results depending on the vehicle used in each one of them. What has been 

added is the possibility to filter some trips depending on the following features: 

- Departure time lower limit: what is the earliest hour the user wishes to start his trip. 
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- Departure time upper limit: when is the latest hour the user wishes to depart. 

- Maximum overall trip duration. 

- Maximum number of steps: how many vehicle transfers the user is willing to take. 

- Companies providing the different routes. 

What all these filters have in common is that they are applied on the already calculated 

results, that is, the ones that are being displayed to the user. Only when the user has entered 

the origin, destination and date of his trip and the available results have been shown, will the 

filters be displayed. This implies that the IEA implementation has not been modified in order 

to design these filters. 

The filters have been implemented in the JavaScript file that allows to make changes on the 

client side rather than the server, rendering this process much more agile and versatile. 

 

Figure 58. Route-search form in baolau.com. 

Figure 58 shows the route-search form in the initial page of baolau.com. As mentioned 

before, no filters can be applied before the results are shown. The transport filters can be 

seen in Figure 60. 
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Figure 59. Transport filters. 

Figure 60 shows on the top the initial appearance of the newly added filters, and which will 

be later modified before the company uploads the code to production. The bottom image 

depicts the interface after the user moves the sliders and clicks the button. 

 

Figure 60. Search results filters. 
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One of the characteristics of these filters is that they update the results in real time and there 

is no button that needs to be clicked to show the filtered results. Figure 61 depicts all the 

unfiltered results between Vientiane and Luang – Prabang. 

 

Figure 61. Unfiltered results Vientiane – Luang Prabang. 

 

Figure 62 shows how the results change after some filters have been modified. 
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Figure 62. Filtered results Vientiane – Luang Prabang. 

Another feature has been added in case the filtered results are non-existent. For example, in 

case the user inputs a maximum trip duration of 0h, no results will be shown. In this case, 

the load-more button will be hidden (Figure 63). 

 

Figure 63. Load-more button hidden when there are no results. 
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Chapter 7.  RESULTS ANALYSIS 

This chapter will be focused on analyzing the results obtained with the implementation of 

the Iterative Enumeration Algorithm (IEA). Its performance will be compared to that of 

Dijkstra’s algorithm as it was developed in Baolau’s code. Afterwards a thorough analysis 

will be carried out regarding only IEA’s execution.  

The performance comparison will be carried out by contrasting the time execution needed 

by both Dijkstra and IEA to obtain the required paths between two nodes, and also the 

amount of paths obtained. This comparison will be done between the original 

implementation of Dijkstra’s algorithm and IEA’s implementations using the new access to 

the database. Afterwards the conclusions acquired with the tests and comparisons will be 

presented and the arguments determining the best algorithm performance will be explained. 

Consequently, the main objective of this section is comparing, not only the performance of 

both algorithms, but also the efficiency of the new access to the database to obtain the routes 

the algorithms employ. 

Finally, with IEA’s individual operation analysis results, the best configuration when 

running the algorithm will be specified in order to obtain the best possible performance. 

The execution of all tests has been conducted in in a MacBook Pro computer with a 2,7 GHz 

Intel Core i5 microprocessor. It uses 8 GB 1867 MHz DDR3 of memory. 

7.1 COMPARISON BETWEEN DIJKSTRA AND IEA 

Two scenarios will be presented in order to test the effectiveness of the algorithm itself 

(Scenario I) and the benefits of using the new query to access the route database. 

• Scenario I: Execution of both algorithms using each one a different set of routes 

whose number is similar to one another. 
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• Scenario II: Execution of both algorithms using the same set of routes between the 

cities of Hue and Vinh in Vietnam. 

7.1.1 SCENARIO I: EXECUTION WITH THE SAME NUMBER OF ROUTES 

The main goal of this scenario is to analyze the efficiency of IEA compared to that of Dijkstra 

under similar circumstances. For that reason, each algorithm will be executed using a similar 

amount of routes, as the factor that determines the speed of the algorithms is the quantity of 

routes introduced. 

In order to find the same amount of routes for each one of the algorithms, it is necessary to 

apply different origin and destination points for each algorithm. The reason is because, as 

explained in section 6.4, the new query structure included by IEA’s implementation always 

returns more results than the previous query to the database. 

Dijkstra’s execution 

As explained before, the algorithm currently use in Baolau is Dijkstra using Yen’s 

implementation of removing edges when more results want to be obtained. The query chosen 

for Dijkstra’s execution is between the Vietnamese cities of Hanoi and Dong Hoi, resulting 

in 3100 routes. 

Iterations	 Avg.	Time	
Query	

Avg.	Time	
Dijkstra	

Avg.	Total	
Time	 Num.	Paths	 Num.	

Executions	
1	 6,554	 0,131	 6,726	 1	 1	
3	 10,696	 1,409	 12,449	 3	 6	
6	 7,014	 1,406	 8,464	 6	 9	
10	 7,061	 2,075	 9,185	 10	 13	
15	 7,105	 3,015	 10,167	 15	 18	
20	 7,004	 3,918	 10,989	 20	 23	
30	 7,560	 5,692	 13,328	 30	 33	
40	 7,392	 7,183	 14,624	 40	 43	
50	 7,369	 9,189	 16,610	 50	 53	
60	 7,072	 10,179	 17,297	 60	 63	

Table 19. Scenario I – Recorded data for Dijkstra execution. 
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Table 1 shows the average time of the execution of the algorithm for a certain number of 

iterations with 10 executions every time (to obtain the average value). In this case, when 

applying 10 iterations the algorithm is called 10 times; with 20 iterations, 20 times and so 

on. This average time increases with the number of results to be obtained. However, it was 

found that three more executions were needed in order to reach the specified number of 

results, as it can be seen in columns Num. Paths and Num. Executions, which refer to number 

of paths found and the number of executions needed to acquire them, respectively. For 

instance, 6 executions were needed to obtain 3 paths. Nevertheless, the positive aspect is that 

this span seems to remain constant. The execution time is linear as Figure 64 shows, and this 

is because the algorithm provides a new path every time that it is called and it takes 

practically the same time in each execution. So the accumulated time follows that pattern. 

 

Figure 64. Scenario I – Dijkstra average execution time. 

As Figure 64 shows, when the number of iterations is low enough, the actual time for 

launching the query is higher than that of the execution of the algorithm. This is highly 

inefficient as the algorithm itself is quite fast. However, as the number of paths to be found 

increments, the execution time of the algorithm surpasses that of the query, which should be 
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the usual behavior, as MySQL queries are normally found to be quite quick. The peak found 

in one of the first queries was probably caused by some glitch in the process and nothing too 

significant. 

Figure 65 shows that the additional three executions needed to obtain the required number 

of paths remains constant over the number of iterations. 

 

Figure 65. Scenario I – Dijkstra number of executions vs. number of paths. 

IEA’s execution 

In order to operate with an amount around 3000 routes, IEA’s performance was tested by 
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Iterations	
Avg.	Time	
Query	

Avg.	Time	
Algorithm	

Avg.	Total	
Time	

Num.	
Paths	

Num.	
Executions	

1	 0,187	 0,722	 0,994	 1	 1	
3	 0,156	 0,702	 0,997	 3	 3	
6	 0,136	 0,798	 1,010	 6	 6	
10	 0,127	 0,808	 1,010	 10	 10	
15	 0,129	 0,994	 1,299	 15	 15	
20	 0,123	 1,096	 1,390	 20	 20	
30	 0,124	 1,551	 1,929	 30	 30	
40	 0,127	 1,543	 1,948	 40	 40	
50	 0,122	 2,495	 2,943	 50	 50	

Table 20. Scenario I – Recorded data for IEA. 

Similar to Dijkstra, the average time for the execution of the algorithm is also quite low, 

thanks to the reasonable amount of routes introduced, as Table 20 shows. On the other hand, 

the algorithm returns the exact amount of results it was supposed to provide, contrary to 

Dijkstra, which sometimes provided the same paths and the execution needed to be redone 

in order to find a different result. 

 

Figure 66. Scenario I -IEA average execution time. 
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However, the most interesting aspect is the amount of time needed to launch the query and 

receive its results, which is almost 12 times lower than the former query used with Dijkstra. 

The information provided in the table is represented in Figure 66 

Compared to Dijkstra, the time required to access the database to obtain the routes is 

inessential, which is a very important advantage of the new query structure. More routes can 

be obtained with a fast query, promoting the effectiveness not only of the whole route-

searching process but also of the algorithm’s path calculation procedure. This way, the total 

time for obtaining the routes and calculating the different routes depends mostly on the 

algorithm’s efficiency rather than in procuring the routes with which the algorithm can work. 

 

Figure 67. Scenario I – IEA number of executions vs. number of paths. 

Also, as mentioned before, IEA always provides the exact number of paths that were required 

(Figure 67), as its internal structure ensures none of them are repeated. This is possible 
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Figure 68 depicts the comparison between the time spent by both queries and the algorithms’ 

execution times. 

 

 

Figure 68. Scenario I – Performance time comparison between Dijkstra and IEA. 

 

The right side of the image shows the comparison between the time needed for launching 

the query and receiving its output. It can be seen that the new query is six times lower as that 

employed in Dijkstra.  

On the other hand, the right side of the image provides the different execution times of both 

algorithms. While Dijkstra manages to be a little bit faster when obtaining a single path, IEA 

takes much less time for the rest of the number of iterations needed.  

This added to low time needed for obtaining the routes results in a total execution time much 

lower than Dijkstra, as Figure 69 shows. 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MÁSTER EN INGENIERÍA DE TELECOMUNICACIÓN 
 

RESULTS ANALYSIS 

145 

 

Figure 69. Scenario I – Average total time of execution comparison between 

Dijkstra and IEA. 
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However, the problem comes with the time spent on launching the query which eventually 

saturates the system causing its collapse. 

Iterations	
Avg.	Time	
Query	

Avg.	Time	
Algorithm	

Avg.	Total	
Time	 Num.	Paths	

Num.	
Executions	

1	 12,159	 0,081	 12,292	 1	 1	
3	 12,444	 0,385	 12,857	 3	 5	
6	 12,278	 0,611	 12,921	 6	 8	
10	 12,268	 0,905	 13,203	 10	 12	
15	 11,827	 1,211	 13,069	 15	 17	
20	 12,311	 1,687	 14,030	 20	 22	
30	 12,438	 2,383	 14,852	 30	 32	
40	 12,606	 2,922	 15,573	 40	 42	
50	 12,169	 3,857	 16,076	 50	 53	

 Table 21.Scenario II – Recorded data for Dijkstra execution. 

 

Figure 70. Scenario II -Dijkstra average execution time. 
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As Figure 70 shows, the time the algorithm takes to obtain all the paths is actually very short. 

However, the query to the database takes up too much time, rendering the algorithm’s 

efficiency almost useless. 

  

Figure 71. Scenario II – Dijkstra number of executions vs. number of 

paths. 
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programmed to obtain a different set of results every time. And it was executed 10 times for 

each set in order to procure accurate results of the average performance time. Table 22 shows 

the information about the algorithm’s operation. 

Iterations	
Avg.	Time	
Query	

Avg.	Time	
Algorithm	

Avg.	Total	
Time	

Num.	
Paths	

Num.	
Executions	

1	 0,207	 1,710	 2,027	 1	 1	
3	 0,165	 1,846	 2,129	 3	 3	
6	 0,234	 2,278	 2,658	 6	 6	
10	 0,203	 3,247	 3,712	 10	 10	
15	 0,180	 3,034	 3,416	 15	 15	
20	 0,154	 3,249	 3,601	 20	 20	
30	 0,163	 4,370	 4,787	 30	 30	
40	 0,153	 5,018	 5,478	 40	 40	
50	 0,159	 5,983	 6,480	 50	 50	

Table 22. Scenario II – Recorded data for IEA. 

 

 

Figure 72. Scenario II – IEA average execution time. 
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IEA’s execution time is higher than Dijkstra’s. However, it must be taken into account that 

IEA has operated with more routes than Dijkstra. It can be seen that the execution time 

increases rather linearly with the amount of iterations performed. This is the logical output, 

similar to that of Dijkstra. 

On the other hand, the average time for launching the query and receiving a response is 

substantially much lower than the previous data structure used with Dijkstra. This is what is 

going to allow the algorithm become much more efficient than Dijkstra as it is going to be 

able to operate with more routes. Also, more results will be obtained in a shorter period of 

time, even though the execution of the algorithm itself is a little bit slower than Dijkstra 

(Figure 72). 

 

Figure 73. Scenario II – IEA number of executions vs. number of paths. 
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results as it wants if they exist, but also the complexity of acquiring that many results can be 

known and therefore managed in the best possible way. That is, the company has knowledge 

about what are the performance consequences of asking the algorithm for more results. So 

they will be able to decide which is the optimal number of paths to extract every time, in 

case this is the approach chosen to be followed (see section 7.2.4). 

Figure 74 shows the performance time comparison between Dijkstra and IEA for this 

scenario. 

 

Figure 74. Scenario II – Performance time comparison between Dijkstra 

and IEA. 

As the figure on the left shows, the previous query took up almost 12 times more time than 

needed with the new data structure. So even if, as the figure on the right shows, IEA’s 

execution time is higher than that of Dijkstra’s in this case, the average total time when 

applying IEA is lower, as Figure 75 shows.  

Again, it is necessary to keep in mind that IEA is working with more routes than Dijkstra in 

this scenario, which results in an increase of its execution time. 
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Figure 75. Scenario II – Average total time of execution between 

Dijkstra and IEA. 
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data structure and the query used to access the database in order to obtain the routes used by 

the algorithm was found to play a major part on effectively reducing the entire process’ time. 

On the other hand, when considering Scenario II the real advantages provided by the new 

data structure can be appreciated. The new query provides more results than the former one 

even if the origin and destination are the same in both, as explained in section 6.4. What this 

implies is the necessity of an algorithm that can take that many routes and still operate as 

competitively as before, if so a little bit slower than before due to an increase of the number 

of internal iterations. 

Dijkstra was proven to be completely inadequate and unprepared for a high number of routes, 

as the time it took to iterate over the array exceeded the default time out set by PHP. 

Therefore, the implementation of IEA was essential for the application of the new query. 

Also, even if IEA ended up taking more time than Dijkstra on its execution due to the higher 

quantity of routes, the high amount of time spent by the former query when applying Dijkstra 

resulted in IEA’s better performance, thanks to the speed of the new query as well as that of 

the algorithm. 

Consequently, it can be concluded that IEA, together with the new data structure, provide a 

much more efficient and competent performance than the one already implemented in the 

company. And one that can be considered to substitute the previous path-searching 

arrangement. 

7.2 IEA PERFORMANCE ANALYSIS 

Once IEA was compared to Dijkstra and it was concluded that the new route-searching 

structure is more efficient, a thorough analysis was carried out in order to determine the most 

convenient configuration to use the algorithm. This study is essential when considering the 

increasing amount of time the algorithm takes to obtain an incremental number of paths. 

Several possibilities were studied: 
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• Option I: A maximum number of paths is fixed for every search. 

• Option II: The number of paths to be calculated each time varies depending on the 

number of routes. 

• Option III: The algorithm execution time is fixed for every search. 

7.2.1 OPTION I: FIXED NUMBER OF PATHS 

This was the first approach chosen and the one used to develop the algorithm. However, the 

higher number of routes returned by the new query lead to analyze this possibility more in 

detail in order to study its advantages and disadvantages. 

Figure 76 shows the behavior of the algorithm with an increasing number of routes as well 

as iterations. For this test, every execution was carried out 10 times and an average of the 

execution time was calculated. 

 

Figure 76. IEA average execution time for different set of routes. 
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As it can be seen, the algorithm average execution time increases with the number of paths 

to be obtained. Also, this number increments as the amount of routes passed on to the 

algorithm grows. The greatest difference among the performances represented is that one 

obtained when employing 10.000 routes. The time spent by the algorithm increases 

exponentially rather than linearly as in the rest of the cases. This entails a very serious 

consequence, which is the impossibility of calculating more than 30 results. This happens 

because the algorithm takes more time than the limit allowed by the system (around 20 

seconds) causing its timeout. 

Leaving this particular case aside, as it only happens when the amount of routs is fairly high, 

the algorithm has a good performance for the rest of the routes amounts. However, it must 

be taken into account that the cases where the algorithm might be rendered useless due to 

the high quantity of routes may happen more often than not. This is because that amount of 

routes are available when both origin and destination are concurrent nodes in the graph, just 

as Ho Chi Minh and Da Nang in Vietnam. 

As a conclusion, fixing the amount of paths to be found every time should not be a possibility 

as the execution of the algorithm depends on the number of routes introduced. The 

consequence would be that the algorithm would return results some times when the amount 

of routes was not that high. If the number of routes was too high, it would time out providing 

no results, even if the labels have already been created. This is one of the drawbacks of the 

algorithm, as it can only return the paths once all the required ones have been calculated. 

Therefore, this option is not considered. 

7.2.2 OPTION II: VARIABLE NUMBER OF PATHS 

Following the same reasoning as in Option I, one solution to the problem found would be to 

apply a variable number of paths to be obtained depending on the quantity of routes returned 

by the query.  

For those trips where origin and destination are relevant enough for the query to provide a 

high amount of routes, then the maximum number of paths could be reduced. This way the 
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algorithm would not take too much time in its execution. On the other hand, for those 

destinations where not too many routes were found that connects them, more paths could be 

set to be obtained. 

While this seems a very practical approach, it does not solve the problem of the routes 

interconnection complexity. Sometimes the algorithm has been found to take more time 

finding the correct interconnection between routes and this is due only to the routes’ 

characteristics, and not because of the amount of them. This implies that the time the 

algorithm is going to calculate the paths is still unknown even if the quantity of routes has 

already been calculated. If the algorithm keeps conditioning its execution to the maximum 

number of paths to be obtained, it could happen that sometimes it needs more time, leading 

to a possible time out while in other situations the algorithm it works correctly. 

Therefore, the uncertainty attached to this option due to the routes complexity as well as the 

unknown time the algorithm might take to calculate the routes leaves this option out of 

consideration. 

7.2.3 OPTION III: FIXED EXECUTION TIME 

As both Option I and Option II have already been discarded and both were set on fixing the 

number of paths the algorithm had to calculate, Option III is set on another approach: fixing 

the execution time rather than the number of paths. 

It has been found that knowing the time a process is going to take provides a more user-

friendly experience, as results are going to be shown after a certain and known amount of 

time. Hence, some tests were applied to this new modification of IEA’s implementation 

where the number of paths to be obtained has not been determined, but rather the maximum 

time the algorithm must be running. 

For the following test, the execution times were fixed to 2, 5, 10, 15 and 20 seconds and 

different routes set were applied: 

 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MÁSTER EN INGENIERÍA DE TELECOMUNICACIÓN 
 

RESULTS ANALYSIS 

156 

• Vientiane –Luang Prabang: 1000 routes. 

• Vinh – Dong Hong: 5000 routes. 

• Hanoi – Vinh: 7000 routes. 

• Ho Chi Minh – Da Nang: 10.000 routes. 

 

Figure 77. IEA average number of iterations with a fixed execution time. 
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routes are introduced into the algorithm. However, with only 10 seconds of execution time 

almost 20 results can be found, which is more than necessary.  

It needs to be taken into account that the results provided by the algorithm are for combined 

routes. The direct routes are extracted directly from the database and presented to the user 

after making sure they are still available. Usually, when more than 10.000 routes can be 

found between two points, it means these are important destinations. This also implies that 

a rather large amount of direct routes is going to be shown to the user before the combined 

results that will appear at the end of the list. Therefore, 10 seconds of execution time and 

almost 20 combined results to be shown provide a very good balance between efficiency and 

time in this case, when the user is not that interested in the combined options most of the 

times for these types of destinations. 

7.2.4 CONCLUSIONS ON IEA PERFORMANCE ANALYSIS 

As a result, it can be concluded that this approach is the one best suited for the company 

purposes and the one that is going to be adopted.  

It is necessary to mention that, even if the algorithm is set to be time-limited, a condition 

will be added. The algorithm will keep working even if the execution time has already 

expired and no results have been found. In this case the algorithm must keep functioning 

until at least a result is found, or the end of iterations have been reached and no results have 

been obtained. This condition has been added because of those cases in which the number 

of routes is so high the algorithm takes more time than the limit introduced. This way it can 

be ensured that at least one result is going to be shown even if more time is needed. 

Moreover, when there are so many routes to be managed it means that a lot of direct routes 

will be shown and this will reduce the negative impact on the algorithm’s extended execution 

time, as the user will already have several results to analyze. 
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Chapter 8.  CONCLUSIONS AND FUTURE 

CONTRIBUTIONS 

The main objective of this project is to improve the overall performance of the multiple-

route search procedure implanted in Baolau. The first step has consisted on choosing and 

implementing a new algorithm that adjusts best to the company’s needs and route structure. 

For that an extensive and detailed research was carried out in order to provide the best 

solution. The Iterative Enumeration Algorithm (IEA) was selected among all the possibilities 

studied in Chapter 5.   

What earned IEA the possibility of becoming the potential substitute of Dijkstra’s algorithm 

currently employed in the company, was the fact that IEA could be easily adapted to time-

dependent scenarios. In these scenarios routes are subjected to timetables. Combinational 

routes must take this fact into account because some routes will no longer be available at a 

certain node if the arrival time has already surpassed the departure time of a certain trip. IEA 

effortlessly overcomes this difficulty thanks to its labeled structure that allows to store the 

schedule information of each route used to arrive at a certain node. Therefore, IEA was 

included into the system employing the former data structure in which the routes introduced 

into the algorithm were differentiated by its departure date. Moreover, only routes on the 

next 2 days after the travelling date entered by the user were selected and passed on to the 

algorithm, as explained in section 6.3. 

The next step to keep improving the system’s search performance was to change all the 

data structure used to access the routes introduced to the algorithm. It was found that the 

query launched to obtain the routes took up much time. Consequently, a new table was 

created in the database that included all the routes that had existed so far but with the 

peculiarity of not including the date, just the time of arrival and departure. This way, the 

algorithm has more possible routes to work with and so more result to show. Afterwards, the 
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actual routes table is accessed in order to check which of the paths procured by the algorithm 

actually exist and are available for the date introduced by the user into the system. With this 

new approach, the query launched was also modified and built to work in a much faster way 

that the previous one. However, while the time spent in executing the query had been 

reduced, the algorithm needed more time to operate with the increased number of 

routes. However, the global outcome still surpassed that of Dijkstra in terms of time and 

resources savings and quantity and amount of results obtained. 

As a conclusion, not only was it possible to improve the multiple-route trip calculation by 

means of introducing a new algorithm (IEA), but also by modifying the data structure 

employed by that same algorithm. It was also proven that this algorithm was perfectly 

suited for adopting the changes introduced in the system by the use of this new data 

structure thanks to the labelled arrangement inherent to it internal anatomy. Also, this 

labelled structure was what allowed the algorithm to be used to obtain additional solutions 

once the algorithm had already been called and the results shown to the user. This has 

successfully been applied to allow the user to load more results after having examined the 

ones already displayed in the page. Also, the new filters applied to these results, which do 

not affect the algorithm in any way, could become an advantageous feature for the web-page 

as it allows a more customized searching experience for the user. 

Internally, a future modification of this project would be its applicability to round-trip travels 

and adaptability to ensuing modifications included and applied into the web-page.  

Externally, some future contribution could be the extendibility of the algorithm to new 

scenarios and situations with time-dependent characteristics and in need of obtaining 

different paths from one source to a certain destination in a graph.  

All in all, algorithms are gaining an increasing growth in computerized mechanisms 

extending to most of fields around the world. Thanks to their complexity now supported by 

the current powerful and developed computers, algorithms are becoming an important part 

in every-day business and careers. IEA could become the next extended algorithm for 

multiple-route calculation procedures.  
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Figure 78. IEA complete label structure without cycles. 
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COMPLETE SOLUTION TO IEA IN TIME-DEPENDENT SCENARIO 

 

 

Figure 79. IEA complete label structure in time-dependent scenario. 
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SPECIFICATION AND DESCRIPTION LANGUAGE (SDL) 

Specification and Description Language (SDL) is an object oriented language defined by 

The International Telecommunications Union - Telecommunications Standardization Sector 

(ITU - T). It is used in event-driven and real-time situations where information is exchanged. 

Therefore, simulations are modeled by it. 

The most common graphs used are the following: 

 

• Process 

Indicates the process that takes the action. 

• State 

Represents the state in which the process jumps into. 

• Input message 

Symbolizes the reception of a message. 

• Output message 

A message that is sent. 

• Timer 

 Indicates that a timer was started.  

• Decision 

Identifies more than one possibility in the information 

flow. 

• Task 

 Represents an activity that must be performed. 

 


